
Oracle9i Materialized Views

An Oracle White Paper
May 2001

Oracle9i Materialized Views Page 2

Oracle9i Materialized Views

EXECUTIVE OVERVIEW ... 3
INTRODUCTION.. 3
WHY USE SUMMARY MANAGEMENT... 4
COMPONENTS OF SUMMARY MANAGEMENT 4

Schema Requirements.. 5
DIMENSIONS.. 5

Hints on Defining Dimensions .. 6
MATERIALIZED VIEWS.. 8

Creating a Materialized View... 8
Using your own pre-built materialized views 9
Index selection for Materialized Views .. 9
What can this Materialized View Do?.. 10
Materialized View Invalidation.. 11
Security Implications ... 11

LOADING & REFRESHING THE MATERIALIZED VIEW......... 11
Complete Refresh .. 12
Fast Refresh.. 12
Refresh & Constraints.. 13
Data Availability & Failure.. 13
Partition Maintenance Operations and Materialized Views............. 14

QUERY REWRITE .. 14
Enabling/Disabling Query Rewrite ... 14
Types of Query Rewrite... 15

Exact Match .. 15
Summary JoinBack... 16
Summary Rollup & Aggregation to All 16
Data Subsets.. 16

Query Rewrite Integrity Modes.. 17
Are the Results Correct.. 18
Explain Rewrite ... 18

SUMMARY ADVISOR... 19
Providing a Workload.. 20
Recommending Materialized Views... 20

Implementing Recommendations... 21
Filtering Workloads ... 21

Estimating Size of Materialized Views .. 21
CONCLUSION... 22

Oracle9i Materialized Views Page 3

Oracle9i Materialized Views

EXECUTIVE OVERVIEW

Databases today, irrespective of whether they are data warehouses, data marts or
OLTP systems, contain a wealth of information waiting to be discovered and
understood. However, finding and presenting this information in a timely fashion
can be a major issue, especially when vast amounts of data have to be searched.
Materialized Views help solve this problem, by providing a means to access and
report on this data very quickly.

INTRODUCTION

Materialized views were first introduced in Oracle8i and they are part of a
component known as Summary Management. Your organization may already be
using a materialized view, but may know it by another name, such as a summary
or aggregate table. Here we will discuss how materialized views are created and
managed and how the query rewrite capability will transparently rewrite your SQL
query to use a materialized view to improve query response time. This allows
users of the database to be completely unaware of which materialized views exist.

The materialized view should be thought of as a special kind of view, which
physically exists inside the database, it can contain joins and or aggregates and
exists to improve query execution time by pre-calculating expensive joins and
aggregation operations prior to execution.

Today, organizations using their own summaries waste a significant amount of
time manually creating summaries, identifying which ones to create, indexing the
summaries, updating them and advising their users on which ones to use.

Now the DBA will only have to initially create the materialized view, it can then
be automatically updated whenever changes occur to its data source. There is
also a Summary Advisor component which will recommend to the DBA which
materialized views to create, delete and retain.

One of the biggest benefits of using materialized views will be seen by the users of
the data warehouse or database. No longer will they have to be told by the DBA
which materialized views exist. Instead, they can write their query against the

Oracle9i Materialized Views Page 4

tables or views in the database. Then the query re-write mechanism in the Oracle
server will automatically re-write the SQL query to use the materialized views.
Thus resulting in a significant improvement in query response time and
eliminating the need for the end-user to be ‘summary aware’.

WHY USE SUMMARY MANAGEMENT

Ask any end-user of the Data Warehouse what they want from it, and they will
most likely reply, fast and accurate information. But this presents a major
problem for the warehouse designer because in order to answer the question ‘
how many of product x did we sell at location y’ , a fast route to the data is
required if we are going to avoid reading every row in the table.

One of the most common solutions used to solve this problem is to create
summary tables or as Oracle calls them, a materialized view. This involves first
understanding the typical workload and then creating materialized views which are
much smaller in size and may contain, joins and or aggregates of the information
required. For example, to answer the previous question, a materialized view would
contain one row for every product, by region with the quantity sold. Therefore if
a company sold 2000 products in 5 locations, the maximum number of rows to
be read would always be 10 000, irrespective of how many items had been sold.

Obviously the materialized view must be kept accurate, but this technique means
that the end-user now reads so few rows that they always receive results quickly.
As databases grow to terabytes of data, it becomes increasing important to use
methods like this to improve query response time.

Many sites today create their own summary tables, therefore the extra benefit that
would accrue by using Oracle Summary Management would be:

• the query rewrite mechanism in the Oracle server is transparent and will use
a materialized view, even if the materialized view only partially fulfills the
query requirements

• sophisticated query rewrite so that one materialized view can be used to
report at different levels of aggregation such as at the week, month and year

• automatic mechanism to refresh materialized views and a single request will
refresh all materialized views

• the DBA will not have to spend time trying to find out which materialized
view should be created. Instead they will be provided with information on
which summaries are needed based on previous queries to the database or
data warehouse.

Oracle9i Materialized Views Page 5

COMPONENTS OF SUMMARY MANAGEMENT

There are five components which comprise Summary Management:

• Dimensions

• Materialized Views

• Refresh

• Query Rewrite

• Summary Advisor

They do not all have to be used, but maximum advantage will be achieved with
the more components that are selected. We will now look at these components
in more detail.

Schema Requirements

There is no restriction on the type or design of schema that may be used with
materialized views. Therefore in a data warehousing environment, the schema
could be a snowflake design but this is not a requirement.

For the database designer who is familiar with database design techniques in
production systems, different rules and techniques must be used in a data
warehouse. For example, production databases are usually normalized, therefore
in this instance the representation for the time dimension is most likely to result in
three tables, one for date, month, and year. There would be join conditions that
connect each date row to one and only one month row, and each month row to one
and only one year row. The data warehouse implementation would typically result
in a fully denormalized time dimension table, where the date, month, and year
columns are all in the same table. However, you can use materialized views
whether your design uses normalized or denormalized tables.

DIMENSIONS

Before creating a materialized views, the first step is to review the schema and
identify the dimensions. A dimension defines a hierarchical (parent/child)
relationships between columns, where all the columns do not have to come from
the same table. It is highly recommended that dimensions on your data are
defined because they help query rewrite and the summary advisor make better
decisions.

Another issue for the database designer is that frequently queries will not involve
the dimension column directly but refer to a column which is related to the
dimension. e.g. the query refers to Tuesday rather than a specific date. Therefore
when dimensions are defined, these relationships between the dimension columns
and other columns in the table must also be described.

Oracle9i Materialized Views Page 6

Figure 1 illustrates a time dimension which contains two hierarchies. From a
given date, one hierarchy tells us to which fiscal week or month or year this date
refers, and the other hierarchy defines the relationship between a day, month,
quarter and year.

When defining a hierarchy, multiple columns may be specified to describe the
hierarchy. e.g. if City is unique within each State but is not unique across States,
then a Geography hierarchy might need to be specified as (Country, State, <State,

City>) to satisfy the strict 1:n hierarchical relationship from the City level to the
State level.

A dimension can be created using one of two methods:

• SQL CREATE DIMENSION statement as illustrated in Figure 2

• Dimension Wizard in Oracle Enterprise Manager

Figure 1 Illustrates the Time Dimension

Drawing the dimension as per
figure 1 may assist the DBA in the
definition process. Each bubble
represents a level in the dimension
and is declared using the LEVEL

clause. The dimension hierarchy is
declared using the HIERARCHY

clause. Summary management will
also rely on the DBA defining
constraints to ensure that the
columns of each level in the
hierarchy level are non-null.

In Figure 2 we can see the SQL
statement which will create this
dimension. The level name
corresponds to columns in the
dimension tables. Then each

hierarchy is described using those level names. Finally the ATTRIBUTE clause is used
to define those items which have a direct relationship. Therefore attribute
calendar_month_name has a relationship with the level month.

The 1:n join relationships among the dimensions are declared using the JOIN KEY

clause and between a fact table and a dimension table, they are represented with
FOREIGN KEY and NOT NULL constraints on the fact table.

Day

Month

Qtr

Year

F_week

F_mth

F_qth

F_year

All

Oracle9i Materialized Views Page 7

Hints on Defining Dimensions

To help you create dimensions, here are a few simple steps to follow.

1. Identify all dimensions and dimension tables in the schema. If the dimensions
are normalised, that is, stored in more than one table then check that a join
between the dimension tables guarantees that each child-side row joins with
one and only one parent-side row. In the case of denormalized dimensions,
check that the child-side columns uniquely determine the parent-side (or
attribute) columns. Failure to abide by these rules may result in incorrect
results being returned from queries.

2. Identify the hierarchies within each dimension. For example, day is a child of
month (we can aggregate day level data up to month), and quarter is a child of
year.

3. Identify the attribute dependencies within each level of the hierarchy. For
example, identify that calendar_month_name is an attribute of month.

4. Identify joins from the fact table in a data warehouse, to each dimension, and
check that each join can guarantee that each fact row joins with one and only
one dimension row. This condition must be declared, and optionally enforced,
by adding FOREIGN KEY and NOT NULL constraints on the fact key columns and
PRIMARY KEY constraints on the parent-side join keys. These constraints can be
enabled using the NOVALIDATE option to avoid the time required to
validate that every row in the table conforms to the constraints. The new
RELY clause is also required for all nonvalidated constraints to make them
eligible for use in query rewrite.

Figure 2 SQL Statement to Create Time Dimension
CREATE DIMENSION times_dim
LEVEL day IS TIMES.TIME_ID
LEVEL month IS TIMES.CALENDAR_MONTH_DESC
LEVEL quarter IS TIMES.CALENDAR_QUARTER_DESC
LEVEL year IS TIMES.CALENDAR_YEAR
LEVEL fis_week IS TIMES.WEEK_ENDING_DAY
LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
LEVEL fis_quarter IS TIMES.FISCAL_QUARTER_DESC
LEVEL fis_year IS TIMES.FISCAL_YEAR
HIERARCHY cal_rollup
(day CHILD OF
 month CHILD OF
 quarter CHILD OF
 year)
HIERARCHY fis_rollup
(day CHILD OF
 fis_week CHILD OF
 fis_month CHILD OF
 fis_quarter CHILD OF
 fis_year)

 ATTRIBUTE day DETERMINES
(day_number_in_week, day_name, day_number_in_month,
 calendar_week_number)
 ATTRIBUTE month DETERMINES

Oracle9i Materialized Views Page 8

(calendar_month_desc, calendar_month_number,
 calendar_month_name, days_in_cal_month, end_of_cal_month)
 ATTRIBUTE quarter DETERMINES
 (calendar_quarter_desc,calendar_quarter_number,
 days_in_cal_quarter, end_of_cal_quarter)
 ATTRIBUTE year DETERMINES
 (calendar_year, days_in_cal_year, end_of_cal_year)
 ATTRIBUTE fis_week DETERMINES
 (week_ending_day, fiscal_week_number) ;

MATERIALIZED VIEWS

Once the dimensions have been defined, the materialized views can be created.
For the moment we will concentrate on what a materialized view is, but later we
will see how the advisory functions will recommend which materialized views to
create.

A materialized view definition can include aggregation, such as SUM MIN, MAX,
AVG, COUNT(*), COUNT(x), COUNT(DISTINCT), VARIANCE or
STDDEV, one or more tables joined together and a GROUP BY. It may be
indexed and partitioned and basic DDL operations such as CREATE, ALTER, and
DROP may be applied.

Since a materialized view is an object in the database then in many ways, a
materialized view behaves like an index because:

• the purpose of the materialized view is to increase query execution
performance

• the existence of a materialized view is transparent to SQL applications, so a
DBA can create or drop materialized views at any time without affecting the
SQL applications

• a materialized view consumes storage space and must be updated when the
underlying detail tables are modified

Many sites already have a data warehouse where they have defined their own
summaries. Therefore existing summaries may be registered for use by query
rewrite, rather than forcing the user to regenerate their summary table from
scratch.

Creating a Materialized View

A materialized view is created using the CREATE MATERIALIZED VIEW
statement. Figure 3 illustrates the creation of a materialized view called costs_mv
that computes the sum of costs by time and prod_nam.

When a materialized view is defined a few simple rules must be followed. The
SELECT list must contain all of the GROUP BY columns and the GROUP BY columns
must be simple columns. The expression to be aggregated can be any SQL value

Oracle9i Materialized Views Page 9

expression that does not contain a subquery or nested aggregate function. The
WHERE clause is only allowed to contain inner equijoin predicates on base columns.

The materialized view can have its own storage specification so that you can
specify in which tablespace it is to be stored and the size of its extents. You can
also include the partition clause so that the contents of the materialized view can
be stored in many tablespaces.

Both tables and views can be used in a materialized view definition. Therefore,
referring to the previous example, costs could be a table and product could be a
view. Any view can be used provided it does not have user-varying data through
the use of functions like SYSDATE and USER.

Figure 3 SQL Statement to Create Materialized View
CREATE MATERIALIZED VIEW costs_mv
PCTFREE 0
STORAGE (initial 8k next 8k pctincrease 0)
BUILD IMMEDIATE
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE
AS
SELECT time_id, prod_name,
 SUM(unit_cost) AS sum_units,
 COUNT(unit_cost) AS count_units,
 COUNT(*) AS cnt
FROM costs c, products p
WHERE c.prod_id = p.prod_id
GROUP BY time_id, prod_name;

Using your own pre-built materialized views

Sites that already have a Data Warehouse may already have summaries and
procedures to maintain them. Therefore, they will want to take advantage of
query rewrite without recreating their summaries.

Pre-existing tables can be registered as materialized views by using the CREATE
MATERIALIZED VIEW statement with the ON PREBUILT TABLE clause.
The name of the materialized view, must be the same as the table name and the
SELECT clause describing the query that creates this table must also be provided.
It may not always be possible to ensure that the precision of the query matches
the precision of the table. To overcome this problem, the clause WITH
REDUCED PRECISION is included in the specification.

Index selection for Materialized Views

Depending on the number of rows in the materialized view and whether it will be
incrementally refreshed, it may be necessary to create indexes on the materialized
views. Therefore, consideration should be given to first creating a unique, local
index which contains all of the materialized view keys. Other indexes could
include a single-column bitmap indexes on each materialized view key column.

Oracle9i Materialized Views Page 10

When creating indexes, don’t forget to consider the storage space requirements of
each index and the impact those indexes will have on the refresh time.

What can this Materialized View Do?

Prior to creating a materialized view or once it is created, the DBA may wonder
what is possible with this materialized view, such as it is fast refreshable and if not,
why not. The procedure DBMS_MVIEW.EXPLAIN_MVIEW can provide this
information.

Referring to our materialized view which we created in Figure 3, if we remove
the COUNT(*) from the definition and then call the procedure
DBMS_MVIEW.EXPLAIN_MVIEW as illustrated in Figure 4. It will tell us that
Partition Change Tracking (PCT) is available because the costs table is partitioned
and all types of query rewrite are possible However, Fast Refresh is not possible
after DML because COUNT(*) is missing from the materialized view.

Figure 4 Explain Materialized View Example
TRUNCATE TABLE mv_capabilities_table;

EXEC DBMS_MVIEW.EXPLAIN_MVIEW (‘ SELECT time_id, prod_name,
 SUM(unit_cost) AS sum_units, COUNT(unit_cost) AS
 count_units, COUNT(*) AS cnt
 FROM costs c, products p
 WHERE c.prod_id = p.prod_id
 GROUP BY time_id, prod_name’);

SELECT capability_name, possible, related_text, msgtxt
FROM mv_capabilities_table;

PCT_TABLE: Y
COSTS:

PCT_TABLE: N
PRODUCTS: relation is not a partitioned table

REFRESH_COMPLETE: Y

REFRESH_FAST: Y

REFRESH_FAST_AFTER_ANY_DML: N
see the reason why REFRESH_FAST_AFTER_ONETAB_DML is disabled

REFRESH_FAST_AFTER_INSERT: Y

REFRESH_FAST_AFTER_ONETAB_DML: N
COUNT(*) is not present in the select list

REFRESH_FAST_PCT: Y

REWRITE: Y

REWRITE_FULL_TEXT_MATCH: Y

REWRITE_GENERAL: Y

REWRITE_PARTIAL_TEXT_MATCH: Y

REWRITE_PCT: Y

Oracle9i Materialized Views Page 11

Materialized View Invalidation

Materialized views are constantly being monitored to ensure that the data they
contain is fresh. The purpose of invalidating the materialized view is to ensure
that invalid data is not returned. A materialized view will be marked as stale
whenever an object on which it is based is changed.

The state of a materialized view can be determined by querying the table
USER_MVIEWS. If there is any doubt about the state of a materialized view,
issue the command ALTER MATERIALIZED VIEW COMPILE to guarantee
that its latest status is known.

Security Implications

Some information in the database may have restricted access and query rewrite
could be viewed as a mechanism for bypassing security. However, since all
security verification is performed within the Oracle9i server, far greater
protection of the data and materialized views is provided. To prevent
unauthorized access to either materialized views or detail tables, to use CREATE
MATERIALIZED VIEW will require the CREATE MATERIALIZED VIEW
privilege, SELECT WITH GRANT privilege on the detail tables and SELECT WITH

GRANT and INSERT privileges on the materialized view container object. In
addition, if a user has access to the tables in a request and one or more
materialized view have been defined on those tables, then the user will be given
access to the materialized views regardless of the privileges attached to the
materialized view container table. Therefore no matter where the query originates
from, access to the data is only possible if you pass the security checks.

LOADING & REFRESHING THE MATERIALIZED VIEW

Historically, one of the problems of using summary tables has been the initial
loading and subsequent updating of the summary. These issues are now addressed
because summary management provides mechanisms to:

• fully refresh the data

• perform a fast refresh, that is add/merge only the changes

• automatically update a materialized view when ever changes are made

Therefore the DBA must consider how much time is required to create and
maintain each materialized view and balance that against the performance gains
achieved by using this materialized view.

Oracle9i Materialized Views Page 12

Oracle 9i provides the following refresh methods:

• complete

• fast (only the changes are applied)

• force, do a fast if possible, otherwise perform a complete refresh

These operations may be performed:

• on demand refreshing by:

• specific materialized views (DBMS_MVIEW.REFRESH)

• those materialized views dependent on a table
(DBMS_MVIEW.REFRESH_DEPENDENT)

• all materialized views (DBMS_MVIEW.REFRESH_ALL_MVIEWS)

• on commit, whenever the table’s on which the materialized view is defined are
changed

The ON DEMAND refresh is achieved by calling one of the procedures listed
above, thus giving the DBA total control over when a materialized view is update.

If the ON COMMIT refresh method is chosen, whenever a materialized view is
affected by changes made to the source data, the materialized view will
automatically be updated to reflect this data. However, it should be remembered
that this update to the materialized view occurs as part of the commit processing
in the transaction where the changes to the base table are made. Therefore, the
commit will take slightly longer, because changes are being made to both the
original table and then any materialized view whose definition includes that table.

Complete Refresh

When a complete refresh of a materialized view occurs, it is first truncated and
then all the data is loaded. Depending on the size of the materialized view, this
could be a time consuming operation. Complete refresh is a good technique to
use when:

• the number of new rows to be inserted is more than 50% of the cardinality of
the tables on which the materialized view is based

• there is no index on the materialized view that is usable for merging

• the time required to perform a fast refresh is longer than a complete refresh

Fast Refresh

Some materialized views could be very large and the time required to regularly
perform a complete refresh may not be available. The alternative is a fast refresh
where only the changes to the fact table are applied against the materialized view.
New data loaded into any table in the warehouse is identified and any materialized
view referencing that table is automatically updated with the new data.

Oracle9i Materialized Views Page 13

In order to perform a fast refresh operation, changes made to the data must be
recorded and this is achieved in one of two ways. If your data is only ever
inserted into the database using SQL*Loader direct path, then the refresh
mechanism will detect this and identify the new data to be loaded. However, most
data changes will occur via the SQL commands, INSERT, UPDATE and
DELETE. In this case a MATERIALIZED VIEW LOG is required on each of
the tables on which the materialized views are based.

Only one log is required per table and the materialized view log is on the table,
not the materialized view. Therefore if you only had 6 tables in your database that
were changing, you would only need 6 materialized view logs. But you could have
any number of materialized views using those logs.

It should be noted that not all materialized views are fast refreshable and
confirmation of whether it is possible can be obtained by calling the procedure
DBMS_MVIEW.EXPLAIN_MVIEW. This procedure will also advise what needs
to be done to the materialized view to make it fast refreshable.

Refresh & Constraints

It was stated earlier that ideally constraints, especially foreign key ones, should be
defined on the fact table to ensure that a row in the fact table can be matched
with a dimension. At the very mention of the word constraints, some DBA’s may
throw their hands in the air and declare that there will be no constraints in this
database because of a possible performance overhead.

However, the DBA can rest assured that by using the clause

ALTER TABLE <table name> ENABLE NOVALIDATE CONSTRAINT
<name>

constraints can be enabled immediately without checking the data. If data is
loaded into the fact table using SQL*Loader direct path, then by default all
constraints are disabled. After the load of the fact table, issuing the enable
NOVALIDATE statement, will immediately enable the constraints without
checking the data. Therefore, there is no impact on data load time and no time
required to enable the constraint. However, since no validation of the data loaded
is performed, it is very important to ensure that all loaded data will not violate any
integrity constraints.

Data Availability

Whilst refreshing the data, materialized views are still available, however query
rewrite can be disabled by using the command ALTER SYSTEM SET
QUERY_REWRITE_ENABLED = FALSE until all the materialized views are
refreshed. Alternatively, it can be enabled at the session level for any user that
does not require the materialized views to reflect the data from the latest load.

Oracle9i Materialized Views Page 14

Partition Maintenance Operations and Materialized Views

Oracle9i provides a component known as Partition Change Tracking (PCT) which
transparently detects when changes to partitions occur and then determines
whether the operation has made the data in the materialized view inconsistent. For
example, a merge partition or add partition operation will not affect the
materialized view and can be performed without causing the materialized view to
be marked as stale.

Partition Change Tracking can also be used to identify which materialized view
rows are affected by partition operations. For example, if a detail table partition is
truncated or dropped, PCT will identify the affected rows in the materialized
view and delete them.

The procedure DBMS_MVIEW.EXPLAIN_MVIEW will advise whether a
materialized view can use PCT.

QUERY REWRITE

One of the major benefits of using summary management which the end-user will
really appreciate is the query rewrite capability. It is a query optimization
technique that transforms a user query written in terms of tables and views, to
execute faster by fetching data from materialized views. It is completely
transparent to the end user, requiring no intervention or hints in the SQL
application because the Oracle9i server will automatically rewrite any appropriate
SQL application to use the materialized views. Although all the references in this
document will refer to the SQL SELECT clause. Query rewrite will also apply on
INSERT and CREATE TABLE statements that include the SELECT clause.

Query rewrite can be used against a wide variety of queries. It should be noted
that the relationships declared in dimension objects are not required to be
enforced, but they are assumed to be true. If the declaration of a relationship
doesn't match with the actual relationship that exists in the table data, then when
query rewrite makes use of the flawed relationship declaration to rewrite a query,
the rewritten query will most probably produce an incorrect result. However, by
defining the relationships and using constraints so that the system guarantees
correctness of the data, the reports generated can be relied upon to contain the
correct results. Fast, accurate query results are significant benefits arising from the
minimal effort and overhead required when enforcing system integrity.

The composition of the query does not have to exactly match the definition of
the materialized view because this would require that the DBA knew in advance
what queries would be executed against the data. This is of course impossible,
especially with respect to data warehouses where one of the main benefits to an
organization is to suddenly execute a new query. Therefore, query rewrite will still
occur even if only part of the query can be satisfied by using the materialized
view.

Oracle9i Materialized Views Page 15

Enabling/Disabling Query Rewrite

Query Rewrite occurs when the following parameters are set
ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE

or
 ALTER SYSTEM SET QUERY_REWRITE_ENABLED = TRUE

or when the materialized view is defined, it is eligible for query rewrite, by
including the clause ENABLE QUERY REWRITE

There may be times when you want query rewrite to be disabled this can be
achieved by changing the above parameter to FALSE, or using the DISABLE
QUERY REWRITE clause on a specific materialized view.

Types of Query Rewrite

There are various types of query rewrite which are possible in Oracle9i and the
following examples illustrate some of what is possible using the materialized view
shown in Figure 5.

Figure 5 Materialized Views for Query Rewrite Examples
CREATE MATERIALIZED VIEW all_cust_sales_mv
BUILD IMMEDIATE
REFRESH COMPLETE
ENABLE QUERY REWRITE
AS

SELECT c.cust_id,
 p.prod_id,
 sum(s.amount_sold) AS dollars,
 sum(s.quantity_sold) as quantity
FROM sales s , customers c, products p
WHERE c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
GROUP BY c.cust_id, p.prod_id;

Exact Match

The simplest kind of query rewrite takes place when a materialized view definition
exactly matches a query definition. That is, the tables in the FROM clause, joins
in the WHERE clause and the keys in the GROUP BY clause match exactly
between the query and the materialized view. For example, given the following
query:
SELECT c.cust_id,
 sum(s.quantity_sold) as quantity
FROM sales s , customers c, products p
WHERE c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
GROUP BY c.cust_id, p.prod_id;

it is rewritten by Oracle9i to use the materialized view all_cust_sales_mv

Oracle9i Materialized Views Page 16

Summary JoinBack

Some times a query may contain reference to a column which is not stored in a
summary table but it can be obtained by joining back the materialized view to the
appropriate dimension table. For example, consider the previous query, but
instead of reporting on customer id, the report uses the customer name.
SELECT c.cust_last_name,
 sum(s.quantity_sold) as quantity
FROM sales s , customers c, products p
WHERE c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
GROUP BY c.cust_last_name, p.prod_id;

This query references the column c.cust_last_name which is not in the
materialized view all_cust_sales_mv, but c.cust_last_name is functionally dependent
on c.cust_id because of the hierarchical relationship between them. This means
this query can be rewritten in term of all_cust_sales_mv, which is joined back to
the customers table in order to obtain c.cust_last_name column.

Summary Rollup & Aggregation to All

When a query requests aggregates such as SUM(sales) at a higher level in a
hierarchy than the level at which the aggregates in a materialized view are stored,
then the query can be rewritten by using the materialized view and rolling up its
aggregates to the desired level.

For example, our materialized view all_cust_sales_mv, groups data at the customer
level, but we would like to report data at the state level and only by customer. A
customer dimension has been created which describes the relationship between
customer and region. Therefore the following query will use our materialized
view all_cust_sales_mv to produce the report where it will aggregate together all the
data for a customer and then roll it up to the state level.
SELECT c.cust_state_province,
 sum(s.quantity_sold) as quantity
FROM sales s , customers c, products p
WHERE c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
GROUP BY c.cust_state_province;

Oracle9i Materialized Views Page 17

Data Subsets

So far all of the materialized views which we have seen contain all of the data, but
this could still result in a very large materialized view. Oracle9i allows a
materialized view to be defined that only contains part of the data as shown in
Figure 6 where we only have data for Dublin, Galway, Hamburg and Istanbul.

Figure 6 Materialized Views containing a subset of data
CREATE MATERIALIZED VIEW some_cust_sales_mv
BUILD IMMEDIATE
REFRESH COMPLETE
ENABLE QUERY REWRITE
AS
SELECT c.cust_id,
 p.prod_id,
 sum(s.amount_sold) AS dollars,
 sum(s.quantity_sold) as quantity
FROM sales s , customers c, products p
WHERE c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
AND c.cust_state_province IN
 ('Dublin','Galway','Hamburg','Istanbul')
GROUP BY c.cust_id, p.prod_id;

This materialized view can now be used to satisfy queries which contains ranges,
IN and BETWEEN clauses such as the one shown below.
SELECT c.cust_state_province,
 sum(s.quantity_sold) as quantity
FROM sales s , customers c, products p
WHERE c.cust_id = s.cust_id
AND s.prod_id = p.prod_id
AND c.cust_state_province IN ('Dublin','Galway')
GROUP BY c.cust_state_province;

Query Rewrite Integrity Modes

Summary management will endeavor to identify inconsistent materialized views
and mark them accordingly, but to overcome these problems, three integrity levels
are available, which are selected by the parameter
QUERY_REWRITE_INTEGRITY

• STALE_TOLERATED

• TRUSTED

• ENFORCED (default)

In STALE_TOLERATED mode, a materialized view will always be used even if
it is stale. In TRUSTED mode, the optimizer trusts that the data in the
materialized views is fresh and that the relationships declared in dimensions and
RELY constraints are correct. In this mode, the optimizer will also use prebuilt
materialized views or materialized views based on views, and it will use
relationships that are not enforced as well as those that are enforced. In this

Oracle9i Materialized Views Page 18

mode, the optimizer also 'trusts' declared but not ENABLED VALIDATED
primary/unique key constraints and data relationships specified using dimensions.

The ENFORCED mode which is the default, the optimizer will only use
materialized views that it knows contain fresh data and it will only use those
relationships that are based on ENABLED VALIDATED primary/unique/
foreign key constraints. Therefore you may find that query rewrite will not occur
using this method if some constraints have not been validated, but it will occur
using the less restrictive TRUSTED or STALE_TOLERATED modes.

Are the Results Correct

Whenever a SQL query uses a materialized view rather than the actual source of
the data, there are instances when the results returned may be different.

1. A materialized view can be out of synchronization with the detail data. This
generally happens because the refresh procedure is pending and
STALE_TOLERATED integrity mode has been selected.

2. Join columns may violate referential integrity. In this case, some child-side
rows are not rolled up into exactly one parent-side row. To avoid this situation,
use system enforced integrity whose overheads are negligible and benefits are
significant.

It is possible to create a rolling materialized view, which is when the materialized view
contains information about rows that no longer exist in the detail data. For
example, the materialized view may contain 18 months worth of data, but the
detail tables only contain the last 6 months. Therefore, if a query were ever to go
against the base table rather than the materialized view then different results
would be shown.

Explain Rewrite

When using Query Rewrite the most frequently asked questions are ‘ will this
query rewrite?’ or ‘why didn’t this query rewrite?’ Oracle9i provides a solution to
this problem with the procedure DBMS_MVIEW.EXPLAIN_REWRITE and an
example of its use is shown below in Figure 7. Therefore, this information can be
known even before the query is ever run.

The query text is passed as a long string and the procedure stores the results of its
findings in the table REWRITE_TABLE which must be queried to see the results
of the procedure. In the example below we can see that the materialized view
some_cust_sales_mv will be used for this query.

Oracle9i Materialized Views Page 19

Figure 7 Explain Rewrite Example
DECLARE

querytxt VARCHAR2(1500) := 'SELECT c.cust_id,
 sum(s.amount_sold) AS dollars, p.prod_id,
 sum(s.quantity_sold) as quantity
 FROM sales s , customers c, products p
 WHERE c.cust_id = s.cust_id
 AND s.prod_id = p.prod_id
 AND c.cust_state_province IN
 (''Dublin'',''Galway'',''Hamburg'',''Istanbul'')
 GROUP BY c.cust_id, p.prod_id';

BEGIN
dbms_mview.Explain_Rewrite(querytxt, NULL, 'ID1');
END;
/

SELECT message FROM rewrite_table;

MESSAGE

QSM-01009: materialized view, SOME_CUST_SALES_MV, matched query
text

QSM-01033: query rewritten with materialized view,
SOME_CUST_SALES_MV

SUMMARY ADVISOR

When the decision is first made to use materialized views an initial set has to be
defined. Now this is quite a challenge for the DBA, especially if they don’t know
the business very well, or the queries raised by the application are rather
unpredictable.

To help resolve this problem, Summary Management contains a component
called the Summary Advisor which can either be invoked by calling a procedure
or from Oracle Enterprise Manager and it can provide the following information

• Recommend materialized views based on a collected or hypothetical workload

• Estimate the size of a materialized view

• Report actual utilization of materialized views based on collected workload

• Define filters to use against a workload

• Load and validate a workload

• Purge filters, workloads, and results

Before using the Summary Advisor, the DBA should run the procedure
DBMS_STATS, to gather cardinality information on the tables and materialized
views in the database. This information is used as part of the prediction process.

Oracle9i Materialized Views Page 20

Providing a Workload

Although the Summary Advisor can recommend materialized views without a
workload, it performs best when it is has a workload, which in Oracle9i can be
provided in the form of:

• User-Defined (DBMS_OLAP.LOAD_WORKLOAD_USER)

• Current contents of the SQL Cache
(DBMS_OLAP.LOAD_WORKLOAD_CACHE)

• Collected queries from Oracle Trace
(DBMS_OLAP.LOAD_WORKLOAD_TRACE)

A user-defined workload involves storing the queries in a table in the database.
This will then be read by the Summary Advisor and taken as its workload.

Alternatively, the current queries in the SQL Cache can be made into a workload
and used as input to the Summary Advisor.

If Oracle Trace is available, an event set called Summary Workload is provided.
When enabled, it collects workload statistics comprising of the name of each
materialized view used by query rewrite, the estimated “benefit” obtained by
using the materialized view and the ideal materialized view that could have been
used.

Although only one workload can be used at a time as input to the
recommendation procedure RECOMMEND_MVIEW_STRATEGY, multiple
workloads may be stored in the database and then compared to see which one
generates the best recommendations.

Recommending Materialized Views

Recommendations as to which materialized views to create can be obtained either
by using the Summary Advisor Wizard in Oracle Enterprise Manager which takes
you step by step through the process of recommending materialized views and
actually implements them.

Alternatively, the recommendations can be generated by calling the procedure
RECOMMEND_MVIEW_STRATEGY. Irrespective of the method chosen, the
Summary Advisor will recommend whether to drop or retain existing materialized
views and what if any to create.

An optional report can also be generated using the procedure
DBMS_OLAP.GENERATE_MVIEW_REPORT which provides information on
the advisor’s recommendations, materialized view usage and the queries
considered.

Oracle9i Materialized Views Page 21

Implementing Recommendations

One of the many advantages of using the Summary Advisor Wizard is that it will
automatically implement the recommendations. If the
DBMS_OLAP.RECOMMEND_MVIEW_STRATEGY procedure is used then
this will generate a set of recommendations which are stored in the database.
Then the procedure DBMS_OLAP.GENERATE_MVIEW_SCRIPT can be
called to created a SQL file containing the statements required to implement these
recommendations.

Filtering Workloads

A workload doesn’t have to be considered in its entirety, it may be filtered using
the DBMS_OLAP.ADD_FILTER_ITEM Filters can be applied to the
application name, tables used in the queries, the cardinality of tables used in the
queries, the query frequency, the date a query was last used, the table owners, the
query priority, the query response time or a trace collection name. Then one or
more of these filters can be applied to a workload which is used to recommend
materialized views.

Estimating Size of Materialized Views

Another useful facility for the DBA is the ability to estimate the size of a
materialized view prior to creating it. By passing the query as a parameter into
the procedure DBMS_OLAP.ESTIMATE_MVIEW_SIZE, it will predict the
number of rows in this materialized view and its possible size as illustrated in
Figure 9

Figure 9 Estimating Size of a Materialized View
DECLARE
no_of_rows NUMBER;
mv_size NUMBER;
BEGIN
dbms_olap.estimate_summary_size ('MV 1',
 'SELECT c.cust_id, sum(s.amount_sold) AS dollars,
 p.prod_id, sum(s.quantity_sold) as quantity
 FROM sales s , customers c, products p
 WHERE c.cust_id = s.cust_id
 AND s.prod_id = p.prod_id
 GROUP BY c.cust_id, p.prod_id' ,
 no_of_rows, mv_size);

DBMS_OUTPUT.put_line ('');
DBMS_OUTPUT.put_line ('No of Rows: ' || no_of_rows);
DBMS_OUTPUT.put_line ('Size of Materialized view (bytes): ' ||
mv_size); END;

No of Rows: 245504
Size of Materialized view (bytes): 21604352

Oracle9i Materialized Views Page 22

CONCLUSION

Anyone who is looking to improve the performance of queries in their Data
Warehouse or database should seriously consider implementing materialized views
if they can pre-compute the results of some queries. There is only a minimal
effort required to create materialized views and the Summary Advisor will advise
which ones to create and even provide a script to execute its recommendations.
Once established, materialized views can be virtually self maintaining and end-
users see a dramatic improvement in query response times without ever needing
to change a line of SQL.

Oracle9i & Materialized Views

May 2001

Author: Dr. Lilian Hobbs

Contributing Authors:

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Oracle Corporation provides the software

that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various

product and service names referenced herein may be trademarks

of Oracle Corporation. All other product and service names

mentioned may be trademarks of their respective owners.

Copyright © 2000 Oracle Corporation

All rights reserved.

