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Foreword

This is the textbook I hoped someone like Professor David Gries
would write —and, since the latter has no rivals, that means I just hoped
he would write it. The topic deserves no lesser author.

During the last decade, the potential meaning of the word “program”
has changed profoundly. While the “program™ we wrote ten years ago
and the “program™ we can write today can both be executed by a com-
puter, that is about all they have in common. Apart from that superficial
similarity, they are so fundamentally different that it is confusing to
denote both with the same term. The difference between the “oid pro-
gram” and the “new program” is as profound as the difference between a
conjecture and a proven theorem, between pre-scientific knowledge of

mathematical facts and consequences rigorously deduced from a body of
postulates.

Remembering how many centuries it has taken Mankind to appreciate
fully the profundity of this latter distinction, we get a glimpse of the edu-
cational challenge we are facing: besides teaching technicalities, we have
to overcome the mental resistance always evoked when it is shown how
the techniques of scientific thought can be fruitfully applicd to a next area
of human endeavour, (We have already heard ali the objections, which
are so traditional they could have been predicted: “old programs”™ are
good enough, “new programs” are no better and are too difficult to design
in realistic situations, correctness of progams is much less important than
correctness of specifications, the “real world” does not care about proofs,
etc. Typically, these objections come from people that don’t master the
techniques they object to.)

It does not suffice just to explain the formal machinery that enables us
to design “new programs™ New formalisms are always frightening, and it
takes much careful teaching to convince the novice that the formalism is
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n indispensable. Choice and order of exampl::js

are as important as the good taste with which the forrtr)l-ahsn;l_ls ai;::;aﬁ(;
ires a scientist that combines his sci

To get the message across requires : . e s

i i j ith the precious gifts of a devo .

involvement in the subject with : .

We should consider ourselves fortunate that Professor David Gries has

met the chalienge.

not only helpful but eve

Edsger W. Dijkstra

Preface

The Oxford English Dictionary contains the following sentence con-
cerning the term science:

Sometimes, however, the term science is extended to de-
note a department of practical work which depends on
the knowiedge and conscious application of principles;
an art, on the other hand, being understood to require
merely knowledge of traditional rules and skili required
by habit.

It is in this context that the title of this book was chosen, Programming
began as an art, and even today most people learn only by watching oth-
ers perform (e.g. a lecturer, a friend} and through habit, with little direc-
tion as to the principles involved. In the past 10 years, however, research
has uncovered some useful theory and principles, and we are reaching the
point where we can begin to teach the principles so that they can be cons-
ciously applied. This text is an attempt to convey my understanding of
and excitement for this just-emerging science of programming.

The approach does require some mathematical maturity and the will to
try something new. A programmer with two years experience, or a junior
Or senior computer science major in college, can master the material —at
least, this is the level 1 have aimed at.

A common criticism of the approach used in this book is that it has
been used only for small (one or two pages of program text), albeit com-
plex, problems. While this may be true so far, it is not an argument for
ignoring the approach. In my opinion it is the best approach to reasoning
about programs, and | believe the next ten years will see it extended to
and practiced on large programs. Moreover, since every large program
consists of many small programs, it is safe to say the following:
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One cannot learn to write large programs effectively until
one has learned to write small ones effectively.

nteed, my experience is that the approach

often leads to shorter, clearer, correct programs in the same amount of
time. It also leads to a different frame of mind, in that one becomes
more careful about definitions of variables, about style, about clarity.
Since most programmers currently have difficulty developing even small
programs, and the small programs they develop are not very readable,

studying the approach should prove useful.

The book contains little or no discussion of checking for errors, of
ograms and the like. This is not

making programs robust, of testing pr
because these aspects are unimportant or because the approach does not
convey the material as sim-

allow for them. It is simply that, in order to
ply as possible, it is necessary to concentrate on the one aspect of develop-
ing correct programs. The teacher using this book may want to discuss

these other issues as well.

While success cannot be guara

The Organization of the Book

Part I is an introduction t0 the propositional and predicate calculi.
Mastery of this material is important, for the predicate calculus should be
used as a tool for doing practical reasoning about programs. Any discip-
line in which severe complexity arises usually turns to mathematics to
help control that complexity. Programining is no different.

Rest assured that I have attempted to convey this material from the
programmer’s viewpoint, Completeness, soundness, etc., are nol men-
tioned, because the programmer has no need to study these issues. He
needs to be able to manipulate and simplify propositions and predicates

when developing programs.

Chapter 3, which is quite long, discusses reasoning using a “natural

deduction system”. 1 wrote this chapter to lcarn about such systems and
to see how effective they were for reasohing about programs, because a
number of mechanical verifiers systems are based on them. My conclu-
sion is that the more traditional approach of chapter 2 is far more useful,
but 1 have left chapter 3 in for those whose tastes run to the natural
deduction systems. Chapter 3 may be skipped entirely, although it may
prove useful in a course that covers some formal logic and theory.

If one is familiar with a few concepts of logic, it is certainly possible to

begin reading this book with Part 11 and to refer to Part 1 only for con-
ventions and notation. The teacher using this text in a course may also
want to present the material in a different order, presenting, for example,
the material on quantification later in the course when it is first needed.

Preface

Part 11 defines a

: small language in terms of

cant ] s 2 weakest preconditi
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Answers ci i
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Notation. The notation iff i
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