Texts and Monographs in Computer Science

(W'l
bk
A

£y
SO R
1981

Do

Hans W. Gschwind and Edward J. McClusky
Design of Digital Computers

An Introduction

2nd Edition. 1975. viii, 548p. 375 illus. cloth

Brian Randell, Ed.

The Origins of Digital Computers

Selected Papers

and Bdition. 1975. xvi, 464p. 120 illus. cloth

Jeffrey R. Sampson

Adaptive Information Processing
An Introductory Survey

1976. %, 214p. 83 illus. cloth

Arto Salomaa and M. Soittola
Automata-Theoretic Aspects of Formal Power Series
1978. x, 171p. cloth

Saud Alagic and Michael A. Arbib
The Design of Well-Structured and Correct Programs
1978. x, 292p. 68 illus. cloth

Michael A. Arbib, A.J. Kfoury, and Robert N. Moll
A Basis for Theoretical Computer Science
1981, viii, 220p. 49 illus. cloth

The Science
of Programming

David Gries
. 0

Springer-Verlag
New York Heidelberg Berlin

David Gries .
Department of Computer Seience
Cornell University

Upson Hall

lthaca, NY 14853

U.S.A,

Library of Congress Cataloging in Publication Data
Gries, David, 1939- .

The science of programming. .

(Texts and monographs in compater science)

Bibliography: p.

Includes index. _

1. Electronic digital computers—Programming.
I. Title. [IL Series.

QAT6.6.G747 001.642 81-14554
AACR2

1 by Springer- Verlag New York Inc.

()?lllfizhts);esgrvegd. No part of this book may ble translated or Verla
reproduced in any form without writien permission from Springer- g,
175 Fifth Avenue, New York, New York 10010, USA. N et i
The use of general descriptive names, trade namc?;{l;r?::ﬂiafriez, :,sc.

i icati ven if the former are not espect ,
?(:ts t!c))ull::ctzt!zz: ,ai a sign that such names, as understood by the Trade I::iarks
and Merchandise Marks Act, may accordingly be used freely by anyone.

Printéd in the United States of America.

- 987654321

Foreword

This is the textbook I hoped someone like Professor David Gries
would write —and, since the latter has no rivals, that means I just hoped
he would write it. The topic deserves no lesser author.

During the last decade, the potential meaning of the word “program”
has changed profoundly. While the “program™ we wrote ten years ago
and the “program™ we can write today can both be executed by a com-
puter, that is about all they have in common. Apart from that superficial
similarity, they are so fundamentally different that it is confusing to
denote both with the same term. The difference between the “oid pro-
gram” and the “new program” is as profound as the difference between a
conjecture and a proven theorem, between pre-scientific knowledge of

mathematical facts and consequences rigorously deduced from a body of
postulates.

Remembering how many centuries it has taken Mankind to appreciate
fully the profundity of this latter distinction, we get a glimpse of the edu-
cational challenge we are facing: besides teaching technicalities, we have
to overcome the mental resistance always evoked when it is shown how
the techniques of scientific thought can be fruitfully applicd to a next area
of human endeavour, (We have already heard ali the objections, which
are so traditional they could have been predicted: “old programs”™ are
good enough, “new programs” are no better and are too difficult to design
in realistic situations, correctness of progams is much less important than
correctness of specifications, the “real world” does not care about proofs,
etc. Typically, these objections come from people that don’t master the
techniques they object to.)

It does not suffice just to explain the formal machinery that enables us
to design “new programs™ New formalisms are always frightening, and it
takes much careful teaching to convince the novice that the formalism is

Foreword

vi

n indispensable. Choice and order of exampl::js

are as important as the good taste with which the forrtr)l-ahsn;l_ls ai;::;aﬁ(;
ires a scientist that combines his sci

To get the message across requires : . e s

i i j ith the precious gifts of a devo .

involvement in the subject with : .

We should consider ourselves fortunate that Professor David Gries has

met the chalienge.

not only helpful but eve

Edsger W. Dijkstra

Preface

The Oxford English Dictionary contains the following sentence con-
cerning the term science:

Sometimes, however, the term science is extended to de-
note a department of practical work which depends on
the knowiedge and conscious application of principles;
an art, on the other hand, being understood to require
merely knowledge of traditional rules and skili required
by habit.

It is in this context that the title of this book was chosen, Programming
began as an art, and even today most people learn only by watching oth-
ers perform (e.g. a lecturer, a friend} and through habit, with little direc-
tion as to the principles involved. In the past 10 years, however, research
has uncovered some useful theory and principles, and we are reaching the
point where we can begin to teach the principles so that they can be cons-
ciously applied. This text is an attempt to convey my understanding of
and excitement for this just-emerging science of programming.

The approach does require some mathematical maturity and the will to
try something new. A programmer with two years experience, or a junior
Or senior computer science major in college, can master the material —at
least, this is the level 1 have aimed at.

A common criticism of the approach used in this book is that it has
been used only for small (one or two pages of program text), albeit com-
plex, problems. While this may be true so far, it is not an argument for
ignoring the approach. In my opinion it is the best approach to reasoning
about programs, and | believe the next ten years will see it extended to
and practiced on large programs. Moreover, since every large program
consists of many small programs, it is safe to say the following:

Preface

viil

One cannot learn to write large programs effectively until
one has learned to write small ones effectively.

nteed, my experience is that the approach

often leads to shorter, clearer, correct programs in the same amount of
time. It also leads to a different frame of mind, in that one becomes
more careful about definitions of variables, about style, about clarity.
Since most programmers currently have difficulty developing even small
programs, and the small programs they develop are not very readable,

studying the approach should prove useful.

The book contains little or no discussion of checking for errors, of
ograms and the like. This is not

making programs robust, of testing pr
because these aspects are unimportant or because the approach does not
convey the material as sim-

allow for them. It is simply that, in order to
ply as possible, it is necessary to concentrate on the one aspect of develop-
ing correct programs. The teacher using this book may want to discuss

these other issues as well.

While success cannot be guara

The Organization of the Book

Part I is an introduction t0 the propositional and predicate calculi.
Mastery of this material is important, for the predicate calculus should be
used as a tool for doing practical reasoning about programs. Any discip-
line in which severe complexity arises usually turns to mathematics to
help control that complexity. Programining is no different.

Rest assured that I have attempted to convey this material from the
programmer’s viewpoint, Completeness, soundness, etc., are nol men-
tioned, because the programmer has no need to study these issues. He
needs to be able to manipulate and simplify propositions and predicates

when developing programs.

Chapter 3, which is quite long, discusses reasoning using a “natural

deduction system”. 1 wrote this chapter to lcarn about such systems and
to see how effective they were for reasohing about programs, because a
number of mechanical verifiers systems are based on them. My conclu-
sion is that the more traditional approach of chapter 2 is far more useful,
but 1 have left chapter 3 in for those whose tastes run to the natural
deduction systems. Chapter 3 may be skipped entirely, although it may
prove useful in a course that covers some formal logic and theory.

If one is familiar with a few concepts of logic, it is certainly possible to

begin reading this book with Part 11 and to refer to Part 1 only for con-
ventions and notation. The teacher using this text in a course may also
want to present the material in a different order, presenting, for example,
the material on quantification later in the course when it is first needed.

Preface

Part 11 defines a

: small language in terms of

cant] s 2 weakest preconditi

me}:ﬁr;ﬁt ;:31 t‘s the ones needed for later understandlijng o?(::;:slaoc?: lThe

o e 1% aglémllj— 1:art: chapters 7 and 8, sections 9.1 and 92"‘3 Opd-

n . Further, it is ibi i - ieria

ehapts er, possible to skip some of th i

° thes:;;;lel ihg (t:(c:;mal Flefm;uon of the iterative construct ande t?eat:::)a(j;"
11 cerning the use of a loop i '} i

that mastering this material will be beneficiall) mvariant, although T believe

Part IIT is .
more aCtivel;hiivhoii:;td 0;" }t1he bogk. Within it, in order to get the reader
question will be rais d’ ave tried the following technique. At a point, a
tion is followed by fvﬁizzhslggctehear;aéjc?r is e)lc;iected to answer. The qu;s_
After answeri ; : rizontal line, and more whit
ny answer.eflgﬁcilhzccgiuest.lon, the reader. can then continue and gi;cl:):\?;
reading the toxt but it ve involverment will be more difficult than simpi
) will be far more beneficial. Py

Chapter 21 is fun. It concerns inverti
awter 21 . erting programs, somethin -
feany ugi};stgzsand his coileague Wim Feijen dreamed up. W%;&aetr?td?
ot ot oty ::tdbeen deglded, but it is fun. Chapter 22 presents as
o simple rules o ocumenting programs; the material can be read be-
¢ book. Chapter 23 contains a brief, personal history gf

this science of pro i
gramming and .
problems in the book. g an anecdotal history of the programming

Answers ci i
e answers to some exercises are included —all answers are not gi
(e oxaro: snzz:;:‘ be] used as homework. A complete set of answerﬁlzzz ;O
inal cost by requesting it, on appropriate letterhead)

Notation. The notation iff i

: ' tation iff is used for “if o

while lecturing i or "if and only il A few year

only it~ ‘;Jar;nag 1Sn Denmgrk, I used fif instead, reasoning that sin};za‘t‘isfaag(:i,

Without knowin)én;;nitr: dconcept its notation should be symmetric alsno
I) ad punned in Danish . :

for #i : . : anish and the audien

cou{::lf[ler;]Dam'Sh means “a little trick™. I resolved thereafter toczséau'ghed,

my joke, but my colleagues talked me out of it fsel

The symbol i
exampiesy ang sonoﬁhuse‘;itho :ln;jar‘k the end of theorems, definitions
i : n beginning t : ’
hotot . . g to produce this b
P ypesetter, it was discovered that the mathematical ogﬁasgﬁt:he
IS

“forall” and “exists™
could i :
for them. not be built easily, so A and E have been used

Throughout the book, i
. , in the few pla
and kis denote a person of either sex.p e they fseu, the words he, him

Preface

Acknowledgements

Those familiar with Edsger W. Dijkstra’s monograph A Discipline of
Programming will find his influence throughout this book. The calculus
for the derivation of programs, the style of developing programs, and
many of the examples are his. In addition, his criticisms of drafts of this
book have been invaluable.
me has been t
for programming was t
only in its technical contribution but in its tas
since then has continued to influence me. Ton
cisms of a draft of Part 1 caused me to reorgan

of it.

] am grat
ters and gav
graph.

A number of people have given me substantial constructive criticisms
on all or parts of the manuscript. For their help 1 would like to thank
Greg Andrews, Michael Gordon, Eric Hehner, Gary Levin, Doug Mcll-
roy, Bob Melville, Jay Misra, Hal Perkins, John Williams, Michael
Woodger and David Wright.
goes also to the Corpell Computer Science Commun-
f course CS600 have been my guinea pigs for the past
y and students have tolerated my preachings
ry amiable way. Cornell has been an excellent

he work of Tony Hoare. His paper
he start of a new era, not
te and style, and his work
y's excellent, detailed criti-
ze and rewrite major parts

Just as important to
on an axiomatic basis

first drafts of all chap-

eful to Fred Schneider, who read the
on almost every para-

e technical and stylistic suggestions

My appreciation
ity. The students o
five years, and the facult
about programming ina ve
place to perform my research.

This book was typed and edited by myself, using the departmental
PDPI/60-VAX systemn runping under UNIX* and a screen editor written
for the Terak. (The files for the book contain 844,592 characters.) The
final copy was produced using troff and a Comp Edit phototypsetier at
the Graphics Lab at Cornell. Doug Mcllroy introduced me to many of
the intricacies of troff, Alan Demers, Dean Krafft and Mike Hammond

ed much help with the PDP11/60-VAX system; and Alan Demers,
Halész spent many hours helping me con-

hototypesetter. To them I am grateful.

ation has given me continual suppor

provid
Barbara Gingras and Sandor
nect the output of troff to the p

The National Science Found
my research, which led to this book.

Finally, 1 thank my wife, Elaine, an
their love and patience over the past one &

t for

d children, Paul and Susan, for
nd one half years.

*UNIX is 2 trademark of Bell Laboratories.

U Gres P

2- w o 6, 7%
Table of Contents = AV

t " i 1o

,.5’—-———""“-\“——-—*“—"

5 woow W

b A X ‘rl\

-1 W L L

4% » v téf (7 O(

Y " " 1 l

(O w " h

Part 0. Wh ic!
y Use Logic? Why Prove Programs Correct?

Par .
art 1. Propositions and Predicates

lCl;apter I. Propositions.....

1:2. Es;lly Pgrenthesized Propositi(.)'rll-s..‘.l..:.-

1.3'. Em]ﬁa?m of Constant Propositions...'.

" preces ion of Propositions in a State ...

V5 e ence Rules for Operators
ologies.......................

1.6. Propositi
o positions as Sets of States........................

Chapter 2. Reasoni
. soning using Equi
2.1 The Laws of EQuivalefce quivalence Transformations

22, T)
53 Ah[ejoliuleis of Substitution and Transitivity
mal System of Axioms and Inferen(:e"i{l.l.l.éé

C
hapter 3. A Natural Deduction System

3.1. Introducti
on to Deducti .
3.2, Inference Rules uctive Proofs

.......................
................

10
I
12
14
15
le

19
19
22
25

28
29
30
36
45
52

66
66
71
76
79

i Table of Contents Table of Contents
xiii
4.5. Quantification Over Other RANEES .ooerrmemraresrriessmanssnssees 82 16,4, Enlargi
. i ’ ging the R ;
4.6. Some Theorems About Textual Substitution and States...... 85 j 16.5. Combiniig ifre aa“ngj ;f at Var;gble 206
: - OStCONAIIONS 1 roororoer oo
, Chapter 5. Notations and Conventions for AITays.......coveres 88 : a Chapter 17. Notes T 211
5.i. One-dimensional Arrays as FUNCHIONS ccvu e ceeremearsmssnessssresesers 88 Ch _ on Bound Functions.........occceiininininnnn, 216
57, Array Sections and PACLUTES. coveareres eesrnressrsomspansensssssssmsssses 93 : 18 ?pter 18,' US{“g Iteration Instead of Recursion
5 3. Handling Arrays of Arrays OF vt ovreeearseeicre e e 96 : L. Solving Simpler Problems Fifsto.ccvorrsrr 221
, . ;.;- 18.2. Divide and CONQUET.........oooorro oo 222
.~ Chapter 6. Using Assertions to Document Programs. ..o 99 18.3. Traversing Binary TIEEs .o 226
6.1, Progran SPECificalions i sismosssvoeess e 99 y Ch 8 Y TIEES cooiviieiieiine et s 229
6.2. Representing Initial and Final Values of Variables ..o 102 o ' 19 f;tpter 19‘, Ffffw’e“c)’ Considerations
6.3 Proof OULNES oo vrvesreressossss s cossassrrs e s 103 190 G e 237
l9.2. Tak:ng AN ASSETLION OUL OF & LOOP ovrrrrrroooo o 238
_ 3. Changing a Representation ... 241
Part 1i. The Semantics of a Small Language ...oocovwmmmrmreeere 107 : Chanter 20, Two Lasocr Exam ot o oo o 246
& Chapter 7. The Predicate Transfor 108 aé pter 20. Two Larger Examples of Program D
A pter 7. e Predicate Transformer Wp..ooooeesmrrmnts 20.1. Right-justifying Lines of Text gram Development..... 253
EXL o e i
« Chapter 8. The Commands skip, abor! and Composition ... 114 20.2. The LOngest UPSEQUENCe...... oo 253
UPSCQUERCE. s 259
.. Chapter 9. The Assignment ComMANG coeore v 117 Chapter 21. Inverting Programs.......c.c.......
9.1. Assignment to Simple VATTADLES. o eeerervesrsemseammspsemeammrsssenss 117 : Chapter 22. Notes on Documentation...... ... 265
1 . iy . D "
9.2. Multiple Assignment to Simple Variables oo 121 : 22.1. Indentation on Documentation. ... 275
¢.3. Assignment to an Array BIEIMENL cverovs sereemseseerremssmsnsnsnssseneses 124 l 22.2. Definitions and """"""""""""""""""""""""""""""""""""""
. . D \ TR 275
9.4. The General Multiple Assignment Commandoooevemimerren 127 : 22.3. Writing Programsi:a(;ig:ni()f Variables. .o 283
: r Languages.............
- Chapter 10. The Alternative COMMANG .oovvmmerer e 131 : Chapter 23. Historical Notes B 287
~ Chapter 11, The Jterative COMMANM woorrroenirms s 138 : ;g; A Brief History of ngl‘am.lll'l‘i.l.l‘g“.I;/'I.;:.t.l.l.(-a.c;].(')lil(l) 24
: 2. The Problems Used in the Book BYvrrisrenen 294
Chapter 12. Procedure Call i s smeimreem e 149 : A S T T e 301
12.1. Calls with Value and Result Parameters oo 150 : ppendix I. Backus-Naur Form.................
12.2. Two Theorems Concerning Procedure Call ..o 153 Appendix 2. Sets, Sequences, Inteqers and Real Numbors. 304
122, Using Var PAFAIMELETS oo srrressrszssves s o0 2 158 A , . quences, Integers and Real Numbers............ 310
2.3, Allowing Value Parameters in the Postcondition ... 160 - - ppendix 3. Relations and Functions.......
A) ' ONS o 315
. ppendix 4. Asymptotic Execution Time Properties
Part 111, The Development Of PLOGIAMS 1ocvvemmmsssanrcssmsnsrsseenisss s 163 Answers to Exercises 320
. Chapter 13, IRtrOUCHON et e 163 Reforonces 323
, Chapter 14. Programming as a Goal-Oriented ACtVItY...cooveens 172 dex 355
Chapter 15. Developing Loops from Invariants and Bounds....... 179 o 35¥
15.1. Developing the Guard TFITSE ©overeerssremcrmeessenmemians st emseses 179
15.2. Making Progress Towards Termination ..o 185
« Chapter 16. Developing Invariants ..o 193
16.1. The Balloon TREOTY cirrerrssssseness st 193
16.2. Deleting a Conjunct.......cc..- 195
199 ’

16.3. Replacing a Constant By a Variable...ccermmmeemriers

