
Programming
20-1 Before Programming
20-2 Programming Examples

20-3 Debugging a Program

20-4 Calculating the Number of Bytes Used by a Program

20-5 Secret Function
20-6 Searching for a File

20-7 Searching for Data Inside a Program

20-8 Editing File Names and Program Contents

20-9 Deleting a Program
20-10 Useful Program Commands

20-11 Command Reference

20-12 Text Display

20-13 Using Calculator Functions in Programs

Chapter

20

352

20-1 Before Programming

The programming function helps to make complex, often-repeated calculations
quick and easy. Commands and calculations are executed sequentially, just like
the manual calculation multistatements. Multiple programs can be stored under file
names for easy recall and editing.

Select the PRGM icon in the Main Menu and enter the PRGM Mode. When you
do, a program list appears on the display.

• {EXE}/{EDIT} ... program {execute}/{edit}

• {NEW} ... {new program}

P.368 • {DEL}/{DEL·A} ... {specific program}/{all program} delete

P.362 • {SRC}/{REN} ... file name {search}/{change}

• {LOAD}* ... {loads a built-in Program Library program}

* See the separate Software Library Manual for details (except fx-
9750G PLUS, CFX-9850G PLUS).

* The following models do not support the LOAD command: fx-9750G
PLUS, CFX-9850G PLUS.

• If there are not programs stored in memory when you enter the PRGM Mode,
the message “No Programs” appears on the display and only the NEW item
(3) is shown in the function menu.

The values to the right of the program list indicate the number of bytes used up
by each program.

File Name

Program

File Name

Program

File Name

Program

CFX

Selected memory area
(use f and c to move)

353

20-2 Programming Examples

 Example 1 To calculate the surface area and volume of three regular
octahedrons of the dimensions shown in the table below

Store the calculation formula under the file name OCTA.

A

Length of One Side (A) Surface Area (S) Volume (V)

7 cm cm2 cm3

10 cm cm2 cm3

15 cm cm2 cm3

The following are the formulas used for calculating surface area S and volume V
of a regular octahedron for which the length of one side is known.

2
S = 2 3 A2, V = –––– A3

3

When inputting a new formula, you first register the file name and then input the
actual program.

uuuuuTo register a file name

 Example To register the file name OCTA

• Note that a file name can be up to eight characters long.

1. Display the program list menu and press 3 (NEW) to display a menu, which
contains the following items.

• {RUN}/{BASE} ... {general calculation}/{number base} program input

P.360 • {QQQQQ} ... {password registration}

• {SYBL} ... {symbol menu}

2. Input the name of the file.

OCTA

• The cursor changes form to indicate alpha character input.

• The following are the characters you can use in a file name:
A through Z, r, θ, spaces, [,], {, }, ’, ”, ~, 0 through 9, ., +, –, ×, ÷

• Note, however, that v and . cannot be input for the name of a program
that contains binary, octal, decimal, or hexadecimal calculations.

354

• Use 1 (RUN) to input a program for general calculations (a program to be
executed in the COMP Mode). For programs that involve number system
specifications, use 2 (BASE). Note that programs input after pressing 2
(BASE) are indicated by B to the right of the file name.

• Pressing 6 (SYBL) displays a menu of symbols (’, ”, ~) that can be input.

• You can delete a character while inputting a file name by moving the cursor to
the character you want to delete and pressing D.

3. Press w to register the file name and change to the program input screen.

File name

• Registering a file name uses 17 bytes of memory.

• The file name input screen remains on the display if you press w without
inputting a file name.

• To exit the file name input screen and return to the program list without
registering a file name, press J.

• When you register the name of a program that contains binary, octal, decimal,
or hexadecimal calculations, the indicator B is appended to the right of the file
name.

uuuuuTo input a program

The following items are included in the function menu of the program input screen,
which is used for program input.

P.365 • {TOP}/{BTM} ... {top}/{bottom} of program

P.364 • {SRC} ... {search}

• {MENU} ... {mode menu}

• {SYBL} ... {symbol menu}

uuuuuTo change modes in a program

• Pressing 4 (MENU) while the program input screen is on the display causes
a mode change menu to appear. You can use this menu to input mode
changes into your programs.

• {STAT}/{MAT}/{LIST}/{GRPH}/{DYNA}/{TABL}/{RECR}

For details on each of these modes, see “To select an icon”, as well as the
sections of this manual that describe what you can do in each mode.

• The following menu appears whenever you press 4 (MENU) while inputting a
program that involves number base specifications.

• {d ~ o}/{LOG}

20 - 2 Programming Examples

P.3

355

• Pressing 6 (SYBL) displays a menu of symbols (’, ”, ~, *, /, #) that can be
input into a program.

• Pressing ! Z displays a menu of commands that can be used to change
set up screen settings inside a program.

• {ANGL}/{COOR}/{GRID}/{AXES}/{LABL}/{DISP}/{P/L }/{DRAW}/{DERV}/

{BACK}/{FUNC}/{SIML}/{S-WIN}/{LIST}/{LOCS }/{T-VAR}/{ΣDSP}/{RESID}

P.5 For details on each of these commands, see “Set Up Screen Function Key
Menus”.

The following function key menu appears if you press !Z while inputting a
program that contains binary, octal, decimal, or hexadecimal calculation.

• {Dec}/{Hex}/{Bin}/{Oct}

Actual program contents are identical to manual calculations. The following shows
how the calculation of the surface area and volume of a regular octahedron would
be calculated using a manual calculation.

Surface Area S .. c*!9d* <value of A> xw

Volume V!9c/d* <value of A> Mdw

You could also perform this calculation by assigning the value for the length of one
side to variable A.

Length of One Side A

............ <value of A> aaAw

Surface Area S .. c*!9d*aAxw

Volume V!9c/d*aAMdw

If you simply input the manual calculations shown above however, the calculator
would execute them from beginning to end, without stopping. The following
commands make it possible to interrupt a calculation for input of values and
display of intermediate results.

? : This command pauses program execution and displays a question mark as a
prompt for input of a value to assign to a variable. The syntax for this com-
mand is: ? → <variable name>.

^̂̂̂̂: This command pauses program execution and displays the last calculation
result obtained or text. It is similar to pressing w in a manual calculation.

P.369 • For full details on using these and other commands, see “Useful Program
Commands”.

Programming Examples 20- 2

356

The following shows examples of how to actually use the ? and ^ commands.

!W4(?)aaA6(g)5(:)

c*!9d*aAx

6(g)5(^)

!9c/d*aAMd

!Q or JJ

uuuuuTo run a program

1. While the program list is on the display, use f and c to highlight the name
of the program you want to run.

2. Press 1 (EXE) or w to run the program.

Let’s try running the program we input above.

Length of One Side (A) Surface Area (S) Volume (V)

7 cm 169.7409791 cm2 161.6917506 cm3

10 cm 346.4101615 cm2 471.4045208 cm3

15 cm 779.4228634 cm2 1590.990258 cm3

1 (EXE) or w

hw
(Value of A)

Intermediate result produced by ^

ww

baw

20- 2 Programming Examples

357

w

· ·· ·· ·· ·· ·· ·
• Pressing w while the program’s final result is on the display re-executes the

program.

P.378 • You can also run a program while in the RUN Mode by inputting:
Prog ”<file name>” w.

• An error occurs if the program specified by Prog ”<file name>” cannot be
found.

Programming Examples 20- 2

358

20-3 Debugging a Program

A problem in a program that keeps the program from running correctly is called a
“bug,” and the process of eliminating such problems is called “debugging.” Either
of the following symptoms indicates that your program contains bugs and that
debugging is required.

• Error messages appearing when the program is run

• Results that are not within your expectations

uuuuuTo eliminate bugs that cause error messages

An error message, like the one shown below, appears whenever something illegal
occurs during program execution.

When such a message appears, press d or e to display the location where the
P.436 error was generated, along with the cursor. Check the “Error Message Table” for

steps you should take to correct the situation.

P.360 • Note that pressing d or e will not display the location of the error if the
program is password protected.

uuuuuTo eliminate bugs that cause bad results

If your program produces results that are not what you normally expect, check the
P.365 contents of the program and make necessary changes. See “Editing File Names

and Program Contents” for details on how to change program contents.

359

20-4 Calculating the Number of Bytes Used by a
Program

There are two types of commands: 1-byte* commands and 2-byte* commands.

* A byte is a unit of memory that can be used for storage of data.

• Examples of 1-byte commands: sin, cos, tan, log, (,), A, B, C, 1, 2, etc.

• Examples of 2-byte commands: Lbl 1, Goto 2, etc.

While the cursor is located inside of a program, each press of d or e causes
the cursor to move one byte.

• You can check how much memory has been used and how much remains at
any time by selecting the MEM icon in the Main Menu and entering the MEM

P.24 Mode. See “Memory Status (MEM)” for details.

360

20-5 Secret Function

When inputting a program, you can protect it with a password that limits access to
the program contents to those who know the password. Password protected
programs can be executed by anyone without inputting the password.

uuuuuTo register a password

 Example To create a program file under the name AREA and protect it
with the password CASIO

1. While the program list is on the display, press 3 (NEW) and input the file
name of the new program file.

3(NEW)

AREA

2. Press 5 (Q) and then input the password.

5(Q)

CASIO

P.353 • The password input procedure is identical to that used for file name input.

3. Press w to register the file name and password. Now you can input the
contents of the program file.

• Registration of a password uses 16 bytes of memory.

• Pressing w without inputting a password registers the file name only, without
a password.

4. After inputting the program, press ! Q to exit the program file and return
to the program list. Files that are password protected are indicated by an
asterisk to the right of the file name.

uuuuuTo recall a program

 Example To recall the file named AREA which is protected by the
password CASIO

1. In the program list, use f and c to move the highlighting to the name of the
program you want to recall.

361

2. Press 2 (EDIT).

3. Input the password and press w to recall the program.

• The message “Mismatch” appears if you input the wrong password.

Secret Function 20- 5

362

20-6 Searching for a File

There are three different methods for searching for a specific file name.

uuuuuTo find a file using scroll search

 Example To use scroll search to recall the program named OCTA

1. While the program list is on the display, use
f and c to scroll through the list of
program names until you find the one you
want.

1 2 3 4 5 6

2. When the highlighting is located at the name
of the file you want, press 2 (EDIT) to
recall it.

uuuuuTo find a file using file name search

 Example To use file name search to recall the program named OCTA

1. While the program list is on the display, press 3 (NEW) and input the name of
the file you want to find.

P.360 • If the file you are looking for is password protected, you should also input the
password.

3(NEW)

OCTA

2. Press w to recall the program.

• If there is no program whose file name matches the one you input, a new file is
created using the input name.

uuuuuTo find a file using initial character search

 Example To use initial character search to recall the program named
OCTA

1. While the program list is on the display, press 6 (g) 1 (SRC) and input the
initial characters of the file you want to find.

6(g)1(SRC)

OCT

363

2. Press w to search.

• All files whose file names start with the characters you input are recalled.

• If there is no program whose file name starts with the characters you input, the
message “Not Found” appears on the display. If this happens, press J to
clear the error message.

3. Use f and c to highlight the file name of the program you want to recall
and then press 2 (EDIT) to recall it.

Searching for a File 20- 6

364

20-7 Searching for Data Inside a Program

 Example To search for the letter “A” inside the program named OCTA

1. Recall the program.

2. Press 3 (SRC) and input the data you want to search for.

3(SRC)

aA

• You cannot specify the newline symbol (_) or display command (^) for the
search data.

3. Press w to begin the search. The contents of the program appear on the
screen with the cursor located at the first instance of the data you specified.

Indicates search operation is in progress

4. Press w to find the next instance of the data.

• If there is no match inside the program for the data you specified, the contents
of the program appear with the cursor located at the point from which you
started your search.

• Once the contents of the program are on the screen, you can use the cursor
keys to move the cursor to another location before searching for the next
instance of the data. Only the part of the program starting from the current
cursor location is searched when you press w.

• Once the search finds an instance of your data, inputting characters or moving
the cursor causes the search operation to be cancelled (clearing the Search
indicator from the display).

• If you make a mistake while inputting characters to search for, press A to
clear your input and re-input from the beginning.

365

20-8 Editing File Names and Program Contents

uuuuuTo edit a file name

 Example To change the name of a file from TRIANGLE to ANGLE

1. While the program list is on the display, use f and c to move the highlight-
ing to the file whose name you want to edit and then press 6 (g) 2 (REN).

2. Make any changes you want.

DDD

3. Press w to register the new name and return to the program list.

• If the modifications you make result in a file name that is identical to the name
of a program already stored in memory, the message “Already Exists”
appears. When this happens, you can perform either of the following two
operations to correct the situation.

• Press e or d to clear the error and return to the file name input screen.

• Press A to clear the new file name and input a new one.

uuuuuTo edit program contents

1. Find the file name of the program you want in the program list.

2. Recall the program.

• The procedures you use for editing program contents are identical to those
P.20 used for editing manual calculations. For details, see “Editing Calculations”.

• The following function keys are also useful when editing program contents.

1 (TOP) Moves the cursor to the top
of the program

2 (BTM) Moves the cursor to the
bottom of the program

Example 2 To use the OCTA program to create a program that calculates
the surface area and volume of regular tetrahedrons when the
length of one side is known

P.353

366

Use TETRA as the file name.

Length of One Side (A) Surface Area (S) Volume (V)
A

7 cm cm2 cm3

10 cm cm2 cm3

15 cm cm2 cm3

The following are the formulas used for calculating surface area S and volume V
of a regular tetrahedron for which the length of one side is known.

2
S = 3 A2, V = –––– A3

12

Use the following key operations when inputting the program.

Length of One Side A ..!W4(?)aaA6(g)5(:)

Surface Area S!9d*aAx6(g)5(^)

Volume V!9c/bc*aAMd

Compare this with the program for calculating the surface area and volume of a
regular octahedron.

Length of One Side A ..!W4(?)aaA6(g)5(:)

Surface Area Sc*!9d*aAx6(g)5(^)
Volume V!9c/d*aAMd

As you can see, you can produce the TETRA program by making the following
changes in the OCTA program.

• Deleting c * (underlined using a wavy line above)

• Changing d to b c (underlined using a solid line above)

Let’s edit OCTA to produce the TETRA program.

1. Edit the program name.

6(g)2(REN)TETRA

w

2. Edit the program contents.

2(EDIT)

20 - 8 Editing File Names and Program Contents

eeeeDD

367

cd![bc

D

!Q

Let’s try running the program.

Length of One Side (A) Surface Area (S) Volume (V)

7 cm 84.87048957 cm2 40.42293766 cm3

10 cm 173.2050808 cm2 117.8511302 cm3

15 cm 389.7114317 cm2 397.7475644 cm3

1 (EXE) or w

hw

(Value of A)

ww

baw

w

· ·· ·· ·· ·· ·· ·

Editing File Names and Program Contents 20- 8

368

20-9 Deleting a Program

There are two methods for deletion of a file name and its program.

uuuuuTo delete a specific program

1. While the program list is on the display, use f and c to move the highlight-
ing to the name of the program you want to delete.

2. Press 4 (DEL).

3. Press 1 (YES) to delete the selected program or 6 (NO) to abort the
operation without deleting anything.

uuuuuTo delete all programs

1. While the program list is on the display, press 5 (DEL·A).

2. Press 1 (YES) to delete all the programs in the list or 6 (NO) to abort the
operation without deleting anything.

P.26 • You can also delete all programs using the MEM Mode. See “Clearing Memory
Contents” for details.

369

20-10 Useful Program Commands

In addition to calculation commands, this calculator also includes a variety of
relational and jump commands that can be used to create programs that make
repeat calculations quick and easy.

Program Menu

Press ! W to display the program menu.

• {COM}/{CTL}/{JUMP}/{CLR}/{DISP}/{REL}/{I/O}

• {?} ... {input command}

• {^} ... {output command}

• { : } ... {multi-statement command}

kkkkk COM (program command menu)

Selecting {COM} from the program menu displays the following function menu
items.

• {If}/{Then}/{Else}/{I-End}/{For}/{To}/{Step}/{Next}/{Whle}/{WEnd}/{Do}/{Lp-W}
... {If}/{Then}/{Else}/{IfEnd}/{For}/{To}/{Step}/{Next}/{While}/{WhileEnd}/{Do}/

{LpWhile} command

kkkkk CTL (program control command menu)

Selecting {CTL} from the program menu displays the following function menu
items.

• {Prog}/{Rtrn}/{Brk}/{Stop} ... {Prog}/{Return}/{Break}/{Stop} command

kkkkk JUMP (jump command menu)

Selecting {JUMP} from the program menu displays the following function menu
items.

• {Lbl}/{Goto} ... {Lbl}/{Goto} command

• {⇒} ... {jump command}

• {Isz}/{Dsz} ... {jump and increment}/{jump and decrement}

kkkkk CLR (clear command menu)

Selecting {CLR} from the program menu displays the following function menu
items.

• {Text}/{Grph}/{List} ... clears {text}/{graph}/{list}

370

kkkkk DISP (display command menu)

Selecting {DISP} from the program menu displays the following function menu
items.

u {Stat}/{Grph}/{Dyna} ... {statistical graph}/{graph}/{Dynamic Graph} draw

u {F-Tbl} ... {Table & Graph command menu}
The following are the items that appear in the above menu.

• {Tabl}/{G-Con}/{G-Plt} ... {DispF-Tbl}/{DrawFTG-Con}/{DrawFTG-Plt}
command

u {R-Tbl} ... {recursion calculation and recursion fomula}
The following are the items that appear in the above menu.

• {Tabl}/{Web}/{an-Cn}/{Σa-Cn}/{an-Pl}/{Σa-Pl} ... {DispR-Tbl}/{DrawWeb}/

{DrawR-Con}/{DrawRΣ-Con}/{DrawR-Plt}/{DrawRΣ-Plt} command

kkkkk REL (conditional jump relational operator commands)

Selecting {REL} from the program menu displays the following function menu
items.

• {=}/{GGGGG}/{>}/{<}/{ ≥ }/{ ≤ } ... {=}/{G}/{>}/{<}/{≥}/{≤} relational operators

kkkkk I/O (input/output commands)

Selecting {I/O} from the program menu displays the following function menu items.

• {Lcte}/{Gtky}/{Send}/{Recv} ... {Locate}/{Getkey}/{Send(}/{Receive(} command

• The appearance of the function menu differs slightly for a program that
contains binary, octal, decimal, or hexadecimal calculation, but the functions in
the menu are the same.

20- 10 Useful Program Commands

371

20-11 Command Reference

kkkkk Command Index

Break ... 378

ClrGraph .. 382

ClrList .. 382

ClrText ... 382

DispF-Tbl, DispR-Tbl ... 383

Do~LpWhile ... 377

DrawDyna ... 383

DrawFTG-Con, DrawFTG-Plt .. 383

DrawGraph .. 383

DrawR-Con, DrawR-Plt ... 384

DrawRΣ-Con, DrawRΣ-Plt ... 384

DrawStat ... 384

DrawWeb ... 384

Dsz .. 380

For~To~Next ... 375

For~To~Step~Next .. 376

Getkey ... 385

Goto~Lbl .. 380

If~Then .. 373

If~Then~Else ... 374

If~Then~Else~IfEnd .. 375

If~Then~IfEnd ... 374

Isz .. 381

Locate ... 385

Prog ... 378

Receive (... 386

Return ... 379

Send (.. 387

Stop ... 379

While~WhileEnd .. 377

? (Input Command) ... 372

^ (Output Command) ... 372

: (Multi-statement Command) .. 373

_ (Carriage Return) ... 373

⇒ (Jump Code) ... 381

=, GGGGG, >, <, ≥, ≤ (Relational Operators) 387

372

20- 11 Command Reference

The following are conventions that are used in this section when describing the
various commands.

Boldface Text Actual commands and other items that always must be
input are shown in boldface.

{Curly Brackets} Curly brackets are used to enclose a number of items,
one of which must be selected when using a command.
Do not input the curly brackets when inputting a com-
mand.

[Square Brackets] Square brackets are used to enclose items that are
optional. Do not input the square brackets when inputting
a command.

Numeric Expressions . Numeric expressions (such as 10, 10 + 20, A) indicate
constants, calculations, numeric constants, etc.

Alpha Characters Alpha characters indicate literal strings (such as AB).

kkkkk Basic Operation Commands

? (Input Command)

Function: Prompts for input of values for assignment to variables during program
execution.

Syntax: ? → <variable name>

Example: ? → A _

Description:

1. This command momentarily interrupts program execution and prompts for input
of a value or expression for assignment to a variable. When the input com-
mand is executed, “?” to appears on the display and the calculator stands by
for input.

2. Input in response to the input command must be a value or an expression, and
the expression cannot be a multi-statement.

^̂̂̂̂ (Output Command)

Function: Displays and intermediate result during program execution.

Description:

1. This command momentarily interrupts program execution and displays alpha
character text or the result of the calculation immediately before it.

2. The output command should be used at locations where you would normally
press the w key during a manual calculation.

373

Command Reference 20- 11

: (Multi-statement Command)

Function: Connects two statements for sequential execution without stopping.

Description:

1. Unlike the output command (^), statements connected with the multi-
statement command are executed non-stop.

2. The multi-statement command can be used to link two calculation expressions
or two commands.

3. You can also use a carriage return indicated by _ in place of the multi-
statement command.

_____ (Carriage Return)

Function: Connects two statements for sequential execution without stopping.

Description:

1. Operation of the carriage return is identical to that of the multi-statement
command.

2. Using a carriage return in place of the multi-statement command makes the
displayed program easier to read.

kkkkk Program Commands (COM)

If~Then

Function: The Then-statement is executed only when the If-condition is true (non-
zero).

Syntax:

Parameters: condition, numeric expression

Description:

1. The Then-statement is executed only when the If-condition is true (non-zero).

2. If the condition is false (0), the Then-statement is not executed.

3. An If-condition must always be accompanied by a Then-statement. Omitting
the Then-statement results in an error.

Example: If A = 0 _
Then ”A = 0”

_ _
If <condition> : Then <statement> : <statement>

numeric expression ^ ^

374

20- 11 Command Reference

If~Then~IfEnd

Function: The Then-statement is executed only when the If-condition is true (non-
zero). The IfEnd-statement is always executed: after the Then-statement is
executed or directly after the If-condition when the If-condition is false (0).

Syntax:

Parameters: condition, numeric expression

Description:

This command is almost identical to If~Then. The only difference is that the IfEnd-
statement is always executed, regardless of whether the If-condition is true (non-
zero) or false (0).

Example: If A = 0 _
Then ”A = 0” _
IfEnd_
”END”

If~Then~Else

Function: The Then-statement is executed only when the If-condition is true (non-
zero). The Else-statement is executed when the If-condition is false (0).

Syntax:

Parameters: condition, numeric expression

Description:

1. The Then-statement is executed when the If-conditions is true (non-zero).

2. The Else-statement is executed when the If-conditions is false (zero).

Example: If A = 0 _
Then ”TRUE” _
Else ”FALSE”

If <condition>
_
:
^

Then <statement>
numeric expression

_
:
^

<statement>
_
:
^

IfEnd

If <condition>
_
:
^

Then <statement>
_
:
^

<statement>
numeric expression

_
:
^

Else <statement>
_
:
^

<statement>

375

Command Reference 20- 11

If~Then~Else~IfEnd

Function: The Then-statement is executed only when the If-condition is true
(non-zero). The Else-statement is executed when the If-condition is false (0). The
IfEnd-statement is always executed following either the Then-statement or
Else-statement.

Syntax:

Parameters: condition, numeric expression

Description:

This command is almost identical to If~Then~Else. The only difference is that the
IfEnd-statement is always executed, regardless of whether the If-condition is true
(non-zero) or false (0).

Example: ? → A _
If A = 0 _
Then ”TRUE”_
Else ”FALSE_
IfEnd_
”END”

For~To~Next

Function: This command repeats everything between the For-statement and the
Next-statement. The starting value is assigned to the control variable with the first
execution, and the value of the control variable is incremented by one with each
execution. Execution continues until the value of the control variable exceeds the
ending value.

Syntax:

If <condition>
_
:
^

Then <statement>
_
:
^

<statement>
numeric expression

_
:
^

Else <statement>
_
:
^

<statement>
_
:
^

IfEnd

_
For <starting value> → <control variable name> To <ending value> :

^

_
<statement> : Next

^

376

20- 11 Command Reference

Parameters:

• control variable name: A to Z

• starting value: value or expression that produces a value (i.e. sin x, A, etc.)

• ending value: value or expression that produces a value (i.e. sin x, A, etc.)

Description:

1. When the starting value of the control variable is greater than the ending value,
execution continues from the statement following Next, without executing the
statements between For and Next.

2. A For-statement must always have a corresponding Next-statement, and the
Next-statement must always come after its corresponding For-statement.

3. The Next-statement defines the end of the loop created by For~Next, and so it
must always be included. Failure to do so results in an error.

Example: For 1 → A To 10_
A × 3 → B_
B ^
Next

For~To~Step~Next

Function: This command repeats everything between the For-statement and the
Next-statement. The starting value is assigned to the control variable with the first
execution, and the value of the control variable is changed according to the step
value with each execution. Execution continues until the value of the control
variable exceeds the ending value.

Syntax:

Parameters:

• control variable name: A to Z
• starting value: value or expression that produces a value (i.e. sin x, A, etc.)
• ending value: value or expression that produces a value (i.e. sin x, A, etc.)
• step value: numeric value (omitting this value sets the step to 1)

Description:

1. This command is basically identical to For~To~Next. The only difference is that
you can specify the step.

2. Omitting the step value automatically sets the step to 1.

_

For <starting value> → <control variable name> To <ending value> Step <step value> :
^

Next

377

Command Reference 20- 11

3. Making the starting value less than the ending value and specifying a positive
step value causes the control variable to be incremented with each execution.
Making the starting value greater than the ending value and specifying a
negative step value causes the control variable to be decremented with each
execution.

Example: For 1 → A To 10 Step 0.1_
A × 3 → B _
B ^
Next

 Do~LpWhile

Function: This command repeats specific commands as long as its condition is
true (non-zero).

Syntax:

Parameters: expression

Description:

1. This command repeats the commands contained in the loop as long as its
condition is true (non-zero). When the condition becomes false (0), execution
proceeds from the statement following the LpWhile-statement.

2. Since the condition comes after the LpWhile-statement, the condition is tested
(checked) after all of the commands inside the loop are executed.

Example: Do_
? → A_
A × 2 → B_
B ^
LpWhile B >10

While~WhileEnd

Function: This command repeats specific commands as long as its condition is
true (non-zero).

Syntax:

Parameters: expression

Description:

1. This command repeats the commands contained in the loop as long as its
condition is true (non-zero). When the condition becomes false (0), execution
proceeds from the statement following the WhileEnd-statement.

_

Do : ~ LpWhile <expression>
^

_

While <expression> : ~ WhileEnd
^

378

2. Since the condition comes after the While-statement, the condition is tested
(checked) before the commands inside the loop are executed.

Example: 10 → A_
While A > 0_
A – 1 → A_
”GOOD”_
WhileEnd

kkkkk Program Control Commands (CTL)

Break

Function: This command breaks execution of a loop and continues from the next
command following the loop.

Syntax: Break _

Description:

1. This command breaks execution of a loop and continues from the next
command following the loop.

2. This command can be used to break execution of a For-statement, Do-
statement, and While-statement.

Example: While A>0_
If A > 2_
Then Break_
IfEnd_
WhileEnd_
A ^ ← Executed after Break

Prog

Function: This command specifies execution of another program as a subroutine.
In the RUN Mode, this command executes a new program.

Syntax: Prog ”file name” _

Example: Prog ”ABC” _

Description:

1. Even when this command is located inside of a loop, its execution immediately
breaks the loop and launches the subroutine.

2. This command can be used as many times as necessary inside of a main
routine to call up independent subroutines to perform specific tasks.

3. A subroutine can be used in multiple locations in the same main routine, or it
can be called up by any number of main routines.

20- 11 Command Reference

379

Command Reference 20- 11

Main Routine Subroutines

D

C E I J

Prog ”E” Prog ”I” Prog ”J”

A

Prog ”D”

Prog ”C”

Level 1 Level 2 Level 3 Level 4

4. Calling up a subroutine causes it to be executed from the beginning. After
execution of the subroutine is complete, execution returns to the main routine,
continuing from the statement following the Prog command.

5. A Goto~Lbl command inside of a subroutine is valid inside of that subroutine
only. It cannot be used to jump to a label outside of the subroutine.

6. If a subroutine with the file name specified by the Prog command does not
exist, an error occurs.

7. In the RUN Mode, inputting the Prog command and pressing w launches the
program specified by the command.

Return

Function: This command returns from a subroutine.

Syntax: Return _

Description:

Execution of the Return command inside a main routine causes execution of the
program to stop.

Example: Prog ”A” Prog ”B”
1 → A_ For A → B To 10_
Prog ”B”_ B + 1 → C_
C ^ Next_

Return

Executing the program in File A displays the result of the operation
(11).

Stop

Function: This command terminates execution of a program.

Syntax: Stop _

Description:

1. This command terminates program execution.

2. Execution of this command inside of a loop terminates program execution
without an error being generated.

380

Example: For 2 → I To 10_
If I = 5_
Then ”STOP” : Stop_
IfEnd_
Next

This program counts from 2 to 10. When the count reaches 5, however,
it terminates execution and displays the message “STOP.”

kkkkk Jump Commands (JUMP)

Dsz

Function: This command is a count jump that decrements the value of a control
variable by 1, and then jumps if the current value of the variable is zero.

Syntax:

Parameters:

Variable Name: A to Z, r, θ
[Example] Dsz B : Decrements the value assigned to variable B by 1.

Description:

This command decrements the value of a control variable by 1, and then tests
(checks) it. If the current value is non-zero, execution continues with the next
statement. If the current value is zero, execution jumps to the statement following
the multi-statement command (:), display command (^), or carriage return (_).

Example: 10 → A : 0 → C :
Lbl 1 : ? → B : B+C → C :
Dsz A : Goto 1 : C ÷ 10
This program prompts for input of 10 values, and then calculates the
average of the input values.

Goto~Lbl

Function: This command performs an unconditional jump to a specified location.

Syntax: Goto <value or variable> ~ Lbl <value or variable>

Parameters: Value (from 0 to 9), variable (A to Z, r, θ)

Description:

1. This command consists of two parts: Goto n (where n is a value from 0 to 9)
and Lbl n (where n is the value specified for Goto). This command causes
program execution to jump to the Lbl-statement whose value matches that
specified by the Goto-statement.

20- 11 Command Reference

Variable Value GGGGG 0
_

Dsz <variable name> : <statement> : <statement>

^
Variable Value = 0

381

Command Reference 20- 11

2. This command can be used to loop back to the beginning of a program or to
jump to any location within the program.

3. This command can be used in combination with conditional jumps and count
jumps.

4. If there is no Lbl-statement whose value matches that specified by the Goto-
statement, an error occurs.

Example: ? → A : ? → B : Lbl 1 :
? → X : A × X + B ^
Goto 1

This program calculates y = AX + B for as many values for each
variable that you want to input. To quit execution of this program, press
A.

Isz

Function: This command is a count jump that increments the value of a control
variable by 1, and then jumps if the current value of the variable is zero.

Syntax:

Parameters:

Variable Name: A to Z, r, θ
[Example] Isz A : Increments the value assigned to variable A by 1.

Description:

This command increments the value of a control variable by 1, and then tests
(checks) it. If the current value is non-zero, execution continues with the next
statement. If the current value is zero, execution jumps to the statement following
the multi-statement command (:), display command (^), or carriage return (_).

⇒ (Jump Code)

Function: This code is used to set up conditions for a conditional jump. The jump
is executed whenever the conditions are false.

Syntax:

True
_

<left side> <relational operator> <right side> ⇒ <statement> : <statement>

^
False

Variable Value GGGGG 0
_

Isz <variable name> : <statement> : <statement>

^
Variable Value = 0

382

Parameters:

left side/right side: variable (A to Z, r, θ), numeric constant, variable expression
(such as: A × 2)

relational operator: =, GGGGG, >, <, ≥, ≤
Description:

1. The conditional jump compares the contents of two variables or the results of
two expressions, and a decision is made whether or not to execute the jump
based on the results of the comparison.

2. If the comparison returns a true result, execution continues with the statement
following the ⇒ command. If the comparison returns a false result, execution
jumps to the statements following the multi-statement command (:), display
command (^), or carriage return (_).

Example: Lbl 1 : ? → A :
A > 0 ⇒ A ^
Goto 1

With this program, inputting a value of zero or greater calculates and displays the
square root of the input value. Inputting a value less than zero returns to the input
prompt without calculating anything.

kkkkk Clear Commands (CLR)

ClrGraph

Function: This command clears the graph screen.

Syntax: ClrGraph_

Description: This command clears the graph screen during program execution.

ClrList

Function: This command clears list data.

Syntax: ClrList_

Description: This command clears the contents of the currently selected list (List
1 to List 6) during program execution.

ClrText

Function: This command clears the text screen.

Syntax: ClrText_

Description: This command clears text from the screen during program execu-
tion.

20- 11 Command Reference

P.387

383

Command Reference 20- 11

kkkkk Display Commands (DISP)

DispF-Tbl, DispR-Tbl

Function: These commands display numeric tables.

Syntax:

DispF-Tbl_

DispR-Tbl_

Description:

1. These commands generate numeric tables during program execution in
accordance with conditions defined within the program.

2. DispF-Tbl generates a function table, while DispR-Tbl generates a recursion
table.

DrawDyna

Function: This command executes a Dynamic Graph draw operation.

Syntax: DrawDyna_

Description: This command performs a Dynamic Graph draw operation during
program execution in accordance with the drawing conditions defined within the
program.

DrawFTG-Con, DrawFTG-Plt

Function: These commands graph functions.

Syntax:

DrawFTG-Con_

DrawFTG-Plt_

Description:

1. These commands graph functions in accordance with conditions defined within
the program.

2. DrawFTG-Con produces a connect type graph, while DrawFTG-Plt produces a
plot type graph.

DrawGraph

Function: This command draws a graph.

Syntax: DrawGraph_

Description: This command draws a graph in accordance with the drawing
conditions defined within the program.

384

DrawR-Con, DrawR-Plt

Function: These commands graph recursion expressions, with an(bn) as the
vertical axis and n as the horizontal axis.

Syntax:

DrawR-Con_

DrawR-Plt_

Description:

1. These commands graph recursion expressions, with an(bn) as the vertical axis
and n as the horizontal axis, in accordance with conditions defined within the
program.

2. DrawR-Con produces a connect type graph, while DrawR-Plt produces a plot
type graph.

DrawRΣ-Con, DrawRΣ-Plt

Function: These commands graph recursion expressions, with Σan(Σbn) as the
vertical axis and n as the horizontal axis.

Syntax:

DrawRΣ-Con_

DrawRΣ-Plt_

Description:

1. These commands graph recursion expressions, with Σan(Σbn) as the vertical
axis and n as the horizontal axis, in accordance with conditions defined within
the program.

2. DrawRΣ-Con produces a connect type graph, while DrawRΣ-Plt produces a
plot type graph.

DrawStat

Function: This draws a statistical graph.

Syntax:

DrawStat_

Description:

This command draws a statistical graph in accordance with conditions defined
within the program.

DrawWeb

Function: This command graphs convergence/divergence of a recursion expres-
sion (WEB graph).

Syntax: DrawWeb [name of recursion expression], [number of lines]_

Example: DrawWeb an+1 (bn+1), 5_

20- 11 Command Reference

385

Description:

1. This command graphs convergence/divergence of a recursion expression
(WEB graph).

2. Omitting the number of lines specification automatically specifies the default
value 30.

kkkkk Input/Output Commands (I/O)

Getkey

Function: This command returns the code that corresponds to the last key
pressed.

Syntax: Getkey_

Description:

1. This command returns the code that corresponds to the last key pressed.

79

78 68 58 48

77 67 57 47

76

75

66 56 46 36 26

74 64 54 44

73 3363 53 43

72 3262 52 42

71 3161 51 41

65 55 45 35 25

69 59 49 39 29

28

37
38 27

2. A value of zero is returned if no key was pressed prior to executing this
command.

3. This command can be used inside of a loop.

Locate

Function: This command displays alpha-numeric characters at a specific location
on the text screen.

Command Reference 20- 11

386

20- 11 Command Reference

Syntax:

Locate <column number>, <line number>, <value>

Locate <column number>, <line number>, <variable name>

Locate <column number>, <line number>, ”<string>”

[Example] Locate 1, 1, ”AB”_

Parameters:

• line number: number from 1 to 7
• column number: number from 1 to 21
• value: numeric value
• variable name: A to Z
• string: character string

Description:

1. This command displays values (including variable contents) or text at a specific
location on the text screen.

2. The line is designated by a value from 1 to 7, while the column is designated
by a value from 1 to 21.

(1, 1) → ← (21, 1)

(1, 7) → ← (21, 7)

Example: Cls_
Locate 7, 1, ”CASIO CFX”
This program displays the text “CASIO CFX” in the center of the
screen.

• In some cases, the ClrText command should be executed before running the
above program.

Receive (

Function: This command receives data from an external device.

Syntax: Receive (<data>)

Description:

1. This command receives data from an external device.

2. The following types of data can be received by this command.

• Individual values assigned to variables

• Matrix data (all values - individual values cannot be specified)

• List data (all values - individual values cannot be specified)

• Picture data

387

Command Reference 20- 11

Send (

Function: This command sends data to an external device.

Syntax: Send (<data>)

Description:

1. This command sends data to an external device.

2. The following types of data can be sent by this command.

• Individual values assigned to variables

• Matrix data (all values - individual values cannot be specified)

• List data (all values - individual values cannot be specified)

kkkkk Conditional Jump Relational Operators (REL)

=, GGGGG, >, <, ≥, ≤

Function: These relational operators are used in combination with the conditional
jump command.

Syntax:

Parameters:

left side/right side: variable (A to Z, r, θ), numeric constant, variable expression
(such as: A × 2)

relational operator: =, GGGGG, >, <, ≥, ≤
Description:

1. The following six relational operators can be used in the conditional jump
command

<left side> = <right side> : true when <left side> equals <right side>

<left side> GGGGG <right side> : true when <left side> does not equal <right side>

<left side> > <right side> : true when <left side> is greater than <right side>

<left side> < <right side> : true when <left side> is less than <right side>

<left side> ≥ <right side> : true when <left side> is greater than or equal to <right side>

<left side> ≤ <right side> : true when <left side> is less than or equal to <right side>

P.381 2. See “⇒ (Jump Code)” for details on using the conditional jump.

_

<left side> <relational operator> <right side> ⇒ <statement> : <statement>
^

388

20-12 Text Display

You can include text in a program by simply enclosing it between double quotation
marks. Such text appears on the display during program execution, which means
you can add labels to input prompts and results.

Program Display

? → X ?

”X =” ? → X X = ?

• If the text is followed by a calculation formula, be sure to insert a display
command (^), a carridge return (_) or multi-statement command (:) between
the text and calculation.

• Inputting more than 21 characters causes the text to move down to the next
line. The screen scrolls automatically if the text causes the screen to become
full.

389

20-13 Using Calculator Functions in Programs

kkkkk Using Matrix Row Operations in a Program

P.80 These commands let you manipulate the rows of a matrix in a program.

• For this type of program, be sure to use the MAT Mode to input the matrix, and
then switch to the PRGM Mode to input the program.

uuuuuTo swap the contents of two rows (Swap)

 Example 1 To swap the values of Row 2 and Row 3 in the following matrix:

1 2

Matrix A = 3 4

5 6

The following is the syntax to use for this program.

Swap A, 2, 3

Matrix name

Executing this program produces the following result.

(MAT Mode)

uuuuuTo calculate a scalar multiplication (`̀̀̀̀Row)

 Example 2 To calculate the product of Row 2 of the matrix in Example 1 and
the scalar 4

The following is the syntax to use for this program.

`Row 4, A, 2

 Matrix name
 Multiplier

Executing this program produces the following result.

(MAT Mode)

390

uuuuuTo calculate a scalar multiplication and add the results to another
row (`̀̀̀̀Row+)

 Example 3 To calculate the product of Row 2 of the matrix in Example 1 and
the scalar 4, then add the result to row 3

The following is the syntax to use for this program.

`Row+ 4, A, 2, 3

 Matrix name
 Multiplier

Executing this program produces the following result.

(MAT Mode)

uuuuuTo add two rows (Row+)

 Example 4 To add Row 2 to Row 3 of the matrix in Example 1

The following is the syntax to use for this program.

Row+ A, 2, 3

Matrix name

Executing this program produces the following result.

(MAT Mode)

kkkkk Using Graph Functions in a Program

P.112 You can incorporate graph functions into a program to draw complex graphs and
to overlay graphs on top of each other. The following shows various types of
syntax you need to use when programming with graph functions.

• View Window

View Window –5, 5, 1, –5, 5, 1_

• Graph function input

Y = Type_ Specifies graph type.

”X2 – 3” → Y1_

• Graph draw operation

DrawGraph_

Example Program
1ClrGraph_ 1 !W612

2View Window –10, 10, 2, –120, 150, 50_ 2 !31J

20- 13 Using Calculator Functions in Programs

391

Using Calculator Functions in Programs 20- 13

3Y = Type_ 3 4431

”X ^ 4–X ^ 3–24X2 + 4X + 80” → Y1_ 4 J41JJ
4

5G SelOn 1_ 5 4411J

6Orange G1_ 6 42

7DrawGraph 7 !W622

Executing this program produces the result
shown here.

kkkkk Using Dynamic Graph Functions in a Program

P.182 Using Dynamic Graph functions in a program makes it possible to perform
repeated Dynamic Graph operations. The following shows how to specify the
Dynamic Graph range inside a program.

• Dynamic Graph range

1 → D Start_

5 → D End_

1 → D pitch_

Example Program

ClrGraph_

View Window –5, 5, 1, –5, 5, 1_

Y = Type_

”AX + 1” → Y1_ 1 J41JJ
1

2D SelOn 1_ 2 451

3D Var A_ 3 3

1 → 4 D Start_ 4 J51

5 → 5 D End_ 5 2

1 → 6 D pitch_ 6 3

7DrawDyna 7 !W623

Executing this program produces the result
shown here.

↑
↓

CFX

392

kkkkk Using Table & Graph Functions in a Program

P.206 Table & Graph functions in a program can generate numeric tables and perform
graphing operations. The following shows various types of syntax you need to use
when programming with Table & Graph functions.

• Table range setting

1 → F Start_

5 → F End_

1 → F pitch_

• Numeric table generation

DispF-Tbl_

• Graph draw operation

Connect type: DrawFTG-Con_

Plot type: DrawFTG-Plt_

Example Program

ClrGraph_

ClrText_

View Window 0, 6, 1, –2, 106, 2_

Y = Type_

”3X2 – 2” → Y1_
1T SelOn 1_ 1 4611

0 → 2 F Start_ 2 J611

6 → 3 F End_ 3 2

1 → 4 F pitch_ 4 3

5DispF-Tbl^ 5 !W6241

6DrawFTG-Con 6 !W6242

Executing this program produces the results shown here.

Numeric Table Graph

20- 13 Using Calculator Functions in Programs

393

Using Calculator Functions in Programs 20- 13

kkkkk Using Recursion Table & Graph Functions in a Program

P.218 Incorporating Recursion Table & Graph functions in a program lets you generate
numeric tables and perform graphing operations. The following shows various
types of syntax you need to use when programming with Recursion Table & Graph
functions.

• Recursion formula input

an+1 Type_ Specifies recursion type.

”3an + 2” → an+1_

”4bn + 6” → bn+1_

• Table range setting

1 → R Start_

5 → R End_

1 → a0_

2 → b0_

1 → an Start_

3 → bn Start_

• Numeric table generation

DispR-Tbl_

• Graph draw operation

Connect type: DrawR-Con_, DrawRΣ-Con_

Plot type: DrawR-Plt_, DrawRΣ-Plt_

• Statistical convergence/divergence graph (WEB graph)

DrawWeb an+1, 10_

Example Program

ClrGraph_

View Window 0, 1, 1, 0, 1, 1_
1an+1 Type_ 1 46232J

2

”–3an2 + 3an” → an+1_ 2 42

”3bn – 0.2” → bn+1_

0 → 3 R Start_ 3 J6221

6 → R End_

0.01 → a0_

0.11 → b0_

0.01 → an Start_

0.11 → bn Start_
4DispR-Tbl^ 4 !W6251

6
5DrawWeb an+1, 30 5 !W6252JJJ

6 46243

394

20- 13 Using Calculator Functions in Programs

Executing this program produces the results shown here.

Numeric Table Recursion graph

kkkkk Using List Sort Functions in a Program

P.234 These functions let you sort data in lists into ascending or descending order.

• Ascending order
1 2

SortA (List 1, List 2, List 3)

 Lists to be sorted (up to six can be specified)

1 431J 2 K11

• Descending order

SortD (List 1, List 2, List 3)

 Lists to be sorted (up to six can be specified)

kkkkk Using Solve Calculation Function in a Program

You can incorporate a solve calculation function into a program.

The following is the syntax for using the Solve function in a program.

Solve(f(x), n, a, b)

Upper limit
Lower limit
Initial estimated value

Example Program

1 Solve(2X2 + 7X – 9, 1, 0, 1) 1K41

• In the function f(x), only X can be used as a variable in expressions. Other
variables (A through Z, r, θ) are treated as constants, and the value currently
assigned to that variable is applied during the calculation.

• Input of the closing parenthesis, lower limit a and upper limit b can be omitted.

• Solutions obtained using Solve may include errors.

• Note that you cannot use a Solve, differential, quadratic differential, integration,
maximum/minimum value or Σ calculation expression inside of a Solve
calculation term.

395

Using Calculator Functions in Programs 20- 13

kkkkk Using Statistical Calculations and Graphs in a Program

P.250 Including statistical calculations and graphing operations into program lets you
calculate and graph statistical data.

uuuuuTo set conditions and draw a statistical graph

Following “StatGraph”, you must specify the following graph conditions:

• Graph draw/non-draw status (DrawOn/DrawOff)

• Graph Type

• x-axis data location (list name)

• y-axis data location (list name)

• Frequency data location (list name)

• Mark Type

• Graph Color

The graph conditions that are required depends on the graph type. See “Changing
Graph Parameters”.

• The following is a typical graph condition specification for a scatter diagram or
xyLine graph.

S-Gph1 DrawOn, Scatter, List1, List2, 1, Square, Blue _

In the case of an xy line graph, replace “Scatter” in the above specification with
“xyLine”.

• The following is a typical graph condition specification for a normal probability
plot.

 S-Gph1 DrawOn, NPPlot, List1, Square, Blue _

• The following is a typical graph condition specification for a single-variable
graph.

S-Gph1 DrawOn, Hist, List1, List2, Blue _

The same format can be used for the following types of graphs, by simply
replacing “Hist” in the above specification with the applicable graph type.

Histogram: Hist

Median Box: MedBox

Mean Box: MeanBox

Normal Distribution: N-Dist

Broken Line: Broken

P.254

P.252

CFX

396

20- 13 Using Calculator Functions in Programs

• The following is a typical graph condition specification for a regression graph.

S-Gph1 DrawOn, Linear, List1, List2, List3, Blue _

The same format can be used for the following types of graphs, by simply
replacing “Linear” in the above specification with the applicable graph type.

P.254 Linear Regression: Linear

Med-Med: Med-Med

Quadratic Regression: ... Quad

Cubic Regression: Cubic

Quartic Regression: Quart

Logarithmic Regression: .. Log

Exponential Regression: Exp

Power Regression: Power

• The following is a typical graph condition specification for a sine regression graph.

S-Gph1 DrawOn, Sinusoidal, List1, List2, Blue _

• The following is a typical graph condition specification for a logistic regression
graph.

S-Gph1 DrawOn, Logistic, List1, List2, Blue _

Example Program

ClrGraph_
1

S-Wind Auto_
2

{1, 2, 3} → List 1_
3

{1, 2, 3} → List 2_
4 5 6 7 8

S-Gph1 DrawOn, Scatter, List1, List2, 1, Square, Blue _
9

DrawStat

Executing this program produces the scatter
diagram shown here.

1!Z6631

2K11

31JJ

44121J

511J

624J

7J41

8J51

9!W621

397

Using Calculator Functions in Programs 20- 13

kkkkk Performing Statistical Calculations

• Single-variable statistical calculation
11-Variable List 1, List 2

Frequency data (Frequency)

x-axis data (XList)

1 4161

• Paired-variable statistical calculation

2-Variable List 1, List 2, List 3

Frequency data (Frequency)

y-axis data (YList)

x-axis data (XList)

• Regression statistical calculation
1LinearReg List 1, List 2, List 3

Calculation Frequency data (Frequency)
 type*

y-axis data (YList)

x-axis data (XList)

1 41661

* Any one of the following can be specified as the calculation type.

LinearReg linear regression
Med-MedLine . Med-Med calculation
QuadReg quadratic regression
CubicReg cubic regression
QuartReg quartic regression
LogReg logarithmic regression
ExpReg exponential regression
PowerReg power regression

398

• Sine regression statistical calculation

SinReg List 1, List 2

• Logistic regression statistical calculation

LogisticReg List 1, List 2

y-axis data (YList)

x-axis data (XList)

20- 13 Using Calculator Functions in Programs

y-axis data (YList)

x-axis data (XList)

