R e A A T R T D T L LT

Part 0
Why Use Logic?
Why Prove Programs Correct?

A story

We have just finished writing a large program (3000 lines). Among
other things, the program computes as intermediate results the quotient ¢
and remainder r arising from dividing a non-negative integer x by a posi-
tive integer y. For example, with x =7 and y =2, the program calculates
g =3 (since 7+-2=3) and r =1 (since the remainder when 7 is divided by
2is 1),

Our program appears below, with dots “...” representing the parts of
the program that precede and follow the remainder-guotient calculation.
The calculation is performed as given because the program will sometimes
be executed on a micro-computer that has no integer division, and porta-
bility must be maintained at all costs! The remainder-quotient calculation
actually seems quite simple; since + cannot be used, we have elected to
repeatedly subtract divisor y from a copy of x, keeping track of how
many subtractions are made, until another subtraction would yield a nega-
tive integer.

riwx; g=0;
while r > do
begin r'= r—y; ¢g'= g+1 end;

We're ready to debug the program. With respect to the remainder-
quotient calculation, we're smart enough to realize that the divisor should
initially be greater than { and that upon its termination the variables
should satisfy the formula

2 Part 0. Why Use Logic? Why Prove Programs Correct?

x =y*qg+r,

so we add some output statements to check the calculations:

write (‘dividend x =', x, 'divisor y =,
ri=x; q=0;
while r >y do
begin ri= r—y; g7 g+1 end;
write (y*q +r =, y*q ¥ 1)

Unfortunately, we get voluminous output because the program segment
occurs in a loop, S0 Our first test run is wasted. We try to be more selec-
tive about what we print. Actually, we need to know values only when an
error is detected, Having heard of a new feature just inserted into the
compiler, we decide to try it. If a Boolean expression appears within
braces { and } at a point in the program, then, whenever “flow of control”
reaches that point during execution, it is checked: if false, a message and
a dump of the program variables are printed; if true, execution continues
normally. These Boolean expressions are called assertions, since in effect
we are asserting that they should be true when flow of control reaches
them. The systems people encourage leaving assertions in the program,
because they help document it.

Protests about inefficiency during production runs are swept aside by
the statement that there is a switch in the compiler to turn off assertion
checking. Also, after some thought, we decide it may be better to always
check assertions —detection of an error during production would be well
worth the extra cost.

Qo we add assertions to the program:

{y >0}
Fi=x; g 0;
(1) while r >y do
begin r:= r—y; 4= g +1 end;
{x =y*q tr}

Testing now results in far less output, and we make progress. Assertion
checking detects an error during a test run because y is 0 just before a

remainder-quotient calculation, and it takes only four hours to find the -

error in the calculation of y and fix it.

Part 0. Why Use Logic? Why Prove Programs Correct? 3

But then we spend a day tracking down an error for which we received

no nice false-assertion message. We fi i
: . We finally determine that th i
quotient calculation resulted in ¢ remainder-

x=6,y=3,g=lr=3

iSSu:iaetn(t)}?gh, bot‘h;ssertions in (1) are true with these values; the problem
¢ remainder should be less than the divisor it i

' b , and it isn’t. W
determine that the lo-op condition should be r 2y instead of r >y]Et:”
gnly t.he result*assemon were strong enough —if only we had used- the
sserthn ,:c—y g +r and r <<y — we would have saved a day of work!
Why didn’t we think of it? '

We fix the error and insert the stronger assertion:

ty >0}
rizx; g=0
while r 2y do
begin r:= r—y; g:= g-+1 end;
fx =y*q +r and r <y}

;hzgfzsgzu?r:iat;oiha whlle., but one day we get incomprehensible output.
[A e guotient-remainder algorithm resulted in a negative
remainder r = —2. But the remainder shouldn't be negative! And we find
out that r was negative because initially x was —2 Ahhh. anoth e
in calculating the input to the quotient-remainder aigorithm’ —X is:lr’terror
poseéi to be negativc!. But we could have caught the error earlier S;:ID(;
;z:(fjet tvso days searchmg,l in .fact we s.hould have caught it earlier; all we
o do was make the initial and final assertions for the program seg-

ment Strong Cnough. On eIrror a tre the n asser-

{0<x and 0<y}
re=x; g= 0,
while r 2y do
begin r:=r—y; g:= g+1! end;
{x =y*q+rand 0<r <y}

I . .
lészurz \;oulcfi bg nice to be able to invent the right assertions to use in a
triali . oc fashion. Why can’t we think of them? Does it have to be a
-and-error process? Part of our
-an problem here was carelessness in
specifying what the program segment was to do —we should have written

Part 0. Why Use Logic? Why Prove Programs Correct?

the initial assertion (0<<x and 0<{y) and the final assertion (x =y*gq +hr
and 0<r <y) before writing the program segment, for they form the
definition of quotient and remainder. ‘

But what about the error we made in the condition of the ‘whlle loop?
Could we have prevented that from the beginning? s there. is a way to
prove, just from the program and assertions, that the assertions are true
when flow of control reaches them? Let’s see what we can do.

Just before the loop it seems that part of our result,

(2) x =y*qtr

holds, since x =r and ¢ =0. And from the assignments in the loop bf)d.y
we conclude that if (2) is true before execution of the loop body theq it is
true after its execution, so it will be true jus.t belfore and a.fter every 1tera(;
tion of the loop. Let’s insert it as an assertion in the obvious places, an

let’s also make all assertions as strong as possible:

{0<x and 0<y}
r=x; gi= 0
{0<r and 0<y and x =y*q +r}
while r 2y do .
begin {0 <r and 0<y <r and x =y*q +r}
risr—y; g=q+l
{0<r and 0<y and x =y*g +r}
end;
(0<r <y and x = y*q +r}

Now, how can we easily determine a correct loop condition, or, lglven It}}:c
’ .

condition, how can we prove it is correct? When the loop terminates t1 €

condition is false. Upon termination we want r <y, so that the comple

it t
ment, r =y must be the correct loop condition. How easy that was!

It seems that if we knew how to make all assertions as st}’ong as possi-
ble and if we learned how to reason careful.ly about assertions and pro-
grams, then we wouldn’t make so many mistakes, we would krnow mljll;
program was correct, and we wouldn’t need to.debug programs at a(i
Hence, the days spent running test cases, looking through output an
searching for errors could be spent in other ways.

Part 0. Why Use Logic? Why Prove Programs Correct? 5

Discussion

The story suggests that assertions, or simply Boolean expressions, are
really needed in programming. But it is not enough to know how to write
Boolean expressions; one needs to know how to reason with them: to sim-
plify them, to prove that one follows from another, to prove that one is
not true in some state, and so forth. And, later on, we will see that it is
necessary to use a kind of assertion that is not part of the usual Boolean
expression language of Pascal, PL/1 or FORTRAN, the “quantified”
assertion.

Knowing how to reason about assertions is one thing; knowing how to
reason about programs is another. In the past 10 years, computer science
has come a long way in the study of proving programs correct. We are
reaching the point where the subject can be taught to undergraduates, or
to anyone with some training in programming and the will to become
more proficient. More importantly, the study of program correctness
proofs has led to the discovery and elucidation of methods for developing
programs. Basically, one attempts to develop a program and its proof
hand-in-hand, with the proof ideas leading the way! If the methods are
practiced with care, they can lead to programs that are free of errors, that
take much less time to develop and debug, and that are much more easily
understood (by those who have studied the subject).

Above, 1 mentioned that programs could be free of errors and, in a
way, 1 implied that debugging would be unnecessary. This point needs
some clarification. Even though we can become more proficient in pro-
gramming, we will still make errors, even if only of a syntactic nature
(typos). We are only human. Hence, some testing will always be neces-
sary. But it should not be called debugging, for the word debugging
implies the existence of bugs, which are terribly difficult to eliminate. No
matter how many flies we swat, there will always be more. A disciplined
method of programming should give more confidence than that! We
should run test cases not to look for bugs, but to increase our confidence
in a program we are quite sure is correct; finding an error should be the
exception rather than the rule.

With this motivation, let us turn to our first subject, the study of logic.

Part 1
Propositions
and Predicates

Chapter | defines the syntax of propositions —Boolean ¢xpressions
using only Boolean variables— and shows how to evaluate them. Chapter
2 gives rules for manipulating propositions, which is often done in order
to find simpler but equivalent ones. This chapter is important for further
work on programming, and should be studied carefully.

Chaptef 3 introduces a narural deduction system for proving theorems
about propositions, which is supposed to mimic in some sense the way we
"naturally” argue. Such systems are used in research on mechanical verifi-
cation of proofs of program correctness, and one should become familiar
with them. But the material is not needed to understand the rest of the
book and may be skipped entirely.

Chapter 4 extends propositions to include variables of types besides
Boolean and introduces quantification. A predicate calculus is given, in
which one can express and manipulate the assertions we make about pro-
gram variables. “Bound” and “free” variables are introduced and the
notion of textual substitution is studied. This material is necessary for
further reading.

Chapter 5 concerns arrays. Thinking of an array as a function from
subscript values to array element values, instead of as a collection of
independent variables, leads to some neat notation and rules for dealing
with arrays. The first two sections of this chapter should be read, but the
third may be skipped on first reading.

Finally, chapter 6 discusses briefly the use of assertions in programs,
thus motivating the next two parts of the book.

Chapter 1
Propositions

We want to be able to describe sets of states of program variables and
to write and manipulate clear, unambiguous assertions about program
variables, We begin by considering only variables (and expressions) of
type Boolean: from the operational point of view, each variable contains
one of the values T and F, which represent our notions of “truth” and
“falsity”, respectively. The word Boolean comes from the name of a 19th
century English mathematician, George Boole, who initiated the algebraic
study of truth values.

Like many logicians, we will use the word proposition for the kind of
Boolean or logical expression to be defined and discussed in this chapter.

Propositions are similar to arithmetic expressions. There are operands,
which represent the values T or F (instead of integers), and operators
(e.g. and, or instead of *, +), and parentheses are used to aid in determin-
ing order of evaluation. The problem will not be in defining and evaluat-
ing propositions, but in learning how to express assertions written in
English as propositions and to reason with those propositions.

1.1 Fully Parenthesized Propositions

Propositions are {formed according to the following rules (the operators
will be defined subsequently). As can be seen, parentheses are required
around each proposition that includes an operation. This restriction,
which will be weakened later on, allows us 10 dispense momentarily with
problems of precedence of operators.

1. T and F are propositions.

2 An identifier is a proposition. (An identifier is a sequence of
one or more digits and letters, the first of which is a letter.)

Section 1.1 Fully Parenthesized Propositions

3. If & is a proposition, then sois (1 b).

4. If b and ¢ are propositi
G ey oo m propositions, then so are (b Ac), (bVe),

This syntax may be easi
: : ler to understand in the {
(Appendix 1 gives a short introduction to BNF); orm of @ BNE grammar

(I.L1) <proposition> = T | F | <identifier>
| (2 <proposition>)
| (<proposition> A <proposition>)
[(<proposition> v <proposition>)
| (<proposition> = <proposition>)
| (<proposition> = <proposition>)

Example. The following are propositions (separated by cominas):

F, ('1 T), (b ny), 1b
((abcl:r’d)/\(-.dz)) (é ye=d

Example. The following are not propositions:
FF, (bVY(c), (b)r), a+b O

As seen in the above i
syntax, fiv .
type Boolean: y ¢ operators are defined over values of

neg?tion: (notd), or (15)
C(.)r‘uunction: (b and ¢), or (b Ac)
FflSjU‘an.i()n: (b orc), or (bVe)
1mp11(':ation: (& imp ¢), or (b =¢)
equality: (b equals ¢), or (b =¢)

matherlrfatli’c lt b Sl 1 ' W oo,
a symbot. he name indicates how to pronounce it, and its
E

use also makes typin ;
) g easier when a typewrite
corresponding mathematical symbol. yp r does not have the

Th i i i
Operasdt;ollljowmf terminology is used. (b Ac) is called a comjunction; its
and ¢ called conjuncts. (bVe) is called a disjunction‘, its

operands b and ¢ are call 31
. ed disjuncts. (b =¢) i :

. - 1 . .
its anrecedent is b and its consequent is c() is called an implication;

Part 1. Propositions and Predicates

10

. e ons
ation of Constant Proposition |
Ry positions; we have defined the

iven a symtax for pro . :
s B e meone y a semantics (meaning) by

set of well-formed propositions. We now give
i te them.
showing how to evalua - - "
We begin by defining evaluation of constant propos:fronfh‘s ;;;oshree

1
tions that contain only constants as ope.ra}nds— fand we‘tcLonO S At
f a proposition e: for e Wi ,

cases based on the structure 0 : 3

for ¢ with one operator, and for e with more than one operato

on T is T, the value of F is F.

. The value of propositi
(1.2.1) Casel e G .

bve),
2. The values of (1b), (b Ae), (.
(22 \(a:leseere b and ¢ are each one of the constants T' anth, are ;gﬂn;;:
i th table). Each row o
by the following table (called a tru
tayblc contains possible values for the operandls b and ¢ and,;zz
these values, shows the value of each of the five operatlo:;s. o
example, from the last row we see that the value of gr.‘——)T;sare
and that the values of (T'AT), (TVT), (T=T)and (T=

all T
b ¢ () (bre) (Ve (b>¢) (b =c)
F F| T F F ;‘ 11:
(123 F T T F T T F
T F| F F T F
T T| F T T T

f a constant proposition with more than one
edly applying (1.2.2) to a subpr09951-
tion and replacing the subproposition
is reduced to T or F.

(1.2.4) Case3. The value o
operator is found by repeat‘
tion of the constant propositio
by its value, until the proposition

We give an example of evaluation of a propositiomn:

(TAT)=F)
=(T=F)
=F
s in terms of a truth table, which
d their values, can be given only
For example, no such table
O

Remark: The description of th§ op.eration
lists all possible operand combmam?ns an
because the set of possible valm?s is finite.
could be given for operations on INtegers.

¢ correspond fairly closely to their mean-

of the operation ely €
iy ; “not true” usually means “false”, and “not

ings in English. For example,

Section 1.3 Evaluation of Propositions in a State I

LLITY

false™ “true™ But note that operation or denotes “inclusive or” and not
“exclusive or”, That is, (I'v T) is T, while the “exclusive or” of T and T
is false.

Also, there is no causality implied by operation imp. The sentence “If
it rains, the picnic is cancelled” can be written in propositional form as
{(rain =no picnic). From the English sentence we infer that the lack of
rain means there will be a picnic, but no such inference can be made from
the proposition (rain = no picnic).

1.3 Evaluation of Propositions in a State

A proposition like ((+c) Vv d) can appear in a program in several places,
for example in an assignment statement b= ({ac)Vd) and in an if-
statement H ((1¢)vd) then - --. When the statement in which the
proposition appears is to be executed, the proposition is evaluated in the
current machine “state” to produce either T or F. To define this evalua-
tion requires a careful explanation of the notion of “state™,

A state associates identifiers with values. For example, in state s (say),
identifier ¢ could be associated with value F and identifier 4 with 7. In
terms of a computer memory, when the computer is in state s, locations
named ¢ and 4 contain the values F and T, respectively. In another
state, the associations could be (¢, T) and {(d, F). The crucial point here
is that a state consists of a set of pairs (identifier, value) in which all the
identifiers are distinct, i.e. the state is a function:

(1.3.1) Definition. A state s is a function from a set of identifiers to the
set of values T and £, O

Example. Let state s be the function defined by the set {(a, T), (be, F),
(7f, TH}. Then s(q) denotes the value determined by applying state (func-
tion) s to identifier a: s(a)=7. Similarly, s(bc)=F and s(y]) =
T

(1.3.2) Definition. Proposition e is well-defined in state s if each iden-
tifier in e s associated with either T or F in state 5. [

In state s = {(b, T),(c, F)}, proposition (b Ve) is well-defined while
proposition (b vd) is not.

Let us now extend the notation s(identifier) to define the value of a
proposition in a state. For any state s and proposition e, s{e) will
denote the value resulting from evaluating e in state 5. Since an identifier

b is also a proposition, we will be careful to make sure that s(b) will still
denote the value of b in state s.

Part 1. Propositions and Predicates

12

(1.3.3) Definition. Let proposition e be well-defined in state s. Then
s(e), the value of e in state s, is the value obtained by replacing

all occurrences of identifiers b in e by their values s(b)} and
evaluating the resulting constant proposition| according to the
rules given in the previous section 1.2, O '

Example. s({((2b)Vc))is evaluated in state s = {(b, T, (e, F)}:

s(((1b)Ve))
=((~T)VF) (b has been replaced by T, ¢ by F)

=(FVF)

1.4 Precedence Rules for Operators
The previous sections dealt with a restricted form of propositions, so
that evaluation of propositions could be explained without having to deal
with the precedence of operators. We now relax this restriction.
Parentheses can be omitted or included at will around any proposition.
For example, the proposition ((b V¢)=>d) can be written as b V¢ =d. In
this case, additional rules definc the order of evaluation of subproposi-

tions. These rules, which are similar to those for arithmetic expressions

are:
l. Sequences of the-same operator are evaluated from left to
right, e.g. b Ac Ad is equivalent to (b Ac)nd).
2. The order of evaluation of different, adjacent operators is
given by the list: not (has highest precedence and binds tightest),
and, or, imp, equals.

It is usually better to make liberal use of parentheses in order to make
the order of evaluation clear, and we will usualiy do so.

Examples b =bAc is equivalent to (2b)=(b Ac)
bVac>d is equivalent to (b Vise))y=d
bh=>c=dAe isequivalentto (b c)y>(dre) O

The following BNF grammar defines the syntax of propositions, giving
enough structure so that precedences can be deduced from it. (The non-
terminal <identifier> has been left undefined and has its usual meaning).

e
1

Section 1.4 Precedence Rules for Operators 13

. <proposition> 1= <imp-expr>

<proposition> = <imp-expr>
<expr>

<imp-expr> = <expr>
<term>>

<expr>V <term>>

- |
. <imp-expr> =
|
, |
. <term> n= <factor>>
i
|
|
I
|

1
2
3
4,
5. <expr>
6
7
8

<term> A <factor>
1 <factor>

(<proposition>)
T

F

<identifier>

9. <factor>
10.
11,
12.
13,

We now define s(e), the value of proposition e in state s, recursivel
based on the structure of e given by the grammar. That is ;’or each rujl/(:,
of the grammar, we show how to evaluate e if it has the }orm given b
that rule, For example, rule 6 indicates that for an <expr>> of the forrr{
<expr>V <term>», its value is the value found by applying operation or
to the values s(<lexpr>>) and s(<term>) of its operands <lexpr> and
<term>>. The values of the five operations =, =, v, A and . used i
rules 2, 4, 6, 8 and 9 are given by truth table (1.2.3)., ‘ | "

. S(<proposition>) = s(<limp-expr>>)

I

2. s{ <proposition>) = s(<propositi = imp-
3. s(<imp-expr>) = SE<§XP?;S)1“0">) TSmprepr)
4. s(<imp-expr>) = s(<imp-expr>} = s("<expr>>)
5.5 (<expr>) = s{<term>>)

6. s(<expr>) = g{<expr>)V s <term>)

7. s{<term>>) = s(<factor>)

8. s(<term>>) = g <term>) A s(<factor>)

9. s(<factor>) = 4 5({<factor>)
10. s(<factor>) = s(<{proposition>>}
H. s(<factor>) =T
12. s(<factor>) = F
13. s(<factor>) = s{(<identifier>>) (the value of

<identifier> in 5)

An example of evaluation using a truth table

. Let us compute values of the proposition (b =>¢)={(+b V) for all pos-
31lble opergnd values using a truth table. In the table below, each row
gives possible values for & and ¢ and the corresponding vall,les of 15
1b.Vc, b = ¢ and the final proposition. This truth table shows how :)nf;
builds a truth table for a proposition, by beginning with the values of the

14 Part 1. Propositions and Predicates

identificrs, then showing the values of the smallest subpropositions, then
the next smallest, and building up to the complete proposition.

As can be seen, the values of 1b Ve and p =¢ are the same in each
state, and hence the propositions are equivalent and can be used inter-
changeably. In fact, one often finds b = ¢ defined as +bVe. Similarly,
b =c is often defined as an abbreviation for (b = c)N(c=b) (see exer-

cise 2i).

b ¢ | b abve bDc (bFc)=(abVe)
F F | T T T T
F T | T T T T
T F | F F F T
T T | F T T T

1.5 Tautologies

A Tautology is a proposition that is true in every state in which it is
well-defined. For example, proposition I' is a tautology and F is not.
The proposition bV 1b is a tautology, as can be seen by evaluating it with

b=Tand b =F:

TV1T=TVF$T
FvaF = FvT =T

or, in truth-table form:

b I 2ab bVab
T F T
F T T

The basic way to show that a proposition is a tautology is to show that its
evaluation yields T in every possible state. Unfortunately, each extra
identifier in a proposition doubles the number of combinations of values
for identifiers -—for a proposition with i distinct identifiers there are 2
cases] Hence, the work involved can become itedious and time consum-
ing. To illustrate this, (1.5.1) contains the truth table for proposition
(b AcAd)®(d=b), which has three distinct identifiers. By taking some
shortcuts, the work can be reduced. For example, a glance at truth table
(1.2.3) indicates that operation imp is true whenever its antecedent is false,
so that its consequent need only be evaluated if its antecedent is true. In
example (1.5.1) there is only one state in which the antecedent b Ac Ad is
true —the state in which b, ¢ and d are true— and hence we need omnly

the top line of truth table (1.5.1).

Section 1.6 Propositions as Sets of States 15

bed | bacad | d=b | hrcad)=(d=b)
TTT T T T
TTF F T T
TFT F T T
(151) TFF F T T
FTT F F T
FTF F T T
FFT F F T
FFF F T T

‘Using such informal reasoning helps reduce the number of states in
'Whlcl.'l the proposition must be evaluated. Nevertheless, the more distinct
identifiers a proposition has the more states to inspect, and evaluation
soon becomes infeasible. Later chapters investigate other methods for
proving that a proposition is a tautology.

Disproving a conjecture

Sometimes we conjecture that a proposition ¢ is a tautology, but are
unabl_e to develqp a proof of it, so we decide to try to disprove it. What
does it take to disprove such a conjecture?

It may be possible to prove the converse —i.e. that ~e is a tantology—
but‘ the chances are slim. If we had reason to believe a conjecture, it is
unlikely that its converse is true. Much more likely is that it is tl:ue in
most states but false in one or two, and to disprove it we need only find
one such state:

To prove a conjecture, it is necessary to prove that it is true in all
cases; to disprove a conjecture, it is sufficient to find a single case
where it Is false.

1.6 Propositions as Sets of States

A proposition represents, or describes, the set of states in which it is
true. (;onversely, for any set of states containing only identifiers associ-
ated with T or F we can derive a proposition that represents that state
set. T}.ulls, the empty set, the set containing no states, is represented by
proposition F because F is true in no state. The set of all states is
Fepresented by proposition T because T is true in all states. The follow-
ing example illustrates how one can derive a proposition that represents a
given set of states. The resulting proposition contains only the operators
and, or and not.

Part 1. Propositions and Predicates

16

Example. The set of two states (o, T, (c, T),(d, T} and {(b,F)
(c, T),(d,F),is represented by the proposition

(b AcAd)V(abAcAad) O

The connection between a proposition and the set of states it represents is
so strong that we often identify the two concepts. Thus, instead of writ-
ing “the set of states in which b V 1c is true” we may write “the states in
bV .c* Thoughit is a sloppy use of English, it is at times convenient.

In connection with this discussion, the following terminology is intro-
duced. Proposition b is weaker than ¢ if ¢ =b. Correspondingly, ¢ 15
said to be stronger than b. A stronger proposition makes more restric-
tions on the combinations of values its identifiers can be associated with,

a weaker proposition makes fewer. In terms of sets of states, b is as weak

as ¢ if it is “less restrictive™ if b’s set of states includes at least ¢’s states,
(or any tautology),

and possibly more. The weakest proposition is T
because it represents the set of all states; the strongest is F, because it

represents the set of no states.

1.7 Transforming English to Propositional Form

At this point, we translate a few sentences into prop
Consider the sentence “If it rains, the picnic is cancelled.” Let identifier r
stand for the proposition “it rains” and let identifier pe represent “the
picnic is cancelled”. Then the sentence can be written as r = pc.

As shown by this example, the technique is to represent “atomic parts”
of a sentence —how these are chosen is up to the transiator— by identif-
jers and to describe their relationship using Boolean operators. Here are
some more examples, using identifiers r, pc, wel. and s defined as fol-

ositional form.

lows:

it rains: r

picnic is cancelled: pe
be wet: wet

stay at home: s

I. if it rains but I stay at home, 1 won't be wet: (r As)= awet

. 2. I'll be wet if it rains: r = wel
1. If it rains and the picnic is not cancelled or I don’t stay home,
1'll be wet: Either ((r A vpc)V 15) = wer oF ((r A{apcV as)=wel.
The English is ambiguous; the latter proposition is probably the

desired one.

Exercises for Chapter [17

4'. Whether or not the picnic is cancelled, I'm staying home if it
rains: {pc ¥V apc}Ar = 5. This reduces to r = 5.

5. Either it doesn’t rain or I'm staying home: v Vs.

Exercises for Chapter 1

1. E ch line contains a 1] an ta A [+ -
& <] p] Opo 1t10n d two states d é
S] and .5'2. E dlud‘. the pIOpO

proposition state s/ state 52

(a) ~(mVn)

(b) ~mVn

(¢} a(mAn)

(dy amAn

(&) (mvn)=p

)y mVin=>p)

(2 (m=n)r(p=gq)
S m = =q))

() m=(nrp=gq)

G (m=n)Arp>gq)

(k) (m =R Ap)?q

B (m=n)=(p >q)

(m) (m =(n 2p))=>q

MY R T Y NN NN NS
TN T T T T e m R
RECRC R e e e B B T B B B
TMTMNNT TR NN N NN N R
NNNNENNNNNT Y (S
NNNSTI T NN NN NS
NNTTNNNT TN
NNTTTTIT NN NSNS

2. Write truth tables to show the values of the following propositions in all states:

(a) bvevd () +1b=(bVc)
by bachrd (fy +b=(hVe)
(c) br(evd) (8} {(2b=c)Vb
(@) bV(chd) (h) (bVe)r(b =c)A(c >b)

iy (b=c)=(b=c)rc>b)

3. Translate the following sentences into propositional form.
(a) x<<yorx=y.
(b) Eitherx <y, x=p,0orx >y,
(¢} If x>y andy >z, thenv =w.
{d} The following are all true: x <y, y <z and v =w
fe) At most one of the following is true: x <y, y <z and v =w
(f) None of the foliowing are true: x <p,p <<z and v =w I
(g) The following are not all true at th ‘ i .
e same time: x <y, y <z and v =
E't;) xhenx<y,theny<z;whenx2y,thenv=Wy g e
i hen x <y then y <{z means that v = if
=w, butif x = i

hold; however, if v =w then x <{y. X Zy theny <z doesn’
(j} If execution of pr i i i

il program P is begun with x <{y, then execution terminates
(k) Execution of program P begun with x <0 will not terminate.

Part 1. Propositions and Predicates

18

4. Below are some English sentences. Introduce identifiers to represent tl:lC simple. : Chapter 2

ones (e.g. “it’s raining cats and dogs.”) and then translate the sentences into pro-
positions | Reasoning using Equivalence Transformations

(a) Whether or not it’s raining, I'm goi.ng swimming.

(b) 1f it’s raining I'm not going swimming.

(c) It’s raining cats and dogs.

(d) It’s raining cats or dogs. ‘ o
(¢) If it rains cats and dogs I'll cat my hatl, but-l w?nt £0 swimming.
(f} If it rains cats and dogs while | am swimming ['ll eat my hat

Evaluating propositions is rarely our main task. More often we wish
to manipulate them in some manner in order to derive “equivalent” but
simpler ones (easier to read and understand). Two propositions (or, in
general, expressions) are equivalent if they have the same value in every
state. For example, since a+{c—~a)=c is always true for integer vari-
ables @ and ¢, the two integer expressions ¢ +(c —a) and ¢ are equivalent,
and a+(c—a)=¢ is called an equivalence.

This chapter defines equivalence of propositions in terms of the evaiua-
tion model of chapter 1. A list of useful equivalences is given, together
with two rules for generating others. The idea of a “calculus” is discussed,
and the rules are put in the form of a formal calculus for “reasoning”
about propositions.

These rules form the basis for much of the manipulations we do with
propositions and are very important for later work on devcloping pro-
grams. The chapter should be studied carefully.

2.1 The Laws of Equivalence

For propositions, we define equivalence in terms of operation equals
and the notion of a tautology as follows:

. : (2.1.1}) Definition. Propositions £l and E2 are equivalent iff EI=E2 is
a tautology. In this case, EI = E2 is an equivalence. O

Thus, an equivalence is an equality that is a tautology.

Below, we give a list of equivalences; these are the basic equivalences
from which all others will be derived, so we call them the laws of
equivalence. Actually, they are “schemas™ the identifiers £I, £2 and E3

20 Part I. Propositions and Predicates

within them are parameters, and one arrives at a particular equivalence by -

substituting particular propositions for them. For exa@ple, substitutin_g
xVy for EI and z for E2 in the first law of Commutativity, (Ef AE2) =
(E2 A El), yields the equivalence

((xvy)rz)=(A(xVy))

Remark: Parentheses are inserted where necessary when perfo.rming a sgt?-
stitution so that the order of evaluation remains consistent with the origi-
nal proposition. For example, the result of substituting x Vy for b in
baz is (xvy)rz, and not xVyaz, which is equivalent to
xv(yaz). O

. Commutative Laws (These allow us to reorder the operands of and, or
and equality):

(EINE2) = (E2AED)

(EIVE2) = (E2VEI)

(El=E2) = (E2=ED

2. Associative Laws (These allow us to dispense with parentheses when
dealing with sequences of and and sequences of or):
EIAN(E2AE3) = (EINE2)AE3 (so write both as EINE2ANE3)
EIV(E2VE3) = (EIVE2)VES

3. Distributive Laws (These are useful in factoring a proposition, in the
same way that we rewrite 2*(3-4) as (2% 3)+H(2* 4))

EIV(E2AE3) = (EIVE2)A(EIVE3)

EIANE2VE3) = (EIANE2)V(EIAE3)

4. De Morgan’s Laws (After Augustus De Morgan, a 19th century
English mathematician who, along with Boole, laid much of the founda-

tions for mathematical logic):
W(EINE2y = EIVaE2
H{EIVED = EIA = E2

5. Law of Negation: ~+(~El) = EI

6. Law of the Excluded Middle: EIvaEl =T
7. Law of Contradiction: EIA - El = F

8. Law of Implication: EI = E2 = 1El v E2

9. Law of Equality; (EI =E2) = (£l = ENNE2=ED

Section 2.1 The Laws of Equivalence 2}

[0. Laws of or-simplification:

EIVEI = El
Eivlr =T
EivE = El

EIV(EIAE2) = EI

11. Laws of and-simplification:

EINEl = EI
EIAT = EI
EINF = F

EINEIVEDY = El

12. Law of Identity: EI = EI

Don't be alarmed at the number of laws. Most of them you have used
many times, perhaps unknowingly, and this list will only serve to make
you more aware of them. Study the laws carefully, for they are used over
and over again in manipulating propositions. Do some of the exercises at
the end of this section until the use of these laws becomes second nature.
Knowing the laws by name makes discussions of their use easier.

The law of the Excluded Middle deserves some comment. It means
that either & or & must be true in any state; there can be no middle
ground. Some don’t believe this law, at least in all its generality. In fact,
here is a counterexample to it, in English. Consider the sentence

This sentence is false.

which we might consider as the meaning of an identifier #. s it true or
false? It can't be true, because it says it is false; it cant be false, because
then it would be true! The sentence is neither true nor false, and hence
violates the law of the Excluded Middle. The paradox arises because of
the self-referential aspect of the sentence —it indicates something about
itself, as do all paradoxes. [Here is another paradox to ponder: a barber
in a small town cuts the hair of every person in town except for those who
cut their own. Who cuts the barber’s hair?] In our formal system, there
will be no way to introduce such self-referential treatment, and the law of
the Excluded Middle holds. But this means we cannot express a// our
thoughts and arguments in the formal system.

Finally, the laws of Equality and Implication deserve special mention.
Together, they define equality and imp in terms of other operators: b =¢
can always be replaced by (b =c)A(c b} and +b =¢c by bVc. This
reinforces what we said about the two operations in chapter 1. '

22 Part 1. Propositions and Predicates

Proving thai the logical laws are equivalences

We have stated, without proof, that laws [-12 are equivalences. One
way to prove this is to build truth tables and note that the laws are true in
all states. For example, the first of De Morgan’s laws, 1 (EIAE2) = 1 El
V 4 E2, has the following truth table:

El E2|\EINE2 ~(EINE2)|<El 1E2 1EIN1E2|~(EIANE2) = ~EIVAE2
F T T T r

F F
F T
T F
T T

NN NS

F T r F T
F T F T T
T F F F F

Clearly, the law is true in all states (in which it is well-defined), so that it
is a tautology.

Exercise | concerns proving all the laws to be equivalences.

2.2 The Rules of Substitution and Transitivity

Thus far, we have just discussed some basic equivalences. We now
turn to ways of generating other equivalences, without having to check
their truth tables. One rule we all use in transforming expressions, usually
without explicit mention, is the rule of “substitution of equals for equals”.
Here is an example of the use of this rule. Since a+(¢c—a)=c, we can
substitute for expression a-+(c~a) in (a+(c—a))*d to conclude that
(a Hc —a*d =c*d; we simply replace @ +(¢—a) in (a+(c —a))*d by the
simpler, but equivalent, expression c.

The rule of substitution is:

(2.2.1) Rule of Substitution. Let e/ =e¢2 be an equivalence and E(p) be
a proposition, written as a function of one of its identifiers p.
Then E{el) = E(e2) and F(e2)= E(el) are also equivalences, O

Here is an example of the use of the rule of Substitution. The law of
Implication indicates that (b =¢)=(abVc¢) is an equivalence. Consider
the proposition E(p)=dvp. With

el = b=¢ and
el = 1bVve
we have

E(el) = dv(b =¢)
E(e2) = dV(=bVc)

Section 2.2 The Rules of Substitution and Transitivity 23

so that (d V(b =e) =d V(b Ve) is an equivalence,

In using the rule of Substitution, we often use the following form. The
proposition that we conclude is an equivalence is written on one line. The
initial proposition appears to the left of the equality sign and the one that
results from the substitution appears to the right, followed by the name of
the law e/ =e2 used in the application:

dvib=c)=dV(abVe) (Implication)
We need one more rule for generating equivalences:

(2.2.2) Rule of Transitivity. 1f ¢/ =e2 and e2 =¢3 are equivalences, then
so is el =eJ (and hence e/ is equivalent to e3). O

Example. We show that (b =>¢) = (ac=31b) is an equivalence (an
explanation of the format follows):

b =c
= L bve (Implication)
= c¢Vab {(Commutativity)

= aa¢ Vb {Negation)
= 4¢3 1b (Implication)

This is read as follows. First, lines 1 and 2 indicate that b =¢ is
equivalent to 1b Ve, by virtue of the rule of Substitution and the law of
Implication. Secondly, lines 2 and 3 indicate that (b V¢) is equivalent to
¢V b, by virtue of the rule of Substitution and the law of Commuta-
tivity. We also conclude, using the rule of Transitivity, that the first pro-
position, b ¢, is equivalent to the third, ¢V +b. Continuing in this
fashion, each pair of lines gives an equivalence and the reasons why the
equivalence holds. We finally conclude that the first proposition, b 3¢,
is equivalent to the last, v¢ = 2b. O

Example. We show that the law of Contradiction can be proved from the
others. The portion of each proposition to be replaced in each step is
undertined in order to make it casier to identify the substitution.

1(bAab}=abVyab (De Morgans Law)

=1bVh (Negation)
=hVab (Commutativity)
=T (Excluded Middle) [

Generally speaking, such fine detail is unnecessary. The laws of Com-
mutativity and Associativity are often used without explanation, and the
application of several steps can appear on one line. For example:

24 . Part 1. Propositions and Predicates

(balb=c)>c
= a(bA(abVe))vVe (Implication, 2 times)
= abVa(abVe)ve (De Morgan)
=T {(Excluded Middle)

Transforming an implication
Suppose we want to prove that

(22.3) EINE2NE3=E
is an equivalence, The proposition is transformed as follows:

(EIANE2NER > E
= (EINE2ANEWE (Implication)
= L EIVE2VFE3VE (De Morgan)

The final proposition is true in any state in which at least one of 1 EI,
1 E2, 1 E3 and £ is true. Hence, to prove that {(2.2.3) is a tautology we
need only prove that in any state in which three of them are false the
fourth is true. And we can choose which three to assume false, based on
their form, in order to develop the simplest proof.

With an argument similar to the one just given, we can see that the
five statements .

EINE2AE3 = E

EINE2ZNSE % 1 E3

EIAN-ENE3 = 1 E2

AEANEZANEZ = o F]
{2.2.4) EIVAE2VAE3VE
are equivalent and we can choose which to work with. When given a pro-
position like (2.2.3), eliminating implication completely in favor of dis-
junctions like {2.2.4) can be helpful. Likewise, when formulating a prob-
" lem, put it in the form of a disjunction right from the beginning.

Example. Prove that
(A =c)ra(ab=(cvd))=(1c =d)

is a tautology. Eliminate the main implication and use De Morgan’s law:
1B eI (b (e VA V(ac d)

Now simplify using Negation and eliminate the other implications:

Section 2.3 A Format System of Axioms and Inference Rules 25

(bVe)vib Ve vdyv(c vd)

Use the laws of Associativity, Commutativity and or-simplification to
arrive at

bvibvevd

which is true because of the laws of the Excluded Middle, bV b6 =T,
and or-simplification. This problem, which at first looked quite difficult,
became simple when the implications were eliminated.

2.3 A Formal System of Axioms and Inference Rules

A caleulus, according to Webster’s Third International Dictionary, is a
method or process of reasoning by computation of symbols. In section
2.2 we presented a calculus, for by performing some symbol manipulation
according to rules of Substitution and Transitivity we can reason with
propositions. For obvious reasons, the system presented here is called a
propositional calculus.

We are careful to say a propositional calculus, and not the proposi-
tional calculus. With slight changes in the rules we can have a different
calculus. Or we can invent a completely different set of rules and a com-
pletely different calculus, which is better suited for other purposes.

We want to emphasize the nature of this calculus as a formal system
for manipulating propositions. To do this, let us put aside momentarily
the notions of state and evaluation and see whether equivalences, which
we will call theorems, can be discussed without them. First, define the
propositions that arise directly from laws [-12 to be theorems. They are
also calted axioms-(and the laws 1-12 are axiom schemas), because their
theoremhood is taken at face value, without proof.

(2.3.1} Axioms. Any proposition that arises by substituting propositions
for ElI, E2 and E3 in one of the Laws !-12 is called a
theorem. {1

Next, define the propositions that arise by using the rules of Substitution
and Transitivity and an already-derived theorem to be a theorem. In this
context, the rules are often called inference rules, for they can be used to
infer that a proposition is a theorem. An inference rule is often written in
the form ‘

El, ‘.‘sEn EhEb‘..aEn
—— and
E E,E,

26 Part 1. Propositions and Predicates

where the E; and E stand for arbitrary propositions. The inference rule
has the following meaning, If propositions E|, - - -, E, are theorems,
then so is proposition E (and E, in the second case). Written in this
form, the rules of Substitution and Transitivity are

el =e2
E(ey= E(e2), E(e2}= E(el)

(2.3.2) Rule of Substitution:

el =e2, e2=e3

{2.3.3) Rule of Transitivity;
el =el
A theorem of the formal system, then, is either an axiom (according to
{2.3.1) or a proposition that is derived from one of the inference rules
(2.3.2) and (2.3.3).

Note carefully that this is a totally different system for dealing with
propositions, which has been defined without regard to the notions of
states and evaluation. The syntax of propositions is the same, but what
we do with propositions is entirely different. Of course, there is a relation
between the formal system and the system of evaluation given in the pre-
vious chapter. Exercises 9 and 10 call for proof of the following relation-
ship: for any tautology e in the sense of chapter 1, e =T is a theorem,
and vice versa.

Exercises for Chapter 2

1. Verify that laws [-12 are equivalences by building truth tables for them.

2. Prove the law of Identity, e =e, using the rules of Substitution and Transi-
tivity and the laws -1,

3. Prove that « T = Fis an equivalence, using the rules of Substitution and Tran-
sitivity and the laws [-12.

4. Prove that 1+ F =T is an equivalence, using the rules of Substitution and Tran-
sitivity and the laws 1-12.

5. Each column below consists of a sequence of propositions, each of which
(except the first) is equivalent to its predecessor. The equivalence can be shown

by one application of the rule of Substitution and one of the laws 1-12 or the
results of exercises 3-4. Identify the law (as is done for the first two cases).

(@) (xAy)V(zAaz) (a) a(2br(ab=>z))Vz
(b) (x Ay)VF Contradiction (b) (1bA(4b=z))>z)
{c} x Ay orsimplification (© (1bA(qabVvz))>:z
(d) (x Ap)VF (@) (AbA(abVaqz))=>2
{(e) (XA)J)V(FAZ) (e) (1bf\1(1b/\12))©2
(N (xAp)V(FAz) (f} (2bAs(abAaz)}>2z
(8 (xApIV{(xAax)Az) (8) 1(bV(~bArsz))>2z

Exercises for Chapter 2 ‘ 27
() (x ApIV(x A(ax Az)) (h) 2{(bVqb)A(bVqz))>2
() xAQV(rxAz) () ATABVz)>z
Q) xAVax)Alyvz) G +(bVaz)>2z
(k) xA(axvy)r(zvy) (k) aa(bVvaz)vz

O xA(XVIap)AGEVY) () (bVaz)vaz)
(M) XA (X Aap)AZVy) (m) bV(2zVz)

6. Each proposition below can be simplified to one of the six propositions F, T,

){,.y, X Ay,and xVy. Simplify them, using the rules of Substitution and Tran-
sitivity and the laws 1-12.

(@) xV(pVx)Vay
(by (xVy)A(xVay) (hy T =(1x =x)

{¢) xVyVax O x = =(xAy)

(d) (XVPIMXVApIA(ax VP)A(ax Vay) () 1x 2(ax (1xAp))
@ (XAYIVXAPIV(1xAPIV(1xAay) (k) 2y =y

(N (rxAy)vx () ~y=>ayp

(g) 1x =(x Ap)

?. Show that any proposition ¢ can be transformed into an equivalent proposition
in disfunctive normal form —i.e. one that has the form

€gV * "+ Ve, where each ¢; has the form gg A « + - Agm

.Each.g"j is an identifier id, a unary operator 2id. T or F. Furthermore, the
identifiers in each ¢; are distinct.

?. Show that any proposition e can be transformed into an equivalent proposition
M eonjunctive normal form —i.e. one that has the form

€o ™ * ' Ae, where each ¢; has the forth go v - -+ Vg

'Each.g_,- is an identifier id, a unary operator 1id, T or F. Furthermore, the
identifiers in each ¢; are distinct.

9. Prove that any rheorem generated using laws 1-12 and the rules of Substitution
a'nd Transitivity is a tautology, by proving that laws [-12 are tautologies (see exer-
cise I) and showing that the two rules can generate only tautologies,

10. Prove that if e is a tautology, then ¢ = 7" can be proved to be an equivalence

using only the laws 1-12 and the rules of Substitution and Transitivity. Hint: use
exercise 8. .

Chapter 3
A Natural Deduction System

This chapter introduces another formal system of axioms and inference
rules for deducing proofs that propositions are tautologies. It is called a
“natural deduction system™ because it is meant to mimic the patterns of
reasoning that we “naturally” use in making arguments in English.

This material is not used in later parts of the book, and can be
skipped. The equivalence transformation system discussed in chapter 2
serves more than adequately in developing correct programs later on.
One could go further and say that the equivalence transformation system
is more suited to our needs, although, this may be a matter of taste.

Nevertheless, study of this chapter is worthwhile for several reasons.
The formal system presented here is minimal: there are no axioms and a
minimal number of inference rules. Thus, one can see what it takes to
start with a bare-bones system and build up enough theorems to the point
where further theorems are not cumbersome to prove. The equivalence
transformation system, on the other hand, provided as axioms all the use-
ful basic equivalences. Secondly, such systems are being used more and
more in mechanical verification systems, and the computer science student
should be familiar with them. (A natural deduction system is also used in
the popular game WFF'N PROOF.) Finally, it is useful to see and com-
pare two totally different formal systems for dealing with propositions.

Section 3.1 Introduction to Deductive Proofs 29

3.1 Introduction to Deductive Proofs

ansider the problem of proving that a conclusion follows from certain
premises. For example, we might want to prove that p A(rvg) follows
from p Aq —ie. p A(rvg) is true in every state in which pAg is. This
problem can be written in the following form:

(3.1.1) premise: pag

conclusion:p A(r vg)
In English, we might argue as follows,

(3.1.2) Proof of (3.1.1): Since p Ag is true (in state $), 50 is p, and so is
g. One property of or is that, for any r, r Vg is true if g is, so
r.Vq is true. Finally, since p and » vq are both true, the proper-
ties of and allow us to conclude that p A(r Vg)is true in s also.

In .order to get at the essence of such proofs, in order to determine just
what is involved in such arguments, we are going to strip away the verbi-
age from the proof and present simply the bare details. Admittedly, the
proofs will look (at first) complicated and detailed, But once we have
}vorked with the proof method for a while, we will be able to return to
mfo.rmal proofs in English with much better facility. We will also be able
to give some guidelines for developing proofs (section 3.5).

The bare details of proof (3.1.2) are, in order: a statement of the
theorem, the sequence of propositions initially assumed to be true, and the
sequence of propositions that are true based on previous propositions and
various rules of inference,

These bare details are presented in (3.1.3). The first line states the
t}?eorem to be proved: “From p Ag infer p A(rVg)". The second line
gives tlrle premise (if there were more premises, they would be given on
successive lines). Each of the succeeding lines gives a proposition that one
can infer, based on the truth of the propositions in the previous lines and
an inference rule. The last line contains the conclusion. ‘

From p Ag infer p A(rvg)

I 1 pnrg premise
(3.0.3) 2| P property of and, |
3¢ property of and, 1
4 | rvg property of or, 3
5 1 pA(rvg) property of and, 2, 4

To Fl}e right of each proposition appears an explanation of how the
proposition’s “truth” is derived. For example, line 4 of the proof indicates

30 Part . Propositions and Predicates

that r V¢ is true because of a property of or —that r Vg is true if g is—
and because g appears on the preceding line 3. Note that parentheses are
introduced freely in order to maintain priority of operators. We shall
continue to do this without formal description.

In this formal system, a theorem to be proved has the form
Frome,, -, e, infere.

In terms of evaluation of propositions, such a theorem is interpreted as: if
€|, ..., e, are true in a state, then e is true in that state also. If n is 0,
meaning that there are no premises, then it can be interpreted as: e is true
in all states, i.e. ¢ is a tautology. In this case we write it as

Infer e.

Finally, a proposition on a line of a proof can be interpreted to mean that
it is true in any state in which the propositions on previous lines are true.

As mentioned earlier, our natural deduction system has no axioms.
The properties of operators used above are captured in the inference rules,
which we begin to introduce and explain in the next section. (Inference
rules were first introduced in section 2.3; review that material if neces-
sary) The inference rules for the natural deduction system are collected
in Figure 3.3.1 at the end of section 3.3.

3.2 Inference Rules

There are ten inference rules in the natural deduction system. Ten is a
rather large number, and we can work with that many only if they are
organized so that they are easy to remember. In this system, there are
two inference rules for each of the five operators not, and, or, imp and
equals. One of the rules allows the introduction of the operator in a new
proposition; the other allows its elimination. Hence there are five rules of
introduction and five rules of elimination. The rules for introducing and
eliminating and are called A-1 and A-E, respectively, and similarly for the
other operators.

Inference rules A-I, A-E and V-1

Let us begin by giving three rules: A-I, A-E and V-1

Eis --'aEn

32D Al —/——mm
() E]A P AEn

Section 3.2 Inference Rules 3

EIA...AEH
L

{3.2.2) A-E:

2.3y v-LIL
(3.2.3) E v . VE,

Rule A-l indicates that if E; and E, occur on previous lines of a proof
(i.e. are assumed to be true or have been proved to be true), then their
conjunction may be written on a line. If we assert “it is raining”, and we
assert “the sun is shining”, then we can conclude “it is raining and the sun
is shining™. The rule is called “as-Introduction”, or “A-1” for short, because
it shows how a conjunction can be introduced.

Rule A-E shows how and can be eliminated to yield one of its con-
juncts. 1f E A E, appears on a previous line of a proof (i.e. is assumed to
be true or has been proved to be true), then either E, or E, may be writ-
ten on the next line. Based on the assumption “it is raining and the sun is
shining”, we can conclude “it is raining”, and we can conclude “the sun is
shining”.

Remark: There are places where it frequently rains while the sun is shin-
ing. Ithaca, the home of Cornell University, is one of them. In fact, it
sometimes rains when perfectly blue sky seems to be overhead. The
weather can also change from a furious blizzard to bright, caim sunshine
and then back again, within minutes, When the weather acts so strangely,
as it often does, one says that it is Ithacating. O

Rule V-1 indicates that if E; is on a previous line, then we may write
E,VE, on a line. If we assert “it is raining”, then we can conclude “it is
raining or the sun is shining™

Remember, these rules hold for all propositions E, and F,. They are
really “schemas”, and we get an instance of the rule by replacing E| and
E, by particular propositions. For example, since p Vg and r are propo-
sitions, the following is an instance of A-1.

P Vg, ar
(PYg)Asr

Let us redo proof (3.1.3) in (3.2.4) below and indicate the exact infer-
ence rule used at each step. The top line states what is to be proved. The
line numbered 1 contains the first (and only) premise (pr 1. Each other
line has the following property. Let the line have the form

line #| £ “name of rule”, line #, ..., line #

12 Part 1. Propositions and Predicates

Then one can form an instance of the named inference rule by writing the
propositions on lines line #, ..., line # above a line and proposition E
below., That is, the truth of E is inferred by one inference rule from the
truth of previous propositions. For example, from line 4 of the proof we
see that g /r Vg is an instance of rule V-I. (r Vg) is being inferred from ¢.

From p Ag infer p A{rVag)

Il | prg prli

2 0p A-E, 1
3.24) 5 A-E, 1

4q rvg v-l, 3

5 p"\("V‘]) A"I! 2>4

Note how rule A-E is used to break a proposition into its constituent

parts, while A-1 and V-1 are used to build new ones. This is typical of the

use of introduction and elimination rules.

Proofs (3.2.5) and (3.2.6) below illusirate that and is a commutative
operation; if p Ag is true then so is g Ap, and vice versa. This is obvious
after our previous study of propositions, but it must be proved in this for-
mal system before it can be used. Note that both proofs are necessary,
one cannot derive the second as an instance of the first by replacing p
and g in the first by g and p, respectively. In this formal system, a proof
holds only for the particular propositions involved. It is not a schema,
the way an inference rule is.

From p Ag infer g Ap

1 | pAg prl
(325 2 1|p A-E, 1

3| g A-E, 1

4 | gnap A, 3, 2

To illustrate the relation between the proof system and English, we give
an argument in English for lemma (3.2.5): Suppose p Ag is true [line 1].
Then so is p, and so is g [lines 2 and 3]. Therefore, by the definition of
and, g Ap is true [line 4].

From g Ap infer p Ag

I i gAp prl
(326) 2 | ¢ A-E, |

3| p A-E, 1

4 | phrg AL 3,2

Proof (3.2.6) can be abbreviated by omitting lines containing premises and

Section 3,2 Inference Rules i3

using “pr i to refer to the i premise later on, as shown in (3.2.7). This
abbreviation will occur often. But note that this is only an abbreviation,
and we will continue to use the phrase “occurs on a previous line” to
include the premises, even though the abbreviation is used.

From g Ap infer p A g
1 A-E I
3.2.7 9 » P
() 20p A-E, pr 1
Jiparg Al 2,1

Inference rule v-E

The inference rule for elimination of or is

EIV e VEH,EI%?E, "',En @E

(3.2.8) V-E:
E

Rule v-E indicates that if a disjunction appears a previous line, and if
E; = E appears on a previous line for each disjunct E;, then £ may be
written on a line of the proof. If we assert “it will rain tomorrow or it
will snow tomorrow”, and if we assert “rain implies no sun”, and if we

also assert “snow implies no sun”, then we can conclude “there will be no
sun tomorrow”, From

(rain Vsnow), (rain = no sun), (snow =no sun)

we conclude no sun.
Here is a simple example.

Fromp V(g Ar), p =5, (g Ar)=>s infer s vp

1 | pVigAr) prl

2 | p=s pr2

3 | (gar)y=>s pr3

4 | s v-E, 1,2,3

5 1svp v-1 {rule (3.2.3)), 4

Inference rule =-E

El=E2, El

(3.2.9) =-E:
E2

34 Part 1. Propositions and Predicates

Rule =-E is called modus ponens. 1t allows us to write the consequent
of an implication on a line of the proof if its antecedent appears on a pre-
vious line. If we assert that x >0 implies that y is even, and if we deter-
mine that x >0, then we can conclude that y is even.

We show an example of its use in proof (3.3.10). To show the relation
between the formal proof and an English one, we give the proof in
English: Suppose p Ag and p = are both true. From p Ag we conclude
that p is true. Because p = r, the truth of p implies the truth of r, and r
is true. But if » is true, so is r “ored” with anything; hence r V(g =r) is
true.

Fromp/\q,p =>r inferr\’(q $?‘)

1| pAg pr !
21 p>r pr2
G210 A-E (rule (3.2.2)), |
4 |r =.E, 2, 3
5| rv(g=r) V-l (rule (3.2.3)), 4

To emphasize the use of the abbreviation to refer to premises, we show
(3.2.10) in its abbreviated form in (3.2.11).

From p Ag, p =r infer rv{g =r)

I |p AE, prl
(3.2.11) 5 | % SE pr2, |

3| rvig=r) V2

Inference rules =-I and =-E

Eil=E2, E2=E]
El =E2

(3.2.12) =-L

El=E2
El=E2, E2=FE]

(3.2.13) =-E:

Rules =-1 and =-E together define equality in terms of implication.
The premises of one rule are the conclusions of the other, and vice versa.
This is quite similar to how equality is defined in the system of chapter 2.
Rule ==-I is used, then, to introduce an equality e/ =e¢2 based on the pre-
vious proof of el =>e2 and eZ2=>el.

Here is an example of the use of these rules.

Exercises for Section 3.2 35

Fromp, p =(qg=r), r=gq inferr =g

1 { p={(g=r) =-E, pr2
2 q =y ¢-E= l’ pr l
3| r=gq =-1, pr 3,2

Exercises for Section 3.2

1. Each of the following theorems can be proven using exactly one basic inference
rule (using the abbreviation that premises need not be written on lines; see the text
preceding (3.2.7)}. Name that inference rule.

(a) Froma, b inferarb

(b) Froma AbA(gVr),a infergVr

{(c) From 4 infer naVa

(d) From¢ =d, d Ve inferd =¢

() Fromb =c¢, b infer bV b

(f) From 4, +b,c infer na Ve

(g) From (a =>b)Ab, a infer a = b

(h) FromaVé =c,c>avbh inferavh =c

(i) FromaAb, gVr infer (@ Ab)YA{gVF)

(j) Fromp =(g=r), p,qVr inferqg =r

(k) Fromc¢ >d, d e, d=c inferc =d

(D FromaVvb,ave,(@aVvb)=c infer ¢

{m) Froma >(dVc¢),(dVe)=a infera =(dVc)
(ny From(aVvd)=c,(avd)=c,(@vb)V(a vd) infer c
{0) Froma =(bvc),b=(bVe),avh infer b Ve

2. Here is one proof that p follows from p. Write another proof that uses only
one reference to the premise.

From p infer p

I |p prl
21 p prl

3. Prove the following theorems using the inference rules,

(a) Fromp Ag, p =r infer r

(b) From p =g, g infer p

(c Fromp, g =r,p=>rinferp Ar
(d) From b A 1¢ infer 1 ¢

(e} From b infer bV q¢

(f) Fromb =c¢Ard, b inferd

(g) Fromp Ag, p=>r inferr

(h) Fromp, g A{(p =>5) infer g As
(i} Fromp =g infer g =p

iy From b ={(c Ad), b infer d

4. For each of your proofs of exercise 3, give an English version. (The English
versions need not mimic the formal proofs exactly.)

36 Part 1. Propositions and Predicates

3.3 Proofs and Subproofs

Inference rule =-I

A theorem of the form “From e; - - -, ¢, infer ¢ is interpreted as: if
e, ..., &, are true in a state, then so is e. If ¢, ..., e, appear on lines of
a proof, which is interpreted to mean that they are assumed or proven
true, then we should be able to write ¢ on a line also. Rule =1, (3.3.1),
gives us permission to do so. lts premise need not appear on a previous
line of the proof; it can appear elsewhere as a separate proof, which we
refer to in substantiating the use of the rule. Unique names should be
given to proofs to avoid ambiguous references.

From E,, - - - ,E, infer £
(E\ph - ANE)>E

(3.3.1) =-L

Proof (3.3.2) uses =>-1 twice in order to prove that p Ag and g Ap are
equivalent, using lemmas proved in the previous section.

Infer (p Ag) = (g Ap)

G632 || Gra)=@rp) >1,3259)
2 | (@apy=@rg) =-1,(3.2:6)
31 (prg)=(grp) =L1,2

Rule =-I allows us to conclude p =>¢ if we have a proof of g given
premise p. On the other hand, if we take p =g as a premise, then rule
=.F allows us to conclude that g holds when p is given. We see that the
following relationship holds:

Deduction Theorem. “Infer p =g~ is a theorem of the natural
deduction system, which can be interpreted to mean that p = ¢ is
a tautology, iff “From p infer ¢” is a theorem. [

Another example of the use of =1 shows that p implies itself:

Infer p =p
1| p=p

3.3
(3.3.3) =1, exercise 2 of section 3.2

Subproofs

A proof can be included within a proof, much the way a procedure can
be included within a program. This allows the premise of =>-1 to appear
as a line of a proof. To illustrate this, (3.3.2) is rewrit'en i~. (3.3.4) to
include proof (3.2.5) as a subproof. The subproof happens to be on line |
here, but it could be on any line. If the subtheorem appears on line j

Section 3.3 Proofs and Subproofs 37

(say? of the main proof, then its proof appears indented underneath, with
its lines numbered j.I, j.2, etc. We could have replaced the reference to
(3.2.6) by a subproof in a similar manner.

Infer (p Ag)=(g Ap)
[| From p Ag infer g Ap

Lt | p A-E, pr]
1.2 | ¢ A-E, prl
(3.3.4) L3 | gnap AL 1.2, 101
2 | (prg)=(grp) =], I
31 {grp)=>(prg) =>-1, (3.2.6)
41 (pArg)=(gArp) =1,2,3

Another_ examplle of a proof with a subproof is given in (3.3.5). Again, it
may be instructive to compare the proof to an English version;

Suppose (g Vs)={(p Ag). To prove equivalence, we must show
also that (p Ag)=>(gvs). [Note how this uses rule =-I, that
a:éb and & =>q means a =b. These sentences correspond to
lines 1, 3 and 4 of the formal proof.] To prove (prg)=(gVs),
argue as follows. Assume p Ag is true. Then so is ¢. By the
definition of or, so is g vs. [Note the correspondence to lines

21221 O
From (qVS)?(pAq) infer(q VS):(pf\q)
1| (gvs)=(pArg) prl
2 | FrompAg infer gvs
(3.3.5) 21 | g AE, pr
22§ gVs v-1, 2.1
3t prg)=(gVs) =1, 2
41 (vs)=(@~rq) =I,1,3

‘ As mentioned earlier, the relationship between proofs and sub-proofs
in logic is similar to the relationship between procedures and sub-
procedures (modules and sub-modules) in programs. A theorem and its
proof can be used in two ways: first, use the theorem to prove something
else; secondly, study the proof of the theorem. A procedure and its
description can be used in two ways: first, understand the description so
that calls of the procedure can be written; secondly, study the procedure
body to understand how the procedure works. This similarity should
make the idea of subproofs easy to understand.

38 Part 1. Propositions and Predicates

Scope rules

A subproof can contain references not only to previous lines in its
proof, but also to previous lines that occur in surrounding proofs. We
call these global line references. However, “recursion” is not allowed, a
line j (say)} may not contain a reference to a theorem whose proof is not
finished by line j.

The reader skilled in the use of block structure in languages like PL/I,
ALGOL 60 and Pascal will have no difficulty in understanding this scope
rule, for essentially the same scope mechanism is employed here {except
for the restriction against recursion). Let us state the rule more precisely.

(3.3.6) Scope rule. Line i of a proof, where / is an integer, may contain
references to lines 1, ..., i—[. Line j.7, where / is an integer, may
contain references to lines j. 1, ..., j. (i —I) and to any lines refer-
enceable from line j (this excludes references to line j itself). O

Example (3.3.7) illustrates the use of this scope rule; line 2.2 refers to
}ine !, which is outside the proof of line 2.

From p = (g ®r) infer (p rg)=>r
L |p=(g=r} prl
2 | From p Ag infer »

(3.3.7) 21 | p A-E, pr
22 | g=r =-E 121
23 | g A-E, prl
24 | r =.E, 2.2, 2.3

Below we illustrate an invalid use of the scope rule.

From p infer p = ap (Proof INVALID)

1 | p prl
2 | From p infer ~p

21 v p prl

22 { p=ap =1, 2 (invalid reference to line 2)
2| p=ap =], 2 (valid reference to line 2)

We illustrate another common mistake below; the use of a line that is not
in a surrounding proof. Below, on line 6.1 an attempt is made to refer-
ence s on line 4.1. Since line 4.1 is not in a surrounding proof, this is not
allowed.

A subproof using global references is being proved in a particular con-
text. Taken out of context, the subproof may not be true because it relies

Section 3.3 Proofs and Subproofs 39

Frompvg,p =s5,s =7 infer r (proof INVALID)

I pvg pri
2 p=s pr2
3| s=>r pr3
4 | From p infer r

41 | s =-E, 2, prl (valid reference to 2)
42 | r =-E, 3, 4.1 (valid reference to 3
p=r =-1, 4

6 | From ¢ infer r

6.1 , r =-E, 3, 4.1 (invalid reference to 4.1)
7| g=r =-1, 6

8 |r v-E, 1,5, 7

wn

on assumptions about the context. This again points up the similarity
between ALGOL-like procedures and subproofs. Facts assumed outside a
subproof can be used within the proof, just as variables declared outside a
Procedure can be used within a procedure, using the same scope mechan-
ism.

To end this discussion of scope, we give a proof with two levels of sub-
proof. It can be understood most easily as follows. First read lines 1. 2
and 3 (don’t read the the proof of the lemma on line 2) and satisfy yOl’u’-
self thfit if the proof of the lemma on line 2 is correct, then the whole
proof is correct. Next, study the proof of the lemma on line 2 (only lines

21,22 and‘2.3). Finally, study the proof of the lemma on line 2.2, which
refers to a line two levels out in the proof.

From (p Aq}“—>r inferp é(q =r)

1 | (prg)=r pr!
2 1 From p infer g =r
(3.3.8) 21 | p prl

2.2 { From g infer r
22,1 | pAg AL 20, pr]

222 1 r =-E, 1, 2.2.1
23 | g=vr =], 2.2
I3l p=(g=nr =-1, 2

Proof by contradiction

A prpof by contradiction typically proceeds as follows. One makes an
assumption, Erom this assumption one proceeds to prove a contradiction,
say, by showing that something is both true and false. Since such a

40 Part 1. Propositions and Predicates

contradiction cannot possibly happen, and since the proof from assump-
tion to contradiction is valid, the assumption must be false.

Proof by contradiction is embodied in the proof rules -1 and 1-E:

From E infer EIA 1 El
" E

(3.3.9) .-L

From ~ E infer EIA 1 E]
E

(3.3.10) ~-E:

Rule -1 indicates that if “From E infer EI A 1« EI” has been proved for
some proposition EI, then one can write = E on a line of the proof.

Rule -1 similarly allows us to conclude that E holds if a proof of
“From -~ £ infer £/ A 1 EI™ exists, for some proposition EI.

We show in (3.3.11) an example of the use of rule --I, that from p we
can conclude 1 1p.

From p infer 1 1p

13§ p prl
(3.3.11) 2 | From a1p infer p A ap
2.1 I phrap AL L prd
3 1ap 1-1, 2

Rule -l is used to prove that « 1p follows from p; similarly, rule +-E is
used in (3.3.12) to prove that p follows from 11p.

From 4+ +p infer p

1} aap pr |
(3.3.12) 2 | From ~p infer apAqap
2.1 | aphraap Alprll
3 P 2-E, 2

Theorems (3.3.11) and (3.3.12) look quite similar, and yet both proofs are
needed; one cannot simply get one from the other more easily than they
are proven here. More importantly, both of the rules 1-1 and -E are
needed; if one is omitted from the proof system, we will be unable to
deduce some propositions that are tautologies in the sense described in
section 1.5. This may seem strange, since the rules look so similar.

Let us give two more proofs. The first one indicates that from p and
.p one can prove gny proposition ¢, even one that is equivalent to false.
This is because both p and -p cannot both be true at the same time, and
hence the premises form an absurdity.

Section 3.3 Proofs and Subproofs 41

From p, 1p infer g

1| p pr!l

21 ap pr2
(3.3.13) 3 | From ~q infer p A 1p
3.0 | paap Al L2
4 q 1-E,3

From p Ag infer 1(p = 1q)

11 prg pr i
2 | Fromp = +q infer g A ~g
(3.3.14) 240 | p A-E, 1
22 | g A-E, 1
23 | Hq >.E, pr 1, 2.1
24 t gArag AL, 22, 23
3 1(P = ‘1(]) 1-1, 2

For comparison, we give an English version of proof (3.3.14). Let p Ag
be true, T'hen both p and ¢ are true. Assume that P #1q is true.
Becaus.c p s true this implication allows us to conclude that +g is true
.but thl? 1s absurd because ¢ is true. Hence the assumption that p = wq,
1s true I1s wrong, and +(p = 1q) holds,

Summary

. The reader may have noticed a difference between the natural deduc-
tion system and the previous systems of evaluation and equivalence
transformation: the natural deduction system does not allow the use of
constants T and F! The connection between the systems can be stated as
'foilows. If “Infer ¢ is a theorem of the natural deduction systemn, then e
1s a tautology and e =7 is an equivalence. On the other hand if; =T is
a tautology and e does not contain T and F, then “Infer ¢” i; a theorem
of the natural deduction system. The omission of 7 and F is no problem
because, by the rule of Substitution, in any proposition T can be replaced
by a tautology (e.g. bV 1b) and F by the compiement of a tautology (e.g
b A ab} to yield an equivalent proposition. -

o We summarize w'hat a proof is as follows. A proof of a theorem

rom e, - ey infer ¢” or of a theorem “Infer e¢” consists of a
sequence of lines. The first line contains the theorem. If the first line is
unnumbered, the rest are indented and numbered 1, 2, ete. If the first line
has the number #, the rest are indented and numbered i, I, 42, etc. The

last lirlle must contain proposition e. Each line i must have one of the
following four forms:

42 Part I. Propositions and Predicates

Form 1: (i)e; prj
where 1<<j <<n. The line contains premise j.

Form 2: (i) p Name, ref |, ..., ref,
Each ref, either (1) is a line number (which is valid according to
scope rule (3.3.6)), or (2) has the form “pr 77, in which case it
refers to premise e; of the theorem, or {3} is the name of a previ-
ously proven theorem. Let r, denote the proposition or theorem
referred to by ref),. Then the following must be an instance of
inlf!erence rule Name:

Fis "',rq
p

Form 3: (i} p Theorem name, ref |, ..., ref,

Theorem name is the name of a previously proved theorem; refy
is as in Form 2. Let r, denote the proposition referred to be
ref,. Then “From r, ©rv, 1, infer p” must be the named
theorem.

Form 4: (i) [Proof of another theorem]

That is, the line contains a complete subproof, whose format fol-
lows these rules,

Figure 3.3.1 contains a list of the inference rules.

Historical Notes

The style of the logical system defined in this chapter was conceived
principally to capture our “natural” patterns of reasoning. Gerhard
Gentzen, a German mathematician who died in an Allied prisoner of war
camp just after World War 11, developed such a system for mathematical
arguments in his 1935 paper Untersuchungen ueber das logische Schliessen
[20], which is included in [43].

Several textbooks on logic are based on natural deduction, for example
W.V.0. Quine’s book Methods of Logic [41].

The particular block-structured system given here was developed using
two sources: WFF'N PROOF: The Game of Modern Logic, by Layman
E. Allen [1] and the monograph A Programming Logic, by Robert Con-
stable and Michael O’'Donnell [7]. The former introduces the deduction
system through a series of games; it uses prefix notation, partly to avoid
problems with parentheses, which we have sidestepped through informal-
ity. A Programming Logic describes a mechanical program verifier for

Exercises for Section 3.3 43

PL/CS (a subset of PL/C, which is a subset of PL/I), developed at Cor-
n'elt University. Its inference rules were developed with ease of presenta-
tion and mechanical verification in mind. Actually, the verifier can be
used to verify proofs of programs, and includes not only the propositional

calculus but also a predicate calculus, including a theory of integers and a
theory of strings.

L E .. E, E\A..AE,
-] —— A"E' ———
E]/\.,./\E") ‘Ef
oL E VE. EWN..VE, E >E, .. E >E
E\V..VE, ' E
1 From E infer EI A - El £ From + E infer £ A 4 El
ZE e E
_ . EI>E2 E2>FEI El=E2
El=E2 T EISE2, E2=Fl
_ From E,.., E, infer E E El=FE2, EI
(E\A L AE)SE o E2

Figure 3.3.1 The Set of Basic Inference Rules

Exercises for Section 3.3

1. USC leln“la (321[) a]ld lll{CIe“Ce lulc é'l to .V a -li lll
gl € lll[le proof at

2. Prove that (p Ag)={p V gq), using rule =1,

3. Prove that g =>(g Ag). Prove that (g Ag)=>g. Use the first two results to

prove that ¢ =(q Ag). Then rewrite the last proof so that it does not refer to
outside proofs.

4. Prove that p =(p Vp).

5. Prove that p =((r vs)=p).

6. Prove that ¢ = (r = (g AF)).

7. Prove that from p =>(r =>5) follows r = (p =5).

44 Part I. Propositions and Predicates

8. What is wrong with the following proof?

Infer @ = b (Proof INVALID)

1| a prl
2 | From ~b infer b A b

2.1 | +b pr i

22 | Ab=bANb P2

235 bAqb =-E, 2.2, 2.1
2 b 2-E, 2

9. Prove that from 2p and (1p =>g)V(p A(r = q)) follows r =q.
19. Prove that g =>(p Ar) follows from ¢ = p and ¢ =r.
11. Prove that from 1¢ follows g = p.
12. Prove that from 1 ¢ follows ¢ =~ p.
13. Prove that from s g follows ¢ =(p A ap).
14, Prove that from p Vg, 2q follows p.
15. Prove p A(p ¢)= 4.
16. Prove ((p = g)A (g =1)= =7).
17, Prove (p =q)={(p A 1g)=q).
18, Prove ((p A 1g)=q)=>(p =q). (This, together with exercise 17, atlows us
to prove (p = q)={(p A 1¢)> ¢)]
19. Prove (p 22 q)=>((p A2g) > ap).
20, Prove ((p A ~g)= 1p)=>(p =¢q). [This, together with exercise 19, allows
us to prove (p = q)=((p A1¢)> 1p)]
21. Prove that (p =g)= (1p = 14).
22. Prove that (1 p = 2g) = (p =¢). [This, together with exercise 21, allows us
to prove (p =¢)=(1p = 14).]
23, Prove ~(p =q)=>(~p =q)
24. Prove (1p =q)= ~{p =¢). [This, together with exercise 21, allows us to
prove the law of Inequality, +(p =¢)=(»p =q).]
25. Prove (p =q)={g =p)
26. Use a rule of Contradiction to prove From p infer p.

27. For each of the proofs of exercise 1-7, 9-25, give a version in English. (It need
not follow the formal proof exactly.)

Section 3.4 Adding Flexibility to the Natural Deduction System 435

3.4 Adding Flexibility to the Natural Deduction System

We first introduce some flexibility by showing how theorems can be
viewed as schemas —i.e. how identifiers in a theorem can be viewed as
standing for any arbitrary proposition. Next, we introduce a rule of sub-
stitution of equals for equals, incorporating into the natural deduction 5ys-
tem the method of proving equivalences of chapter 2. We prove a
number of theorems, including the laws of equivalence of chapter 2.

Using theorems as schemas

The inference rules given in Figure 3.3.1 hold for any propositions E,
£\, ..., E,. They are really “schemas”, and one gets a particular inference
rule by substituting particular propositions for the “placeholders” E, E;,
- E,. On the other hand, theorems of the form “From premises infer
conclusion” are proved only for particular propositions. For example,
proof (3.3.2) used the following two theorems (3.2.5) and (3.2.6):

From p Aq infer g Ap
From g Ap infer p Agq

Even though it looks like the second should follow directly from the
first, in the formal system both must be proved.

But we can prove something about the formal system: systematic sub-
stitution of propositions for identifiers in a theorem and its proof yields
another theorem and proof. So we can consider any theorem to be a
schema also. For example, from proof (3.2.5) of “Fromp Ag infer gAp™
we can generate a proof of “From (aVvb)ac infer e A(aVh)” simply by
substituting a Vb for p and ¢ for g everywhere in proof (3.2.5):

From (avb)ac infer c A(a V)

1 (avb)ac prl

2 | avd A-E,]
I e A-E, |
4 [cAafavd) A-1,3,2

Let us state more precisely this idea of textual substitution in theorem and
proof. -

(3.4.1) Theorem. Write a theorem as a function of one of its identifiers,
p: “From E\(p), ..., E,(p) infer E(p)". Let G be any proposi-

tion. Then “From E\(G), ..., E, (G) infer E(G)’ can also be
proved.

46 Part I. Propositions and Predicates

Informal proof. Without loss of generality, assume the prooffof 1tfh'i,
theorem contains no references to other theorems outside the proof. (i
does, first change the proof to include them as supproofs, as was dor}lc: n
generating proof (3.3.4) from proof (3.3.2), repeating the.process unt; 1;10
references to outside theorems exist.) Then we can obtam.a proof o ft f;
new theorem simply by substituting G for p everywhere in the proof o
the original theorem. €1

Theorems like (3.4.1) are often called meta-theorems, because they arfe
not theorems in the proof system, like “From ... infer ..., but are‘proohs
about the proof system. The use of meta-theorems takes us o.ut51.de t e
formal system just a bit, but it is worthwhile to relax formality in this
way. | |

We can put meta-theorem (3.4.1) in the form of a derived rule of infer-
ence as follows:

From E(p), - - -, E,(p) infer E(p)

(p an identifier)
From E(G), - * ', E,(G) infer E(G)

(3.4.2)

We use this derived rule of inference to rewrite. theorem (3.3.2) using
only theorem (3.2.5) (and not (3.2.6)). Note lhow line 2 refers tof the(l)re\riz
(3.2.5) and indicates what propositions are being replaced. We often lea
out this indication if it is obvious enough.

Infer (p Ag)=(q Ap)

L] @rq)>@gap) (32.5)

2 ?c;/\g)eb(p Ag) (3.2.5) (with p for g, g for p)
3 (p/\q):(q/\p) :_Is l12

Earlier, we discussed the relation between p'rocedu.res of a prodgram a.l:;ll
subproofs of a proof. We can now extend this relatllon to proce uzres \frflh
parameters and subproofs with pa’rameters.l lClonmder rule (3.4.2). N e
proof of the premise corresponds to the definition of a procedure c\lmtt :aa.
parameter p. The use of the conclusion in another proof corresponds to
call of the procedure with an argument G.

The Rule of Substitution of equals for equals

The rule of Substitution, introduced in section 2.2, will be used in this
section in the following form.

Section 3.4 Adding Flexibility to the Natural Deduction System 47

(3.4.3) Theorem. Let proposition £ be thought of as a function of one
of its identifiers, p, so that we write it as E(p). Then if e] =2

and E(el) appear on previous lines, then we may write E(e2) on
aline. O

For example, given that c =4vp is true, to show that ¢ ==b Vg is true
we take E(p) tobe c =p, el =e2 tobe aVh =h Vg {the law of Commu-
tativity, which will be proved later) and apply the theorem.

The rule of Substitution was an inference rule in the equivalence sys-
tem of chapter 2. However, it is a meta-theorem of the natural deduction
system and must be proved. Its proof, which would be performed by
induction on the structure of proposition E(p), is left to the interested
reader in exercise 10, so let us suppose it has been done. We put the rule
of Substitution in the form of a derived inference rule:

el =e2, E(el)

(3.4.4) subs: E(e) (E(p) is a function of p)

To show the use of (3.4.4), we give a schematic proof to show that the
rule of substitution as given in section 2.2 holds here also.

From el =e2 infer E(el) =FE{e2)

1| el=e2 prl
2 | From E(el) infer E(e2)
(3.4.5) 2.1 | E(e2) subs, pr 1, |

3| E(el=E(e2) =-], 2

4 | From E(e2) infer Eel
4.1 | e2=el =1,(3.3.3) (p =p)
4.2 | E(eN subs, 4.1, pr |

S| E(ey=E(el) =-1, 4

6 | E(ely=FE(e2) =1,3, 5

With this derived rule of inference, we have the flexibility of both the
equivalence and the natural deduction systems. But we must make sure
that the laws of section 2.1 actually hold! We do this next.

Some basic theorems

A number of theorems are used often, including the laws of section
2.]. We want to state them here and prove some of them; the rest of the
proofs are left as exercises. The first to be proved is quite useful, It

states that if at least one of two propositions is true, and if the first is
false, then the second is true.

48 Part 1. Propositions and Predicates

Fromp Vg, -p infer g

1| ap pr2
2 | From p infer g
21 | p ~oprid
(3.4.6) 2.2 | From ~q infer p A ap
221 | paap AL 20,1
2.3 q 1+-E, 2.2
3| p=>gq =>-1, 2
4| g v-E, pr 1, 3, (3.3.3)

We now turn to the laws of section 2.I. Some of their proofs are given
here; the others are left as exercises to the reader.

. Commutative laws. (p Aq)=(g Ap) was proven in theorem (3.3.4); the
other two commutative laws are left to the reader to prove.

2. Associative laws. These we dont need to prove since the inference
ruies for and and or were written using any number of operands and no
parentheses.

3. Distributive laws. Here is a proof of the first; the second is left to the
reader. The proof is broken into three parts. The first part proves an
implication = and the second part proves it in the other direction, so
that the third can prove the equivalence. The second part uses a case
analysis (rule v-E) on b ¥ 1b —the law of the Excluded Middle— which is
not proved untit later. The use of bV 14 in this fashion occurs often

From bV(cAd)infer (bve)a(bVvd)

I ¢ From b infer (b vc)A(bVd)
1.1 | bve v-I, prl
1.2 | bvd v-I, pr |
(3.4.7 1.3 { (bve)a(bvd) Al 1L 1.2
2 | b=(bve)na(bvd) =-1, 1
3| Fromead infer(bve)a(bvd)
3Lt ¢ AE, prl
32 | d A-E, pr |
33 | bve v-l, 3.1
34 | bvd v, 3.2
IS | (Bve)A(bvd) Al, 33,34
4 [(cady=(Bve)nbvd) =], 3
51 (bve)r(bvd) v-E prl, 2,4

Section 3.4 Adding Flexibility to the Natural Deduction System 49

From (b Ve)Aa(b Vd) infer b Vie Ad)

] bve A-E, pr 1
2| bvd AE, pr |
31 bvab (3.4.14)

4 | From b infer b V(e Ad))

a1 [bvicady v, pri

5| b=bV(chrd) =1, 4
(3.4.8) 6 | From ~b infer b v(c Ad)
6.1 { ¢ (3.4.6), 1, pr 1
6.2 | 4 (3.4.6), 2, pr |
6.3 1 ead A-L 6.1, 6.2

64 | bv(cArd) v-1,6.3
7| 1b=bv(cAd) =1, 6
8| bv(cad) V-E, 3,5, 7

(3.4.9) Infer b V(cAd)=(bVc)A(bVd)
I | bv{cad)>(bve)n(bvd) =-1, 3.4.7)
2| (bVve)AbVdY=bV(cAd) -1, (3.4.8)
31 bvicad)=(bve)abvd) =, 1,2

4. De Morgans’s laws. We prove only the first one here.

From 1(b Ac) infer 16V ¢

l (b Ag) pr!
2 | From +(1bV ~c¢) infer (b Ac)A 1 (b Ac)
2.1 1(1bVac) prl
22 | From b infer (14 V 1c)A 2(1bVac)
(3.4.10) 221 | 1bVac v-l, pr 1
2.2.2 (‘le'IC)A‘I("IbV'IC) AL 2200, 2.1
237 6 1-E, 2.2
2.4 | From ~c infer (16 V a1c)A (1bVac)
241 | abVae v-, pr |
2.4.2 (1bV10)»’\1(1bV1C) A-l, 241, 2,1
25 | ¢ 1-E, 2.4
26 | bAc A-1,23,25
27 [(BAc)ra(bre) A-l, 2.6, 1
3 abVac 1-E, 2

50 Part I. Propositions and Predicates

From 15V 1c infer (b Ac)

l | From 15 infer (b Ac)
1.1 | b .prl
1.2 | From b ac infer bAab
1.2.1 ‘ b A-E, pr 1
(3.4.1D 1.2.2 | bAab Al 121, 11
1.3 | ~(bArc) 2-1, 1.2
2 "lb%‘l(b Ac) =-1, |
3 | From .c infer (b Ac)
3.1 | sc pri
32 | FrombAc infercAnc
321 (¢ A-E, prl
322 | eAanc A<l 3.2.1, 3.1
33 | ~(bac) -1, 3.2
4 R 1A =>1(b/\6‘) @-],3
51 a(bArc) v-E,prl,2, 4
(3.4.12) Infer ~(brc)=1bVac
1 Wb Ac)= bV =-1, (3.4.10)
2 b Vac=a(bac)y =1,{3411})
3 a(bAc)=bVac =11, 2

5. Law of Negation. This one is extremely simple because we have
already done the necessary groundwork in previous theorems:

(3.4.13) Infer - 1b =5

=1, (3.3.11)

I | 6= nb
2 116 b >-1, (3.3.12)
3 11b =5 =I,1,2

6. Law of the Excluded Middle. This proof proceeds by assuming the
converse and proving a contradiction in a straightforward manner.

Exercises for Section 3.4 51
Infer bV - b
| From 1(bV'1b)il’lfel'(bV1b)f\1(b V1b)
1.1 1(bV1b) prl
1.2 | From ~b infer (b V 1b)A (bVab)
1.2.1 | bV b V-1, pr !
(3.4.14) 1.2.2 (BVab)}ra(bVab)Y Al L2, 11
1.3 | & +-E, 1.2
14 | bvab v-1, 1.3
1.5 (BVab)AA(BVab) Al 1.4, pri
2 | bBVab 1-E, !

1. Law of Contradiction. Left to the reader.
8. Law of Implication. Left to the reader.
9. Law of Equality. Left to the reader.

10-11. Laws of or- and and-Simplification. These laws use the constants
T and F, which don’t appear in the inference system,

Exercises for Section 3.4

1. Use the idea in theorem {3.4.1) to derive from (3.3.7) a proof that
(P Ag)}=(pVq) follows from p = (g =p vq).

2. Use the idea in theorem (3.4.1) to derive from (3.3.8) a proof that from
(g ArAg)=r follows (g Ar)=(g =r).

3. Use the idea in theorem (3.4.1) to derive from (3.3.4) a proof that (a Ab Ac)
=(chanb).

4. Prove the second and third Commutative laws, (bVe)=(cVb) and (b =¢)

= (¢ =b).

- Prove the second Distributive law, b A(c Vd) = (b AcYV(b Ad),

- Prove the second of De Morgan’s laws, 1 (A Ve) = 1b A qc.

- Prove the law of Contradiction, 1(& A 16},

- Prove the law of Implication, b Ve = (1b =¢).

- Prove the law of Equality, (b =¢)=(b = ¢)A(c =b).

10. Prove theorem (3.4.3).

11. Prove the rule of Transitivity: from g = b and = ¢ follows @ =¢.
12. Prove that from p Vg and g follows P (see (3.4.6)).

o 90 -3 & W

52 Part 1. Propositions and Predicates

3.5 Developing Natural Deduction System Proofs

The reader has no doubt struggled to prove some theorems in the
natural deduction system, and has wondered whether such proofs could be
developed in a systematic manner. This section should provide some help.

We will begin to be less formal, stating facts without formal proof and
taking larger steps in a proof when doing so does not hamper understand-
ing. This is not only convenient; it is necessary. While the formal
methods are indispensable for learning about propositions, one must begin
to use the insight they supply instead of the complete formality they
require in order to keep from being buried under mounds of detail.

To help the reader take a more active role in the development of the
proofs, they will be presented as follows. At each step, a question will be
posed, which must be answered in order to invént the next step in the
proof. The answer will be separated from the question by white space
and an underline, so that the reader can try to answer the question before
proceeding. In this way,.the reader can actually develop each step of the
proof and check it with the one presented.

Some general hints on developing proofs

Suppose a theorem of the form “From el, e2 infer €3” is to be proved.
The proof must have the form

From el, e2 infer &3

1] el pri
2| e2 pr2

3| e3 Why?

and we need only substantiate line 3 —ie. give a reason why e3 can be
written on it. We can look to three things for insight. First, we may be
able to combine the premises or derive sub-propositions from them in
some fashion, if not to produce e3 at least to get something that looks
simifar to it.

Secondly, we can investigate 3 itsell. Since an inference rule must be
used to substantiate line 3, the form of e3 should help us decide which
inference rule to use. And this leads us to the third piece of information
we can use, the inference rules themselves. There are ten inference rules,
which yields a lot of possibilities. Fortunately, few of them will apply to
any particular proposition e3, because e3 must have the form of the con-
clusion of the inference rule used to substantiate it. And, with the addi-
tional information of the premises, the number of actual possibilities can
be reduced even more.

Section 3.5 Developing Natural Deduction System Proofs 53

For example, if 3 has the fornr_l ed =>e5, the two most likely inference
rules to use are =-E and =1, and if a suitable equivalence does not seem

possible to derive from the premises, then =-E can be eliminated from
consideration.

Let us suppose we try to substantiate line 3 using rule =>-I, because it
has the form e4=>¢5. Then we would expand the proof as follows.

From e, e2 infer e4 =>e5

1 | el prl

2| e2 pr2

3 | From ¢4 infer &5
31 te4d prl

32 | es Why?
4 | ed=>e5 =1, 3

Thus, we have reduced the problem of proving e4=>¢5 from el and e2 to
the problem of proving &5 from e4, and the new problem promises to be
simpler because propositions e and e5 each contain fewer operations than
e3 did —they are in some sense smaller and simpler.

The above discussion shows basically how to go about developing a
proof. At each step, investigate the inference rules to determine which are
most likely to be applicable, based mainly on the proposition to be proved
and secondly on previous assumptions and already-proved theorems, and
attempt to apply one of them in order to reduce the problem to a simpler
one,

As the proof expands and more assumptions are made, try to invent
and substantiate new propositions (from the already proved ones} that
may be helpful for proving the desired result. But remember that, while
the premises are certainly useful, proof development is a goal-oriented
activity, and it is mainly the goal, the proposition that must be substan-
tiated; we should look to the goal and possible inference rules for the
most insight.

Successful proof development requires some experience with the infer-
ence .rules, so the reader should spend some time studying them and
deciding when they might be employed. We can give some hints here,

Rules =-1 and =-E together define operation equals. They are used
only to derive an equivalence or to turn one into implications. If
equivalence is not a part of the premises or goal, they can be eliminated
from consideration.

The other rules of introduction are used to introduce longer proposi-
tions from shorter ones. Hence, they are useful when the desired goal, or

54 Part 1. Propositions and Predicates

parts of it, can be built from shorter propositions that occur on previous
lines. Note that, except for =-1, the forms of the conclusions of the rules
of introduction are all different, so that at most one of these rules can be
used to substantiate a proposition,

The rules of elimination are generally used to “break apart” a proposi-
tion so that one of its sub-propositions can be derived. Al the rules of
elimination (except for =-E) have a general proposition as their conclu-
sion. This means that they may possibly be used to substantiate any pro-
position. Whether an elimination rule can be used depends on whether its
premises have appeared on previous lines, so to decide whether these rules
should be used reguires a look at previous lines.

The Development of a proof

Problem. Prove that if p 2> g is true then so is (p A vg)= +p. The first '

step in developing a proof is to draw the outline for the proof and fill in
the first line with the theorem, the next lines with the premises and the
last line with the goal -—i.e the proposition to be inferred. Perform this
step.

The problem description yields the following start of a proof:

From p = q infer (p A 1g)= ap
I | p=gq prl

2| (prag)=>ap Why?

At this point, it is wise to study the premises to see whether propositions
can be derived from them. Do this.

Little can be derived from p = ¢, except the disjunction +p Vg (using the
rule of Substitution). We will keep this propositicn in mind. Which rules
of inference could be used to substantiate line 27 That is, which rules of
inference could have (p A ng)= 1p as their conclusion?

Possible inference rules are: =-I, A-E, v-E, --E, =-E and =-E. Which
seems most applicable, and why? Expand the proof accordingly.

Section 3.5 Developing Natural Deduction System Proofs 55

There is little to suppose that the elimination rules could be useful, for
their premises are different from the propositions on previous lines. This
leaves only =-1,

From p = ¢ infer (p A 1g) > p

1 | p=>gq prl
2 | Fromp A ~q infer ap

21 | prag prl

22 | ap Why?
31 rsg)=ap =1, 2

What can be derived from the propositions appearing on lines previous to
2.2?

Using A-E, we can derive p and +1¢ from premise p A 1g. We then see
that g can be derived from p =>g and p. (Is it strange that both ¢ and
1g can be derived?) Keeping these in mind, list the inference rules that
could be used to substantiate line 2.2. '

Possible inference rules are +-I, A-E, V-E, 1-E and =-1. Choose the rule
that is most applicable and expand the proof accordingly.

The elimination rules don’t seem useful here; elimination of imp on line 1
results in ¢, and we already know that A-E can be used to derive p and
2q from p A ~g. Only -1 seems helpful:

From p =g infer (p A 1g) > p

1| p=>¢q pr!
2 | From p A 1q infer 1p
2.1 | pArag pr!
2.2 | From p infer e A ve (which e?)
221 | p prl
222 | eNne Why?
23 | ~p 21,22
3| prag)=ap .], 2

What proposition e should be used on lines 2.2 and 2.2.27 To make the
choice, look at the propositions that occur on lines previous to 2.2 and

56 Part 1. Propesitions and Predicates

the propositions we know we can derive from them. Expand the proof
accordingly.

We reasoned above that we could derive both ¢ and 14q, so the obvious
choice is e =g. We complete the proof as follows:

From p =q infer (p A 1g) > qp

| p>g prl
2 | Fromp A g infer 1p
2.1 | phrag prl
22 | p ' A-E, 2.1
2.3 | g A-E, 2.1
2.4 | Fromp infer g A ¢
241 | g =-E, [, 2.2
242 1 grag A,24.1,23
2.5 | ap s-1, 2.4
31l (pAr-g)=ap =-1, 2

The Development of a second proof

Problem. Prove that from 1p =g follows 1(p =¢}. Draw the outline of
the proof and fill in the obvious details,

From -p =q infer 1{p =q)
1 “p =g pri

2 | ~{p=q) Why?

What information can be gleaned from the premises?

Rule =-E can be used to derive two implications. This seems useful here,
since implications will be needed to derive the goal, and we derive both.

Section 3.5 Developing Natural Deduction System Proofs 57

From +p =g infer 1(p =gq)
1| 1p =g =-E, prl
2 | g=ap =-E, prl

J 1 p=g) Why?

The following rules could be used to substantiate line 3: +-1, A-E, V-E, -
E and =-E. Choose the most likely one and expand the proof accord-
ingly,

The elimination rules don’t seem helpful at all, because the premises that
would be needed in order to use them are not available and don’t seem
easy to derive. The only rule to try at this point is -1 —we have little
choice!

From p =g infer ~(p =q)

L[| ap=g =-E, prl

2 | g=up =-E, prl

3 | Fromp =g infer e A ve (which e?)
3.1 | p=g pr |
32 | eAqe Why?

4 -1(p ZQ) 1“1, 3

What proposition e should be used on lines 3 and 3.2, and how should it
be proved? Expand the proof accordingly.

The propositions 4p =g and g =>1p are available. In addition, from
line 3.1 p =>q and g =>p can be derived. Let’s rearrange these as follows:

P>q,9=>p,q=>p, and
PTG, qFap, g >p.
If we assume p we can prove both p and .p; if we assume p we can

also prove p and ~p. Hence we should be able to prove the contradic-
tion pAap. Sotry e =p and write the following proof.

S8 Part 1. Propositions and Predicates Section 3.5 Developing Natural Deduction System Proofs 59
From ~p =g infer 1(p =q) The Tardy Bus Problem
1| +1p>gq =-E, pr | The Tardy Bus Problem is taken from WFF'N PROOF: The Game of
2| g=ap =E, prl Modern Logic [1].
3| Fromp =g infer p A qp _ .
31 | p>q —E, pr 1 THE TARDY BUS PROBLEM. Given are the following premises:
321 g>p =-E, pr 1 1. If Bill takes the bus, then Bx]l misses his appointment, if the
33 | p Why?
bus is late.
3.4 ap Why? » H : 4 H H
35 | pArap AL 33,34 2. Bill shouldn’t go home, if (a) Bill misses his appointment, and
4 | 2(p=q) 21,3 (b) Bill feels downcast,
: 3. If Bill doesn’t get the job, then (a) Bill feels downcast, and (b)
So we are left with concluding the two propositions p and ~p. Theselare Bill shouldn t go home.
quite simple, using the above reasoning, so let us just show the final
proof. . Which of the following conjectures are true? That is, which can be validly
proved from the premises? Give proofs of the true conjectures and coun-
From p =g infer 1(p =q) _ terexamples for the others.
1| ap=>g =-E, pr | 1. If Bill takes the bus, then Bill does get the job, if the bus is
2| g=ap =-E, pr 1 late.
3 | Fromp =q inferp A ap 2, Bill gets the job, if (a) Bill misses his appointment, and (b) Bill
31 | p=g =-E, prl should go home.
32 | g=p) =-E, pr | 3. If the bus is late, then (a) Bill doesn’t take the bus, or Bill
3.3 | From 1p inferp A 1p doesn’t miss his appointment, if (b) Bill doesn’t get the job.
ggé g zf,;:’lpg;] 4. Bill doesn't take the bus if, (a) the bus is late, and (b) Bill
333 | pAap A, 332, prd doesn’t get the job.
34 1 p .-E, 3.3 5. 1f Bill doesn’t miss his appointment, then (a) Bill shouldn’t go
3.5 | From p infer p A <p. home, and (b) Bill doesn’t get the job.
35.1 | g =.E, 3.1, pr | 6. Bill feels downcast, if (a) the bus is late, or (b) Bill misses his
352 | ap =1, 2, 3.5.1 ‘ appointment.
: 353 | paap ALprl, 352 7. 1f Bill does get the job, then (a) Bill doesn’t feel downcast, or
36 | p 1-1, 3.5 : (b) Bill shouldn™ go home.
37 | pa {p A-1, 3.4, 3.6) . . .
8. If'(a) Bill should go home, and Bill takes the bus, then {b) Bill
5 a(p =q) 1-1, 2

doesn’t feel downcast, if the bus is late,

At each step of the development of the proof there was little choice. The
crucial —and most difficult— point of the development was the choice of
inference rule .- to substantiate the last line of the proof, but careful
study of the inferénce rules led to it as the only likely candidate. Thus,
directed study of the available information can lead quite simply to the
proof.

This problem is typical of the puzzles one comes across from time to time.
Most people are confused by them —they just don't know how to deal
with them effectively and are amazed at those that do. It turns out, how-
ever, that knowledge of propositional calculus makes the problem fairly
easy.

The first step in solving the problem is to translate the premises into
propositional form. Let the identifiers and thc:r interpretations be:

60 Part 1. Propositions and Predicates

th:. Bill rakes the bus

ma: Bill misses his appointment
bl: The bus is Jate

gh: Bill should go home

fd: Bill feels downcast

gj: Bill gets the job.

The premises are given below. Each has been put in the form of an impli-
cation and in the form of a disjunction, knowing that the disjunctive form
is often helpful.

Premise 1. th = (bl = ma) or +tbVablvma
Premise 2. (ma Afd)= gh or vmaV 1fdV gh
Premise 3. ~gj ={(fdA ~gh) or giv{fdngh)

Now let’s solve the first few problems. In order to save space, Premises 1,
2 and 3 are not written in every proof, but are simply referred to as Prem-
ises 1, 2 and 3. Included, however, are propositions derived from them in
order to get more true propositions from which to conclude the result.

Conjecture 1: If Bill takes the bus, then Bill does get the job, if the bus is
late. Translate the conjecture into propositional form.

In propositional form, the conjecture is tb = (bl =>gj). We try to prove
“From tb infer bl =g/, which would prove that the conjecture is true.
Write the outline for the proof and fill in the obvious details.

From tb infer bl = gj
1§t prl

2| bl>gj Why?

What propositions can be derived from line 1 and Premises 1, 2 and 3?7
Expand the proof accordingly.

Proposition bl =>ma can be derived from Premise | and line I

Section 3.5 Developing Natural Deduction System Proofs 61

From tb infer bl > gjf
1] th prl
2 | bi=ma =-E, Premise 1, 1

3| bl>gj Why?

Which rules could be used to substantiate line 3?

Proposition b/ =>gj could be an instance of the conclusion of rules =],

A-E, V-E, 1-E, =-F and =-E. Which seems most usefu] here? Expand the
proof accordingly.

The' necessary propositions for the use of the elimination rules are not
available, so try =>-I;

From (b infer bl =g/

1|t pr i
2 | bl=ma =-E, Premise 1, |
3 | From b! infer gj

3.1 | B pri

32 1 g7 Why?
4 | bl=>gj >} 3

C"&n any propositions be inferred at line 3.2 from the propositions on pre-
vious lines and Premises 1, 2 and 3? Expand the proof accordingly.

Proposition ma can be derived from lines 2 and 3.1

From tb infer bl = gj

1| pr 1

21 Bl=>ma =-E, Premise !, |
3 | From b/ infer gj

31 | bl prl

32 { ma =-E 2 3.1

33 | gj Why?

62 Part 1. Propositions and Predicates

What rules could be used to substantiate line 3.3?

Proposition gj could be an instance of the conclusion of rules A-E, V-E,
+-E and =>-E. Which ones seem helpful here?

None of the the rules seem helpful. The only proposition available that

contains gj is Premise 3, and its disjunctive form indicates that g/ must

necessarily be true only in states in which (fdA 1gh} is false {according to
theorem (3.4.6)). But there is nothing in Premise 2, the only other place
fd and gh appear, to make us believe that fdA ~gh must be false.
Perhaps the conjecture is false. What counterexample --i.e. state in
which the conjecture is false— does the structure of the proof and this

argument lead to?

Up to line 3.2 of the proof we have assumed or proved th =T, bi=T
and ma =T. To contradict the conjecture, we need g/ = F. Finally, the
above argument indicates we should try to let fdA agh be true, so we try
fd=T and gh =F. Indeed, in this state Premises 1, 2 and 3 are true and

the conjecture is false.

Conjecture 2: Bill gets the job, if (a) Bill misses his appointment and (b)
Bill should go home. Translate the conjecture into propositional form.

This conjecture can be translated as (ma Agh)=gj. To prove it we need
to prove “From ma Agh infer gj”. Draw the outline of a proof and filt in

the obvious details,

From ma Agh infer g/
1 | mangh prl

21 g Why?

What can we derive from line 1 and Premises 1, 2 and 37 Expand the
proof accordingly.

Section 3.5 Developing Natural Deduction System Proofs 63

Both line ! and Premise 2 contain ma and gh. Premise 2 can be put in
the form 1.(ma Agh)V afd. Since maAgh is on line 1, theorem (3.4.6)
together with the law of Negation allows us to conc]ude,that +fd is irt;e
or that fd is false. Putting this argument into the proof yields ’

From ma A gh infer gj

[| mangh pr i

2 | ~(maAgh)V afd subs, De Morgan, Premise 2
3| va(mangh) subs, Negation, 1

4 | afd (3.4.6), 2, 1

S 1g Why?

What inference rule shouid be used to s i i
ubstantiate | ?
proof accordingly. e 7 Fxpand the

The applice‘ll?le rules are A-E, V-E, 4-E and =-E. This means that an ear-
!u'ar‘propos;luon must be broken apart to derive g/. The one that contains
giis l?rf:mlse 3, and in its disjunctive form it looks promising. To show
that g/ is true, we need only show that fdA agh is false. But we alread

know that fd is false, so that we can complete the proof as follows. ’

From ma Agh infer gj

| mangh prl

2 | a(mangh)V afd subs, De Morgan, Premise 2
3| va(mangh) subs, Negation, |

4 [fd (3.4.6), 2, 1

5 AV aagh v-1, 4

6 | ~(fdAqgh) subs, De Morgan, 5

71 g/ (3.4.6), Premise 3, 6

Conjecture 3. If the bus is late, then (a) Bill doesn’t take the bus, or Bill

doesn’t miss his appointment, if (b) Bill d * j
: : . oesn't get the job. T
conjecture into propositional form. : J ransiete the

Is this conjecture ambiguous? Two possible translations are

bl =(agj = (1th V 1ma)), and
bl =>(~th V(1 gj = 1ma))

‘I:Fet us assume the first proposition is intended. It is true if we can prove
rom b/ infer 1gj =>(115V 1ma)”. Draw the outline of the proof and

64 Part 1. Propositions and Predicates

fill in the obvious details.

From b/ infer agj = {~tb ¥V 1ma)
1| bl prl

2 2gf = (1tb vV ama) Why?

What propositions can be derived from line | and the Premises?

No propositions can be derived, at least easily, so let’s proceed to the next
step. What rule should be used to substantiate line 2? Expand the proof

accordingly.

Quite obviously, rule =>-I should be tried:

From b1 infer g/ = (tb V 1ma)

1| o pr |
2 | From ~g/j infer 1th V yma
2.1 ngJj prl

22 | 2tbVama Why?
3 2gi=(thVama)

Just before line 2.2, what propositions can be inferred from earlier propo-
sitions and Premises I, 2 and 3? Expand the proof accordingly.

The antecedent of Premise 3 is true, so we can conclude that the conse-
quent is also true:

Exercises for Section 3.5 65

From b/ infer ~gj = (~tbV ama)

1| bl prl
2 | From .gj infer +1bV 1ma
2.1 ~gj pr 1
22) fdA~gh =-E, Premise 3, 2.1
23 | fd A-E, 2.2
24 | gh A-E, 2.2

25| sebVama Why?
3| g =(tbVama)

What inference rule should be used to substantiate line 2.5? Expand the
proof accordingly.

The proposition on line 2.5 could have the form of the conclusion of rules
v-I, A-E, V-E, +1-E and =-E. The first rule to try is v-I. Its use would
require proving that one of 1t6 and ama is true. But, looking at the
Premises, this seems difficult. For from Premise 1 we see that both b
and ma could be true, while the other premises are true also because both
their conclusions are true, Perhaps there is a contradiction. What is it?

In a state with th =T, ma=T, bI=T, gh=F, Jd=T and gj =F
Premises [, 2 and 3 are true, but the conjecture is false.

Exercises for Section 3.5
1. Prove or disprove conjectures 4-8 of the Tardy Bus problem.

2. For comparison, prove the valid conjectures of the Tardy Bus problem using
only the equivalence transformation system of chapter 2, and then again in
English.

Chapter 4
Predicates

In section 1.3, a state was defined as a function from identifiers to the
set of values {T, F}. The notion of a state is now extended to allow iden-
tifiers to be associated with other values, e.g. integers, sequences of char-
acters, and sets. The notion of a proposition will then be generalized in
two ways:

1. In a proposition, an identifier may be replaced by any expres-
sion (e.g. x <y) that has the value T or F.

2. The quantifiers E, meaning “there exists™, A, meaning “for all™,
and N, meaning “number of”, are introduced. This requires an
explanation of the notions of free identifier and bound identifier
and a careful discussion of scope of identifiers in expressions.

Expressions resulting from these generalizations are called predicates, and
the addition to a formal system (like the system of chapter 2 or 3} of
inference rules to deal with them yields a predicate calculus.

4.1 Extending the Range of a State

We now consider a state to be a function from identifiers to values,
where these values may be other than T and F. In any given context, an
identifier has a type, such as Boolean, which defines the set of values with
which it may be associated. The notations used to indicate the standard
types required later are:

Boolean (i): \dentifier i can be associated (only) with T or F.

Section 4.1 Extending the Range of a State 67

natural number(i). i can be associated with a member of {0, 1,

2, - L
integer(i). i ¢an be associated with an integer --a member of
[=2,=1,0,1,2, -},

integerset (i}. i can be associated with a set of integers.
Other types will be introduced where necessary.

Let P be the expression x <y, where x and y have type integer.
When cvaluated, P yields either T or F, so it may replace any identifier
in a proposition. For example, replacing & in (b Ac)Vd by P yields

(x<p)rc)vd.

The new assertions like P are called atomic expressions, while an expres-
sion that results from replacing an identifier by an atomic expression is
called a predicate. We will not go into detail about the syntax of atomic
expressions; instead we will use conventional mathematical notation and
rely on the reader’s knowledge of mathematics and programming. For
example, any expression of a programming language that yields a Boolean
result is an acceptable atomic expression. Thus, the following are valid
predicates: '

((xs<y) Ay <z)V(x+y <z)
(xsyAay<z)vxty <z

The second example illustrates that parentheses are not always needed to
isolate the atomic expressions from the ‘rest of a predicate. The pre-
cedences of operators in a predicate follow conventional mathematics.
For example, the Boolean operators A, V, and = have lower precedence
than the arithmetic and relational operators. We will use parentheses to
make the precedence of operations explicit where necessary.

Evaluating predicates

Evaluating a predicate in a state is similar to evaluating a proposition.
All identifiers are replaced by their values in the state, the atomic expres-
sions are evaluated and replaced by their values (T or F), and the result-
ing constant proposition is evaluated. For example, the predicate
x <y Vb in the state {{x,2),(y,3),(h,F)} has the value of 2<3V F,
which is equivalent to TV F, which is T,

Using our earlier notation s(e) to represent the value of expression e
in state s, and writing a state as the set of pairs it contains, we show the
evaluation of three predicates:

68 Part 1. Propositions and Predicates

s({x <y Ay <z)V{x+y <z)) where s ={(x,1),(y,3),(z,5)
=(I€3A35) Vv (1+H3<5)

={(TAaTYvT

=T.

s(x<y Ay <z)Vixdy <z)) wheres ={(x,3),(»,1),{(z, 5}}
= (31 A 18V (3+ILE)
=(FAT)VT
= T,

s((x <y Ay <z)V{x+y <z)) wheres ={(x,5),(,1).(z. 3}
= (5<1A 1<)V (5+1<3)
=(FAT)VF
= F.

Reasoning about atomic expressions

Just as inference rules were developed for reasoning with propositions,
so they should be developed to deal with atomic expressions. For exam-
ple, we should be able to prove formally that i<{c ‘follows from (i <j
A j<k). We shall not do this here; as they say, “it is beyond the scope
of this book.” Instead, we rely on the reader’s knowledge of mathemat:c':s
and programming to reason, as he always has done, about the atomic
expressions within predicates.

As mentioned earlier, we will be using expressions dealing with integler
arithmetic, real arithmetic (though rarely) and sets. The operators we will
be using in these expressions are described in Appendix 2.

The operators cand and cor

Every proposition is well-defined in any state in which all its identifiers
have one of the values T and F. When we introduce other types of
values and expressions, however, the possibility of undeflined expressions
(in some states) arises. For example, the expression x./y Is undefined lf)_a
is 0. We should, of course, be sure that an expression in a program is
well-defined in each state in which it will be evaluated, but at times if is
useful to allow parr of an expression to be undefined.

Consider, for example, the expression

y=0vix/y=735).

Formally, this expression is undefined if y =0, because x /y is undefined
if ¥ =0 and or is itself defined only when its operands are T or F.. And
yet some would argue that the expression should have a meaning in any
state where y =0. Since in such states the first operand of or is true, and
since or is defined to be true if either of its operands is true, the

Section 4.1 Extending the Range of a State 69

expression should be true. Furthermore, such an interpretation would be
quite useful in programming, for it would allow us to say many things
more clearly and compactly. For example, consider being able to write

ify =0V (x/y=5) then s/ else 52
as opposed to

if ¥ =0 then s/
else if x /p= 5 then s/
else 52

Rather than change the definition of and and or, which would require
us to change our formal logic completely, we introduce two new opera-
tors: cand (for conditional and) and cor (for conditional or). The
operands of these new operators can be any of three values: F, T and U

(for Undefined). The new operators are defined by the following truth
table.

b ¢ |becande b corc b ¢ |bcandc b corc
T T T T F U| F U

Tr F F T u r U U

T U U T U F U U

£ T F T U u U U

F F F F

This definition says nothing about the order in which the operands should
be evatuated. But the intelligent way to evaluate these operations, at least

on current computers, is in terms of the following equivalent conditional
expressions:

beand c: if b then ¢ else F
beorc: b then T else ¢

Operators cand and cor are not commutative. For example, & cand ¢ is
not equivalent to ¢ cand &. Hence, care must be exercised in manipulat-
ing expressions containing them. The following laws of equivalence do
hold for cand and cor (see exercise 5). These laws are numbered to
correspond to the numbering of the laws in chapter 2.

2. Associativity: £/ cand (£2 cand E3) = (EI cand £2) cand E3
E1 cor (E2 cor E3) = (EI cor E2) cor E3

3. Distributivity:
El cand (E2 cor E3) = (EI eand E2) cor (El cand E3)
El cor (E2 cand E3) = (E! cor E2} cand (EI cor E3)

Part 1. Propositions and Predicates
70

= .+ E] cor 1+ E2)

4. De Morgan: - (El cand E2) "

’ <(El cor E2) = ~El cand 1 E2)

6. Excluded Middle: EI cor 1 EIl = T (provided El is well-defined)
7 Contradiction: EI cand ~El = F (provided EI is well-defined)

10. cor-simplification

El = EI .
g zg:' T=T {provided Ei is well-defined)
El cor F = EI

El cor (EI cand E2) = El

11. cand-simplification
El cand EI = El

dT =E! ‘ .
g (c::ﬁd F=F (provided EI is well-defined)

El cand (EI cor E2) = EI

i i ith
In addition, one can derive various laws that combine cand and cor w
the other operations, for example,

EI cand (E2V E3) = (EIl cand E2)V(EI cand E3)

Further development of such laws are left to the reader.

Exercises for Section 4.1 |

i i Xxpressions
1. The first two exercises consist of evaluating predicates a.nd other exp sons
' Appendix 2 gives more information on the operatio

involving integers and sets. o e tave

used. The state s in which the cxpressi'o'ns should be e\.ralu fed ComSIsts o
integer identifiers x,y, a Boolean identifier b, two set idenufier)

integer array c[1:3]. Their values are:

x=7,y=2,b=T, m={1,234}, n ={2,4,6}, ¢ =(2.4,6)

+y =3 (h) —ceil (—x [y)=x+y
E?))) zcx—yl)-!—yﬂ3 Q) 7 mod 2 L
() (x+1)~p =3 () floor(xfy)y=x~y

(d) ceil(x/y)y=x+y +1 (k) min(f!oor_(x/2g, cei)l)(i/bZ))<cezl(x/2)
(e) floor((x+1)/y)y=(x+1)+y (1} (abs{—x)=—abs(x

0 floor(—x[y)=-—3 (m)be<);

(g) ceil(x/y}=x-+y (n) 19 mod |

2, Evaluate the following expressions in the state given in exercise 1.

Un (8 |m|Em
g))rmnﬂn (h) |n| €n

Section 4.2 Quantification 71
(€) xE€m Ab () ({Im]}uge, 7hcn
(d) mCnAb @ |m|+[nj=|mun]
(&) DCTm (k) min(m)

O {ilicmAieven(idiCn () fi|iem AiEn}

3, Evaluate the following predicates in the state given in exercise 1. Use U for
the value of an undefined expression,

(@ bvx [(y—=2)=0 () x=0cand x /(y—2)=0
(b) beorx /(y=2)=0 (g I1<y<3candc[y] Em
() bax [(y—=2)=0 (hy 1<y <3 core[x]€Em

(dy b eand x / (y ~2)=0 (i) ISy<3cand c[y+!]em
(€) x=0Ax/(y—2)=0 () 1<x<3 cor clylem

4. Consider propositions @, # and ¢ as having the values ¥, T or {/ (for unde-
fined). Describe all states where the commutative laws ¢ cor b = b cor g and
a ¢cand & = b cand ¢ do not hold.

5. Prove that the laws of Associativity, Distributivity, De Morgan, Excluded Mid-
dle, Contradiction, cor-simplification and cand-simplification, given just before
these exercises, hold. Do this by building a truth table for each one.

4.2 Quantification

Existential quantification

Let m and n be two integer expressions satisfying m <n. Consider
the predicate

(421) E, VE, Vv vEn—ls

where each E; is a predicate. (4.2.1) is true in any state in which at least
one of the E; is true. It can be expressed using the existential quantifier
E (read “there exists™ as

(422) (Ei:m<i<n:E).

The set of values that satisfy m <i <n is called the range of the quanti-
Jied identifier i. Predicate (4.2.2) is read in English as follows.

(E: there exists at least one (integer) ¢/
: such that
m=i<n i is between m and n—1 {inclusive)
: for which the following holds:
E)y K.

72 Part 1. Propositions and Predicates

The reader is no doubt already familiar with some forms of quantifica-
tion in mathematics. For example,

n—l
zsi = Sm +Sm+l t o +‘s”_]

i=m
n-—l
nsi = Sy * S +1 * o *sn—l-
f=m

stand for the sum and product of the values s,,, S+t -r Sp—(, IESpPEC-
tively. These can be written in a more linear fashion, similar to (4.2.1), as
follows, and we shall continue to use this new form;

(Zitm<i<n:s)
Ni:m<i<n:s)

At this point, (4.2.2) is simply an abbreviation for (4.2.1). It can be
recursively defined as follows:

{4.2.3) Definition of E:
(Eiim<i<m:E)=F, and, for k =m,
Eim=<i<k+LE)=(Eim<i<k:E)VE, O

Remark: The base case of this recursive definition, which concerns f'm
empty range m <i <!m for i/, brings out an interesting point. The 'dlS-
junction of zero predicates, (Ei:m <i <m: E), has the value F: “oring”
0 predicates together yields a predicate that is always false. For example,
the following predicates are equivalent to F:

(Ei:0<i <0:7 =i}
(Ei: 3<i<-3:T)

The disjunction of zero disjuncts is F. The conjunction of zero con-
juncts turns out to be T. Similarly, the sum of zero values is 0 and the
product of zero values is |. These four facts are expressed as

(Zi0=i<O0x) =0,

(N 0<i <0 x;) = |

(Fi0i<0:E} =F,

(Ai:0<i <\ E)}=T. (Notation explained subsequently)

The value 0 is called the identity element of addition, because any n'umbcr
added to 0 yields that number. Similarly, I, F and T are the identity ele-
ments of the operators *, or and and, respectively. End of remark

Section 4.2 Quantification 73

The following examples use quantification over two identifiers. They
are equivalent; they assert the existence of ; and J between | and 99 such
that ¢ is'prime and their product is 1079 (is this true?). The third one uses
the convention that successive quantifications with the same range,
Eimsi<m (Ejim<j<n: (Ek:m<k<n: -))) can be written
as(Ei,j.kem<ijhk<n: -)

(1} (Ei:0<i <100:(Ej:0< <100: prime (i) A #*j = 1079))
(2) (Ei:0<<i <100: prime (i) A (Ej:0<j <100: #%*f =1079))
() (E1,j:0<i,j <100 prime (i) A % = 1079))

Universal quantification

The universal quantifier, A, is read as “for all”. The predicate
(424) Aiim<si<n E)
is true in a state iff; for all values i in the range m <<i <n, FE; is true in
that state.

We now define 4 in terms of E, so that, formally, we need deal only
with one of them as a new concept. Predicate (4.2.4) is true iff all the E;
are true, so we see that it is equivalent to

EmAEm+IA e AE,
= WE,AE qn AE,) (Negation)
= "'('fEm Vs w1 Vi Vg n-l) (DC Morgan)

= WEiim<i<niaE)
This leads us to define (4.2.4) as
(4.2.5) Definition. (Ai:m<i<n:E)= «(Ei:m<i<n: - E). O
Now we can prove that (4.2.4) is true if its range is empty:

Aim<i<m E)

= (Evim<i<m:aE)

= . F {because the range of E is empty)
=T

Numerical quantification

Consider predicates Ey, E, ... It is quite easy to assert formally that
k is the smallest integer such that E, holds. We need only indicate that
E, through E, _| are false and that E;, is true:

