
The Standard Library

Table of contents

Preface . xii

Help Pages

glossary — glossary . 1

mathematical constants and functions — an overview 3

options — options used by MuPAD functions 5

:= — assign variables . 18

. — concatenate objects . 22

.. — range operator . 25

=, <> — equations and inequalities . 26

<, <=, >, >= — inequalities . 29

+ — add expressions . 32

- — subtract expressions . 39

* — multiply expressions . 44

/ — divide expressions . 51

^ — raise an expression to a power . 55

@ — compose functions . 58

@@ — iterate a function . 60

$ — create an expression sequence . 61

_exprseq — expression sequences . 65

_index — indexed access . 67

intersect, minus, union — operators for sets and intervals 71

_invert — the reciprocal of an expression 74

_lazy_and, _lazy_or — “lazy evaluation” of Boolean expressions . . . 76

_negate — the negative of an expression 79

_stmtseq — statement sequences . 82

%if — conditional creation of code by the parser 84

Ci — the cosine integral function . 86

D — differential operator for functions 89

DIGITS — the significant digits of floating point numbers 95

Ei — the exponential integral function 101

FAIL — indicate a failed computation 104

FILEPATH — the pathname of a file that is currently loaded 105

HISTORY — the maximal number of elements in the history table 106

LEVEL — substitution depth of identifiers 107

Line-Editor — editing lines in the terminal version of MuPAD 112

MAXDEPTH — prevent infinite recursion during procedure calls 114

MAXLEVEL — prevent infinite recursion during evaluation 115

NIL — the singleton element of the domain DOM_NIL 117

NOTEBOOKFILE, NOTEBOOKPATH — Notebook file name and path 119

O — the domain of order terms (Landau symbols) 120

ORDER — the default number of terms in series expansions 123

path variables — file search paths . 125

PRETTYPRINT — control the formatting of output 128

Re, Im — real and imaginary part of an arithmetical expression 130

RootOf — the set of roots of a polynomial 133

Si — the sine integral function . 136

TESTPATH — write path for prog::test 138

TEXTWIDTH — the maximum number of characters in an output line . . 138

TRUE, FALSE, UNKNOWN — Boolean constants 140

UNIX — MuPAD command line options and initialization files for UNIX 141

abs — the absolute value of a real or complex number 145

alias, unalias — defines or un-defines an abbreviation or a macro . . 147

anames — identifiers that have values or properties 155

and, or, not, xor, ==>, <=> — Boolean operators 157

append — add elements to a list . 162

arcsin, arccos, arctan, arccsc, arcsec, arccot — the inverse
trigonometric functions . 164

arcsinh, arccosh, arctanh, arccsch, arcsech, arccoth — the
inverse hyperbolic functions . 169

ii

arg — the argument (polar angle) of a complex number 173

args — access procedure parameters . 176

array — create an array . 179

assert — assertions for debugging . 185

assign — perform assignments given as equations 187

assignElements — assign values to entries of an array, a list, or a table 189

assume — attach a property to an identifier 192

asympt — compute an asymptotic series expansion 198

bernoulli — the Bernoulli numbers and polynomials 201

besselI, besselJ, besselK, besselY — the Bessel functions 204

beta — the beta function . 209

binomial — binomial coefficients . 211

bool — Boolean evaluation . 214

break — terminate a loop or a case switch prematurely 218

builtin — representatives of C-functions of the MuPAD kernel 219

bytes — the memory used by the current MuPAD session 222

card — the cardinality of a set . 223

case — switch statement . 225

ceil, floor, round, trunc — rounding to an integer 228

coeff — the coefficients of a polynomial 231

coerce — type conversion . 235

collect — collect coefficients of a polynomial expression 239

combine — combine terms of the same algebraic structure 242

copyClosure — copies the lexical closure of a procedure 247

complexInfinity — complex infinity 249

conjugate — complex conjugation . 250

contains — test if an entry exists in a container 252

content — the content of a polynomial 256

context — evaluate an object in the enclosing context 259

contfrac — the domain of continued fractions 262

debug — execute a procedure in single-step mode 271

iii

degree — the degree of a polynomial 273

degreevec — the exponents of the leading term of a polynomial 275

delete — delete the value of an identifier 277

denom — the denominator of a rational expression 280

diff — differentiate an expression or a polynomial 281

dilog — the dilogarithm function . 287

dirac — the Dirac delta distribution . 290

discont — discontinuities of a function 293

div — the integer part of a quotient . 297

divide — divide polynomials . 298

domtype — the data type of an object 301

end — close a block statement . 304

erf, erfc — the error function and the complementary error function . 305

error — raise a user-specified exception 308

eval — evaluate an object . 309

evalassign — assignment with evaluation of the left hand side 316

evalp — evaluate a polynomial at a point 318

exp — the exponential function . 320

expand — expand an expression . 323

export, unexport — export library functions or undo the export . . . 331

expose — display the source code of a procedure or the entries of a
domain . 334

expr — convert into an element of a basic domain 337

expr2text — convert objects into character strings 341

external — create a module function environment 344

extnops — the number of operands of a domain element 346

extop — the operands of a domain element 347

extsubsop — substitute operands of a domain element 350

fact — the factorial function . 353

factor — factor a polynomial into irreducible polynomials 355

fclose — close a file . 363

fileIO — an overview of MuPAD’s file I/O functions 364

iv

finput — read MuPAD objects from a file 367

float — convert to a floating point number 370

fname — get a file name . 375

fopen — open a file . 376

for — for loop . 380

fprint — write data to a file . 385

frac — the fractional part of a number 390

frame — create a new frame, change to an existing frame 392

frandom — generate random floating point numbers 405

fread — read and execute a file . 408

freeze, unfreeze — create an inactive or active copy of a function . . 411

ftextinput — read a text file . 416

funcenv — create a function environment 420

gamma — the gamma function . 424

gcd — the greatest common divisor of polynomials 427

gcdex — the extended Euclidean algorithm for polynomials 429

genident — create an unused identifier 430

genpoly — create a polynomial using the “b”-adic expansion 431

getpid — the process ID of the running MuPAD kernel 433

getprop — query properties of expressions 434

ground — ground term (constant coefficient) of a polynomial 437

has — check if an object occurs in another object 439

hastype — test if an object of a specified type occurs in another object 443

heaviside — the Heaviside step function 446

help — display a help page . 449

history — access an entry of the history table 452

hold — delay evaluation . 455

..., hull — convert to a floating point interval 461

hypergeom — the hypergeometric functions 463

icontent — the content of a polynomial with rational coefficients . . . 470

if — branch statement . 472

v

id — the identity map . 475

ifactor — factor an integer into primes 476

igamma — the incomplete Gamma function 482

igcd — the greatest common divisor of integers 485

igcdex — the extended Euclidean algorithm for two integers 487

ilcm — the least common multiple of integers 488

in — membership . 489

indets — the indeterminates of an expression 493

indexval — indexed access to arrays and tables without evaluation . . 496

interpolate — polynomial interpolation 499

infinity — infinity . 505

info — prints short information . 506

input — interactive input of MuPAD objects 508

int — definite and indefinite integration 512

int2text — convert an integer to a character string 520

interval — convert constant subexpressions to intervals 521

irreducible — test irreducibility of a polynomial 523

is — check a mathematical property of an expression 524

isprime — primality test . 529

isqrt — integer square root . 531

iszero — generic zero test . 532

ithprime — the i-th prime number . 535

lambertV, lambertW — lower and upper real branch of the Lambert
function . 536

last — access a previously computed object 539

lasterror — reproduce the last error 543

lcm — the least common multiple of polynomials 545

lcoeff — the leading coefficient of a polynomial 546

ldegree — the lowest degree of the terms in a polynomial 549

length — the “length” of a MuPAD object (heuristic complexity) 550

level — evaluate an object with a specified substitution depth 553

vi

lhs, rhs — the left, respectively right hand side of equations, inequal-
ities, relations, intervals, and ranges . 560

limit — compute a limit . 561

linsolve — solve a system of linear equations 565

lllint — compute an LLL-reduced basis of a lattice 569

lmonomial — the leading monomial of a polynomial 572

ln — the natural logarithm . 575

loadlib — load a library package . 578

loadmod — load a module . 580

loadproc — load an object on demand 583

log — the logarithm to an arbitrary base 585

lterm — the leading term of a polynomial 588

match — pattern matching . 590

matrix — create a matrix or a vector 597

map — apply a function to all operands of an object 611

mapcoeffs — apply a function to the coefficients of a polynomial 618

maprat — apply a function to the “rationalization” of an expression . . 621

max — the maximum of numbers . 623

min — the minimum of numbers . 626

mod, modp, mods — the modulo functions 628

multcoeffs — multiply the coefficients of a polynomial with a factor . 632

new — create a domain element . 634

newDomain — create a new data type (domain) 637

next — skip a step in a loop . 640

nextprime — the next prime number 641

nops — the number of operands . 643

norm — compute the norm of a matrix, a vector, or a polynomial 645

normal — normalize an expression . 650

nterms — the number of terms of a polynomial 653

nthcoeff — the n-th non-zero coefficient of a polynomial 654

nthmonomial — the n-th monomial of a polynomial 656

nthterm — the n-th term of a polynomial 660

vii

null — generate the void object of type DOM_NULL 662

numer — the numerator of a rational expression 665

ode — the domain of ordinary differential equations 666

op — the operands of an object . 673

operator — define a new operator symbol 681

package — load a package of new library functions 684

pade — Pade approximation . 693

partfrac — compute a partial fraction decomposition 696

patchlevel — the patch number of the installed MuPAD library 698

pathname — create a platform dependent path name 699

pdivide — pseudo-division of polynomials 701

piecewise — the domain of conditionally defined objects 703

plot — display graphical objects on the screen 718

plot2d — 2D plots . 723

plot3d — 3D plots . 733

plotfunc2d — 2D plots of function graphs 750

plotfunc3d — 3D plots of function graphs 761

plotOptions2d — scene options for 2D plots 767

plotOptions3d — scene options for 3D plots 778

point — generate a graphical point primitive 787

poly — create a polynomial . 790

poly2list — convert a polynomial to a list of terms 798

polygon — generate a graphical polygon primitive 799

polylog — the polylogarithm function 809

powermod — compute a modular power of a number or a polynomial . . 812

print — print objects to the screen . 815

proc — define a procedure . 828

product — definite and indefinite products 839

protect — protect an identifier . 841

protocol — create a protocol of a MuPAD session 844

psi — the digamma/polygamma function 846

viii

quit — terminate the MuPAD session 850

radsimp — simplify radicals in arithmetical expressions 852

random — generate random integer numbers 855

rationalize — transform an expression into a rational expression . . . 858

read — search, read, and execute a file 859

readbytes, writebytes — read or write binary data from or to a file . 862

repeat, while — repeat and while loop 869

rec — the domain of recurrence equations 873

rectform — rectangular form of a complex expression 876

register — remove the memory limit of the demo version 884

reset — re-initialize a MuPAD session 885

return — exit a procedure . 886

revert — revert lists or character strings, invert series expansions . . . 888

rewrite — rewrite an expression . 889

RGB — predefined color names . 892

save — save the state of an identifier 893

select — select operands . 895

series — compute a (generalized) series expansion 898

setuserinfo — set an information level 915

share — create a unique data representation 917

sign — the sign of a real or complex number 918

signIm — the sign of the imaginary part of a complex number 920

simplify — simplify an expression . 922

sin, cos, tan, csc, sec, cot — the trigonometric functions 926

sinh, cosh, tanh, csch, sech, coth — the hyperbolic functions . . 931

slot — method or entry of a domain or a function environment 936

solve — solve equations and inequalities 943

solvers — an overview of MuPAD’s solvers 954

sort — sort a list . 958

sparsematrix — create a sparse matrix or a sparse vector 960

split — split an object . 978

ix

sqrt — the square root function . 980

strmatch — match a pattern in a character string 983

subs — substitute into an object . 985

subsex — extended substitution . 991

subsop — replace operands . 994

substring — extract a substring from a string 998

sum — definite and indefinite summation 1000

sysname — the name of the operating system 1004

sysorder — compare objects according to the internal order 1006

system — execute a command of the operating system 1008

table — create a table . 1010

taylor — compute a Taylor series expansion 1013

tbl2text — concatenate the strings in a table 1017

tcoeff — the trailing coefficient of a polynomial 1017

testargs — decide whether procedure arguments should be tested . . . 1020

testtype — syntactical type checking 1022

text2expr — convert a character string to an expression 1025

text2int — convert a character string to an integer 1027

text2list, text2tbl — split a character string into substrings 1028

textinput — interactive input of text 1030

rtime, time — measure real time and CPU time 1032

traperror — trap errors . 1035

type — the type of an object . 1037

unassume — delete the properties of an identifier 1039

universe — the set-theoretical universe 1041

unloadmod — unload a module . 1041

unprotect — remove protection of identifiers 1043

userinfo — print progress information 1044

val — the value of an object . 1047

version — the version number of the MuPAD library 1048

warning — print a warning message . 1049

x

write — write the values of variables into a file 1051

zeta — the Riemann zeta function . 1054

zip — combine lists . 1057

xi

stdlib

In MuPAD, most of the provided functions are categorized into libraries and
called with a prefix, such as linalg::eigenvalues or numeric::eigenvalues.

For convenience, a number of frequently used functions do not have such a
prefix. These include the functions built into the MuPAD kernel such as the
constructs of the MuPAD language. The current paper documents these basic
functions.

xii

glossary – glossary

This glossary explains some of the terms that are used throughout the MuPAD
documentation.

arithmetical
expression

Syntactically, this is an object of Type::Arithmetical. In
particular, this type includes numbers, identifiers and ex-
pressions of domain type DOM_EXPR.

domain The phrase“domain” is synonymous with“data type”. Every
MuPAD object has a data type referred to as its “domain
type”. It may be queried via the function domtype.
There are “basic domains” provided by the system kernel.
These include various types of numbers, sets, lists, arrays,
tables, expressions, polynomials etc. The documentation
refers to these data types as “kernel domains”. The name of
the kernel domains are of the form DOM_XXX (e.g., DOM_INT,
DOM_SET, DOM_LIST, DOM_ARRAY, DOM_TABLE, etc.). Details of
kernel domains can be found in the document“Basic MuPAD
Data Types”.
In addition, MuPAD’s programming language allows to in-
troduce new data types via the keyword domain or the func-
tion newDomain. The MuPAD library provides many such
domains. For example, series expansions, matrices, piece-
wise defined objects etc. are domains implemented in the
MuPAD language. The documentation refers to such data
types as “library domains”. In particular, the library Dom
provides a variety of predefined data types such as matrices,
residue classes, intervals etc.
See DOM_DOMAIN for general explanations on data types.
Here you also find some simple examples demonstrating how
the user can implement her own domains.
For a concise description of MuPAD’s domain concept, see
the technical document “Axioms, Categories and Domains”.

domain
element

The phrase “x is an element of the domain d” is synonymous
with “x is of domain type d”, i.e., “domtype(x) = d”. In
many cases, the help pages refer to “domain elements” as
objects of library domains, i.e., the corresponding domain is
implemented in the MuPAD language.

domain type The domain type of an object is the data type of the object.
It may be queried via domtype.

1

flattening Sequences such as a := (x, y) or b := (u, v) consist of
objects separated by commas. Several sequences may be
combined to a longer sequence: (a, b) is “flattened” to the
sequence (x, y, u, v) consisting of 4 elements. Most func-
tions flatten their arguments, i.e., the call f(a, b) is inter-
preted as the call f(x, y, u, v) with 4 arguments. Note,
however, that some functions (e.g., the operand function op)
do not flatten their arguments: op(a, 1) is a call with 2 ar-
guments.
The concept of flattening also applies to some functions such
as max, where it refers to simplification rules such as max(a,
max(b, c)) = max(a, b, c).

function Typically, functions are represented by a procedure or a
function environment. Also functional expressions such as
sin@exp + id^2: x 7→ sin(exp(x))+x2 represent functions.
Also numbers can be used as (constant) functions. For ex-
ample, the call 3(x) yields the number 3 for any argument
x.

number A number may be an integer (of type DOM_INT), or a ra-
tional number (of type DOM_RAT), or a real floating point
number (of type DOM_FLOAT), or a complex number (of type
DOM_COMPLEX).
The type DOM_COMPLEX encompasses the Gaussian integers
such as 3 + 7*I, the Gaussian rationals such as 3/4 +
7/4*I, and complex floating point numbers such as 1.2 +
3.4*I.

numerical
expression

This is an expression that does not contain any symbolic
variable apart from the special constants PI, E, EULER,
and CATALAN. A numerical expression such as I^(1/3) +
sqrt(PI)*exp(17) is an exact representation of a real or a
complex number; it may be composed of numbers, radicals
and calls to special functions. It may be converted to a real
or complex floating point number via float.

overloading The help page of a system function only documents the ad-
missible arguments that are of some basic type provided by
the MuPAD kernel. If the system function f, say, is de-
clared as “overloadable”, the user may extend its function-
ality. He can implement his own domain or function envir-
onment with a corresponding slot "f". An element of this
domain is then accepted by the system function f which calls
the user-defined slot function.
See also the domain documentation.

2

polynomial Syntactically, a polynomial such as poly(x^2 + 2, [x]) is
an object of type DOM_POLY. It must be created by a call
to the function poly. Most functions that operate on such
polynomials are overloaded by other polynomial domains of
the MuPAD library.

polynomial
expression

This is an arithmetical expression in which symbolic vari-
ables and combinations of such variables only enter via pos-
itive integer powers. Examples are x^2 + 2 or x*y + (z +
1)^2.

rational
expression

This is an arithmetical expression in which symbolic vari-
ables and combinations of such variables only enter via in-
teger powers. Examples are x^(-2) + x + 2 or x*y + 1/(z
+ 1)^2. Every polynomial expression is also a rational ex-
pression, but the two previous expressions are not polyno-
mial expressions.

mathematical constants and functions – an overview

The following mathematical constants are predefined in MuPAD:

complexInfinity – complex infinity
I – imaginary unit

√
−1 (see DOM_COMPLEX for details)

infinity – real positive infinity
undefined – undefined value

The following constants are symbolic representations of special real numbers.
Use float to get floating point approximations with the current precision DI-
GITS.

CATALAN – Catalan constant
∞∑
i=0

(−1)i

(2 i+ 1)2
= 0.9159..

E, exp(1) – Euler number exp(1) = 2.718.. (see exp for details)

EULER – Euler-Mascheroni constant lim
n→∞

(n∑
i=1

1
i
− ln(n)

)
= 0.5772..

PI – π = 3.141..

The following mathematical functions are defined in a MuPAD session:

3

abs – absolute value of a real or complex number
arg – polar angle of a complex number
bernoulli – Bernoulli numbers and polynomials
besselI – modified Bessel functions of the first kind
besselJ – Bessel functions of the first kind
besselK – modified Bessel functions of the second kind
besselY – Bessel functions of the second kind
beta – beta function
binomial – binomial coefficient
ceil – nearest integer in the direction of ∞
Ci – cosine integral function
dilog – dilogarithm function
dirac – Dirac delta function
Ei – exponential integral function
erf – error function
erfc – complementary error function
exp – exponential function
fact – factorial function
frac – fractional part of a number
floor – nearest integer in the direction of −∞
gamma – gamma function
heaviside – Heaviside step function
hypergeom – hypergeometric function
igamma – incomplete gamma function
Im – imaginary part of a complex number
lambertV – lower branch of Lambert’s W function
lambertW – main branch of Lambert’s W function
log – logarithm to an arbitrary base
ln – natural logarithm
max – maximum of real numbers
min – minimum of real numbers
polylog – polylogarithm function
psi – digamma/polygamma function
Re – real part of a complex number
round – rounding to the nearest integer
Si – sine integral function
sign – sign of a real or complex number
sqrt – square root function
trunc – nearest integer in the direction of 0
zeta – Riemann zeta function

Further, the trigonometric functions and hyperbolic functions

cos, cot, csc, sec, sin, tan, cosh, coth, csch, sech, sinh, tanh

and the inverse functions

arccos, arccot, arccsc, arcsec, arcsin, arctan, arccosh, arccoth, arccsch

4

arcsech, arcsinh, arctanh

are implemented.

Changes:

A The hypergeometric functions hypergeom were implemented.

options – options used by MuPAD functions

The following options are used by MuPAD’s system functions. These names are
protected; they should not be assigned a value.

If a value is assigned to these names, the corresponding functions may
respond to these options in an unexpected way. !
The meaning of each option is documented on the help page of the corresponding
function.

Option used in

Above plot2d, plot3d, plotOptions2d,
plotOptions3d

Adaptive numeric::quadrature
All anames, linalg::frobeniusForm,

linalg::gaussElim, linalg::gaussJordan,
linalg::hermiteForm, linalg::hessenberg,
linalg::jordanForm, linopt::Transparent,
linopt::corners, linopt::maximize,
linopt::minimize, linopt::plot_data,
lllint, prog::changes, prog::init,
prog::testinit

Alldata numeric::odesolve, numeric::odesolve2,
numeric::odesolveGeometric

Always Pref::keepOrder
AndMesh plot3d
AndULine plot3d
AndVLine plot3d
Ansatz detools::detSys, detools::ncDetSys
Any setuserinfo
Append fopen, fprint, prog::tcov, protocol, write
Approx numeric::rationalize
Arch sysname
Args prog::calltree
Arrows plotOptions2d, plotOptions3d
Ascii plot2d, plot3d, plotOptions2d,

plotOptions3d

5

Option used in

Ass match
Assign prog::check
Automatic plotOptions2d, plotOptions3d
Autoreduced detools::detSys, detools::ncDetSys
Averaged stats::empiricalQuantile, stats::median
Axes plotOptions2d, plotOptions3d
AxesInFront plotOptions2d
AxesOrigin plotOptions2d, plotOptions3d
AxesScaling plotOptions2d, plotOptions3d
BUTCHER6 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
BackGround plotOptions2d, plotOptions3d
BackSubstitution solve
Backup prog::trace
Banded Dom::Matrix, Dom::MatrixGroup,

Dom::SparseMatrix, Dom::SquareMatrix,
matrix, sparsematrix

Below plot2d, plot3d, plotOptions2d,
plotOptions3d

BigEndian readbytes, writebytes
Bin fopen, fprint, write
Binary operator, plot2d, plot3d, plotOptions2d,

plotOptions3d
Box plotOptions2d, plotOptions3d
BravaisPearson stats::correlation
Byte readbytes, writebytes
CDF stats::csGOFT, stats::ksGOFT
CK45 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
CK54 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
CameraPoint plotOptions3d
Capacity Network::addEdge, Network::changeEdge,

Network::new
Cartesian linalg::laplacian, linalg::ogCoordTab
Center output::tableForm, stringlib::format
Centers plot::boxplot
ChangeOfVars detools::transform
Circles plot2d, plot3d, plotOptions2d,

plotOptions3d
Closed polygon
Coeffs polylib::randpoly
CollectInformation numlib::mpqs
Color plot2d, plot3d, point, polygon

6

Option used in

ColorPatches plot3d
Colors plot::boxplot
Column output::tableForm
Comm match
Complete numeric::cubicSpline,

numeric::cubicSpline2d
Cond match, matchlib::analyze
Consecutive listlib::sublist
Const match, matchlib::analyze
Constrained plot2d, plot3d, plotOptions2d,

plotOptions3d
Continuous int
Corner plotOptions2d, plotOptions3d
Curve plot2d, plot3d
Cyclic text2list, text2tbl
Cylindrical linalg::laplacian, linalg::ogCoordTab
DOPRI45 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
DOPRI54 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
DashedLines plot2d, plot3d, plotOptions2d,

plotOptions3d
DegInvLexOrder degreevec, groebner::dimension,

groebner::gbasis, groebner::normalf,
groebner::spoly, lcoeff, lmonomial, lterm,
nthcoeff, nthmonomial, nthterm, tcoeff

Degree polylib::randpoly
DegreeOrder degreevec, groebner::dimension,

groebner::gbasis, groebner::normalf,
groebner::spoly, lcoeff, lmonomial, lterm,
nthcoeff, nthmonomial, nthterm, tcoeff

Delete operator, prog::changes
Depth prog::trace
Diagonal Dom::Matrix, Dom::MatrixGroup,

Dom::SparseMatrix, Dom::SquareMatrix,
linalg::randomMatrix, matrix, sparsematrix

Diagonalization numeric::expMatrix
Dimension linalg::ogCoordTab
Discont plot2d, plot3d, plotOptions2d
Domain linsolve, prog::check, solve
DomainsOnly Pref::keepOrder
DontRewriteBySystem solve
Double readbytes, writebytes
DrawMode plot::boxplot

7

Option used in

DualPrices linopt::maximize, linopt::minimize
Duplicate combinat::permutations, combinat::permute
EULER1 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
EllipticCylindrical linalg::laplacian, linalg::ogCoordTab
Environment prog::check
Error prog::changes, unprotect
Escape prog::check
Eweight Network::addEdge, Network::changeEdge,

Network::new
Exact divide, numeric::rationalize
Expr detools::detSys, detools::ncDetSys, gcd,

interpolate, lcm, poly
Extended Network::residualNetwork
Factor numeric::polyroots, numeric::solve
Factorbase numlib::mpqs
Fechner stats::correlation
File prog::tcov
Filled polygon
FilledCircles plot2d, plot3d, plotOptions2d,

plotOptions3d
FilledSquares plot2d, plot3d, plotOptions2d,

plotOptions3d
First stringlib::remove, stringlib::subs
FixedPrecision numeric::polyroots, numeric::solve
Flat plot2d, plot3d
Float readbytes, writebytes
FocalPoint plotOptions3d
Font plotOptions2d, plotOptions3d
FontFamily plotOptions2d, plotOptions3d
FontSize plotOptions2d, plotOptions3d
FontStyle plotOptions2d, plotOptions3d
Force prog::trace, unloadmod
Forced package
ForeGround plotOptions2d, plotOptions3d
Frobenius norm
Function plot2d, plot3d
GC numeric::quadrature
GL numeric::quadrature
GT numeric::quadrature
Gauss numeric::quadrature
GaussChebyshev numeric::quadrature
GaussLegendre numeric::quadrature
GaussTschebyscheff numeric::quadrature

8

Option used in

Gif plotOptions3d
Global prog::check, unassume
Grid plot2d, plot3d, plotOptions3d, plotfunc2d,

plotfunc3d
GridLines plot2d, plot3d, plotOptions2d
GridLinesColor plot2d, plot3d, plotOptions2d
GridLinesStyle plot2d, plot3d, plotOptions2d
GridLinesWidth plot2d, plot3d, plotOptions2d
Hard numeric::det, numeric::eigenvalues,

numeric::eigenvectors, numeric::expMatrix,
numeric::fMatrix, numeric::factorCholesky,
numeric::factorLU, numeric::factorQR,
numeric::fft, numeric::inverse,
numeric::invfft, numeric::leastSquares,
numeric::linsolve, numeric::matlinsolve,
numeric::singularvalues,
numeric::singularvectors

HardwareFloats numeric::det, numeric::eigenvalues,
numeric::eigenvectors, numeric::expMatrix,
numeric::fMatrix, numeric::factorCholesky,
numeric::factorLU, numeric::factorQR,
numeric::fft, numeric::inverse,
numeric::invfft, numeric::leastSquares,
numeric::linsolve, numeric::matlinsolve,
numeric::singularvalues,
numeric::singularvectors

Height plot2d, plot3d
HiddenLine plot3d
Horizontal plot::boxplot
Ident matchlib::analyze
IgnoreProperties solve
IgnoreSpecialCases solve
Impulses plot2d, plot3d
Include linalg::expr2Matrix
Index stringlib::contains, strmatch
IndexList stringlib::contains
Infinity norm
Info prog::changes
Inner combinat::compositions,

combinat::integerVectors,
combinat::partitions

InputOnly protocol
IntMod gcd, lcm, poly
Interactive detools::detSys, detools::ncDetSys

9

Option used in

InteractiveInput numlib::mpqs
Interpolation numeric::expMatrix
InverseTransformationlinalg::ogCoordTab
JPEG plot2d, plot3d, plotOptions2d,

plotOptions3d
KeepOrder listlib::removeDuplicates, print
Krylov numeric::expMatrix
Labeling plotOptions2d, plotOptions3d
Labels plotOptions2d, plotOptions3d
LargeFactorBound numlib::mpqs
Laurent Type::Series
Left Series::Puiseux, Series::gseries,

Type::Series, asympt, limit,
output::tableForm, series,
stringlib::format, student::plotRiemann,
student::riemann

Length Network::allShortPath, Network::longPath,
Network::shortPath, Network::shortPathTo,
combinat::compositions,
combinat::integerVectors,
combinat::partitions

Level prog::check
LexOrder degreevec, groebner::dimension,

groebner::gbasis, groebner::normalf,
groebner::spoly, lcoeff, lmonomial, lterm,
nthcoeff, nthmonomial, nthterm, tcoeff

LieGroupAction numeric::odesolveGeometric
Lin plotOptions2d, plotOptions3d
LineStyle plot2d, plot3d, plotOptions2d,

plotOptions3d
LineWidth plot2d, plot3d, plot::boxplot,

plotOptions2d, plotOptions3d
Lines plot2d, plot3d
LinesPoints plot2d, plot3d
List normal, plot2d, plot3d
LittleEndian readbytes, writebytes
Local prog::check
Localf prog::check
Log plotOptions2d, plotOptions3d
Logic linopt::corners
MaxCalls numeric::quadrature
MaxDegree solve
MaxInFactorbase numlib::mpqs

10

Option used in

MaxLength combinat::compositions,
combinat::integerVectors,
combinat::partitions

MaxPart combinat::compositions,
combinat::integerVectors,
combinat::partitions

MaxSlope combinat::compositions,
combinat::integerVectors,
combinat::partitions

Mem prog::trace
Merge numeric::realroots, plot::boxplot
Mesh plot3d
Middle student::plotRiemann, student::riemann
MinLength combinat::compositions,

combinat::integerVectors,
combinat::partitions

MinPart combinat::compositions,
combinat::integerVectors,
combinat::partitions

MinSlope combinat::compositions,
combinat::integerVectors,
combinat::partitions

Minimize numeric::rationalize
MinorExpansion numeric::det
Mode plot2d, plot3d
Monic groebner::gbasis
MultiSolutions numeric::fsolve, numeric::solve
Multiple linalg::eigenvalues, numeric::solve, solve
NC numeric::quadrature
Name setuserinfo
Nary operator
Natural numeric::cubicSpline,

numeric::cubicSpline2d
NewVars detools::transform
NewtonCotes numeric::quadrature
NoArgs prog::trace
NoCheck linalg::factorCholesky,

numeric::factorCholesky
NoErrors numeric::eigenvectors,

numeric::singularvectors
NoLeftVectors numeric::eigenvectors,

numeric::singularvectors
NoNL fprint, print, userinfo
NoOperators misc::maprec

11

Option used in

NoRightVectors numeric::eigenvectors,
numeric::singularvectors

NoWarning numeric::inverse, numeric::leastSquares,
numeric::linsolve, numeric::matlinsolve,
series, stats::equiprobableCells

NonNegative linopt::Transparent, linopt::corners,
linopt::maximize, linopt::minimize,
linopt::plot_data

NonNested import::readdata
None plotOptions2d, plotOptions3d, unprotect
Normal stats::tTest
Not stats::selectRow
NotAKnot numeric::cubicSpline,

numeric::cubicSpline2d
Notched plot::boxplot
Null match
NumberOfPolynomials numlib::mpqs
Off plotOptions2d, plotOptions3d
On plotOptions2d, plotOptions3d
Only plot3d
Order groebner::gbasis
Origin plotOptions2d, plotOptions3d
Outer combinat::compositions,

combinat::integerVectors,
combinat::partitions

Output output::tableForm
PDF stats::csGOFT
PF stats::csGOFT
ParabolicCylindrical linalg::laplacian, linalg::ogCoordTab
Param detools::detSys, detools::ncDetSys
Path Network::allShortPath, Network::longPath,

Network::shortPath, Network::shortPathTo,
prog::tcov

Periodic numeric::cubicSpline,
numeric::cubicSpline2d

Plain fread, operator, prog::calltree,
prog::trace, read

PlotDevice plot2d, plot3d, plotOptions2d,
plotOptions3d

PointStyle plot2d, plot3d, plotOptions2d,
plotOptions3d

PointWidth plot2d, plot3d, plotOptions2d,
plotOptions3d

Points plot2d, plot3d

12

Option used in

PolyExpr indets
Population stats::covariance, stats::stdev,

stats::variance
PostMap misc::maprec
Postfix operator
Postscript plot2d, plot3d, plotOptions2d,

plotOptions3d
PreMap misc::maprec
Prefix operator
Pretty userinfo
PrimeLimit ifactor
PrincipalValue int, solve
Properties anames
Protect prog::check
ProtectLevelError protect, unprotect
ProtectLevelNone protect, unprotect
ProtectLevelWarning protect, unprotect
Protected anames
Puiseux Type::Series
QRD numeric::leastSquares
Quiet fread, package, prog::changes,

prog::exprtree, read, setuserinfo
Quo divide, pdivide
RK4 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF34 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF43 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF45a numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF45b numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF54a numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF54b numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF78 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
RKF87 numeric::butcher, numeric::odesolve,

numeric::odesolveGeometric
Random numeric::fsolve, numeric::solve
Ranges linalg::ogCoordTab
Raster plotOptions2d, plotOptions3d

13

Option used in

RatExpr indets
Raw fopen, readbytes, writebytes
Read fopen
Real Series::Puiseux, Type::Series, limit,

series
RealValuesOnly plot2d, plot3d, plotOptions2d,

plotOptions3d
RealsOnly plotOptions2d, plotOptions3d
Recursive prog::allFunctions
RelativeError numeric::odesolve, numeric::odesolve2,

numeric::odesolveGeometric
Rem divide, lmonomial, pdivide
Remove prog::changes
Reorder groebner::gbasis
Repeat combinat::subwords
Restore numeric::rationalize
RestrictedSearch numeric::fsolve, numeric::solve
ReturnType numeric::eigenvectors, numeric::expMatrix,

numeric::fMatrix, numeric::factorCholesky,
numeric::factorLU, numeric::factorQR,
numeric::inverse, numeric::leastSquares,
numeric::matlinsolve,
numeric::singularvectors

Right Series::Puiseux, Series::gseries,
Type::Series, asympt, limit,
output::tableForm, series,
stringlib::format, student::plotRiemann,
student::riemann

Root pathname
RotationParabolic linalg::laplacian, linalg::ogCoordTab
SVD numeric::leastSquares
Sample stats::covariance, stats::stdev,

stats::variance
Save prog::check
Scales linalg::ogCoordTab
Scaling plot2d, plot3d, plotOptions2d,

plotOptions3d
Screen plotOptions2d, plotOptions3d
SearchLevel numeric::realroot

14

Option used in

Seed stats::betaRandom, stats::binomialRandom,
stats::cauchyRandom,
stats::chisquareRandom,
stats::erlangRandom,
stats::exponentialRandom, stats::fRandom,
stats::gammaRandom,
stats::geometricRandom,
stats::hypergeometricRandom,
stats::logisticRandom,
stats::normalRandom, stats::poissonRandom,
stats::tRandom, stats::uniformRandom,
stats::weibullRandom

Shift plot::boxplot
Short readbytes, writebytes
ShowAssumptions linsolve, numeric::linsolve,

numeric::matlinsolve
SieveArrayLimit numlib::mpqs
SignedByte readbytes, writebytes
SignedShort readbytes, writebytes
SignedWord readbytes, writebytes
Small output::tree
Smoothness plot2d, plot3d
Soft numeric::det, numeric::eigenvalues,

numeric::eigenvectors, numeric::expMatrix,
numeric::fMatrix, numeric::factorCholesky,
numeric::factorLU, numeric::factorQR,
numeric::fft, numeric::inverse,
numeric::invfft, numeric::leastSquares,
numeric::linsolve, numeric::matlinsolve,
numeric::singularvalues,
numeric::singularvectors

SoftwareFloats numeric::det, numeric::eigenvalues,
numeric::eigenvectors, numeric::expMatrix,
numeric::fMatrix, numeric::factorCholesky,
numeric::factorLU, numeric::factorQR,
numeric::fft, numeric::inverse,
numeric::invfft, numeric::leastSquares,
numeric::linsolve, numeric::matlinsolve,
numeric::singularvalues,
numeric::singularvectors

SolidLines plot2d, plot3d, plotOptions2d,
plotOptions3d

Solved detools::detSys
Sort output::tableForm

15

Option used in

Special linalg::matlinsolve, prog::check
Spherical linalg::laplacian, linalg::ogCoordTab
SquareFree numeric::polyroots, numeric::solve
Squares plot2d, plot3d, plotOptions2d,

plotOptions3d
StartingValues stats::reg
Stat prog::tcov
Status prog::test
Steps detools::ncDetSys, plotOptions2d,

plotOptions3d
Stepsize numeric::odesolve, numeric::odesolve2,

numeric::odesolveGeometric
Style plot2d, plot3d
Symbolic detools::modode, linsolve,

numeric::cubicSpline,
numeric::cubicSpline2d, numeric::det,
numeric::factorCholesky,
numeric::factorLU, numeric::factorQR,
numeric::fft, numeric::inverse,
numeric::invfft, numeric::leastSquares,
numeric::linsolve, numeric::matlinsolve,
numeric::odesolve, numeric::odesolve2,
numeric::odesolveGeometric, stats::tCDF

Symmetric numeric::factorCholesky
System Pref::keepOrder
TIFF plot2d, plot3d, plotOptions2d,

plotOptions3d
Table Dom::BaseDomain
Taylor Type::Series
TaylorExpansion numeric::expMatrix
TempFile fopen, readbytes, writebytes
Terms polylib::randpoly
Test linalg::vectorPotential
Text finput, fopen, fprint, userinfo, write
Ticks plot2d, plot3d, plotOptions2d,

plotOptions3d
Title plot2d, plot3d, plotOptions2d,

plotOptions3d
TitlePosition plot2d, plot3d, plotOptions2d,

plotOptions3d
Tolerance numlib::mpqs
Torus linalg::laplacian, linalg::ogCoordTab
Transformation linalg::ogCoordTab
Transparent plot3d

16

Option used in

Transposed linalg::vandermondeSolve
TrapError prog::test
Tree Dom::BaseDomain, prog::calltree
ULine plot3d
UnConstrained plotOptions2d, plotOptions3d
Undefined discont
Undirected Series::Puiseux, Type::Series, series
Unimodular linalg::randomMatrix
Unique linalg::matlinsolve, output::tableForm
UnitVectors linalg::ogCoordTab
Unquoted fprint, output::tableForm, print
UnrestrictedSearch numeric::fsolve, numeric::solve
Unsimplified subs, subsex, subsop
UsePrimeTab ifactor
User anames
VLine plot3d
Vertical plot::boxplot
ViewingBox plot2d, plot3d, plotOptions2d,

plotOptions3d
Vweight Network::addVertex, Network::changeVertex,

Network::new
Warning prog::changes, unprotect
Width output::tableForm
Widths plot::boxplot
WireFrame plot3d
Word readbytes, writebytes
Write fopen, fprint, protocol, write
XMax plotOptions2d, plotOptions3d
XMin plotOptions2d, plotOptions3d
YMax plotOptions2d, plotOptions3d
YMin plotOptions2d, plotOptions3d
ZMax plotOptions3d
ZMin plotOptions3d
andor rewrite
dom slot
escape proc
hold proc
logic simplify
noDebug debug, proc
relation simplify
remember proc
sincos combine, rewrite
sinhcosh combine, rewrite
xCK45 numeric::odesolve,

numeric::odesolveGeometric

17

Option used in

xCK54 numeric::odesolve,
numeric::odesolveGeometric

xDOPRI45 numeric::odesolve,
numeric::odesolveGeometric

xDOPRI54 numeric::odesolve,
numeric::odesolveGeometric

xRKF34 numeric::odesolve,
numeric::odesolveGeometric

xRKF43 numeric::odesolve,
numeric::odesolveGeometric

xRKF45a numeric::odesolve,
numeric::odesolveGeometric

xRKF45b numeric::odesolve,
numeric::odesolveGeometric

xRKF54a numeric::odesolve,
numeric::odesolveGeometric

xRKF54b numeric::odesolve,
numeric::odesolveGeometric

xRKF78 numeric::odesolve,
numeric::odesolveGeometric

xRKF87 numeric::odesolve,
numeric::odesolveGeometric

:= – assign variables

x := value assigns the variable x a value.

[x1, x2, ...] := [value1, value2, ...] assigns the variables x1, x2 etc.
the corresponding values value1, value2 etc.

f(X1, X2, ...) := value adds an entry to the remember table of the pro-
cedure f.

Call(s):

A x := value

A _assign(x, value)

A [x1, x2, ...] := [value1, value2, ...]

A _assign([x1, x2, ...], [value1, value2, ...])

A f(X1, X2, ...) := value

A _assign(f(X1, X2, ...), value)

18

Parameters:
x, x1, x2, ... — identifiers or indexed identifiers
value, value1, value2, ... — arbitrary MuPAD objects
f — a procedure or a function

environment
X1, X2, ... — arbitrary MuPAD objects

Return Value: value or [value1, value2, ...], respectively.

Related Functions: anames, assign, assignElements, delete,
evalassign

Details:

A _assign(x, value) is equivalent to x := value.

A _assign([x1, x2, ...], [value1, value2, ...]) is equivalent to [x1,
x2, ...] := [value1, value2, ...]. Both lists must have the same
number of elements.

A If x is neither a list, nor a table, nor an array, nor a matrix, nor
an element of a domain with a slot "set_index", then an indexed
assignment such as x[i] := value implicitly turns the identifier x
into a table with a single entry (i = value). Cf. example 2.

!

A The assignment f(X1, X2, ...) := value adds an entry to the remem-
ber table of the procedure f.

If f is neither procedure nor a function environment, then f is
implicitly turned into a (trivial) procedure with a single entry (X1,
X2, ...) = value in its remember table. Cf. example 3.

!

A Identifiers on the left hand side of an assignment are not evaluated (use
evalassign if this is not desired). I.e., in x := value, the previous value
of x, if any, is deleted and replaced by the new value. Note, however, that
the index of an indexed identifier is evaluated. I.e., in x[i] := value,
the index i is replaced by its current value before the corresponding entry
of x is assigned the value. Cf. example 4.

A _assign is a function of the system kernel.

Example 1. The assignment operator := can be applied to a single identifier
as well as to a list of identifiers:

>> x := 42: [x1, x2, x3] := [43, 44, 45]: x, x1, x2, x3

42, 43, 44, 45

19

In case of lists, all variables of the left-hand side are assigned their values
simultaneously :

>> [x1, x2] := [3, 4]: [x1, x2] := [x2, x1]: x1, x2

4, 3

The functional equivalent of the assign operator := is the function _assign:

>> _assign(x, 13): _assign([x1, x2], [14, 15]): x, x1, x2

13, 14, 15

Assigned values are deleted via the keyword delete:

>> delete x, x1, x2: x, x1, x2

x, x1, x2

Example 2. Assigning a value to an indexed identifier, a corresponding table
(table, DOM_TABLE) is generated implicitly, if the identifier was not assigned a
list, a table, an array, or a matrix before:

>> delete x: x[1] := 7: x

table(
1 = 7

)

If x is a list, a table, an array, or a matrix, then an indexed assignment adds a
further entry or changes an existing entry:

>> x[abc] := 8: x

table(
abc = 8,
1 = 7

)

>> x := [a, b, c, d]: x[3] := new: x

[a, b, new, d]

>> x := array(1..2, 1..2): x[2, 1] := value: x

+- -+
| ?[1, 1], ?[1, 2] |
| |
| value, ?[2, 2] |
+- -+

>> delete x:

20

Example 3. Consider a simple procedure:

>> f := x -> sin(x)/x: f(0)

Error: Division by zero;
during evaluation of ’f’

The following assignment adds an entry to the remember table:

>> f(0) := 1: f(0)

1

If f does not evaluate to a function, then a trivial procedure with a remember
table is created implicitly:

>> delete f: f(x) := x^2: expose(f)

proc()
name f;
option remember;

begin
procname(args())

end_proc

Note that the remember table only provides a result for the input x:

>> f(x), f(1.0*x), f(y)

2
x , f(1.0 x), f(y)

>> delete f:

Example 4. The left hand side of an assignment is not evaluated. In the
following, x := 3 assigns a new value to x, not to y:

>> x := y: x := 3: x, y

3, y

Consequently, the following is not a multiple assignment to the identifiers in
the list, but a single assignment to the list L:

>> L := [x1, x2]: L := [21, 22]: L, x1, x2

[21, 22], x1, x2

However, indices are evaluated in indexed assignments:

21

>> i := 2: x[i] := value: x

table(
2 = value

)

>> for i from 1 to 3 do x[i] := i^2 end_for: x

table(
3 = 9,
1 = 1,
2 = 4

)

>> delete x, L, i:

Example 5. Since an assignment has a return value (the assigned value), the
following command assigns values to several identifiers simultaneously:

>> a := b := c := 42: a, b, c

42, 42, 42

For syntactical reasons, the inner assignment has to be enclosed by additional
brackets in the following command:

>> a := sin((b := 3)): a, b

sin(3), 3

>> delete a, b, c:

. – concatenate objects

object1.object2 concatenates two objects.

_concat(object1, object2, ...) concatenates an arbitrary number of ob-
jects.

Call(s):

A object1 . object2

A _concat(object1, object2, ...)

22

Parameters:
object1 — a character string, an identifier, or a list
object2 — a character string, an identifier, an integer, or a list

Return Value: an object of the same type as object1.

Overloadable by: object1, object2, ...

Related Functions: @, append

Details:

A _concat(object1, object2) is equivalent to object1.object2. The
function call _concat(object1, object2, object3, ...) is equivalent
to

((object1.object2).object3).

_concat() returns the void object of type DOM_NULL.

A The following combinations are possible:

object1 object2 object1.object2
string string string
string identifier string
string integer string

identifier string identifier
identifier identifier identifier
identifier integer identifier

list list list

E.g., x.1 creates the identifier x1.

A Note that the objects to be concatenated are evaluated before concat-
enation. Thus, if x := y, i := 1, the concatenation x.i produces the
identifier y1. However, the resulting identifier y1 is not fully evaluated.
Cf. example 2.

A _concat is a function of the system kernel.

Example 1. We demonstrate all possible combinations of types that can be
concatenated. Strings are produced if the first object is a string:

>> "x"."1", "x".y, "x".1

"x1", "xy", "x1"

23

Identifiers are produced if the first object is an identifier:

>> x."1", x.y , x.1

x1, xy, x1

The concatenation operator . also serves for concatenating lists:

>> [1, 2] . [3, 4]

[1, 2, 3, 4]

>> L := []: for i from 1 to 10 do L := L . [x.i] end_for: L

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]

>> delete L:

Example 2. We demonstrate the evaluation strategy of concatenation. Before
concatenation, the objects are evaluated:

>> x := "Val": i := ue: x.i

"Value"

>> ue := 1: x.i

"Val1"

An identifier produced via concatenation is not fully evaluated:

>> delete x: x1 := 17: x.1, eval(x.1)

x1, 17

The . operator can be used to create variables dynamically. They can be
assigned values immediately:

>> delete x: for i from 1 to 5 do x.i := i^2 end_for:

Again, the result of the concatenation is not fully evaluated:

>> x.i $ i= 1..5

x1, x2, x3, x4, x5

>> eval(%)

1, 4, 9, 16, 25

>> delete i, ue: (delete x.i) $ i = 1..5:

24

Example 3. The function _concat can be used to concatenate an arbitrary
number of objects:

>> _concat("an", " ", "ex", "am", "ple")

"an example"

>> _concat("0", " ".i $ i = 1..15)

"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15"

>> _concat([], [x.i] $ i = 1..10)

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]

.. – range operator

l..r defines a “range” with the left bound l and the right bound r.

Call(s):

A l .. r

A _range(l, r)

Parameters:

l, r — arbitrary MuPAD objects

Return Value: an expression of type "_range".

Overloadable by: l, r

Related Functions: $, Dom::Interval

Details:

A A range is a technical construct that is used to specify ranges of num-
bers when calling various system functions such as int, array, op, or
the sequence operator $. Usually, l..r represents a real interval (e.g.,
int(f(x), x = l..r)), or the sequence of integers from l to r.

A _range(l, r) is equivalent to l..r.

A To create and operate on intervals in a mathematical sense, use the data
type Dom::Interval.

A _range is a function of the system kernel.

25

Example 1. A range can be defined with the .. operator as well as with a
call to the function _range:

>> _range(1, 42), 1..42

1..42, 1..42

In the following call, the range represents an interval:

>> int(x, x = l..r)

2 2
r l
-- - --
2 2

Ranges can be used for accessing the operands of expressions or to define the
dimension of an array:

>> op(f(a, b, c, d, e), 2..4)

b, c, d

>> array(1..3, [a1, a2,a3])

+- -+
| a1, a2, a3 |
+- -+

Ranges can also be used for creating expression sequences:

>> i^3 $ i = 1..5

1, 8, 27, 64, 125

Example 2. The range operator .. is a technical device that does not check
its parameters with respect to their semantics. It just creates a range which is
interpreted in the context in which it is used later. Any bounds are accepted:

>> float(PI) .. -sqrt(2)/3

1/2
2

3.141592654..- ----
3

=, <> – equations and inequalities

x = y defines an equation.

x <> y defines an inequality.

26

Call(s):

A x = y

A _equal(x, y)

A x <> y

A _unequal(x, y)

Parameters:

x, y — arbitrary MuPAD objects

Return Value: an expression of type "_equal" or "_unequal", respectively.

Related Functions: <, <=, >, >=, and, bool, FALSE, if, lhs, not, or,
repeat, rhs, solve, TRUE, while, UNKNOWN

Details:

A x = y is equivalent to the function call _equal(x, y).

A x <> y is equivalent to the function call _unequal(x, y).

A The operators = and <> return symbolic expressions representing equa-
tions and inequalities, respectively.

The resulting expressions can be evaluated to TRUE or FALSE by the func-
tion bool. They also serve as control conditions in if, repeat, and while
statements. In all these cases, testing for equality or inequality is a purely
syntactical test. E.g., bool(0.5 = 1/2) returns FALSE although both
numbers coincide numerically. Correspondingly, bool(0.5 <> 1/2) re-
turns TRUE.

Further, Boolean expressions can be evaluated to TRUE, FALSE, or UNKNOWN
by the function is. Tests using is are semantical comparing x and y
subject to mathematical considerations.

A Equations and inequalities have two operands: the left hand side and the
right hand side. One may use lhs and rhs to extract these operands.

A not x = y is always converted to x <> y.

A not x <> y is always converted to x = y.

A _equal is a function of the system kernel.

A _unequal is a function of the system kernel.

27

Example 1. In the following, note the difference between syntactical and nu-
merical equality. The numbers 1.5 and 3/2 coincide numerically. However, 1.5
is of domain type DOM_FLOAT, whereas 3/2 is of domain type DOM_RAT. Con-
sequently, they are not regarded as equal in the following syntactical test:

>> 1.5 = 3/2; bool(%)

1.5 = 3/2

FALSE

The following expressions coincide syntactically:

>> _equal(1/x, diff(ln(x),x)); bool(%)

1 1
- = -
x x

TRUE

The Boolean operator not converts equalities and inequalities:

>> not a = b, not a <> b

a <> b, a = b

Example 2. The examples below demonstrate how = and <> deal with non-
mathematical objects and data structures:

>> if "text" = "t"."e"."x"."t" then "yes" else "no" end

"yes"

>> bool(table(a = PI) <> table(a = sqrt(2)))

TRUE

Example 3. We demonstrate the difference between the syntactical test via
bool and the semantical test via is:

>> bool(1 = x/(x + y) + y/(x + y)), is(1 = x/(x + y) + y/(x + y))

FALSE, TRUE

28

Example 4. Equations and inequalities are typical input objects for system
functions such as solve:

>> solve(x^2 - 2*x = -1, x)

{1}

>> solve(x^2 - 2*x <> -1, x)

C_ minus {1}

<, <=, >, >= – inequalities

x < y, x <= y, x > y, and x >= y define inequalities.

Call(s):

A x < y

A _less(x, y)

A x <= y

A _leequal(x, y)

A x > y

A _less(y, x)

A x >= y

A _leequal(y, x)

Parameters:

x, y — arbitrary MuPAD objects

Return Value: an expression of type "_less" or "_leequal"", respectively.

Overloadable by: x, y

Related Functions: <>, =, and, bool, FALSE, if, lhs, not, or, repeat, rhs,
solve, TRUE, while, UNKNOWN

Details:

A x > y and x >= y are always converted to y < x and y <= x, respect-
ively.

A x < y is equivalent to the function call _less(x,y). It represents the
Boolean statement “x is smaller than y”.

29

A x <= y is equivalent to the function call _leequal(x,y). It represents
the Boolean statement “x is smaller than or equal to y”.

A These operators return symbolic Boolean expressions. If only real num-
bers of Type::Real are involved, these expressions can be evaluated to
TRUE or FALSE by the function bool. They also serve as control condi-
tions in if, repeat, and while statements. For floating point intervals,
these operators are interpreted as “strictly smaller than” and so on, see
example 2.

Further, Boolean expressions can be evaluated to TRUE, FALSE, or UNKNOWN
by the function is. Tests using is can also be applied to constant symbolic
expressions. Cf. example 4.

A bool also handles inequalities involving character strings. It compares
them with respect to the lexicographical ordering.

A Inequalities have two operands: the left hand side and the right hand side.
One may use lhs and rhs to extract these operands.

A _less is a function of the system kernel.

A _leequal is a function of the system kernel.

Example 1. The operators <, <=, >, and >= produce symbolic inequalities.
They can be evaluated to TRUE or FALSE by the function bool if only real
numbers of type Type::Real (integers, rationals, and floats) are involved:

>> 1.5 <= 3/2; bool(%)

1.5 <= 3/2

TRUE

Note that bool does not handle Boolean expressions that involve exact expres-
sions, even if they represent real numbers:

>> _less(PI, sqrt(2) + 17/10); bool(%)

1/2
PI < 2 + 17/10

Error: Can’t evaluate to boolean [_less]

Example 2. Comparison of intervals is interpreted as “strict”, that is, all
combinations of numbers in the intervals must fulfill the relation:

>> bool(0...1 < 2...3), bool(0...2 < 1...3),
bool(0...1 < 1...2)

30

TRUE, FALSE, FALSE

>> bool(0...1 <= 2...3), bool(0...2 <= 1...3),
bool(0...1 <= 1...2)

TRUE, FALSE, TRUE

Example 3. This examples demonstrates how character strings can be com-
pared:

>> if "text" < "t"."e"."x"."t"."book" then "yes" else "no" end

"yes"

>> bool("aa" >= "b")

FALSE

Example 4. Note that bool only compares numbers of type Type::Real,
whereas is can also compare exact constant expressions:

>> bool(10 < PI^2 + sqrt(2)/10)

Error: Can’t evaluate to boolean [_less]

>> is(10 < PI^2 + sqrt(2)/10)

TRUE

Example 5. Inequalities are valid input objects for the system function solve:

>> solve(x^2 - 2*x < 3, x)

]-1, 3[

>> solve(x^2 - 2*x >= 3, x)

]-infinity, -1] union [3, infinity[

31

Example 6. The operators < and <= can be overloaded by user-defined do-
mains:

>> myDom := newDomain("myDom"): myDom::print := x -> extop(x):

Without overloading _less or _leequal, elements of this domain cannot be
compared:

>> x := new(myDom, PI): y := new(myDom, sqrt(10)): bool(x < y)

Error: Can’t evaluate to boolean [_less]

Now, a slot "_less" is defined. It is called, when an inequality of type "_less"
is evaluated by bool. The slot compares floating point approximations if the
arguments are not of type Type::Real:

>> myDom::_less := proc(x, y)
begin

x := extop(x, 1):
y := extop(y, 1):
if not testtype(x, Type::Real) then

x := float(x):
if not testtype(x, Type::Real) then

error("cannot compare")
end_if

end_if:
if not testtype(y, Type::Real) then

y := float(y):
if not testtype(y, Type::Real) then

error("cannot compare")
end_if

end_if:
bool(x < y)

end_proc:

>> x, y, bool(x < y), bool(x > y)

1/2
PI, 10 , TRUE, FALSE

>> bool(new(myDom, I) < new(myDom, PI))

Error: cannot compare [myDom::_less]

>> delete myDom, x, y:

+ – add expressions

x + y + ... computes the sum of x, y etc.

32

Call(s):

A x + y + ...

A _plus(x, y, ...)

Parameters:
x, y, ... — arithmetical expressions, polynomials of type DOM_POLY,

sets, equations, inequalities, or comparisons

Return Value: an arithmetical expression, a polynomial, a set, an equation,
an inequality, or a comparison.

Overloadable by: x, y, ...

Related Functions: ^, /, *, -, _invert, _negate, poly, Pref::keepOrder,
sum

Details:

A x + y + ... is equivalent to the function call _plus(x, y, ...).

A All terms that are numbers of type Type::Numeric are automatically
combined to a single number.

A Terms of a symbolic sum may be rearranged internally. Cf. example 1.
The user can control the ordering by the preference Pref::keepOrder.
See also the documentation for print.

A _plus accepts an arbitrary number of arguments. In conjunction with the
sequence operator $, this function is the recommended tool for computing
finite sums. Cf. example 2. The function sum may also serve for computing
such sums. However, sum is designed for the computation of symbolic and
infinite sums. It is slower than _plus.

A x - y is internally represented as x + y*(-1) = _plus(x, _mult(y,
-1)). See _subtract for details.

A For adding equalities, inequalities, and comparisons, the following rules
are implemented:

• Adding an arithmetical expression adds the expression to both sides.

• Adding an equality adds the left hand sides and the right hand sides
separately.

• Adding a comparison does likewise, taking care of the correct oper-
ator. Adding a comparison to an inequality is not permitted.

Cf. example 4.

33

A Many library domains overload _plus by an appropriate slot "_plus".
Sums involving elements of library domains are processed as follows:

A sum x + y + ... is searched for elements of library domains from
left to right. Let z be the first term that is not of one of the basic
types provided by the kernel (numbers, expressions, etc.). If the domain
d = z::dom = domtype(z) has a slot "_plus", it is called in the form
d::_plus(x, y, ...). The result returned by d::_plus is the result of
x + y +

Users should implement the slot d::_plus of their domains d according
to the following convention:

• If all terms are elements of d, an appropriate sum of type d should
be returned.

• If at least one term cannot be converted to an element of d, the slot
should return FAIL.

• Care must be taken if there are terms that are not of type d, but
can be converted to type d. Such terms should be converted only
if the mathematical semantics is obvious to any user who uses this
domain as a ’black box’ (e.g., integers may be regarded as rational
numbers because of the natural mathematical embedding). If in
doubt, the "_plus" method should return FAIL instead of using
implicit conversions. If implicit conversions are used, they must be
well-documented.

Cf. examples 6 and 7.

Most of the library domains in MuPAD’s standard installation comply
with this convention.

A _plus() returns the number 0.

A Polynomials of type DOM_POLY are added by +, if they have the same
indeterminates and the same coefficient ring.

A For finite sets X, Y, the sum X + Y is the set {x+ y; x ∈ X, y ∈ X}.

A _plus is a function of the system kernel.

Example 1. Numerical terms are simplified automatically:

>> 3 + x + y + 2*x + 5*x - 1/2 - sin(4) + 17/4

8 x + y - sin(4) + 27/4

The ordering of the terms of a sum is not necessarily the same as on input:

>> x + y + z + a + b + c

34

a + b + c + x + y + z

>> 1 + x + x^2 + x^10

2 10
x + x + x + 1

Internally, this sum is a symbolic call of _plus:

>> op(%, 0), type(%)

_plus, "_plus"

Example 2. The functional equivalent _plus of the operator + is a handy
tool for computing finite sums. In the following, the terms are generated via
the sequence operator $:

>> _plus(i^2 $ i = 1..100)

338350

E.g., it is easy to add up all elements in a set:

>> S := {a, b, 1, 2, 27}: _plus(op(S))

a + b + 30

The following command “zips” two lists by adding corresponding elements:

>> L1 := [a, b, c]: L2 := [1, 2, 3]: zip(L1, L2, _plus)

[a + 1, b + 2, c + 3]

>> delete S, L1, L2:

Example 3. Polynomials of type DOM_POLY are added by +, if they have the
same indeterminates and the same coefficient ring:

>> poly(x^2 + 1, [x]) + poly(x^2 + x - 1, [x])

2
poly(2 x + x, [x])

Symbolic sums are returned if the indeterminates or the coefficient rings do not
match:

>> poly(x, [x]) + poly(x, [x, y])

poly(x, [x]) + poly(x, [x, y])

>> poly(x, [x]) + poly(x, [x], Dom::Integer)

poly(x, [x]) + poly(x, [x], Dom::Integer)

35

Example 4. Adding a constant to an equality, an inequality, or a comparison
amounts to adding it to both sides:

>> (a = b) + c, (a <> b) + c, (a <= b) + c, (a < b) + c

a + c = b + c, a + c <> b + c, a + c <= b + c, a + c < b + c

Adding an equality is performed by adding the left hand sides and the right
hand sides separately:

>> (a = b) + (c = d), (a <> b) + (c = d),
(a <= b) + (c = d), (a < b) + (c = d)

a + c = b + d, a + c <> b + d, a + c <= b + d, a + c < b + d

Inequalities can only be added to equalities:

>> (a = b) + (c <> d), (a <> b) + (c <> d),
(a <= b) + (c <> d), (a < b) + (c <> d)

a + c <> b + d, FAIL, FAIL, FAIL

The addition of comparisons takes of the difference between < and ≤ into
account. Note that MuPAD uses only these two comparison operators; > and
≥ are automatically rewritten:

>> (a = b) + (c <= d), (a <> b) + (c <= d),
(a <= b) + (c <= d), (a < b) + (c <= d);

a + c <= b + d, FAIL, a + c <= b + d, a + c < b + d

>> (a = b) + (c < d), (a <> b) + (c < d),
(a <= b) + (c < d), (a < b) + (c < d);

a + c < b + d, FAIL, a + c <= b + d, a + c < b + d

>> (a = b) + (c >= d), (a <> b) + (c >= d),
(a <= b) + (c >= d), (a < b) + (c >= d);

a + d <= b + c, FAIL, a + d <= b + c, a + d < b + c

>> (a = b) + (c > d), (a <> b) + (c > d),
(a <= b) + (c > d), (a < b) + (c > d);

a + d < b + c, FAIL, a + d <= b + c, a + d < b + c

Example 5. For finite sets X, Y, the sum X + Y is the set {x+y; x ∈ X, y ∈ Y }:

>> {a, b, c} + {1, 2}

{a + 1, a + 2, b + 1, b + 2, c + 1, c + 2}

36

Example 6. Various library domains such as matrix domains overload _plus:

>> x := Dom::Matrix(Dom::Integer)([1, 2]):
y := Dom::Matrix(Dom::Rational)([2, 3]):
x + y, y + x

+- -+ +- -+
3		3
	,	
5		5
+- -+ +- -+

If the terms in a sum x + y are of different type, the first term x tries to
convert y to the data type of x. If successful, the sum is of the same type as
x. In the previous example, x and y have different types (both are matrices,
but the component domains differ). Hence the sums x + y and y + x differ
syntactically, because they inherit their type from the first term:

>> bool(x + y = y + x)

FALSE

>> domtype(x + y), domtype(y + x)

Dom::Matrix(Dom::Integer), Dom::Matrix(Dom::Rational)

If x does not succeed to convert y, then FAIL is returned. In the following call,
the component 2/3 cannot be converted to an integer:

>> y := Dom::Matrix(Dom::Rational)([2/3, 3]): x + y

FAIL

>> delete x, y:

Example 7. This example demonstrates how to implement a slot "_plus" for
a domain. The following domain myString is to represent character strings.
The sum of such strings is to be the concatenation of the strings.

The "new" method uses expr2text to convert any MuPAD object to a string.
This string is the internal representation of elements of myString. The "print"
method turns this string into the screen output:

>> myString := newDomain("myString"):
myString::new := proc(x)
begin
if args(0) = 0 then x := "": end_if;
case domtype(x)
of myString do return(x);

37

of DOM_STRING do return(new(dom, x));
otherwise return(new(dom, expr2text(x)));

end_case
end_proc:
myString::print := x -> extop(x, 1):

Without a "_plus" method, the system function _plus handles elements of this
domain like any symbolic object:

>> y := myString(y): z := myString(z): 1 + x + y + z + 3/2

x + y + z + 5/2

Now, we implement the "_plus" method. It checks all arguments. Arguments
are converted, if they are not of type myString. Generally, such an implicit con-
version should be avoided. In this case, however, any object has a corresponding
string representation via expr2text and an implicit conversion is implemented.
Finally, the sum of myString objects is defined as the concatenation of the
internal strings:

>> myString::_plus := proc()
local n, Arguments, i;
begin
userinfo(10, "myString::_plus called with the arguments:",

args()):
n := args(0):
Arguments := [args()];
for i from 1 to n do
if domtype(Arguments[i]) <> myString then
// convert the i-th term to myString
Arguments[i] := myString::new(Arguments[i]):

end_if;
end_for:
myString::new(_concat(extop(Arguments[i], 1) $ i = 1..n))

end_proc:

setuserinfo(myString::_plus, 10):

Now, myString objects can be added:

>> myString("This ") + myString("is ") + myString("a string")

Info: myString::_plus called with the arguments:, This , is , \
a string

This is a string

In the following sum, y and z are elements of myString. The term y is the first
term that is an element of a library domain. Its "_plus" method is called and
concatenates all terms to a string of type myString:

38

>> 1 + x + y + z + 3/2;

Info: myString::_plus called with the arguments:, 1, x, y, z, \
3/2

1xyz3/2

>> delete myString, y, z:

Changes:

A Addition of equalities, inequalities, and comparisons was added.

- – subtract expressions

x - y computes the difference of x and y.

Call(s):

A x - y

A _subtract(x, y)

Parameters:
x, y — arithmetical expressions, polynomials of type DOM_POLY, or

sets

Return Value: an arithmetical expression, a polynomial, or a set.

Overloadable by: x, y

Related Functions: _invert, _negate, ^, /, *, +, poly, Pref::keepOrder

Details:

A x - y is equivalent to the function call _subtract(x, y).

A For numbers of type Type::Numeric, the difference is returned as a num-
ber.

A If neither x nor y are elements of library domains with "_subtract" meth-
ods, x - y is internally represented as x + y*(-1) = _plus(x, _mult(y,
-1)).

39

A If x or y is an element of a domain with a slot "_subtract", then this
method is used to compute x - y. Many library domains overload the -
operator by an appropriate "_subtract" slot. Differences are processed
as follows:

x - y is searched for elements of library domains from left to right. Let
z (either x or y) be the first term that is not of one of the basic types
provided by the kernel (numbers, expressions, etc.). If the domain d
= z::dom = domtype(z) has a slot "_subtract", it is called in the form
d::_subtract(x, y). The result returned by d::_subtract is the result
of x - y.

Users should implement the slot d::_subtract of their domains d accord-
ing to the following convention:

• If both x and y are elements of d, an appropriate difference of type
d should be returned.

• If either x or y cannot be converted to an element of d, the slot
should return FAIL.

• Care must be taken if either x or y is not of type d, but can be
converted to type d. This object should be converted only if the
mathematical semantics is obvious to any user who uses this domain
as a ’black box’ (e.g., integers may be regarded as rational numbers
because of the natural mathematical embedding). If in doubt, the
"_subtract" method should return FAIL instead of using implicit
conversions. If implicit conversions are used, they must be well-
documented.

Cf. examples 4 and 5.

Most of the library domains in MuPAD’s standard installation comply
with this convention.

A Polynomials of type DOM_POLY are subtracted by -, if they have the same
indeterminates and the same coefficient ring.

A For finite sets X, Y, the difference X - Y is the set {x− y; x ∈ X, y ∈ Y }.

A _subtract is a function of the system kernel.

Example 1. The difference of numbers is simplified to a number:

>> 1234 - 234, I + x - y - 4*I, 3 + x - y - 29/3

1000, x - y - 3 I, x - y - 20/3

Internally, a symbolic difference x - y is represented as the sum x + y*(-1):

>> type(x - y), op(x - y, 0), op(x - y, 1), op(x - y, 2)

40

"_plus", _plus, x, -y

>> op(op(x - y, 2))

y, -1

Example 2. Polynomials of type DOM_POLY are subtracted by -, if they have
the same indeterminates and the same coefficient ring:

>> poly(x^2 + 1, [x]) - poly(x^2 + x - 1, [x])

poly(- x + 2, [x])

Symbolic differences are returned if the indeterminates or the coefficient rings
do not match:

>> poly(x, [x]) - poly(x, [x, y])

poly(x, [x]) + poly((-1) x, [x, y])

>> poly(x, [x]) - poly(x, [x], Dom::Integer)

poly(x, [x]) + poly((-1) x, [x], Dom::Integer)

Example 3. For finite sets X, Y, the difference X - Y is the set {x − y; x ∈
X, y ∈ Y }:

>> {a, b, c} - {1, 2}

{a - 1, a - 2, b - 1, b - 2, c - 1, c - 2}

Example 4. Various library domains such as matrix domains overload _subtract:

>> x := Dom::Matrix(Dom::Integer)([2, 2]):
y := Dom::Matrix(Dom::Rational)([1, 3]):
x - y, y - x

+- -+ +- -+
1		-1
	,	
-1		1
+- -+ +- -+

41

If the terms in x - y are of different type, the first term x tries to convert y
to the data type of x. If successful, the difference is of the same type as x.
In the previous example, x and y have different types (both are matrices, but
the component domains differ). Consequently, x - y and y - x have different
types, because they inherit their type from the first term:

>> domtype(x - y), domtype(y - x)

Dom::Matrix(Dom::Integer), Dom::Matrix(Dom::Rational)

If x does not succeed to convert y, then FAIL is returned. In the following call,
the component 2/3 cannot be converted to an integer:

>> y := Dom::Matrix(Dom::Rational)([2/3, 3]): x - y

FAIL

The matrix domain defines x - y as x + (-y):

>> x::dom::_subtract

(x, y) -> dom::_plus(x, dom::_negate(y))

>> delete x, y:

Example 5. This example demonstrates how to implement a slot "_subtract"
for a domain. The following domain myString is to represent character strings.
The difference x - y of such strings is to remove all characters in y from x.

The "new" method uses expr2text to convert any MuPAD object to a string.
This string is the internal representation of elements of myString. The "print"
method turns this string into the screen output:

>> myString := newDomain("myString"):
myString::new := proc(x)
begin
if args(0) = 0 then x := "" end_if;
case domtype(x)
of myString do return(x);
of DOM_STRING do return(new(dom, x));
otherwise return(new(dom, expr2text(x)));

end_case
end_proc:
myString::print := x -> extop(x, 1):

Without a "_subtract" method, the system handles elements of this domain
like any symbolic object:

>> x := myString(x): y := myString(y): x - y

42

x - y

Now, we implement the "_subtract" method. It checks all arguments. Ar-
guments are converted if they are not of type myString. Generally, such an
implicit conversion should be avoided. In this case, however, any object has a
corresponding string representation via expr2text and an implicit conversion
is implemented. Finally, the difference x - y of myString objects removes all
characters in the string y from the string x:

>> myString::_subtract := proc(x, y)
local i, char;
begin
userinfo(10, "myString::_subtract called with ".

"the arguments:", args()):
// Convert all arguments to myString.
if domtype(x) <> myString then x := myString::new(x) end_if;
if domtype(y) <> myString then y := myString::new(y) end_if;
// extract the internal strings
x := extop(x, 1):
y := extop(y, 1):
// convert the strings to a list/set of characters
x := [x[i] $ i = 0 .. length(x) - 1];
y := {y[i] $ i = 0 .. length(y) - 1};
// remove all characters in y from x
for char in y do
x := subs(x, char = null());

end_for:
// concat the remaining characters in x
myString::new(_concat(op(x)))

end_proc:

setuserinfo(myString::_subtract, 10):

Now, myString objects can be subtracted:

>> myString("This is a string") - myString("is")

Info: myString::_subtract called with the arguments:, This is \
a string, is

Th a trng

In the following, y is the first term that is an element of a library domain with a
"_subtract" slot. This slot is called, converts xyz to an element of myString,
and removes the character y:

>> xyz - y

43

Info: myString::_subtract called with the arguments:, xyz, y

xz

The following xyz - x - y = (xyz - x) - y calls the "_subtract" method
twice:

>> xyz - x - y

Info: myString::_subtract called with the arguments:, xyz, x
Info: myString::_subtract called with the arguments:, yz, y

z

>> delete myString, x, y:

* – multiply expressions

x * y * ... computes the product of x, y etc.

Call(s):

A x * y * ...

A _mult(x, y, ...)

Parameters:
x, y, ... — arithmetical expressions, polynomials of type DOM_POLY,

sets, equations, inequalities, or comparisons

Return Value: an arithmetical expression, a polynomial, a set, an equation,
an inequality, or a comparison.

Overloadable by: x, y, ...

Related Functions: ^, /, +, -, _invert, _negate, poly, Pref::timesDot,
product

Details:

A x * y * ... is equivalent to the function call _mult(x, y, ...).

A All terms that are numbers of type Type::Numeric are automatically
combined to a single number.

44

A The terms of a symbolic product may be rearranged internally if no term
belongs to a library domain that overloads _mult: on terms composed of
kernel domains (numbers, identifiers, expressions etc.), multiplication is
assumed to be commutative. Cf. example 1.

Via overloading, the user can implement a non-commutative product for
special domains.

A _mult accepts an arbitrary number of arguments. In conjunction with
the sequence operator $, this function is the recommended tool for com-
puting finite products. Cf. example 2. The function product may also
serve for computing such products. However, product is designed for the
computation of symbolic and infinite products. It is slower than _mult.

A The quotient x/y is internally represented as x * (1/y) = _mult(x,
_power(y, -1)). See _divide for details.

A Many library domains overload _mult by an appropriate slot "_mult".
Products involving elements of library domains are processed as follows:

A product x * y * ... is searched for elements of library domains from
left to right. Let z be the first term that is not of one of the basic
types provided by the kernel (numbers, expressions, etc.). If the domain
d = z::dom = domtype(z) has a slot "_mult", it is called in the form
d::_mult(x, y, ...). The result returned by d::_mult is the result of
x * y *

Cf. examples 6 and 7.

A _mult() returns the number 1.

A Polynomials of type DOM_POLY are multiplied by *, if they have the same
indeterminates and the same coefficient ring. Use multcoeffs to multiply
polynomials with scalar factors.

A For finite sets X, Y, the product X * Y is the set {x y; x ∈ X, y ∈ X}.

A Equalities, inequalities, and comparisons can be multiplied with one an-
other or with arithmetical expressions. The results of such combinations
are demonstrated in example 5.

A _mult is a function of the system kernel.

Example 1. Numerical terms are simplified automatically:

>> 3 * x * y * (1/18) * sin(4) * 4

2 x y sin(4)

3

The ordering of the terms of a product is not necessarily the same as on input:

45

>> x * y * 3 * z * a * b * c

3 a b c x y z

Internally, this product is a symbolic call of _mult:

>> op(%, 0), type(%)

_mult, "_mult"

Note that the screen output does not necessarily reflect the internal order of
the terms in a product:

>> op(%2)

a, b, c, x, y, z, 3

In particular, a numerical factor is internally stored as the last operand. On
the screen, a numerical factor is displayed in front of the remaining terms:

>> 3 * x * y * 4

12 x y

>> op(%)

x, y, 12

Example 2. The functional equivalent _mult of the operator * is a handy tool
for computing finite products. In the following, the terms are generated via the
sequence operator $:

>> _mult(i $ i = 1..20)

2432902008176640000

E.g., it is easy to multiply all elements in a set:

>> S := {a, b, 1, 2, 27}: _mult(op(S))

54 a b

The following command “zips” two lists by multiplying corresponding elements:

>> L1 := [1, 2, 3]: L2 := [a, b, c]: zip(L1, L2, _mult)

[a, 2 b, 3 c]

>> delete S, L1, L2:

46

Example 3. Polynomials of type DOM_POLY are multiplied by *, if they have
the same indeterminates and the same coefficient ring:

>> poly(x^2 + 1, [x]) * poly(x^2 + x - 1, [x])

4 3
poly(x + x + x - 1, [x])

Symbolic products are returned if the indeterminates or the coefficient rings do
not match:

>> poly(x, [x]) * poly(x, [x, y])

poly(x, [x]) poly(x, [x, y])

>> poly(x, [x]) * poly(x, [x], Dom::Integer)

poly(x, [x]) poly(x, [x], Dom::Integer)

Multiplication of polynomials with scalar factors cannot be achieved with *:

>> 2 * y * poly(x, [x])

2 poly(x, [x]) y

Use multcoeffs instead:

>> multcoeffs(poly(x^2 - 2, [x]), 2*y)

2
poly((2 y) x - 4 y, [x])

Example 4. For finite sets X, Y, the product X * Y is the set {x y; x ∈ X, y ∈
Y }:

>> {a, b, c} * {1, 2}

{a, b, c, 2 a, 2 b, 2 c}

Note that complex numbers of type DOM_INT, DOM_RAT, DOM_COMPLEX, and
DOM_FLOAT are implicitly converted to one-element sets, while identifiers are
not:

>> 2 * {a, b, c}

{2 a, 2 b, 2 c}

>> a * {b, c}, PI * {3, 4}

{b, c} a, {3, 4} PI

47

Example 5. Multiplying by a constant expression is performed on both sides
of an equation:

>> (a = b) * c

a c = b c

For inequalities, this step is only performed if the constant is known to be
nonzero:

>> assume(d <> 0):
(a <> b) * c, (a <> b) * d;
delete d:

(a <> b) c, a d <> b d

The multiplication of a comparison with a constant is only defined for real
numbers. Even for these, the result depends on the sign of the constant, since
multiplication with a negative constant changes the direction of the comparison:

>> (a < b) * 2, (a < b) * (-3)

2 a < 2 b, -3 b < -3 a

>> (a < b) * I

Error: Inequalities must not be multiplied by complex numbers \
[_less::_mult]

>> (a < b) * c, (a <= b) * c

piecewise(a c < b c if 0 < c, b c < a c if c < 0),

piecewise(a c <= b c if 0 <= c, b c <= a c if c <= 0)

Multiplication of two equalities is performed by multiplying the left hand
sides and the right hand sides separately:

>> (a = b) * (c = d)

a c = b d

Inequalities cannot be multiplied with one another or with comparisons; mul-
tiplication with equalities is, however, defined, if at least one operand of the
equation is known to be nonzero:

>> assume(d <> 0):
(a <> b) * (c = d);
delete d:

48

a c <> b d

In other cases, the product is not expanded:

>> delete c, d:
(a <> b) * (c = d)

(a <> b) (c = d)

Multiplication of comparisons with equalities and comparisons is performed
similar to the cases above:

>> assume(c > 0):
(a < b) * (c = d);
delete c:

a c < b d

>> (a <= b) * (c <= d)

piecewise(a c <= b d if 0 <= c and 0 <= d,

b d <= a c if c <= 0 and d <= 0)

Example 6. Various library domains such as matrix domains overload _mult.
The multiplication is not commutative:

>> x := Dom::Matrix(Dom::Integer)([[1, 2], [3, 4]]):
y := Dom::Matrix(Dom::Rational)([[10, 11], [12, 13]]):
x * y, y * x

+- -+ +- -+
34, 37		43, 64
	,	
78, 85		51, 76
+- -+ +- -+

If the terms in x * y are of different type, the first term x tries to convert y
to the data type of x. If successful, the product is of the same type as x. In
the previous example, x and y have different types (both are matrices, but the
component domains differ). Hence x * y and y * x have different types that
is inherited from the first term:

>> domtype(x * y), domtype(y * x)

Dom::Matrix(Dom::Integer), Dom::Matrix(Dom::Rational)

49

If x does not succeed to convert y, then y tries to convert x. In the following
call, the component 27/2 cannot be converted to an integer. Consequently, in x
* y, the term y converts x and produces a result that coincides with the domain
type of y:

>> y := Dom::Matrix(Dom::Rational)([[10, 11], [12, 27/2]]):
x * y, y * x

+- -+ +- -+
34, 38		43, 64
	,	
78, 87		105/2, 78
+- -+ +- -+

>> domtype(x * y), domtype(y * x)

Dom::Matrix(Dom::Rational), Dom::Matrix(Dom::Rational)

>> delete x, y:

Example 7. This example demonstrates how to implement a slot "_mult" for
a domain. The following domain myString is to represent character strings.
Via overloading of _mult, integer multiples of such strings should produce the
concatenation of an appropriate number of copies of the string.

The "new" method uses expr2text to convert any MuPAD object to a string.
This string is the internal representation of elements of myString. The "print"
method turns this string into the screen output:

>> myString := newDomain("myString"):
myString::new := proc(x)
begin
if args(0) = 0 then x := "": end_if;
case domtype(x)
of myString do return(x);
of DOM_STRING do return(new(dom, x));
otherwise return(new(dom, expr2text(x)));

end_case
end_proc:
myString::print := x -> extop(x, 1):

Without a "_mult" method, the system function _mult handles elements of this
domain like any symbolic object:

>> y := myString(y): z := myString(z): 4 * x * y * z * 3/2

6 x y z

50

Now, we implement the "_mult" method. It uses split to pick out all integer
terms in its argument list and multiplies them. The result is an integer n. If
there is exactly one other term left (this must be a string of type myString), it
is copied n times. The concatenation of the copies is returned:

>> myString::_mult:= proc()
local Arguments, intfactors, others, dummy, n;
begin
userinfo(10, "myString::_mult called with the arguments:",

args());
Arguments := [args()];
// split the argument list into integers and other factors:
[intfactors, others, dummy] :=

split(Arguments, testtype, DOM_INT);
// multiply all integer factors:
n := _mult(op(intfactors));
if nops(others) <> 1 then

return(FAIL)
end_if;
myString::new(_concat(extop(others[1], 1) $ n))

end_proc:

setuserinfo(myString::_mult, 10):

Now, integer multiples of myString objects can be constructed via the * oper-
ator:

>> 2 * myString("string") * 3

Info: myString::_mult called with the arguments:, 2, string, 3

stringstringstringstringstringstring

Only products of integers and myString objects are allowed:

>> 3/2 * myString("a ") * myString("string")

Info: myString::_mult called with the arguments:, 3/2, a , str\
ing

FAIL

>> delete myString, y, z:

Changes:

A Multiplication of sets with identifiers and expressions has changed.

51

A Multiplication of equalities, inequalities, and comparisons was implemen-
ted.

/ – divide expressions

x/y computes the quotient of x and y.

Call(s):

A x/y

A _divide(x, y)

Parameters:
x, y, ... — arithmetical expressions, polynomials of type DOM_POLY,

or sets

Return Value: an arithmetical expression, a polynomial, or a set.

Overloadable by: x, y

Related Functions: _invert, _negate, ^, *, +, -, div, divide, pdivide,
poly

Details:

A x/y is equivalent to the function call _divide(x, y).

A For numbers of type Type::Numeric, the quotient is returned as a number.

A If neither x nor y are elements of library domains with "_divide" meth-
ods, x/y is internally represented as x * y^(-1) = _mult(x, _power(y,
-1)).

A If x or y is an element of a domain with a slot "_divide", then this
method is used to compute x/y. Many library domains overload the /
operator by an appropriate "_divide" slot. Quotients are processed as
follows:

x/y is searched for elements of library domains from left to right. Let
z (either x or y) be the first term that is not of one of the basic types
provided by the kernel (numbers, expressions, etc.). If the domain d
= z::dom = domtype(z) has a slot "_divide", it is called in the form
d::_divide(x, y). The result returned by d::_divide is the result of
x/y.

Cf. examples 4 and 5.

52

A Polynomials of type DOM_POLY can be divided by /, if they have the same
indeterminates and the same coefficient ring, and if exact division is pos-
sible. The function divide can be used to compute the quotient of poly-
nomials with a remainder term.

A For finite sets X, Y, the quotient X/Y is the set {x/y; x ∈ X, y ∈ Y }.

A _divide is a function of the system kernel.

Example 1. The quotient of numbers is simplified to a number:

>> 1234/234, 7.5/7, 6*I/2

617/117, 1.071428571, 3 I

Internally, a symbolic quotient x/y is represented as the product x * y^(-1):

>> type(x/y), op(x/y, 0), op(x/y, 1), op(x/y, 2)

1
"_mult", _mult, x, -

y

>> op(op(x/y, 2), 0), op(op(x/y, 2), 1), op(op(x/y, 2), 2)

_power, y, -1

Example 2. For finite sets X, Y, the quotient X/Y is the set {x/y; x ∈ X, y ∈
Y }:

>> {a, b, c} / {2, 3}

{ a a b b c c }
{ -, -, -, -, -, - }
{ 2 3 2 3 2 3 }

Example 3. Polynomials of type DOM_POLY can be divided by / if they have the
same indeterminates, the same coefficient ring, and if exact division is possible:

>> poly(x^2 - 1, [x]) / poly(x - 1, [x])

poly(x + 1, [x])

>> poly(x^2 - 1, [x]) / poly(x - 2, [x])

FAIL

53

The function divide provides division with a remainder:

>> divide(poly(x^2 - 1, [x]), poly(x - 2, [x]))

poly(x + 2, [x]), poly(3, [x])

The polynomials must have the same indeterminates and the same coefficient
ring:

>> poly(x^2 - 1, [x, y]) / poly(x - 1, [x])

Error: Illegal argument [divide]

Example 4. Various library domains such as matrix domains overload _divide.
The matrix domain defines x/y as x * (1/y), where 1/y is the inverse of y:

>> x := Dom::Matrix(Dom::Integer)([[1, 2], [3, 4]]):
y := Dom::Matrix(Dom::Rational)([[10, 11], [12, 13]]):
x/y

+- -+
| 11/2, -9/2 |
| |
| 9/2, -7/2 |
+- -+

The inverse of x has rational entries. Therefore, 1/x returns FAIL, because the
component ring of x is Dom::Integer. Consequently, also y/x returns FAIL:

>> y/x

FAIL

>> delete x, y:

Example 5. This example demonstrates the behavior of _divide on user-
defined domains. In the first case below, the user-defined domain does not have
a "_divide" slot. Thus x/y is transformed to x * (1/y):

>> Do := newDomain("Do"): x := new(Do, 1): y := new(Do, 2):
x/y; op(x/y, 0..2)

new(Do, 1)

new(Do, 2)

1
_mult, new(Do, 1), ----------

new(Do, 2)

54

After the slot "_divide" is defined in the domain Do, this method is used to
divide elements:

>> Do::_divide := proc() begin "The Result" end: x/y

"The Result"

>> delete Do, x, y:

^ – raise an expression to a power

x^y computes the y-th power of x.

Call(s):

A x^y

A _power(x, y)

Parameters:
x, y — arithmetical expressions, polynomials of type DOM_POLY,

floating point intervals, or sets

Return Value: an arithmetical expression, a polynomial, a floating point
interval, or a set.

Overloadable by: x, y

Related Functions: _invert, _negate, *, /, +, -, numlib::ispower,
powermod

Details:

A x^y is equivalent to the function call _power(x, y).

A The power operator ^ is left associative: x^y^z is parsed as (x^y)^z. Cf.
example 2.

A If x is a polynomial of type DOM_POLY, then y must be a nonnegative
integer smaller than 231.

A _power is overloaded for matrix domains (matrix). In particular, x^(-1)
returns the inverse of the matrix x.

A Use powermod to compute modular powers. Cf. example 3.

55

A Mathematically, the call sqrt(x) is equivalent to x^(1/2). Note, how-
ever, that sqrt tries to simplify the result. Cf. example 4.

A If x or y is an element of a domain with a slot "_power", then this method
is used to compute x^y. Many library domains overload the ^ operator
by an appropriate "_power" slot. Powers are processed as follows:

x^y is searched for elements of library domains from left to right. Let
z (either x or y) be the first term that is not of one of the basic types
provided by the kernel (numbers, expressions, etc.). If the domain d
= z::dom = domtype(z) has a slot "_power", it is called in the form
d::_power(x, y). The result returned by d::_power is the result of
x^y.

Cf. examples 6 and 7.

A For finite sets X, Y, the power X^Y is the set {xy; x ∈ X, y ∈ Y }.

A _power is a function of the system kernel.

Example 1. Some powers are computed:

>> 2^10, I^(-5), 0.3^(1/3), x^(1/2) + y^(-1/2), (x^(-10) + 1)^2

1/2 1 / 1 \2
1024, -I, 0.6694329501, x + ----, | --- + 1 |

1/2 | 10 |
y \ x /

Use expand to “expand” powers of sums:

>> (x + y)^2 = expand((x + y)^2)

2 2 2
(x + y) = 2 x y + x + y

Note that identities such as (x*y)^z = x^z * y^z only hold in certain areas of
the complex plane:

>> ((-1)*(-1))^(1/2) <> (-1)^(1/2) * (-1)^(1/2)

1 <> -1

Consequently, the following expand command does not expand its argument:

>> expand((x*y)^(1/2))

1/2
(x y)

56

Example 2. The power operator ^ is left associative:

>> 2^3^4 = (2^3)^4, x^y^z

y z
4096 = 4096, (x)

Example 3. Modular powers can be computed directly using ^ and mod. How-
ever, powermod is more efficient:

>> 123^12345 mod 17 = powermod(123, 12345, 17)

4 = 4

Example 4. The function sqrt produces simpler results than _power:

>> sqrt(4*x*y), (4*x*y)^(1/2)

1/2 1/2
2 (x y) , (4 x y)

Example 5. For finite sets, X^Y is the set {xy; x ∈ X, y ∈ Y }:

>> {a, b, c}^2, {a, b, c}^{q, r, s}

2 2 2 q r q s r q s r s
{a , b , c }, {a , a , b , a , b , c , b , c , c }

Example 6. Various library domains such as matrix domains or residue class
domains overload _power:

>> x := Dom::Matrix(Dom::IntegerMod(7))([[2, 3], [3, 4]]):
x^2, x^(-1), x^3 * x^(-3)

+- -+ +- -+
| 6 mod 7, 4 mod 7 | | 3 mod 7, 3 mod 7 |
| |, | |,
| 4 mod 7, 4 mod 7 | | 3 mod 7, 5 mod 7 |
+- -+ +- -+

+- -+
| 1 mod 7, 0 mod 7 |
| |
| 0 mod 7, 1 mod 7 |
+- -+

57

>> delete x:

Example 7. This example demonstrates the behavior of _power on user-
defined domains. Without a "power" slot, powers of domain elements are
handled like any other symbolic powers:

>> myDomain := newDomain("myDomain"): x := new(myDomain, 1): x^2

2
(new(myDomain, 1))

>> type(x^2), op(x^2, 0), op(x^2, 1), op(x^2, 2)

"_power", _power, new(myDomain, 1), 2

After the "_power" slot is defined, this method is used to compute powers of
myDomain objects:

>> myDomain::_power := proc() begin "The result" end: x^2

"The result"

>> delete myDomain, x:

Changes:

A Floating point intervals are handled.

@ – compose functions

f@g represents the composition x 7→ f(g(x)) of the functions f and g.

Call(s):

A f @ g @ ...

A _fconcat(f, g, ...)

Parameters:

f, g, ... — functions

Return Value: an expression of type "_fconcat".

Overloadable by: f, g, ...

58

Related Functions: @@

Details:

A In MuPAD, functions are usually represented by procedures of type DOM_PROC,
function environments, or functional expressions such as f@g@exp + id^2.
In fact, practically any MuPAD object may serve as a function.

A f @ g is equivalent to the function call _fconcat(f, g).

A _fconcat() returns the identity map id; _fconcat(f) returns f.

A _fconcat is a function of the system kernel.

Example 1. The following function h is the composition of the system func-
tions abs and sin:

>> h := abs@sin

abs@sin

>> h(x), h(y + 2), h(0.5)

abs(sin(x)), abs(sin(y + 2)), 0.4794255386

The following functional expressions represent polynomials:

>> f := id^3 + 3*id - 1: f(x), (f@f)(x)

3 3 3 3
3 x + x - 1, 9 x + 3 x + (3 x + x - 1) - 4

The random generator random produces nonnegative integers with 12 digits.
The following composition of float and random produces random floating point
numbers between 0.0 and 1.0:

>> rand := float@random/10^12: rand() $ k = 1..12

0.4274196691, 0.3211106933, 0.3436330737, 0.4742561436,

0.558458719, 0.7467538305, 0.03206222208, 0.7229741218,

0.6043056139, 0.7455800374, 0.2598119527, 0.3100754872

In conjunction with the function map, the composition operator @ is a handy
tool to apply composed functions to the operands of a data structure:

>> map([1, 2, 3, 4], (PI + id^2)@sin),
map({1, 2, 3, 4}, cos@float)

59

2 2 2 2
[PI + sin(1) , PI + sin(2) , PI + sin(3) , PI + sin(4)],

{-0.9899924966, -0.6536436209, -0.4161468365, 0.5403023059}

>> delete h, f, rand:

Example 2. Some simplifications of functional expressions are possible via
simplify:

>> cos@arccos + exp@ln = simplify(cos@arccos + exp@ln)

cos@arccos + exp@ln = 2 id

@@ – iterate a function

f@@n represents the n-fold iterate x -> f(f(...(f(x))...)) of the function f.

Call(s):

A f @@ n

A _fnest(f, n)

Parameters:
f — a function
n — an integer

Return Value: a function

Related Functions: @, fp::fixargs, fp::nest, fp::nestvals, fp::fold

Details:

A The statement f@@n is equivalent to the call _fnest(f, n).

A For positive n, f@@n is also equivalent to _fconcat(f $ n).

A f@@0 returns the identity map id.

A If f is a function environment with the slot "inverse" set, n can also be
negative. Cf. example 2.

60

A Iteration is only reasonable for functions that accept their own return
values as input. Note that fp::fixargs is a handy tool for converting
functions with parameters to univariate functions which may be suitable
for iteration. Cf. example 3.

Example 1. For a nonnegative integer n, f@@n is equivalent to an _fconcat
call:

>> f@@4, (f@@4)(x)

f@f@f@f, f(f(f(f(x))))

@@ simplifies the composition of symbolic iterates:

>> (f@@n)@@m

f@@(m n)

The iterate may be called like any other MuPAD function. If f evaluates to a
procedure and n to an integer, a corresponding value is computed:

>> f := x -> x^2: (f@@n)(x) $ n = 0..10

2 4 8 16 32 64 128 256 512 1024
x, x , x , x , x , x , x , x , x , x , x

>> delete f:

Example 2. For functions with a known inverse function, n may be negative.
The function f must have been declared as a function environment with the
"inverse" slot. Examples of such functions include the trigonometric functions
which are implemented as function environments in MuPAD:

>> sin::"inverse", sin@@-3, (sin@@(-3))(x)

"arcsin", arcsin@arcsin@arcsin, arcsin(arcsin(arcsin(x)))

Example 3. @@ can only be used for functions that accept their own output
domain as an input, i.e., f : M 7→ M for some set M . If you want to use @@
with a function which needs additional parameters, fp::fixargs is a handy
tool to generate a corresponding univariate function. In the following call, the
function f: x -> g(x, p) is iterated:

>> g := (x, y) -> x^2 + y: f := fp::fixargs(g, 1, p): (f@@4)(x)

61

2 2 2 2
p + (p + (p + (p + x)))

>> delete g, f:

$ – create an expression sequence

$ a..b creates the sequence of integers from a through b.

f $ n creates the sequence f, ... , f consisting of n copies of f.

f(i) $ i = a..b creates the sequence f(a), f(a+1), ... , f(b).

f(i) $ i in object creates the sequence f(i1), f(i2), ..., where i1, i2
etc. are the operands of the object.

Call(s):

A $ a..b

A _seqgen(a..b)

A f $ n

A _seqgen(f, n)

A f $ i = a..b

A _seqgen(f, i, a..b)

A f $ i in object

A _seqin(f, i, object)

Parameters:
f, object — arbitrary MuPAD objects
n, a, b — integers
i — an identifier or a local variable (DOM_VAR) of a procedure

Return Value: an expression sequence of type "_exprseq" or the void object
of type DOM_NULL.

Overloadable by: a..b, f, n, i, object

Related Functions: _exprseq, null

62

Details:

A The $ operator is a most useful tool. It serves for generating sequences of
objects. Sequences are used to define sets or lists, and may be passed as
arguments to system functions. Cf. example 1.

A $ a..b and the equivalent function call _seqgen(a..b) produce the se-
quence of integers a, a + 1, ... , b. The void object of type DOM_NULL
is produced if a > b.

A f $ n and the equivalent function call _seqgen(f, n) produce a sequence
of n copies of the object f. Note that f is evaluated only once, before the
sequence is created. The empty sequence of type DOM_NULL is produced if
n is not positive.

A f $ i = a..b and the equivalent function call _seqgen(f, i, a..b)
successively substitute i = a through i = b into f and evaluates the res-
ults. The following expression sequence is produced:

eval(subs(f,i=a)), eval(subs(f,i=a+1)), ... , eval(subs(f,i=b)).

Note that f is not evaluated before the substitutions. The void object of
type DOM_NULL is produced if a > b.

A f $ i in object and the equivalent function call _seqin(f, i, object)
successively replace i by the operands of the object: they substitute i
= op(object, 1) through i = op(object, n) into f and evaluate the
results (n = nops(object) is the number of operands). The following
expression sequence is produced:

eval(subs(f,i=op(object,1))), ... ,
eval(subs(f,i=op(object,n))).

Note that f is not evaluated before the substitutions. The empty sequence
of type DOM_NULL is produced if the object has no operands.

A The “loop variable” i in f $ i = a..b and f $ i in object may have
a value. This value is not changed by using i inside a $ statement.

A _seqgen is a function of the system kernel.

Example 1. The following sequence can be passed as arguments to the func-
tion _plus, which adds up its arguments:

>> i^2 $ i = 1..5

1, 4, 9, 16, 25

63

>> _plus(i^2 $ i = 1..5)

55

The 5-th derivative of the expression exp(x^2) is:

>> diff(exp(x^2), x $ 5)

2 3 2 5 2
120 x exp(x) + 160 x exp(x) + 32 x exp(x)

We compute the first derivatives of sin(x):

>> diff(sin(x), x $ i) $ i = 0..5

sin(x), cos(x), -sin(x), -cos(x), sin(x), cos(x)

We use ithprime to compute the first 10 prime numbers:

>> ithprime(i) $ i = 1..10

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

We select all primes from the set of integers between 1990 and 2010:

>> select({$ 1990..2010}, isprime)

{1993, 1997, 1999, 2003}

The 3× 3 matrix with entries Aij = i · j is generated:

>> n := 3: matrix([[i*j $ j = 1..n] $ i = 1..n])

+- -+
| 1, 2, 3 |
| |
| 2, 4, 6 |
| |
| 3, 6, 9 |
+- -+

>> delete n:

Example 2. In f $ n, the object f is evaluated only once. The result is copied
n times. Consequently, the following call produces copies of one single random
number:

>> random() $ 3

427419669081, 427419669081, 427419669081

The following call evaluates random for each value of of i:

>> random() $ i = 1..3

321110693270, 343633073697, 474256143563

64

Example 3. In the following call, i runs through the list:

>> i^2 $ i in [3, 2, 1]

9, 4, 1

Note that the screen output of sets does not necessarily coincide with the in-
ternal ordering:

>> Set := {1, 2, 3, 4}: Set, [op(Set)]

{1, 2, 3, 4}, [4, 3, 2, 1]

The $ operator respects the internal ordering:

>> i^2 $ i in Set

16, 9, 4, 1

>> delete Set:

Example 4. Arbitrary objects f are allowed in f $ i = a..b. In the following
call, f is an assignment (it has to be enclosed in brackets). The sequence
computes a table f[i] = i!:

>> f[0] := 1: (f[i] := i*f[i - 1]) $ i = 1..4: f

table(
4 = 24,
3 = 6,
2 = 2,
1 = 1,
0 = 1

)

>> delete f:

_exprseq – expression sequences

The function call _exprseq(object1, object2, ...) is the internal repres-
entation of the expression sequence object1, object2,

Call(s):

A object1, object2, ...

A _exprseq(object1, object2, ...)

65

Parameters:

object1, object2, ... — arbitrary MuPAD objects

Return Value: an expression of type "_exprseq" or the void object of type
DOM_NULL.

Related Functions: _stmtseq, null

Details:

A In MuPAD, “sequences” are ordered collections of objects separated by
commas. You may think of the comma as an operator that concaten-
ates sequences. Internally, sequences are represented as function calls
_exprseq(object1, object2, ...). On the screen, sequences are prin-
ted as object1, object2,

A _exprseq() and the equivalent call null() yield the void object of type
DOM_NULL.

A When evaluating an expression sequence, all void objects of type DOM_NULL
are removed from it, automatically.

A The $ operator is a useful tool for generating sequences.

A When a MuPAD function or procedure is called with more than one argu-
ment, the parameters are passed as an expression sequence.

A _exprseq is a function of the system kernel.

Example 1. A sequence is generated by“concatenating”objects with commas.
The resulting object is of type "_exprseq":

>> a, b, sin(x)

a, b, sin(x)

>> op(%, 0), type(%)

_exprseq, "_exprseq"

On the screen, _exprseq just returns its argument sequence:

>> _exprseq(1, 2, x^2 + 5) = (1, 2, x^2 + 5)

2 2
(1, 2, x + 5) = (1, 2, x + 5)

66

Example 2. The object of domain DOM_NULL (the “empty sequence”) is auto-
matically removed from expression sequences:

>> 1, 2, null(), 3

1, 2, 3

Expression sequences are flattened. The following sequence does not have 2
operands, where the second operand is a sequence. Instead, it is flattened to a
sequence with 3 operands:

>> x := 1: y := 2, 3: x, y

1, 2, 3

>> delete x, y:

Example 3. Sequences are used to build sets and lists. Sequences can also be
passed to functions that accept several arguments:

>> s := 1, 2, 3: {s}, [s], f(s)

{1, 2, 3}, [1, 2, 3], f(1, 2, 3)

>> delete s:

_index – indexed access

x[i] and x[i1, i2, ...] yield the entries of x corresponding to the indices i
and i1, i2, ..., respectively.

Call(s):

A x[i]

A _index(x, i)

A x[i1, i2, ...]

A _index(x, i1, i2, ...)

Parameters:
x — an arbitrary MuPAD object. In particular, a

“container object”: a list, a finite set, an array, a
matrix, a table, an expression sequence, or a
character string.

i, i1, i2, ... — indices. For most “containers” x, indices must be
integers. If x is a table, arbitrary MuPAD objects
can be used as indices.

67

Return Value: the entry of x corresponding to the index. If x is not a list, a
set, an array etc., an indexed object of type "_index" is returned.

Overloadable by: x

Related Functions: :=, _assign, array, contains, DOM_ARRAY, DOM_LIST,
DOM_SET, DOM_STRING, DOM_TABLE, indexval, op, slot, table,
Type::Indeterminate

Details:

A x[i] and x[i1, i2, ...] are equivalent to _index(x, i) and _index(x,
i1, i2, ...), respectively.

A Any MuPAD object x allows an indexed call of the form x[i] or x[i1,
i2, ...]. If x is not a “container object” (a list, a set, an array etc.), a
symbolic indexed object is returned. In particular, “indexed identifiers”
are returned if x is an identifier. In this case, indices may be arbitrary
MuPAD objects. Cf. example 1.

A For lists, finite sets, and expression sequences, the index i is restricted
to the integers from 1 through nops(x). For lists and sequences, x[i] =
op(x, i) holds.

A For finite sets, x[i] returns the i-th element as printed on the
screen. Note, however, that the function op refers to the internal
ordering of the elements: in general, x[i] <> op(x, i) for sets.
Before screen output and indexed access, the elements of sets are
sorted via the slot DOM_SET::sort.

!

A For arrays, appropriate indices i or multi-indices i1, i2, ... from the
index range defined by array must be used. If any specified index is
an integer outside the admissible range, an error occurs. If any specified
index is not an integer (e.g., a symbol i), then x[i] or x[i1, i2,...]
is returned symbolically. For one-dimensional arrays x := array(1..n,
[...]), the entries correspond to the operands: x[i] = op(x, i).

A For matrices, appropriate indices i or multi-indices i1, i2, ... from
the index range defined by matrix must be used. Indices outside this
range or symbolic indices lead to an error. For a one-dimensional matrix
representing a column vector, x[i] = x[i, 1] = op(x, i) holds. For
a one-dimensional matrix representing a row vector, x[i] = x[1, i] =
op(x, i) holds.

A For tables, any index may be used. If there is no corresponding entry in
the table, x[i] or x[i1, i2, ...] is returned symbolically.

68

A For character strings, the index i is restricted to the integers from
0 through length(x) - 1. Note that the first character of a string
carries the index 0!

!

A The entry returned by an indexed call is fully evaluated. For arrays and
tables, evaluation can be suppressed in indexed calls via indexval. Cf.
example 5.

A Note, that an indexed assignment such as x[i] := value impli-
citly turns x into a table with a single entry, if x is not one of the
“container” types above.

!

A _index is a function of the system kernel.

Example 1. Indexed identifiers are useful when solving equations in many
unknowns:

>> n := 4:
equations := {x[i-1] - 2*x[i] + x[i+1] = 1 $ i = 1..n}:
unknowns := {x[i] $ i = 1..n}:
linsolve(equations, unknowns)

-- 4 x[0] x[5] 3 x[0] 2 x[5]
| x[1] = ------ + ---- - 2, x[2] = ------ + ------ - 3,
-- 5 5 5 5

2 x[0] 3 x[5] x[0] 4 x[5] --
x[3] = ------ + ------ - 3, x[4] = ---- + ------ - 2 |

5 5 5 5 --

Symbolic indexed objects are of type "_index":

>> type(x[i])

"_index"

>> delete n, equations, unknowns:

Example 2. Lists, arrays and tables are typical containers allowing indexed
access to their elements:

>> L := [1, 2, [3, 4]]:
A := array(1..2, 2..3, [[a12, a13], [a22, a23]]):
T := table(1 = T1, x = Tx, (1, 2) = T12):

>> L[1], L[3][2], A[2, 3], T[1], T[x], T[1, 2]

69

1, 4, a23, T1, Tx, T12

The entries can be changed via indexed assignments:

>> L[2] := 22: L[3][2]:= 32: A[2, 3]:= 23: T[x] := T12: L, A, T

+- -+ table(
| a12, a13 | (1, 2) = T12,

[1, 22, [3, 32]], | |, x = T12,
| a22, 23 | 1 = T1
+- -+)

>> delete L, A, T:

Example 3. For finite sets, an indexed call x[i] returns the i-th element as
printed on the screen. This element does not necessarily coincide with the i-th
(internal) operand as returned by op:

>> S := {1, 2, 3, x}

{x, 1, 2, 3}

>> S[i] $ i = 1..4

x, 1, 2, 3

>> op(S, i) $ i = 1..4

x, 3, 2, 1

>> delete S:

Example 4. The index operator also operates on character strings. Note that
the characters are enumerated from 0:

>> "ABCDEF"[0], "ABCDEF"[5]

"A", "F"

70

Example 5. Indexed calls evaluate the returned entry:

>> delete a: x := [a, b]: a := c: x[1] = eval(x[1])

c = c

>> delete a: x := table(1 = a, 2 = b): a := c:
x[1] = eval(x[1]), x[1] <> indexval(x, 1)

c = c, c <> a

>> delete a: x := array(1..2, [a, b]): a := c:
x[1] = eval(x[1]), x[1] <> indexval(x, 1)

c = c, c <> a

>> delete a: x := matrix([a, b]): a := c: x[1] = eval(x[1])

c = c

>> delete x, a:

Changes:

A Indexed access to the elements of matrices now evaluates the returned
entry.

intersect, minus, union – operators for sets and intervals

intersect computes the intersection of sets and intervals.

minus computes the difference between sets and intervals.

union computes the union of sets and intervals.

Call(s):

A set1 intersect set2

A _intersect(set1, set2, ...)

A set1 minus set2

A _minus(set1, set2)

A set1 union set2

A _union(set1, set2, ...)

71

Parameters:
set1, set2, ... — finite sets of type DOM_SET, or intervals of type

Dom::Interval, or arithmetical expressions

Return Value: a set, an interval, a symbolic expression of type "_intersect",
"_minus", "_union", or universe.

Overloadable by: set1, set2, ...

Related Functions: universe

Details:

A set1 intersect set2 is equivalent to _intersect(set1, set2).

A set1 minus set2 is equivalent to _minus(set1, set2).

A set1 union set2 is equivalent to _union(set1, set2).

A The precedences of intersect, minus, union are as follows: The operator
intersect is stronger binding than minus, i.e,

set1 intersect set2 minus set3 = (set 1 intersect set2) minus
set3.

The operator minus is stronger binding than union, i.e.,

set1 minus set2 union set3 = (set1 minus set2) union set3.

Further,

set1 minus set2 minus set3 = (set 1 minus set2) minus set3.

If in doubt, use brackets to make sure that the expression is parsed as
desired.

A If sets or intervals are specified by symbolic expressions involving iden-
tifiers or indexed identifiers, then symbolic calls of _intersect, _minus,
_union are returned. On the screen, they are represented via the operator
notation set1 intersect set2 etc.

A On finite sets of type DOM_SET, these operators act in a purely syn-
tactical way. E.g., {1} minus {x} simplifies to {1}. Mathemat-
ically, this result may not be correct in general, because x might
represent the value 1.

!

A On intervals of type Dom::Interval, these operators act in a semantical
way. In particular, properties of identifiers are taken into account.

72

A _intersect() returns universe (of type stdlib::Universe) which rep-
resents the set of all mathematical objects.

A _union() returns the empty set {}.

A _intersect is a function of the system kernel.

A _minus is a function of the system kernel.

A _union is a function of the system kernel.

Example 1. intersect, minus, and union operate on finite sets:

>> {x, 1, 5} intersect {x, 1, 3, 4},
{x, 1, 5} union {x, 1, 3, 4},
{x, 1, 5} minus {x, 1, 3, 4}

{x, 1}, {x, 1, 3, 4, 5}, {5}

For symbolic sets, specified as identifiers or indexed identifiers, symbolic calls
are returned:

>> {1, 2} union A union {2, 3}

{1, 2, 3} union A

Note that the set operations act on finite sets in a purely syntactical way. In
the following call, x does not match any of the numbers 1, 2, 3 syntactically:

>> {1, 2, 3} minus {1, x}

{2, 3}

Example 2. intersect, minus, and union are overloaded by the domain
Dom::Interval:

>> Dom::Interval([0, 1]) union Dom::Interval(1, 4)

[0, 4[

>> Dom::Interval([0, 1]) union Dom::Interval(4, infinity)

[0, 1] union]4, infinity[

>> Dom::Interval(2, infinity) intersect Dom::Interval([1, 3])

]2, 3]

>> {PI/2, 2, 2.5, 3} intersect Dom::Interval(1,3)

73

{ PI }
{ 2.5, 2, -- }
{ 2 }

>> Dom::Interval(1, PI) minus {2, 3}

]3, PI[union]1, 2[union]2, 3[

In contrast to finite sets of type DOM_SET, the interval domain works semantic-
ally. It takes properties into account:

>> Dom::Interval(-1, 1) minus {x}

]x, 1[union]-1, x[

>> assume(x > 2): Dom::Interval(-1, 1) minus {x}

]-1, 1[

>> unassume(x):

Example 3. The following list provides a collection of sets:

>> L := [{a, b}, {1, 2, a, c}, {3, a, b}, {a, c}]:

The functional equivalent _intersect of the intersect operator accepts an
arbitray number of arguments. Thus, the intersection of all sets in L can be
computed as follows:

>> _intersect(op(L))

{a}

The union of all sets in L is:

>> _union(op(L))

{a, b, c, 1, 2, 3}

>> delete L:

Example 4. universe represents the set of all mathematical objects:

>> _intersect()

universe

_invert – the reciprocal of an expression

_invert(x) computes the reciprocal 1/x of x.

74

Call(s):

A 1/x

A _invert(x)

Parameters:

x — an arithmetical expression or a set

Return Value: an arithmetical expression or a set.

Overloadable by: x

Related Functions: _divide, _negate, ^, /, *, +, -

Details:

A 1/x is equivalent to the function call _invert(x). It represents the inverse
of the element x with respect to multiplication, i.e., x * (1/x) = 1.

A The reciprocal of a number of type Type::Numeric is returned as a num-
ber.

A 1/x is overloaded for matrix domains (matrix) and returns the inverse of
the matrix x.

A If x is not an element of a library domain with an "_invert" method,
1/x is internally represented as x^(-1) = _power(x, -1).

A If x is an element of a domain with a slot "_invert", then this method is
used to compute 1/x. Many library domains overload the / operator by
an appropriate "_invert" slot. Note that a/x calls the overloading slot
x::dom::_invert(x) only for a = 1.

A If neither x nor y overload the binary operator / by a "_divide" method,
the quotient x/y is equivalent to x * y^(-1) = _mult(x, _power(y,
-1)).

A For finite sets, 1/X is the set {1/x; x ∈ X}.

A _invert is a function of the system kernel.

Example 1. The reciprocal of an expression is the inverse with respect to *:

>> _invert(x), x * (1/x) = x * _invert(x)

1
-, 1 = 1
x

75

>> 3 * y * x^2 / 27 / x

x y

9

Internally, a symbolic expression 1/x is represented as x^(-1) = _power(x,
-1):

>> type(1/x), op(1/x, 0), op(1/x, 1), op(1/x, 2)

"_power", _power, x, -1

Example 2. For finite sets, 1/X is the set {1/x; x ∈ X}:

>> 1/{a, b, c}

{ 1 1 1 }
{ -, -, - }
{ a b c }

Example 3. Various library domains such as matrix domains or residue class
domains overload _invert:

>> x := Dom::Matrix(Dom::IntegerMod(7))([[2, 3], [3, 4]]):
x, 1/x, x * (1/x)

+- -+ +- -+
| 2 mod 7, 3 mod 7 | | 3 mod 7, 3 mod 7 |
| |, | |,
| 3 mod 7, 4 mod 7 | | 3 mod 7, 5 mod 7 |
+- -+ +- -+

+- -+
| 1 mod 7, 0 mod 7 |
| |
| 0 mod 7, 1 mod 7 |
+- -+

>> delete x:

_lazy_and, _lazy_or – “lazy evaluation” of Boolean expressions

76

_lazy_and(b1, b2, ...) evaluates the Boolean expression b1 and b2 and
... by “lazy evaluation”.

_lazy_or(b1, b2, ...) evaluates the Boolean expression b1 or b2 or ...
by “lazy evaluation”.

Call(s):

A _lazy_and(b1, b2, ...)

A _lazy_or(b1, b2, ...)

Parameters:

b1, b2, ... — Boolean expressions

Return Value: TRUE, FALSE, or UNKNOWN.

Overloadable by: b1, b2, ...

Related Functions: and, bool, if, is, or, repeat, while, FALSE, TRUE,
UNKNOWN

Details:

A _lazy_and(b1, b2, ...) produces the same result as bool(b1 and b2
and ...), provided the latter call does not produce an error. The differ-
ence between these calls is as follows:

bool(b1 and b2 and ...) evaluates all Boolean expressions before com-
bining them logically via ’and’.

Note that the result is FALSE if one of b1, b2 etc. evaluates to FALSE. “Lazy
evaluation” is based on this fact: _lazy_and(b1, b2, ...) evaluates the
arguments from left to right. The evaluation is stopped immediately if
one argument evaluates to FALSE. In this case, _lazy_and returns FALSE
without evaluating the remaining Boolean expressions. If none of the ex-
pressions b1, b2 etc. evaluates to FALSE, then all arguments are evaluated
and the corresponding result TRUE or UNKNOWN is returned.

_lazy_and is also called “conditional and”.

A _lazy_or(b1, b2, ...) produces the same result as bool(b1 or b2 or
...), provided the latter call does not produce an error. The difference
between these calls is as follows:

bool(b1 or b2 or ...) evaluates all Boolean expressions before com-
bining them logically via ’or’.

Note that the result is TRUE if one of b1, b2 etc. evaluates to TRUE. “Lazy
evaluation” is based on this fact: _lazy_or(b1, b2, ...) evaluates the
arguments from left to right. The evaluation is stopped immediately if one

77

argument evaluates to TRUE. In this case, _lazy_or returns TRUE without
evaluating the remaining Boolean expressions. If none of the expressions
b1, b2 etc. evaluates to TRUE, then all arguments are evaluated and the
corresponding result FALSE or UNKNOWN is returned.

_lazy_or is also called “conditional or”.

A If any of the considered Boolean expressions b1, b2 etc. cannot be eval-
uated to TRUE, FALSE, or UNKNOWN, then _lazy_and, _lazy_or produce
errors.

A _lazy_and and _lazy_or are internally used by the if, repeat, and
while statements. For example, the statement ’if b1 and b2 then ...’
is equivalent to ’if _lazy_and(b1, b2) then ...’.

A _lazy_and() returns TRUE.

A _lazy_or() returns FALSE.

A _lazy_and is a function of the system kernel.

A _lazy_or is a function of the system kernel.

Example 1. This example demonstrates the difference between lazy evaluation
and complete evaluation of Boolean conditions. For x = 0, the evaluation of
sin(1/x) leads to an error:

>> x := 0: bool(x <> 0 and sin(1/x) = 0)

Error: Division by zero

With “lazy evaluation”, the expression sin(1/x) = 0 is not evaluated. This
avoids the previous error:

>> _lazy_and(x <> 0, sin(1/x) = 0)

FALSE

>> bool(x = 0 or sin(1/x) = 0)

Error: Division by zero

>> _lazy_or(x = 0, sin(1/x) = 0)

TRUE

>> delete x:

78

Example 2. The following statements do no produce an error, because if uses
lazy evaluation internally:

>> for x in [0, PI, 1/PI] do
if x = 0 or sin(1/x) = 0 then

print(x)
end_if;

end_for:

0

1
--
PI

>> delete x:

Example 3. Both functions can be called without parameters:

>> _lazy_and(), _lazy_or()

TRUE, FALSE

_negate – the negative of an expression

_negate(x) computes the negative of x.

Call(s):

A -x

A _negate(x)

Parameters:
x — an arithmetical expression, a polynomial of type DOM_POLY, or a

set

Return Value: an arithmetical expression, a polynomial, or a set.

Overloadable by: x

Related Functions: _invert, _subtract, ^, /, *, +, -, poly

79

Details:

A -x is equivalent to the function call _negate(x). It represents the inverse
of the element x of an additive group. For standard expressions, -x is the
inverse with respect to the + operation.

A The negative of a number of type Type::Numeric is returned as a number.

A If x is not an element of a libary domain with a "_negate" method, -x
is internally represented as x*(-1) = _mult(x, -1).

A If x is an element of a domain with a slot "_negate", then this method is
used to compute -x. Many library domains overload the unary - operator
by an appropriate "_negate" slot.

A If neither x nor y overload the binary operator - by a "_subtract"
method, the difference x - y is equivalent to x + y*(-1) = _plus(x,
_mult(y, -1)).

A The negative of a polynomial of type DOM_POLY yields a polynomial with
the negative of the original coefficients.

A For finite sets, -X is the set {−x; x ∈ X}.

A _negate is a function of the system kernel.

Example 1. The negative of an expression is the inverse with respect to +:

>> x - x = x + _negate(x)

0 = 0

>> -1 + x - 2*x + 23

22 - x

Internally, a symbolic -x is represented as x*(-1) = _mult(x, -1):

>> type(-x), op(-x, 0), op(-x, 1), op(-x, 2)

"_mult", _mult, x, -1

Example 2. The negative of a polynomial yields a polynomial:

>> -poly(x^2 + x - 1, [x])

2
poly(- x - x + 1, [x])

>> -poly(x, [x], Dom::Integer)

poly((-1) x, [x], Dom::Integer)

80

Example 3. For finite sets, -X is the set {−x; x ∈ X}:

>> -{a, b, c}

{-a, -b, -c}

Example 4. Various library domains such as matrix domains or residue class
domains overload _negate:

>> x := Dom::Matrix(Dom::IntegerMod(7))([2, 10]): x, -x, x + (-x)

+- -+ +- -+ +- -+
2 mod 7		5 mod 7		0 mod 7
	,		,	
3 mod 7		4 mod 7		0 mod 7
+- -+ +- -+ +- -+

>> delete x:

Example 5. This example demonstrates how to implement a slot "_negate"
for a domain. The following domain myString is to represent character strings.
The negative -x of such a string x is to consist of the characters in reverse order.

The "new" method uses expr2text to convert any MuPAD object to a string.
This string is the internal representation of elements of myString. The "print"
method turns this string into the screen output:

>> myString := newDomain("myString"):
myString::new := proc(x)
begin
if args(0) = 0 then x := "" end_if;
case domtype(x)
of myString do return(x);
of DOM_STRING do return(new(dom, x));
otherwise return(new(dom, expr2text(x)));

end_case
end_proc:
myString::print := x -> extop(x, 1):

Without a "_negate" method, the system handles elements of this domain like
any symbolic object:

>> x := myString(x): -x, type(-x), op(-x, 0), op(-x, 1), op(-x, 2)

-x, "_mult", _mult, x, -1

81

Now, we implement the "_negate" method. There is no need to check the
argument, because _negate(x) calls this slot if and only if x is of type myString.
The slot uses revert to generate the reverted string:

>> myString::_negate := x -> myString::new(revert(extop(x, 1))):

Now, myString objects can be reverted by the - operator:

>> -myString("This is a string")

gnirts a si sihT

In the following call, myString::_negate is not called because there is no
"_subtract" method for myString objects:

>> myString("This is a string") - myString("a string")

This is a string - a string

We provide the slots "_plus" and "_subtract":

>> myString::_plus := proc()
begin
myString::new(_concat(map(args(), extop, 1))):

end_proc:
myString::_subtract := (x, y) -> x + myString::_negate(y):

Now, the "_negate" slot is called:

>> myString("This is a string") - myString("This is a string")

This is a stringgnirts a si sihT

>> delete myString, x:

_stmtseq – statement sequences

The function call _stmtseq(object1, object2, ...) is equivalent to the
statement sequence (object1; object2; ...).

Call(s):

A (object1; object2; ...)

A (object1: object2: ...)

A _stmtseq(object1, object2, ...)

82

Parameters:

object1, object2, ... — arbitrary MuPAD objects and statements

Return Value: the return value of the last statement in the sequence.

Related Functions: _exprseq

Details:

A The function call _stmtseq(object1, object2, ...) evaluates the state-
ments (object1; object2; ...) from left to right.

A _stmtseq() returns the void object of type DOM_NULL.

A _stmtseq is a function of the system kernel.

Example 1. Usually, statements are entered imperatively:

>> x := 2; x := x^2 + 17; sin(x + 1)

2

21

sin(22)

This sequence of statements is turned into a single command (a “statement
sequence”) by enclosing it in brackets. Now, only the result of the “statement
sequence” is printed. It is the result of the last statement inside the sequence:

>> (x := 2; x := x^2 + 17; sin(x + 1))

sin(22)

Alternatively, the statement sequence can be entered via _stmtseq. For syn-
tactical reasons, the assignments have to be enclosed in brackets when using
them as arguments for _stmtseq. Only the return value of the statement se-
quence (the return value of the last statement) is printed:

>> _stmtseq((x := 2), (x := x^2 + 17), sin(x + 1))

sin(22)

Statement sequences can be iterated:

>> x := 1: (x := x + 1; x := x^2; print(i, x)) $ i = 1..4

83

1, 4

2, 25

3, 676

4, 458329

>> delete x:

%if – conditional creation of code by the parser

%if controls the creation of code by the parser depending on a condition.

Call(s):

A %if condition
then casetrue
<elif condition then casetrue, ...>
<else casefalse>

end_if

Parameters:
condition — a Boolean expression
casetrue — a statement sequence
casefalse — a statement sequence

Related Functions: if

Details:

A This statement is one of the more esoteric features of MuPAD. It is not
executed at run time by the MuPAD interpreter. It controls the creation
of code for the interpreter by the parser.

A %if may be used to create different versions of a library which share a
common code basis, or to insert debugging code which should not appear
in the release version.

A The first condition is executed by the parser in a Boolean context and
must yield one of the Boolean values TRUE or FALSE:

• If the condition yields TRUE, the statement sequence casetrue is the
code that is created by the parser for the %if-statement. The rest
of the statement is ignored by the parser, no code is created for it.

84

• If the condition yields FALSE, then the condition of the next elif-
part if evaluated and the parser continues as before.

• If all conditions evaluate to FALSE and no more elif-parts exist,
the parser inserts the code of the statement sequence casefalse
as the code for the %if-statement. If no casefalse exists, NIL is
produced.

A The whole statement sequence is read by the parser and must be syn-
tactically correct. Also the parts that do not result in code must be
syntactically correct.

A Note that instead of end_if, one may also simply use the keyword end.

A In case of an empty statement sequence, the parser creates NIL as code.

A The conditions are parsed in the lexical context where they occur,
but are evaluated by the parser in the context where the parser is
executed. This is the case because the environment where the con-
ditions are lexically bound simply does not exist during parsing.
Thus, one must ensure that names in the conditions do not con-
flict with names of local variables or arguments in the surrounding
lexical context. The parser does not check this!

!

A No function exists in the interpreter which can execute the %if-statement.
The reason is that the statement is implemented by the parser, not by
the interpreter.

Example 1. In the following example, we create debugging code in a procedure
depending on the value of the global identifier DEBUG.

Note that this example is somewhat academic, as the function prog::trace
is a much more elegant way to trace a procedure during debugging.

>> DEBUG := TRUE:
p := proc(x) begin

%if DEBUG = TRUE then
print("entering p")

end;
x^2

end_proc:
p(2)

"entering p"

4

When we look at p, we see that only the print command was inserted by the
parser:

85

>> expose(p)

proc(x)
name p;

begin
print("entering p");
x^2

end_proc

Now we set DEBUG to FALSE and parse the procedure again to create the release
version. No debug output is printed:

>> DEBUG := FALSE:
p := proc(x) begin

%if DEBUG = TRUE then
print("entering p")

end;
x^2

end_proc:
p(2)

4

If we look at the procedure we see that NIL was inserted for the %if-statement:

>> expose(p)

proc(x)
name p;

begin
NIL;
x^2

end_proc

Background:

A This statement may remind C programmers of conditional compiliaton. In
C, this is implemented by a pre-processor which is run before the parser.
In MuPAD, such a pre-processor does not exist. The %if-statement is part
of the parsing process.

Ci – the cosine integral function

Ci(x) represents the cosine integral EULER + ln(x) +
∫ x
0 (cos(t)− 1)/t dt .

86

Call(s):

A Ci(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: Ei, int, Si, cos

Details:

A If x is a floating point number, then Ci(x) returns the numerical value
of the cosine integral. The special values Ci(∞) = 0 and Ci(−∞) = i π
are implemented. For all other arguments, Ci returns a symbolic function
call.

A The float attribute of Ci is a kernel function, i.e., floating point evaluation
is fast.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> Ci(1), Ci(sqrt(2)), Ci(x + 1), Ci(infinity), Ci(-infinity)

1/2
Ci(1), Ci(2), Ci(x + 1), 0, I PI

Floating point values are computed for floating point arguments:

>> Ci(1.0), Ci(2.0 + 10.0*I)

0.3374039229, - 242.5252694 - 1185.8387 I

87

Example 2. Ci is singular at the origin:

>> Ci(0)

Error: singularity [Ci]

The negative real axis is a branch cut of Ci. A jump of height 2π i occurs when
crossing this cut:

>> Ci(-1.0), Ci(-1.0 + 10^(-10)*I), Ci(-1.0 - 10^(-10)*I)

0.3374039229 + 3.141592654 I, 0.3374039229 + 3.141592654 I,

0.3374039229 - 3.141592654 I

Example 3. The functions diff, float, and series handle expressions in-
volving Ci:

>> diff(Ci(x), x, x, x), float(ln(3 + Ci(sqrt(PI))))

2 cos(x) cos(x) 2 sin(x)
-------- - ------ + --------, 1.241299561

3 x 2
x x

>> series(Ci(x), x = 0);
series(Ci(x), x = infinity, 5);

2 4
x x 6

(ln(x) + EULER) - -- + -- + O(x)
4 96

sin(x) cos(x) 2 sin(x) 6 cos(x) 24 sin(x) / 1 \
------ - ------ - -------- + -------- + --------- + O| -- |

x 2 3 4 5 | 6 |
x x x x \ x /

Background:

A The function Ci(x)-ln(x) is an entire function. Ci has a logarithmic
singularity at the origin and a branch cut along the negative real axis.
The values on the negative real axis coincide with the limit “from above”:

Ci(x) = lim
ε→0+

Ci(x+ ε i) , x real, x < 0.

A Reference: M. Abramowitz and I. Stegun, “Handbook of Mathematical
Functions”, Dover Publications Inc., New York (1965).

88

Changes:

A Series expansions can now be computed via series.

D – differential operator for functions

D(f) or, alternatively, f’ computes the derivative of the univariate function f.

D([n1, n2, ...], f) computes the partial derivative
∂

∂xn1

∂

∂xn2

· · · f of the

multivariate function f(x1, x2, . . .).

Call(s):

A f’

A D(f)

A D([n1, n2, ...], f)

Parameters:
f — a function or a functional expression, an array, a list,

a polynomial, a set, or a table
n1, n2, ... — indices: positive integers

Return Value: a function or a functional expression. If f is an array or a list
etc., a corresponding object containing the derivatives of the entries is returned.

Side Effects: D uses option remember.

Overloadable by: f

Further Documentation: Section 7.1 of the MuPAD Tutorial.

Related Functions: diff, int, poly

Details:

A MuPAD has two functions for differentiation: diff and D. D represents
the differential operator that may be applied to functions; diff is used to
differentiate arithmetical expressions. Mathematically, D(f)(x) coincides
with diff(f(x), x); D([1, 2], f)(x, y) coincides with diff(f(x,
y), x, y). Symbolic calls of D and diff can be converted to one an-
other via rewrite. Cf. example 8.

A D(f) returns the derivative f ′ of the univariate function f. f’ is shorthand
for D(f).

89

A If f is a multivariate function and Dnf denotes the partial derivative of f
with respect to its n-th argument, then D([n1, n2, ...], f) computes
the partial derivative Dn1Dn2 · · · f . Cf. example 5. In particular, D([],
f) returns f itself.

It is assumed that partial derivatives commute. Internally, D([n1,
n2, ...], f) is converted to D([m1, m2, ...], f), where [m1,
m2, ...] = sort([n1, n2, ...]).

!

A f may be any object which can represent a function. In particular, f
may be a functional expression built from simple functions by means of
arithmetic operators (+, -, *, /, ^, @, @@). Any identifier different from
CATALAN, EULER, and PI is regarded as an “unknown” function; the same
holds for elements of kernel domains not explicitly mentioned on this page.
Cf. example 1. Any number and each of the three constant identifiers
above is regarded as a constant function. Cf. example 2.

A If f is a list, a set, a table, or an array, then D is applied to each entry of
f. Cf. example 3.

A A polynomial f of type DOM_POLY is regarded as polynomial function, the
indeterminates being the arguments of the function. Cf. example 6.

A If f is a function environment, a procedure, or a builtin kernel function,
then D can compute the derivative in some cases; see the “Background”
section below. If this is not possible, a symbolic D call is returned.

A Higher partial derivatives D([n1], D([n2], f)) are simplified to D([n1,
n2], f). Cf. example 7.

A The derivative of a univariate function f —denoted by D(f)— is syntactic-
ally distinguished from the partial derivative D([1], f) with respect to
the first variable, even if f represents a univariate function.

A The usual rules of differentiation are implemented:

• D(f + g) = D(f) + D(g),

• D(f * g) = f * D(g) + g * D(f),

• D(1/f) = -D(f) / f^2,

• D(f @ g) = D(f) @ g * D(g).

Note that the composition of functions is written as f@g and not as f(g).

A In order to express the n-th derivative of a univariate function for symbolic
n, you can use the “repeated composition operator” @@. Cf. example 9.

90

Example 1. D(f) computes the derivative of the function f:

>> D(sin), D(x -> x^2), D(id)

cos, 2 id, 1

Note that id denotes the identity function. D also works for more complex
functional expressions:

>> D(sin @ exp + 2*(x -> x*ln(x)) + id^2)

2 id + 2 ln + exp cos@exp + 2

If f is an identifier without a value, a symbolic D call is returned:

>> delete f: D(f + sin)

D(f) + cos

The same holds for objects of kernel type that cannot be regarded as functions:

>> D(NIL), D(point(3,2))

D(NIL), D(point(3, 2))

f’ is shorthand for D(f):

>> (f + sin)’, (x -> x^2)’, id’

D(f) + cos, 2 id, 1

Example 2. Constants are regarded as constant functions:

>> PI’, 3’, (1/2)’

0, 0, 0

Example 3. The usual rules of differentiation are implemented. Note that
lists and sets may also be taken as input; in this case, D is applied to each
element of the list or set:

>> delete f, g: D([f+g, f*g]); D({f@g, 1/f})

[D(f) + D(g), f D(g) + g D(f)]

{ D(f) }
{ D(g) D(f)@g, - ---- }
{ 2 }
{ f }

91

Example 4. The derivatives of most special functions of the library can be
computed. Again, id denotes the identity function:

>> D(tan); D(sin*cos); D(1/sin); D(sin@cos); D(2*sin + ln)

2
tan + 1

2 2
cos - sin

cos
- ----

2
sin

-sin cos@cos

1
-- + 2 cos
id

Example 5. D can also compute derivatives of procedures:

>> f := x -> x^2:
g := proc(x) begin tan(ln(x)) end:
D(f), D(g)

2
tan@ln + 1

2 id, -----------
id

We differentiate a function of two arguments by passing a list of indices as
first argument to D. In the example below, we first differentiate with respect to
the second argument and then differentiate the result with respect to the first
argument:

>> D([1, 2], (x, y) -> sin(x*y))

(x, y) -> cos(x*y) - x*y*sin(x*y)

The order of the partial derivatives is not relevant:

>> D([2, 1], (x, y) -> sin(x*y))

(x, y) -> cos(x*y) - x*y*sin(x*y)

>> delete f, g:

92

Example 6. A polynomial is regarded as a polynomial function:

>> D(poly(x^2 + 3*x + 2, [x]))

poly(2 x + 3, [x])

We differentiate the following bivariate polynomial f twice with respect to its
second variable y and once with respect to its first variable x:

>> f := poly(x^3*y^3, [x, y]):
D([1, 2, 2], f) = diff(f, y, y, x)

2 2
poly(18 x y, [x, y]) = poly(18 x y, [x, y])

>> delete f:

Example 7. Nested calls to D are flattened:

>> D([1], D([2], f))

D([1, 2], f)

However, this does not hold for calls with only one argument, since D(f) and
D([1], f) are not considered to be the same:

>> D(D(f))

D(D(f))

Example 8. D may only be applied to functions whereas diff makes only
sense for expressions:

>> D(sin), diff(sin(x), x)

cos, cos(x)

Applying D to expressions and diff to functions makes no sense:

>> D(sin(x)), diff(sin, x)

D(sin(x)), 0

rewrite allows to rewrite expressions with D into diff-expression:

>> rewrite(D(f)(y), diff), rewrite(D(D(f))(y), diff)

diff(f(y), y), diff(f(y), y, y)

The reverse conversion is possible as well:

>> map(%, rewrite, D)

D(f)(y), D(D(f))(y)

93

Example 9. Sometimes you may need the n-th derivative of a function, where
n is unknown. This can be achieved using the repeated composition operator.
For example, let us write a function that computes the k-th Taylor polynomial
of a function f at a point x0 and uses x as variable for that polynomial:

>> kthtaylorpoly:=
(f, k, x, x0) -> _plus(((D@@n)(f)(x0) * (x - x0)^n / n!) $ n = 0..k):
kthtaylorpoly(sin, 7, x, 0)

3 5 7
x x x

x - -- + --- - ----
6 120 5040

>> delete kthtaylorpoly:

Example 10. Advanced users can extend D to their own special mathematical
functions (see “Background” section below). To this end, embed your mathem-
atical function f , say, into a function environment f and implement the behavior
of D for this function as the "D" slot of the function environment. The slot must
handle two cases: it may be either called with only one argument which equals
f, or with two arguments where the second one equals f. In the latter case, the
first argument is a list of arbitrary many indices; that is, the slot must be able
to handle higher partial derivatives also.

Suppose, for example, that we are given a function f(t, x, y), and that we
do not know anything about f except that it is differentiable infinitely often
and satisfies the partial differential equation ∂f

∂t = ∂2f
∂x2 + ∂2f

∂y2 . To make MuPAD
eliminate derivatives with respect to t, we can do the following:

>> f := funcenv(f):
f::D :=
proc(indexlist, ff)
local
n : DOM_INT, // Number of t-derivatives.
list_2_3 : DOM_LIST; // List of indices of 2’s and 3’s.

// These remain unchanged.
begin
if args(0) <> 2 then
error("Wrong number of arguments")

end_if;
n := nops(select(indexlist, _equal, 1));
list_2_3 := select(indexlist, _unequal, 1);
// rewrite (d/dt)^n = (d^2/dx^2 + d^2/dy^2)^n
_plus(binomial(n, k) *

hold(D)(sort([2 $ 2*(n-k), 3 $ 2*k].list_2_3), ff)
$ k = 0..n)

end_proc:

94

Now, partial derivatives with respect to the first argument t are rewritten by
derivatives with respect to the second and third argument:

>> D([1], f^2)(t, x, y)

2 f(t, x, y) (D([2, 2], f)(t, x, y) + D([3, 3], f)(t, x, y))

>> D([1, 2, 1], f)

D([2, 2, 2, 2, 2], f) + 2 D([2, 2, 2, 3, 3], f) +

D([2, 3, 3, 3, 3], f)

>> delete f:

Background:

A If f is a domain or a function environment with a slot "D", this slot is
called to compute the derivative. The slot procedure has the same calling
syntax as D. In particular —and in contrast to the slot "diff"— the slot
must be able to compute higher partial derivatives because the list of
indices may have length greater than one. Cf. example 10.

A If f is a procedure, a function environment without a "D" slot, or a builtin
kernel function (an “executable object”), then f is called with auxiliary
identifiers as arguments. The result of the call is then differentiated using
the function diff. If the result of diff yields an expression which can
be regarded as function in the auxiliary identifers, then this function is
returned, otherwise an unevaluated call of D is returned.

A Let us take the function environment sin as an example. It has no "D"
slot, thus the procedure op(sin, 1), which is responsible for evaluating
the sine function, is used to compute D(sin), as follows. This procedure is
applied to an auxiliary identifier, say x, and differentiated with respect to
this identifier via diff. The result is diff(sin(x), x) = cos(x). Via
fp::expr_unapply and fp::unapply, the function cos is computed as
the derivative of sin.

Changes:

A Assuming that partial derivatives commute, the ordering of higher partial
derivatives is now“normalized”. E.g., D([2, 1], f) is now automatically
rewritten as D([1, 2], f).

A D now uses option remember.

95

DIGITS – the significant digits of floating point numbers

The environment variable DIGITS determines the number of significant decimal
digits in floating point numbers. The default value is DIGITS = 10.

Call(s):

A DIGITS

A DIGITS := n

Parameters:

n — a positive integer smaller than 231.

Related Functions: float, Pref::floatFormat, Pref::trailingZeroes

Details:

A Floating point numbers are created by applying the function float to
exact numbers or numerical expressions. Elementary objects are approx-
imated by the resulting floats with a relative precision of 10^(-DIGITS),
i.e., the first DIGITS decimal digits are correct. Cf. example 1.

A In arithmetical operations with floating point numbers, only the first
DIGITS decimal digits are taken into account. The numerical error propag-
ates and may grow in the course of computations. Cf. example 2.

A If a real floating point number is entered directly (e.g., by x := 1.234),
a number with at least DIGITS internal decimal digits is created. Note,
however, that a conversion error may occur, because the internal repres-
entation is binary.

If a real float is entered with more than DIGITS digits, the internal repres-
entation stores the extra digits. However, they are not taken into account
in arithmetical operations, unless DIGITS is increased accordingly. Cf.
example 3.

In particular, complex floating point numbers are created by adding the
real and imaginary part. This addition truncates extra decimal places in
the real and imaginary part.

A The value of DIGITS may be changed at any time during a computation.
If DIGITS is decreased, only the leading digits of existing floating numbers
are taken into account in the following arithmetical operations. If DIGITS
is increased, existing floating point numbers are internally padded with
trailing binary zeroes. Cf. example 4.

96

A Depending on DIGITS, certain functions such as the trigonometric func-
tions may reject floats as too inaccurate and stop with an error. Cf.
example 5.

A Depending on DIGITS, only significant digits of floating point numbers
are displayed on the screen. The preferences Pref::floatFormat and
Pref::trailingZeroes can be used to modify the screen output. Cf.
example 4.

At least one digit after the decimal point is displayed; if it is insignificant,
it is replaced by zero. Cf. example 6.

A Internally, floating point numbers are created and stored with some extra
“guard digits”. These are also taken into account by the basic arithmetical
operations.

For example, for DIGITS = 10, the function float converts exact numbers
to floats with about 19 decimal digits. The number of guard digits depends
on DIGITS. For example, for all DIGITS from 8 through 17, the same
internal representation of about 19 decimal digits is used.

At least 2 internal guard digits are available for any value of DIGITS.

Cf. examples 4 and 7.

A Environment variables such as DIGITS are global variables. Upon return
from a procedure that changes DIGITS, the new value is valid outside
the context of the procedure as well! Use save DIGITS to restrict the
modified value of DIGITS to the procedure. Cf. example 8.

A The default value of DIGITS is 10; DIGITS has this value after starting
or resetting the system via reset. Also the command delete DIGITS;
restores the default value.

A See the helppage of float for further information.

Example 1. We convert some exact numbers and numerical expressions to
floating point approximations:

>> DIGITS := 10:
float(PI), float(1/7), float(sqrt(2) + exp(3)), float(exp(-20))

3.141592654, 0.1428571429, 21.49975049, 0.000000002061153622

>> DIGITS := 20:
float(PI), float(1/7), float(sqrt(2) + exp(3)), float(exp(-20))

3.1415926535897932385, 0.14285714285714285714,

21.49975048556076279, 0.000000002061153622438557828

>> delete DIGITS:

97

Example 2. We illustrate error propagation in numerical computations. The
following rational number approximates exp(2) to 17 decimal digits:

>> r := 738905609893065023/100000000000000000:

The following float call converts exp(2) and r to floating point approxima-
tions. The approximation errors propagate and are amplified in the following
numerical expression:

>> DIGITS := 10: float(10^20*(r - exp(2)))

320.0

None of the digits in this result is correct. A better result is obtained by
increasing DIGITS:

>> DIGITS := 20: float(10^20*(r - exp(2)))

276.95725394785404205

>> delete r, DIGITS:

Example 3. In the following, only 10 of the entered 30 digits are regarded as
significant. The extra digits are stored internally, anyway:

>> DIGITS := 10:
a := 1.23456789666666666666666666666;
b := 1.23456789444444444444444444444

1.234567897

1.234567894

We increase DIGITS. Because the internal representation of a and b is correct
to 30 decimal place, the difference can be computed correctly to 20 decimal
places:

>> DIGITS := 30: a - b

0.00000000222222222222222222222

>> delete a, b, DIGITS:

98

Example 4. We compute a floating point number with a precision of 10 digits.
Internally, this number is stored with about 9 guard digits to 19 correct digits.
Increasing DIGITS to 30, the correct guard digits become visible. The remaining
11 decimal digits are created by padding the internal representation with binary
zeroes. In the output, the internal representation is converted into a decimal
representation. This converts the trailing binary zeroes to 11 nontrivial decimal
digits. With the the call Pref::trailingZeroes(TRUE), trailing zeroes of the
decimal representation become visible:

>> DIGITS := 10: a := float(1/9)

0.1111111111

>> Pref::trailingZeroes(TRUE): DIGITS := 30: a

0.111111111111111111109605274760

>> Pref::trailingZeroes(FALSE): delete a, DIGITS:

Example 5. For the float evaluation of the sine function, the argument is
reduced to the standard interval [0, 2π]. For this reduction, the argument must
be known to some digits after the decimal point. For small DIGITS, the digits
after the decimal point are pure round-off if the argument is a large floating
point number:

>> DIGITS := 10: sin(float(2*10^20))

0.9576594803

Increasing DIGITS to 50, the argument of the the sine function has about 30
correct digits after the decimal point. The first 30 digits of the following result
are reliable:

>> DIGITS := 50: sin(float(2*10^20))

-0.9859057707420871849896773829691365946134713391129

For very large floating point arguments, MuPAD’s trigonometric functions pro-
duce errors if DIGITS is not large enough:

>> DIGITS := 10: sin(float(2*10^30))

Error: Loss of precision;
during evaluation of ’sin’

>> DIGITS := 50: sin(float(2*10^30))

0.17950046751493908795061771243112520647287791588203

>> delete DIGITS:

99

Example 6. At least one digit after the decimal point is always displayed. In
the following example, the number 3.9 is displayed as 3.0 to indicate that the
digit 9 after the decimal point is not significant:

>> DIGITS := 1: float(PI), 3.9, -3.2

3.0, 3.0, -3.0

>> delete DIGITS:

Example 7. We compute float(10^40*8/9) with various values of DIGITS.
Rounding takes into account all guard digits, i.e., the resulting integer makes
all guard digits visible:

>> for DIGITS in [7, 8, 9, 17, 18, 19, 26, 27, 28] do
print("DIGITS" = DIGITS, round(float(10^40*8/9)))

end_for:

"DIGITS" = 7, 8888888887243627086483687557525021917184

"DIGITS" = 8, 8888888888888888888303079319556646240256

"DIGITS" = 9, 8888888888888888888303079319556646240256

"DIGITS" = 17, 8888888888888888888303079319556646240256

"DIGITS" = 18, 8888888888888888888888888888827804909568

"DIGITS" = 19, 8888888888888888888888888888827804909568

"DIGITS" = 26, 8888888888888888888888888888827804909568

"DIGITS" = 27, 8888888888888888888888888888888888888864

"DIGITS" = 28, 8888888888888888888888888888888888888864

The results show that the internal representation coincides for values of DIGITS
between 8 and 17. Increasing DIGITS to 18 leads to an extended internal rep-
resentation which is constant through DIGITS = 26. From DIGITS = 27 on, a
yet more extended internal representation is used etc.

Example 8. The following procedure allows to compute numerical approxim-
ations with a specified precision without changing DIGITS as a global variable.
Internally, DIGITS is set to the desired precision and the float approximation is
computed. Because of save DIGITS, the value of DIGITS is not changed outside
the procedure:

100

>> Float := proc(x, digits)
save DIGITS;
begin
DIGITS := digits:
float(x);

end_proc:

The float approximation of the following value x suffers from numerical cancella-
tion. In particular, for DIGITS = 7 only a few internal guard digits are available.
The value computed by float has only 3 correct leading digits. Float is used to
approximate x with 30 digits. The result is displayed with only 7 digits because
of the value DIGITS = 7 valid outside the procedure. However, all displayed
digits are correct:

>> x := PI^7 - exp(80131/10000): DIGITS := 7:
float(x), Float(x, 30)

0.02779102, 0.02778943

>> delete Float, x, DIGITS:

Background:

A If a floating point number x has been created with high precision, and the
computation is to continue at a lower precision, the easiest method to get
rid of memory-consuming insignificant digits is x := x + 0.0 .

Ei – the exponential integral function

Ei(x) represents the exponential integral
∫∞
1 e−x t/t dt .

Call(s):

A Ei(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

101

Related Functions: Ci, exp, igamma, int, Si

Details:

A If x is a floating point number, then Ei(x) returns the numerical value of
the exponential integral. The special values Ei(∞) = 0 and Ei(−∞) =
−∞ are implemented. For all other arguments, Ei returns a symbolic
function call.

A Ei(x) is equivalent to igamma(0,x) for real arguments x>0.

A The float attribute of Ei is a kernel function, i.e., floating point evaluation
is fast.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> Ei(1), Ei(sqrt(2)), Ei(x + 1), Ei(infinity), Ei(-infinity)

1/2
Ei(1), Ei(2), Ei(x + 1), 0, -infinity

Floating point values are computed for floating point arguments:

>> Ei(-1000.0), Ei(1.0), Ei(12.3), Ei(2.0 + 10.0*I)

- 1.972045137e431 - 3.141592654 I, 0.2193839344,

0.0000003439533949, 0.003675663008 + 0.01234609005 I

Example 2. Ei is singular at the origin:

>> Ei(0)

Error: singularity [Ei]

The negative real axis is a branch cut of Ei. A jump of height 2π i occurs when
crossing this cut:

>> Ei(-1.0), Ei(-1.0 + 10^(-10)*I), Ei(-1.0 - 10^(-10)*I)

- 1.895117816 - 3.141592654 I, - 1.895117816 - 3.141592653 I,

- 1.895117816 + 3.141592653 I

102

Example 3. The functions diff, float, limit, and series handle expres-
sions involving Ei:

>> diff(Ei(x), x, x, x), float(ln(3 + Ei(sqrt(PI))))

exp(-x) 2 exp(-x) 2 exp(-x)
- ------- - --------- - ---------, 1.120796995

x 2 3
x x

>> limit(Ei(2*x^2/(1+x)), x = infinity)

0

>> series(Ei(x), x = 0, 3),
series(Ei(x), x = infinity, 3),
series(Ei(x), x = -infinity, 3)

2
x 3

- (ln(x) + EULER) + x - -- + O(x),
4

1 1 2 / 1 \
-------- - --------- + --------- + O| --------- |,
x exp(x) 2 3 | 4 |

x exp(x) x exp(x) \ x exp(x) /

exp(-x) exp(-x) 2 exp(-x) / exp(-x) \
------- - ------- + --------- + O| ------- |

x 2 3 | 4 |
x x \ x /

Background:

A The function Ei(x)+ln(x) is an entire function. Ei has a logarithmic
singularity at the origin and a branch cut along the negative real axis.
The values on the negative real axis coincide with the limit “from above”:

Ei(x) = lim
ε→0+

Ei(x+ ε i), x real, x < 0.

A Ei(x) coincides with Ei(1, x) from the following family of functions:

Ei(n, x) =
∫ ∞

1

e−x t

tn
dt.

These functions are related to the incomplete gamma function igamma by
Ei(n, x) = xn−1 igamma(1 − n, x). Note that float evaluation of igamma
is presently implemented only for real x > 0, whereas Ei can be evaluated
for any complex x 6= 0.

103

A The special function ei(x) =
∫ x
−∞ et/t dt for real x (to be understood as a

Cauchy Principal Value integral for x > 0) is related to the implemented
exponential integral Ei by ei(x) = −Re(Ei(−x)), i.e.:

ei(x) =
{
−Ei(−x) , x < 0,
−Ei(−x) + i π , x > 0.

A Reference: M. Abramowitz and I. Stegun, “Handbook of Mathematical
Functions”, Dover Publications Inc., New York (1965).

FAIL – indicate a failed computation

FAIL is a keyword of the MuPAD language. Many functions of the library use
the return value FAIL to indicate failed computations or non-existing elements.

Call(s):

A FAIL

Related Functions: error, NIL, null

Details:

A FAIL is the only element of the domain DOM_FAIL.

A FAIL is used as the return value for computations that failed. Also, re-
questing non-existing slots of domains or function environments yields
FAIL. Due to this behavior, library functions can try computations without
provoking errors.

A A function should return FAIL or an error if at least one of its inputs is
FAIL.

Example 1. The following attempt to convert sqrt(3) to an integer of a
residue class ring must fail:

>> poly(sqrt(3)*x, [x], Dom::IntegerMod(3))

FAIL

The following matrix is not invertible. You can try to invert it without produ-
cing an error:

>> A := matrix([[1, 1], [1, 1]]): 1/A

FAIL

104

The "inverse" slot of a function environment yields the inverse of the function.
The inverse of the sine function is implemented, but MuPAD does not know the
inverse of the dilogarithm function:

>> sin::inverse, dilog::inverse

"arcsin", FAIL

>> delete A:

Example 2. Most functions return FAIL or an error on input of FAIL:

>> poly(FAIL)

FAIL

>> sin(FAIL)

Error: argument must be of ’Type::Arithmetical’ [sin]

Example 3. FAIL evaluates to itself:

>> FAIL, eval(FAIL), level(FAIL, 5)

FAIL, FAIL, FAIL

FILEPATH – the pathname of a file that is currently loaded

FILEPATH is a variable containing the path of a currently read file.

Call(s):

A FILEPATH

Related Functions: fclose, fileIO, fopen, fread, package, pathname,
read, READPATH

105

Details:

A The variable FILEPATH represents the pathname of a file. It only has a
value while reading a file via read or fread and corresponds to the path
specified in read or fread. It can only be accessed from inside the file
that is currently read. Using this variable, the read file can access its own
pathname and read other files via absolute pathnames, even if it only
knows their relative locations with respect to itself.

A The value of FILEPATH is a string containing the operating system depend-
ent path to the file that is currently read. The path string terminates with
a path separator and, under Windows, starts with the name of the current
volume if this was specified in the read/fread command. Cf. example 1.

A See ?fileIO for a survey of all MuPAD functions for reading and writing
files.

Example 1. Assume that the file C:\TEMP\file.mu contains the following
lines of code. It queries its own location via FILEPATH (= C:\TEMP\) and reads
two files installed relative to the location of file.mu via their absolute path-
names C:\TEMP\SubFolder\file1.mu and C:\TEMP\SubFolder\file2.mu, re-
spectively:

print(Unquoted, "FILEPATH" = FILEPATH):
read(FILEPATH.pathname("SubFolder")."file1.mu"):
read(FILEPATH.pathname("SubFolder")."file2.mu"):

When reading the file file.mu, the part C:\TEMP\ of the specified path is
accessed by file.mu via FILEPATH. It finds the files file1.mu and file2.mu if
they were installed correctly relative to the path of file.mu:

>> read("C:".pathname(Root, "TEMP", "file.mu"))

FILEPATH = C:\TEMP\

It is good programming style to use platform independent path strings. For this
reason, we used the function pathname rather than a mere string concatenation
to append appropriate path delimiters.

Changes:

A FILEPATH is a new variable.

HISTORY – the maximal number of elements in the history table

The environment variable HISTORY determines the maximal number of entries
of the history table at interactive level.

106

Call(s):

A HISTORY

A HISTORY := n

Parameters:

n — a nonnegative integer smaller than 231.

Related Functions: history, last

Details:

A The commands that are entered interactively in a MuPAD session, ex-
ecuted in a procedure, or read from a file, as well as the resulting MuPAD
outputs are stored in an internal data structure, the history table. HISTORY
determines the maximal number of entries of this table at interactive level.
Only the most recent entries are kept in memory.

A Entries of the history table can be accessed via history or last.

A The default value of HISTORY is 20; HISTORY has this value after starting
or resetting the system via reset. Also the command delete HISTORY
restores the default value.

A Within a procedure, the maximal number of entries in the local history
table of the procedure is always 3, independent of the value of HISTORY.

Example 1. In the following example, we set the value of HISTORY to 2.
Afterwards, only the two most recent inputs and outputs are stored in the
history table at interactive level:

>> HISTORY := 2:
a := 1: b := 2: max(a, b):
history(history() - 1), history(history())

[(b := 2), 2], [max(a, b), 2]

The attempt to access the third last entry in the history table leads to an error:

>> history(history() - 2)

Error: Illegal argument [history]

We use delete to restore the default value of HISTORY:

>> delete HISTORY: HISTORY

20

107

LEVEL – substitution depth of identifiers

The environment variable LEVEL determines the maximal substitution depth of
identifiers.

Call(s):

A LEVEL

A LEVEL := n

Parameters:

n — a positive integer smaller than 231.

Further Documentation: Chapter 5 of the MuPAD Tutorial.

Related Functions: context, eval, hold, level, MAXLEVEL, MAXDEPTH, val

Details:

A When a MuPAD object is evaluated, identifiers occurring in it are replaced
by their values. This happens recursively, i.e., if the values themselves
contain identifiers, then these are replaced as well. LEVEL determines the
maximal recursion depth of this process.

A Technically, evaluation of a MuPAD object works as follows. For a com-
pound object, usually first the operands are evaluated recursively, and
then the object itself is evaluated. E.g., if the object is a function call
with arguments, the arguments are evaluated first, and then the function
is executed with the evaluated arguments.

With respect to the evaluation of identifiers, the current substitution depth
is recorded internally. Initially, this value is zero. If an identifier is en-
countered during the recursive evaluation process as described above and
the current substitution depth is smaller than LEVEL, then the identifier
is replaced by its value, the current substitution depth is increased by
one, and evaluation proceeds recursively with the value of the identifier.
After the identifier has been evaluated, the current substitution depth is
reset to its previous value. If the current substitution depth equals LEVEL,
however, then the recursion stops and the identifier remains unevaluated.

A The default value of LEVEL at interactive level is 100. However, the
default value of LEVEL within a procedure is 1. Then an identifier
is only replaced by its value, which is not evaluated recursively.

!

108

The value of LEVEL may be changed within a procedure, but it is reset
to 1 each time a new procedure is entered. After the procedure returns,
LEVEL is reset to its previous value. See example 3.

A The evaluation of local variables and formal parameters of proced-
ures, of type DOM_VAR, is not affected by LEVEL: they are always
evaluated with substitution depth 1. This means that a local vari-
able or a formal parameter is replaced by its value when evaluated,
but the value is not evaluated further.

!

See example 3.

A LEVEL does not affect on the evaluation of arrays, tables and poly-
nomials. !
See example 4.

A The function eval evaluates its argument with substitution depth given
by LEVEL, and then evaluates the result again with the same substitution
depth.

The call level(object, n) evaluates its argument with substitution depth
n, independent of the value of LEVEL.

A If, during evaluation, the substitution depth MAXLEVEL, is reached, then
the evaluation is terminated with an error. This is a heuristic for recog-
nizing recursive definitions, as in the example delete a; a := a + 1;
a. Here, a would be replaced by a + 1 infinitely often. Note that this has
no effect if MAXLEVEL is greater than LEVEL. The default value of MAXLEVEL
is 100, i.e., it is equal to the default value of LEVEL at interactive level.
However, unlike LEVEL, MAXLEVEL is not changed within a procedure, and
hence recursive definitions are usually not recognized within procedures.
See the help page of MAXLEVEL for examples.

A The default value of LEVEL is 100 at interactive level; LEVEL has this value
after starting or resetting the system via reset. Within a procedure, the
default value is 1. The command delete LEVEL restores the default value.

Example 1. We demonstrate the effect of various values of LEVEL at interact-
ive level:

>> delete a0, a1, a2, a3, a4, b: b := b + 1:
a0 := a1: a1 := a2 + 2: a2 := a3 + a4: a3 := a4^2: a4 := 5:

>> LEVEL := 1: a0, a0 + a2, b;
LEVEL := 2: a0, a0 + a2, b;
LEVEL := 3: a0, a0 + a2, b;
LEVEL := 4: a0, a0 + a2, b;
LEVEL := 5: a0, a0 + a2, b;
LEVEL := 6: a0, a0 + a2, b;
delete LEVEL:

109

a1, a1 + a3 + a4, b + 1

2
a2 + 2, a2 + a4 + 7, b + 2

a3 + a4 + 2, a3 + a4 + 32, b + 3

2 2
a4 + 7, a4 + 37, b + 4

32, 62, b + 5

32, 62, b + 6

Example 2. In the following calls, the identifier a is fully evaluated:

>> delete a, b, c:
a := b: b := c: c := 7: a

7

After assigning the value 2 to LEVEL, a is evaluated only with depth two:

>> LEVEL := 2: a;
delete LEVEL:

c

If we set MAXLEVEL to 2 as well, evaluation of a produces an error, although
there is no recursive definition involved:

>> LEVEL := 2: MAXLEVEL := 2: a

Error: Recursive definition [See ?MAXLEVEL]

>> delete LEVEL, MAXLEVEL:

Example 3. This example shows the difference between the evaluation of
identifiers and local variables. By default, the value of LEVEL is 1 within a
procedure, i.e., a global identifier is replaced by its value when evaluated, but
there is no further recursive evaluation. This changes when LEVEL is assigned
a bigger value inside the procedure:

110

>> delete a0, a1, a2, a3:
a0 := a1 + a2: a1 := a2 + a3: a2 := a3^2 - 1: a3 := 5:
p := proc()

save LEVEL;
begin
print(a0, eval(a0)):
LEVEL := 2:
print(a0, eval(a0)):

end_proc:

>> p()

2
a1 + a2, a2 + a3 + a3 - 1

2
a2 + a3 + a3 - 1, 53

In contrast, evaluation of a local variable replaces it by its value, without further
evaluation. When eval is applied to an object containing a local variable, then
the effect is an evaluation of the value of the local variable with substitution
depth LEVEL:

>> q := proc()
save LEVEL;
local x;

begin
x := a0:
print(x, eval(x)):
LEVEL := 2:
print(x, eval(x)):

end_proc:
q()

2
a1 + a2, a2 + a3 + a3 - 1

2
a1 + a2, a3 + 28

The command x:=a0 assigns the value of the identifier a0, namely the unevalu-
ated expression a1+a2, to the local variable x, and x is replaced by this value
every time it is evaluated, independent of the value of LEVEL.

Example 4. LEVEL does not affect on evaluation of polynomials:

>> delete a, x: p := poly(a*x, [x]): a := 2: x := 3:
p, eval(p);
LEVEL := 1: p, eval(p);
delete LEVEL:

111

poly(a x, [x]), poly(a x, [x])

poly(a x, [x]), poly(a x, [x])

The same is true for arrays and tables:

>> delete a, b:
A := array(1..2, [a, b]): T := table(a = b):
a := 1: b := 2:
A, eval(A), T, eval(T);
LEVEL := 1: A, eval(A), T, eval(T);
delete LEVEL:

+- -+ +- -+ table(table(
| a, b |, | a, b |, a = b , a = b
+- -+ +- -+))

+- -+ +- -+ table(table(
| a, b |, | a, b |, a = b , a = b
+- -+ +- -+))

Line-Editor – editing lines in the terminal version of MuPAD

This page describes the line editing facility of MuPAD’s terminal version.

Details:

A The line editor described below is only available in the terminal version
of MuPAD, not under the X-Window-System, nor on the Macintosh, nor
under Windows.

A The current text line can be edited with the line editor during interactive
input. Most of the following editor commands are entered by pressing the
control key together with a second key. The available commands are:

112

<Ctrl-A> – Moves the cursor to the beginning of the line.
<Ctrl-Y> – Moves the cursor to the beginning of the previous word.

This does not work under Solaris, where <Ctrl-Y> raises a
non-POSIX signal which suspends the session.

<Ctrl-B>,
<Cursor-Left>

– Moves the cursor one character to the left.

<Ctrl-F>,
<Cursor-Right>

– Moves the cursor one character to the right.

<Ctrl-E> – Moves the cursor to the end of the line.
<Ctrl-U> – Deletes the complete input line.
<Ctrl-W> – Deletes all characters from the cursor position to the begin-

ning of the previous word.
<Ctrl-H> – Deletes the character left of the cursor.
<Ctrl-D> – Deletes the character at the cursor position.
<Ctrl-T> – Deletes the next word.
<Ctrl-K> – Deletes all characters to the end of the line.
<Ctrl-L> – Inserts the last input line before the current cursor position.
<Ctrl-P>,
<Cursor-Up>

– Reproduces the last input line. Repeated pressing of
<Ctrl-P> successively reproduces the previous input lines.
If the cursor is not at the beginning of the line then the pre-
vious lines are searched for an entry that corresponds to the
characters of the current input.

<Ctrl-N>,
<Cursor-Down>

– The analogue of <Ctrl-P>, but the previous input is run
through in reverse order.

<Ctrl-C> – Used during editing, the MuPAD input will be ignored; the
MuPAD prompt appears for a new input. Used directly after
the MuPAD prompt, the MuPAD process is terminated. Used
during a MuPAD calculation, the computation is interrupted.

<TAB> – Completes the actual input to the name of a system object.
This may be the name of a library, of a function, or of an en-
vironment variable, respectively. If the actual input matches
the beginning of several system objects, then all completed
names are printed to the screen.

Example 1. We demonstrate the <TAB> completion. The <TAB> character is
pressed after the input lin. The system responds by printing the three system
objects beginning with lin. These are the libraries linalg, linopt, and the
system function linsolve, respectively:

>> lin<TAB>

linalg, linopt, linsolve

The following input lists all functions of the linalg library beginning with ’a’:

>> linalg::a<TAB>

113

linalg::addCol, linalg::addRow, linalg::adjoint, linalg::angle

The following input lists all functions available in the groebner library:

>> groebner::<TAB>

groebner::dimension, groebner::gbasis, groebner::normalf,
groebner::spoly

MAXDEPTH – prevent infinite recursion during procedure calls

The environment variable MAXDEPTH determines the maximal recursion depth of
nested procedure calls. When this recursion depth is reached, an error occurs.

Call(s):

A MAXDEPTH

A MAXDEPTH:= n

Parameters:

n — a positive integer smaller than 231.

Related Functions: eval, freeze, LEVEL, level, MAXLEVEL, proc

Details:

A The purpose of MAXDEPTH is to provide a heuristic for recognizing infinite
recursion with respect to procedure calls, like in p := x -> p(x): p(0).
If, in this example, the recursion depth would not be limited, then the
procedure p would call itself recursively infinitely often, and the system
would “hang”.

A If during the evaluation of an object the recursion depth MAXDEPTH is
reached, then the computation is aborted with an error.

A Similarly, the environment variable MAXLEVEL provides a heuristic for re-
cognizing infinite recursion with respect to the substitution of values for
identifiers; see the corresponding help page for details and examples.

A The default value of MAXDEPTH is 500; MAXDEPTH has this value after
starting or resetting the system via reset. Also the command delete
MAXDEPTH restores the default value.

A MAXDEPTH is a global variable. Use the statement save MAXDEPTH in a
procedure to confine any changes to MAXDEPTH to this procedure.

114

Example 1. Evaluation of objects defined by an infinite recursion produces
an error:

>> p := proc() begin p() end_proc: p()

Error: Recursive definition [See ?MAXDEPTH];
during evaluation of ’p’

This also works for mutually recursive definitions:

>> p := proc(x) begin q(x + 1)^2 end_proc:
q := proc(y) begin p(x) + 2 end_proc:
p(0)

Error: Recursive definition [See ?MAXDEPTH];
during evaluation of ’p’

Example 2. If the maximal recursion depth is reached, then this does not
necessarily mean that infinite recursion is involved. The following recursive
procedure computes the factorial of a nonnegative integer. If we set the maximal
recursion depth to a smaller value than necessary to compute 4!, then an error
occurs:

>> factorial := proc(n) begin
if n = 0 then 1
else n*factorial(n - 1)
end_if

end_proc:
MAXDEPTH := 4: factorial(5)

Error: Recursive definition [See ?MAXDEPTH];
during evaluation of ’factorial’

If we set MAXDEPTH to 5, then the recursion depth is big enough for computing
4!. The command delete MAXDEPTH resets MAXDEPTH to its default value 500:

>> MAXDEPTH := 5: factorial(5); delete MAXDEPTH:

120

MAXLEVEL – prevent infinite recursion during evaluation

The environment variable MAXLEVEL determines the maximal substitution depth
of identifiers. When this substitution depth is reached, an error occurs.

115

Call(s):

A MAXLEVEL

A MAXLEVEL:= n

Parameters:

n — an integer between 2 and 231.

Related Functions: context, eval, hold, LEVEL, level, MAXDEPTH, val

Details:

A When a MuPAD object is evaluated, identifiers occurring in it are replaced
by their values. This happens recursively, i.e., if the values themselves
contain identifiers, then these are replaced as well. MAXLEVEL determines
the maximal recursion depth of this process. If the substitution depth
MAXLEVEL is reached, then an error occurs.

A The purpose of MAXLEVEL is to provide a heuristic for recognizing infinite
recursion with respect to the replacement of identifiers by their values, like
in delete a: a := a + 1; a. If, in this example, the substitution depth
would not be limited, then a + 1 would be substituted for a infinitely
often, and the system would “hang”.

A Similarly, the environment variable MAXDEPTH provides a heuristic for re-
cognizing infinite recursion with respect to function calls; see the corres-
ponding help page for details.

A There is a close connection between LEVEL and MAXLEVEL. If the substi-
tution depth LEVEL is reached during the evaluation process, then the
recursion stops and any remaining identifiers remain unevaluated, but no
error occurs.

Thus, if MAXLEVEL > LEVEL, then MAXLEVEL has no effect. By default,
LEVEL and MAXLEVEL have the same value 100 at interactive level. How-
ever, the default value of LEVEL within a procedure is 1, and thus usually
MAXLEVEL has no effect within procedures.

A There are some notable differences between LEVEL and MAXLEVEL. The
value of LEVEL depends on the context, namely whether the evaluation
happens at interactive level or in a procedure. Moreover, some system
functions, such as context and level, do not respect the current value of
LEVEL. In contrast, MAXLEVEL is a global bound. It works as a last resort
when the control of the evaluation via LEVEL fails.

A The default value of MAXLEVEL is 100; MAXLEVEL has this value after
starting or resetting the system via reset. Also the command delete
MAXLEVEL restores the default value.

116

A MAXLEVEL is a global variable. Use the statement save MAXLEVEL in a
procedure to confine any changes to MAXLEVEL to this procedure.

Example 1. Evaluation of objects defined by an infinite recursion produces
an error:

>> delete a: a := a + 1: a

Error: Recursive definition [See ?MAXLEVEL]

This also works for mutually recursive definitions:

>> delete a, b: a := b^2: b := a + 1: b

Error: Recursive definition [See ?MAXLEVEL]

Example 2. If MAXLEVEL is smaller or equal to LEVEL, as is the default at
interactive level, then objects are evaluated completely up to depth MAXLEVEL-1,
and an error occurs if the substitution depth MAXLEVEL is reached, whether a
recursive definition is involved or not:

>> delete a, b, c, d:
a := b: b := c: c := 7: d := d + 1:
MAXLEVEL := 2: LEVEL := 2: c

7

>> a

Error: Recursive definition [See ?MAXLEVEL]

>> d

Error: Recursive definition [See ?MAXLEVEL]

On the other hand, MAXLEVEL has no effect if it exceeds LEVEL. Then any object
is evaluated up to depth at most LEVEL, and the“recursive definition”error does
not occur:

>> MAXLEVEL := 3: a, b, c, d

c, 7, 7, d + 2

In particular, MAXLEVEL normally has no effect within procedures, where by
default LEVEL has the value 1:

>> MAXLEVEL := 2:
p := proc() begin a, d end_proc:
p();
delete MAXLEVEL, LEVEL:

117

b, d + 1

NIL – the singleton element of the domain DOM_NIL

NIL is a keyword of the MuPAD language which represents the singleton element
of the domain DOM_NIL.

Call(s):

A NIL

Related Functions: delete, FAIL, null

Details:

A The kernel domain DOM_NIL has only one singleton element. NIL is a
keyword of the MuPAD language which represents this element. NIL is
not changed by evaluation, see DOM_NIL.

A Most often, NIL is used to represent a “missing” or “void” operand in a
data structure. The“void object”returned by null is not suitable for this,
because it is removed from most containers (like lists, sets or expressions)
during evaluation.

A When a new array from the kernel domain DOM_ARRAY is created, its ele-
ments are initialized with the value NIL. The function op returns NIL for
un-initialized array elements. Note, however, that an indexed access of
an un-initialized array element returns the indexed expression instead of
NIL.

A Local variables of procedures defined by proc are initialized with NIL.
Nevertheless, a warning is printed if one accesses a local variable without
explicitly initializing its value.

A In former versions of MuPAD, NIL was used to delete values of identifiers
or entries of arrays or tables, by assigning NIL to the identifier or entry.
This is no longer supported. One must use delete to delete values. NIL
now is a valid value of an identifier and a valid entry of an array or table.

Example 1. Unlike the “void object” returned by null, NIL is not removed
from lists and sets:

>> [1, NIL, 2, NIL], [1, null(), 2, null()],
{1, NIL, 2, NIL}, {1, null(), 2, null()}

118

[1, NIL, 2, NIL], [1, 2], {NIL, 1, 2}, {1, 2}

Example 2. NIL is used to represent “missing” entries of procedures. For
example, the simplest procedure imaginable has the following operands:

>> op(proc() begin end)

NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL, NIL

The first NIL, for example, represents the empty argument list, the second the
void list of local variables and the third the void set of procedure options.

Example 3. Array elements are initialized with NIL if not defined otherwise.
Note, however, that the indexed access for such elements yields the indexed
expression:

>> A := array(1..2): A[1], op(A,1)

A[1], NIL

>> delete A:

Example 4. Local variables in procedures are implicitly initialized with NIL.
Still, a warning is printed if one uses the variable without explicitly initializing
it:

>> p := proc() local l; begin print(l) end: p():

Warning: Uninitialized variable ’l’ used;
during evaluation of ’p’

NIL

>> delete p:

Example 5. NIL may be assigned to an identifier or indexed identifier like any
other value. Such an assignment no longer deletes the value of the identifier:

>> a := NIL: b[1] := NIL: a, b[1]

NIL, NIL

>> delete a, b:

119

NOTEBOOKFILE, NOTEBOOKPATH – Notebook file name and path

The environment variables NOTEBOOKFILE and NOTEBOOKPATH store the absolute
file name and the directory name, respectively, of the current Notebook in
MuPAD Pro for Windows as a string.

Call(s):

A NOTEBOOKFILE

A NOTEBOOKPATH

Related Functions: LIBPATH, READPATH, TESTPATH, UNIX, WRITEPATH

Details:

A The environment variable NOTEBOOKFILE stores the name of the current
Notebook that is connected to the MuPAD kernel.

A The environment variable NOTEBOOKPATH stores the name of the directory
where the current Notebook is located.

A These variables are useful, for example, when reading files that are located
relative to the Notebook.

Both variables only have a value if the Notebook has a name, which is
generally the case when an existing Notebook has been opened or a new
Notebook has been saved.

A The name given by NOTEBOOKFILE is an absolute file name.

A Both variables are read-only and are write-protected. One cannot assign a
new value to NOTEBOOKFILE in order to change the name of the Notebook.

A NOTEBOOKFILE and NOTEBOOKPATH are only defined in MuPAD Pro for
Windows. On other platforms, the two variables are just normal identifi-
ers.

Example 1. In MuPAD Pro for Windows, one may supply start-up commands
for a Notebook, which are executed when the Notebook is connected to a kernel.
(See the menu File/Properties in the on-line help.)

In the start-up commands one may use NOTEBOOKPATH to read a source file
“my_init.mu” which is stored in the directory of the Notebook:

>> fread(NOTEBOOKPATH."my_init.mu")

120

O – the domain of order terms (Landau symbols)

O(f, x = x0) represents the Landau symbol O(f, x→ x0).

Call(s):

A O(f <, x = x0, y = y0, ...>)

Parameters:
f — an arithmetical expression representing a function in

x, y etc.
x, y, ... — the variables: identifiers
x0, y0, ... — the limit points: arithmetical expressions

Return Value: an element of the domain O.

Related Functions: asympt, limit, series, taylor

Details:

A Mathematically, for a function f in the variables (x, y, . . .), the Landau
symbol

g := O(f, x→ x0, y → y0, . . .)

is a function in these variables with the following property: there exists
a constant c and a neighborhood of the limit point (x0, y0, . . .) such that
|g| ≤ c |f | for all values (x, y, . . .) in that neighborhood.

Typically, Landau symbols are used to denote the order terms (“er-
ror terms”) of series expansions. Note, however, that the series
expansions produced by asympt, series, and taylor represent or-
der terms as a part of the data structures Series::Puiseux and
Series::gseries; they do not use the domain O.

!

A With the equations x = x0, y = y0 etc., f is regarded as a function of
the specified variables. All other identifiers contained in f are regarded
as constant parameters.

If no variables and limit points are specified, then all identifiers in f are
used as variables, each tending to the default limit point 0.

A Presently, only finite limit points are admissible.

A Variables tending to 0 are not printed on the screen.

A The variables of an order term may be obtained with the function indets.
The limit points may be queried with the function O::points.

121

A The arithmetical operations +, -, *, /, and ^ are overloaded for order
terms.

A Automatic simplifications are currently restricted to polynomial expres-
sions f. Univariate polynomial expressions are reduced to the leading
monomial of the expansion around the limit point. In multivariate poly-
nomial expressions, all terms are discarded that are divisible by lower
order terms. For non-polynomial expressions, only integer factors are re-
moved.

Example 1. For polynomial expressions, certain simplifications occur:

>> O(x^4 + 2*x^2), O(7*x^3), O(x, x = 1)

2 3
O(x), O(x), O(1, x = 1)

A zero limit point is not printed on the screen:

>> O(1), O(1, x = 1), O(x^2/(y + 1), x = 0, y = -1, z = PI)

/ 2 \
| x |

O(1), O(1, x = 1), O| -----, z = PI, y = -1 |
\ y + 1 /

The arithmetical operations are overloaded for order terms:

>> 7*O(x), O(x^2) + O(x^13), O(x^3) - O(x^3), O(x^2)^2 + O(x^4)

2 3 4
O(x), O(x), O(x), O(x)

Example 2. For multivariate polynomial expression, higher order terms are
discarded if they are divisible by lower order terms:

>> O(15*x*y^2 + 3*x^2*y + x^2*y^2)

2 2
O(5 x y + x y)

>> O(x + x^2*y) = O(x)*O(1 + x*y)

O(x) = O(x)

122

Example 3. We demonstrate how to access the variables and the limit points
of an order term:

>> a := O(x^2*y^2)

2 2
O(x y)

>> indets(a) = O::indets(a), O::points(a)

{x, y} = {x, y}, {x = 0, y = 0}

>> delete a:

ORDER – the default number of terms in series expansions

The environment variable ORDER controls the default number of terms that the
system returns when you compute a series expansion.

Call(s):

A ORDER

A ORDER := n

Parameters:

n — a positive integer less than 231. The default value is 6.

Related Functions: asympt, limit, O, series, taylor

Details:

A The functions taylor, series, and asympt have an optional third ar-
gument specifying the desired number of terms of the requested series
expansion, counting from the dominant term on (relative order). If this
optional argument is missing, then the value of ORDER is used instead.

A ORDER may also affect the results returned by the function limit.

A Deletion via the statement “delete ORDER” resets ORDER to its default
value 6. Executing the function reset also restores the default value.

A In some cases, the number of terms returned by taylor, series, or
asympt may not agree with the value of ORDER. Cf. example 2.

123

Example 1. In the following example, we compute the first 6 terms of the
series expansion of the function exp(x)/x^2 around the origin:

>> series(exp(x)/x^2, x = 0)

2 3
1 1 x x x 4
-- + - + 1/2 + - + -- + --- + O(x)
2 x 6 24 120
x

To obtain the first 10 terms, we specify the third argument of series:

>> series(exp(x)/x^2, x = 0, 10)

2 3 4 5 6 7
1 1 x x x x x x x
-- + - + 1/2 + - + -- + --- + --- + ---- + ----- + ------ +
2 x 6 24 120 720 5040 40320 362880
x

8
O(x)

Alternatively, we increase the value of ORDER. This affects all subsequent calls
to series or any other function returning a series expansion:

>> ORDER := 10: series(exp(x)/x^2, x = 0)

2 3 4 5 6 7
1 1 x x x x x x x
-- + - + 1/2 + - + -- + --- + --- + ---- + ----- + ------ +
2 x 6 24 120 720 5040 40320 362880
x

8
O(x)

>> taylor(x^2/(1 - x), x = 0)

2 3 4 5 6 7 8 9 10 11 12
x + x + x + x + x + x + x + x + x + x + O(x)

Finally, we reset ORDER to its default value 6:

>> delete ORDER: taylor(x^2/(1 - x), x = 0)

2 3 4 5 6 7 8
x + x + x + x + x + x + O(x)

124

Example 2. The number of terms returned by series may differ from the
value of ORDER when cancellation or rational exponents occur:

>> ORDER := 3:

>> series(exp(x) - 1 - x - x^2/2 - x^3/6, x = 0)

4 5
x x 6
-- + --- + O(x)
24 120

>> series(1/(1 - sqrt(x)), x = 0)

1/2 3/2 2 5/2 3
1 + x + x + x + x + x + O(x)

>> delete ORDER:

path variables – file search paths

LIBPATH determines the directories, where the functions loadlib and loadproc
search for library files.

PACKAGEPATH determines the directories, where the function package searches
for packages.

READPATH determines the directories, where the function read searches for files.

WRITEPATH determines the directory into which the functions fopen, fprint,
write, and protocol write files.

Call(s):

A LIBPATH := path

A PACKAGEPATH := path

A READPATH := path

A WRITEPATH := path

Parameters:

path — the path name: a string or a sequence of strings.

Related Functions: fclose, FILEPATH, finput, fopen, fprint, fread,
ftextinput, loadlib, loadproc, NOTEBOOKFILE, NOTEBOOKPATH, package,
pathname, print, protocol, read, TESTPATH, UNIX, write

125

Details:

A LIBPATH determines the directories where library files are searched for by
the functions loadproc and loadlib. By default, in the UNIX/Linux ver-
sion of MuPAD, LIBPATH is the subdirectory $MuPAD_ROOT_PATH/share/lib.
It can be re-defined by calling MuPAD with the command line option -l.

A PACKAGEPATH determines the search path for the function package. package
searches for a package in the directories given by PACKAGEPATH.

A The default of the path variable PACKAGEPATH are the subdirectories packages
of the MuPAD installation and directory .mupad in the users home direct-
ory. Cf. example 3.

Additionaly paths can be given by calling MuPAD with the command line
option -p.

A READPATH determines the search path for the function read. First, read
searches for a file in the directories given by READPATH, then in the “work-
ing directory”, and, finally, in the directories given by LIBPATH.

A The variables LIBPATH, PACKAGEPATH and READPATH can represent more
than one search directory. These variables can be assigned a sequence of
strings: each element of the sequence represents a directory in which files
are search for.

A WRITEPATH determines the directory, into which the functions fopen, fprint,
write, and protocol write files which are not specified with a full (ab-
solute) pathname. If WRITEPATH is not defined, then the files are written
into the “working directory”.

A Note that the “working directory” depends on the operating system. On
Windows systems, it is the folder, where MuPAD is installed. On UNIX
or Linux systems, the “working directory” is the directory where MuPAD
was started.

A When concatenated with a file name, the directories given by the
path variables must produce valid path names. !
A Path names are system dependent. Under UNIX/Linux, a subdirectory

is started with a /, with : on the Macintosh, and with a single backslash
\ on Windows.

A Note that in MuPAD, a single backslash inside a character string is cre-
ated by two backslashes. E.g., the MuPAD string representing the path
“C:\Programs\MuPAD” must be defined by "C:\\Programs\\MuPAD".

A The function pathname allows to create path names independent of the
current operating system.

126

A Changing LIBPATH is useful for library development. You may create a
sub-directory of your home directory with the same structure as the lib-
rary installation tree and store modified library files there. If you prepend
the name of this sub-directory to the variable LIBPATH in your startup file
userinit.mu, then MuPAD first looks for library files in your local dir-
ectory before searching the system directory. Cf. example 4.

Example 1. This example shows how to define a READPATH. More than one
path may be given. read will look for files to be opened in the directories
given by READPATH. The following produces a valid READPATH for UNIX/Linux
systems only, since the path separators are hard coded in the strings:

>> READPATH := "math/lib/", "math/local/"

"math/lib/", "math/local/"

It is good programming style to use platform independent path strings. This
can be achieved with the function pathname:

>> READPATH := pathname("math", "lib"),
pathname("math", "local")

"math/lib/", "math/local/"

All path variables can be set to their default values by deleting them:

>> delete READPATH:

Example 2. The path variable WRITEPATH only accepts one path string:

>> WRITEPATH := "math/lib/", "math/local/"

Error: Illegal argument [WRITEPATH]

Example 3. The default of the path variable PACKAGEPATH are the subdirect-
ories packages of the MuPAD installation and directory .mupad in the users
home directory:

>> PACKAGEPATH

"<YourMuPADpath>/packages/", "/home/user/.mupad/packages/"

127

Example 4. Be careful when changing the LIBPATH. You can corrupt your
MuPAD session:

>> LIBPATH := "does/not/exist":
linalg::det

Error: can’t read file ’LIBFILES/linalg.mu’ [loadproc]

You can always restore the standard search path by deleting LIBPATH:

>> delete LIBPATH:
linalg::det

proc linalg::det(A) ... end

Changing the LIBPATH is useful for library development. You can build a dir-
ectory "mylib" with the same directory structure as the MuPAD library. Let us
assume that you have a patched version of the function linalg::det in the file
"mylib/LINALG/det.mu". MuPAD will try to read the file "LINALG/det.mu"
when the function linalg::det is called for the first time. Since the directory
"mylib" contains this file, it will be read instead of the corresponding file in
the standard library:

>> reset(): Pref::verboseRead(2):
LIBPATH := pathname("mylib"), LIBPATH:
linalg::det

loading package ’linalg’ [<YourMuPADpath>/share/lib/]
reading file mylib/LINALG/det.mu

proc linalg::det(A) ... end

Please restore your session:

>> delete LIBPATH: Pref::verboseRead(0):

Changes:

A PACKAGEPATH was introduced.

PRETTYPRINT – control the formatting of output

The environment variable PRETTYPRINT determines whether MuPAD’s results
are printed in the one-dimensional or the two-dimensional format.

128

Call(s):

A PRETTYPRINT

A PRETTYPRINT := value

Parameters:

value — either TRUE or FALSE

Related Functions: print, TEXTWIDTH

Details:

A PRETTYPRINT controls the pretty printer, which is responsible for format-
ted output. If PRETTYPRINT has the value TRUE, then pretty printing is
enabled for output.

A The default value of PRETTYPRINT is TRUE; PRETTYPRINT has this value
after starting or resetting the system via reset. Also the command
delete PRETTYPRINT restores the default value.

A On Windows platforms, PRETTYPRINT normally has no effect when “type-
setting” is activated. An exception occurs for very wide MuPAD output,
where PRETTYPRINT determines the output style even if the typesetting is
activated.

Typesetting is activated by default. It can be switched on or off by choos-
ing “Options” from the “View” menu of the MuPAD main window and
then clicking on “Typeset output expressions”.

Example 1. The following command disables pretty printing:

>> PRETTYPRINT := FALSE

FALSE

Now MuPAD results are printed in a one-dimensional, linearized form:

>> series(sin(x), x = 0, 14)

x - 1/6*x^3 + 1/120*x^5 - 1/5040*x^7 + 1/362880*x^9 - 1/399168\
00*x^11 + 1/6227020800*x^13 + O(x^15)

After setting PRETTYPRINT to TRUE again, the usual two-dimensional output
format is used:

>> PRETTYPRINT := TRUE: series(sin(x), x = 0, 14)

129

3 5 7 9 11 13
x x x x x x 15

x - -- + --- - ---- + ------ - -------- + ---------- + O(x)
6 120 5040 362880 39916800 6227020800

Re, Im – real and imaginary part of an arithmetical expression

Re(z) returns the real part of z.

Im(z) returns the imaginary part of z.

Call(s):

A Re(z)

A Im(z)

Parameters:

z — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: z

Side Effects: These functions are sensitive to properties of identifiers set via
assume. See example 2.

Related Functions: abs, assume, conjugate, rectform, sign

Details:

A The intended use of Re and Im is for constant arithmetical expressions. Es-
pecially for numbers, of type DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_COMPLEX,
the real and the imaginary part is computed directly and very efficiently.

A Re and Im can handle symbolic expressions. Properties of identifiers are
taken into account (see assume). An identifier without any property is
assumed to be complex. See example 2.

However, for arbitrary symbolic expressions, Re or Im may be unable to
extract the real or the imaginary part of z, respectively. You may then
use the function rectform (see example 3). Note, however, that using
rectform is computationally expensive.

A If Re cannot extract the whole real part of z, then the returned expression
contains symbolic Re and Im calls. The same is true for Im. See example 2.

130

Example 1. The real and the imaginary part of 2e1+i are:

>> Re(2*exp(1 + I)), Im(2*exp(1 + I))

2 cos(1) exp(1), 2 sin(1) exp(1)

Example 2. Re and Im are not able to extract the whole real and imaginary
part, respectively, of symbolic expressions containing identifiers without a value.
However, in some cases they can still simplify the input expression, as in the
following two examples:

>> delete u, v: Re(u + v*I), Im(u + v*I)

Re(u) - Im(v), Im(u) + Re(v)

>> delete z: Re(z + 2), Im(z + 2)

Re(z) + 2, Im(z)

By default, identifiers without a value are assumed to represent arbitrary
complex numbers. You can use assume to change this. The following command
tells the system that z represents only real numbers:

>> assume(z, Type::Real): Re(z + 2), Im(z + 2)

z + 2, 0

Example 3. Here is another example of a symbolic expression for which Re
and Im fail to extract its real and imaginary part, respectively:

>> delete z: Re(exp(I*sin(z))), Im(exp(I*sin(z)))

Re(exp(I sin(z))), Im(exp(I sin(z)))

You may use the function rectform, which splits a complex expression z
into its real and imaginary part and is more powerful than Re and Im:

>> r := rectform(exp(I*sin(z)))

cos(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z))) +

(sin(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z)))) I

Then Re(r) and Im(r) give the real and the imaginary part of r, respectively:

>> Re(r)

cos(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z)))

>> Im(r)

sin(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z)))

131

Example 4. Symbolic expressions of type "Re" and "Im" always have the
property Type::Real, even if no identifier of the symbolic expression has a
property:

>> is(Re(sin(2*x)), Type::Real)

TRUE

Example 5. Advanced users can extend the functions Re and Im to their
own special mathematical functions (see section “Backgrounds” below). To this
end, embed your mathematical function into a function environment f and
implement the behavior of the functions Re and Im for this function as the slots
"Re" and "Im" of the function environment.

If a subexpression of the form f(u,..) occurs in z, then Re and Im issue
the call f::Re(u,..) and f::Im(u,..), respectively, to the slot routine to
determine the real and the imaginary part of f(u,..), respectively.

For illustration, we show how this works for the sine function and the slot
"Re". Of course, the function environment sin already has a "Re" slot. We
call our function environment Sin in order not to overwrite the existing system
function sin:

>> Sin := funcenv(Sin):
Sin::Re := proc(u) // compute Re(Sin(u))
local r, s;

begin
r := Re(u);
if r = u then
return(Sin(u))

elif not has(r, {hold(Im), hold(Re)}) then
s := Im(u);
if not has(s, {hold(Im), hold(Re)}) then
return(Sin(r)*cosh(s))

end_if
end_if;
return(FAIL)

end:

>> Re(Sin(2)), Re(Sin(2 + 3*I))

Sin(2), Sin(2) cosh(3)

The return value FAIL tells the function Re that Sin::Re was unable to de-
termine the real part of the input expression. The result is then a symbolic Re
call:

>> delete f, z: Re(2 + Sin(f(z)))

Re(Sin(f(z))) + 2

132

Background:

A If a subexpression of the form f(u,..) occurs in z and f is a function
environment, then Re attempts to call the slot "Re" of f to determine the
real part of f(u,..). In this way, you can extend the functionality of Re
to your own special mathematical functions.

The slot "Re" is called with the arguments u,.. of f. If the slot routine
f::Re is not able to determine the real part of f(u,..), then it must
return FAIL.

If f does not have a slot "Re", or if the slot routine f::Re returns FAIL,
then f(u,..) is replaced by the symbolic call Re(f(u...)) in the returned
expression.

The same holds for the function Im, which attempts to call the corres-
ponding slot "Im" of f.

See example 5.

A Similarly, if an element d of a library domain T occurs as a subexpression
of z, then Re attempts to call the slot "Re" of that domain with d as
argument to compute the real part of d.

If the slot routine T::Re is not able to determine the real part of d, then
it must return FAIL.

If T does not have a slot "Re", or if the slot routine T::Re returns FAIL,
then d is replaced by the symbolic call Re(d) in the returned expression.

The same holds for the function Im, which attempts to call the corres-
ponding slot "Im" of the T.

RootOf – the set of roots of a polynomial

RootOf(f, x) represents the symbolic set of roots of the polynomial f(x) with
respect to the indeterminate x.

Call(s):

A RootOf(f, x)

A RootOf(f)

Parameters:
f — a polynomial, an arithmetical expression representing a

polynomial in x, or a polynomial equation in x
x — the indeterminate: typically, an identifier or indexed identifier

Return Value: a symbolic RootOf call, i.e., an expression of type "RootOf".

133

Related Functions: numeric::polyroots, poly, solve

Details:

A RootOf serves as a symbolic representation of the zero set of a polynomial.
Since it is generally impossible to represent the roots of a polynomial in
terms of radicals, RootOf is often the only possible way to represent the
roots symbolically. RootOf mainly occurs in the output of solve or related
functions; see example 3.

A The parameter f must be either a polynomial, or an arithmetical expres-
sion representing a polynomial in x, or an equation p=q, where p and q
are arithmetical expressions representing polynomials in x. In the latter
case, RootOf represents the roots of p-q with respect to x.

A The polynomial f need not be irreducible or even square-free. Even if f
has multiple roots, RootOf represents each of the roots only with multi-
plicity one.

A If x is omitted, then f must be an arithmetical expression or polynomial
equation containing exactly one indeterminate, and RootOf represents the
roots with respect to this indeterminate.

A x need not be an identifier or indexed identifier: it may be any expression
that is neither rational nor constant.

A If f contains only one indeterminate, then you can apply float to the
RootOf object to obtain a set of floating-point approximations for all
roots; see example 3.

Example 1. Each of the following calls represents the roots of the polynomial
x3 − x2 with respect to x, i.e., the set {0, 1}:

>> RootOf(x^3 - x^2, x), RootOf(x^3 = x^2, x)

3 2 3 2
RootOf(x - x , x), RootOf(x - x , x)

>> RootOf(x^3 - x^2), RootOf(x^3 = x^2)

3 2 3 2
RootOf(x - x , x), RootOf(x - x , x)

>> RootOf(poly(x^3 - x^2, [x]), x)

3 2
RootOf(x - x , x)

In general, however, RootOf is only used when no explicit symbolic representa-
tion of the roots is possible.

134

Example 2. The first argument of RootOf may contain parameters:

>> RootOf(y*x^2 - x + y^2, x)

2 2
RootOf(y - x + x y, x)

The set of roots of a polynomial is treated like an expression. For example, it
may be differentiated with respect to a free parameter. The result is the set of
derivatives of the roots; it is expressed in terms of RootOf, by giving a minimal
polynomial:

>> diff(%, y)

4 3 2 2 2 5
RootOf(2 y - x + y + 4 x y - x y + 4 x y , x)

For reducible polynomials, the result may be a multiple of the correct minimal
polynomial.

Example 3. solve returns RootOf objects when the roots of a polynomial
cannot be expressed in terms of radicals:

>> solve(x^5 + x + 7, x)

5
RootOf(X1 + X1 + 7, X1)

You can apply the function float to obtain floating-point approximations of
all roots:

>> float(%)

{- 0.508469409 + 1.368616488 I,

- 0.5084694089 - 1.368616488 I,

1.213876334 + 0.9241881109 I, 1.213876334 - 0.9241881108 I,

-1.410813851}

Example 4. The function sum is able to compute sums over all roots of a given
polynomial:

>> sum(i^2, i = RootOf(x^3 + a*x^2 + b*x + c, x))

2
a - 2 b

135

>> sum(1/(z + i), i = RootOf(x^4 - y*x + 1, x))

3
y + 4 z

4

y z + z + 1

Si – the sine integral function

Si(x) represents the sine integral
∫ x
0 sin(t)/tdt.

Call(s):

A Si(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: Ci, Ei, int, sin

Details:

A If x is a floating point number, then Si(x) returns the numerical value
of the sine integral. The special values Si(0) = 0 and Si(±∞) = ±π/2
are implemented. For all other arguments, Si returns a symbolic function
call.

A The reflection rule Si(x) = −Si(−x) is used if the argument is a negative
integer or a negative rational number. It is also used if the argument is a
symbolic product involving such a factor. Cf. example 2.

A The float attribute of Si is a kernel function, i.e., floating point evaluation
is fast.

136

Example 1. We demonstrate some calls with exact and symbolic input data:

>> Si(0), Si(1), Si(sqrt(2)), Si(x + 1), Si(infinity)

1/2 PI
0, Si(1), Si(2), Si(x + 1), --

2

Floating point values are computed for floating point arguments:

>> Si(-5.0), Si(1.0), Si(2.0 + 10.0*I)

-1.549931245, 0.9460830704, 1187.409493 - 242.5252717 I

Example 2. The reflection rule Si(−x) = −Si(x) is implemented for negative
real numbers and products involving such numbers:

>> Si(-3), Si(-3/7), Si(-sqrt(2)), Si(-x/7), Si(-0.3*x)

1/2 / x \
-Si(3), -Si(3/7), - Si(2), - Si| - |, -Si(0.3 x)

\ 7 /

No such “normalization” occurs for complex numbers or arguments that are not
products:

>> Si(- 3 - I), Si(3 + I), Si(x - 1), Si(1 - x)

Si(- 3 - I), Si(3 + I), Si(x - 1), Si(1 - x)

Example 3. The functions diff, float, limit, and series handle expres-
sions involving Si:

>> diff(Si(x), x, x, x), float(ln(3 + Si(sqrt(PI))))

2 sin(x) sin(x) 2 cos(x)
-------- - ------ - --------, 1.502020149

3 x 2
x x

>> limit(Si(2*x^2/(1+x)), x = infinity)

PI
--
2

>> series(Si(x), x = 0), series(Si(x), x = infinity, 3)

137

3 5
x x 7 PI cos(x) sin(x) / 1 \

x - -- + --- + O(x), -- - ------ - ------ + O| -- |
18 600 2 x 2 | 3 |

x \ x /

Background:

A Si is an entire function.

A Reference: M. Abramowitz and I. Stegun, “Handbook of Mathematical
Functions”, Dover Publications Inc., New York (1965).

TESTPATH – write path for prog::test

TESTPATH determines the directory into which the function prog::test writes
its files.

Call(s):

A TESTPATH := path

Parameters:

path — a valid directory path: a string.

Related Functions: LIBPATH, NOTEBOOKFILE, NOTEBOOKPATH, prog::test,
READPATH, UNIX, WRITEPATH

Details:

A TESTPATH is a special write path for result files generated by prog::test.

A The help page on path variables"’ explains how to define path vari-
ables correctly and in a system independent way.

Example 1. A path name must end with a directory separator. Here is an
example for UNIX platforms:

>> TESTPATH := "testresults/"

"testresults/"

138

TEXTWIDTH – the maximum number of characters in an output line

The environment variable TEXTWIDTH determines the maximum number of char-
acters in one line of screen output.

Call(s):

A TEXTWIDTH

A TEXTWIDTH := n

Parameters:

n — a positive integer smaller than 231. The default value is 75.

Related Functions: fprint, PRETTYPRINT, print

Details:

A Output is broken into several lines if it needs more than TEXTWIDTH char-
acters per line.

A Deletion via the statement “delete TEXTWIDTH” resets TEXTWIDTH to its
default value. Executing the function reset also restores the default
value.

A The minimal value of TEXTWIDTH depends on the length of the prompt
string, which is defined via Pref::promptString: The minimal value is
7 plus the length of the prompt string. The default prompt string is ">>
", thus the minimal value of TEXTWIDTH is 10 in this case.

A TEXTWIDTH is set to its maximum value 231 − 1 when printing to a text
file using fprint. Thus, no additional line breaks occur in the output.

A TEXTWIDTH does not influence the typesetting of expressions which is avail-
able for some user interfaces of MuPAD.

A Most examples in this manual are printed with TEXTWIDTH set to 63.

Example 1. The maximal length of a line is set to 20 characters:

>> oldTEXTWIDTH := TEXTWIDTH:
TEXTWIDTH := 20: 30!

2652528598121910586\
36308480000000

139

We restore the previous value:

>> TEXTWIDTH := oldTEXTWIDTH: 30!

265252859812191058636308480000000

Example 2. The following procedure adds empty characters to produce output
that is flushed right:

>> myprint := proc(x) local l; begin
if domtype(x) <> DOM_STRING then

x := expr2text(x);
end_if;
l := length(x);
print(Unquoted, _concat(" " $ TEXTWIDTH - l, x))

end_proc:

>> myprint("hello world"): myprint(30!): myprint("bye bye"):

hello world

265252859812191058636308480000000

bye bye

>> delete myprint:

TRUE, FALSE, UNKNOWN – Boolean constants

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and
UNKNOWN.

Related Functions: _lazy_and, _lazy_or, and, bool, DOM_BOOL, if, is,
not, or, repeat, while

Details:

A The Boolean constants TRUE, FALSE, UNKNOWN are of domain type DOM_BOOL.

A See and, or, not for the logical rules of MuPAD’s three state logic.

A Boolean constants are returned by system functions such as bool and
is. These functions evaluate Boolean expressions such as equations and
inequalities.

140

Example 1. The Boolean constants may be combined via and, or, and not:

>> (TRUE and (not FALSE)) or UNKNOWN

TRUE

Example 2. The function bool serves for reducing Boolean expressions such
as equations or inequalities to one of the Boolean constants:

>> bool(x = x and 2 < 3 and 3 <> 4 or UNKNOWN)

TRUE

The function is evaluates symbolic Boolean expressions with properties:

>> assume(x > 2): is(x^2 > 4), is(x^3 < 0), is(x^4 > 17)

TRUE, FALSE, UNKNOWN

>> unassume(x):

Example 3. Boolean constants occur in the conditional part of program con-
trol structures such as if, repeat, or while statements. The following loop
searches for the smallest Mersenne prime larger than 500 (see numlib::mersenne
for details). The function isprime returns TRUE if its argument is a prime, and
FALSE otherwise. Once a Mersenne prime is found, the while-loop is interrupted
by the break statement:

>> p := 500:
while TRUE do
p := nextprime(p + 1):
if isprime(2^p - 1) then

print(p);
break;

end_if;
end_while:

521

Note that the conditional part of if, repeat, and while statements must eval-
uate to TRUE or FALSE. Any other value leads to an error:

>> if UNKNOWN then "true" else "false" end_if

Error: Can’t evaluate to boolean [if]

>> delete p:

141

UNIX – MuPAD command line options and initialization files for
UNIX

This help page describes all command line options and initialization files for
MuPAD on UNIX platforms.

Call(s):

A mupad [-f] [-F] [-g] [-r] [-S] [-v] [-V] [-a stacksize] [-h
helppath]

[-l libpath] [-L primelimit] [-m modpath] [-p
packagepath]

[-P [pPeEsSwW]] [-u userpath] [-U opts] [-w sec]
[file...]

A xmupad [-f] [-F] [-r] [-S] [-v] [-V] [-a stacksize] [-h
helppath]

[-l libpath] [-L primelimit] [-m modpath] [-p
packagepath]

[-P [pPeEsSwW]] [-u userpath] [-U opts] [-w sec]
[file...]

Related Functions: LIBPATH, NOTEBOOKFILE, NOTEBOOKPATH, PACKAGEPATH,
READPATH, TESTPATH, UNIX, WRITEPATH

Details:

A The following table lists all command line options of the terminal version
mupad and the graphical user interface xmupad.

The option -g cannot be set for the X11 front-end, where it is reserved
for specifying the window geometry. However, the debug mode can be
switched on in the “Options” menu of the graphical user interface.

option description
-a size of the PARI arithmetic stack in

bytes
(default: 250 000)

-f do not read the user’s initialization file
-F do not include ~/.mupad/packages in

the PACKAGEPATH
-g debug mode
-h path name for the help index (default:

$R/share/doc/ascii)

142

-l default library path; can be changed in-
teractively via LIBPATH

(default:
$R/share/lib)

-L pre-compute a list of all primes up to
primelimit

(default: 1 000 000)

-m path name for dynamic modules (default:
$R/$A/modules)

-p additional package path (can be used
more than once)

-P suppress (p) or print (P) prompt;
can be changed interactively via
Pref::prompt

(default: p)

suppress (e) or echo (E) input; can be
changed interactively via Pref::echo

(default: e)

suppress (w) or print (W) warnings
about changes in the new version of
MuPAD; can be changed interactively
via Pref::warnChanges

(default: w)

start kernel in a more secure mode (S)
or not (s); secure mode restricts file ac-
cess and forbids the use of the MuPAD
command system

(default: s)

-r prints the path of the MuPAD installa-
tion directory

-S start without printing the MuPAD logo
-u path name of the user initialization file (default: ~/.mupad/)
-U pass arbitrary options to the MuPAD

session, which can be queried interact-
ively via Pref::userOptions

(default: ””)

-v verbose debug mode
-V prints the MuPAD version
-w terminate MuPAD process after at most

sec seconds

$R denotes the MuPAD installation directory. $A denotes the architecture
name returned by the shell script $R/share/bin/sysinfo.

The locations of MuPAD’s initialization files are:

~/.mupad/userinit.mu user initialization file
~/.mupad/mxdviRecentFiles list of recent documents (help tool)
~/.mupad/mxmupadrc preferences of the X11 front-end
~/.mupad/vcam_defaults defaults of the graphics renderer
$R/share/lib/sysinit.mu system initialization file
$R/share/lib/.MMMinit MAMMUT initialization file (memory management)

143

In addition to the options one or more MuPAD source files file... can
be given on the command line. They are read in and executed in the given
order.

Example 1. The following command starts the terminal version of MuPAD,
which does not read the user’s initialization file (-f) and does not display a ban-
ner (-S), pre-computes and stores all primes up to 2 000 000 (-L), and expects
to find dynamic modules in the directory myModules (-m):

mupad -f -S -L 2000000 -m myModules
>>

Changes:

A The former option -n was renamed to -f.

A The former option -p was renamed to -a.

A The package path is now set with the option -p.

A The new option -F was introduced.

A The new option -r was introduced.

A The new option -V was introduced.

144

abs – the absolute value of a real or complex number

abs(z) returns the absolute value of the number z.

Call(s):

A abs(z)

Parameters:

z — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: z

Side Effects: abs respects properties of identifiers.

Related Functions: conjugate, Im, norm, Re, sign

Details:

A For many constant expressions, abs returns the absolute value as an ex-
plicit number or expression. Cf. example 1.

A A symbolic call of abs is returned if the absolute value cannot be de-
termined (e.g., because the argument involves identifiers). The result is
subject to certain simplifications. In particular, abs extracts constant
factors. Properties of identifiers are taken into account. Cf. examples 2
and 3.

A The expand function rewrites the absolute value of a product to a product
of absolute values. E.g., expand(abs(x*y)) yields abs(x)*abs(y). Cf.
example 4.

A The symbolic constants CATALAN, E, EULER, and PI are processed by abs.
Cf. example 5.

A The absolute value of symbolic function calls can be defined via the slot
"abs" of function environments. Cf. example 7.

A In the same way, the absolute value of domain elements can be defined
via overloading. Cf. example 8.

145

Example 1. For many constant expressions, the absolute value can be com-
puted explicitly:

>> abs(1.2), abs(-8/3), abs(3 + I), abs(sqrt(-3))

1/2 1/2
1.2, 8/3, 10 , 3

>> abs(sin(42)), abs(PI^2 - 10), abs(exp(3) - tan(157/100))

2
-sin(42), 10 - PI , tan(157/100) - exp(3)

>> abs(exp(3 + I) - sqrt(2))

2 2 1/2 2 1/2
(sin(1) exp(3) + (cos(1) exp(3) - 2))

Example 2. Symbolic calls are returned if the argument contains identifiers
without properties:

>> abs(x), abs(x + 1), abs(sin(x + y))

abs(x), abs(x + 1), abs(sin(x + y))

The result is subject to some simplifications. In particular, abs splits off con-
stant factors in products:

>> abs(PI*x*y), abs((1 + I)*x), abs(sin(4)*(x + sqrt(3)))

1/2 1/2
PI abs(x y), abs(x) 2 , - sin(4) abs(x + 3)

Example 3. abs is sensitive to properties of identifiers:

>> assume(x < 0): abs(3*x), abs(PI - x), abs(I*x)

-3 x, PI - x, -x

>> unassume(x):

Example 4. The expand function produces products of abs calls:

>> abs(x*(y + 1)), expand(abs(x*(y + 1)))

abs(x (y + 1)), abs(x) abs(y + 1)

146

Example 5. The absolut value of the symbolic constants PI, EULER etc. are
known:

>> abs(PI), abs(EULER + CATALAN^2)

2
PI, EULER + CATALAN

Example 6. Expressions containing abs can be differentiated:

>> diff(abs(x), x), diff(abs(x), x, x)

sign(x), 2 dirac(x)

Example 7. The slot "abs" of a function environment f defines the absolute
value of symbolic calls of f:

>> abs(f(x))

abs(f(x))

>> f := funcenv(f): f::abs := x -> f(x)/sign(f(x)): abs(f(x))

f(x)

sign(f(x))

>> delete f:

Example 8. The slot "abs" of a domain d defines the absolute value of its
elements:

>> d := newDomain("d"): e1 := new(d, 2): e2 := new(d, x):
d::abs := x -> abs(extop(x, 1)): abs(e1), abs(e2)

2, abs(x)

>> delete d, e1, e2:

alias, unalias – defines or un-defines an abbreviation or a macro

alias(x = object) defines x as an abbreviation for object.

147

alias(f(y1, y2, ...) = object) defines f to be a macro. For arbitrary
objects a1, a2, ..., f(a1, a2, ...) is equivalent to object with a1 substi-
tuted for y1, a2 substituted for y2, etc.

alias() displays a list of all currently defined aliases and macros.

unalias(x) deletes the abbreviation or the macro x.

unalias() deletes all abbreviations and macros.

Call(s):

A alias(x1 = object1, x2 = object2, ...)

A alias()

A unalias(z1, z2, ...)

A unalias()

Parameters:
x1, x2, ... — identifiers or symbolic expressions of the

form f(y1, y2, ...), with identifiers f,
y1, y2, ...

object1, object2, ... — any MuPAD objects
z1, z2, ... — identifiers

Return Value: Both alias and unalias return the void object of type
DOM_NULL.

When called with no arguments, alias displays all currently defined aliases
as a sequence of equations; see below for a description.

Side Effects: alias with at least one argument and unalias change the
parser configuration in the way described in the “Details” section.

Related Functions: :=, finput, fprint, fread, input, Pref::alias,
print, proc, read, subs, text2expr, write

Details:

A alias(x = object) defines an abbreviation. It changes the configuration
of the parser such that the identifier x is replaced by object whenever it
occurs in the input, and such that object is in turn replaced by x in the
output.

A alias(f(y1, y2, ...) = object) defines a macro. It changes the con-
figuration of the parser such that a function call of the form f(a1, a2,
...), where a1,a2,... is a sequence of arbitrary objects of the same
length as y1,y2,..., is replaced by object with a1 substituted for y1,
a2 substituted for y2, etc.

148

No substitution takes place if the number of parameters y1,y2,... differs
from the number of arguments a1,a2,.... No substitution takes place
in the output.

It is valid to define a macro with no arguments via alias(f()=object).

A Multiple alias definitions may be given in a single call; abbreviations and
macros may be mixed.

A alias() displays all currently defined aliases as a sequence of equations.
For an abbreviation defined via alias(x = object), the equation x =
object is printed. For a macro defined via alias(f(y1, y2, ...) =
object), the equation f = [object, [y1, y2, ...]] is printed. If no
aliases are defined, the message “No alias defined” is printed. See Ex-
ample 11.

A unalias(x) deletes the abbreviation or macro x. To delete a macro
defined by alias(f(y1, y2, ...) = object), use unalias(f). If no
alias for x or f, respectively, is defined currently, the call is ignored.

Multiple alias definitions may be deleted by a single call of unalias. The
call unalias() deletes all currently defined aliases.

A Neither alias nor unalias evaluate its arguments. Hence it has no effect
if the aliased identifier has a value, and alias creates an alias for the right
hand side of the alias definition and not for its evaluation. Cf. example 2.

A alias does not flatten its arguments. Thus an expression sequence is a
valid right hand side of an alias definition. See example 5.

A An alias definition causes a substitution similar to the effect of subs, not
just a textual replacement. Cf. example 3.

A Each identifier may be aliased to only one object. Each object may be
abbreviated in only one way; otherwise alias aborts with an error.

A An alias is in effect from the time when the call to alias has been eval-
uated. It affects exactly those inputs that are parsed after that moment.
Cf. example 9. In particular, an alias definition inside a procedure does
not affect the rest of the procedure.

A By default, back-substitution of aliases in the output happens only for
abbreviations and not for macros. After a command of the form alias(x
= object), both the unevaluated object object and its evaluation are
replaced by the unevaluated identifier x in the output. Cf. example 2.

The user can control the behavior of the back-substitution in the out-
put with the function Pref::alias; see the corresponding help page for
details.

A Substitutions in the output only happen for the results of computations at
interactive level. The behavior of the functions fprint, print, or write
is not affected.

149

A Alias substitutions are performed in parallel, both in the input and in the
output. Thus it is not possible to define nested aliases. See Example 10.

A If an identifier is used as an abbreviation, it is not possible to enter this
identifier in its literal meaning any longer.

In particular, it is necessary to use unalias before another abbrevi-
ation or macro for the same identifier can be defined. Cf. example 4. !
A If a macro f(y1,y2,...,yn) with n arguments has been defined, it is not

possible to enter a call to f with n arguments in its literal meaning any
longer. However, entering a call to f with a different number of arguments
is still possible. Cf. example 5.

It is not necessary to use unalias before redefining an abbreviation or
a macro with a different number of arguments for the identifier f. Any
subsequent alias definition for this identifier, whether it is an abbreviation
or a macro, overwrites the previous definition. See Example 4.

A An alias definition affects all kinds of input: interactive input on the com-
mand line, input via the function input, input from a file using finput,
fread, or read (for the latter two only if option Plain is not set), and
input from a string using text2expr. Cf. example 8.

A An alias definition has no effect on the identifier used as an alias. In
particular, that identifier retains its value and its properties. The alias and
the aliased object are still distinguished by the evaluator. Cf. example 6.

A Assigning a value to one of the identifiers on the left hand side of an alias
definition, or deleting its value has no effect on the alias substitution,
neither in the input nor in the output. See Example 7.

Example 1. We define d as a shortcut for diff:

>> delete f, g, x, y: alias(d = diff):
d(sin(x), x) = diff(sin(x), x);
d(f(x, y), x) = diff(f(x, y), x)

cos(x) = cos(x)

d(f(x, y), x) = d(f(x, y), x)

We define a macro Dx(f) for diff(f(x), x). Note that hold does not prevent
alias substitution:

>> alias(Dx(f) = diff(f(x), x)):
Dx(sin); Dx(f + g); hold(Dx(f + g))

150

cos(x)

d(f(x), x) + d(g(x), x)

d((f + g)(x), x)

After the call unalias(d, Dx), no alias substitutions happen any longer:

>> unalias(d, Dx):
d(sin(x), x), diff(sin(x), x), d(f(x, y), x), diff(f(x, y), x);
Dx(sin), Dx(f + g)

d(sin(x), x), cos(x), d(f(x, y), x), diff(f(x, y), x)

Dx(sin), Dx(f + g)

Example 2. Suppose we want to avoid typing longhardtotypeident and
therefore define an abbreviation a for it:

>> longhardtotypeident := 10; alias(a = longhardtotypeident):

10

Since alias does not evaluate its arguments, a is now an abbreviation for
longhardtotypeident and not for the number 10:

>> type(a), type(hold(a))

DOM_INT, DOM_IDENT

>> a + 1, hold(a) + 1, eval(hold(a) + 1)

11, a + 1, 11

>> longhardtotypeident := 2:
a + 1, hold(a) + 1, eval(hold(a) + 1)

3, a + 1, 3

However, by default alias back-substitution in the output happens for both the
identifier and its current value:

>> 2, 10, longhardtotypeident, hold(longhardtotypeident)

a, 10, a, a

The command Pref::alias(FALSE) switches alias resubstitution off:

>> p := Pref::alias(FALSE):
a, hold(a), 2, longhardtotypeident, hold(longhardtotypeident);
Pref::alias(p): unalias(a):

2, longhardtotypeident, 2, 2, longhardtotypeident

151

Example 3. Aliases are substituted and not just replaced textually. In the
following example, 3*succ(u) is replaced by 3*(u+1), and not by 3*u+1, which
a search-and-replace function in a text editor would produce:

>> alias(succ(x) = x + 1): 3*succ(u);
unalias(succ):

3 u + 3

Example 4. We define a to be an abbreviation for b. Then the next alias
definition is really an alias definition for b:

>> delete a, b:
alias(a = b): alias(a = 2): type(a), type(b); unalias(b):

DOM_IDENT, DOM_INT

Use unalias first before defining another alias for the identifier a:

>> unalias(a): alias(a = 2): type(a), type(b); unalias(a):

DOM_INT, DOM_IDENT

A macro definition, however, can be overwritten immediately if the newly
defined macro has a different number of arguments:

>> alias(a(x)=sin(x^2)): a(y); alias(a(x)=cos(x^2)):

2
sin(y)

Error: Illegal operand [_power];
during evaluation of ’alias’

>> alias(a(x, y) = sin(x + y)): a(u, v); unalias(a)

sin(u + v)

Example 5. A macro definition has no effect when called with the wrong
number of arguments, and the sequence of arguments is not flattened:

>> alias(plus(x, y) = x + y):
plus(1), plus(3, 2), plus((3, 2));
unalias(plus):

plus(1), 5, plus(3, 2)

152

Expression sequences may appear on the right hand side of an alias definition,
but they have to be enclosed in parenthesis:

>> alias(x = (1, 2)): f := 0, 1, 2, x;
nops(f); unalias(x):

0, 1, 2, 1, 2

5

Example 6. An identifier used as an abbreviation may still exist in its literal
meaning inside expressions that were entered before the alias definition:

>> delete x: f := [x, 1]: alias(x = 1): f;
map(f, type); unalias(x):

[x, x]

[DOM_IDENT, DOM_INT]

Example 7. It does not matter whether the identifier used as an alias has a
value:

>> a := 5: alias(a = 7): 7, 5; print(a); unalias(a):

a, 5

7

Example 8. Alias definitions also apply to input from files or strings:

>> alias(a = 3): type(text2expr("a")); unalias(a)

DOM_INT

Example 9. An alias is valid for all input that is parsed after executing alias.
A statement in a command line is not parsed before the previous commands in
that command line have been executed. In the following example, the alias is
already in effect for the second statement:

>> alias(a = 3): type(a); unalias(a)

153

DOM_INT

This can be changed by entering additional parentheses:

>> (alias(a = 3): type(a)); unalias(a)

DOM_INT

Example 10. We define b to be an alias for c, which in turn is defined to
be an alias for 2. It is recommended to avoid such chains of alias definitions
beacuse of some probably unwanted effects.

>> alias(b=c): alias(c=2):

Now each b in the input is replaced by c, but no additional substitution step is
taken to replace this again by 2:

>> print(b)

c

On the other hand, the number 2 is replaced by c in every output, but that c
is not replaced by b:

>> 2

c

>> unalias(c): unalias(b):

Example 11. When called without arguments, alias just displays all aliasses
that are currently in effect:

>> alias(a = 5, F(x) = sin(x^2)):
alias(); unalias(F, a):

a = 5,
F = [sin(x^2), [x]]

154

Background:

A The aliases are stored in the parser configuration table displayed by _parser_config().
Note that by default, alias back-substitution happens for the right hand
sides of the equations in this table, but not for the indices. Use print(_parser_config())
to display this table without alias back-substitution.

A Aliases are not in effect while a file is read using read or fread with option
Plain. This is true in particular for all library files read with loadproc.
Conversely, if an alias is defined in a file which is read with option Plain,
the alias is only in effect until the file has been read completely.

anames – identifiers that have values or properties

anames(All) returns all identifiers that have values.

anames(Properties) returns all identifiers that have properties.

anames(Protected) returns all identifiers that are protected.

anames(d) returns all identifiers that have values from the given domain d.

Call(s):

A anames(All <, User>)

A anames(Properties <, User>)

A anames(Protected <, User>)

A anames(d <, User>)

Parameters:

d — a domain

Options:

All — get all identifiers that have values
Properties — get all identifiers that have properties
Protected — get all identifiers that are protected
User — exclude all system variables

Return Value: a set of identifiers.

Related Functions: :=, _assign, assume, DOM_IDENT

155

Details:

A The result returned by anames is a set of unevaluated identifiers. See
example 1.

A anames does not take into account slots of function environments or do-
mains. Moreover, functions of a MuPAD library are considered only if
they are exported.

Option <User>:

A If the option User is given, only those identifiers are returned that have
been assigned a value or a property, respectively, by the user.

Example 1. anames(DOM_IDENT) returns all identifiers which have again iden-
tifiers as values:

>> anames(DOM_IDENT)

{‘*‘, ‘+‘, ‘-‘, ‘/‘, ‘<‘, ‘=‘, ‘**‘, ‘^‘, ‘<=‘, ‘<>‘, ‘==>‘}

The elements of the returned set are unevaluated. You can use eval to evaluate
them:

>> map(%, x -> x = eval(x))

{‘*‘ = _mult, ‘+‘ = _plus, ‘<‘ = _less, ‘=‘ = _equal,

‘**‘ = _power, ‘^‘ = _power, ‘-‘ = _negate, ‘/‘ = _divide,

‘<=‘ = _leequal, ‘<>‘ = _unequal, ‘==>‘ = _implies}

Example 2. anames(All, User) returns all user-defined identifiers:

>> a := b: b := 2: c := {2, 3}:
anames(All, User)

{a, b, c}

If the first argument is a domain, only identifiers with values from that domain
are returned. These may differ from the identifiers whose evaluation belongs to
the domain:

>> a, b;
anames(DOM_IDENT, User);
anames(DOM_INT, User)

156

2, 2

{a}

{b}

Example 3. anames(Properties) returns all identifiers that have been at-
tached properties via assume:

>> assume(x > y): anames(Properties)

{x, y}

Example 4. anames(Protected) returns all identifiers that are protected via
protect; since all system functions are protected, we use anames(Protected,
User):

>> protect(a): anames(Protected, User)

{a}

Changes:

A The new option Protected was introduced.

and, or, not, xor, ==>, <=> – Boolean operators

b1 and b2 represents the logical ’and’ of the Boolean expressions b1, b2.

b1 or b2 represents the non-exclusive logical ’or’ of the Boolean expressions
b1, b2.

not b represents the logical negation of the Boolean expression b.

b1 xor b2 represents the exclusive logical ’or’ of the Boolean expressions b1,
b2.

b1 ==> b2 represents the logical implication of the Boolean expressions b1, b2.

b1 <=> b2 represents the logical equivalence of the Boolean expressions b1, b2.

157

Call(s):

A b1 and b2

A _and(b1, b2, ...)

A b1 or b2

A _or(b1, b2, ...)

A not b

A _not(b)

A b1 xor b2

A _xor(b1, b2, ...)

A b1 ==> b2

A _implies(b1, b2)

A b1 <=> b2

A _equiv(b1, b2)

Parameters:

b, b1, b2, ... — Boolean expressions

Return Value: a Boolean expression.

Overloadable by: b, b1, b2, ...

Related Functions: _lazy_and, _lazy_or, bool, is, FALSE, TRUE, UNKNOWN

Details:

A MuPAD uses a three state logic with the Boolean constants TRUE, FALSE,
and UNKNOWN. These are processed as follows:

and TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

or TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

not TRUE = FALSE, not FALSE = TRUE, not UNKNOWN = UNKNOWN .

A The operators xor, ==>, and <=> are defined as follows: a xor b is equi-
valent to (a or b) and not (a and b); a ==> b is equivalent to not a
or b; and a <=> b is equivalent to (a => b) and (b => a).

A Boolean expressions may be composed of these constants as well as of
arbitrary arithmetical expressions. Typically, equations such as x = y
and inequalities such as x <> y, x < y, x <= y etc. are used to construct
Boolean expressions.

158

A _and(b1, b2, ...) is equivalent to b1 and b2 and This expres-
sion represents TRUE if each single expression evaluates to TRUE. It rep-
resents FALSE if at least one expression evaluates to FALSE. It represents
UNKNOWN if at least one expression evaluates to UNKNOWN and all others
evaluate to TRUE.

_and() returns TRUE.

A _or(b1, b2, ...) is equivalent to b1 or b2 or This expression
represents FALSE if each single expression evaluates to FALSE. It represents
TRUE if at least one expression evaluates to TRUE. It represents UNKNOWN
if at least one expression evaluates to UNKNOWN and all others evaluate to
FALSE.

_or() returns FALSE.

A _not(b) is equivalent to not b.

A _xor(b1, b2, ...) is equivalent to b1 xor b2 xor This expres-
sion represents TRUE if an odd number of operands evaluate to TRUE and
the others evaluate to FALSE. It represents FALSE if an even number of
operands evaluate to TRUE and the others evaluate to FALSE. It represents
UNKNOWN if at least one operand evaluates to UNKNOWN.

A _implies(a, b) is equivalent to a ==> b.

A _equiv(a, b) is equivalent to a <=> b.

A Combinations of the constants TRUE, FALSE, UNKNOWN inside a Boolean ex-
pression are simplified automatically. However, symbolic Boolean subex-
pressions, equalities, and inequalities are not evaluated and simplified by
logical operators. Use bool to evaluate such expressions to one of the
Boolean constants. Note, however, that bool can evaluate inequalities x <
y, x <= y etc. only if they are composed of numbers of type Type::Real.
Cf. example 2.

Use simplify with the option logic to simplify expressions involving
symbolic Boolean subexpressions. Cf. example 3.

A The precedences of the logical operators are as follows: The operator not
is stronger binding than and, i.e,

not b1 and b2 = (not b1) and b2.

The operator and is stronger binding than xor, i.e.,

b1 and b2 or b3 = (b1 and b2) xor b3.

The operator xor is stronger binding than or, i.e.,

b1 xor b2 or b3 = (b1 xor b2) or b3.

159

The operator or is stronger binding than ==>, i.e.,

b1 or b2 ==> b3 = (b1 or b2) ==> b3.

The operator ==> is stronger binding than <=>, i.e.,

b1 ==> b2 <=> b3 = (b1 ==> b2) <=> b3.

If in doubt, use brackets to make sure that the expression is parsed as
desired.

A In the conditional context of if, repeat, and while statements, Boolean
expressions are evaluated via“lazy evaluation”(see _lazy_and, _lazy_or).
In any other context, all operands are evaluated.

A _and is a function of the system kernel.

A _or is a function of the system kernel.

A _not is a function of the system kernel.

Example 1. Combinations of the Boolean constants TRUE, FALSE, and UNKNOWN
are simplified automatically to one of these constants:

>> TRUE and not (FALSE or TRUE)

FALSE

>> FALSE and UNKNOWN, TRUE and UNKNOWN

FALSE, UNKNOWN

>> FALSE or UNKNOWN, TRUE or UNKNOWN

UNKNOWN, TRUE

>> not UNKNOWN

UNKNOWN

Example 2. Logical operators simplify subexpressions that evaluate to the
constants TRUE, FALSE, UNKNOWN.

>> b1 or b2 and TRUE

b1 or b2

>> FALSE or ((not b1) and TRUE)

160

not b1

>> b1 and (b2 or FALSE) and UNKNOWN

UNKNOWN and b1 and b2

>> FALSE or (b1 and UNKNOWN) or x < 1

UNKNOWN and b1 or x < 1

>> TRUE and ((b1 and FALSE) or (b1 and TRUE))

b1

However, equalities and inequalities are not evaluated:

>> (x = x) and (1 < 2) and (2 < 3) and (3 < 4)

x = x and 1 < 2 and 2 < 3 and 3 < 4

Boolean evaluation is enforced via bool:

>> bool(%)

TRUE

Note that bool can compare only real numbers of syntactical type Type::Real:

>> bool(1 < 2 and PI < sqrt(10))

Error: Can’t evaluate to boolean [_less]

Example 3. Expressions involving symbolic Boolean subexpressions are not
simplified by and, or, not. Simplification has to be requested explicitly via the
function simplify:

>> (b1 and b2) or (b1 and (not b2)) and (1 < 2)

b1 and b2 or b1 and not b2 and 1 < 2

>> simplify(%, logic)

b1

161

Example 4. The Boolean functions _and and _or accept arbitrary sequences
of Boolean expressions. The following call uses isprime to check whether all
elements of the given set are prime:

>> Set := {1987, 1993, 1997, 1999, 2001}:
_and(isprime(i) $ i in Set)

FALSE

The following call checks whether at least one of the numbers is prime:

>> _or(isprime(i) $ i in Set)

TRUE

>> delete Set:

Changes:

A New operators xor, ==>, and <=> have been added.

append – add elements to a list

append(l, object) adds object to the list l.

Call(s):

A append(l, object1, object2, ...)

Parameters:
l — a list
object1, object2, ... — arbitrary MuPAD objects

Return Value: the extended list.

Overloadable by: l

Related Functions: _concat, _index, DOM_LIST, op

162

Details:

A append(l, object1, object2, ...) appends object1, object2, etc.
to the list l and returns the new list as the result.

A The call append(l) is legal and returns l.

A append(l, object1, object2, ...) is equivalent to both [op(l), object1,
object2, ...] and l.[object1, object2, ...]. However, append is
more efficient.

A The function append always returns a new object. The first argument
remains unchanged. See example 2.

A append is a function of the system kernel.

Example 1. The function append adds new elements to the end of a list:

>> append([a, b], c, d)

[a, b, c, d]

If no new elements are given, the first argument is returned unmodified:

>> l := [a, b]: append(l)

[a, b]

The first argument may be an empty list:

>> append([], c)

[c]

Example 2. The function append always returns a new object. The first
argument remains unchanged:

>> l := [a, b]: append(l, c, d), l

[a, b, c, d], [a, b]

163

Example 3. Users can overload append for their own domains. For illustra-
tion, we create a new domain T and supply it with an "append" slot, which
simply adds the remaining arguments to the internal operands of its first argu-
ment:

>> T := newDomain("T"):
T::append := x -> new(T, extop(x), args(2..args(0))):

If we now call append with an object of domain type T, the slot routine T::append
is invoked:

>> e := new(T, 1, 2): append(e, 3)

new(T, 1, 2, 3)

arcsin, arccos, arctan, arccsc, arcsec, arccot – the inverse tri-
gonometric functions

arcsin(x) represents the inverse of the sine function.

arccos(x) represents the inverse of the cosine function.

arctan(x) represents the inverse of the tangent function.

arccsc(x) represents the inverse of the cosecant function.

arcsec(x) represents the inverse of the secant function.

arccot(x) represents the inverse of the cotangent function.

Call(s):

A arcsin(x)

A arccos(x)

A arctan(x)

A arccsc(x)

A arcsec(x)

A arccot(x)

Parameters:

x — an arithmetical expression or a floating point interval

Return Value: an arithmetical expression or a floating point interval.

Overloadable by: x

164

Side Effects: When called with a floating point argument, the functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: sin, cos, tan, csc, sec, cot

Details:

A The angle returned by these functions is measured in radians, not in
degrees. E.g., the result π represents an angle of 180 o.

A All inverse trigonometric functions are defined for complex arguments.

A Floating point values are returned for floating point arguments. Floating
point intervals are returned for interval arguments. Unevaluated function
calls are returned for most exact arguments.

A The trigonometric functions return explicit values for arguments that are
certain rational multiples of π. For these values, the inverse functions
return an appropriate rational multiple of π on the main branch defined
below. Cf. example 2.

A The result is expressed in terms of hyperbolic functions, if the argument
is a rational multiple of I. Cf. example 3.

A The inverse trigonometric functions are multi-valued. The MuPAD func-
tions return values on the main branch defined as follows. For any finite
complex x:

y := arcsin(x) satisfies −π/2 ≤ <(y) ≤ π/2,

y := arccos(x) satisfies 0 ≤ <(y) ≤ π,

y := arctan(x) satisfies −π/2 < <(y) < π/2,

y := arccot(x) satisfies −π/2 < <(y) ≤ π/2.

A For arcsin and arccos, the branch cuts are the real intervals (−∞,−1)
and (1,∞).

For arctan, the branch cuts are the intervals (−∞· i,−i] and [i,∞· i) on
the imaginary axis.

For arccsc and arcsec, the branch cut is the real interval (−1, 1).

For arccot, the branch cut is the interval [−i, i] on the imaginary axis.

The values jump when the arguments cross a branch cut. Cf. example 4.

A The functions arccsc and arcsec immediately rewrite themselves in
terms of arcsin and arccos, returning arccsc(x)=arcsin(1/x) and
arcsec(x)=arccos(1/x), respectively.

165

Note that MuPAD’s arccot is defined by arccot(x)=arctan(1/x),
although arccot may return an unevaluated function call and does
not rewrite itself in terms of arctan. As a consequence of this
definition, the real line crosses the branch cut and arccot has a
jump discontinuity at the origin!

!

A The float attributes are kernel functions, i.e., floating point evaluation is
fast.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> arcsin(1), arccos(1/sqrt(2)), arctan(5 + I), arccsc(1/3),
arcsec(I), arccot(1)

PI PI PI PI
--, --, arctan(5 + I), arcsin(3), -- + I arcsinh(1), --
2 4 2 4

>> arcsin(-x), arccos(x + 1), arctan(1/x)

/ 1 \
-arcsin(x), arccos(x + 1), arctan| - |

\ x /

Floating point values are computed for floating point arguments:

>> arcsin(0.1234), arccos(5.6 + 7.8*I), arccot(1.0/10^20)

0.1237153458, 0.950687977 - 2.956002937 I, 1.570796327

On input of floating point intervals, these functions compute floating point
intervals containing the image sets:

>> arcsin(0...1), arccos(0...1)

0.0 ... 1.570796327, -2.168404345e-19 ... 1.570796327

>> arcsin(2...3)

(-1.570796327 ... 3.141592654) + (RD_NINF ... RD_INF) I

Note that certain types of input lead to severe overestimation, sometimes re-
turning the whole image set of the function in question:

>> arccsc(-2...2);
csc(arccsc(-2...2))

(-3.141592654 ... 3.141592654) + (RD_NINF ... RD_INF) I

(RD_NINF ... RD_INF) + (RD_NINF ... RD_INF) I

166

Example 2. Some special values are implemented:

>> arcsin(1/sqrt(2)), arccos((5^(1/2) - 1)/4), arctan(3^(1/2) - 2)

PI 2 PI PI
--, ----, - --
4 5 12

Such simplifications occur for arguments that are trigonometric images of ra-
tional multiples of π:

>> sin(9/10*PI), arcsin(sin(9/10*PI))

1/2
5 PI
---- - 1/4, --
4 10

>> cos(PI/8)/sin(PI/8), arctan(cos(PI/8)/sin(PI/8))

1/2 1/2
(2 + 2) 3 PI
-------------, ----

1/2 1/2 8
(2 - 2)

Example 3. Arguments that are rational multiples of I are rewritten in terms
of hyperbolic functions:

>> arcsin(5*I), arccos(5/4*I), arctan(-3*I)

PI
I arcsinh(5), -- - I arcsinh(5/4), -I arctanh(3)

2

For other complex arguments unevaluated function calls without simplifications
are returned:

>> arcsin(1/2^(1/2) + I), arccos(1 -3*I)

/ 1/2 \
| 2 |

arcsin| ---- + I |, arccos(1 - 3 I)
\ 2 /

167

Example 4. The values jump when crossing a branch cut:

>> arcsin(2.0 + I/10^10), arcsin(2.0 - I/10^10)

1.570796327 + 1.316957897 I, 1.570796327 - 1.316957897 I

On the branch cut, the values of arcsin coincide with the limit “from below”
for real arguments x > 1. The values coincide with the limit “from above” for
real x < −1:

>> arcsin(1.2), arcsin(1.2 - I/10^10), arcsin(1.2 + I/10^10)

1.570796327 - 0.6223625037 I, 1.570796327 - 0.6223625037 I,

1.570796327 + 0.6223625037 I

>> arcsin(-1.2), arcsin(-1.2 + I/10^10), arcsin(-1.2 - I/10^10)

- 1.570796327 + 0.6223625037 I,

- 1.570796327 + 0.6223625037 I,

- 1.570796327 - 0.6223625037 I

Example 5. The inverse trigonometric functions can be rewritten in terms of
the logarithm function with complex arguments:

>> rewrite(arcsin(x), ln), rewrite(arctan(x), ln)

2 1/2
- I ln(I x + (1 - x)), 1/2 I ln(1 - I x) -

1/2 I ln(I x + 1)

Example 6. Various system functions such as diff, float, limit, or series
handle expressions involving the inverse trigonometric functions:

>> diff(arcsin(x^2), x), float(arccos(3)*arctan(5 + I))

2 x
-----------, - 0.06540673615 + 2.433548516 I

4 1/2
(1 - x)

>> limit(arcsin(x^2)/arctan(x^2), x = 0)

168

1

>> series(arctan(sin(x)) - arcsin(tan(x)), x = 0, 10)

7 9 11
3 83 x 4 x 22831 x 13

- x - ----- - ---- - --------- + O(x)
120 189 28800

>> series(arccos(2 + x), x, 3)

1/2
- arccos(2) signIm(x + 2) - 1/3 I x 3 signIm(x + 2) +

2 1/2 3
1/9 I x 3 signIm(x + 2) + O(x)

Changes:

A floating point intervals are handled

arcsinh, arccosh, arctanh, arccsch, arcsech, arccoth – the in-
verse hyperbolic functions

arcsinh(x) represents the inverse of the hyperbolic sine function.

arccosh(x) represents the inverse of the hyperbolic cosine function.

arctanh(x) represents the inverse of the hyperbolic tangent function.

arccsch(x) represents the inverse of the hyperbolic cosecant function.

arcsech(x) represents the inverse of the hyperbolic secant function.

arccoth(x) represents the inverse of the hyperbolic cotangent function.

Call(s):

A arcsinh(x)

A arccosh(x)

A arctanh(x)

A arccsch(x)

A arcsech(x)

A arccoth(x)

169

Parameters:

x — an arithmetical expression or a floating point interval

Return Value: an arithmetical expression or a floating point interval

Overloadable by: x

Side Effects: When called with a floating point argument, the functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: sinh, cosh, tanh, csch, sech, coth

Details:

A Theses functions are defined for complex arguments.

A Floating point values are returned for floating point arguments. Floating
point intervals are returned for floating point interval arguments. Une-
valuated function calls are returned for most exact arguments.

A The following special values are implemented:

arcsinh(0) = 0, arccosh(0) = i π/2, arccosh(1) = 0,

arctanh(0) = 0, arccoth(0) = i π/2.

A The inverse hyperbolic functions are multi-valued. The MuPAD imple-
mentations return values on the main branch defined as follows: for any
finite complex x,

y := arcsinh(x) satisfies −π/2 ≤ =(y) ≤ π/2,

y := arccosh(x) satisfies −π < =(y) ≤ π,

y := arctanh(x) satisfies −π/2 < =(y) < π/2,

y := arccoth(x) satisfies −π/2 < =(y) ≤ π/2.

A The inverse hyperbolic functions are implemented according to the fol-
lowing relations to the logarithm function:

arcsinh(x) = ln(x + sqrt(x^2 + 1)),

arccosh(x) = ln(x + sqrt(x^2 - 1)),

arctanh(x) = (ln(1 + x) - ln(1 - x))/2,

arccsch(x) = arcsinh(1/x),

arcsech(x) = arccosh(1/x),

arccoth(x) = arctanh(1/x).

Cf. example 2.

170

A Consequently, these functions have the following branch cuts:

For arcsinh, the branch cuts are the intervals (−i · ∞,−i) and (i, i · ∞)
on the imaginary axis.

For arccosh, the branch cuts are the real interval (−∞, 1) and the ima-
ginary axis.

For arctanh, the branch cuts are the real intervals (−∞,−1] and [1,∞).

For arccsch, the branch cut is the interval (−i, i) on the imaginary axis.

For arcsech, the branch cuts are the real intervals (−∞, 0) and (1,∞)
together with the imaginary axis.

For arccoth, the branch cut is the real interval [−1, 1].

The values jump when the argument crosses a branch cut. Cf. example 3.

A The functions arccsch and arcsech immediately rewrite themselves, re-
turning arccsch(x) = arcsinh(1/x) and arcsech(x) = arccosh(1/x),
respectively. MuPAD’s arccoth is defined by arccoth(x) = arctanh(1/x).
However, it does not rewrite itself automatically in terms of arctanh.

A The float attributes are kernel functions, i.e., floating point evaluation is
fast.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> arcsinh(1), arccosh(1/sqrt(2)), arctanh(5 + I), arccsch(1/3),
arcsech(I), arccoth(2)

/ 1/2 \
| 2 |

arcsinh(1), arccosh| ---- |, arctanh(5 + I), arcsinh(3),
\ 2 /

arccosh(-I), arccoth(2)

>> arcsinh(-x), arccosh(x + 1), arctanh(1/x)

/ 1 \
-arcsinh(x), arccosh(x + 1), arctanh| - |

\ x /

Floating point values are computed for floating point arguments:

>> arcsinh(0.1234), arccosh(5.6 + 7.8*I), arccoth(1.0/10^20)

0.1230889466, 2.956002937 + 0.950687977 I, -1.570796327 I

Floating point intervals are returned for arguments of this type:

>> arccoth(0.5 ... 1.5), arcsinh(0.1234...0.12345)

171

(0.2554128118 ... RD_INF) + (-1.570796327 ... 1.570796327) I,

0.1230889466 ... 0.1231385701

The inverse of the hyperbolic tangent function has real values only in the interval
(−1, 1):

>> arctanh(-1/2...0), arctanh(2...3)

-0.5493061444 ... 9.215718467e-19,

(0.2027325540 ... 0.6931471806) +

(-1.570796327 ... 1.570796327) I

Example 2. The inverse hyperbolic functions can be rewritten in terms of the
logarithm function:

>> rewrite(arcsinh(x), ln), rewrite(arctanh(x), ln)

2 1/2 ln(x + 1) ln(1 - x)
ln(x + (x + 1)), --------- - ---------

2 2

Example 3. The values jump when crossing a branch cut:

>> arctanh(2.0 + I/10^10), arctanh(2.0 - I/10^10)

0.5493061443 + 1.570796327 I, 0.5493061443 - 1.570796327 I

On the branch cut, the values of arctanh coincide with the limit “from below”
for real arguments x > 1. The values coincide with the limit “from above” for
real x < −1:

>> arctanh(1.2), arctanh(1.2 - I/10^10), arctanh(1.2 + I/10^10)

1.198947636 - 1.570796327 I, 1.198947636 - 1.570796327 I,

1.198947636 + 1.570796327 I

>> arctanh(-1.2), arctanh(-1.2 + I/10^10), arctanh(-1.2 - I/10^10)

- 1.198947636 + 1.570796327 I, - 1.198947636 + 1.570796327 I,

- 1.198947636 - 1.570796327 I

172

Example 4. Various system functions such as diff, float, limit, or series
handle expressions involving the inverse hyperbolic functions:

>> diff(arcsinh(x^2), x), float(arccosh(3)*arctanh(5 + I))

2 x
-----------, 0.3427241326 + 2.698556745 I
4 1/2

(x + 1)

>> limit(arcsinh(x)/arctanh(x), x = 0)

1

>> series(arctanh(sinh(x)) - arcsinh(tanh(x)), x = 0, 10)

7 9 11
3 83 x 4 x 22831 x 13
x + ----- - ---- + --------- + O(x)

120 189 28800

Changes:

A Floating point intervals are handled.

arg – the argument (polar angle) of a complex number

arg(z) returns the argument of the complex number z.

arg(x, y) returns the argument of the complex number with real part x and
imaginary part y.

Call(s):

A arg(z)

A arg(x, y)

Parameters:
z — arithmetical expression
x, y — arithmetical expressions representing real numbers

Return Value: an arithmetical expression.

Overloadable by: x, z

173

Side Effects: When called with floating point arguments, the function is sens-
itive to the environment variable DIGITS which determines the numerical work-
ing precision. Properties of identifiers are taken into account.

Related Functions: arctan, Im, Re, rectform

Details:

A The argument of a non-zero complex number z = x + i y = |z| ei φ is its
real polar angle φ. arg(x,y) represents the principal value φ ∈ (−π, π].
For x 6= 0, y 6= 0, it is given by

arg(x, y) = arctan
(y
x

)
+
π

2
sign(y) (1− sign(x)).

A An error occurs if arg is called with two arguments and either one of the
arguments x, y is a non-real numerical value. Symbolic arguments are
assumed to be real.

A On the other hand, if arg is called with only one argument x + I*y, it is
not assumed that x and y are real.

A A floating point number is returned if one argument is given which is a
floating point number; or if two arguments are given, both of them are
numerical and at least one of them is a floating point number.

A If the sign of the arguments can be determined, then the result is expressed
in terms of arctan. Cf. example 2. Otherwise, a symbolic call of arg is
returned. Numerical factors are eliminated from the first argument. Cf.
example 3.

A A symbolic call to arg returned has only one argument.

A The call arg(0,0), or equivalently arg(0), returns 0.

A An alternative representation is arg(x, y) = −i ln(z/|z|) = −i ln(sign(z)).
Cf. example 4.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> arg(2, 3), arg(x, 4), arg(4, y), arg(x, y), arg(10, y + PI)

/ y \
arctan(3/2), arg(x + 4 I), arctan| - |, arg(x + I y),

\ 4 /

/ y PI \
arctan| -- + -- |

\ 10 10 /

174

If arg is called with two arguments, the arguments are implicitly assumed to
be real, which allows some additional simplifications compared to a call with
only one argument:

>> arg(1, y), arg(1 + I*y)

arctan(y), arg(I y + 1)

>> arg(x, infinity), arg(-infinity, 3), arg(-infinity, -3)

PI
--, PI, -PI
2

Floating point values are computed for floating point arguments:

>> arg(2.0, 3), arg(2, 3.0), arg(10.0^100, 10.0^(-100))

0.9827937232, 0.9827937232, 1.0e-200

Example 2. arg reacts to properties of identifiers set via assume:

>> assume(x > 0): assume(y < 0): arg(x, y)

/ y \
arctan| - |

\ x /

>> assume(x < 0): assume(y > 0): arg(x, y)

/ y \
PI + arctan| - |

\ x /

>> assume(x <> 0): arg(x, 3)

PI (1 - sign(x)) / 3 \
---------------- + arctan| - |

2 \ x /

>> unassume(x), unassume(y):

Example 3. Certain simplifications may occur in unevaluated calls. In par-
ticular, numerical factors are eliminated from the first argument:

>> arg(3*x, 9*y), arg(-12*sqrt(2)*x, 12*y)

1/2
arg(x + 3 I y), arg(I y - x 2)

175

Example 4. Use rewrite to convert symbolic calls of arg to the logarithmic
representation:

>> rewrite(arg(x, y), ln)

/ x + I y \
- I ln| ------------ |

\ abs(x + I y) /

Example 5. System functions such as float, limit, or series handle ex-
pressions involving arg:

>> limit(arg(x, x^2/(1+x)), x = infinity)

PI
--
4

>> series(arg(x, x^2), x = 1, 4, Real)

2 3
PI (x - 1) (x - 1) (x - 1) 4
-- + ------- - -------- + -------- + O((x - 1))
4 2 4 12

Changes:

A arg may now also be called with only one argument.

args – access procedure parameters

args(0) returns the number of parameters of the current procedure.

args(i) returns the value of the ith parameter of the current procedure.

Call(s):

A args()

A args(0)

A args(i)

A args(i..j)

176

Parameters:

i, j — positive integers

Return Value: args(0) returns a nonnegative integer. All other calls return
an arbitrary MuPAD object or a sequence of such objects.

Related Functions: context, DOM_PROC, DOM_VAR, Pref::typeCheck, proc,
procname, testargs

Details:

A args accesses the actual parameters of a procedure and can only be used
in procedures. It is mainly intended for procedures with a variable number
of arguments, since otherwise parameters can simply be accessed by their
names.

A args() returns an expression sequence of all actual parameters.

A args(0) returns the number of actual parameters.

A args(i) returns the value of the ith parameter.

A args(i..j) returns an expression sequence containing the ith up to the
jth parameter.

A In procedures with option hold, args returns the parameters without
further evaluation. Use context or eval to enforce a subsequent eval-
uation. See example 2.

A procname(args()) returns a symbolic function call of the current proced-
ure with evaluated arguments.

A Assigning values to formal parameters of a procedure changes the result
of args. Cf. example 4. args(0) remains unchanged.

A args is a function of the system kernel.

Example 1. This example demonstrates the various ways of using args:

>> f := proc() begin
print(Unquoted, "number of arguments" = args(0)):
print(Unquoted, "sequence of all arguments" = args()):
if args(0) > 0 then
print(Unquoted, "first argument" = args(1)):

end_if:
if args(0) >= 3 then
print(Unquoted, "second, third argument" = args(2..3)):

end_if:
end_proc:

177

>> f():

number of arguments = 0

sequence of all arguments = null()

>> f(42):

number of arguments = 1

sequence of all arguments = 42

first argument = 42

>> f(a, b, c, d):

number of arguments = 4

sequence of all arguments = (a, b, c, d)

first argument = a

second, third argument = (b, c)

Example 2. args does not evaluate the returned parameters in procedures
with the option hold. Use context to achieve this:

>> f := proc()
option hold;

begin
args(1), context(args(1))

end_proc:

>> delete x, y: x := y: y := 2: f(x)

x, 2

Example 3. We use args to access parameters of a procedure with an arbit-
rary number of arguments:

>> f := proc() begin
args(1) * _plus(args(2..args(0)))

end_proc:
f(2, 3), f(2, 3, 4)

6, 14

178

Example 4. Assigning values to formal parameters affects the behavior of
args. In the following example, args returns the value 4, which is assigned in-
side the procedure, and not the value 1, which is the argument of the procedure
call:

>> f := proc(a) begin a := 4; args() end_proc:
f(1)

4

array – create an array

array(m1..n1, m2..n2, ...) creates an array with uninitialized entries, where
the first index runs from m1 to n1, the second index runs from m2 to n2, etc.

array(m1..n1, m2..n2, ..., list) creates an array with entries initialized
from list.

Call(s):

A array(m1..n1 <, m2..n2, ...>)

A array(m1..n1, <m2..n2, ...,> index1 = entry1, index2 =
entry2, ...)

A array(m1..n1, <m2..n2, ...,> list)

Parameters:
m1, n1, m2, n2, ... — the boundaries: integers
index1, index2, ... — a sequence of integers defining a valid array

index
entry1, entry2, ... — arbitrary objects
list — a list, possibly nested

Return Value: an object of type DOM_ARRAY.

Related Functions: _assign, _index, assignElements, delete,
DOM_ARRAY, DOM_LIST, DOM_TABLE, indexval, matrix, table

Details:

A Arrays are container objects for storing data. In contrast to tables, the
indices must be sequences of integers. While tables may grow in size
dynamically, the number of entries in an array is fixed.

179

A For an array A, say, and a sequence of integers index forming a valid array
index, an indexed call A[index] returns the corresponding entry. If the
entry is uninitialized, then the indexed expression A[index] is returned.
See examples 1 and 4.

A An indexed assignment of the form A[index]:=entry initializes or over-
writes the entry corresponding to index. See examples 1 and 4.

A array creates an array. The boundaries must satisfy m1 ≤ n1, m2 ≤ n2,
etc. The dimension of the resulting array is the number of given range
arguments; at least one range argument is mandatory. The total number
of entries of the resulting array is (m1 − n1 + 1)(m2 − n2 + 1) · · · .

A If only index range arguments are given, then an array with uninitialized
entries is created. See example 1.

A If equations of the form index=entry are present, then the array entry
corresponding to index is initialized with entry. This is useful for select-
ively initializing some particular array entries.

Each index must be a valid array index of the form i1 for one-dimensional
arrays and (i1,i2,..) for higher-dimensional arrays, where i1,i2,...
are integers within the valid boundaries, satisfying m1 ≤ i1 ≤ n1, m2 ≤
i2 ≤ n2, etc., and the number of integers in index matches the dimension
of the array.

A If the argument list is present, then the resulting array is initialized
with the entries from list. This is useful for initializing all array entries
at once. The structure of the list must match the structure of the array
exactly, such that the nesting depth of the list is greater or equal to the
dimension of the array and the number of list entries at the kth nesting
level is equal to the size of the kth index range. Cf. example 6.

A A call of the form delete A[index] deletes the entry corresponding to
index, so that it becomes uninitialized again. See example 4.

A Internally, uninitialized array entries have the value NIL. Thus as-
signing NIL to an array entry has the same effect as deleting it via
delete, and afterwards an indexed call of the form A[index] re-
turns the symbolic expression A[index], and not NIL, as one might
expect. See example 4.

!

A A one-dimensional array is printed as a row vector. The index corresponds
to the column number.

A A two-dimensional array is printed as a matrix. The first index corres-
ponds to the row number and the second index corresponds to the column
number.

A A one- or two-dimensional array that is so big that it would exceed the
maximal output width TEXTWIDTH is printed in the form

180

array(m1..n1, m2..n2, ..., index1 = entry1, index2 = entry2, ...)
See example 8. The same is true for arrays of dimension greater than two.
See examples 5 and 6.

A Arithmetic operations are not defined for arrays. Use matrix to create
one-dimensional vectors and two-dimensional matrices in the mathemat-
ical sense.

A If an array is evaluated, it is only returned. The evaluation does not map
recursively on the array entries. This is due to performance reasons. You
have to map the function eval explicitly on the array in order to fully
evaluate its entries. See example 7.

A array is a function of the system kernel.

Example 1. We create an uninitialized one-dimensional array with indices
ranging from 2 to 4:

>> A := array(2..4)

+- -+
| ?[2], ?[3], ?[4] |
+- -+

The question marks in the output indicate that the array entries are not ini-
tialized. We set the middle entry to 5 and last entry to "MuPAD":

>> A[3] := 5: A[4] := "MuPAD": A

+- -+
| ?[2], 5, "MuPAD" |
+- -+

You can access array entries via indexed calls. Since the entry A[2] is not
initialized, the symbolic expression A[2] is returned:

>> A[2], A[3], A[4]

A[2], 5, "MuPAD"

We can initialize an array already when creating it by passing initialization
equations to array:

>> A := array(2..4, 3 = 5, 4 = "MuPAD")

+- -+
| ?[2], 5, "MuPAD" |
+- -+

We can initialize all entries of an array when creating it by passing a list of
initial values to array:

181

>> array(2..4, [PI, 5, "MuPAD"])

+- -+
| PI, 5, "MuPAD" |
+- -+

Example 2. Array boundaries may be negative integers as well:

>> A := array(-1..1, [2, sin(x), FAIL])

+- -+
| 2, sin(x), FAIL |
+- -+

>> A[-1], A[0], A[1]

2, sin(x), FAIL

Example 3. The $ operator may be used to create a sequence of initialization
equations:

>> array(1..8, i = i^2 $ i = 1..8)

+- -+
| 1, 4, 9, 16, 25, 36, 49, 64 |
+- -+

Equivalently, you can use the $ operator to create an initialization list:

>> array(1..8, [i^2 $ i = 1..8])

+- -+
| 1, 4, 9, 16, 25, 36, 49, 64 |
+- -+

Example 4. We create a 2× 2 matrix as a two-dimensional array:

>> A := array(1..2, 1..2, (1, 2) = 42, (2, 1) = 1 + I)

+- -+
| ?[1, 1], 42 |
| |
| 1 + I, ?[2, 2] |
+- -+

182

Internally, array entries are stored in a linearized form. They can be accessed
in this form via op. Uninitialized entries internally have the value NIL:

>> op(A, 1), op(A, 2), op(A, 3), op(A, 4)

NIL, 42, 1 + I, NIL

Note the difference to the indexed access:

>> A[1, 1], A[1, 2], A[2, 1], A[2, 2]

A[1, 1], 42, 1 + I, A[2, 2]

We can modify an array entry by an indexed assignment:

>> A[1, 1] := 0: A[1, 2] := 5: A

+- -+
| 0, 5 |
| |
| 1 + I, ?[2, 2] |
+- -+

You can delete the value of an array entry via delete. Afterwards, it is unini-
tialized again:

>> delete A[2, 1]: A[2, 1], op(A, 3)

A[2, 1], NIL

Assigning NIL to an array entry has the same effect as deleting it:

>> A[1, 2] := NIL: A[1, 2], op(A, 2)

A[1, 2], NIL

Example 5. We define a three-dimensional array with index values between
1 and 8 in each of the three dimensions and initialize two of the entries via
initialization equations:

>> A := array(1..8, 1..8, 1..8,
(1, 1, 1) = 111,
(8, 8, 8) = 888)

array(1..8, 1..8, 1..8,
(1, 1, 1) = 111,
(8, 8, 8) = 888

)

>> A[1, 1, 1], A[1, 1, 2]

111, A[1, 1, 2]

183

Example 6. A nested list may be used to initialize a two-dimensional array.
The inner lists are the rows of the created matrix:

>> array(1..2, 1..3, [[1, 2, 3], [4, 5, 6]])

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
+- -+

We create a three-dimensional array and initialize it from a nested list of depth
three. The outer list has two entries for the first dimension. Each of these entries
is a list with three entries for the second dimension. Finally, the innermost lists
each have one entry for the third dimension:

>> array(2..3, 1..3, 1..1,
[
[[1], [2], [3]],
[[4], [5], [6]]

])

array(2..3, 1..3, 1..1,
(2, 1, 1) = 1,
(2, 2, 1) = 2,
(2, 3, 1) = 3,
(3, 1, 1) = 4,
(3, 2, 1) = 5,
(3, 3, 1) = 6

)

Example 7. If an array is evaluated, it is only returned. The evaluation does
not map recursively on the array entries. Here, the entries a and b are not
evaluated:

>> A := array(1..2, [a, b]):
a := 1: b := 2:
A, eval(A)

+- -+ +- -+
| a, b |, | a, b |
+- -+ +- -+

Due to the special evaluation of arrays the index operator evaluates array entries
after extracting them from the array:

>> A[1], A[2]

184

1, 2

You have to map the function eval explicitly on the array in order to fully
evaluate its entries:

>> map(A, eval)

+- -+
| 1, 2 |
+- -+

Example 8. A two-dimensional array is usually printed in matrix form:

>> A := array(1..4, 1..4,
(1, 1) = 11,
(4, 4) = 44)

+- -+
| 11, ?[1, 2], ?[1, 3], ?[1, 4] |
| |
| ?[2, 1], ?[2, 2], ?[2, 3], ?[2, 4] |
| |
| ?[3, 1], ?[3, 2], ?[3, 3], ?[3, 4] |
| |
| ?[4, 1], ?[4, 2], ?[4, 3], 44 |
+- -+

If the output does not fit into TEXTWIDTH, a more compact output is used:

>> TEXTWIDTH := 20:
A;
delete TEXTWIDTH:

array(1..4, 1..4,
(1, 1) = 11,
(4, 4) = 44

)

assert – assertions for debugging

The statement assert(cond) declares that the condition cond holds true at
the moment when the statement is evaluated. By default, MuPAD does not
care about assertions. After setting testargs(TRUE), however, MuPAD checks
every assertion and stops with an error if boolean evaluation of cond does not
give TRUE.

185

Call(s):

A assert(cond)

Parameters:

cond — a boolean expression

Return Value: assert returns TRUE or raises an error.

Related Functions: testargs

Details:

A Assertions are a major debugging tool for programmers: by stating fre-
quently what she thinks to have achieved, a programmer makes it easy
for herself to detect the first unintended intermediate result.

Example 1. Suppose we want to write a function f that takes an integer as
its argument and returns 0 if that integer is a multiple of 3, and 1 otherwise.
One idea how to code this could be the following: given an integer n, n modulo
3 must be equal to one of −1, 1, or 0. In any case, abs(n mod 3) should do
what we want:

>> f := proc(n: DOM_INT): DOM_INT
local k: DOM_INT;
begin
k := n mod 3;
assert(k = 1 or k = -1 or k = 0);
abs(k)

end_proc

proc f(n) ... end

Checking assertions is switched on or off using testargs:

>> oldtestargs := testargs(): testargs(FALSE): f(5)

2

The result does not equal 1. Ror debugging purposes, we switch on assertion
checking:

>> testargs(TRUE): f(5)

Error: Assertion k = 1 or k = -1 or k = 0 failed [f]

This shows that the local variable k must have gotten a wrong value. Indeed,
when writing our program we overlooked the difference between mod and the
symmetric remainder given by mods.

>> testargs(oldtestargs):

186

Changes:

A assert is a new function.

assign – perform assignments given as equations

For each equation in a list, a set, or a table of equations L, assign(L) evaluates
both sides of the equation and assigns the evaluated right hand side to the
evaluated left hand side.

assign(L, S) does the same, but only for those equations whose left hand side
is in the set S.

Call(s):

A assign(L)

A assign(L, S)

Parameters:
L — a list, a set, or a table of equations
S — a set

Return Value: L.

Related Functions: :=, _assign, assignElements, delete, evalassign

Details:

A Since the arguments of assign are evaluated, the evaluation of the left
hand side of each equation in L must be an admissible left hand side for an
assignment. See the help page of the assignment operator := for details.

A Several assignments are performed from left to right. See example 4.

A assign can be conveniently used after a call to solve to assign a particular
solution of a system of equations to the unknowns. See example 5.

Example 1. We assign values to the three identifiers B1,B2,B3:

>> delete B1, B2, B3:
assign([B1 = 42, B2 = 13, B3 = 666]): B1, B2, B3

42, 13, 666

We specify a second argument to carry out only those assignments with left
hand side B1:

187

>> delete B1, B2, B3:
assign([B1 = 42, B2 = 13, B3 = 666], {B1}): B1, B2, B3

42, B2, B3

The first argument may also be a table of equations:

>> delete B1, B2, B3:
assign(table(B1 = 42, B2 = 13, B3 = 666)): B1, B2, B3

42, 13, 666

Example 2. Unlike _assign, assign evaluates the left hand sides:

>> delete a, b: a := b: assign({a = 3}): a, b

3, 3

>> delete a, b: a := b: a := 3: a, b

3, b

Example 3. The object assigned may also be a sequence:

>> assign([X=(2,7)])

[X = (2, 7)]

>> X

2, 7

Example 4. The assignments are carried out one after another, from left to
right. Since the right hand side is evaluated, the identifier C gets the value 3 in
the following example:

>> assign([B=3, C=B])

[B = 3, C = B]

>> level(C,1)

3

188

Example 5. When called for an algebraic system, solve often returns a set
of lists of assignments. assign can then be used to assign the solutions to the
variables of the system:

>> sys:={x^2+y^2=2, x+y=5}:
S:= solve(sys)

1/2 1/2
{[x = 5/2 - 1/2 I 21 , y = 1/2 I 21 + 5/2],

1/2 1/2
[x = 1/2 I 21 + 5/2, y = 5/2 - 1/2 I 21]}

We want to check whether the first solution is really a solution:

>> assign(S[1]): sys

1/2 2 1/2 2
{5 = 5, (5/2 - 1/2 I 21) + (1/2 I 21 + 5/2) = 2}

Things become clearer if we use floating point evaluation:

>> float(sys)

{5.0 = 5.0, 2.0 - 8.67361738e-19 I = 2.0}

assignElements – assign values to entries of an array, a list, or a
table

assignElements(L, [index1] = value1, [index2] = value2, ...) returns
a copy of L with value1 stored at index1, value2 stored at index2, etc.

Call(s):

A assignElements(L, [index1] = value1, [index2] = value2, ...)

A assignElements(L, [[index1], value1], [[index2], value2],
...)

Parameters:
L — an array, a list, or a table
index1, index2, ... — valid indices for L
value1, value2, ... — any MuPAD objects

Return Value: an object of the same type as L.

189

Related Functions: :=, _assign, _index, array, assign, delete,
DOM_ARRAY, DOM_LIST, DOM_TABLE, evalassign, table

Details:

A R:=assignElements(L,[index1]=value1,[index2]=value2,...) has
the same effect as the sequence of assignments R:=L: R[index1]:=value1:
R[index2]:=value2: ... R, but is more efficient.

A assignElements returns a modified copy of its first argument, which re-
mains unchanged. See example 1.

A The second variant of the assignElements call, with lists instead of equa-
tions, is equivalent to the first variant. In fact, both equations and lists
may be mixed in a single call. See example 1.

A All assignments are performed simultaneously, i.e., the order of the argu-
ments is irrelevant. See example 3.

A All rules for indexed assignments apply, in particular with respect to the
validity of indices. If L is a list, the indices must be positive integers not
exceeding the length of L. If L is an array, the indices must be (sequences
of) integers matching the dimension and lying within the valid ranges of
the array. If L is a table, the indices may be arbitrary objects.

A assignElements is a function of the system kernel.

Example 1. Assignments may given as equations or lists, and both forms may
be mixed in a single call:

>> L := array(1..3, [3, 4, 5]);
assignElements(L, [1] = one, [2] = two, [3] = three);
assignElements(L, [[1], one], [[2], two], [[3], three]);
assignElements(L, [1] = one, [[2], two], [3] = three);

+- -+
| 3, 4, 5 |
+- -+

+- -+
| one, two, three |
+- -+

+- -+
| one, two, three |
+- -+

+- -+
| one, two, three |
+- -+

190

The array L itself is not modified by assignElements:

>> L

+- -+
| 3, 4, 5 |
+- -+

Example 2. Sequences, too, may be assigned as values to array elements, but
they must be put in parentheses:

>> R := assignElements(array(1..2), [1] = (1, 7), [2] = PI)

+- -+
| 1, 7, PI |
+- -+

>> [R[1]], [R[2]]

[1, 7], [PI]

Example 3. The sequence generator $ is useful to create sequences of assign-
ments:

>> L := [i $ i = 1..10];
assignElements(L, [i] = L[i] + L[i + 1] $ i = 1..9)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

[3, 5, 7, 9, 11, 13, 15, 17, 19, 10]

The order of the arguments is irrelevant:

>> assignElements(L, [10 - i] = L[10 - i] + L[11 - i] $ i = 1..9)

[3, 5, 7, 9, 11, 13, 15, 17, 19, 10]

Example 4. The indices of a table may be arbitrary objects, for example,
strings:

>> assignElements(table(), [expr2text(i)] = i^2 $ i = 1..4)

table(
"4" = 16,
"3" = 9,
"2" = 4,
"1" = 1

)

191

Example 5. For arrays of dimension greater than one, the indices are se-
quences of as many integers as determined by the dimension of the array:

>> assignElements(array(1..3, 1..3),
([i, j] = i + j $ i = 1..3) $ j = 1..3)

+- -+
| 2, 3, 4 |
| |
| 3, 4, 5 |
| |
| 4, 5, 6 |
+- -+

assume – attach a property to an identifier

assume(x, prop) attaches the property prop to the identifier x.

assume(prop) sets a “global property” that is valid for all identifiers.

Call(s):

A assume(x, prop <, _and_or>)

A assume(prop <, _and_or>)

A assume(y rel z <, _and_or>)

Parameters:
x — an identifier or one of the expressions Re(u) or Im(u) with

an identifier u
prop — a property
_and_or — either _and or _or. Without this optional argument, any

previously attached property is overwritten by the new
property. With _and or _or, existing properties are not
deleted but logically combined with the new property by
’and’ or ’or’, respectively.

y, z — arithmetical expressions
rel — one of the relational operators <, <=, =, <>, >=, >

Return Value: a property of type Type::Property.

Related Functions: _assign, anames, getprop, is, property::hasprop,
property::implies, Type, Type::Property, unassume

192

Details:

A Properties represent subsets of the complex plane. Attaching a property
prop to an identifier x corresponds to the statement ‘x represents a number
of the set prop’. Various predefined properties are installed in the Type
library. Request ?properties for a list of all available properties.

By default, library functions regard identifiers as symbols representing
complex numbers. For this reason, certain expressions such as sign(1 +
x^2) cannot be simplified in any way unless x is restricted to some subset
of the complex plane. E.g., if x is assumed to be a real number, the
expression may be simplified to sign(1 + x^2) = 1.

Thus, properties help to simplify expressions. Various system functions
react to properties and yield simpler results. Cf. example 7.

Properties of identifiers are set via assume. Properties of expressions are
queried by the functions getprop and is.

A assume(x, prop) attaches the property prop to the identifier x. Without
_and_or, existing properties of x are overwritten.

A If the optional argument _and or _or is given, existing properties of x,
y, or z, if any, are not overwritten, but logically combined with the new
property via ’and’ or ’or’. The resulting property is then attached to x,
y, or z. Cf. example 2.

A It may happen that the resulting property cannot be represented expli-
citly. In this case, a weaker property is attached instead. Cf. example 8.

A assume(Re(u), prop) and assume(Im(u), prop) attach the property
to the real and the imaginary part of the identifier u, respectively. Cf.
example 3.

A In assume(y rel z), at least one of y or z must be an identifier or of the
form Re(u) or Im(u). The other one may be an arbitrary arithmetical
expression.

The property representing the relation is attached to the identifier(s) y
and/or z. In particular, if both y and z are identifiers or of the form Re(u),
Im(u), then any existing property of both y and z are overwritten, unless
_and_or is specified.

If rel is one of <, >, <= or >=, and y or z is an identifier or Re(u), Im(u),
then the property Type::Real is implicitly attached to y and/or z.

Cf. example 4.

A The call assume(prop <, _and_or>) defines a “global property” prop
that is assumed to hold for all identifiers. When querying properties of
expressions (e.g., via is), this global property is logically combined with
the properties of individual identifiers via ‘and’.

193

The argument _and_or indicates that an existing global property is com-
bined logically with the new global property.

The protected identifier Global is used to store global properties.

The calls assume(prop <, _and_or>) and assume(Global, prop <,
_and_or>) are equivalent.

Cf. example 5.

A Properties of an identifier x are deleted via unassume(x) or delete x.
The global property is deleted via unassume() or unassume(Global) (this
does not affect the individual properties of identifiers).

When assigning a value to an identifier with properties, the assigned value
needs not be consistent in any way with previously assigned properties.
Properties are overwritten by an assignment. Cf. example 6.

Example 1. The following command marks the identifier n as an integer:

>> assume(n, Type::Integer)

Type::Integer

MuPAD can now derive that n^2 is a nonnegative integer:

>> getprop(n^2), is(n^2, Type::NonNegInt)

Type::NonNegInt, TRUE

Also other system functions react to this property:

>> abs(n^2 + 1), simplify(sin(2*n*PI))

2
n + 1, 0

>> delete n:

Example 2. Using _and or _or, existing properties are not deleted, but com-
bined with new properties:

>> assume(n, Type::NonNegInt)

Type::NonNegInt

>> assume(n, Type::NegInt, _or)

Type::Integer

>> assume(n, Type::Positive, _and)

Type::PosInt

>> delete n:

194

Example 3. Properties of the real and the imaginary part of an identifier can
be defined separately:

>> assume(Re(z) > 0), assume(Im(z) < 0, _and)

Re(.) > 0, Re(.) > 0 and Im(.) < 0

>> abs(Re(z)), sign(Im(z))

Re(z), -1

>> is(z, Type::Real), is(z > 0)

FALSE, FALSE

>> delete z:

Example 4. Assuming relations such as x > y affects the properties of both
identifiers:

>> assume(x > y)

< x

Properties can be queried by getprop. Both x and y have properties:

>> getprop(x), getprop(y)

> y, < x

In the next command, _and is used to prevent that the previous property of y
is deleted: y is assumed to be greater than 0 and less than x:

>> assume(y > 0, _and)

]0, x[

>> is(x^2 >= y^2)

TRUE

The second assume in the next example without the operator _and would have
overwritten the property ’> 0’ of x. With _and, the assumption x >= 0 stays
valid:

>> unassume(y):
assume(x >= 0): assume(y >= x, _and): is(y >= 0)

TRUE

195

Relations such as x > y imply that the involved identifiers are real:

>> is(x, Type::Real), is(y, Type::Real)

TRUE, TRUE

>> delete x, y:

In the following example, one side of the given relation is not an identifier but
an expression. Consequently, the property is attached only to the identifier x:

>> assume(x > 1/y)

> 1/y

>> getprop(x), getprop(y)

> 1/y, y

>> delete x:

Example 5. In the next example, a global property is defined:

>> assume(Type::NonNegative)

Type::NonNegative

Now, any identifier is assumed to be nonnegative and real:

>> Re(x), Im(y), sign(1 + z^2)

x, 0, 1

Individual assumptions may be attached to identifiers independent of the global
property:

>> assume(x, Type::Integer)

Type::Integer

Deductions of properties via getprop or is combine individual properties with
the global property:

>> getprop(x), is(x < 0)

Type::NonNegInt, FALSE

Also the global property can be modified using _and and _or:

>> assume(Type::Negative, _or)

196

Type::Real

To define a relation as a global property, the identifier Global must be used:

>> assume(Global > 0): is(x + y + z > 0)

TRUE

The global property can only be deleted with the call unassume():

>> delete x: unassume():

Example 6. _assign and := do not check the properties of an identifier. All
properties are overwritten:

>> assume(a > 0): a := -2: a, getprop(a)

-2, -2

>> delete a:

Example 7. Some system functions take properties of identifiers into account:

>> assume(x > 0): abs(x), sign(x), Re(x), Im(x)

x, 1, x, 0

The equation ln(z1*z2) = ln(z1) + ln(z2) does not hold for arbitrary z1,
z2 in the complex plane:

>> expand(ln(z1*z2))

ln(z1 z2)

However, this identity holds if at least one of the numbers is real and positive:

>> assume(z1 > 0): expand(ln(z1*z2))

ln(z1) + ln(z2)

>> unassume(x): unassume(z1):

197

Example 8. If a combination of properties cannot be represented explicitly,
assume may attach a weaker property to the identifier. In this example, the
property “a prime number or the negative of a prime number” is generalized to
the property “integer unequal to zero”:

>> assume(x, Type::Prime):
assume(x, -Type::Prime, _or)

Type::Integer and not Type::Zero

>> unassume(x):

Background:

A assume is an exported function of the library property.

asympt – compute an asymptotic series expansion

asympt(f, x) computes the first terms of an asymptotic series expansion of f
with respect to the variable x around the point infinity.

Call(s):

A asympt(f, x)

A asympt(f, x <= x0> <, order> <, dir>)

Parameters:
f — an arithmetical expression representing a function in x
x — an identifier
x0 — the expansion point: an arithmetical expression; if not

specified, the default expansion point infinity is used
order — the number of terms to be computed: a nonnegative integer;

the default order is given by the environment variable ORDER
(default value 6)

Options:

dir — either Left or Right . With Left , the expansion is valid for
real x < x0; with Right , it is valid for x > x0. For finite
expansion points x0, the default is Right .

Return Value: an object of domain type Series::gseries or Series::Puiseux,
or an expression of type "asympt".

198

Side Effects: The function is sensitive to the environment variable ORDER,
which determines the default number of terms in series computations.

Overloadable by: f

Related Functions: limit, O, ORDER, series, Series::gseries,
Series::Puiseux, taylor, Type::Series

Details:

A asympt is used to compute an asymptotic expansion of f when x tends
to x0. If such an expansion can be computed, a series object of domain
type Series::gseries or Series::Puiseux is returned.

In contrast to the default behavior of series, asympt computes directed
expansions that may be valid along the real line only.

A asympt can compute more general types of asymptotic expansions than
the related function series. Cf. example 5.

If x0 is a regular point of f, a pole, or an algebraic branch point, then
asympt returns a Puiseux expansion. In this case it is recommended to
use the faster function series instead.

A If asympt cannot compute an asymptotic expansion, then a symbolic ex-
pression of type "asympt" is returned. Cf. example 4.

A The number of requested terms for the expansion is order if specified.
Otherwise, the value of the environment variable ORDER is used. You can
change the default value 6 by assigning a new value to ORDER.

The number of terms is counted from the lowest degree term on for finite
expansion points, and from the highest degree term on for expansions
around infinity, i.e., “order” has to be regarded as a “relative truncation
order”.

The actual number of terms in the resulting series expansion may
differ from the requested number of terms. See series for details. !
A The function asympt returns an object of domain type Series::gseries

or Series::Puiseux. It can be manipulated via the standard arithmetic
operations and various system functions. For example, coeff returns the
coefficients; expr converts the series to an expression, removing the error
term; lmonomial returns the leading monomial; lterm returns the leading
term; lcoeff returns the leading coefficient; map applies a function to the
coefficients; nthcoeff returns the n-th coefficient, nthterm the n-th term,
and nthmonomial the n-th monomial.

199

Example 1. We compute an asymptotic expansion for x→∞:

>> s := asympt(sin(1/x + exp(-x)) - sin(1/x), x)

1 1 1 / 1 \
------ - ----------- + ------------ + O| --------- |
exp(x) 2 4 | 6 |

2 x exp(x) 24 x exp(x) \ x exp(x) /

The leading term and the third term are extracted:

>> lmonomial(s), nthterm(s, 3)

1 1
------, ---------
exp(x) 4

x exp(x)

In the following call, only 2 terms of the expansion are requested:

>> asympt(
exp(sin(1/x + exp(-exp(x)))) - exp(sin(1/x)), x, 2

)

1 1 / 1 \
----------- + ------------- + O| -------------- |
exp(exp(x)) x exp(exp(x)) | 2 |

\ x exp(exp(x)) /

>> delete s:

Example 2. We compute a expansion around a finite real point. By default,
the expansion is valid “to the right” of the expansion point:

>> asympt(abs(x/(1+x)), x = 0)

2 3 4 5 6 7
x - x + x - x + x - x + O(x)

A different expansion is valid “to the left” of the expansion point:

>> asympt(abs(x)/(1 + x), x = 0, Left)

2 3 4 5 6 7
- x + x - x + x - x + x + O(- x)

200

Example 3. The following expansion is exact. Therefore, it has no “error
term”:

>> asympt(exp(x+1/x), x = infinity)

/ 1 \
exp(x) exp| - |

\ x /

Example 4. Here is an example where asympt cannot compute an asymptotic
series expansion:

>> asympt(cos(x*s)/s, x = infinity)

/ cos(s x) \
asympt| --------, x = infinity |

\ s /

Example 5. If we apply the function series to the following expression, it
essentially returns the expression itself:

>> series((ln(ln(x)+ln(ln(x))) - ln(ln(x))) /
ln(ln(x)+ln(ln(ln(x))))*ln(x), x = infinity)

ln(x) (- ln(ln(x)) + ln(ln(x) + ln(ln(x)))) / 1 \
--- + O| -- |

ln(ln(x) + ln(ln(ln(x)))) | 6 |
\ x /

In this example, asympt computes a more detailed series expansion:

>> asympt((ln(ln(x)+ln(ln(x))) - ln(ln(x))) /
ln(ln(x)+ln(ln(ln(x))))*ln(x), x = infinity)

ln(ln(x)) ln(ln(ln(x))) / 1 \
1 - --------- - --------------- + O| ---------------- |

2 ln(x) ln(x) ln(ln(x)) | 5 |
\ ln(x) ln(ln(x)) /

Changes:

A asympt now may return an object of type Series::Puiseux.

201

bernoulli – the Bernoulli numbers and polynomials

bernoulli(n) returns the n-th Bernoulli number.

bernoulli(n, x) returns the n-th Bernoulli polynomial in x.

Call(s):

A bernoulli(n)

A bernoulli(n, x)

Parameters:
n — an arithmetical expression representing a nonnegative integer
x — an arithmetical expression

Return Value: an arithmetical expression.

Side Effects: When called with a floating point value x, the function is sensit-
ive to the environment variable DIGITS which determines the numerical working
precision.

Details:

A The Bernoulli polynomials are defined by the generating function

t ex t

et − 1
=

∞∑
n=0

bernoulli(n, x)
n!

tn .

A The Bernoulli numbers are defined by bernoulli(n) = bernoulli(n,0).

A An error occurs if n is a numerical value not representing a nonnegative
integer. If n contains non-numerical symbolic identifiers, then a symbolic
call bernoulli(n) is returned. Various simplifications of bernoulli(n,x)
are implemented for symbolic n and special numerical values of x. Cf. ex-
ample 3.

A Note that floating point evaluation for high degree polynomials may
be numerically unstable. Cf. example 4. !

202

Example 1. The first Bernoulli numbers are:

>> bernoulli(n) $ n = 0..11

1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66, 0

The first Bernoulli polynomials:

>> bernoulli(n, x) $ n = 0..4

2
2 x 3 x 3 2 3 4

1, x - 1/2, x - x + 1/6, - - ---- + x , x - 2 x + x - 1/30
2 2

If n is symbolic, then a symbolic call is returned:

>> bernoulli(n, x), bernoulli(n + 3/2, x), bernoulli(n + 5*I, x)

bernoulli(n, x), bernoulli(n + 3/2, x), bernoulli(n + 5 I, x)

An error occurs if n represents a numerical value that is not a nonnegative
integer:

>> bernoulli(sin(3), x)

Error: first argument must be symbolic or a nonnegative \
integer [bernoulli]

Example 2. If x is not an indeterminate, then the evaluation of the Bernoulli
polynomial at the point x is returned:

>> bernoulli(50, 1 + I)

132549963452557267373179389125/66 + 25 I

>> bernoulli(3, 1 - y), expand(bernoulli(3, 1 - y))

2 2
(1 - y) (3 - 3 y) (1 - y) (3 - 3 y) y 3 y y 3
------------------ - ----------------- - - + 1/2, ---- - - - y

3 2 2 2 2

203

Example 3. Certain simplifications occur for some special numerical value of
x, even if n is symbolic:

>> bernoulli(n, -2), bernoulli(n, -1/2), bernoulli(n, -1/6)

n n n - 1
(-1) bernoulli(n, 2) + n (-1) 2 ,

n 1 - n n n - 1
bernoulli(n) (-1) (2 - 1) + n (-1) (1/2) ,

n n n - 1
(-1) bernoulli(n, 1/6) + n (-1) (1/6)

>> bernoulli(n, 1/2), bernoulli(n, 2/3), bernoulli(n, 0.7)

1 - n n
bernoulli(n) (2 - 1), (-1) bernoulli(n, 1/3),

n
(-1) bernoulli(n, 0.3)

Example 4. Float evaluation of high degree polynomials may be numerically
unstable:

>> exact := bernoulli(50, 1 + I): float(exact);

2.00833278e27 + 25.0 I

>> bernoulli(50, float(1 + I))

2.00833278e27 + 437450444.9 I

>> DIGITS := 40: bernoulli(50, float(1 + I))

2008332779584201020805748320.075757575758 + 25.000000000000000\
00000435528380270361208 I

>> delete exact, DIGITS:

Background:

A Reference: M. Abramowitz and I. Stegun, “Handbook of Mathematical
Functions”, Dover Publications Inc., New York (1965).

204

besselI, besselJ, besselK, besselY – the Bessel functions

besselJ(v, z), besselI(v, z), besselY(v, z), and besselK(v, z) repres-
ent the Bessel functions:

Jv(z) =
(z/2)v

√
π Γ(v + 1/2)

∫ π

0
cos(z cos(t)) sin(t)2v dt,

Iv(z) =
(z/2)v

√
π Γ(v + 1/2)

∫ π

0
exp(z cos(t)) sin(t)2v dt,

Yv(z) =
Jv(z) cos(v π)− J−v(z)

sin(v π)
, Kv(z) =

π

2
I−v(z)− Iv(z)

sin(v π)

besselJ(v,z) and besselY(v,z) are the Bessel functions of the first and
second kinds, respectively; besselI(v,z) and besselK(v,z) are the corres-
ponding modified Bessel functions.

Call(s):

A besselI(v, z)

A besselJ(v, z)

A besselK(v, z)

A besselY(v, z)

Parameters:

v, z — arithmetical expressions

Return Value: an arithmetical expression.

Overloadable by: z

Side Effects: When called with floating point arguments, these functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Details:

A The Bessel functions are defined for complex arguments v and z.

205

A A floating point value is returned if either of the arguments is a floating
point number and the other argument is numerical. For most exact argu-
ments the Bessel functions return an unevaluated function call. Special
values at index v = 0 and/or argument z = 0 are implemented. Explicit
symbolic expressions are returned, when the index v is a half integer. Cf.
example 2.

A For nonnegative integer indices v some of the Bessel functions have a
branch cut along the negative real axis. A jump occurs when crossing
this cut. Cf. example 3.

A If floating point approximations are desired for arguments that are exact
numerical expressions, then we recommend to use besselJ(v, float(x))
rather than float(besselJ(v, x)). In particular, for half integer indices
the symbolic result besselJ(v,x) is costly to compute. Further, floating
point evaluation of the resulting symbolic expression may be numerically
unstable. Cf. example 4.

Example 1. Unevaluated calls are returned for exact or symbolic arguments:

>> besselJ(2, 1 + I), besselK(0, x), besselY(v, x)

besselJ(2, 1 + I), besselK(0, x), besselY(v, x)

Floating point values are returned for floating point arguments:

>> besselI(2, 5.0), besselK(3.2 + I, 10000.0)

17.50561497, 1.423757712e-4345 + 4.555796986e-4349 I

Example 2. Bessel functions can be expressed in terms of elementary functions
if the index is an odd integer multiple of 1/2:

>> besselJ(1/2, x), besselY(3/2, x)

1/2 / cos(x) \
1/2 2 | - sin(x) - ------ |

sin(x) 2 \ x /
-----------, --------------------------
1/2 1/2 1/2 1/2
x PI x PI

>> besselI(7/2, x), besselK(-7/2, x)

206

1/2 / / 15 \ / 6 15 \ \
2 | cosh(x) | -- + 1 | - sinh(x) | - + -- | |

| | 2 | | x 3 | |
\ \ x / \ x / /

--,
1/2 1/2
x PI

1/2 1/2 / 6 15 15 \
PI 2 exp(-x) | - + -- + -- + 1 |

| x 2 3 |
\ x x /

1/2

2 x

Example 3. The negative real axis is a branch cut of the Bessel functions for
non-integer indices v. A jump occurs when crossing this cut:

>> besselI(-3/4, -1.2), besselI(-3/4, -1.2 + I/10^10),
besselI(-3/4, -1.2 - I/10^10)

- 0.76061492 - 0.76061492 I, - 0.76061492 - 0.7606149199 I,

- 0.76061492 + 0.7606149199 I

Example 4. The symbolic expressions returned by Bessel functions with half
integer indices may be unsuitable for floating point evaluation:

>> y := besselJ(51/2, PI)

/ 1/2 / 450675225 52650 1466947857375 \ \
| 2 | --------- - ----- - ------------- + ... + 1 | | / PI
| | 4 2 6 | |
\ \ PI PI PI / /

Floating point evaluation of this exact result is subject to numerical cancella-
tion. The following result is dominated by round-off:

>> float(y)

8.862488737

The numerical working precision has to be increased to obtain a more accurate
result:

207

>> DIGITS:= 39: float(y)

0.00000000000000000000116013005751977784273169237677941647977

Direct floating point evaluation via the Bessel function yields a correct result
within working precision:

>> DIGITS := 5: besselJ(51/2, float(PI))

1.1601e-21

>> delete y, DIGITS:

Example 5. The functions diff, float, limit, and series handle expres-
sions involving the Bessel functions:

>> diff(besselJ(0, x), x, x), float(ln(3 + besselI(17, sqrt(PI))))

besselJ(1, x)
------------- - besselJ(0, x), 1.098612289

x

>> limit(besselJ(2, x^2 + 1)*sqrt(x), x = infinity)

0

>> series(besselY(3, x)/x, x = infinity, 3)

1/2 / 7 PI \ 1/2 / 7 PI \
2 sin| x - ---- | 35 2 cos| x - ---- |

\ 4 / \ 4 /
-------------------- + ----------------------- -

3/2 1/2 5/2 1/2
x PI 8 x PI

1/2 / 7 PI \
945 2 sin| x - ---- |

\ 4 / / 1 \
------------------------ + O| ---- |

7/2 1/2 | 9/2 |
128 x PI \ x /

208

Background:

A The Bessel functions are regular (holomorphic) functions of z throughout
the z-plane cut along the negative real axis, and for fixed z 6= 0, each is
an entire (integral) function of v.

A Jv(z) and Yv(z) satisfy Bessel’s equation in w(v, z):

z2 d
2w

dz2
+ z

dw

dz
+ (z2 − v2)w = 0.

Correspondingly, Iv(z) and Kv(z) satisfy the modified Bessel equation:

z2 d
2w

dz2
+ z

dw

dz
− (z2 + v2)w = 0.

A When the index v is an integer, the Bessel functions are governed by
reflection formulas:

I−v(z) = Iv(z), J−v(z) = (−1)vJv(z),

K−v(z) = Kv(z), Y−v(z) = (−1)vYv(z).

beta – the beta function

beta(x, y) represents the beta function Γ(x) Γ(y)/Γ(x+ y).

Call(s):

A beta(x, y)

Parameters:

x, y — arithmetical expressions or floating point intervals

Return Value: an arithmetical expression or a floating point interval.

Overloadable by: x

Side Effects: When called with floating point arguments, the function is sens-
itive to the environment variable DIGITS which determines the numerical work-
ing precision.

Related Functions: binomial, fact, gamma, psi

209

Details:

A The beta function is defined for complex arguments x and y.

A The result is expressed by calls to the gamma function if both arguments
are of type Type::Numeric. Note that the beta function may have a
regular value, even if Γ(x) or Γ(y) and Γ(x + y) are singular. In such
cases beta returns the limit of the quotients of the singular terms.

A A floating point value is returned if both arguments are numerical and at
least one of them is a floating point value.

A An unevaluated call of beta is returned, if none of the arguments vanishes
and at least one of the arguments does not evaluate to a number of type
Type::Numeric.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> beta(1, 5), beta(I, 3/2), beta(1, y + 1), beta(x, y)

1/2
PI gamma(I) 1

1/5, ----------------, -----, beta(x, y)
2 gamma(3/2 + I) y + 1

Floating point values are computed for floating point arguments:

>> beta(3.5, sqrt(2)), beta(sqrt(2), 2.0 + 10.0*I)

0.1395855454, - 0.01112350756 - 0.03108193098 I

Example 2. The gamma function is singular if its argument is a nonpositive
integer. Nevertheless, beta has a regular value for the following arguments:

>> beta(-3, 2)

1/6

Example 3. The functions diff, expand and float handle expressions in-
volving beta:

>> diff(beta(x^2, x), x)

2 2 2
beta(x, x) (psi(x) + 2 x psi(x) - psi(x + x) (2 x + 1))

210

>> expand(beta(x - 1, y + 1))

y gamma(x) gamma(y)

gamma(x + y) (x - 1)

>> float(beta(100, 1000))

7.730325902e-147

Example 4. The functions diff and series can handle beta:

>> diff(beta(x, y), x);
diff(beta(x, y), y);

beta(x, y) (psi(x) - psi(x + y))

beta(x, y) (psi(y) - psi(x + y))

>> normal(series(beta(x, y), y = 0, 3))

/ 2
1 | psi(x, 1) PI
- - (EULER + psi(x)) + y | EULER psi(x) - --------- + --- +
y \ 2 12

2 2 \
EULER psi(x) | 2
------ + ------- | + O(y)

2 2 /

>> series(beta(x, x), x = infinity, 4)

1/2 1/2 1/2
2 PI PI PI / 1 \
--------- + ----------- + ------------ + O| --------- |
1/2 2 x 3/2 2 x 5/2 2 x | 7/2 2 x |
x 2 4 x 2 64 x 2 \ x 2 /

Changes:

A Series expansions can now be computed via series.

A The function rewrite can now express beta in terms of gamma or fact.

211

binomial – binomial coefficients

binomial(n, k) represents the binomial coefficient
(
n

k

)
=

n!
k! (n− k)!

.

Call(s):

A binomial(n, k)

Parameters:

n, k — arithmetical expressions

Return Value: an arithmetical expression.

Side Effects: When called with floating point arguments, the function is sens-
itive to the environment variable DIGITS which determines the numerical work-
ing precision.

Related Functions: beta, fact, gamma, psi

Details:

A Binomial coefficients are defined for complex arguments via the gamma
function: (

n

k

)
=

Γ(n+ 1)
Γ(k + 1)Γ(n− k + 1)

.

With Γ(n+1) = n!, this coincides with the usual binomial coefficients for
integer arguments satisfying 0 ≤ k ≤ n.

A A symbolic function call is returned if one of the arguments cannot be
evaluated to a number of type Type::Numeric. However, for k = 0,
k = 1, k = n− 1, and k = n, simplified results are returned for any n.

A Let n be a number of type Type::Numerical. If k evaluates to a non-
negative integer, then n × (n − 1) × · · · × (n − k + 1)/k! is returned. If
k evaluates to a negative integer, then 0 is returned. If k evaluates to a
floating point number, then a floating point value is returned. In all other
cases, a symbolic call of binomial is returned.

A A floating point value is returned if both arguments are numerical and at
least one of them is a floating point value.

212

Example 1. We demonstrate some calls with exact and symbolic input data:

>> binomial(10, k) $ k=-2..12

0, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 0

>> binomial(-23/12, 3), binomial(1 + I, 3)

-37835/10368, -1/3 I

>> binomial(n, k), binomial(n, 1), binomial(n, 4)

binomial(n, k), n, binomial(n, 4)

Floating point values are computed for floating point arguments:

>> binomial(-235/123, 3.0), binomial(3.0, 1 + I)

-3.624343742, 4.411293492 + 2.205646746 I

Example 2. The expand function handles expressions involving binomial:

>> binomial(n, 3) = expand(binomial(n, 3))

2 3
n n n

binomial(n, 3) = - - -- + --
3 2 6

>> binomial(2, k) = expand(binomial(2, k))

2 sin(k PI)
binomial(2, k) = --------------------

k PI (1 - k) (2 - k)

The float attribute handles binomial if all arguments can be converted to
floating point numbers:

>> binomial(sin(3), 5/4), float(binomial(sin(3), 5/4))

binomial(sin(3), 5/4), -0.08360571366

213

Example 3. The functions diff and series can handle binomial:

>> diff(binomial(n, k), n);
diff(binomial(n, k), k);

binomial(n, k) (psi(n + 1) - psi(n - k + 1))

binomial(n, k) (psi(n - k + 1) - psi(k + 1))

>> normal(series(binomial(n, k), k = 0, 3))

2
1 + k (EULER + psi(n + 1)) + k

/ 2 2
| PI EULER psi(n + 1, 1)
| - --- + ------ + EULER psi(n + 1) - ------------- +
\ 12 2 2

2 \
psi(n + 1) | 3
----------- | + O(k)

2 /

>> series(binomial(2*n, n), n = infinity, 4)

2 n 2 n 2 n / 2 n \
2 2 2 | 2 |

---------- - ------------ + -------------- + O| ---- |
1/2 1/2 3/2 1/2 5/2 1/2 | 7/2 |
n PI 8 n PI 128 n PI \ n /

Changes:

A The functions diff and series were overloaded for binomial.

bool – Boolean evaluation

bool(b) evaluates the Boolean expression b.

Call(s):

A bool(b)

214

Parameters:

b — a Boolean expression

Return Value: TRUE, FALSE, or UNKNOWN.

Overloadable by: b

Related Functions: _lazy_and, _lazy_or, FALSE, if, is, repeat, TRUE,
UNKNOWN, while

Details:

A The function bool serves for reducing Boolean expressions to one of the
Boolean constants TRUE, FALSE, or UNKNOWN.

Boolean expressions are expressions that are composed of equalities, in-
equalities, elementhood relations, and these constants, combined via the
logical operators and, or, not.

The function bool evaluates all equalities and inequalities inside a Boolean
expression to either TRUE or FALSE. The resulting logical combination of
the Boolean constants is reduced according to the rules of MuPAD’s three
state logic (see and, or, not).

A Equations x = y and inequalities x <> y are evaluated syntactically
by bool. It does not test equality in any mathematical sense. !
A Inequalities x < y, x <= y etc. can be evaluated by bool if and

only if x and y are real numbers of type Type::Real. Otherwise,
an error occurs.

!

A bool evaluates all subexpressions of a Boolean expression before simplify-
ing the result. The functions _lazy_and, _lazy_or provide an alternative:
“lazy Boolean evaluation”.

A There is no need to use bool in the conditional part of if, repeat, and
while statements. Internally, these statements enforce Boolean evaluation
by _lazy_and and _lazy_or. Cf. example 5.

A Use simplify with the option logic to simplify expressions involving
symbolic Boolean subexpressions. Cf. example 7.

A bool is overloadable not only for domains, but also for function environ-
ments. This means that, if f evaluates to a function environment, then
bool(f(x1, ..., xn)) returns f::bool(x1, ..., xn), or an error if no
slot f::bool exists.

A bool is a function of the system kernel.

215

Example 1. MuPAD realizes that 1 is less than 2:

>> 1 < 2 = bool(1 < 2)

(1 < 2) = TRUE

Note that bool can only compare real numbers of syntactical type Type::Real:

>> bool(PI < 2 + sqrt(2))

Error: Can’t evaluate to boolean [_less]

One can compare floating point approximations. Alternatively, one can use is:

>> bool(float(PI) < float(2 + sqrt(2))), is(PI < 2 + sqrt(2))

TRUE, TRUE

Example 2. The Boolean operators and, or, not do not evaluate equations
and inequalities logically, and return a symbolic Boolean expression. Boolean
evaluation and simplification is enforced by bool:

>> a = a and 3 < 4

a = a and 3 < 4

>> bool(a = a and 3 < 4)

TRUE

Example 3. bool handles the special Boolean constant UNKNOWN:

>> bool(UNKNOWN and 1 < 2), bool(UNKNOWN or 1 < 2),
bool(UNKNOWN and 1 > 2), bool(UNKNOWN or 1 > 2)

UNKNOWN, TRUE, FALSE, UNKNOWN

Example 4. bool must be able to reduce all parts of a composite Boolean
expression to one of the Boolean constants. No symbolic Boolean subexpressions
may be involved:

>> b := b1 and b2 or b3: bool(b)

Error: Can’t evaluate to boolean [bool]

>> b1 := 1 < 2: b2 := x = x: b3 := FALSE: bool(b)

TRUE

>> delete b, b1, b2, b3:

216

Example 5. There is no need to use bool explicitly in the conditional parts of
if, repeat, and while statements. Note, however, that these structures intern-
ally use “lazy evaluation” via _lazy_and and _lazy_or rather than “complete
Boolean evaluation” via bool:

>> x := 0: if x <> 0 and sin(1/x) = 0 then 1 else 2 end

2

In contrast to “lazy evaluation”, bool evaluates all conditions. Consequently, a
division by zero occurs in the evaluation of sin(1/x) = 0:

>> bool(x <> 0 and sin(1/x) = 0)

Error: Division by zero

>> delete x:

Example 6. Note that bool does not operate recursively. The following calls
are completely different, the first one comparing the expression TRUE = TRUE
and the constant TRUE (syntactically), the second one comparing the result of
another bool-call with TRUE:

>> bool((TRUE = TRUE) = TRUE);
bool(bool(TRUE = TRUE) = TRUE)

FALSE

TRUE

Since if, while and similar constructs use the same Boolean evaluation intern-
ally, this also effects conditions in such clauses:

>> if (is(a < b) = TRUE) or (3 = 3) then YES else NO end;
if (is(a < b) or (3 = 3)) = TRUE then YES else NO end

YES

NO

Example 7. Expressions involving symbolic Boolean subexpressions cannot
be processed by bool. However, simplify with the option logic can be used
for simplification:

>> (b1 and b2) or (b1 and (not b2)) and (1 < 2)

b1 and b2 or b1 and not b2 and 1 < 2

>> simplify(%, logic)

b1

217

Changes:

A bool is now also overloadable by function environments.

break – terminate a loop or a case switch prematurely

break terminates for, repeat, while loops, and case statements.

Call(s):

A break

A _break()

Related Functions: case, for, next, quit, repeat, return, while

Details:

A The break statement is equivalent to the function call _break(). The
return value is the void object of type DOM_NULL.

A Inside for, repeat, while, and case statements, the break statement
exits from the loop/switch. Execution proceeds with the next statement
after the end clause of the loop/switch.

A In nested loops, only the innermost loop is terminated by break.

A break also terminates a statement sequence _stmtseq(..., break, ...).

A Outside for, repeat, while, case, and _stmtseq, the break statement
has no effect.

A _break is a function of the system kernel.

Example 1. Loops are exited prematurely by break:

>> for i from 1 to 10 do
print(i);
if i = 2 then break end_if

end_for

1

2

>> delete i:

218

Example 2. In a case statement, all commands starting with the first match-
ing branch are executed:

>> x := 2:
case x
of 1 do print(1); x^2;
of 2 do print(2); x^2;
of 3 do print(3); x^2;
otherwise print(UNKNOWN)
end_case:

2

3

UNKNOWN

In the next version, break ensures that only the statements in the matching
branch are evaluated:

>> case x
of 1 do print(1); x^2; break;
of 2 do print(2); x^2; break;
of 3 do print(3); x^2; break;
otherwise print(UNKNOWN)
end_case:

2

>> delete x:

builtin – representatives of C-functions of the MuPAD kernel

builtin represents a C-function of the system kernel.

Call(s):

A builtin(i, j, str, tbl)

A builtin(i, j1, str1, str)

219

Parameters:
i — a number corresponding to a C-function of the kernel: a

nonnegative integer
j — a number corresponding to a C-function of the kernel: a

nonnegative integer or NIL
str — the name of the created DOM_EXEC object: a character string
tbl — the remember table of the function: a table or NIL
j1 — the precedence of an operator: a nonnegative integer
str1 — the operator symbol: a character string or NIL

Return Value: an object of type DOM_EXEC.

Related Functions: funcenv

Details:

A builtin is only intended for internal use! A user is not supposed
to call this low-level function. !
A The function builtin provides an interface between the MuPAD language

and the C-functions of the MuPAD kernel. The MuPAD functions returned
by builtin are elements of the basic type DOM_EXEC. They may only
be used as first or second entry of function environments created by
funcenv.

A Functions used as the first argument in funcenv serve for evaluating func-
tion calls of the function environment. A kernel function serving this
purpose must be produced by a call builtin(i, j, str, tbl). The
string str is used for the ouput of symbolic calls of the kernel function.
The table tbl is the remember table. Cf. example 2. If NIL is used, no
remember table is associated with the function.

A Functions used as the second argument in funcenv determine the output
of symbolic function calls. A kernel function serving this purpose must
be produced by a call builtin(i, j1, str1, str). The number j1
defines the output priority of the function. If symbolic function calls
are to be presented in operator notation, the string str1 is used as the
operator symbol. Cf. example 3. NIL must be used if the function does
not represent an operator. The string str is used for the output of the
DOM_EXEC object itself.

A builtin is a function of the system kernel.

Example 1. The operands of a function environment such as _mult can be
viewed by expose. The following two kernel functions are in charge of evaluating
products and displaying the result on the screen, respectively:

>> expose(op(_mult, 1)), expose(op(_mult, 2))

220

builtin(815, NIL, "_mult", NIL),

builtin(1100, 1100, "*", "_mult")

>> _mult(a, b) = builtin(815, NIL, "_mult", NIL)(a, b)

a b = a b

Example 2. We demonstrate that it is possible to manipulate the remember
table of kernel functions. The function environment isprime uses a C-function
of the kernel to evaluate its argument:

>> expose(isprime)

builtin(1000, 1305, "isprime", NIL)

It does not regard 1 as a prime number:

>> isprime(1)

FALSE

We unprotect the system function and associate the value TRUE with the call
isprime(1):

>> unprotect(isprime): isprime(1) := TRUE:

The value is stored in the remember table. This is the fourth entry of the builtin
function evaluating the arguments of isprime:

>> expose(isprime)

/ table(\
builtin| 1000, 1305, "isprime", 1 = TRUE |

\) /

After this modification, isprime regards 1 as a prime number:

>> isprime(1)

TRUE

We restore the original behavior of isprime by substituting the original value
NIL of the remember table:

>> isprime := subsop(isprime, [1, 4] = NIL): protect(isprime):

>> isprime(1)

FALSE

221

Example 3. We demonstrate how the output symbol of the kernel function
_power can be changed. This function is in charge of representing powers:

>> op(a^b, 0), _power(a, b)

b
_power, a

The second operand of the function environment _power is the builtin function
that determines the output:

>> expose(op(_power,2))

builtin(1100, 1200, "^", "_power")

The third operand of this object is the symbol that is used for representing
symbolic powers. We want to replace it by **. However, since the system
function _power is protected, we have to apply unprotect before we can modify
the function environment:

>> unprotect(_power): _power := subsop(_power, [2, 3] = "**"):

>> expose(op(_power,2)), a^b

builtin(1100, 1200, "**", "_power"), a**b

We restore the original behavior of _power:

>> _power := subsop(_power, [2, 3] = "^"): protect(_power):

bytes – the memory used by the current MuPAD session

bytes() returns the current memory consumption.

Call(s):

A bytes()

Return Value: a sequence of three integers.

Related Functions: rtime, share, time

222

Details:

A bytes returns the following three numbers:

• The number of bytes used logically; this is the amount of memory
which is actually used for storing MuPAD data.

• The number of bytes physically allocated by the memory manage-
ment; this is the amount of memory MuPAD has allocated from the
operating system. The difference between the physical and the lo-
gical bytes is the amount of memory which has already been reserved
for future calculations.

• On computers with a virtual memory, the third number is the con-
stant 231−1. On other computers such as the Apple Macintosh, the
remaining free space (on the program heap) is returned.

A bytes is a function of the system kernel.

Example 1. In a freshly started MuPAD session, bytes may return the fol-
lowing data on the memory consumption of the session:

>> bytes()

506584, 717312, 2147483647

Each computation increases the memory usage:

>> int(x, x): bytes()

2040956, 2201624, 2147483647

card – the cardinality of a set

card(set) returns the cardinality of set.

Call(s):

A card(set)

A card(d)

Parameters:
set — a set of type DOM_SET, or a set-theoretic expression
d — a domain representing a set

223

Overloadable by: set, d

Return Value: a nonnegative integer, or infinity.

Related Functions: nops

Details:

A If set is a DOM_SET, the number of operands is returned; card does not at-
tempt to investigate whether the members of set really represent pairwise
different mathematical objects.

A card does not distinguish different infinite cardinals; it just returns infinity
if set is infinite.

A card returns a symbolic call to itself if it cannot determine the cardinality.

A If applied to a domain d, card returns the domain entry d::size. A
domain that does not have this entry is not regarded as a set.

Example 1. The cardinality of a finite set equals the number of its operands:

>> card({1, 2, 3})

3

This holds true even if there exist two operands of the set that represent the
same mathematical object:

>> card({1, 1.0})

2

Example 2. card does not distinguish different sizes of infinite sets:

>> card(R_), card(Z_)

infinity, infinity

Example 3. Set–theoretic expressions containing symbols are legal input, but
usually card will not be able to determine their cardinality:

>> card(S union {3})

card({3} union S)

224

Example 4. Domains that have a "size" entry are regarded as sets:

>> card(Dom::IntegerMod(7))

7

Changes:

A card is a new function.

case – switch statement

case-end_case statement allows to switch between various branches in a pro-
gram.

Call(s):

A case x
of match1 do statements1
of match2 do statements2
...
<otherwise otherstatements>

end_case

A _case(x, match1, statements1, match2, statements2, ...
<, otherstatements>)

Parameters:
x, match1, match2, ... — arbitrary MuPAD objects
statements1, ..., otherstatements — arbitrary sequences of

statements

Return Value: the result of the last command executed inside the case state-
ment. The void object of type DOM_NULL is returned if no matching branch was
found and no otherwise branch exists. NIL is returned if a matching branch
was encountered, but no command was executed inside this branch.

Related Functions: break, if, return

Details:

A The case statement is a control structure that extends the functionality
of the if statement. In a case statement, an object is compared with a
number of given values and one or more statement sequences are executed.

225

A If the value of x equals one of the values match1, match2 etc., the first
matching branch and all its following branches (including otherwise)
are executed, until the execution is terminated by a break or a return
statement, or the end_case.

A If the value of x does not equal any of the values match1, match2, ...,
only the otherwise branch is executed. If no otherwise branch ex-
ists, the case statement terminates and returns the void object of type
DOM_NULL.

A The keyword end_case may be replaced by the keyword end.

A _case is a function of the system kernel.

Example 1. All statements after the first match are executed:

>> x := 2:
case x
of 1 do print(1)
of 2 do print(4)
of 3 do print(9)
otherwise print("otherwise")

end_case:

4

9

"otherwise"

break may be used to ensure that only one matching branch is executed:

>> case x
of 1 do print(1); 1; break
of 2 do print(4); 4; break
of 3 do print(9); 9; break
otherwise print("otherwise")

end_case:

4

>> delete x:

Example 2. The functionality of the case statement allows to share code that
is to be used in several branches. The following function uses the statement
print(x, "is a real number") for the three branches that correspond to real
MuPAD numbers:

226

>> isReal := proc(x)
begin

case domtype(x)
of DOM_INT do
of DOM_RAT do
of DOM_FLOAT do print(x, "is a real number"); break
of DOM_COMPLEX do print(x, "is not a real number"); break
otherwise print(x, "cannot decide");

end_case
end_proc:
isReal(3), isReal(3/7), isReal(1.23), isReal(3 + I), isReal(z)

3, "is a real number"

3/7, "is a real number"

1.23, "is a real number"

3 + I, "is not a real number"

z, "cannot decide"

>> delete isReal:

Example 3. The correspondence between the functional and the imperative
form of the case statement is demonstrated:

>> hold(_case(x, match1, (1; break), match2, (4; break),
print("otherwise")))

case x
of match1 do
1;
break

of match2 do
4;
break
otherwise
print("otherwise")

end_case

>> hold(_case(x, match1, (1; break), match2, (4; break)))

case x
of match1 do
1;

227

break
of match2 do
4;
break

end_case

Background:

A The functionality of the case statement corresponds to the switch state-
ment of the C programming language.

ceil, floor, round, trunc – rounding to an integer

ceil rounds a number to the next larger integer.

floor rounds a number to the next smaller integer.

round rounds a number to the nearest integer.

trunc rounds a number to the next integer in the direction of 0.

Call(s):

A ceil(x)

A floor(x)

A round(x)

A trunc(x)

Parameters:

x — an arithmetical expression or a floating point interval

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: The functions are sensitive to the environment variable DIGITS
which determines the numerical working precision.

Related Functions: frac

228

Details:

A For complex arguments, rounding is applied separately to the real and
the imaginary parts.

A Integers are returned for real numbers, floating point intervals and exact
expressions representing real numbers. Unevaluated function calls are
returned for arguments that contain symbolic identifiers.

A If you think of x as a floating point number, then trunc(x) truncates
the digits after the decimal point. Thus, trunc coincides with floor
for real positive arguments and with ceil for real negative arguments,
respectively.

A If the argument is a floating point number of absolute value lar-
ger than 10 DIGITS, the resulting integer is affected by internal non-
significant digits! Cf. example 2.

!

A Internally, exact numerical expressions that are neither integers
nor rational numbers are approximated by floating point numbers
before rounding. Thus, the resulting integer may depend on the
present value of DIGITS! Cf. example 3.

!

A For floating point intervals, ceil and floor return the smallest (largest)
integer larger (smaller) than all numbers in the interval. As for intervals
with infinite borders, see example 4. trunc returns 0 for intervals contain-
ing 0, otherwise it behaves as described above for floating point values.
round, when applied to a floating point interval, gives the integer closest
to the midpoint of the interval. Again, see example 4 for the behavior
concerning infinities.

Example 1. We demonstrate the rounding of real and complex numbers:

>> ceil(3.5), floor(3.5), round(3.5), trunc(3.5)

4, 3, 4, 3

>> ceil(-7/2), floor(-7/2), round(-7/2), trunc(-7/2)

-3, -4, -3, -3

>> ceil(3 + 5/2*I), floor(4.3 + 7*I), round(I/2), trunc(I/2)

3 + 3 I, 4 + 7 I, I, 0

Also symbolic expressions representing numbers can be rounded:

>> x := PI*I + 7*sin(exp(2)): ceil(x), floor(x), round(x), trunc(x)

229

7 + 4 I, 6 + 3 I, 6 + 3 I, 6 + 3 I

Rounding of expressions with symbolic identifiers produces unevaluated func-
tion calls:

>> delete x: ceil(x), floor(x - 1), round(x + 1), trunc(x^2 + 3)

2
ceil(x), floor(x - 1), round(x + 1), trunc(x + 3)

Example 2. Care should be taken when rounding floating point numbers of
large absolute value:

>> x := 10^30/3.0

3.333333333e29

Note that only the first 10 decimal digits are “significant”. Further digits are
subject to round-off effects caused by the internal binary representation. These
“insignificant” digits are part of the integer produced by rounding:

>> floor(x), ceil(x)

333333333333333333307205615616, 333333333333333333307205615616

>> delete x:

Example 3. Exact numerical expressions are internally converted to floating
point numbers before rounding. Consequently, the present setting of DIGITS
can affect the result:

>> x := 10^30 - exp(30)^ln(10)

ln(10)
1000000000000000000000000000000 - exp(30)

Note that the exact value of this number is 0. Floating point evaluation is
subject to severe cancellations:

>> DIGITS := 10: float(x), floor(x), ceil(x)

1.030792151e13, 10307921510400, 10307921510400

The floating point result is more accurate when a higher precision is used. The
rounded values change accordingly:

>> DIGITS := 20: float(x), floor(x), ceil(x)

230

2896.0, 2896, 2896

>> DIGITS := 30: float(x), floor(x), ceil(x)

0.00000087916851043701171875, 0, 1

>> delete x, DIGITS:

Example 4. On floating point intervals, ceil and floor behave as expected:

>> ceil(3.5...6.7); floor(3.5...6.7)

7

3

Because there are finite numbers represented as RD_INF and RD_NINF, respect-
ively, ceil and floor return very small or large representable integer in certain
cases:

>> x := ceil(RD_NINF...RD_NINF):
domtype(x);
log(10, float(abs(x)))

DOM_INT

631266.8246

This may take quite some while (because the corresponding 630 000-digit integer
must be constructed first) and output of this large integer would take even
longer.

trunc behaves almost identical to its behavior on floats: For intervals not
containing zero it is, depending on the sign, equivalent to floor or ceil; for
intervals containing zero, it returns 0:

>> trunc(-3.5...-2.7), trunc(-2.4...1.9), trunc(4.5...infinity)

-2, 0, 4

round returns the integer closest to the midpoint of the interval:

>> round(-3.5...-2.7), round(-2.4...1.9), round(4.5...infinity)

-3, 0, infinity

231

Changes:

A Floating point intervals are now handled.

coeff – the coefficients of a polynomial

coeff(p) returns a sequence of all nonzero coefficients of the polynomial p.

coeff(p, x, n) regards p as a univariate polynomial in x and returns the
coefficient of the term x^n.

Call(s):

A coeff(p)

A coeff(p, <x,> n)

A coeff(f <, vars>)

A coeff(f, <vars,> <x,> n)

Parameters:
p — a polynomial of type DOM_POLY
x — an indeterminate
n — the power: a nonnegative integer
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers

Return Value: one or more coefficients of the coefficient ring of the polyno-
mial, or a polynomial, or FAIL.

Overloadable by: p, f

Related Functions: collect, content, degree, degreevec, ground,
icontent, lcoeff, ldegree, lmonomial, lterm, nterms, nthcoeff,
nthmonomial, nthterm, poly, poly2list, tcoeff

Details:

A If the first argument f is not element of a polynomial domain, then coeff
converts the expression internally to a polynomial of type DOM_POLY via
poly(f). If a list of indeterminates is specified, the polynomial poly(f,
vars) is considered.

Coefficients of polynomial expressions f are returned as arithmetical ex-
pressions.

232

A There are various ways to call coeff with a polynomial p of type DOM_POLY:

• coeff(p) returns a sequence of all nonzero coefficients of p. They
are ordered according to the lexicographical term ordering.

The returned coefficients are elements of the coefficient ring of p.

• coeff(p, x, n) regards p as a univariate polynomial in the variable
x and returns the coefficient of the term x^n.

For univariate polynomials, the returned coefficients are elements of
the coefficient ring of p.

For multivariate polynomials, the coefficients are returned as poly-
nomials of type DOM_POLY in the “remaining” variables.

• coeff(p, n) is equivalent to coeff(p, x, n), where x is the“main
variable” of p. This variable is the first element of the list of inde-
terminates op(p, 2).

A coeff returns 0 or a zero polynomial if the polynomial does not contain a
term corresponding to the specified power n. In particular, this happens
if n is larger than the degree of the polynomial.

A coeff returns FAIL if an expression cannot be regarded as a polynomial.

A The result of coeff is not fully evaluated. Evaluation can be enforced by
the function eval. Cf. example 5.

A coeff is a function of the system kernel.

Example 1. coeff(f) returns a sequence of all nonzero coefficients:

>> f := 10*x^10 + 5*x^5 + 2*x^2: coeff(f)

10, 5, 2

coeff(f, i) returns a single coefficient:

>> coeff(f, i) $ i = 0..15

0, 0, 2, 0, 0, 5, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0

>> delete f:

233

Example 2. We demonstrate how the indeterminates influence the result:

>> f := 3*x^3 + x^2*y^2 + 17*x + 23*y + 2

3 2 2
17 x + 23 y + 3 x + x y + 2

>> coeff(f); coeff(f, [x, y]); coeff(f, [y, x])

1, 23, 3, 17, 2

3, 1, 17, 23, 2

1, 23, 3, 17, 2

>> delete f:

Example 3. The coefficients of f are selected with respect to the main variable
x which is the first entry of the list of indeterminates:

>> f := 3*x^3 + x^2*y^2 + 2: coeff(f, [x, y], i) $ i = 0..3

2
2, 0, y , 3

The coefficients of f can be selected with respect to another main variable (in
this case, y):

>> coeff(f, [y, x], i) $ i = 0..2

3 2
3 x + 2, 0, x

Alternatively:

>> coeff(f, y, i) $ i = 0..2

3 2
3 x + 2, 0, x

>> delete f:

234

Example 4. In the same way, coeff may be applied to polynomials of type
DOM_POLY:

>> p := poly(3*x^3 + x, [x], Dom::IntegerMod(7)):
coeff(p)

3 mod 7, 1 mod 7

>> coeff(p, i) $ i = 0..3

0 mod 7, 1 mod 7, 0 mod 7, 3 mod 7

For multivariate polynomials, the coefficients with respect to an indeterminate
are polynomials in the other indeterminates:

>> p := poly(3*x^3 + x^2*y^2 + 2, [x, y]):

>> coeff(p, y, 0), coeff(p, y, 1), coeff(p, y, 2);

3 2
poly(3 x + 2, [x]), poly(0, [x]), poly(x , [x])

>> coeff(p, x, 0), coeff(p, x, 1), coeff(p, x, 2)

2
poly(2, [y]), poly(0, [y]), poly(y , [y])

Note that the indeterminates passed to coeff will be used, even if the polyno-
mial provides different indeterminates :

>> coeff(p, z, 0), coeff(p, z, 1), coeff(p, z, 2)

3 2 2
poly(3 x + x y + 2, [x, y]), poly(0, [x, y]),

poly(0, [x, y])

>> delete p:

Example 5. The result of coeff is not fully evaluated:

>> p := poly(27*x^2 + a*x, [x]): a := 5:
coeff(p, x, 1), eval(coeff(p, x, 1))

a, 5

>> delete p, a:

coerce – type conversion

coerce(object, T) tries to convert object into an element of the domain T.

235

Call(s):

A coerce(object, T)

Parameters:
object — any object
T — any domain

Return Value: an object of the domain T, or the value FAIL.

Overloadable by: T

Related Functions: domtype, expr, testtype, type

Details:

A coerce(object, T) tries to convert object to an element of the domain
T. If this is not possible or not implemented, then FAIL is returned.

A Domains usually implement the two methods "convert" and "convert_to"
for conversion tasks.

coerce uses these methods in the following way: It first calls T::convert(object)
to perform the conversion. If this call yields FAIL, then the result of
the call object::dom::convert_to(object, T) is returned, which again
may be the value FAIL.

A To find out the possible conversions for the object or which conversions
are provided by the domain T, please read the description of the method
"coerce" or "convert", respectively, that can be found on the help page
of the domain T, and the description of the method "convert_to" on the
help page of the domain of object.

A Only few basic domains currently implement the methods "convert" and
"convert_to", but this will be extended in future versions of MuPAD.

A Use the function expr to convert an object into an element of a basic
domain.

A Note that often a conversion can also be achieved by a call of the con-
structor of the domain T. See example 3.

Example 1. We start with the conversion of an array into a list of domain
type DOM_LIST:

>> a := array(1..2, 1..3, [[1, 2, 3], [4, 5, 6]])

236

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
+- -+

>> coerce(a, DOM_LIST)

[1, 2, 3, 4, 5, 6]

The conversion of an array into a polynomial is not implemented, and thus
coerce returns FAIL:

>> coerce(a, DOM_POLY)

FAIL

One can convert a one- or two-dimensional array into a matrix, and vice
versa. An example:

>> A := coerce(a, matrix); domtype(A)

+- -+
| 1, 2, 3 |
| |
| 4, 5, 6 |
+- -+

Dom::Matrix()

The conversion of a matrix into a list is also possible. The result is then a list
of inner lists, where the inner lists represent the rows of the matrix:

>> coerce(A, DOM_LIST)

[[1, 2, 3], [4, 5, 6]]

One can convert lists into sets, and vice versa. An example:

>> coerce([1, 2, 3, 2], DOM_SET)

{1, 2, 3}

Any MuPAD object can be converted into a string, such as the arithmetical
expression 2*x + sin(x^2):

>> coerce(2*x + sin(x^2), DOM_STRING)

"2*x + sin(x^2)"

237

Example 2. The function factor computes a factorization of a polynomial
expression and returns an object of the library domain Factored:

>> f := factor(x^2 + 2*x + 1);
domtype(f)

2
(x + 1)

Factored

This domain implements the conversion routine "convert_to", which we can
call directly to convert the factorization into a list (see factor for details):

>> Factored::convert_to(f, DOM_LIST)

[1, x + 1, 2]

However, it is more convenient to use coerce, which internally calls the slot
routine Factored::convert_to:

>> coerce(f, DOM_LIST)

[1, x + 1, 2]

Example 3. Note that often a conversion can also be achieved by a call of the
constructor of a domain T. For example, the following call converts an array
into a matrix of the domain type Dom::Matrix(Dom::Rational):

>> a := array(1..2, 1..2, [[1, 2], [3, 4]]):
MatQ := Dom::Matrix(Dom::Rational):

>> MatQ(a)

+- -+
| 1, 2 |
| |
| 3, 4 |
+- -+

The call MatQ(a) implies the call of the method "new" of the domain MatQ,
which in fact calls the method "convert" of the domain MatQ to convert the
array into a matrix.

Here, the same can be achieved with the use of coerce:

>> A := coerce(a, MatQ);
domtype(A)

238

+- -+
| 1, 2 |
| |
| 3, 4 |
+- -+

Dom::Matrix(Dom::Rational)

Note that the constructor of a domain T is supposed to create objects, not to
convert objects of other domains into the domain type T. The constructor often
allows more than one argument which allows to implement various user-friendly
ways to create the objects (e.g., see the several possibilities for creating matrices
offered by matrix).

collect – collect coefficients of a polynomial expression

collect(p, x) rewrites the polynomial expression p as
∑n

i=0 aix
i, such that x

is not a polynomial indeterminate of any coefficient ai.

collect(p, [x1, x2, ...]) rewrites the polynomial expression p as∑
i1,i2,...

ai1,i2,...x
i1
1 x

i2
2 · · · ,

such that none of the xi is a polynomial indeterminate of any coefficient ai1,i2,....

If a third argument f is given, then each coefficient in the return values above
is replaced by f(ai) or f(ai1,i2,...), respectively.

Call(s):

A collect(p, x <, f>)

A collect(p, [x1, x2, ...] <, f>)

Parameters:
p — a polynomial expression
x, x1, x2, ... — the indeterminates of the polynomial: typically,

identifiers or indexed identifiers
f — a function

Return Value: a polynomial expression, or FAIL if p cannot be converted
into a polynomial.

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

239

Related Functions: coeff, combine, expand, factor, indets, normal,
poly, rectform, rewrite, simplify

Details:

A collect groups the terms in p with like powers of the given indetermin-
ates together. collect returns a modified copy of p; the argument itself
remains unchanged. See example 1.

A collect is merely a shortcut for the functional composition of expr and
poly. It first uses poly to convert p into a polynomial in the given un-
knowns. This has the effect that the terms are collected. Then the result
is again converted into a polynomial expression via expr. See the help
page of poly for more information and examples.

A The indeterminates need not be identifiers or indexed identifiers. Any
expression can be used as an indeterminate as long as it is neither rational
nor constant. E.g., the expressions sin(x), f(x), or y^(1/3) are accepted
as indeterminates, but the constant expressions sin(1) and f(1) are not
allowed. More precisely, x is accepted as polynomial indeterminate if and
only if the call indets(x, PolyExpr) returns {x} . See the help page of
indets for more information, and also example 2.

A collect does not recursively collect the operands of non-polynomial subex-
pressions of p. See example 2.

A The terms in the result of collect are usually not ordered; use poly
instead to achieve this.

Note also that the “constant” terms corresponding to a0 or a0,0,...

are not always grouped together. !
See example 4.

A collect returns FAIL if p cannot be converted into a polynomial; the
help of poly has more information when this is the case. See example 3.

Example 1. We define a polynomial expression p and collect terms with like
powers of x and y:

>> p := x*y + z*x*y + y*x^2 - z*y*x^2 + x + z*x;
collect(p, [x, y])

2 2
x + x y + x z + x y z + x y - x y z

2
x (z + 1) + x y (z + 1) + x y (1 - z)

The expression p itself remains unchanged:

240

>> p

2 2
x + x y + x z + x y z + x y - x y z

Now we collect terms with like powers of x:

>> collect(p, [x])

2
x (y + z + y z + 1) + x (y - y z)

If there is only one indeterminate, then the square brackets may be omitted:

>> collect(p, x)

2
x (y + z + y z + 1) + x (y - y z)

By passing the third argument factor, we cause every coefficient to be factored:

>> collect(p, x, factor)

2
x (y + 1) (z + 1) + x y (1 - z)

Example 2. collect has the same behavior as poly with respect to non-
polynomial subexpressions. Such a subexpression remains unchanged, even if it
contains one of the given indeterminates. In particular, collect is not applied
recursively to the operands of a non-polynomial subexpression:

>> collect(sin((x + 1)^2)*(x + 1) + 5*sin((x + 1)^2) + x, x)

2 2
6 sin((x + 1)) + x (sin((x + 1)) + 1)

However, a non-polynomial subexpression may be passed to collect as inde-
terminate, provided that it is accepted as indeterminate by poly:

>> collect(sin((x + 1)^2)*(x + 1) + 5*sin((x + 1)^2) + x,
sin((x + 1)^2))

2
x + (x + 6) sin((x + 1))

An error occurs if one of the indeterminates is illegal:

>> collect(1 + I*(x + I), I)

241

Error: Illegal indeterminate [poly];
during evaluation of ’collect’

In this example, you can use rectform to achieve the desired result:

>> rectform(1 + I*(x + I))

- Im(x) + I Re(x)

Example 3. collect returns FAIL if the input cannot be converted into a
polynomial:

>> collect(1/x, x)

FAIL

Example 4. The terms in the result of collect are usually not ordered by
increasing or decreasing degree:

>> collect(1 + x^2 + x, [x])

2
x + x + 1

Use poly to achieve this:

>> poly(1 + x^2 + x, [x])

2
poly(x + x + 1, [x])

Also, constant terms are not necessarily grouped together:

>> collect(sin(1) + (x + 1)^2, [x])

2
2 x + sin(1) + x + 1

>> poly(sin(y) + (x + 1)^2, [x])

2
poly(x + 2 x + (sin(y) + 1), [x])

242

combine – combine terms of the same algebraic structure

combine(f) tries to rewrite products of powers in the expression f as a single
power.

combine(f, target) combines several calls to the target function(s) in the
expression f to a single call.

Call(s):

A combine(f)

A combine(f, target)

A combine(f, [target1, target2, ...])

Parameters:
f — an arithmetical expression, an array, a list, a polynomial, or

a set
target — one of the identifiers arctan, exp, ln, sincos , or sinhcosh

Return Value: an object of the same type as the input object f.

Side Effects: combine reacts to properties of identifiers appearing in the in-
put.

Overloadable by: f

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: denom, expand, factor, normal, numer, radsimp,
rectform, rewrite, simplify

Details:

A combine(f) applies the following rewriting rules to products of powers
occurring as subexpressions in an arithmetical expression f:

• xaxb = xa+b

• xbyb = (xy)b

• (xa)b = xab

243

The last two rules are only valid under certain additional restrictions, e.g.,
when b is an integer. Except for the third rule, this behavior of combine
is the inverse functionality of expand. See example 1.

Since MuPAD’s internal simplifier automatically applies the above
rules in the reverse direction in certain cases, combine sometimes
has no effect. See example 2.

!

A combine(f, target) applies rewriting rules applicable to the target func-
tion(s) to an arithmetical expression f. Some of the rules are only valid
under certain additional restrictions. With respect to most of the rules,
combine implements the inverse functionality of expand. Here is a list of
the rewriting rules for the various targets:

target = arctan:

• arctan(x) + arctan(y) = arctan
(
x+ y

1− xy

)
target = exp (see example 4:)

• exp(a) exp(b) = exp(a+ b)

• exp(a)b = exp(ab) (where valid, reacting to properties)

target = ln (see example 5:)

• ln(a) + ln(b) = ln(ab)

• b ln(a) = ln(ab)

target = sincos (see example 3):

• sin(x) sin(y) =
1
2

cos(x− y)− 1
2

cos(x+ y)

• similar rules for sin(x) cos(y) and cos(x) cos(y)

• the rules above are applied recursively to powers of sin and cos with
positive integral exponents

target = sinhcosh :

• sinh(x) sinh(y) =
1
2

cosh(x+ y)− 1
2

cosh(x− y)

• similar rules for sinh(x) cosh(y) and cosh(x) cosh(y)

• the rules above are applied recursively to powers of sinh and cosh
with positive integral exponents

244

A combine works recursively on the subexpressions of f.

A If the second argument is a list of targets, then combine is applied to f
subsequently for each of the targets in the list. See example 6.

A If f is array, a list, or a set, combine is applied to all entries of f; see ex-
ample 7. If f is a polynomial or a series expansion, of type Series::Puiseux
or Series::gseries, combine is applied to each coefficient; see example 8.

Example 1. Without a second argument, combine combines powers of the
same base:

>> combine(sin(x) + x*y*x^(exp(1)))

exp(1) + 1
sin(x) + y x

Moreover, combine also combines powers with the same exponent in certain
cases:

>> combine(sqrt(2)*sqrt(3))

1/2
6

Example 2. In most cases, however, combine does not combine powers with
the same exponent:

>> combine(y^5*x^5)

5 5
x y

Example 3. With the second argument sincos , combine rewrites products
of sines and cosines as a sum of sines and cosines with more complicated argu-
ments:

>> combine(sin(a)*cos(b) + sin(b)^2, sincos)

sin(a + b) cos(2 b) sin(a - b)
---------- - -------- + ---------- + 1/2

2 2 2

Note that powers of sines or cosines with negative integer exponents are not
rewritten:

245

>> combine(sin(b)^(-2), sincos)

1

2
sin(b)

Example 4. With the second argument exp, the well-known rules for the
exponential function are applied:

>> combine(exp(3)*exp(2), exp)

exp(5)

>> combine(exp(a)^2, exp)

exp(2 a)

Example 5. This example shows the application of rules for the logarithm,
and at the same time the dependence on properties of the identifiers appearing
in the input. The logarithm of a product does not always equal the sum of the
logarithms of its factors; but for positive numbers, this rule may be applied:

>> combine(ln(a)+ln(b), ln)

ln(a) + ln(b)

>> assume(a>0): assume(b>0):
combine(ln(a)+ln(b), ln)

ln(a b)

>> unassume(a): unassume(b):

Example 6. The second argument may also be a list of targets. Then the
rewriting rules for each of the targets in the list are applied:

>> combine(ln(2)+ln(3)+sin(a)*cos(a), [ln, sincos])

sin(2 a)
ln(6) + --------

2

246

Example 7. combine maps to sets:

>> combine({sqrt(2)*sqrt(5), sqrt(2)*sqrt(11)})

1/2 1/2
{10 , 22 }

Example 8. combine maps to the coefficients of polynomials:

>> combine(poly(sin(x)*cos(x)*y, [y]), sincos)

/ / sin(2 x) \ \
poly| | -------- | y, [y] |

\ \ 2 / /

However, it does not touch the polynomial’s indeterminates:

>> combine(poly(sin(x)*cos(x)), sincos)

poly(sin(x) cos(x), [sin(x), cos(x)])

Background:

A Advanced users can extend the functionality of combine by implementing
additional rewriting rules for other target functions. This works by defin-
ing a new slot "target" of combine; you need to unprotect the identifier
combine first in order to do that. Afterwards, the command combine(f,
target) leads to the call combine::target(f) of the corresponding slot
routine.

A By default, combine handles a subexpression g(x1,x2,...) of f by calling
itself recursively for the operands x1, x2, etc. Users can change this beha-
vior for their own mathematical function given by a function environment
g by implementing a "combine" slot of g. To handle the subexpression
g(x1,x2,...), combine then calls the slot routine g::combine with the
argument sequence x1,x2,... of g.

Changes:

A The code for the target ln was rewritten and enhanced.

copyClosure – copies the lexical closure of a procedure

copyClosure(f) copies the lexical closure of a procedure or procedure envir-
onment f.

247

Call(s):

A copyClosure(f)

Parameters:

f — a procedure or procedure environment to be copied

Return Value: the copied procedure or procedure environment

Related Functions: _assign

Details:

A Usually, when a procedure is copied, for example by assigning it to an
identifier, the lexical closure of the procedure is not copied. Via the copied
procedure one can change the lexical closure of the original procedure.
Thus, the lexical closure of a procedure shows the so-called reference effect.

A copyClosure may be used to copy the lexical closure of a procedure.
Changes in the closure of the copy no longer affect the original procedure’s
closure.

A Closures are implemented by procedure environments (kernel type DOM_PROC_ENV)
in MuPAD. copyClosure works by copying all lexically enclosing proced-
ure environments of a procedure.

A copyClosure may also be used to copy a procedure environment and all
its lexically enclosing environments only.

Example 1. Procedure closures show the reference effect: The procedure f
generated by gen changes its closure via the variable i. A “normal” copy g of
f changes the variable in the same closure, as is seen by repeatedly calling f
versus g.

>> gen:= proc()
option escape;
local i;

begin
i := 0;
proc() begin i := i+1 end

end:
>> f := gen():

g := f:
f(), g(), f(), g()

1, 2, 3, 4

248

If one now generates f again by calling gen, but copies g by calling copyClosure,
then g has its own closure and now longer changes the variable i in the closure
of f.

>> f := gen():
g := copyClosure(f):
f(), g(), f(), g()

1, 1, 2, 2

Changes:

A copyClosure is a new function.

complexInfinity – complex infinity

complexInfinity represents the only non-complex point of the one-point com-
pactification of the complex numbers.

Related Functions: infinity

Details:

A Mathematically, complexInfinity is the north pole of the Riemann sphere,
with the unit circle as equator and the point 0 at the south pole.

A With respect to arithmetic, complexInfinity behaves like “1/0”. In
particular, nonzero complex numbers may be multiplied or divided by
complexInfinity or 1/complexInfinity. Adding complexInfinity to
a finite number yields again complexInfinity.

A With respect to arithmetical operations, complexInfinity is incompat-
ible with the real infinity.

Example 1. complexInfinity can be used in arithmetical operations with
complex numbers. The result in multiplications or divisions is either complexInfinity,
0, or undefined:

>> 3*complexInfinity, I*complexInfinity, 0*complexInfinity;
3/complexInfinity, I/complexInfinity, 0/complexInfinity;
complexInfinity/3, complexInfinity/I;
complexInfinity*complexInfinity, complexInfinity/complexInfinity;

249

complexInfinity, complexInfinity, undefined

0, 0, 0

complexInfinity, complexInfinity

complexInfinity, undefined

The result in additions is undefined if one of the operands is infinite, and
complexInfinity otherwise:

>> complexInfinity + complexInfinity, infinity + complexInfinity;
3 + complexInfinity, I + complexInfinity, PI + complexInfinity

undefined, undefined

complexInfinity, complexInfinity, complexInfinity

Symbolic expressions in arithmetical operations involving complexInfinity are
implicitly assumed to be different from both 0 and complexInfinity:

>> delete x:
x*complexInfinity, x/complexInfinity, complexInfinity/x,
x + complexInfinity

complexInfinity, 0, complexInfinity, complexInfinity

Background:

A complexInfinity is the only element of the domain stdlib::CInfinity.

Changes:

A Addition of a finite number to complexInfinity yields again complexInfinity.

conjugate – complex conjugation

conjugate(z) computes the conjugate <(z)− i=(z) of a complex number z =
<(z) + i=(z).

Call(s):

A conjugate(z)

Parameters:

z — an arithmetical expression

250

Return Value: an arithmetical expression.

Overloadable by: z

Side Effects: conjugate is sensitive to properties of identifiers set via assume.

Related Functions: abs, assume, Im, Re, rectform, sign

Details:

A For numbers of type DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_COMPLEX, the
conjugate is computed directly and very efficiently.

A conjugate can handle symbolic expressions. Properties of identifiers are
taken into account (see assume). An identifier z without any property is
assumed to be complex, and the symbolic call conjugate(z) is returned.
See example 2.

A conjugate knows how to handle special mathematical functions, such as:

_mult _plus _power abs cos cosh cot
coth csc csch erf erfc exp gamma
igamma sec sech sin sinh tan tanh

See example 1.

A If conjugate does not know how to handle a special mathematical func-
tion, then a symbolic conjugate call is returned. See example 3.

Example 1. conjugate knows how to handle sums, products, the exponential
function and the sine function:

>> conjugate((1 + I)*exp(2 - 3*I))

(1 - I) exp(2 + 3 I)

>> delete z: conjugate(z + 2*sin(3 - 5*I))

conjugate(z) + 2 sin(3 + 5 I)

Example 2. conjugate reacts to properties of identifiers:

>> delete x, y: assume(x, Type::Real):
conjugate(x), conjugate(y)

x, conjugate(y)

251

Example 3. If the input contains a function that the system does not know,
then a symbolic conjugate call is returned:

>> delete f, z: conjugate(f(z) + I)

conjugate(f(z)) - I

Now suppose that f is some user-defined mathematical function, and that
f(z) = f(z) holds for all complex numbers z. To extend the functionality of
conjugate to f, we embed it into a function environment and suitably define
its "conjugate" slot:

>> f := funcenv(f):
f::conjugate := u -> f(conjugate(u)):

Now, whenever conjugate is called with an argument of the form f(u), it calls
f::conjugate(u), which in turn returns f(conjugate(u)):

>> conjugate(f(z) + I), conjugate(f(I))

f(conjugate(z)) - I, f(-I)

Background:

A If a subexpression of the form f(u,..) occurs in z and f is a function
environment, then conjugate attempts to call the slot "conjugate" of f
to determine the conjugate of f(u,..). In this way, you can extend the
functionality of conjugate to your own special mathematical functions.

The slot "conjugate" is called with the arguments u,.. of f.

If f has no slot "conjugate", then the subexpression f(u,..) is replaced
by the symbolic call conjugate(f(u...)) in the returned expression.

See example 3.

A Similarly, if an element d of a library domain T occurs as a subexpression of
z, then conjugate attempts to call the slot "conjugate" of that domain
with d as argument to compute the conjugate of d.

If T does not have a slot "conjugate", then d is replaced by the symbolic
call conjugate(d) in the returned expression.

The same happens for objects of kernel domains that are not arithmetical
expressions, such as lists, arrays, tables, sets, or polynomials.

contains – test if an entry exists in a container

contains(s, object) tests if object is an element of the set s.

252

contains(l, object) returns the index of object in the list l.

contains(t, object) tests if the array, table, or domain t has an entry cor-
responding to the index object.

Call(s):

A contains(s, object)

A contains(l, object <, i>)

A contains(t, object)

Parameters:
s — a set
l — a list
t — an array, a table, or a domain
object — an arbitrary MuPAD object
i — an integer

Return Value: For sets, arrays, tables, or domains, contains returns one of
the Boolean values TRUE or FALSE. For lists, the return value is a nonnegative
integer.

Overloadable by: s, l, t

Related Functions: _in, _index, has, op, slot

Details:

A contains is a fast membership test for MuPAD’s basic container data
types. For lists and sets, contains searches the elements for the given
object. However, for arrays, tables, and domains, contains searches the
indices.

A contains works syntactically, i.e., mathematically equivalent objects are
considered to be equal only if they are syntactically identical. contains
does not represent elementhood in the mathematical sense. See example 2.

A contains does not descend recursively into subexpressions; use has to
achieve this. See example 3.

A contains(s, object) returns TRUE if object is an element of the set s.
Otherwise, it returns FALSE.

A contains(l, object) returns the position of object in the list l as a
positive integer if object is an entry of l. Otherwise, the return value is
0. If more than one entry of l is equal to object, then the index of the
first occurrence is returned.

253

By passing a third argument i to contains, you can specify a position in
the list where the search is to start. Then entries with index less than i
are not taken into account. If i is out of range, then the return value is
0.

Cf. examples 4 and 5.

A contains(t, object) returns TRUE if the array, table, or domain t has
an entry corresponding to the index object. Otherwise, it returns FALSE.
Cf. example 6.

A contains is a function of the system kernel.

Example 1. contains may be used to test if a set contains a given element:

>> contains({a, b, c}, a), contains({a, b, c}, 2)

TRUE, FALSE

Example 2. contains works syntactically, i.e., mathematically equivalent ob-
jects are considered to be equal only if they are syntactically identical. In this
example contains returns FALSE since y*(x + 1) and y*x + y are different
representations of the same mathematical expression:

>> contains({y*(x + 1)}, y*x + y)

FALSE

Elementhood in the mathematical sense is represented by the operator in:

>> property::simpex(y*x + y in {y*(x+1)})

TRUE

Example 3. contains does not descend recursively into the operands of its
first argument. In the following example, c is not an element of the set, and
therefore FALSE is returned:

>> contains({a, b, c + d}, c)

FALSE

If you want to test whether a given expression is contained somewhere inside a
complex expression, please use has:

>> has({a, b, c + d}, c)

TRUE

254

Example 4. contains applied to a list returns the position of the specified
object in the list:

>> contains([a, b, c], b)

2

If the list does not contain the object, 0 is returned:

>> contains([a, b, c], d)

0

Example 5. contains returns the position of the first occurrence of the given
object in the list if it occurs more than once:

>> l := [a, b, a, b]: contains(l, b)

2

A starting position for the search may be given as optional third argument:

>> contains(l, b, 1), contains(l, b, 2),
contains(l, b, 3), contains(l, b, 4)

2, 2, 4, 4

If the third argument is out of range, then the return value is 0:

>> contains(l, b, -1), contains(l, b, 0), contains(l, b, 5)

0, 0, 0

Example 6. For tables, contains returns TRUE if the second argument is a
valid index in the table. The entries stored in the table are not considered:

>> t := table(13 = value): contains(t, 13), contains(t, value)

TRUE, FALSE

Similarly, contains tests if an array has a value for a given index. The array
a has a value corresponding to the index (1, 1), but none for the index (1,
2):

>> a := array(1..3, 1..2, (1, 1) = x, (2, 1) = PI):
contains(a, (1, 1)), contains(a, (1, 2))

TRUE, FALSE

255

contains is not intended for testing if an array contains a given value:

>> contains(a, PI)

Error: Index dimension mismatch [array]

Even if the dimensions match, the index must not be out of range:

>> contains(a, (4, 4))

Error: Illegal argument [array]

Example 7. contains may be used to test, whether a domain has the specified
slot:

>> T := newDomain("T"): T::index := value:
contains(T, index), contains(T, value)

FALSE, FALSE

There is no entry corresponding to the slot index in T. Please keep in mind
that the syntax T::index is equivalent to slot(T, "index"):

>> contains(T, "index")

TRUE

Example 8. Users can overload contains for their own domains. For illustra-
tion, we create a new domain T and supply it with an "contains" slot, which
tests is the set of entries of an element contains the given value idx:

>> T := newDomain("T"):
T::contains := (e, idx) -> contains({extop(e)}, idx):

If we now call contains with an object of domain type T, the slot routine
T::contains is invoked:

>> e := new(T, 1, 2): contains(e, 2), contains(e, 3)

TRUE, FALSE

content – the content of a polynomial

content(p) computes the content of the polynomial p, i.e., the gcd of its coef-
ficients.

256

Call(s):

A content(p)

A content(f <, vars>)

Parameters:
p — a polynomial of type DOM_POLY
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers

Return Value: an arithmetical expression, or the value FAIL.

Overloadable by: p

Related Functions: coeff, factor, gcd, icontent, ifactor, igcd, ilcm,
lcm, poly, polylib::primpart

Details:

A If p is the zero polynomial, then content returns 0.

A If p is a nonzero polynomial with coefficient ring IntMod(n) and n is a
prime number, then content returns 1. If n is not a prime number, an
error message is issued.

A If p is a polynomial with a library domain R as coefficient ring, the gcd of
its coefficients is computed using the slot gcd of R. If no such slot exists,
then content returns FAIL.

A If p is a polynomial with coefficient ring Expr, then content does the
following.

If all coefficients of p are either integers or rational numbers, content(p)
is equivalent to gcd(coeff(p)), and the return value is a positive integer
or rational number. See example 1.

If at least one coefficient is a floating point number or a complex num-
ber and all other coefficients are numbers, then content returns 1. See
example 2.

If at least one coefficient is not a number and all coefficients of p can be
converted into polynomials via poly, then content(p) is equivalent to
gcd(coeff(p)). See example 3.

Otherwise, content returns 1.

A A polynomial expression f is converted into a polynomial with coefficient
ring Expr via p := poly(f <, vars>), and then content is applied to
p. See example 1.

257

A Use icontent for polynomials that are known to have integer or rational
coefficients, since it is much faster than content.

A Dividing the coefficients of p by its content gives its primitive part. This
one can also be obtained directly using polylib::primpart.

Example 1. If p is a polynomial with integer or rational coefficients, the result
is the same as for icontent:

>> content(poly(6*x^3*y + 3*x*y + 9*y, [x, y]))

3

The following call, where the first argument is a polynomial expression and not
a polynomial, is equivalent to the one above:

>> content(6*x^3*y + 3*x*y + 9*y, [x, y])

3

If no list of indeterminates is specified, then poly converts the expression into
a polynomial with respect to all occurring indeterminates, and we obtain yet
another equivalent call:

>> content(6*x^3*y + 3*x*y + 9*y)

3

Above, we considered the polynomial as a bivariate polynomial with integer
coefficients. We can also consider the same polynomial as a univariate polyno-
mial in x, whose coefficients contain a parameter y. Then the coefficients and
their gcd—the content—are polynomial expressions in y:

>> content(poly(6*x^3*y + 3*x*y + 9*y, [x]))

3 y

Here is another example where the coefficients and the content are again poly-
nomial expressions:

>> content(poly(4*x*y + 6*x^3 + 6*x*y^2 + 9*x^3*y, [x]))

3 y + 2

The following call is equivalent to the previous one:

>> content(4*x*y + 6*x^3 + 6*x*y^2 + 9*x^3*y, [x])

3 y + 2

258

Example 2. If a polynomial or polynomial expression has numeric coefficients
and at least one floating point number is among them, its content is 1:

>> content(2.0*x+2.0)

1

Example 3. If not all of the coefficients are numbers, the gcd of the coefficients
is returned:

>> content(poly(x^2*y+x, [y]))

x

context – evaluate an object in the enclosing context

Within a procedure, context(object) evaluates object in the context of the
calling procedure.

Call(s):

A context(object)

Parameters:

object — any MuPAD object

Return Value: the evaluated object.

Side Effects: context is sensitive to the value of the environment variable
LEVEL, which determines the maximal substitution depth for identifiers.

Related Functions: DOM_PROC, eval, freeze, hold, LEVEL, level,
MAXLEVEL, proc

Details:

A Most MuPAD procedures evaluate their arguments before executing the
body of the procedure. However, if the procedure is declared with op-
tion hold, then the arguments are passed to the procedure unevaluated.
context serves to evaluate such arguments a posteriori from within the
procedure.

259

A Like most MuPAD procedures, context first evaluates its argument object
as usual in the context of the current procedure. Then the result is eval-
uated again in the dynamical context that was valid before the current
procedure was called. The enclosing context is either the interactive level
or the procedure that called the current procedure.

A "func_call"-methods of domains never evaluate their arguments, whether
the option hold is used or not. See example 2.

A context is sensitive to the value of the environment variable LEVEL, which
determines the maximal depth of the recursive process that replaces an
identifier by its value during evaluation. The evaluation of the argument
takes place with the value of LEVEL that is valid in the current procedure,
which is 1 by default. The second evaluation uses the value of LEVEL that
is valid in the enclosing context, which is usually 1 if the enclosing context
is also a procedure, while it is 100 by default if the enclosing context is
the interactive level. See example 3.

A The function context must not be called at interactive level, and
context calls must not be nested. Thus it is not possible to evaluate
an object in higher levels of the dynamical call stack. See example 4.

!

A context is a function of the system kernel.

Example 1. We define a procedure f with option hold. If this procedure is
called with an identifier as argument, such as a below, the identifier itself is
the actual argument inside of f. context may be used to get the value of a in
the outer context:

>> a := 2:
f := proc(i)

option hold;
begin
print(i, context(i), i^2 + 2, context(i^2 + 2));

end_proc:
f(a):

2
a, 2, a + 2, 6

If a procedure with option hold is called from another procedure you will see
strange effects if the procedure with option hold does not evaluate its formal
parameters with context. Here, the value of the formal parameter j in g is the
variable i which is defined in the context of procedure f and not its value 4.
When you want to access the value of this variable you have to use context,
otherwise you see the output DOM_VAR(0,2) which is the variable i of f which
has lost its scope:

260

>> f := proc()
local i;

begin
i := 4:
g(i);

end_proc:
g := proc(j)

option hold;
begin
print(j, eval(j), context(j));
print(j + 1)

end_proc:
f()

DOM_VAR(0,2), DOM_VAR(0,2), 4

DOM_VAR(0,2) + 1

Example 2. The "func_call" method of a domain is implicitly declared with
option hold. We define a "func_call" method for the domain DOM_STRING of
MuPAD strings. The slot routine converts its remaining arguments into strings
and appends them to the first argument, which coincides with the string that
is the 0th operand of the function call:

>> unprotect(DOM_STRING):
DOM_STRING::func_call :=
string -> _concat(string, map(args(2..args(0)), expr2text)):

a := 1: "abc"(1, a, x)

"abc1ax"

You see that the identifier a was added to the string, and not its value 1.
Use context to access the value that a has before the "func_call" method is
invoked:

>> DOM_STRING::func_call :=
string -> _concat(string, map(context(args(2..args(0))),

expr2text)):
"abc"(1, a, x);
delete DOM_STRING::func_call: protect(DOM_STRING, Error):

"abc11x"

261

Example 3. This example shows the influence of the environment variable
LEVEL on the evaluation of context and the differences to the functions eval
and level. p is a function with option hold. x is a formal parameter of this
procedure. When evaluating their arguments context, eval and level all
replace x first by its value a. Then eval evaluates a in the current context with
LEVEL = 1 and yields the value b. context evaluates a in the enclosing context
(which is the interactive level) with LEVEL = 100 and yields c. level always
returns the result of the first evaluation step, which is a.

When the LEVEL of the interactive level is 1, context returns b like eval
since the second evaluation is performed with LEVEL = 1 like in eval.

The local variable b of p does not influence the evaluation in context, eval
and level since it is only a locally declared variable of type DOM_VAR which has
nothing to do with the identifier b, which is the value of a:

>> delete a, b, c: a := b: b := c:
p := proc(x)

option hold;
local b;

begin
b := 2;
eval(x), context(x), level(x), level(x,2);

end:
p(a);
LEVEL := 1: p(a);
delete LEVEL:

b, c, a, a

b, b, a, a

Example 4. The function context must not be called at interactive level:

>> context(x)

Error: Function call not allowed on interactive level [context]

contfrac – the domain of continued fractions

contfrac(r) creates a continued fraction approximation of the real number r.

contfrac(f, x = x0) creates a continued fraction approximation of the ex-
pression f as a function of x around x = x0.

262

Creating Elements:

A contfrac(r <, n>)

A contfrac(f, x <, m>)

A contfrac(f, x = x0 <, m>)

Parameters:
r — a real number or a numerical expression that can be converted to

a real floating point number
n — the number of significant decimal digits: a positive integer. The

default value is n = DIGITS.
f — an arithmetical expression interpreted as a function of x
x — an identifier
x0 — the expansion point: an arithmetical expression, ±infinity or

complexInfinity. The default value is 0.
m — the ’number of terms’: a positive integer. The default value is m

= ORDER.

Related Functions: numlib::contfrac, series,
Series::Puiseux::contfrac

Return Value: The call contfrac(r <, n>) with a numerical value r re-
turns an object of type numlib::contfrac. The call contfrac(f, x = x0 <,
m>) with a symbolic expression f returns an object of type contfrac. FAIL is
returned if no series expansion of f around x0 could be computed.

Side Effects: When called with an irrational numerical value r, the function
is sensitive to the environment variable DIGITS which determines the numerical
working precision. For symbolic expressions f, the function is sensitive to the
environment variable ORDER which determines the number of terms in truncated
series expansions.

Overloadable by: r, f

Details:

A The continued fraction expansion contfrac(r <, n>) of a real number
or numerical expression r is an expansion of the form

a1 +
1

a2 +
1

a3 +
1

. . . ak−1 +
1

ak + · · ·

where a1 is the integer floor(r) and a2, a3, ... are positive integers.

263

The continued fraction is computed by numlib::contfrac(r <, n>);
the expansion returned by contfrac is of domain type numlib::contfrac.

See the documentation of numlib::contfrac for further details.

A A continued fraction expansion contfrac(f, x = x0) of a symbolic ex-
pression f in the indeterminate x is an expansion of the form

a1 +
(x− x0)e1

a2 +
(x− x0)e2

a3 +
(x− x0)e3

. . . ak−1 +
(x− x0)ek−1

ak +O((x− x0)ek)

where

• a1, . . . , ak are arithmetical expressions not containing powers of x−
x0. The coefficients a2, . . . , ak are nonzero.

• e1 is a rational number and e2, . . . , ek are positive rational numbers.
If a1 6= 0, then e1 is positive as well.

If x0 = ±∞ or x0 = complexInfinity, the terms (x− x0)ei have to be
replaced by x−ei .

For symbolic expressions f, contfrac(f, x = x0) returns an expansion
of domain type contfrac.

A One may also call contfrac(f) without specifying an identifier x. In this
case, contfrac extracts the indeterminates in f automatically via indets.
FAIL is returned if more than one indeterminate is found.

If m is not specified, the default value m = ORDER is used.

A contfrac uses the function Series::Puiseux::contfrac to compute the
continued fraction in the symbolic case. If f is a rational function with
respect to the expansion variable x, and the ’truncation order’ m is not
specified, then contfrac returns an exact continued fraction expansion of
f. Cf. example 3.

Mathematical Methods

Method rational: rational representation

rational(contfrac cf <, positive integer m>)

A This method returns the rational function that is represented by the
continued fraction cf. Only the coefficients 1 through m of cf are
taken into account.

If m is not specified, all coefficients of cf are taken into account.
The return value of this method coincides with op(cf, 2).

264

Method _plus: addition

_plus(any cf, any cg)

A At least one argument must be of type contfrac. All other argu-
ments are converted via the constructor if possible. This method
converts cf and cg into rational functions, adds them, and returns
the sum converted back into a continued fraction. It returns FAIL
if either the variables or the expansion points in the continued frac-
tions cf and cg are different.

If all terms in the sum are exact representations of rational func-
tions, the continued fraction expansion of the sum is also an exact
representation.

A This method overloads the function _plus of the system kernel.

Method _mult: multiplication

_mult(any cf, any cg)

A At least one argument must be of type contfrac. All other argu-
ments are converted via the constructor if possible. This method
converts cf and cg into rationals functions, multiplies them, and
returns the product converted back into a continued fraction. It
returns FAIL if either the variables or the expansion points in the
continued fractions cf and cg are different.

If all terms in the product are exact representations of rational func-
tions, the continued fraction expansion of the product is also an
exact representation.

A This method overloads the function _mult of the system kernel.

Method _power: powers of a continued fraction

_power(contfrac cf, rational p)

A This method converts cf into a rational function, computes the p-th
power and returns the result as a continued fraction expansion.

If cf is an exact representation of a rational function and cf^p is a
rational function, the continued fraction expansion of the power is
also an exact representation.

A This method overloads the function _power of the system kernel.

265

Method series: series of a continued fraction

series(contfrac cf <, positive integer m>)

series(contfrac cf, indeterminate x < = x0> <, positive in-

teger m>)

A Computes the series expansion of the continued fraction cf. This
is the series of the rational expression op(cf, 2) represented by
cf around x = x0. It is returned as an element of the domain
Series::Puiseux.

A If x is not specified, the default series variable is op(cf, 3). If x0
is not specified, the default expansion point is op(cf, 4). If no
’number of terms’ m is specified, m = ORDER is used.

A This method overloads the function series.

Access Methods

Method nthcoeff: the nth coefficient of the continued fraction

nthcoeff(contfrac cf, positive integer n)

A The call nthcoeff(cf, n) returns the n-th coefficient an of the
continued fraction cf = a1 + (x−x0)e1

a2+
(x−x0)e2

a3+...

. For n > 1, the coefficients

cannot be zero.

If n exceeds the actual number of coefficients in cf, the value FAIL
is returned.

A This method overloads the function nthcoeff of the system kernel.

Method nthterm: the nth term of the continued fraction

nthterm(contfrac cf, positive integer n)

A The call nthterm(cf, n) returns the n-th term (x − x0)en of the
continued fraction cf = a1 + (x−x0)e1

a2+
(x−x0)e2

a3+...

.

If n exceeds the actual number of coefficients in cf, the value FAIL
is returned.

Method op: the operands of the continued fraction

op(contfrac cf <, nonnegative integer n>)

266

A An object created by contfrac has the following operands. The
0-th operand op(cf, 0) is the domain type: either contfrac or
numlib::contfrac. In the case of symbolic continued fractions of
type contfrac, the first operand is the list of coefficient/term pairs
[ai, (x− x0)ei]. The second operand is the rational function repres-
ented by these coefficients (this is the value returned by the method
contfrac::rational). The third operand is the variable x of the
expansion. The fourth operand is the expansion point x0.

Example 1. We compute some continued fraction expansions of real numbers:

>> contfrac(27/31), contfrac(PI, 5)

1 1
-------------------, 3 + ----------------

1 1
1 + --------------- 7 + ------------

1 1
6 + ----------- 15 + -------

1 1 + ...
1 + -------

3 + ...

They can also be computed by direct calls to numlib::contfrac:

>> numlib::contfrac(27/31), numlib::contfrac(PI, 5)

1 1
-------------------, 3 + ----------------

1 1
1 + --------------- 7 + ------------

1 1
6 + ----------- 15 + -------

1 1 + ...
1 + -------

3 + ...

Example 2. We compute symbolic continued fractions of functions:

>> contfrac(exp(x), x = 0), contfrac(exp(-3*x^2), x = 0)

2
x x

1 + ----------------------------, 1 + -----------------------
x 2

1 + ------------------------ x

267

x - 1/3 + ---------------
- 2 + ------------------ 2

x x
- 3 + ------------ - 2 + ---------

x 2
2 + -------- 1 + O(x)

5 + O(x)

If no expansion variable is specified, the symbolic expression to be expanded
must be univariate:

>> contfrac(exp(x*y))

Error: 1st argument: the expression is not univariate [contfra\
c::function]

Symbolic parameters are accepted if the expansion variable is specified:

>> contfrac(exp(x*y), x)

x
1 + --------------------------------------

-1 x
y + --------------------------------

x
- 2 + --------------------------

-1 x
- 3 y + ----------------

x
2 + ------------

-1
5 y + O(x)

In the next call, we specify the expansion point x = 1 and request a specific
’number of terms’ by the third argument:

>> contfrac(exp(x*y), x = 1, 3);

x - 1
exp(y) + ------------------------------------

-1 -1 x - 1
y exp(y) + ---------------------

- 2 exp(y) + O(x - 1)

Example 3. For rational functions, exact representations are returned when
no specific ’number of terms’ is requested. The method "rational" returns the
rational expression equivalent to the continued fraction:

268

>> cf := contfrac((x - y)/(x^3 + y^3), x, 2):
cf, contfrac::rational(cf);

-2 x x - y
- y + ---------, -----

3 3
y + O(x) y

>> cf := contfrac((x - y)/(x^3 + y^3), x):
cf, contfrac::rational(cf);

-2 x x - y
- y + ------------------------------, -------

2 3 3
3 x x + y
y + -------------------------

-1 x
- y + -----------------

2 x
- y + ----------

-1
y x
--- + ----
2 2

2 y

Example 4. The coefficients and expansion terms of a continued fraction can
be accessed by the functions nthcoeff and nthterm:

>> cf := contfrac(sin(1/x), x = infinity, 4)

-1
x

-2
x

1 + ----------
-2

6 + O(x)

>> nthcoeff(cf, 1), nthcoeff(cf, 2), nthcoeff(cf, 3), nthcoeff(cf, 4);

0, 1, 6, FAIL

>> nthterm(cf, 1), nthterm(cf, 2), nthterm(cf, 3)

269

1 1
-, --, FAIL
x 2

x

>> delete cf:

Example 5. We can compute a series expansion of a continued fraction via
series:

>> cf := contfrac(sin(x)/(x - PI) - 1, x = PI)

2
(x - PI)

- 2 + -----------------------
2

(x - PI)
6 + -------------------

2
10/3 + O((x - PI))

If no further arguments are given in series, the default expansion variable is
op(cf, 3); the default expansion point is op(cf, 4):

>> op(cf, 3), op(cf, 4)

x, PI

>> series(cf)

2 4
(x - PI) (x - PI) 6

- 2 + --------- - --------- + O((x - PI))
6 120

Both the series variable as well as the expansion point may be passed explicitly
to series.

>> series(cf, x = PI)

2 4
(x - PI) (x - PI) 6

- 2 + --------- - --------- + O((x - PI))
6 120

However, the values must coincide with the values used to compute the contin-
ued fraction: In the following call, the default expansion point x = 0 is used
by series. This clashes with the expansion point x = PI of the continued
fraction:

270

>> series(cf, x)

Error: 2nd argument: the expansion point PI of the continued f\
raction clashes with the requested expansion point 0 [contfrac\
::series]

>> delete cf:

Changes:

A contfrac is a new function.

debug – execute a procedure in single-step mode

debug(statement) starts the MuPAD debugger, allowing to execute statement
step by step.

Call(s):

A debug()

A debug(statement)

Parameters:

statement — any MuPAD object; typically a function call

Return Value: the return value of statement or TRUE or FALSE.

Related Functions: noDebug, Pref::ignoreNoDebug, prog::check,
prog::profile, prog::trace

Details:

A debug called with an argument switches the state of the MuPAD kernel
to debug mode and, if statement contains procedure calls that can be
debugged, enters the interactive MuPAD debugger for controlled single-
step execution of statement.

A If debug is called without arguments, the current state is returned without
changing the state. If the debugger is on, the return value is TRUE, other-
wise FALSE.

271

A In a MuPAD version with a graphical user interface, a separate debugger
window pops up. In the UNIX terminal version, the text interface of the
command line debugger is activated.

The debugger features single stepping, inspection of variables and stack
frames, breakpoints, etc. Read the online help of the debugger window
for a description.

A Debugging is possible only for procedures written in the MuPAD language
that do not have the option noDebug . In particular, debugging of kernel
functions is not possible.

After calling Pref::ignoreNoDebug(TRUE), the procedure option noDe-

bug is ignored.

A You can also debug a sequence of statements separated by semicolons if
the sequence is enclosed in parentheses.

A debug(statement) returns the same result as statement, if the execution
is not aborted within the debugger by the user.

A debug is a function of the system kernel.

Example 1. To proove, whether the kernel is in debug mode, debug() is
called:

>> debug()

FALSE

To switch on the debugger mode, debug(1) is called:

>> debug(1)

Activating debugger...

For those library functions which are already loaded, the format of
the source code displayed by the debugger may differ from that of
the original source code file. To avoid this, restart the kernel in
debug mode.
Execution completed.

1

>> debug()

TRUE

272

Example 2. We start the debugger for stepwise execution of the statement
int(cos(x),x), which integrates the cosine function:

>> debug(int(cos(x), x)):

Background:

A In debug mode, the MuPAD parser is re-configured. When a procedure
is read from a file, the parser inserts additional debug nodes containing
file identifications and line numbers into procedures. These debug nodes
allow the debugger to associate the currently executed piece of MuPAD
code with the corresponding source text file.

A If the debug mode is activated and MuPAD encounters a procedure without
debug nodes, it will write the procedure to a temporary file and add de-
bug nodes on the fly. This allows interactively entered procedures to be
debugged in the same way as procedures read from files. The temporary
debug file is deleted at the end of the session.

Since this also applies to procedures that were read before debug mode
was switched on, it is recommended to start the kernel in debug mode
(see below) when bigger applications are to be debugged.

A If the MuPAD kernel was not started in debug mode, this mode is turned
on at the first execution of debug. It remains activated until the end of
the session.

It is possible to start the kernel in debug mode. On Windows platforms,
this can be configured by choosing “Options” in the “View” menu and
then clicking on “Kernel”. In the graphical user interface on UNIX sys-
tems, clicking on“Kernel Debug Mode” in the“Options”menu toggles this
setting. On a Macintosh, choose “Preferences” from the “File” menu and
then “Kernel”.

Changes:

A A call of debug without arguments returns the state of the debugger via
TRUE or FALSE.

degree – the degree of a polynomial

degree(p) returns the total degree of the polynomial p.

degree(p, x) returns the degree of p with respect to the variable x.

273

Call(s):

A degree(p)

A degree(p, x)

A degree(f <, vars>)

A degree(f <, vars>, x)

Parameters:
p — a polynomial of type DOM_POLY
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers
x — an indeterminate

Return Value: a nonnegative number. FAIL is returned if the input cannot
be converted to a polynomial.

Overloadable by: p, f

Related Functions: coeff, degreevec, ground, lcoeff, ldegree,
lmonomial, lterm, nterms, nthcoeff, nthmonomial, nthterm, poly,
poly2list, tcoeff

Details:

A If the first argument f is not element of a polynomial domain, then degree
converts the expression internally to a polynomial of type DOM_POLY via
poly(f). If a list of indeterminates is specified, the polynomial poly(f,
vars) is considered.

A degree(f, vars, x) returns 0 if x is not an element of the list vars.

A The degree of the zero polynomial is defined as 0.

A degree is a function of the system kernel.

Example 1. The total degree of the terms in the following polynomial expres-
sion is computed:

>> degree(x^3 + x^2*y^2 + 2)

4

274

Example 2. degree may be applied to polynomials of type DOM_POLY:

>> degree(poly(x^2*z + x*z^3 + 1, [x, z]))

4

Example 3. The next expression is regarded as a bi-variate polynomial in x
and z. The degree with respect to z is computed:

>> degree(x^2*z + x*z^3 + 1, [x, z], z)

3

Example 4. The degree of the zero polynomial is defined as 0:

>> degree(0, [x, y])

0

degreevec – the exponents of the leading term of a polynomial

degreevec(p) returns a list with the exponents of the leading term of the
polynomial p.

Call(s):

A degreevec(p <, order>)

A degreevec(f <, vars> <, order>)

Parameters:
p — a polynomial of type DOM_POLY
order — the term ordering: either LexOrder , or DegreeOrder , or

DegInvLexOrder , or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers

Return Value: a list of nonnegative integers. FAIL is returned if the input
cannot be converted to a polynomial.

275

Overloadable by: p, f

Related Functions: coeff, degree, ground, lcoeff, ldegree, lmonomial,
lterm, nterms, nthcoeff, nthmonomial, nthterm, poly, poly2list, tcoeff

Details:

A If the first argument f is not element of a polynomial domain, then
degreevec converts the expression internally to a polynomial of type
DOM_POLY via poly(f). If a list of indeterminates is specified, the poly-
nomial poly(f, vars) is considered.

A For a polynomial in the variables x1, x2, . . . , xn with the leading term
xe1

1 × xe2
2 × · · · × xen

n , the exponent vector [e1, e2, . . . , en] is returned.

A degreevec returns a list of zeroes for the zero polynomial.

A For the orderings LexOrder , DegreeOrder and DegInvLexOrder , the res-
ult is computed by a fast kernel function. Other orderings are handled by
slower library functions.

Example 1. The leading term of the following polynomial expression (with
respect to the main variable x) is x4:

>> degreevec(x^4 + x^2*y^3 + 2, [x, y])

[4, 0]

With the main variable y, the leading term is x2y3:

>> degreevec(x^4 + x^2*y^3 + 2, [y, x])

[3, 2]

For polynomials of type DOM_POLY, the indeterminates are an integral part of
the data type:

>> degreevec(poly(x^4 + x^2*y^3 + 2, [x, y])),
degreevec(poly(x^4 + x^2*y^3 + 2, [y, x]))

[4, 0], [3, 2]

276

Example 2. For a univariate polynomial, the standard term orderings regard
the same term as “leading”:

>> degreevec(poly(x^2*z + x*z^3 + 1, [x]), LexOrder),
degreevec(poly(x^2*z + x*z^3 + 1, [x]), DegreeOrder),
degreevec(poly(x^2*z + x*z^3 + 1, [x]), DegInvLexOrder)

[2], [2], [2]

In the multivariate case, different polynomial orderings may yield different lead-
ing exponent vectors:

>> degreevec(poly(x^2*z + x*z^3 + 1, [x, z])),
degreevec(poly(x^2*z + x*z^3 + 1, [x, z]), DegreeOrder)

[2, 1], [1, 3]

>> degreevec(x^3 + x*y^2*z - 5*y^4, [x, y, z], LexOrder),
degreevec(x^3 + x*y^2*z - 5*y^4, [x, y, z], DegreeOrder),
degreevec(x^3 + x*y^2*z - 5*y^4, [x, y, z], DegInvLexOrder)

[3, 0, 0], [1, 2, 1], [0, 4, 0]

Example 3. The exponent vector of the zero polynomial is a list of zeroes:

>> degreevec(0, [x, y, z])

[0, 0, 0]

delete – delete the value of an identifier

The statement delete x deletes the value of the identifier x.

Call(s):

A delete x1, x2, ...

A _delete(x1, x2, ...)

Parameters:

x1, x2, ... — identifiers or indexed identifiers

Return Value: the void object of type DOM_NULL.

Related Functions: :=, _assign, assign, assignElements, evalassign

277

Details:

A For many computations, symbolic variables are needed. E.g., solving an
equation for an unknown x requires an identifier x that does not have a
value. If x has a value, the statement delete x deletes the value and x
can be used as a symbolic variable.

A The statement delete x1, x2, ... is equivalent to the function call
_delete(x1, x2, ...). The values of all specified identifiers are deleted.

A The statement delete x[j] deletes the entry j of a list, an array, or a
table named x. Deletion of elements or entries reduces the size of lists
and tables, respectively.

A If A is a frame, the statement delete A::x deletes the value of the iden-
tifier x in the frame A, leaving x as a symbol in that frame. Further
information can be found on the frame help page.

A If x is an identifier carrying properties set via assume, then delete x
detaches all properties from x, i.e., delete x has the same effect as
unassume(x). Cf. example 3.

A _delete is a function of the system kernel.

Example 1. The identifiers x, y are assigned values. After deletion, the iden-
tifiers have no values any longer:

>> x := 42: y := 7: delete x: x, y

x, 7

>> delete y: x, y

x, y

More than one identifier can be deleted by one call:

>> a := b := c := 42: a, b, c

42, 42, 42

>> delete a, b, c: a, b, c

a, b, c

278

Example 2. delete can also be used to delete specific elements of lists, arrays,
and tables:

>> L := [7, 13, 42]

[7, 13, 42]

>> delete L[2]: L

[7, 42]

>> A := array(1..3, [7, 13, 42])

+- -+
| 7, 13, 42 |
+- -+

>> delete A[2]: A, A[2]

+- -+
| 7, ?[2], 42 |, A[2]
+- -+

>> T := table(1 = 7, 2 = 13, 3 = 42)

table(
3 = 42,
2 = 13,
1 = 7

)

>> delete T[2]: T

table(
3 = 42,
1 = 7

)

Note that delete does not evaluate the objects that are to be deleted. In the
following, an element of the list U is deleted. The original value of U (the list L)
is not changed:

>> U := L: delete U[1]: U, L

[42], [7, 42]

Finally, all assigned values are deleted:

>> delete U, L, A, T: U, L, A, T

U, L, A, T

279

Example 3. delete can also be used to delete properties of identifiers set via
assume. With the assumption ’x > 1’, the expression ln(x) hat the property
’ln(x) > 0’, i.e., its sign is 1:

>> assume(x > 1): sign(ln(x))

1

Without a property of x, the function sign cannot determine the sign of ln(x):

>> delete x: sign(ln(x))

sign(ln(x))

denom – the denominator of a rational expression

denom(f) returns the denominator of the expression f.

Call(s):

A denom(f)

Parameters:

f — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: f

Related Functions: gcd, factor, normal, numer

Details:

A denom regards the input as a rational expression: non-rational subexpres-
sions such as sin(x), x^(1/2) etc. are internally replaced by “temporary
variables”. The denominator of this rationalized expression is computed,
the temporary variables are finally replaced by the original subexpressions.

A Numerator and denominator are not necessarily cancelled: the de-
nominator returned by denom may have a non-trivial gcd with
the numerator returned by numer. Pre-process the expression by
normal to enforce cancellation of common factors. Cf. example 2.

!

280

Example 1. We compute the denominators of some expressions:

>> denom(-3/4)

4

>> denom(x + 1/(2/3*x -2/x))

2
2 x - 6

>> denom((cos(x)^2 -1)/(cos(x) -1))

cos(x) - 1

Example 2. denom performs no cancellations if the rational expression is of
the form “numerator/denominator”:

>> r := (x^2 - 1)/(x^3 - x^2 + x - 1): denom(r)

2 3
x - x + x - 1

This denominator has a common factor with the numerator of r; normal en-
forces cancellation of common factors:

>> denom(normal(r))

2
x + 1

However, automatic normalization occurs if the input expression is a sum:

>> denom(r + x/(x + 1) + 1/(x + 1) - 1)

2
x + 1

>> delete r:

diff – differentiate an expression or a polynomial

diff(f, x) computes the (partial) derivative ∂f/∂x of the function f with
respect to the variable x.

281

Call(s):

A diff(f)

A diff(f, x)

A diff(f, x1, x2, ...)

Parameters:
f — an arithmetical expression or a polynomial of type

DOM_POLY
x, x1, x2, ... — indeterminates: identifiers or indexed identifiers

Return Value: an arithmetical expression or a polynomial.

Overloadable by: f

Further Documentation: Section 7.1 of the MuPAD Tutorial.

Related Functions: D, int, limit, poly, taylor

Details:

A diff(f, x) computes the derivative of the arithmetical expression (or
polynomial) f with respect to the indeterminate x.

A diff(f, x1, x2, ...) is equivalent to diff(...diff(diff(f, x1),
x2)...), i.e., the system first differentiates f with respect to x1, then
differentiates the result with respect to x2, and so on, i.e., it computes

the partial derivative · · · ∂

∂x2

∂

∂x1
f . Cf. example 3. In fact, the system

internally converts nested diff calls into a single diff call with multiple
arguments. Cf. example 7.

A diff(f) returns its evaluated argument: the “zero-th” derivative of f is
f itself.

A It is convenient to compute higher derivatives using the sequence oper-
ator: If n is a nonnegative integer, then diff(f, x $ n) returns the n-th
derivative of f with respect to x. Cf. example 4.

A The indeterminates x, x1, x2, ... must be either identifiers (of domain
type DOM_IDENT) or indexed identifiers, i.e., of the form x[n], where x is
an identifier and n is an integer. If one of them is of a different form, then
a symbolic diff call is returned. Cf. example 2.

A If f is an arithmetical expression, then diff returns an arithmetical ex-
pression. If f is a polynomial, then diff returns a polynomial as well. Cf.
example 5. An exception to these rules occurs when the system is unable
to compute the derivative, in which case it returns a symbolic diff call.
Cf. example 6.

282

A MuPAD assumes that partial derivatives with respect to different inde-
terminates commute, i.e., diff(f, x1, x2) and diff(f, x2, x1) pro-
duce the same result diff(f, y1, y2), where [y1, y2] = sort([x1,
x2]). Cf. example 8.

A Users can extend the functionality of diff for their own special mathem-
atical functions via overloading. This works by turning the corresponding
function into a function environment and implementing the derivation
rule for the function as the "diff" slot of the function environment. Cf.
example 11.

A MuPAD has two functions for differentiation: diff and D. D represents
the differential operator that may be applied to functions; diff is used to
differentiate arithmetical expressions. Mathematically, D(f)(x) coincides
with diff(f(x), x); D([1, 2], f)(x, y) coincides with diff(f(x,
y), x, y). Symbolic calls of D and diff can be converted to one an-
other via rewrite. Cf. example 10.

A diff is a function of the system kernel.

Example 1. We compute the derivative of x2 with respect to x:

>> diff(x^2, x)

2 x

Example 2. You can differentiate with respect to an indexed identifier if the
index is an integer:

>> diff(x[1]*y + x[1]*x[r], x[1])

y + x[r]

If the index is not an integer, then a symbolic diff call is returned:

>> diff(x[1]*y + x[1]*x[r], x[r])

diff(y x[1] + x[r] x[1], x[r])

Example 3. You can differentiate with respect to more than one variable with
a single diff call. In the following example, we differentiate first with respect
to x and then with respect to y:

>> diff(x^2*sin(y), x, y) = diff(diff(x^2*sin(y), x), y)

2 x cos(y) = 2 x cos(y)

283

Example 4. We use the sequence operator $ to compute the third derivative
of the following expression with respect to x:

>> diff(sin(x)*cos(x), x $ 3)

2 2
4 sin(x) - 4 cos(x)

Example 5. Polynomials may be differentiated with respect to both the poly-
nomial indeterminates (in the example below: x) or the parameters in the coef-
ficients (in the example below: a):

>> diff(poly(sin(a)*x^3 + 2*x, [x]), x)

2
poly((3 sin(a)) x + 2, [x])

>> diff(poly(sin(a)*x^3 + 2*x, [x]), a)

3
poly(cos(a) x , [x])

Example 6. The system returns the derivative of an unknown function as a
symbolic diff call:

>> diff(f(x) + x, x)

diff(f(x), x) + 1

Example 7. The system internally converts nested diff calls into a single
diff call with multiple arguments:

>> diff(diff(f(x, y), x), y)

diff(f(x, y), x, y)

Example 8. Partial derivatives with respect to several indeterminates are
rewritten to a “normalized” ordering:

>> diff(f(x, y), x, y) = diff(f(x, y), y, x);

diff(f(x, y), x, y) = diff(f(x, y), x, y)

284

Example 9. diff knows how to differentiate symbolic integrals:

>> int(f(x), x)

int(f(x), x)

>> diff(%, x, x)

diff(f(x), x)

>> int(f(t, x), t = x..x^2)

2
int(f(t, x), t = x..x)

>> diff(%, x)

2 2
2 x f(x , x) - f(x, x) + int(diff(f(t, x), x), t = x..x)

Example 10. D may only be applied to functions whereas diff is applied to
expressions:

>> D(sin), diff(sin(x), x)

cos, cos(x)

Applying D to expressions and diff to functions makes no sense:

>> D(sin(x)), diff(sin, x)

D(sin(x)), 0

rewrite allows to rewrite expressions with D into diff-expressions and vice
versa:

>> rewrite(D(f)(x), diff), rewrite(D(D(f))(x), diff)

diff(f(x), x), diff(f(x), x, x)

>> diff(f(x, x), x) = rewrite(diff(f(x, x), x), D)

diff(f(x, x), x) = D([1], f)(x, x) + D([2], f)(x, x)

285

Example 11. Advanced users can extend diff to their own special mathem-
atical functions (see the section “Background” below). To this end, embed your
mathematical function into a function environment g, say, and implement the
behavior of diff for this function as the "diff" slot of the function environ-
ment.

If a subexpression of the form g(..) occurs in an expression f, then diff(f,
x) calls g::diff(g(..), x) to determine the derivative of the subexpression
g(..).

For illustration, we show how this works for the exponential function. Of
course, the function environment exp already has a "diff" slot. We call our
function environment Exp in order not to overwrite the existing system function
exp.

This example "diff"-slot implements the chain rule for the exponential
function. The derivative is the original function call times the derivative of the
argument:

>> Exp := funcenv(Exp):
Exp::diff := proc(f, x)
begin

// f = Exp(something), i.e., something = op(f, 1)
f*diff(op(f, 1), x):

end_proc:
diff(Exp(x^2), x)

2
2 x Exp(x)

In the following call, prog::trace shows that the function is called with only
two arguments. Exp::diff is called only once since the result of the second
call is read from an internal cache for intermediate results in diff:

>> prog::trace(Exp::diff):
diff(Exp(x^2), x, x)

enter ’Exp::diff’ with args : Exp(x^2), x
leave ’Exp::diff’ with result : 2*x*Exp(x^2)

2 2 2
2 Exp(x) + 4 x Exp(x)

>> prog::untrace(Exp::diff): delete f, Exp:

Background:

A If a subexpression of the form g(..) occurs in f and g is a function en-
vironment, then diff(f, x) attempts to call the slot "diff" of g to
determine the derivative of g(..). In this way, you can extend the func-
tionality of diff to your own special mathematical functions.

286

The slot "diff" is called with the arguments g(..), x.

If g does not have a slot "diff", then the system function diff returns
the symbolic expression diff(g(..), x) for the derivative of the subex-
pression.

The "diff"-slot is always called with exactly two arguments. If the func-
tion diff was called with more indeterminates (i.e., if a higher derivative
was requested), then the "diff"-slot is called several times, each call
computing the derivative with respect to one of the indeterminates. The
results of the calls of "diff"-slots are cached in diff in order to prevent
redundant function calls. Cf. example 11.

A Similarly, if an element d of a library domain T occurs as a subexpres-
sion of f, then diff(f, x) calls the slot T::diff(d, x) to compute the
derivative of d.

If the domain T does not have a slot "diff", then diff considers this
object as a constant and returns 0 for the corresponding subexpression.

Changes:

A Assuming that partial derivatives commute, the ordering of higher partial
derivatives is now“normalized”: diff(f(x1, x2), x1, x2) and diff(f(x1,
x2), x2, x1) now produce the same result.

dilog – the dilogarithm function

dilog(x) represents the dilogarithm function
∫ x
1 ln(t)/(1− t) dt .

Call(s):

A dilog(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: ln, polylog

287

Details:

A If x is a floating point number, then dilog(x) returns the numerical value
of the dilogarithm function. The special values:

dilog(-1) = π2/4− i π ln(2),

dilog(0) = π2/6,

dilog(1/2) = π2/12− ln(2)2/2,

dilog(1) = 0,

dilog(2) = −π2/12,

dilog(I) = π2/16− i CATALAN− i π ln(2)/4,

dilog(-I)= π2/16 + i CATALAN + i π ln(2)/4,

dilog(1+I) = −π2/48− i CATALAN,

dilog(1-I) = −π2/48 + i CATALAN,

dilog(infinity) = -infinity

are implemented. For all other arguments, dilog returns a symbolic func-
tion call.

A Functional identities are used to rewrite the result for exact numerical
arguments of Type::Numeric that have a negative real part or are of
absolute value larger than 1. Cf. example 2.

A dilog(x) coincides with polylog(2, 1-x).

Example 1. We demonstrate some calls with exact and symbolic input data:

>> dilog(0), dilog(2/3), dilog(sqrt(2)), dilog(1 + I), dilog(x)

2 2
PI 1/2 PI
---, dilog(2/3), dilog(2), - I CATALAN - ---, dilog(x)
6 48

Floating point values are computed for floating point arguments:

>> dilog(-1.2), dilog(3.4 - 5.6*I)

2.458586602 - 2.477011851 I, - 2.529187195 + 2.25273709 I

288

Example 2. Arguments built from integers and rational numbers are rewrit-
ten, if they lie in the left half of the complex plane or are of absolute value
larger than 1. The following arguments have a negative real part:

>> dilog(-400/3), dilog(-1/2 + I)

2 2
PI ln(403/3)
--- + dilog(3/403) + ---------- - ln(403/3) (I PI + ln(400/3))
6 2

2 2
PI ln(3/2 - I)

, --- + ------------ + dilog(6/13 + 4/13 I) -
6 2

ln(- 1/2 + I) ln(3/2 - I)

The following arguments have an absolute value larger than 1:

>> dilog(31/30), dilog(1 + 2/3*I)

2 2
ln(31/30) ln(1 + 2/3 I)

- dilog(30/31) - ----------, - -------------- -
2 2

dilog(9/13 - 6/13 I)

Example 3. The negative real axis is a branch cut of dilog. A jump of height
2π i ln(1− x) occurs when crossing this cut at the real point x < 0:

>> dilog(-1.2), dilog(-1.2 + I/10^100), dilog(-1.2 - I/10^100)

2.458586602 - 2.477011851 I, 2.458586602 - 2.477011851 I,

2.458586602 + 2.477011851 I

Example 4. The functions diff, float, limit, and series handle expres-
sions involving dilog:

>> diff(dilog(x), x, x, x), float(ln(3 + dilog(sqrt(PI))))

2 ln(x) 2 1
-------- + ---------- - ----------, 0.8503829845

3 2 2
(1 - x) x (1 - x) x (1 - x)

289

>> limit(dilog(x^10 + 1)/x, x = infinity)

0

>> series(dilog(x + 1/x)/x, x = -infinity, 3)

2 2
PI (I PI + ln(-x))

- --- - ----------------
6 2 I PI + ln(-x) + 1

------------------------ + ----------------- +
x 2

x

ln(-x)
- 1/2 I PI - ------ + 1/4

2 / 1 \
------------------------- + O| -- |

3 | 4 |
x \ x /

Background:

A dilog(x) coincides with
∑∞

k=1(1− x)k/k2 for |x| < 1.

A dilog has a branch cut along the negative real axis. The value at a point
x on the cut coincides with the limit “from above”:

dilog(x) = lim
ε→0+

dilog(x+ ε i) = lim
ε→0−

dilog(x+ ε i)− 2π i ln(1− x) .

A Reference: L. Lewin (ed.), “Structural Properties of Polylogarithms”,
Mathematical Surveys and Monographs Vol. 37, American Mathemat-
ical Society, Providence (1991).

dirac – the Dirac delta distribution

dirac(x) represents the Dirac delta distribution.

dirac(x, n) represents the n-th derivative of the delta distribution.

Call(s):

A dirac(x)

A dirac(x, n)

290

Parameters:
x — an arithmetical expression
n — an arithmetical expression representing a nonnegative integer

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: dirac reacts to properties of identifiers.

Related Functions: heaviside

Details:

A The calls dirac(x, 0) and dirac(x) are equivalent.

A If the argument x represents a non-zero real number, then 0 is returned.
If x is a non-real number of domain type DOM_COMPLEX, then undefined
is returned. For all other arguments, a symbolic function call is returned.

A dirac does not have a predefined value at the origin. Use

unprotect(dirac): dirac(0) := myValue:

and

dirac(float(0)) := myFloatValue: protect(dirac):

to assign a value (e.g., infinity).

A For univariate linear expressions, the simplification rule

δ(n)(a x− b) =
sign(a)
an+1

δ(n)
(
x− b

a

)
is implemented for real numerical values a.

A The integration function int treats dirac as the usual delta distribution.
Cf. example 3.

Example 1. dirac returns 0 for arguments representing non-zero real num-
bers:

>> dirac(-3), dirac(3/2), dirac(2.1, 1),
dirac(3*PI), dirac(sqrt(3), 3)

0, 0, 0, 0, 0

Arguments of domain type DOM_COMPLEX yield undefined:

>> dirac(1 + I), dirac(2/3 + 7*I), dirac(0.1*I, 1)

291

undefined, undefined, undefined

A symbolic call is returned for other arguments:

>> dirac(0), dirac(x), dirac(ln(-5)), dirac(x + I, 2), dirac(x, n)

dirac(0), dirac(x), dirac(I PI + ln(5)), dirac(x + I, 2),

dirac(x, n)

>> dirac(2*x - 1, n)

dirac(x - 1/2, n)

n + 1
2

A natural value for dirac(0) is infinity:

>> unprotect(dirac): dirac(0) := infinity: dirac(0)

infinity

>> delete dirac(0): protect(dirac): dirac(0)

dirac(0)

Example 2. dirac reacts to assumptions set by assume:

>> assume(x < 0): dirac(x)

0

>> assume(x, Type::Real): assume(x <> 0, _and): dirac(x)

0

>> unassume(x):

Example 3. The symbolic integration function int treats dirac as the delta
distribution:

>> int(f(x)*dirac(x - y^2), x = -infinity..infinity)

2
f(y)

292

>> int(int(f(x, y)*dirac(x - y^2), x = -infinity..infinity),
y = -1..1)

2
int(f(y , y), y = -1..1)

The indefinite integral of dirac involves the step function heaviside:

>> int(f(x)*dirac(x), x), int(f(x)*dirac(x, 1), x)

heaviside(x) f(0), dirac(x) f(0) - heaviside(x) D(f)(0)

If the delta peak is on the boundary of the integration region, then the result
involves a symbolic call of heaviside(0):

>> int(f(x)*dirac(x - 3), x = -1..3)

f(3) heaviside(0)

Note that int can handle the distribution only if the argument of dirac is
linear in the integration variable:

>> int(f(x)*dirac(2*x - 3), x = -10..10),
int(f(x)*dirac(x^2), x = -10..10)

f(3/2) 2
------, int(f(x) dirac(x), x = -10..10)

2

Also note that dirac should not be used for numerical integration, since the
numerical algorithm will typically fail to detect the delta peak:

>> numeric::int(dirac(x - 3), x = -10..10)

0.0

discont – discontinuities of a function

discont(f, x) computes the set of all discontinuities of the function f(x).

discont(f, x = a..b) computes the set of all discontinuities of f(x) lying in
the interval [a, b].

293

Call(s):

A discont(f, x)

A discont(f, x, F)

A discont(f, x, Undefined)

A discont(f, x = a..b)

A discont(f, x = a..b, F)

A discont(f, x = a..b, Undefined)

Parameters:
f — an arithmetical expression representing a function in x
x — an identifier
F — either Dom::Real or Dom::Complex
a, b — interval boundaries: arithmetical expressions

Options:

Undefined — return only those points where f is not defined (and not
just discontinous).

Return Value: a set—see the help page for solve for an overview of all types
of sets—or a symbolic discont call.

Side Effects: discont reacts to properties of free parameters both in f as
well as in a and b. discont sometimes reacts to properties of x.

Overloadable by: f

Related Functions: limit, solve

Details:

A discont(f, x, F) returns a set of numbers containing all discontinuities
of f when f is regarded as a function of x defined on F . Please note that
a real number that is a discontinuity of a complex function need not be a
discontinuity of the restriction of that function to the set of real numbers:
consider, for example, a function that has its branch cut on the real axis,
as in example 2 below.

A Discontinuities include points where the function is not defined as well
as points where the function is defined but not continuous. If the op-
tion Undefined is used, only points where the function is not defined are
returned.

A If the parameter F is omitted, then F=Dom::Complex is used as a default,
i.e., f is regarded as a function defined on the complex numbers, unless
the global assumption assume(Global, Type::Real) has been made, in
which case F=Dom::Real is the default.

294

A If a range a..b is given, the set of discontinuities is intersected with the
closed interval [a, b].

A The set returned by discont may contain numbers that are not discon-
tinuities of f . See example 7.

A If discont is unable to compute the discontinuities, then a symbolic
discont call is returned; see example 8.

A discont can be extended to user-defined mathematical functions via over-
loading. To this end, embed the mathematical function in a function
environment and assign the set of real and complex discontinuities and
points where is the function is not defined to its "realDiscont", "complexDiscont",
and "undefined" slot, respectively; see solve for an overview of the vari-
ous types of sets. See also example 8 below.

Example 1. The gamma function has poles at all integers less or equal to zero.
Hence x -> gamma(x/2) has poles at all even integers less or equal to zero:

>> discont(gamma(x/2), x)

{ 2*X2 | X2 in Z_ } intersect]-infinity, 0]

Example 2. The logarithm has a branch cut on the negative real axis; hence,
it is not continuous there. However, its restriction to the real numbers is con-
tinuous at every point except zero:

>> discont(ln(x), x), discont(ln(x), x, Dom::Real)

]-infinity, 0], {0}

Example 3. The function sign is defined everywhere; it is not continous at
zero:

>> discont(sign(x), x), discont(sign(x), x, Undefined)

{0}, {}

Example 4. If a range is given, only the discontinuities in that range are
returned.

>> discont(1/x/(x - 1), x = 0..1/2)

{0}

295

Example 5. A range may have arbitrary arithmetical expressions as bound-
aries. discont does not implicitly assume that the right boundary is greater or
equal to the left boundary:

>> discont(1/x, x = a..b)

piecewise({0} if a <= 0 and 0 <= b,

{} if (not a <= 0 or not 0 <= b))

Example 6. As can be seen from the previous example, discont reacts to
properties of free parameters (because piecewise does). The result also de-
pends on the properties of x: it may omit values that x cannot take on anyway
because of its properties.

>> assume(x > 0):
discont(1/x, x)

{}

>> delete x:

Example 7. Sometimes, discont returns a proper superset of the set of dis-
continuities:

>> discont(piecewise([x<>0, x*sin(1/x)], [x=0, 0]), x)

{0}

Example 8. A symbolic discont call is returned if the system does not know
how to determine the discontinuities of a given function:

>> delete f: discont(f(x), x)

discont(f(x), x)

You can provide the necessary information by adding a slot to f. discont takes
care to handle f correctly also if it appears in a more complicated expression:

>> f := funcenv(x->procname(x)): f::complexDiscont:={1}:
discont(f(sin(x)), x=-4..34)

{ PI 5 PI 9 PI 13 PI 17 PI 21 PI }
{ --, ----, ----, -----, -----, ----- }
{ 2 2 2 2 2 2 }

296

Example 9. We define a function that implements the logarithm to base 2.
For simplicity, we let it always return the unevaluated function call. The log-
arithm has a branch cut on the negative real axis; its restriction to the reals is
continuous everywhere except at zero:

>> binlog := funcenv(x -> procname(x)):
binlog::realDiscont := {0}:
binlog::undefined := {0}:
binlog::complexDiscont := Dom::Interval(-infinity, [0]):
discont(binlog(x), x=-2..2);
discont(binlog(x), x=-2..2, Dom::Real);
discont(binlog(x), x=-2..2, Undefined)

[-2, 0]

{0}

{0}

Changes:

A A new option Undefined has been introduced.

div – the integer part of a quotient

x div m represents the integer q satisfying x = q m+ r with 0 ≤ r < |m|.

Call(s):

A x div m

A _div(x, m)

Parameters:
x, m — integers or symbolic arithmetical expressions; m must not be

zero.

Return Value: an integer or an arithmetical expression of type "_div".

Overloadable by: x, m

Related Functions: _mod, /, divide, mod, modp, mods

297

Details:

A For positive x and m, q = x div m is the integer part of the quotient x/m,
i.e., q = trunc(x/m).

A x div m is equivalent to the function call _div(x, m).

A An integer is returned if both x and m evaluate to integers. A symbolic
expression of type "_div" is returned if either x or m does not evaluate to
a number. An error is raised if x or m evaluates to a number that is not
an integer.

A div does not operate on polynomials. Use divide.

A div is a function of the system kernel.

Example 1. With the default setting for mod, the identity (x div m) * m +
(x mod m) = x holds for integer numbers x and m:

>> 43 div 13 = trunc(43/13), 43 mod 13 = frac(43/13) * 13

3 = 3, 4 = 4

>> (43 div 13) * 13 + (43 mod 13) = 43

43 = 43

Example 2. Symbolic expressions of type "_div" are returned, if either x or
m does not evaluate to a number:

>> 43 div m, x div 13, x div m

43 div m, x div 13, x div m

>> type(x div m)

"_div"

If x or m are numbers, they must be integer numbers:

>> 1/2 div 2

Error: Illegal argument in div or mod

>> x div 2.0

Error: Illegal operand [_mod]

298

divide – divide polynomials

divide(p, q) divides the univariate polynomials p and q. It returns the quo-
tient s and the remainder r satisfying p = s q + r, degree(r) < degree(q).

Call(s):

A divide(p1, q1 <, mode>)

A divide(f1, g1 <, mode>)

A divide(f, g <, [x]> <, mode>)

A divide(p, q, Exact)

A divide(f, g, <[x1, x2, ...],> Exact)

Parameters:
p1, q1 — univariate polynomials of type DOM_POLY.
f1, g1 — univariate polynomial expressions
p, q — univariate or multivariate polynomials of type

DOM_POLY.
f, g — univariate or multivariate polynomial expressions
x — an identifier or an indexed identifier. Expressions are

regarded as univariate polynomials in the
indeterminate x.

x1, x2, ... — identifiers or indexed identifiers. Multivariate
expressions are regarded as multivariate polynomials
in these indeterminates.

Options:

mode — either Quo or Rem . With Quo , only the quotient s is
returned; with Rem , only the remainder r is returned.

Exact — exact division of multivariate polynomials. Only the quotient
s is returned. If no exact division without remainder is
possible, FAIL is returned.

Return Value: a polynomial, a polynomial expression, a sequence of two
polynomials or polynomial expressions, or the value FAIL.

Overloadable by: p, q, p1, q1, f, g, f1, g1

Related Functions: /, content, degree, div, factor, gcd, gcdex,
groebner::normalf, ground, mod, multcoeffs, pdivide, poly, powermod

299

Details:

A divide(p, q) divides the univariate polynomials p and q. The quotient s
and the remainder r are calculated such that p = s*q + r and degree(r)
< degree(q). If no option is given, the sequence s, r is returned.

A The first two arguments can be either polynomials or polynomial expres-
sions.

Polynomials must be of the same type, i.e. their variables and coefficient
rings must be identical.

Expressions are internally converted to polynomials (see the function
poly). If no list of indeterminates is specified, all symbolic variables
in the expressions are chosen as indeterminates. FAIL is returned if the
expressions cannot be converted to polynomials.

The resulting polynomials are of the same type as the first two arguments,
i.e., either polynomials of type DOM_POLY or polynomial expressions are
returned.

A The coefficient ring of the polynomials must implement the method "_divide"
which is used internally to divide coefficients. This method must return
FAIL if coefficients cannot be divided.

A divide is a function of the system kernel.

Example 1. Without further options, divide returns the quotient and the
remainder of the division of univariate polynomials:

>> divide(poly(x^3 + x + 1, [x]), poly(x^2 + x + 1, [x]))

poly(x - 1, [x]), poly(x + 2, [x])

>> divide(x^3 + x + 1, x^2 + x + 1)

x - 1, x + 2

Example 2. If expressions contain more than one variable, indeterminates
must be specified. Other symbolic objects are regarded as parameters. The
option Quo instructs divide to return the quotient only:

>> divide(a*x^3 + x + 1, x^2 + x + 1, [x], Quo)

a x - a

The option Rem instructs divide to return the remainder only:

>> divide(a*x^3 + x + 1, x^2 + x + 1, [x], Rem)

a + x + 1

300

Example 3. For multivariate expressions, regarded as a univariate polynomial
in a specified indeterminate, the result of the division depends on the indeterm-
inate:

>> divide(x^2 - 2*x - y, y*x - 1, [x]);

1 1
- - 2 - - 2

x y y
- + -----, ----- - y
y y y

>> divide(x^2 - 2*x - y, y*x - 1, [y])

1 2 1
- -, x - - - 2 x
x x

Example 4. Multivariate polynomials and polynomial expressions can only be
divided with the option Exact . If a division without remainder is possible, the
quotient is returned. This operation is equivalent to the division of polynomials
using the / operator:

>> p := poly(x^2 - x*y - x + y, [x, y]): q := poly(x - 1, [x, y]):
p/q = divide(p, q, Exact)

poly(x - y, [x, y]) = poly(x - y, [x, y])

If exact division of multivariate polynomials without remainder is not possible,
FAIL is returned:

>> p := poly(x^2 + y, [x, y]): q := poly(x - 1, [x, y]):
divide(p, q, Exact) = p/q

FAIL = FAIL

>> delete p, q:

domtype – the data type of an object

domtype(object) returns the domain type (the data type) of the object.

Call(s):

A domtype(object)

301

Parameters:

object — any MuPAD object

Return Value: the data type, i.e., an object of type DOM_DOMAIN.

Overloadable by: object

Related Functions: coerce, DOM_DOMAIN, domain, hastype, testtype,
type, Type

Details:

A For most data types, the domain type as returned by domtype coincides
with the type returned by the function type. Only for expressions of
domain type DOM_EXPR, the function type yields a distinction according
to the 0-th operand. Cf. example 2.

A In contrast to most other functions, domtype does not flatten arguments
that are expression sequences.

A domtype is a function of the system kernel.

Example 1. Real floating point numbers are of domain type DOM_FLOAT:

>> domtype(12.345)

DOM_FLOAT

Complex numbers are of domain type DOM_COMPLEX. The operands may be
integers (DOM_INT), rational numbers (DOM_RAT), or floating point numbers
(DOM_FLOAT). The operands can be accessed via op:

>> domtype(1 - 2*I), op(1 - 2*I);
domtype(1/2 - I), op(1/2 - I);
domtype(2.0 - 3.0*I), op(2.0 - 3.0*I)

DOM_COMPLEX, 1, -2

DOM_COMPLEX, 1/2, -1

DOM_COMPLEX, 2.0, -3.0

302

Example 2. Expressions are objects of the domain type DOM_EXPR. The type
of expressions can be queried further with the function type:

>> domtype(x + y), type(x + y);
domtype(x - 1.0*I), type(x - 1.0*I);
domtype(x*I), type(x*I);
domtype(x^y), type(x^y);
domtype(x[i]), type(x[i])

DOM_EXPR, "_plus"

DOM_EXPR, "_plus"

DOM_EXPR, "_mult"

DOM_EXPR, "_power"

DOM_EXPR, "_index"

Example 3. domtype evaluates its argument. In this example, the assignment
is first evaluated and domtype is applied to the return value of the assignment.
This is the right hand side of the assignment, i.e., 5:

>> domtype((a := 5))

DOM_INT

>> delete a:

Example 4. Here the identifier a is first evaluated to the expression sequence
3, 4. Its domain type is DOM_EXPR, its type is "_exprseq":

>> a := 3, 4: domtype(a), type(a)

DOM_EXPR, "_exprseq"

>> delete a:

Example 5. factor creates objects of the domain type Factored:

>> domtype(factor(x^2 - x))

Factored

303

Example 6. matrix creates objects of the domain type Dom::Matrix():

>> domtype(matrix([[1, 2], [3, 4]]))

Dom::Matrix()

Example 7. Domains are of the domain type DOM_DOMAIN:

>> domtype(DOM_INT), domtype(DOM_DOMAIN)

DOM_DOMAIN, DOM_DOMAIN

Example 8. domtype is overloadable, i.e., a domain can pretend to be of
another domain type. The special slot "dom" always gives the actual domain:

>> d := newDomain("d"): d::domtype := x -> "domain type d":
e := new(d, 1): e::dom, type(e), domtype(e)

d, d, "domain type d"

>> delete d, e:

end – close a block statement

end is a keyword which, depending on the context, is parsed as one of the
following keywords:

• end_case

• end_for

• end_if

• end_proc

• end_repeat

• end_while

Related Functions: end_case, end_for, end_if, end_proc, end_repeat,
end_while

304

Example 1. Each of the keywords proc, case, if, for, repeat, and while
starts some block construct in the MuPAD language. Each block can be closed
with end or with the corresponding special keyword end_proc, end_case etc.:

>> f :=
proc(a, b)
local i;

begin
for i from a to b do
if isprime(i) then

print(Unquoted, expr2text(i)." is a prime")
end

end
end:

>> f(20, 30):

23 is a prime

29 is a prime

The parser translates end to the appropriate keyword matching the type of the
block:

>> expose(f)

proc(a, b)
name f;
local i;

begin
for i from a to b do
if isprime(i) then
print(Unquoted, expr2text(i)." is a prime")

end_if
end_for

end_proc

>> delete f:

erf, erfc – the error function and the complementary error func-
tion

erf(x) represents the error function 2√
π

∫ x
0 e

−t2 dt. The complementary error

function is erfc(x) = 1− erf(x) = 2√
π

∫∞
x e−t2 dt.

305

Call(s):

A erf(x)

A erfc(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Side Effects: When called with a floating point argument, the functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Details:

A Theses functions are defined for all complex arguments.

A Floating point values are returned for floating point arguments. The exact
values:

erf(0) = 0, erf(infinity) = 1, erf(−infinity) = −1,

erfc(0) = 1, erfc(infinity) = 0, erfc(−infinity) = 2

are implemented. For all other arguments, symbolic function calls are
returned.

A For floating point arguments of large absolute value, internal numerical
underflow may happen. The section of the complex plane where |Im(x)| ≤
|Re(x)|/10, is protected against such underflows: when the real part of x
is a large positive number, the result returned by erfc may be truncated
to 0.0. For large negative real part, it may be rounded to 2.0. Knowing
that erf(x) = 1− erfc(x), erf may also return correspondingly rounded
values for arguments in this section. Cf. example 2.

A The float attributes are kernel functions, i.e., floating point evaluation is
fast.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> erf(0), erf(3/2), erf(sqrt(2)), erf(infinity)

1/2
0, erf(3/2), erf(2), 1

>> erfc(0), erfc(x + 1), erfc(-infinity)

1, erfc(x + 1), 2

306

Floating point values are computed for floating point arguments:

>> erf(-7.2), erf(2.0 + 3.5*I), erfc(100.0 + 100.0*I)

-1.0, 421.8123327 + 343.6612334 I,

0.0006523436638 - 0.003935726363 I

Example 2. For large floating point arguments with positive real parts, the
values returned by erfc may be truncated to 0.0:

>> erfc(2411.3), erfc(2411.4)

3.678326052e-2525152, 0.0

This protection against numerical underflow is builtin for arguments satisfying
|Im(x)| ≤ |Re(x)|/10.

>> erfc(2500.0 + 250.0*I)

0.0

Errors may occur outside this region in the complex plane:

>> erfc(2500.0 + 250.1*I)

Error: Overflow/underflow in arithmetical operation;
during evaluation of ’erfc::float’

Example 3. The functions diff, float, limit, and series handle expres-
sions involving the error functions:

>> diff(erf(x), x, x, x), float(ln(3 + erfc(sqrt(PI)*I)))

2 2 2
8 x exp(- x) 4 exp(- x)
-------------- - -----------, 2.309003461 - 1.16207002 I

1/2 1/2
PI PI

>> limit(x/(1 + x)*erf(x), x = infinity)

1

>> series(erfc(x), x = infinity, 4)

1 1 / 1 \
--------------- - ------------------ + O| ---------- |

1/2 2 3 1/2 2 | 5 2 |
x PI exp(x) 2 x PI exp(x) \ x exp(x) /

307

Background:

A erf and erfc are entire functions.

error – raise a user-specified exception

error(message) aborts the current procedure, returns to the interactive level,
and displays the error message message.

Call(s):

A error(message)

Parameters:

message — the error message: a string

Side Effects: The formatting of the output of error is sensitive to the envir-
onment variable TEXTWIDTH.

Related Functions: lasterror, prog::error, traperror, warning

Details:

A The call error(message) aborts the current procedure with an error. If
the error is not caught via traperror by a procedure that has directly or
indirectly called the current procedure, control is returned to the inter-
active level, and the string message is printed as an error message.

A The printed error message has the form Error: message [name], where
name is the name of the procedure containing the call to error. See the
examples.

A Errors can be caught by the function traperror. If an error occurs while
the arguments of traperror are evaluated, control is returned to the
procedure containing the call to traperror and not to the interactive
level. No error message is printed. The return value of traperror is 1028
when it catches an error raised by error; see example 2.

A The function error is useful to raise an error in the type checking part
of a user-defined procedure, when this procedure is called with invalid
arguments.

A error is a function of the system kernel.

308

Example 1. If the divisor of the following simple division routine is 0, then
an error is raised:

>> mydivide := proc(n, d) begin
if iszero(d) then
error("Division by 0")

end_if;
n/d

end_proc:
mydivide(2, 0)

Error: Division by 0 [mydivide]

Example 2. When the error is raised in the following procedure p, control is
returned to the interactive level immediately. The second call to print is never
executed. Note that the procedure’s name is printed in the error message:

>> p := proc() begin
print("entering procedure p");
error("oops");
print("leaving procedure p")

end_proc:
p()

"entering procedure p"
Error: oops [p]

The following procedure q calls the procedure p and catches any error that is
raised within p:

>> q := proc() begin
print("entering procedure q");
print("caught error: ", traperror(p()));
print("leaving procedure q")

end_proc:
q()

"entering procedure q"

"entering procedure p"

"caught error: ", 1028

"leaving procedure q"

309

eval – evaluate an object

eval(object) evaluates its argument object by recursively replacing the iden-
tifiers occurring in it by their values and executing function calls, and then
evaluates the result again.

Call(s):

A eval(object)

Parameters:

object — any MuPAD object

Return Value: the evaluated object.

Side Effects: eval is sensitive to the value of the environment variable LEVEL,
which determines the maximal substitution depth for identifiers.

Further Documentation: Chapter 5 of the MuPAD Tutorial.

Related Functions: context, evalassign, evalp, freeze, hold, indexval,
LEVEL, level, MAXLEVEL, MAXDEPTH, val

Details:

A eval serves to request the evaluation of unevaluated or partially evaluated
objects. Evaluation means that identifiers are replaced by their values and
function calls are executed.

Usually, every system function automatically evaluates its arguments and
returns a fully evaluated object, and using eval is only necessary in ex-
ceptional cases. For example, the functions map, op, and subs may return
objects that are not fully evaluated. See example 1.

A Like most other MuPAD functions, eval first evaluates its argument. Then
it evaluates the result again. At interactive level, the second evaluation
usually has no effect, but this is different within procedures; see examples
3 and 4.

A eval is sensitive to the value of the environment variable LEVEL, which
determines the maximal depth of the recursive process that replaces an
identifier by its value during evaluation. The evaluation of the argument
and the subsequent evaluation of the result both take place with substi-
tution depth LEVEL. See example 3.

310

A If a local variable or a formal parameter, of type DOM_VAR, of a procedure
occurs in object, then it is always replaced by its value when eval eval-
uates its argument, independent of the value of LEVEL. At the subsequent
second evaluation, the value of the local variable is evaluated with substi-
tution depth given by LEVEL, which usually is 1. Cf. example 4.

A The behavior of eval within a procedure may sometimes not be what
you expect, since the default substitution depth within procedures is 1
and eval evaluates with this substitution depth. Use level to request a
complete evaluation within a procedure; see the corresponding help page
for details.

A eval enforces the evaluation of expressions of the form hold(x): eval(hold(x))
is equivalent to x. Cf. example 2.

A eval accepts expression sequences as arguments; see example 3. In par-
ticular, the call eval() returns the empty sequence null().

A eval does not recursively descend into arrays. Use the call map(object,
eval) to evaluate the entries of an array. Cf. example 5.

A eval does not recursively descend into tables. Use the call map(object,
eval) to evaluate the entries of a table.

However, it is not possible to evaluate the indices of a given table. If you
want to do this, create a new table with the evaluated operands of the old
one. Cf. example 6.

A Polynomials are not further evaluated by eval. Use evalp to sub-
stitute values for the indeterminates of a polynomial, and use the call
mapcoeffs(object, eval) to evaluate all coefficients. Cf. example 7.

A The evaluation of elements of a user-defined domain depends on the im-
plementation of the domain. Usually, domain elements remain unevalu-
ated. If the domain has a slot "evaluate", the corresponding slot routine
is called with the domain element as argument at each evaluation, and
hence it is called twice when eval is invoked. Cf. example 8.

A eval is a function of the system kernel.

Example 1. subs performs a substitution, but does not evaluate the result:

>> subs(ln(x), x = 1)

ln(1)

An explicit call of eval is necessary to evaluate the result:

>> eval(subs(ln(x), x = 1))

0

311

text2expr does not evaluate its result either:

>> a := c:
text2expr("a + a"), eval(text2expr("a + a"))

a + a, 2 c

Example 2. The function hold prevents the evaluation of its argument. A
later evaluation can be forced with eval:

>> hold(1 + 1); eval(%)

1 + 1

2

Example 3. When an object is evaluated, identifiers are replaced by their
values recursively. The maximal recursion depth of this process is given by the
environment variable LEVEL:

>> delete a0, a1, a2, a3, a4:
a0 := a1: a1 := a2 + 2: a2 := a3 + a4: a3 := a4^2: a4 := 5:

>> LEVEL := 1: a0, a0 + a2;
LEVEL := 2: a0, a0 + a2;
LEVEL := 3: a0, a0 + a2;
LEVEL := 4: a0, a0 + a2;
LEVEL := 5: a0, a0 + a2;

a1, a1 + a3 + a4

2
a2 + 2, a2 + a4 + 7

a3 + a4 + 2, a3 + a4 + 32

2 2
a4 + 7, a4 + 37

32, 62

eval first evaluates its argument and then evaluates the result again. Both
evaluations happen with substitution depth given by LEVEL:

>> LEVEL := 1: eval(a0, a0 + a2);
LEVEL := 2: eval(a0, a0 + a2);
LEVEL := 3: eval(a0, a0 + a2);

312

2
a2 + 2, a2 + a4 + 7

2 2
a4 + 7, a4 + 37

32, 62

Since the default value of LEVEL is 100, eval usually has no effect at interactive
level:

>> delete LEVEL:
a0, eval(a0), a0 + a2, eval(a0 + a2)

32, 32, 62, 62

Example 4. This example shows the difference between the evaluation of
identifiers and local variables. By default, the value of LEVEL is 1 within a
procedure, i.e., a global identifier is replaced by its value when evaluated, but
there is no further recursive evaluation. This changes when LEVEL is assigned
a bigger value inside the procedure:

>> delete a0, a1, a2, a3:
a0 := a1 + a2: a1 := a2 + a3: a2 := a3^2 - 1: a3 := 5:
p := proc()

save LEVEL;
begin
print(a0, eval(a0)):
LEVEL := 2:
print(a0, eval(a0)):

end_proc:

>> p()

2
a1 + a2, a2 + a3 + a3 - 1

2
a2 + a3 + a3 - 1, 53

In contrast, evaluation of a local variable replaces it by its value, without further
evaluation. When eval is applied to an object containing a local variable, then
the effect is an evaluation of the value of the local variable with substitution
depth LEVEL:

313

>> q := proc()
save LEVEL;
local x;

begin
x := a0:
print(x, eval(x)):
LEVEL := 2:
print(x, eval(x)):

end_proc:
q()

2
a1 + a2, a2 + a3 + a3 - 1

2
a1 + a2, a3 + 28

The command x:=a0 assigns the value of the identifier a0, namely the unevalu-
ated expression a1+a2, to the local variable x, and x is replaced by this value
every time it is evaluated, independent of the value of LEVEL:

Example 5. In contrast to lists and sets, evaluation of an array does not
evaluate its entries. Thus eval has no effect for arrays either. Use map to
evaluate all entries of an array:

>> delete a, b:
L := [a, b]: A := array(1..2, L): a := 1: b := 2:
L, A, eval(A), map(A, eval)

+- -+ +- -+ +- -+
[1, 2], | a, b |, | a, b |, | 1, 2 |

+- -+ +- -+ +- -+

The call map(A, gamma) does not evaluate the entries of the array A before
applying the function gamma. Map the function gamma@eval to enforce the
evaluation:

>> map(A, gamma), map(A, gamma@eval)

+- -+ +- -+
| gamma(a), gamma(b) |, | 1, 1 |
+- -+ +- -+

Example 6. Similarly, evaluation of a table does not evaluate its entries, and
you can use map to achieve this. However, this does not affect the indices:

314

>> delete a, b:
T := table(a = b): a := 1: b := 2:
T, eval(T), map(T, eval)

table(table(table(
a = b , a = b , a = 2

)))

If you want a table with evaluated indices as well, create a new table from the
evaluated operands of the old table. Using eval is necessary here since the
operand function op does not evaluate the returned operands:

>> op(T), table(eval(op(T)))

table(
a = b, 1 = 2

)

Example 7. Polynomials are inert when evaluated, and also eval has no
effect:

>> delete a, x: p := poly(a*x, [x]): a := 2: x := 3:
p, eval(p), map(p, eval)

poly(a x, [x]), poly(a x, [x]), poly(a x, [x])

Use mapcoeffs to evaluate all coefficients:

>> mapcoeffs(p, eval)

poly(2 x, [x])

If you want to substitute a value for the indeterminate x, use evalp:

>> delete x: evalp(p, x = 3)

3 a

As you can see, the result of an evalp call may contain unevaluated identifiers,
and you can evaluate them by an application of eval:

>> eval(evalp(p, x = 3))

6

315

Example 8. The evaluation of an element of a user-defined domains depends
on the implementation of the domain. Usually, it is not evaluated further:

>> delete a: T := newDomain("T"):
e := new(T, a): a := 1:
e, eval(e), map(e, eval), val(e)

new(T, a), new(T, a), new(T, a), new(T, a)

If the slot "evaluate" exists, the corresponding slot routine is called for a do-
main element each time it is evaluated. We implement the routine T::evaluate,
which simply evaluates all internal operands of its argument, for our domain T.
The unevaluated domain element can still be accessed via val:

>> T::evaluate := x -> new(T, eval(extop(x))):
e, eval(e), map(e, eval), val(e)

new(T, 1), new(T, 1), new(T, 1), new(T, a)

evalassign – assignment with evaluation of the left hand side

evalassign(x, value, i) evaluates x with substitution depth i and assigns
value to the result of the evaluation.

Call(s):

A evalassign(x, value, i)

A evalassign(x, value)

Parameters:
x — an object that evaluates to a valid left hand side of an

assignment
value — any MuPAD object
i — a nonnegative integer less than 231

Return Value: value.

Related Functions: :=, _assign, assign, assignElements, delete, eval,
LEVEL, level

Details:

A evalassign(x, value, i) evaluates value, as usual. Then it evaluates
x with substitution depth i, and finally it assigns the evaluation of value
to the evaluation of x.

316

The difference between evalassign and the assignment operator := is
that the latter does not evaluate its left hand side at all.

A As usual, the evaluation of value takes place with substitution depth
given by LEVEL. By default, it is 1 within a procedure.

A See the help pages of LEVEL and level for the notion of substitution depth
and for details about evaluation.

A The third argument is optional. The calls evalassign(x, value), evalassign(x,
value, 0), x := value, and _assign(x, value) are all equivalent.

A The result of the evaluation of x must be a valid left hand side for an
assignment. See the help page of := for details.

A The second argument is not flattened. Hence it may also be a sequence.
Cf. example 2.

Example 1. evalassign can be used in situations such as the following. Sup-
pose that an identifier a has another identifier b as its value, and that we want
to assign something to this value of a, not to a itself:

>> delete a, b: a := b:
evalassign(a, 100, 1): level(a, 1), a, b

b, 100, 100

This would not have worked with the assignment operator :=, which does not
evaluate its left hand side:

>> delete a, b: a := b:
a := 100: level(a, 1), a, b

100, 100, b

Example 2. The second argument may also be a sequence:

>> a := b:
evalassign(a, (3,5), 1):
b

3, 5

317

Background:

A The function level is used for the evaluation of x. Hence i may exceed
the value of LEVEL.

A All special rules for _assign apply: see there on further details on indexed
assignments, assignments to slots, and the protect mechanism.

evalp – evaluate a polynomial at a point

evalp(p, x = v) evaluates the polynomial p in the variable x at the point v.

Call(s):

A evalp(p, x = v, ...)

A evalp(p, [x = v, ...])

A evalp(f, <vars,> x = v, ...)

A evalp(f, vars, [x = v, ...])

Parameters:
p — a polynomial of type DOM_POLY
x — an indeterminate
v — the value for x: an element of the coefficient ring of the

polynomial
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers

Return Value: an element of the coefficient ring, or a polynomial, or a poly-
nomial expression, or FAIL

Overloadable by: p, f

Related Functions: eval, poly

Details:

A evalp(p, x = v) evaluates the polynomial p in the variable x at the
point v. An error occurs if x is not an indeterminate of p. The value v
may be any object that could also be used as coefficient. The result is an
element of the coefficient ring of p if p is univariate. If p is multivariate,
the result is a polynomial in the remaining variables.

A If several evaluation points are given, the evaluations take place in suc-
cession from left to right. Each evaluation follows the rules above.

318

A For a polynomial p in the variables x1,x2,..., the syntax p(v1,v2,...)
can be used instead of evalp(p,x1=v1,x2=v2,...).

A evalp(f, vars, x = v, ...) first converts the polynomial expression
f to a polynomial with the variables given by vars. If no variables are
given, they are searched for in f. See poly about details of the conversion.
FAIL is returned if f cannot be converted to a polynomial. A successfully
converted polynomial is evaluated as above. The result is converted to an
expression.

A Horner’s rule is used to evaluate the polynomial. The evaluation of vari-
ables at the point 0 is most efficient and should take place first. After
that, the remaining main variable should be evaluated first.

A The result of evalp is not evaluated further. One may use eval to fully
evaluate the result.

A Instead of evalp(p, x1 = v1, x2 = v2, ...) one may also use the
equivalent form evalp(p, [x1 = v1, x2 = v2, ...]).

A evalp is a function of the system kernel.

Example 1. evalp is used to evaluate the polynomial expression x2 + 2x+ 3
at the point x = a + 2. The form of the resulting expression reflects the fact
that Horner’s rule was used:

>> evalp(x^2 + 2*x + 3, x = a + 2)

(a + 2) (a + 4) + 3

Example 2. evalp is used to evaluate a polynomial in the indeterminates
x and y at the point x = 3. The result is a polynomial in the remaining
indeterminate y:

>> p := poly(x^2 + x*y + 2, [x, y]): evalp(p, x = 3)

poly(3 y + 11, [y])

>> delete p:

Example 3. Polynomials may be called like functions in order to evaluate all
variables:

>> p := poly(x^2 + x*y, [x, y]): evalp(p, x = 3, y = 2) = p(3, 2)

15 = 15

>> delete p:

319

Example 4. If not all variables are replaced by values, the result is a polyno-
mial in the remaining variables:

>> evalp(poly(x*y*z + x^2 + y^2 + z^2, [x, y, z]), x = 1, y = 1)

2
poly(z + z + 2, [z])

Example 5. The result of evalp is not evaluated further. We first define a
polynomial p with coefficient a and then change the value of a. The change
is not reflected by p, because polynomials do not evaluate their coefficients
implicitly. One must map the function eval onto the coefficients in order to
enforce evaluation:

>> p := poly(x^2 + a*y + 1, [x,y]): a := 2:
p, mapcoeffs(p, eval)

2 2
poly(x + a y + 1, [x, y]), poly(x + 2 y + 1, [x, y])

If we use evalp to evaluate p at the point x = 1, the result is not fully evaluated.
One must use eval to get fully evaluated coefficients:

>> r := evalp(p, x = 1):
r, mapcoeffs(r, eval)

poly(a y + 2, [y]), poly(2 y + 2, [y])

>> delete p, a, r:

Changes:

A The evaluation points may also be given as list.

exp – the exponential function

exp(x) represents the value of the exponential function at the point x.

Call(s):

A exp(x)

Parameters:

x — an arithmetical expression or a floating point interval

320

Return Value: an arithmetical expression or a floating point interval

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: ln, log

Details:

A The exponential function is defined for all complex arguments.

A For most exact arguments, an unevaluated function call is returned sub-
ject to some simplifications:

• Calls of the form exp(q π i) with integer or rational q are rewritten
such that q lies in the interval [0, 2). Explicit results are returned if
the denominator of q is 1, 2, 3, 4, 5, 6, 8, 10, or 12.

• Further, the following special values are implemented:

– exp(0) = 1,

– exp(infinity) = infinity,

– exp(−infinity) = 0.

• A call of the form exp(c ln(y)) with an unevaluated ln(y) and a
constant c (i.e., of type Type::Constant) yields the result yc.

• The call exp(f(y)) yields the result y/f(y), if f is lambertV or
lambertW.

A Floating point results are computed, when the argument is a floating point
number.

Numerical overflow/underflow may happen, when the absolute
value of the real part of a floating point argument x is large. A
protection against underflow is implemented: if Re(x) < −106, then
exp(x) may return the truncated result 0.0. Cf. example 2.

!

A For arguments of type DOM_INTERVAL, the return value is another inter-
val containing the image set of the exponential function over the input
interval. See example 4.

A The protected identifier E is an alias for exp(1).

321

Example 1. We demonstrate some calls with exact and symbolic input data:

>> exp(1), exp(2), exp(-3), exp(1/4), exp(1 + I), exp(x^2)

2
exp(1), exp(2), exp(-3), exp(1/4), exp(1 + I), exp(x)

Floating point values are computed for floating point arguments:

>> exp(1.23), exp(4.5 + 6.7*I), exp(1.0/10^20), exp(123456.7)

3.421229536, 82.31014791 + 36.44342846 I, 1.0,

3.660698702e53616

Some special symbolic simplifications are implemented:

>> exp(I*PI), exp(x - 22*PI*I), exp(3 + I*PI)

-1, exp(x), -exp(3)

>> exp(ln(-2)), exp(ln(x)*PI), exp(lambertW(5))

PI 5
-2, x , -----------

lambertW(5)

Example 2. The truncated result 0.0 may be returned for floating point
arguments with negative real parts. This prevents numerical underflow:

>> exp(-5.81*10^6), exp(-5.82*10^6)

1.148529374e-2523251, 0.0

>> exp(-5.81*10^6 + 10^10*I), exp(-5.82*10^6 + 10^10*I)

1.002803534e-2523251 - 5.599149896e-2523252 I, 0.0

No such protection is implemented for numerical overflow:

>> exp(5.81*10^6)

8.706786458e2523250

>> exp(5.82*10^6)

Error: Overflow/underflow in arithmetical operation;
during evaluation of ’exp::float’

322

Example 3. System functions such as limit, series, expand, combine etc.
handle expressions involving exp:

>> limit(x*exp(-x), x = infinity), series(exp(x/(x + 1)), x = 0)

2 3 4 5
x x x 19 x 6

0, 1 + x - -- + -- + -- - ----- + O(x)
2 6 24 120

>> expand(exp(x + y + (sqrt(2) + 5)*PI*I))

1/2
- exp(x) exp(y) exp(I PI 2)

>> combine(%, exp)

1/2
- exp(x + y + I PI 2)

Example 4. exp transforms intervals (of type DOM_INTERVAL) to intervals:

>> exp(-1 ... 1)

0.3678794411 ... 2.718281829

Note that MuPAD’s floating point numbers cannot be arbitrarily large. In the
context of floating point intervals, all values larger than a machine-dependent
constant are regarded as “infinite”:

>> exp(1 ... 1e1000)

2.718281828 ... RD_INF

Finally, we would like to mention that you can also use exp on disjunct unions
of intervals:

>> exp((1 ... PI) union (10 ... 20))

2.718281828 ... 23.14069264 union 22026.46579 ... 485165195.5

Changes:

A Arguments of type DOM_INTERVAL are now handled.

A exp(1)^x is no longer simplified to exp(x) automatically.

expand – expand an expression

expand(f) expands the arithmetical expression f.

323

Call(s):

A expand(f)

A expand(f, g1, g2, ...)

Parameters:

f, g1, g2, ... — arithmetical expressions

Return Value: an arithmetical expression.

Overloadable by: f

Side Effects: expand is sensitive to properties of identifiers set via assume.

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: collect, combine, denom, factor, normal, numer,
partfrac, rationalize, rectform, rewrite, simplify

Details:

A The most important use of expand is the application of the distributivity
law to rewrite products of sums as sums of products. In this respect,
expand is the inverse function of factor.

Powers of sums with positive integer exponents are expanded as well, but
powers of sums with negative integer exponents are not expanded; see
example 2.

The numerator of a fraction is expanded, and then the fraction is rewritten
as a sum of fractions with simpler numerators; see example 1. In a certain
sense, this is the inverse functionality of normal. Use partfrac for a more
powerful way to rewrite a fraction as a sum of simpler fractions.

A expand(f) also applies the following rewriting rules to powers occurring
as subexpressions in f:

• xa+b = xaxb

• (xy)b = xbyb

• (xa)b = xab

The last two rules are only valid under certain additional restrictions, e.g.,
when b is an integer. Except for the third rule, this behavior of expand
is the inverse functionality of combine. See example 3.

324

A expand works recursively on the subexpressions of an expression f. If f
is of one of the container types array, list, set, or table, expand only
returns f and does not map on the entries. If you want to expand all
entries of one of the containers please use map. See example 4.

A If optional arguments g1, g2, ... are present, then any subexpression
of f that is equal to one of these additional arguments is not expanded;
see example 5. See section“Background” for a description how this works.

A Properties of identifiers are taken into account (see assume). Identifiers
without any properties are assumed to be complex. See example 6.

A expand also handles various types of special mathematical functions. It
rewrites a single call of a special function with a complicated argument
as a sum or a product of several calls of the same function or related
functions with simpler arguments. In this respect, expand is the inverse
function of combine.

In particular, expand implements the functional equations of the exponen-
tial function and the logarithm, the gamma function and the polygamma
function, and the addition theorems for the trigonometric functions and
the hyperbolic functions. See example 7.

A expand is a function of the system kernel.

Example 1. expand expands products of sums by multiplying out:

>> expand((x + 1)*(y + z)^2)

2 2 2 2
2 y z + 2 x y z + y + z + x y + x z

After expansion of the numerator, a fraction is rewritten as a sum of fractions:

>> expand((x + 1)^2*y/(y + z)^2)

2
y 2 x y x y

-------- + -------- + --------
2 2 2

(y + z) (y + z) (y + z)

Example 2. Powers of sums with positive integer exponents are expanded:

>> expand((x + y)^2)

2 2
2 x y + x + y

325

Powers of sums with negative integer exponents are regarded as denominators
of fractions and are not expanded:

>> expand((x + y)^(-2))

1

2
(x + y)

Example 3. A power with a sum in the exponent is rewritten as a product of
powers:

>> expand(x^(y + z + 2))

2 y z
x x x

If one of the additive terms in the exponent is negative, the power is expanded
into a fraction of powers:

>> expand((x + y)^(z - 2))

z
(x + y)

2
(x + y)

Example 4. expand works in a recursive fashion. In the following example,
the power (x+ y)z+2 is first expanded into a product of two powers. Then the
power (x + y)2 is expanded into a sum. Finally, the product of the latter sum
and the remaining power (x+ y)z is multiplied out:

>> expand((x + y)^(z + 2))

z 2 z 2 z
2 x y (x + y) + x (x + y) + y (x + y)

Here is another example:

>> expand(2^((x + y)^2))

2 2
x y 2 x y
2 2 2

326

expand does not map on the entries of a container type:

>> expand([(a + b)^2, c]), expand({(a + b)^2, c})

2 2
[(a + b) , c], {c, (a + b) }

Use map in order to expand all entries of a container:

>> map([(a + b)^2, c], expand), map({(a + b)^2, c}, expand)

2 2 2 2
[2 a b + a + b , c], {c, 2 a b + a + b }

Example 5. If additional arguments are provided, expand performs only a
partial expansion. These additional expressions, such as x + 1 in the following
example, are not expanded:

>> expand((x + 1)*(y + z))

y + z + x y + x z

>> expand((x + 1)*(y + z), x + 1)

y (x + 1) + z (x + 1)

Example 6. The following expansions are not valid for all values a, b from
the complex plane. Therefore no expansion is done:

>> expand(ln(a^2)), expand(ln(a*b))

2
ln(a), ln(a b)

The expansions are valid under the assumption that a is a positive real number:

>> assume(a > 0): expand(ln(a^2)), expand(ln(a*b))

2 ln(a), ln(a) + ln(b)

>> unassume(a):

327

Example 7. The addition theorems of trigonometry are implemented by "expand"-
slots of the trigonometric functions sin and cos:

>> expand(sin(a + b)), expand(sin(2*a))

cos(a) sin(b) + cos(b) sin(a), 2 cos(a) sin(a)

The same is true for the hyperbolic functions sinh and cosh:

>> expand(cosh(a + b)), expand(cosh(2*a))

2
cosh(a) cosh(b) + sinh(a) sinh(b), 2 cosh(a) - 1

The exponential function with a sum as argument is expanded via exp::expand:

>> expand(exp(a + b))

exp(a) exp(b)

Here are some more expansion examples for the functions sum, fact, abs,
coth, sign, binomial, beta, gamma, log, cot, tan, exp and psi:

>> sum(x + exp(x),x); expand(%)

sum(x + exp(x), x)

2
x x exp(x)
-- - - + ----------
2 2 exp(1) - 1

>> fact(x + 1); expand(%)

fact(x + 1)

fact(x) (x + 1)

>> abs(a*b); expand(%)

abs(a b)

abs(a) abs(b)

>> coth(a + b); expand(%)

coth(a + b)

cosh(a) cosh(b)
--------------------------------- +
cosh(a) sinh(b) + cosh(b) sinh(a)

sinh(a) sinh(b)

cosh(a) sinh(b) + cosh(b) sinh(a)

328

>> coth(a*b); expand(%)

coth(a b)

cosh(a b)

sinh(a b)

>> sign(a*b); expand(%)

sign(a b)

sign(a) sign(b)

>> tan(a); expand(%)

tan(a)

sin(a)

cos(a)

>> binomial(n, m); expand(%)

binomial(n, m)

n gamma(n)

m gamma(m) (n - m) gamma(n - m)

>> beta(n, m); expand(%)

beta(m, n)

gamma(m) gamma(n)

gamma(m + n)

>> gamma(x+1); expand(%)

gamma(x + 1)

x gamma(x)

>> log(10, x); expand(%)

log(10, x)

ln(x)

ln(10)

329

>> cot(x); expand(%)

cot(x)

cos(x)

sin(x)

>> exp(x + y); expand(%)

exp(x + y)

exp(x) exp(y)

>> psi(x + 2); expand(%)

psi(x + 2)

1 1
psi(x) + - + -----

x x + 1

Example 8. This example illustrates how to extend the functionality of expand
to user-defined mathematical functions. As an example, we consider the sine
function. (Of course, the system function sin already has an "expand" slot;
see example 7.)

We first embed our function into a function environment, which we call
Sin, in order not to overwrite the system function sin. Then we implement
the addition theorem sin(x+ y) = sin(x) cos(y) + sin(y) cos(x) in the "expand"
slot of the function environment, i.e., the slot routine Sin::expand:

>> Sin := funcenv(Sin):
Sin::expand := proc(u) // compute expand(Sin(u))
local x, y;

begin
// recursively expand the argument u
u := expand(u);

if type(u) = "_plus" then // u is a sum

x := op(u, 1); // the first term
y := u - x; // the remaining terms

// apply the addition theorem and
// expand the result again
expand(Sin(x)*cos(y) + cos(x)*Sin(y))

330

else
Sin(u)

end_if
end_proc:

Now, if expand encounters a subexpression of the form Sin(u), it calls
Sin::expand(u) to expand Sin(u). The following command first expands the
argument a*(b+c) via the recursive call in Sin::expand, then applies the ad-
dition theorem, and finally expand itself expands the product of the result with
z:

>> expand(z*Sin(a*(b + c)))

z Sin(a b) cos(a c) + z Sin(a c) cos(a b)

The expansion after the application of the addition theorem in Sin::expand is
necessary to handle the case when u is a sum with more than two terms: then
y is again a sum, and cos(y) and Sin(y) are expanded recursively:

>> expand(Sin(a + b + c))

Sin(a) cos(b) cos(c) + Sin(b) cos(a) cos(c) +

Sin(c) cos(a) cos(b) - Sin(a) sin(b) sin(c)

Background:

A With optional arguments g1, g2, ..., the expansion of certain subex-
pressions of f can be prevented. This works as follows: every occurrence
of g1, g2, ... in f is replaced by an auxiliary variable before the expan-
sion, and afterwards the auxiliary variables are replaced by the original
subexpressions.

A Users can extend the functionality of expand to their own special math-
ematical functions via overloading. To this end, embed your function
into a function environment g and implement the behavior of expand for
this function in the "expand" slot of the function environment.

Whenever expand encounters a subexpression of the form g(u,..), it
issues the call g::expand(u,..) to the slot routine to expand the subex-
pression, passing the not yet expanded arguments u,.. of g as arguments.
The result of this call is not expanded any further by expand. See ex-
ample 8 above.

A Similarly, an "expand" slot can be defined for a user-defined library do-
main T. Whenever expand encounters a subexpression d of domain type
T, it issues the call T::expand(d) to the slot routine to expand d. The
result of this call is not expanded any further by expand. If T has no
"expand" slot, then d remains unchanged.

331

export, unexport – export library functions or undo the export

export(L, f) exports the public function L::f of the library L, such that it
can be accessed as f, without the prefix L.

export(L) exports all public functions of the library L.

unexport(L, f) undoes the export of the public function L::f of the library
L, such that it is no longer available as f.

unexport(L) undoes the export of all previously exported public functions of
the library L.

Call(s):

A export(L, f1, f2, ...)

A export(L)

A unexport(L, f1, f2, ...)

A unexport(L)

Parameters:
L — the library: a domain
f1, f2, ... — public functions of L: identifiers

Return Value: the void object null() of type DOM_NULL.

Side Effects: When a function is exported, it is assigned to the corresponding
global identifier. When it is unexported, the corresponding identifier is deleted.

Further Documentation: Chapter “The MuPAD libraries” of the Tutorial.

Related Functions: :=, delete, info, loadmod, loadproc, package,
unloadmod

Details:

A A library contains public functions which may be called by the user. The
collection of these functions forms the interface of the library. (There may
be other, private, functions, too, which are not intended to be called by
the user directly, and are not documented.) The standard way of accessing
the public function f from the library L is via L::f. When the function
f is exported, it can be accessed more briefly as f. Technically, exporting
means that the global identifier f is assigned the value L::f.

332

A On the other hand, unexporting the library function f means that the
value of the global identifier f is deleted. Afterwards, the library function
is available only as L::f.

A export(L, f1, f2, ...) exports the given functions f1, f2, ... of L.
However, if one of the identifiers already has a value, the corresponding
function is not exported. A warning is printed instead. An error is re-
turned if one of the identifiers is not the name of a public library function.

A export(L) exports all public functions of L.

A A function that is already exported will not be exported twice. A warning
is printed instead.

A unexport(L, f1, f2, ...) unexports all given functions of L. Note that
unexport does not evaluate the identifiers. Thus, it is not necessary to
use hold to protect them from being evaluated.

A unexport(L) unexports all public functions of the library L.

A export and unexport evaluate their first argument L, but they do not
evaluate the remaining arguments f1, f2, ..., if any.

A The function info displays the interface functions and the exported func-
tions of a library.

A Some libraries have functions that are always exported. These functions
cannot be unexported. The function append from the library listlib is
such an example.

Most functions of the standard library stdlib are exported automatically.

Example 1. We export the public function invphi of the library numlib and
then undo the export:

>> numlib::invphi(4!)

[35, 39, 45, 52, 56, 70, 72, 78, 84, 90]

>> export(numlib, invphi):

>> invphi(4!)

[35, 39, 45, 52, 56, 70, 72, 78, 84, 90]

>> unexport(numlib, invphi):

>> invphi(4!)

invphi(24)

We export and unexport all public functions of the library numlib:

333

>> export(numlib):
invphi(100)

Warning: ’contfrac’ already has a value, not exported.

[101, 125, 202, 250]

As you can see export issued a warning because contfrac already has a value.
Here, the reason in the existence of a global function contfrac which makes
use of numlib::contfrac for numerical arguments.

>> unexport(numlib):
invphi(100)

invphi(100)

Example 2. export issues a warning if a function cannot be exported since
the corresponding identifier already has a value:

>> invphi := 17:
export(numlib, invphi)

Warning: ’invphi’ already has a value, not exported.

A function will not be exported twice, and export issues a corresponding mes-
sage if you try:

>> delete invphi:
export(numlib, invphi):
export(numlib, invphi):
unexport(numlib, invphi):

Info: ’numlib::invphi’ already is exported.

Background:

A The names of the public functions of a library L are stored in the set
L::interface. This set is used by the function info and for exporting.

A The names of functions exported from a library L are stored in the set
L::exported.

expose – display the source code of a procedure or the entries of
a domain

expose(f) displays the source code of the MuPAD procedure f or the entries
of the domain f.

334

Call(s):

A expose(f)

Parameters:
f — any object; typically, a procedure, a function environment, or a

domain

Return Value:

A If f is a procedure, expose returns the complete source code of f, of type
stdlib::Exposed (see “Background” below).

A If f is a function environment, the result of applying expose to the first
operand is returned.

A If f is a domain, expose returns a symbolic call to newDomain; see below
for details.

A In all other cases, expose returns f if it is not overloaded.

Side Effects: The formatting of the output of expose is sensitive to the en-
vironment variable TEXTWIDTH.

Overloadable by: f

Related Functions: print

Details:

A Usually, procedures and domains are printed in abbreviated form. expose
serves to display the complete source code of a procedure and all entries
of a domain, respectively.

A If f is a domain, then expose returns a symbolic newDomain call. The
arguments of the call are equations of the form index = value, where
value equals the value of f::index. expose is not recursively applied to
f::index; hence, the source code of domain methods is not displayed.

A Although expose returns a syntactically valid MuPAD object, this return
value is intended for screen output only, and further processing of it is
deprecated.

335

Example 1. Using expose, you can inspect the source code of procedures of
the MuPAD library:

>> sin

sin

>> expose(%)

proc(x)
name sin;
local f, y;
option noDebug;

begin
if args(0) = 0 then
error("no arguments given")

else
...

end_proc

Example 2. On the other hand, you cannot look at the source code of kernel
functions:

>> expose(_plus)

builtin(817, NIL, "_plus", NIL)

Example 3. When applied to a domain, expose shows the entries of that
domain:

>> expose(DOM_INT)

domain DOM_INT
D := 0;
new := proc new() ... end;
new_extelement := proc new_extelement(d) ... end;
phi := phi;
coerce := proc DOM_INT::coerce(x) ... end;

end_domain

Example 4. Applying expose to other objects is legal but generally useless:

>> expose(3)

3

336

Background:

A In addition to the usual overloading mechanism for domain elements,
a domain method overloading expose must handle the following case: it
will be called with zero arguments when the domain itself is to be exposed.

A If f is a procedure, then expose returns an object of the domain stdlib::Exposed.
The only purpose of this domain is its "print" method; manipulating its
elements should never be necessary. Therefore it remains undocumented.

expr – convert into an element of a basic domain

expr(object) converts object into an element of a basic domain, such that
all sub-objects are elements of basic domains as well.

Call(s):

A expr(object)

Parameters:

object — an arbitrary object

Return Value: an element of a basic domain.

Overloadable by: object

Related Functions: coerce, domtype, eval, testtype, type

Details:

A expr is a type conversion function, for converting an element of a more
complex library domain, such as a polynomial or a matrix, into an element
of a basic kernel domain.

expr proceeds recursively, such that all sub-objects of the returned object
are elements of basic domains as well. See example 2.

A The two special objects infinity and complexInfinity are translated
into identifiers with the same name by expr. Evaluating these identifiers
yields the original objects. See example 1.

A If object already belongs to a basic domain other than DOM_POLY, then
expr is only applied recursively to the operands of object, if any.

A If object is a polynomial of domain type DOM_POLY, then expr is ap-
plied recursively to the coefficients of object, and afterwards the result is
converted into an identifier, a number, or an expression. See example 1.

337

A If object belongs to a library domain T with an "expr" slot, then the
corresponding slot routine T::expr is called with object as argument,
and the result is returned.

This can be used to extend the functionality of expr to elements of user-
defined domains. If the slot routine is unable to perform the conversion,
it must return FAIL. See example 6.

If the domain T does not have an "expr" slot, then expr returns FAIL.

A The result of expr is not evaluated further. Use eval to evaluate it. See
example 4.

Example 1. expr converts a polynomial into an expression, an identifier, or
a number:

>> expr(poly(x^2 + y, [x])), expr(poly(x)), expr(poly(2, [x]));
map(%, domtype)

2
y + x , x, 2

DOM_EXPR, DOM_IDENT, DOM_INT

The objects infinity and complexInfinity are translated into identifiers with
the same names:

>> expr(infinity), expr(complexInfinity);
map(%, domtype)

infinity, complexInfinity

DOM_IDENT, DOM_IDENT

If these identifiers are evaluated with eval the results are the original objects
of the types stdlib::Infinity and stdlib::CInfinity:

>> expr(infinity), expr(complexInfinity);
map(eval(%), domtype)

infinity, complexInfinity

stdlib::Infinity, stdlib::CInfinity

338

Example 2. This example shows that expr works recursively on expressions.
All subexpressions which are domain elements are converted into expressions.
In earlier versions of MuPAD (up to version 1.4.2) the result would have been
x + (1 mod 7). The construction with hold(_plus)(..) is necessary since x
+ i(1) would evaluate to FAIL:

>> i := Dom::IntegerMod(7):
hold(_plus)(x, i(1)); expr(%)

x + (1 mod 7)

x + 1

Example 3. The function series returns an element of the domain Series::Puiseux,
which is not a basic domain:

>> s := series(sin(x), x);
domtype(s)

3 5
x x 7

x - -- + --- + O(x)
6 120

Series::Puiseux

Use expr to convert the result into an element of domain type DOM_EXPR:

>> e := expr(s); domtype(e)

3 5
x x

x - -- + ---
6 120

DOM_EXPR

Note that the information about the order term is lost after the conversion.

Example 4. expr does not evaluate its result. In this example the polynomial
p has a parameter a and the global variable a has a value. expr applied on
the polynomial p returns an expression containing a. If you want to insert the
value of a use the function eval:

>> p := poly(a*x, [x]): a := 2: expr(p); eval(%)

a x

2 x

339

Example 5. A is an element of type Dom::Matrix(Dom::Integer):

>> A := Dom::Matrix(Dom::Integer)([[1, 2], [3, 2]]);
domtype(A)

+- -+
| 1, 2 |
| |
| 3, 2 |
+- -+

Dom::Matrix(Dom::Integer)

In this case, expr converts A into an element of type DOM_ARRAY:

>> a := expr(A); domtype(a)

+- -+
| 1, 2 |
| |
| 3, 2 |
+- -+

DOM_ARRAY

However, it is not guaranteed that the result is of type DOM_ARRAY in future ver-
sions of MuPAD as well. For example, the internal representation of matrices
might change in the future. Use coerce to request the conversion into a par-
ticular data type:

>> coerce(A, DOM_ARRAY)

+- -+
| 1, 2 |
| |
| 3, 2 |
+- -+

A nested list is an alternative representation for a matrix:

>> coerce(A, DOM_LIST)

[[1, 2], [3, 2]]

Example 6. If a sub-object belongs to a domain without an "expr" slot, then
expr returns FAIL:

340

>> T := newDomain("T"):
d := new(T, 1, 2);
expr(d)

new(T, 1, 2)

FAIL

You can extend the functionality of expr to your own domains. We demonstrate
this for the domain T by implementing an "expr" slot, which returns a list with
the internal operands of its argument:

>> T::expr := x -> [extop(x)]:

If now expr encounters a sub-object of type T during the recursive process, it
calls the slot routine T::expr with the sub-object as argument:

>> expr(d), expr([d, 3])

[1, 2], [[1, 2], 3]

expr2text – convert objects into character strings

expr2text(object) converts object into a character string.

Call(s):

A expr2text(object)

Parameters:

object — any MuPAD object

Return Value: a string.

Overloadable by: object

Related Functions: coerce, fprint, int2text, tbl2text, text2expr,
text2int, text2list, text2tbl, print

Details:

A expr2text(object) converts object into a character string. The result
usually corresponds to the screen output of object when PRETTYPRINT is
set to FALSE.

341

A If the function is called without arguments, then an empty character string
is created. If more than one argument is given, the arguments are inter-
preted as an expression sequence and are converted into a single character
string.

A Like most other MuPAD function, expr2text evaluates its arguments be-
fore the conversion.

A If strings occur in object, they will be quoted in the result.

A expr2text is a function of the system kernel.

Example 1. Expressions are converted into character strings:

>> expr2text(a + b)

"a + b"

expr2text quotes strings. Note that the quotation marks are preceded by a
backslash when they are printed on the screen:

>> expr2text(["text", 2])

"[\"text\", 2]"

Example 2. If more than one argument is given, the arguments are treated
as a single expression sequence:

>> expr2text(a, b, c)

"a, b, c"

If no argument is given, an empty string is generated:

>> expr2text()

""

Example 3. expr2text evaluates its arguments:

>> a := b: c := d: expr2text(a, c)

"b, d"

Use hold to prevent evaluation:

342

>> expr2text(hold(a, c));
delete a, c:

"a, c"

Here is another example:

>> expr2text((a := b; c := d));
delete a, c:

"d"

>> e := expr2text(hold((a := b; c := d)))

"(a := b; \nc := d)"

The last string contains a newline character ’\n’. Use print with option
Unquoted to expand this into a new line:

>> print(Unquoted, e):

(a := b;
c := d)

Example 4. expr2text is overloadable. It uses a default output for elements
of a domain if the domain has neither a "print" slot nor an "expr2text" slot:

>> T := newDomain("T"): e := new(T, 1):
e;
print(e):
expr2text(e)

new(T, 1)

new(T, 1)

"new(T, 1)"

If a "print" slot exists, it will be called by expr2text to generate the output:

>> T::print := proc(x) begin
_concat("foo: ", expr2text(extop(x)))

end_proc:
e;
print(e):
expr2text(e)

343

foo: 1

foo: 1

"foo: 1"

If you want expr2text to generate an output differing from the usual output
generated by print, you can supply an "expr2text" method:

>> T::expr2text := proc(x) begin
_concat("bar: ", expr2text(extop(x)))

end_proc:
e;
print(e):
expr2text(e)

foo: 1

foo: 1

"bar: 1"

Background:

A When processing a domain element e, expr2text first tries to call the
"expr2text" method of the corresponding domain T. If it exists, T::expr2text(e)
is called and the result is returned. If no "expr2text" method exists,
expr2text tries to call the "print" method in the same way. If no
"print" method exists either, expr2text will generate a default output.
Cf. example 4.

An "expr2text" method or a "print" method may return an arbitrary
MuPAD object, which will be processed recursively by expr2text.

The returned object must not contain the domain element e as a
sub-object. Otherwise, the MuPAD kernel runs into infinite recur-
sion and emits an error message.

!

A For expressions, the result returned by expr2text always coincides with
the output produced by print. If the 0th operand of the expression is a
function environment, the result of expr2text is computed by the second
operand of the function environment.

external – create a module function environment

external("mstring", "fstring") returns the function environment of the
module function mstring::fstring.

344

Call(s):

A external("mstring", "fstring")

Parameters:
"mstring" — the name of a module: a character string
"fstring" — the name of a module function: a character string

Return Value: a function environment of type DOM_FUNC_ENV.

Related Functions: loadmod, module::new, unloadmod

Details:

A external("mstring", "fstring") creates and returns the function en-
vironment of the module function mstring::fstring.

A There may be a file mstring.mdg containing MuPAD objects that are
loaded and bound to the module function environment. If an error occurs
while loading these objects, a warning is displayed. MuPAD keeps trying
to load them at each subsequent call of module functions affected by it.

A Using external, a module function can be accessed without loading the
module explicitly and without creating the module domain. If such a
module function is executed, its machine code is loaded automatically if
necessary.

A Some module functions may only work correctly if their module
domain was created before. Such modules must be loaded with
loadmod before any of their module functions are executed. Refer
to the documentation of the corresponding module.

!

A external is a function of the system kernel.

Example 1. Module function environments can be stored in local or global
variables. They can be used to execute module functions without loading the
module explicitly:

>> where := external("stdmod", "which"): where("stdmod")

"/usr/local/mupad/linux/modules/stdmod.mdm"

>> delete where:

345

Background:

A The kernel functions external, loadmod and unloadmod provide basic
features for accessing modules. Extended features are available with the
module library.

extnops – the number of operands of a domain element

extnops(object) returns the number of operands of the object’s internal rep-
resentation.

Call(s):

A extnops(object)

Parameters:

object — an arbitrary MuPAD object

Return Value: a nonnegative integer.

Related Functions: DOM_DOMAIN, extop, extsubsop, new, nops, op, subsop

Details:

A For objects of a basic data type such as expressions, sets, lists, tables,
arrays etc., extnops yields the same result as the function nops. The
only difference to the function nops is that extnops cannot be overloaded
by domains implemented in the MuPAD language.

A Internally, a domain element may consist of an arbitrary number of data
objects; extnops returns the actual number of internal operands. Since
every domain should provide interface methods, extnops should only be
used from inside these methods. “From the outside”, the function nops
should be used.

A extnops is a function of the system kernel.

Example 1. extnops returns the number of entries of a domain element:

>> d := newDomain("demo"): e := new(d, 1, 2, 3, 4): extnops(e)

4

>> delete d, e:

346

Example 2. For kernel domains, extnops is equivalent to nops:

>> extnops([1, 2, 3, 4]), nops([1, 2, 3, 4])

4, 4

Example 3. We define a domain of lists. Its internal representation is a single
object (a list of kernel type DOM_LIST):

>> myList := newDomain("lists"):
myList::new := proc(l : DOM_LIST) begin new(myList, l) end_proc:

We want the functionality of nops for this domain to be the same as for the
kernel type DOM_LIST. To achieve this, we overload the function nops. The
internal list is accessed via extop(l, 1):

>> myList::nops := l -> nops(extop(l, 1)):

We create an element of this domain:

>> mylist := myList([1, 2, 3])

new(lists, [1, 2, 3])

Since nops was overloaded, extnops provides the only way of determining the
number of operands of the internal representation of mylist. In contrast to
nops, extnops always returns 1, because the internal representation consists of
exactly one list:

>> nops(mylist), extnops(mylist)

3, 1

>> delete myList, mylist:

extop – the operands of a domain element

extop(object) returns all operands of the domain element object.

extop(object, i) returns the i-th operand.

extop(object, i..j) returns the i-th to j-th operand.

Call(s):

A extop(object)

A extop(object, i)

A extop(object, i..j)

347

Parameters:
object — an arbitrary MuPAD object
i, j — nonnegative integers

Return Value: a sequence of operands or the specified operand. FAIL is
returned if no corresponding operand exists.

Related Functions: DOM_DOMAIN, extnops, extsubsop, new, nops, op,
subsop

Details:

A For objects of a basic data type such as expressions, sets, lists, tables,
arrays etc., extop yields the same operands as the function op. See the
corresponding documentation for details on operands. The main differ-
ence to the function op is that extop cannot be overloaded. Therefore, it
guarantees direct access to the operands of the internal representation of
elements of a library domain. Typically, extop is used in the implement-
ation of the "op" method of a library domain that overloads the system’s
op function.

A A domain element consists of a reference to the corresponding domain and
a sequence of values representing its contents. The function extop allows
access to the domain and the operands of this internal data sequence.

A extop(object) returns a sequence of all internal operands except the 0-th
one. This call is equivalent to extop(object, 1..extnops(object)).

A extop(object, i) returns the i-th internal operand. In particular, the
domain of the object is returned by extop(object, 0) if object is an
element of a library domain. If object is an element of a kernel domain,
the call extop(object, 0) is equivalent to op(object, 0).

A extop(object, i..j) returns the i-th to j-th internal operands of object
as an expression sequence; i and j must be nonnegative integers with i
smaller or equal to j. This sequence is equivalent to extop(object, k)
$ k = i..j.

A extop returns FAIL if a specified operand does not exist. Cf. example 4.

A The operands of an expression sequence are its elements. Note that such
sequences are not flattened by extop.

A extop is a function of the system kernel.

348

Example 1. We create a new domain d and use the function new to create
an element of this type. Its internal data representation is the sequence of
arguments passed to new:

>> d := newDomain("demo"): e := new(d, 1, 2, 3): extop(e)

1, 2, 3

Individual operands can be selected:

>> extop(e, 2)

2

Ranges of operands can be selected:

>> extop(e, 1..2)

1, 2

The 0-th operand of a domain element is its domain:

>> extop(e, 0)

demo

>> delete d, e:

Example 2. First, a new domain d is defined via newDomain. The "new"
method serves for creating elements of this type. The internal representation
of the domain is a sequence of all arguments of this "new" method:

>> d := newDomain("d"): d::new := () -> new(dom, args()):

The system’s op function is overloaded by the following "op" method of this
domain. It is to return the elements of a sorted copy of the internal data
sequence. In the implementation of the "op" method, the function extop is
used to access the internal data:

>> d::op := proc(x, i = null())
local internalData;
begin internalData := extop(x);

op(sort([internalData]), i)
end_proc:

Due to this overloading, op returns different operands than extop:

>> e := d(3, 7, 1): op(e); extop(e)

1, 3, 7

3, 7, 1

>> delete d, e:

349

Example 3. For kernel data types such as sets, lists etc., extop always returns
the same operands as op:

>> extop([a, b, c]) = op([a, b, c])

(a, b, c) = (a, b, c)

Expressions are of kernel data type DOM_EXPR, thus extop(sin(x), 0) is equi-
valent to op(sin(x), 0):

>> domtype(sin(x)), extop(sin(x), 0) = op(sin(x), 0)

DOM_EXPR, sin = sin

Expression sequences are not flattened:

>> extop((1, 2, 3), 0), extop((1, 2, 3))

_exprseq, 1, 2, 3

Example 4. Non-existing operands are returned as FAIL:

>> extop([1, 2], 4), extop([1, 2], 1..4)

FAIL, FAIL

extsubsop – substitute operands of a domain element

extsubsop(d, i = new) returns a copy of the domain element d with the i-th
operand of the internal representation replaced by new.

Call(s):

A extsubsop(d, i1 = new1, i2 = new2, ...)

Parameters:
d — arbitrary MuPAD object
i1, i2, ... — nonnegative integers
new1, new2, ... — arbitrary MuPAD objects

Return Value: the input object with replaced operands.

Related Functions: DOM_DOMAIN, extnops, extop, new, nops, op, subs,
subsex, subsop

350

Details:

A Internally, a domain element may consist of an arbitrary number of ob-
jects. extsubsop replaces one or more of these objects, without checking
whether the substitution is meaningful.

The operands of elements of domains of the MuPAD library must
meet certain (undocumented) conditions; use extsubsop only for
your own domains. It is good programming style to use extsubsop
only inside low-level domain methods.

!

A extsubsop returns a modified copy of the object, but does not change the
object itself.

A The numbering of operands is the same as the one used by extop.

A If the 0-th operand is to be replaced, the corresponding new value must
be a domain of type DOM_DOMAIN; extsubsop then replaces the domain of
d by this new domain.

A When trying to replace the i-th operand with i exceeding the actual
number of operands, extsubsop first increases the number of operands by
appending as many NIL’s as necessary and then performs the substitution.
Cf. example 3.

A When the i-th operand is replaced by an expression sequence of k ele-
ments, each of these elements becomes an individual operand of the result,
indexed from i to i+k-1. The remaining operands of d are shifted to the
right accordingly. This new numbering is already in effect for the remain-
ing substitutions in the same call to extsubsop. Cf. example 4.

A The void object null() becomes an operand of the result when it is
substituted into an object.

A After performing the substitution, extsubsop does not evaluate the result
once more. Cf. example 5.

A In contrast to the function subsop, extsubsop cannot be overloaded.

A Like extop and extnops, extsubsop can be applied to objects of a kernel
domain. In this case extsubsop behaves like subsop.

A extsubsop is a function of the system kernel.

Example 1. We create a domain element and then replace its first operand:

>> d := newDomain("1st"): e := new(d, 1, 2, 3): extsubsop(e, 1 = 5)

new(1st, 5, 2, 3)

351

This does not change the value of e:

>> e

new(1st, 1, 2, 3)

>> delete d, e:

Example 2. The domain type of an element can be changed by replacing its
0-th operand:

>> d := newDomain("some_domain"): e := new(d, 2):
extsubsop(e, 0 = Dom::IntegerMod(5))

2 mod 5

>> delete d, e:

Example 3. We substitute the sixth operand of a domain element that has less
than six operands. In such cases, an appropriate number of NIL’s is inserted:

>> d := newDomain("example"): e := new(d, 1, 2, 3, 4):
extsubsop(e, 6 = 8)

new(example, 1, 2, 3, 4, NIL, 8)

>> delete d, e:

Example 4. We substitute the first operand of a domain element e by a
sequence with three elements. These become the first three operands of the
result; the second operand of e becomes the fourth operand of the result, and
so on. This new numbering is already in effect when the second substitution is
carried out:

>> d := newDomain("example"): e := new(d, 1, 2, 3, 4):
extsubsop(e, 1 = (11, 13, 17), 2 = (29, 99))

new(example, 11, 29, 99, 17, 2, 3, 4)

>> delete d, e:

352

Example 5. We define a domain with its own evaluation method. This method
prints out its argument such that we can see whether it is called. Then we define
an element of our domain.

>> d := newDomain("anotherExample"):
d::evaluate := x -> (print("Argument:", x); x):
e := new(d, 3)

new(anotherExample, 3)

We can now watch all evaluations that happen: extsubsop evaluates its argu-
ments, performs the desired substitution, but does not evaluate the result of
the substitution:

>> extsubsop(e, 1 = 0)

"Argument:", new(anotherExample, 3)

new(anotherExample, 0)

>> delete d, e:

Example 6. extsubsop applied to an object from a kernel type yields the
same result as subsop:

>> extsubsop([1,2,3], 2=4), subsop([1,2,3], 2=4)

[1, 4, 3], [1, 4, 3]

Changes:

A extsubsop now works for kernel data types, too.

fact – the factorial function

fact(n) represents the factorial n! = 1× 2× 3× · · · × n of an integer.

Call(s):

A fact(n)

A n!

353

Parameters:

n — an arithmetical expression representing a nonnegative integer

Return Value: an arithmetical expression.

Overloadable by: n

Related Functions: beta, binomial, gamma, igamma, psi

Details:

A The short hand call n! is equivalent to fact(n).

A If n is a nonnegative integer, then an integer is returned. If n is a nu-
merical value of some other type, then an error occurs. If n is a symbolic
expression, then a symbolic call of fact is returned.

A Integer arguments must be smaller than 231 on 32-bit systems and smaller
than 263 on 64-bit systems, respectively. Larger integers lead to an error.

A The gamma function generalizes the factorial function to arbitrary complex
arguments. It satisfies gamma(n+1) = n! for nonnegative integers n. Ex-
pressions involving symbolic fact calls can be rewritten by rewrite(expression,
gamma). Cf. example 3.

A The operator ! can also be used in prefix notation with an entirely differ-
ent meaning: !command is equivalent to system("command").

A fact is a function of the system kernel.

Example 1. Integer numbers are produced if the argument is a nonnegative
integer:

>> fact(0), fact(5), fact(2^5)

1, 120, 263130836933693530167218012160000000

A symbolic call is returned if the argument is a symbolic expression:

>> fact(n), fact(n - sin(x)), fact(3.0*n + I)

fact(n), fact(n - sin(x)), fact(3.0 n + I)

The calls fact(n) and n! are equivalent:

>> 5! = fact(5), (n^2 + 3)!

2
120 = 120, fact(n + 3)

354

A numerical argument produces an error if it is not a positive integer:

>> fact(3/2 + I)

Error: Non-negative integer expected [specfunc::fact];
during evaluation of ’fact’

Example 2. Use gamma(float(n+1)) rather than float(fact(n)) for float-
ing point approximations of large factorials. This avoids the costs of computing
large integer numbers:

>> float(fact(2^13)) = gamma(float(2^13 + 1))

1.275885799e28503 = 1.275885799e28503

Example 3. The functions expand, limit, rewrite and series handle ex-
pressions involving fact:

>> expand(fact(n^2 + 4))

2 2 2 2 2
fact(n) (n + 1) (n + 2) (n + 3) (n + 4)

>> limit(fact(n)/exp(n), n = infinity)

infinity

>> rewrite(fact(2*n^2 + 1)/fact(n - 1), gamma)

2
gamma(2 n + 2)

gamma(n)

The Stirling formula is obtained as an asymptotic series:

>> series(fact(n), n = infinity, 3)

1/2 1/2 n 1/2 1/2 n 1/2 / n \
n PI n 2 PI n 2 | n |
------------------ + -------------- + O| ----------- |

exp(n) 1/2 | 3/2 |
12 n exp(n) \ n exp(n) /

355

factor – factor a polynomial into irreducible polynomials

factor(f) computes a factorization f = u · fe1
1 · . . . · fer

r of the polynomial
f , where u is the content of f , f1, . . . , fr are the distinct primitive irreducible
factors of f , and e1, . . . , er are positive integers.

Call(s):

A factor(f)

Parameters:

f — a polynomial or an arithmetical expression

Return Value: an object of the domain type Factored.

Overloadable by: f

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: collect, content, denom, div, divide, expand,
Factored, gcd, icontent, ifactor, igcd, ilcm, indets, irreducible,
isprime, lcm, normal, numer, partfrac, polylib::decompose,
polylib::divisors, polylib::primpart, polylib::sqrfree, rationalize,
simplify

Details:

A factor rewrites its argument as a product of as many terms as possible.
In a certain sense, it is the complementary function of expand, which
rewrites its argument as a sum of as many terms as possible.

A If f is a polynomial whose coefficient ring is not Expr, then f is factored
over its coefficient ring. See example 8.

If f is a polynomial with coefficient ring Expr, then f is factored over
the smallest ring containing the coefficients. Mathematically, this implied
coefficient ring always contains the ring Z of integers. See example 4.

If the coefficient ring R of f is not Expr, then we say that the implied
coefficient ring is R. Elements of the implied coefficient ring are considered
to be constants and are not factored any further. In particular, the content
u is an element of the implied coefficient ring.

356

A If f is an arithmetical expression that is not a number, it is considered
as a rational expression. Non-rational subexpressions such as sin(x),
exp(1), x^(1/3) etc., but not constant algebraic subexpressions such as
I and (sqrt(2)+1)^3, are replaced by auxiliary variables before factor-
ing. Algebraic dependencies of the subexpressions, such as the equation
cos(x)2 = 1 − sin(x)2, are not necessarily taken into account. See ex-
ample 6.

The resulting expression is then written as a quotient of two polynomial
expressions in the original and the auxiliary indeterminates. The numer-
ator and the denominator are converted into polynomials with coefficient
ring Expr via poly, and the implied coefficient ring is the smallest ring
containing the coefficients of the numerator polynomial and the denomin-
ator polynomial. Usually, this is the ring of integers. Then both polyno-
mials are factored over the implied coefficient ring, and the multiplicities
ei corresponding to factors of the denominator are negative integers; see
example 3. After the factorization, the auxiliary variables are replaced by
the original subexpressions. See example 5.

A If f is an integer, then it is decomposed into a product of primes, and
the result is the same as for ifactor. If f is a rational number, then
both the numerator and the denominator are decomposed into a product
of primes. In this case, the multiplicities ei corresponding to factors of
the denominator are negative integers. See example 2.

A If f is a floating point number or a complex number, then factor returns
a factorization with the single factor f.

A The result of factor is an object of the domain type Factored. Let
g:=factor(f) be such an object.

It is represented internally by the list [u, f1, e1, ..., fr, er] of odd
length 2r + 1. Here, f1 through fr are of the same type as the input
(either polynomials or expressions); e1 through er are integers; and u is
an arithmetical expression.

One may extract the content u, the factors fi, as well as the exponents ei
by the ordinary index operator [], i.e., g[1] = u, g[2] = f1, g[3] =
e1,

For example, to extract all irreducible factors of f , enter g[2*i] $ i =
1..nops(g) div 2. The same can be achieved with the call Factored::factors(g),
and the call Factored::exponents(g) returns a list of the exponents ei
for 1 ≤ i ≤ r.

The call coerce(g,DOM_LIST) returns the internal representation of a
factored object, i.e., the list as described above.

Note that the result of factor is printed as an expression, and it is impli-
citly converted into an expression whenever it is processed further by other
MuPAD functions. As an example, the result of q:=factor(x^2+2*x+1)
is printed as (x+1)^2, which is an expression of type "_power".

357

See example 1 for illustrations, and the help page of Factored for details.

A If f is not a number, then each of the polynomials p1, ..., pr is primitive,
i.e., the greatest common divisor of its coefficients (see content and gcd)
over the implied coefficient ring (see above for a definition) is one.

A Currently, factoring polynomials is possible over the following
implied coefficient rings: integers and rational numbers, finite
fields—represented by IntMod(n) or Dom::IntegerMod(n) for a
prime number n, or by a Dom::GaloisField—, and rings ob-
tained from these basic rings by taking polynomial rings (see
Dom::DistributedPolynomial, Dom::MultivariatePolynomial,
Dom::Polynomial, and Dom::UnivariatePolynomial), fields of
fractions (see Dom::Fraction), and algebraic extensions (see
Dom::AlgebraicExtension). In particular, factoring over the real
and over complex numbers is not possible.

A If the input f is an arithmetical expression that is not a number, all
occurring floating point numbers are replaced by continued fraction ap-
proximations. The result is sensitive to the environment variable DIGITS,
see numeric::rationalize for details.

Example 1. To factor the polynomial x3 + x, enter:

>> g := factor(x^3+x)

2
x (x + 1)

Usually, expressions are factored over the ring of integers, and factors with non-
integral coefficients, such as x - I in the example above, are not considered.

One can access the internal representation of this factorization with the
ordinary index operator:

>> g[1]; // the content
g[2*i] $ i = 1..nops(g) div 2; // the factors
g[2*i + 1] $ i = 1..nops(g) div 2; // the exponents

1

2
x, x + 1

1, 1

The internal representation of g, as described above, is given by the following
command:

>> coerce(g, DOM_LIST)

358

2
[1, x, 1, x + 1, 1]

The result of the factorization is an object of domain type Factored:

>> domtype(g)

Factored

Some of the functionality of this domain is described in what follows.
One may extract the factors and exponents of the factorization also in the

following way:

>> Factored::factors(g), Factored::exponents(g)

2
[x, x + 1], [1, 1]

One can ask for the type of factorization:

>> Factored::getType(g)

"irreducible"

This output means that all fi are irreducible. Other possible types are "squarefree"
(see polylib::sqrfree) or "unknown".

One may multiply factored objects, which preserves the factored form:

>> g2 := factor(x^2 + 2*x + 1)

2
(x + 1)

>> g * g2

2 2
x (x + 1) (x + 1)

It is important to note that one can apply (almost) any function working with
arithmetical expressions to an object of type Factored. However, the result is
then usually not of domain type Factored:

>> expand(g);
domtype(%)

3
x + x

DOM_EXPR

For a detailed description of these objects, please refer to the help page of
the domain Factored.

359

Example 2. factor splits an integer into a product of prime factors:

>> factor(8)

3
2

For rational numbers, both the numerator and the denominator are factored:

>> factor(10/33)

2 5

3 11

Note that, in contrast, constant polynomials are not factored:

>> factor(poly(8, [x]))

8

Example 3. Factors of the denominator are indicated by negative multiplicit-
ies:

>> factor((z^2 - 1)/z^2)

(z + 1) (z - 1)

2
z

>> Factored::factors(%), Factored::exponents(%)

[z, z + 1, z - 1], [-2, 1, 1]

Example 4. If some coefficients are irrational but algebraic, the factorization
takes place over the smallest field extension of the rationals that contains all
of them. Hence, x^2+1 is considered irreducible while its I-fold is considered
reducible:

>> factor(x^2 + 1), factor(I*x^2 + I)

2
x + 1, I (x - I) (x + I)

MuPAD cannot factor over the field of algebraic numbers; only the coefficients
of the input are adjoined to the rationals:

360

>> factor(sqrt(2)*x^4 - sqrt(2)*x^2 - sqrt(2)*2)

1/2 1/2 1/2 2
2 (x + 2) (x - 2) (x + 1)

>> factor(I*x^4 - I*x^2 - I*2)

2
I (x - I) (x + I) (x - 2)

>> factor(sqrt(2)*I*x^4 - sqrt(2)*I*x^2 - sqrt(2)*I*2)

1/2 1/2 1/2
(I 2) (x + I) (x + 2) (x - 2) (x - I)

Example 5. Transcendental objects are treated as indeterminates:

>> delete x:
factor(7*(exp(x)^2 - 1)*sin(1)^3)

3
7 (exp(x) + 1) (exp(x) - 1) sin(1)

>> Factored::factors(%), Factored::exponents(%)

[exp(x) + 1, exp(x) - 1, sin(1)], [1, 1, 3]

Example 6. factor regards transcendental subexpressions as algebraically
independent of each other. Hence the binomial formula is not applied in the
following example:

>> factor(x + 2*sqrt(x) + 1)

1/2
x + 2 x + 1

Example 7. factor replaces floating point numbers by continued fraction
approximations, factors the resulting polynomial, and finally applies float to
the coefficients of the factors:

>> factor(x^2 + 2.0*x - 8.0)

(x + 4.0) (x - 2.0)

361

Example 8. Polynomials with a coefficient ring other than Expr are factored
over their coefficient ring. We factor the following polynomial modulo 17:

>> R := Dom::IntegerMod(17): f:= poly(x^3 + x + 1, R):
factor(f)

poly(x + 6, [x], Dom::IntegerMod(17))

2
poly(x + 11 x + 3, [x], Dom::IntegerMod(17))

For every p, the expression IntMod(p) may be used instead of Dom::IntegerMod(p):

>> R := IntMod(17): f:= poly(x^3 + x + 1, R):
factor(f)

2
poly(x + 6, [x], IntMod(17)) poly(x - 6 x + 3, [x], IntMod(17)

)

Example 9. More complex domains are allowed as coefficient rings, provided
they can be obtained from the rational numbers or from a finite field by iterated
construction of algebraic extensions, polynomial rings, and fields of fractions.
In the following example, we factor the univariate polynomial u2−x3 in u over
the coefficient field F = Q(x,

√
x):

>> Q := Dom::Rational:
Qx := Dom::Fraction(Dom::DistributedPolynomial([x], Q)):
F := Dom::AlgebraicExtension(Qx, poly(z^2 - x, [z])):
f := poly(u^2 - x^3, [u], F)

2 3
poly(u - x , [u], Dom::AlgebraicExtension(

Dom::Fraction(Dom::DistributedPolynomial([x],

2
Dom::Rational, LexOrder)), - x + z = 0, z))

>> factor(f)

poly(u - x z, [u], Dom::AlgebraicExtension(

Dom::Fraction(Dom::DistributedPolynomial([x],

2

362

Dom::Rational, LexOrder)), - x + z = 0, z)) poly(u + x z,

[u], Dom::AlgebraicExtension(Dom::Fraction(

Dom::DistributedPolynomial([x], Dom::Rational, LexOrder)),

2
- x + z = 0, z))

Background:

A The factoring algorithms are collected in a separate library domain faclib;
it should not be necessary to call these routines directly.

A The implemented algorithms include Cantor-Zassenhaus (over finite fields)
and Hensel lifting (over the rational numbers and in the multivariate case).

fclose – close a file

fclose(n) closes the file specified by the file descriptor n.

Call(s):

A fclose(n)

Parameters:

n — a file descriptor returned by fopen: a positive integer

Return Value: the void object of type DOM_NULL.

Related Functions: fileIO, FILEPATH, finput, fname, fopen, fprint,
fread, ftextinput, import::readdata, pathname, print, protocol, read,
readbytes, READPATH, write, writebytes, WRITEPATH

Details:

A The file must have been opened with fopen. The call to fopen yields the
file descriptor n representing the file.

A Only a limited number of file descriptors is available. The user should use
fclose to close a file which is no longer needed because this releases the
file descriptor. The exact number of file descriptors available depends on
the used operating system.

363

A For an overview of all file related MuPAD functions, also try ?fileIO.

A fclose is a function of the system kernel.

Example 1. We open a file test for writing. This yields the file descriptor n:

>> n := fopen("test", Write)

16

We close the file:

>> fclose(n): delete n:

fileIO – an overview of MuPAD’s file I/O functions

There is a variety of functions in MuPAD to open, read, write, and close files.
On this page, you get an overview of these functions.

Call(s):

A fclose(..)

A finput(..)

A fname(..)

A fopen(..)

A fprint(..)

A fread(..)

A ftextinput(..)

A import::readdata(..)

A pathname(..)

A protocol(..)

A read(..)

A readbytes(..)

A write(..)

A writebytes(..)

A FILEPATH

A READPATH

A WRITEPATH

364

Details:

A The following types of files can be used with MuPAD:

File type MuPAD functions

all file types fopen
fclose
fname

ASCII file with MuPAD commands finput
fread
read
write

formatted text data fprint
fread
ftextinput
import::readdata
read

session information protocol

Binary MuPAD binary files finput
fread
read
write

‘raw’ binary data readbytes
writebytes

MuPAD ASCII files (extension .mu) are ordinary text files containing
MuPAD commands. For example, they are used to store all the shipped
library code.

With the functions fread and read, the user can read in files containing
MuPAD commands, i.e., programs written in the MuPAD programming
language.

With ‘formatted text data’ we mean that the file contains, e.g., a sequence
of numbers, strings or similar. Such files can be used to store intermediate
results, or to create files that can be processed with an editor.

The protocol function enables the user to create a file that contains all
inputs and outputs made during the session.

MuPAD binary files are mostly used for internal purposes. The user can
use them to save and restore the state of some or all variables.

The functions readbytes and writebytes for dealing with ‘raw’ binary
data enable you to read and write arbitrary files and interpret their con-
tents as a sequence of numbers. For example, you can read image files,
sound files etc. and use MuPAD’s mathematical abilities to compress or
encrypt the file.

365

A Accessing files: For most functions, there are two possibilities to access
a file: either by directly specifying the filename as a string, or by opening
the file via fopen, and passing the returned file descriptor.

A file opened with fopen needs to be closed with fclose.

A Controlling file location: The functions fopen, fprint, protocol,
write, and writebytes are sensitive to the environment variable WRITEPATH.
If this variable has a value, the file is created in the corresponding direct-
ory. Otherwise, the file is created in the “working directory”.

The functions finput, fopen, fread, read, and readbytes are sensitive
to the environment variable READPATH. First, the file is searched in the
“working directory”. If it can not be found there, all paths in READPATH
are searched.

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

A fopen opens a file for reading or writing. There are flags determining in
which mode to open the file.

A fclose is used to close a file that was previously opened with fopen.

A fname returns the name of a file previously opened via fopen.

A finput reads MuPAD objects from a file and assigns them to identifiers.

A fread reads and executes a file containing MuPAD commands.

A read reads and executes a file containing MuPAD commands.

A write writes the values of some or all identifiers to a file.

A fprint writes ASCII data to a file.

A ftextinput reads an ASCII file, interpreting each line as one string.

A import::readdata is used to read formatted data from an ASCII file.

A protocol creates a protocol of your MuPAD session: All inputs and—
optionally—outputs are stored in a file.

A readbytes reads any (binary) file interpreting the contents as numbers.

A writebytes writes a list of MuPAD numbers to a binary file.

A pathname is used to combine folder names to a platform dependent path
name.

A FILEPATH is a variable containing the path to a file.

366

A READPATH determines where to search for files to be opened with finput,
fopen, fread, read, and readbytes.

A WRITEPATH specifies where to open/create new files when calling fopen,
fprint, protocol, write and writebytes.

finput – read MuPAD objects from a file

finput(filename, x) reads a MuPAD object from a file and assigns it to the
identifier x.

finput(n, x) reads from the file associated with the file descriptor n.

Call(s):

A finput(filename)

A finput(filename, x1, x2, ...)

A finput(n)

A finput(n, x1, x2, ...)

Parameters:
filename — the name of a file: a character string
n — a file descriptor provided by fopen: a positive integer
x1, x2, ... — identifiers

Return Value: the last object that was read from the file.

Related Functions: fclose, fileIO, fname, fopen, fprint, fread,
ftextinput, input, loadproc, pathname, print, protocol, read, READPATH,
textinput, write, WRITEPATH

Details:

A finput can read MuPAD binary files as well as ASCII text files. finput
recognizes the format of the file automatically.

Binary files may be created via fprint or write. Text files can also be
created in a MuPAD session via these functions (using the Text option; see
the corresponding help pages for details). Alternatively, text files can be
created and edited directly using your favourite text editor. The file must
consist of syntactically correct MuPAD objects or statements, separated
by semicolons or colons. An object may extend over more than one line.

A finput(filename) reads the first object in the file and returns it to the
MuPAD session.

367

A finput(filename, x1, x2, ...) reads the contents of a file object by
object. The i-th object is assigned to the identifier xi. The identifiers
are not evaluated while executing finput; previously assigned values are
overwritten. The objects are not evaluated. Evaluation can be enforced
with the function eval. Cf. example 2.

A Instead of a file name, also a file descriptor n of a file opened via fopen
can be used. The functionality is as described above. However, there is
one difference: With a file name, the file is closed automatically after the
data were read. A subsequent call to finput starts at the beginning of
the file. With a file descriptor, the file remains open (use fclose to close
the file). The next time data are read from this file, the reading continues
at the current position. Consequently, a file descriptor should be used
if the individual objects in the file are to be read via several subsequent
calls of finput. Cf. example 3.

A If the number of identifiers specified in the finput call is larger than the
number of objects in the file, the exceeding identifiers are not assigned any
values. In such a case, finput returns the void object of type DOM_NULL.

A finput interprets the file name as a pathname relative to the “working
directory”.

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

On the Macintosh, an empty file name may be given. In this case, a
dialogue box is opened in which the user can choose a file.

Also absolute path names are processed by finput.

A Expression sequences are not flattened by finput and cannot be used to
pass several identifiers to finput. Cf. example 4.

A For an overview of all file related MuPAD functions, also try ?fileIO.

A finput is a function of the system kernel.

Example 1. We write the numbers 11, 22, 33 and 44 into a file:

>> fprint("test", 11, 22, 33, 44):

We read this file with finput:

>> finput("test", x1, x2, x3, x4)

44

>> x1, x2, x3, x4

368

11, 22, 33, 44

If we try to read more objects than stored in the file, finput returns the void
object of type DOM_NULL:

>> finput("test", x1, x2, x3, x4, x5); domtype(%)

DOM_NULL

>> x1, x2, x3, x4, x5

11, 22, 33, 44, x5

>> delete x1, x2, x3, x4:

Example 2. Objects read from a file are not evaluated:

>> fprint("test", x1): x1 := 23: finput("test")

x1

>> eval(%)

23

>> delete x1:

Example 3. We read some data from a file using several calls of finput. We
have to use a file descriptor for reading from the file. The file is opened for
reading with fopen:

>> fprint("test", 11, 22, 33, 44): n := fopen("test"):

The file descriptor returned by fopen can be passed to finput for reading the
data:

>> finput(n, x1, x2): x1, x2

11, 22

>> finput(n, x3, x4): x3, x4

33, 44

Finally, we close the file and delete the identifiers:

>> fclose(n): delete n, x1, x2, x3, x4:

369

Alternatively, the contents of a file can be read into a MuPAD session in the
following way:

>> n := fopen("test"):
for i from 1 to 4 do

x.i := finput(n)
end_for:
x1, x2, x3, x4

11, 22, 33, 44

>> fclose(n): delete n, i, x1, x2, x3, x4:

Example 4. Expression sequences are not flattened by finput and cannot be
used to pass identifiers to finput:

>> fprint("test", 11, 22, 33): finput("test", (x1, x2), x3)

Error: Illegal argument [finput]

The following call does not lead to an error because the identifier x12 is not
evaluated. Consequently, only one object is read from the file and assigned to
x12:

>> x12 := x1, x2: finput("test", x12): x1, x2, x12

x1, x2, 11

>> delete x12:

float – convert to a floating point number

float(object) converts the object or numerical subexpressions of the object
to floating point numbers.

Call(s):

A float(object)

Parameters:

object — any MuPAD object

Return Value: a floating point number of type DOM_FLOAT or DOM_COMPLEX,
or the input object with exact numbers replaced by floating point numbers.

370

Overloadable by: object

Side Effects: The function is sensitive to the environment variable DIGITS
which determines the numerical working precision.

Related Functions: DIGITS, Pref::floatFormat, Pref::trailingZeroes

Details:

A float converts numbers and numerical expressions such as sqrt(sin(2))
or sqrt(3) + sin(PI/17)*I to real or complex floating point numbers of
type DOM_FLOAT or DOM_COMPLEX, respectively. If symbolic objects other
than the special constants CATALAN, E, EULER, and PI are present, only
numerical subexpressions are converted to floats. In particular, identifiers
and indexed identifiers are returned unchanged by float. Cf. example 1.

A A float call is mapped recursively to the operands of an expression.
When numbers (or constants such as PI) are found, they are converted
to floating point approximations. The number of significant decimal di-
gits is given by the environment variable DIGITS; the default value is 10.
The converted operands are combined by arithmetical operations or func-
tion calls according to the structure of the expression. E.g., a call such
as float(PI - 314/100) may be regarded as a sequence of numerical
operations:

t1 := float(PI); t2 := float(314/100); result := t1 - t2

Consequently, float evaluation via float may be subject to error propaga-
tion. Cf. example 2.

A float is automatically mapped to the elements of sets and lists. However,
it is not automatically mapped to the entries of arrays, tables, and oper-
ands of function calls. Use map(object, float) for a fast floating point
conversion of all entries of an array or a table. Use mapcoeffs(p, float)
to convert the coefficients of a polynomial p of type DOM_POLY. To con-
trol the behavior of float on a function call, use a function environment
providing a "float" slot. Cf. examples 3 and 4.

A The preferences Pref::floatFormat and Pref::trailingZeroes can be
used to modify the screen output of floating point numbers.

A Rational approximations of floating point numbers may be computed by
the function numeric::rationalize.

A MuPAD’s special functions such as sin, exp, besselJ etc. are implemented
as function environments. Via overloading, the "float" attribute (slot) of
a function environment f, say, is called for the float evaluation of symbolic
calls f(x1, x2, ...) contained in an expression.

371

The user may extend the functionality of the system function float to
his own functions. For this, the function f to be processed must be de-
clared as a function environment via funcenv. A "float" attribute must
be written, which is called by the system function float in the form
f::float(x1, x2, ...) whenever a symbolic call f(x1, x2, ...) in-
side an expression is found. The arguments passed to f::float are not
converted to floats, neither is the return value of the slot subject to any
further float evaluation. Thus, the float conversion of symbolic functions
calls of f is entirely determined by the slot routine. Cf. example 4.

A Also a domain d, say, written in the MuPAD language, can overload float
to define the float evaluation of its elements. A slot d::float must be
implemented. If an element x, say, of this domain is subject to a float
evaluation, the slot is called in the form d::float(x). As for function
environments, neither x nor the return value of the slot are subject to any
further float evaluation.

If a domain does not have a "float" slot, the system function float
returns its elements unchanged.

A Note that MuPAD’s floating point numbers are restricted in size. On
32 bit architectures, an overflow/underflow occurs if numbers of absolute
size larger/smaller than about 10.0±2 525 222 are encountered. On 64 bit
architectures, the limits are about 10.0±42 366 205 509 363.

A See the documentation for DIGITS for further information.

A float is a function of the system kernel.

Example 1. We convert some numbers and numerical expressions to floats:

>> float(17), float(PI/7 + I/4), float(4^(1/3) + sin(7))

17.0, 0.4487989505 + 0.25 I, 2.244387651

float is sensitive to DIGITS:

>> DIGITS := 20:
float(17), float(PI/7 + I/4), float(4^(1/3) + sin(7))

17.0, 0.44879895051282760549 + 0.25 I, 2.2443876506869885651

Symbolic objects such as identifiers are returned unchanged:

>> DIGITS := 10: float(2*x + sin(3))

2.0 x + 0.1411200081

372

Example 2. We illustrate error propagation in numerical computations. The
following rational number approximates exp(2) to 17 decimal digits:

>> r := 738905609893065023/100000000000000000:

The following float call converts exp(2) and r to floating point approxima-
tions. The approximation errors propagate and are amplified in the following
numerical expression:

>> DIGITS := 10: float(10^20*(r - exp(2)))

320.0

None of the digits in this result is correct! A better result is obtained by
increasing DIGITS:

>> DIGITS := 20: float(10^20*(r - exp(2)))

276.95725394785404205

>> delete r, DIGITS:

Example 3. float is mapped to the elements of sets and lists:

>> float([PI, 1/7, [1/4, 2], {sin(1), 7/2}])

[3.141592654, 0.1428571429, [0.25, 2.0], {0.8414709848, 3.5}]

For tables and arrays, the function map must be used to forward float to the
entries:

>> T := table("a" = 4/3, 3 = PI): float(T), map(T, float)

table(table(
3 = PI, , 3 = 3.141592654,
"a" = 4/3 "a" = 1.333333333

))

>> A := array(1..2, [1/7, PI]): float(A), map(A, float)

+- -+ +- -+
| 1/7, PI |, | 0.1428571429, 3.141592654 |
+- -+ +- -+

Matrix domains overload the function float. In contrast to arrays, float works
directly on a matrix:

>> float(matrix(A))

373

+- -+
| 0.1428571429 |
| |
| 3.141592654 |
+- -+

Use mapcoeffs to apply float to the coefficients of a polynomial generated by
poly:

>> p := poly(9/4*x^2 + PI, [x]): float(p), mapcoeffs(p, float)

2 2
poly(9/4 x + PI, [x]), poly(2.25 x + 3.141592654, [x])

>> delete A, T, p:

Example 4. We demonstrate overloading of float by a function environment.
The following function Sin is to represent the sine function. In contrast to
MuPAD’s sin, it measures its argument in degrees rather than in radians (i.e.,
Sin(x) = sin(PI/180*x)). The only functionality of Sin is to produce floating
point values if the argument is a real float. For all other kinds of arguments, a
symbolic function call is to be returned:

>> Sin := proc(x)
begin
if domtype(x) = DOM_FLOAT then

return(Sin::float(x));
else return(procname(args()))
end_if;

end_proc:

The function is turned into a function environment via funcenv:

>> Sin := funcenv(Sin):

Finally, the "float" attribute is implemented. If the argument can be converted
to a real floating point number, a floating point result is produced. In all other
cases, a symbolic call of Sin is returned:

>> Sin::float := proc(x)
begin x := float(x):

if domtype(x) = DOM_FLOAT then
return(float(sin(PI/180*x)));

else return(Sin(x))
end_if;

end_proc:

Now, float evaluation of arbitrary expressions involving Sin is possible:

374

>> Sin(x), Sin(x + 0.3), Sin(120)

Sin(x), Sin(x + 0.3), Sin(120)

>> Sin(120.0), float(Sin(120)), float(Sin(x + 120))

0.8660254038, 0.8660254038, Sin(x + 120.0)

>> float(sqrt(2) + Sin(120 + sqrt(3)))

2.264730594

>> delete Sin:

fname – get a file name

fname(n) returns the name of the file specified by the file descriptor n.

Call(s):

A fname(n)

Parameters:

n — a file descriptor returned by fopen: a positive integer

Return Value: the name of the file: a character string of type DOM_STRING,
or NIL.

Related Functions: fclose, fileIO, finput, fopen, fprint, fread,
ftextinput

Details:

A The file must have been opened with fopen. The call to fopen yields the
file descriptor n representing the file.

A The special file descriptor 0 represents no file but output to the user
interface instead; fname(0) returns NIL.

A See ?fileIO for a survey of all MuPAD functions for reading and writing
files.

A fname is a function of the system kernel.

375

Example 1. We open a temporary file for writing. This yields the file descriptor
n:

>> n := fopen(TempFile);

16

We get the file’s name. Note that the name depends on the operating system:

>> fname(n);

"/tmp/mtxM9fPT"

Changes:

A fname is a new function.

fopen – open a file

fopen(filename) opens the file with the name filename.

Call(s):

A fopen(filename <, mode> <, format>)

Parameters:

filename — the name of a file: a character string or the flag TempFile

376

Options:

mode — either Read , Write or Append . With Read , the file is
opened for reading; with Write or Append , it is opened for
writing. If a file opened for writing does not yet exist, it is
created. With Write , existing files are overwritten. With
Append , new data may be appended to an existing file.
Note that in the Append mode, the specified format must
coincide with the format of the existing file; otherwise, the
file cannot be opened and fopen returns FAIL. If the flag
TempFile is given, the default mode is Write . Otherwise,
the default mode is Read .

format — the write format: either Bin , Text or Raw . With Bin , the
data are stored in MuPAD’s internal binary format. With
Text , the data may be strings or MuPAD objects stored as
text. Newlines are handled according to the conventions of
the operating system at hand. With Raw , the data must be
binary maschine numbers. See the functions readbytes and
writebytes.
If the mode is Read or Append , the default is the format of
the data in the existing file. If the mode is Write , the
default is Bin .

Return Value: a positive integer: the file descriptor. FAIL is returned if the
file cannot be opened.

Side Effects: The function is sensitive to the environment variable WRITEPATH
when creating files that are not temporary (temporary files are created via
TempFile). If WRITEPATH has a value, in write mode (using the options Write
or Append), the file is created in the corresponding directory. Otherwise, the
file is created in the“working directory”. A temporary file is created in a special
directory.

Related Functions: fclose, fileIO, FILEPATH, finput, fname, fprint,
fread, ftextinput, pathname, print, protocol, read, readbytes, READPATH,
write, writebytes, WRITEPATH

Details:

A fopen(filename <, Read>, format) opens an existing file for reading
in the specified format. An error is raised if no file with the specified
name is found or the format of the file does not coincide with the specified
format.

A fopen(filename <, Read>) opens an existing file for reading. The file
must hold data in text or MuPAD’s binary format, fopen automatically
identifies the file format in this case. The file must no be used as raw file.

377

A fopen(filename, mode, format) opens the file for writing in the spe-
cified format if the mode is given as Read or Append . If no file with the
specified name exists, a new file is created.

A fopen(TempFile <, Write> <, format>) creates and opens a tem-
porary file for writing in the specified format. The option Read and
Append are not allowed in this case. If no format is given, Bin is used.
Use fname to query the actual name and location of the temporary file.
Cf. example 3.

A In write mode (using one of the options Write or Append), the environ-
ment variable WRITEPATH is considered if no temporary file is created. If
it has a value, a new file is created (or an existing file is searched for) in
the corresponding directory. Otherwise, it is created/searched for in the
“working directory”.

Note that the “working directory” depends on the operating system. On
Windows systems, it is the folder, where MuPAD is installed. On UNIX
or Linux systems, the “working directory” is the directory where MuPAD
was started.

In read mode, fopen does not search for files in the directories given
by READPATH and LIBPATH. !
A temporary file is created in a special directory. This directory and the
name of the file are system dependent.

On the Macintosh, an empty file name may be given. In this case, a
dialog box is opened in which the user can choose a file. Further, on the
interactive level, MacMuPAD warns the user if an existing file is about to
be overwritten.

Also absolute path names are processed by fopen.

A The file descriptor returned by fopen can be used by various functions
such as fname, fclose, fread, fprint, read, write etc.

A A file opened by fopen should be closed by fclose after use. This holds
also for temporary files.

A fopen accepts its arguments in any order, not only in the order used
above.

A For an overview of all file related MuPAD functions, also try ?fileIO.

A fopen is a function of the system kernel.

Example 1. We open the file test for writing. With the option Write , it is
not necessary that the file test exists. By default, the file is opened as a binary
file:

>> n := fopen("test", Write)

378

16

We write a string to the file and close it:

>> fprint(n, "a string"): fclose(n):

We append another string to the file:

>> n := fopen("test", Append)

17

>> fprint(n, "another string"): fclose(n):

The binary file cannot be opened as a text file for appending data:

>> n := fopen("test", Append, Text)

FAIL

However, it may be opened as a text file with the option Write . The existing
binary file is overwritten as a text file:

>> n := fopen("test", Write, Text)

18

>> fclose(n): delete n:

Example 2. fopen fails to open non-existing files for reading. Here we assume
that the file xyz does not exist:

>> n := fopen("xyz")

FAIL

We assume that the file test created in example 1 exists. It can be opened for
reading successfully:

>> n := fopen("test")

19

>> fclose(n): delete n:

379

Example 3. We open a temporary file, write 10 binary data bytes into it and
close it. fname is used to query the name of the file:

>> fd := fopen(TempFile, Raw):
writebytes(fd, [i $ i=1..10]):
fn := fname(fd):
fclose(fd):
fn

"/tmp/mupad.7aYAp4"

Now, we re-open the file and read the data byte by byte:

>> fd := fopen(fn, Read, Raw):
l := []:
repeat

r := readbytes(fd, 2);
l := l.r;

until r = [] end:
l

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>> fclose(fd): delete fd, fn, l:

Changes:

A New options TempFile , Read and Raw were introduced.

A The arguments can now be given in any order.

for – for loop

for - end_for is a repetition statement providing a loop for automatic itera-
tion over a range of numbers or objects.

Call(s):

A for i from start to stop <step stepwidth> do
body

end_for

A _for(i, start, stop, stepwidth, body)

A for i from start downto stop <step stepwidth> do
body

end_for

380

A _for_down(i, start, stop, stepwidth, body)

A for x in object do
body

end_for

A _for_in(x, object, body)

Parameters:
i, x — the loop variable: an identifier or a local variable

(DOM_VAR) of a procedure
start — the starting value for i: a real number. This may be an

integer, a rational number, or a floating point number.
stop — the stopping value for i: a real number. This may be an

integer, a rational number, or a floating point number.
stepwidth — the step width: a positive real number. This may be an

integer, a rational number, or a floating point number.
The default value is 1.

object — an arbitrary MuPAD object
body — the body of the loop: an arbitrary sequence of

statements

Return Value: the value of the last command executed in the body of the
loop. If no command was executed, the value NIL is returned. If the iteration
range is empty, the void object of type DOM_NULL is returned.

Further Documentation: Chapter 16 of the MuPAD Tutorial.

Related Functions: break, next, repeat, while

Details:

A When entering an incrementing loop

for i from start to stop step stepwidth do body end_for,

the assignment i := start is made. The body is executed with this
value of i (the body may reassign a new value to i). After all statements
inside the body are executed, the loop returns to the beginning of the
body, increments i := i + stepwidth and checks the stopping criterion
i > stop. If FALSE, the body is executed again with the new value of i.
If TRUE, the loop is terminated immediately without executing the body
again.

A The decrementing loop

for i from start downto stop step stepwidth do body end_for

381

implements a corresponding behavior. The only difference is that upon
return to the beginning of the body, the loop variable is decremented by
i := i - stepwidth before the stopping criterion i < stop is checked.

A The loop for x in object do body end_for iterates x over all oper-
ands of the object. This loop is equivalent to

for i from 1 to nops(object) do
x := op(object, i);
body

end_for

Typically, object may be a list, an expression sequence, or an array.
Note that other container objects such as finite sets or tables do not have
a natural internal ordering, i.e., care must be taken, if the loop expects a
certain ordering of the iterative steps.

A The body of a loop may consist of any number of statements which must
be separated either by a colon : or a semicolon ;. The last evaluated
result inside the body is printed on the screen as the return value of the
loop. Use print inside the loop to see intermediate results.

A The loop variable i, respectively x, may have a value before the loop
starts. After the loop is terminated, it has the value that was assigned in
the last step of the loop. Typically, in an incrementing or decrementing
loop with integer values of start, stop, and stepwidth, this is i = stop
± stepwidth.

A The arguments start, stop, stepwidth, and object are evaluated only
once at the beginning of the loop and not after every iteration. E.g., if
object is changed in a step of the loop, x still runs through all operands
of the original object.

A Loops can be exited prematurely using the break statement. Steps of a
loop can be skipped using the next statement. Cf. example 2.

A The keyword end_for may be replaced by the keyword end. Cf. ex-
ample 3.

A Instead of the the imperative loop statements, the equivalent calls of the
functions _for, _for_down, or _for_in may be used. Cf. example 4.

A _for, _for_down and _for_in are functions of the system kernel.

Example 1. The body of the following loop consists of several statements.
The value of the loop variable i is overwritten when the loop is entered:

382

>> i := 20:
for i from 1 to 3 do
a := i;
b := i^2;
print(a, b)

end_for:

1, 1

2, 4

3, 9

The loop variable now has the value that satisfied the stopping criterion i > 3:

>> i

4

The iteration range is not restricted to integers:

>> for i from 2.2 downto 1 step 0.5 do
print(i)

end_for:

2.2

1.7

1.2

The following loop sums up all elements in a list. The return value of the loop
is the final sum. It can be assigned to a variable:

>> s := 0: S := for x in [c, 1, d, 2] do s := s + x end_for

c + d + 3

Note that for sets, the internal ordering is not necessarily the same as printed
on the screen:

>> S := {c, d, 1}

{c, d, 1}

>> for x in S do print(x) end_for:

1

d

c

>> delete a, b, i, s, S, x:

383

Example 2. Loops can be exited prematurely using the break statement:

>> for i from 1 to 3 do
print(i);
if i = 2 then break end_if

end_for:

1

2

With the next statement, the execution of commands in a step can be skipped.
The evaluation continues at the beginning of the body with the incremented
value of the loop variable:

>> a := 0:
for i from 1 to 3 do
a := a + 1;
if i = 2 then next end_if;
print(i, a)

end_for:

1, 1

3, 3

>> delete i, a:

Example 3. Loops can be closed with the keyword end instead of end_for.
The parser recognizes the scope of end statements automatically.

>> s:= 0:
for i from 1 to 3 do
for j from 1 to 3 do
s := i + j;
if i + j > 4 then
break;

end
end

end

5

>> delete s, i, j:

384

Example 4. This example demonstrates the correspondence between the func-
tional and the imperative form of for loops:

>> hold(
_for(i, start, stop, stepwidth, (statement1; statement2))

)

for i from start to stop step stepwidth do
statement1;
statement2

end_for

The optional step clause is omitted by specifying the value NIL for the step
width:

>> hold(
_for_down(i, 10, 1, NIL, (x := i^2; x := x - 1))

)

for i from 10 downto 1 do
x := i^2;
x := x - 1

end_for

>> hold(
_for_in(x, object, body)

)

for x in object do
body

end_for

fprint – write data to a file

fprint(filename, objects) writes MuPAD objects to the file filename.

fprint(n, objects) writes to the file associated with the file descriptor n.

Call(s):

A fprint(<style,> <format,> filename <, object1, object2,
...>)

A fprint(<style,> n <, object1, object2, ...>)

385

Parameters:
filename — the name of a file: a character string
object1, object2, ... — arbitrary MuPAD objects
n — a file descriptor provided by fopen: a

nonnegative integer

Options:

style — either Unquoted or NoNL . These options are relevant for
text files only. Both options make fprint store character
strings without quotation marks. All objects are stored
without separating colons in the text file. With Unquoted ,
a newline character is appended to the line generated by
fprint. With NoNL , no newline character is appended to
the line.

format — the write format: either Bin or Text . With Bin , the data
are stored in MuPAD’s binary format. With Text , standard
ASCII format is used. The default is Bin .

Return Value: the void object of type DOM_NULL.

Side Effects: The function is sensitive to the environment variable WRITEPATH.
If this variable has a value, the file is created in the corresponding directory.
Otherwise, the file is created in the “working directory”.

Related Functions: expr2text, fclose, fileIO, finput, fname, fopen,
fread, ftextinput, pathname, print, protocol, read, READPATH, write,
WRITEPATH

Details:

A fprint is used to write MuPAD objects to a file. The objects are evalu-
ated, the results are stored in the file. These data can be read into another
MuPAD session via the functions finput and ftextinput, respectively.

A The file may be specified directly by its name. In this case, fprint creates
a new file or overwrites an existing file. fprint opens and closes the file
automatically.

If WRITEPATH does not have a value, fprint interprets the file name as a
pathname relative to the “working directory”.

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

On the Macintosh, an empty file name may be given. In this case, a
dialogue box is opened in which the user can choose a file. Further, on

386

the interactive level, MacMuPAD warns the user, if an existing file is
about to be overwritten.

Also absolute path names are processed by fprint.

A Instead of a file name, also a file descriptor of a file opened via fopen
can be used. Cf. example 2. In this case, the data written by fprint are
appended to the corresponding file. The file is not closed automatically
by fprint and must be closed by a subsequent call to fclose.

Note that fopen(filename) opens the file in read-only mode. A sub-
sequent fprint command to this file causes an error. Use the Write or
Append option of fopen to open the file for writing.

The file descriptor 0 represents the screen.

A Text output occurs without the Pretty-Printer. A call to fprint writes
all specified objects into a single line of the text file. A newline character
is appended to this line, unless the option NoNL is used. By default, the
written objects are separated by colons without any further white space.
The resulting text data consists of syntactically correct MuPAD code and
can be read again using finput. With the options Unquoted and NoNL ,
neither white space no colons are inserted to separate the objects. The
resulting text data cannot be read again using finput. Cf. example 3.

Note that the text version of a MuPAD object does not necessarily
reflect its data structure. A domain element stored in text mode
may be read as an element of a different type by finput. Use the
binary mode if stored data are to be read in their original form into
another MuPAD session. Cf. example 4.

!

A MuPAD statements such as assignments etc. must be bracketed as in
fprint("test", (a := 2)).

A For an overview of all file related MuPAD functions, also try ?fileIO.

A fprint is a function of the system kernel.

Option <Unquoted>:

A This option is useful for writing user-formated text files. Data written
with this option cannot be read again via finput.

A With this option, character strings are written without quotation marks.
Additionally, the control characters ’\n’ and ’\t’ in strings are expan-
ded. Furthermore, no colons are inserted between the objects. A newline
character is appended to the line written by fprint.

387

Option <NoNL>:

A This option has the same functionality as Unquoted , with the only differ-
ence that no newline character is appended to the line written by fprint.

Example 1. We write some data to the file test. By default, this file is
created as a binary file. For syntactical reasons, the assignment d := 5 must
be enclosed in additional brackets:

>> fprint("test", (d := 5), d*3):

The file is read into the MuPAD session. The assignment d := 5 is executed,
its return value is assigned to the identifier e. The value d*3 is assigned to the
identifier f:

>> finput("test", e, f): d, e, f;

5, 5, 15

>> delete d, e, f:

Example 2. We use a file descriptor to access the file test. Several calls to
fprint append data to the file:

>> n := fopen("test", Write):
fprint(n, (d := 5), d*3):
fprint(n, "more data"):

Using a file descriptor, we have to call fclose to close the file:

>> fclose(n):

The file is read into the MuPAD session, assigning the stored values to the
identifiers e, f, and g:

>> finput("test", e, f, g): e, f, g;

5, 15, "more data"

>> delete n, d, e, f, g:

388

Example 3. With the option Unquoted , character strings are written without
quotation marks:

>> fprint(Text, "test1", "Hello World!", MuPAD + 1):
fprint(Unquoted, Text, "test2", "Hello World!", MuPAD + 1):

Now, the files test1 and test2 have the following content:

test1:
"Hello World!":MuPAD + 1:

test2:
Hello World!MuPAD + 1

We can use finput or ftextinput to read the data from the file:

>> finput("test1", a, b): a, b;

"Hello World!", MuPAD + 1

>> ftextinput("test2", c): c

"Hello World!MuPAD + 1"

>> delete a, b, c:

Example 4. The text version of a MuPAD object does not necessarily reflect
its data structure. E.g., the function matrix creates matrices of domain type
Dom::Matrix(). The text version, however, is an array:

>> fprint(Text, "test", matrix([1, 2])):
finput("test")

array(1..2, 1..1, (1, 1) = 1, (2, 1) = 2)

Use the binary mode to guarantee that stored objects can be read in their
original form:

>> fprint("test", matrix([1, 2])):
finput("test"); domtype(%)

+- -+
| 1 |
| |
| 2 |
+- -+

Dom::Matrix()

389

Changes:

A fprint may now be called without objects to print.

frac – the fractional part of a number

frac(x) represents the “fractional part” x-floor(x) of the number x.

Call(s):

A frac(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: The function is sensitive to the environment variable DIGITS
which determines the numerical working precision.

Related Functions: floor

Details:

A For complex arguments, frac is applied separately to the real and ima-
ginary part.

A For real numbers, the value x-floor(x) represented by frac(x) is a
number from the interval [0, 1). For positive arguments, you may think
of frac as truncating all digits before the decimal point.

A For integer arguments, 0 is returned. For rational arguments, a rational
number is returned. For arguments that contain symbolic identifiers,
symbolic function calls are returned. For floating point arguments or
non-rational exact expressions, floating point values are returned.

A If the argument is a floating point number of absolute value larger
than 10 DIGITS, then the result is affected by internal non-significant
digits! Cf. example 2.

!

A Exact numerical data that are neither integers nor rational numbers
are approximated by floating point numbers. For such arguments,
the result depends on the present value of DIGITS! Cf. example 3.

!

390

Example 1. We demonstrate the fractional part of real and complex numbers:

>> frac(1234), frac(123/4), frac(1.234)

0, 3/4, 0.234

>> frac(-1234), frac(-123/4), frac(-1.234)

0, 1/4, 0.766

>> frac(3/2 + 7/4*I), frac(4/3 + 1.234*I)

1/2 + 3/4 I, 0.3333333333 + 0.234 I

The fractional part of a symbolic numerical expression is returned as a floating
point value:

>> frac(exp(123)), frac(3/4*sin(1) + I*tan(3))

0.7502040792, 0.6311032386 + 0.8574534569 I

Expressions with symbolic identifiers produce symbolic function calls:

>> frac(x), frac(sin(1) + x^2), frac(exp(-x))

2
frac(x), frac(sin(1) + x), frac(exp(-x))

Example 2. Care should be taken when computing the fractional part of
floating point numbers of large absolute value:

>> 10^13/3.0

3.333333333e12

Note that only the first 10 decimal digits are “significant”. Further digits are
subject to round-off effects caused by the internal binary representation. These
“insignificant” digits can enter the fractional part:

>> frac(10^13/3.0)

0.3333332539

The mantissa of the next floating point number does not have enough digits to
store “digits after the decimal point”:

>> floor(10^25/9.0), ceil(10^25/9.0), frac(10^25/9.0)

1111111111111111111081984, 1111111111111111111081984, 0.0

391

Example 3. Exact numerical expressions are converted to floating point num-
bers. Consequently, the present setting of DIGITS affects the result:

>> x := 10^30 - exp(30)^ln(10) + 1/3

ln(10)
3000000000000000000000000000001/3 - exp(30)

Note that the exact value of this number is 1/3. Floating point evaluation can
be subject to severe cancellation:

>> DIGITS := 20: frac(x)

0.0

The floating point result is more accurate when a higher precision used:

>> DIGITS := 30: frac(x)

0.3333342112600803375244140625

>> delete x, DIGITS:

frame – create a new frame, change to an existing frame

The statement frame X changes to frame X, creating it if necessary.

Call(s):

A frame X

A _frame(X)

A frame ..

A _frame(..)

A frame A::B::C

A _frame(A::B::C)

A frame ..::A

A _frame(..::A)

Parameters:
X — an identifier or a frame
A, B, C — frames

Return Value: a MuPAD object of type DOM_FRAME

392

Related Functions: :=, _assign, assign, _delete, delete, slot

Details:

A Frames are a very technical concept in MuPAD. Most users will have no
need for using them.

A Frames are similar to name spaces in other programming languages such
as C++.

A A frame is a closed environment inside a MuPAD session. Closed means:

• Changing the value of an identifier inside a frame does not change
the value of the identifier outside the environment. There are no
effects on computations outside the frame environment.

• Within a frame, the values of identifiers in other frames can be
accessed without interfering with the local values in the current
frame.

Frames are useful as scratch pads for auxiliary calculations.

A From a practical point of view, frames inside a MuPAD session can be
visualized as follows:

• Frames form a rooted tree. One may think of a frame as a directory
in a hierarchical file system.

• One can change between frames as one can change between direct-
ories.

• In a frame, identifiers may have a specific value valid only in this
frame.

A An identifier can have different values in different frames. It can also
inherit a value from another frame. Cf. example 8.

A Creating and changing between frames:

• The command frame A; changes to the frame A. If this frame did
not exist, it is created and assigned to the identifier A in the current
frame. The return value of the command is the new frame. Cf.
example 1.

• frame; or frame .; do not change the frame. These commands
just return the current frame. Cf. example 1.

• frame ..; changes the current frame to the parent frame. The
return value is the parent frame. Cf. example 1.

393

• frame ::; changes the current frame to the root frame (the top
level frame in the frame hierarchy). The return value is the root
frame. The parent frame of the root frame is again the root frame.
Cf. example 1.

• It is also possible to change the current frame using a frame path.
The frame path consists of the ’path delimiter’ :: and the ’path
components’. The path components are existing frames or the spe-
cial symbols . and .. , where . represents the current frame and ..
represents the parent frame. The path delimiter :: represents the
root frame if a path begins with this symbol. The path component
. is only allowed at the beginning of a frame path. Cf. example 2.

• Frame paths can only be used to change between existing
frames. It is not possible to create a new frame using a frame
path. Cf. example 2.

!

A Deleting frames

• The command delete A; deletes the frame A and all of its sub-
frames. Cf. example 6.

• Due to the fact that a frame is assigned to an identifier, it is possible
to access an existing frame A through another identifier B, say. This
way, one can still access the frame A even after deletion via delete
A. However, deletion turns A into an anonymous frame . This means
that no identifier has a specific value belonging to this frame. Cf.
example 7.

A Accessing variables

• With frames, there are two ways to access the value of an identifier:
unqualified and qualified access.

By unqualified access we mean the access to the value of an identifier
by using its name or an ’unqualified frame path’. An ’unqualified
frame path’ is a frame path that does not start with ., .. or ::,
respectively. A special search strategy is used to find the value. See
below for further details.

By qualified access we mean the access to the value of an identifier
by specifying an exact frame path where to look for its value. A
path is exact if and only if it starts with ., .. or :: , respectively.

• Unqualified read access:
The search strategy for accessing the value of an identifier x is as
follows: First, the value of x is searched in the current frame. If it
has no value in the current frame, then its value is searched recurs-
ively in the parent frame until a value is found. Cf. examples 3 and

394

4. If x has no value in any of the searched frames, the expression
specifying x is returned. Cf. examples 3 and 4.

• Unqualified write access:
If a value is assigned to an identifier x, the value of x is set in
the current frame or in the frame specified by the frame path. Cf.
example 5.

• Qualified read access:
Qualified access means that the frame in which the value of an
identifier x is searched is exactly specified (the frame path starts
with ., .. or ::, respectively). If x has a value in this frame, the
value is returned. Otherwise, the expression specifying x is returned
symbolically. Cf. example 8.

• Qualified write access:
Qualified access means that the frame is exactly specified in which
a new value is to be assigned to an identifier (the frame path starts
with ., .. or ::, respectively). Cf. example 9.

A Inside a frame, the command delete x; deletes the value of the identifier
x in this frame.

This means that, in this frame, the value of x is the identifier itself.
!

It is possible to use a frame path while specifing the identifier to be deleted.
Cf. example 11.

A From a technical point of view, using a frame path is a slot access by
the function slot. At the beginning of the frame path, . is parsed as
_frame(), .. as _parentFrame() and :: as _rootFrame(). Within the
frame path, .. is parsed as the slot named "..". Cf. example 13. The
slot function is then responsible for finding the value for an identifier
specified by the frame path as described above.

A An identifier can have different values in different frames. It can also have
different properties in different frames.

It is not possible to use a frame path to specify an identifier for
setting properties via assume or reading properties via getprop. !
Cf. example 10.

A Domains have a unique data representation in the MuPAD system.
Changing a method of a domain will change this method for all
instances of the domain in the MuPAD system. It is not possible to
do local changes to a domain that are valid for one frame only. Cf.
example 12.

!

395

Example 1. In the following call, a new frame is created because the identifier
A has no value:

>> delete A: frame A

frame ::A

The current frame is now the just created frame A:

>> frame

frame ::A

We change back to the root frame. The output frame :: denotes the root
frame:

>> frame ..

frame ::

The identifier A contains the created frame. It is possible to change back to this
frame:

>> A; frame A:

frame ::A

Instead of using frame .., there exists another way to return to the root frame
and there exist also an alternative to see the current frame:

>> frame ::; frame .

frame ::

frame ::

If an identifier already has a value which is no frame, it is also possible to use
this identifier for creating a new frame, overwriting the old value. We set B to
42:

>> B := 42

42

Now, the frame B is created which overrides the old value of B:

>> frame B: B

frame ::B

We change to the root frame and delete the created frames:

>> frame :: : delete A, B:

396

Example 2. A hierarchy of frames is created. First, frame A inside the root
frame is created:

>> frame A

frame ::A

Frame B inside the frame A is created:

>> frame B

frame ::A::B

It is not possible to create a frame using a frame path:

>> frame ..::C

Error: Illegal argument [frame]

We create 2 frames C: one inside frame A, and another one inside the root frame.
Before creating the frames, we have to move to the corresponding places in the
frame hierarchy:

>> frame ..; frame C

frame ::A

frame ::A::C

>> frame ::; frame C

frame ::

frame ::C

We change to the frame C inside frame A:

>> frame ::A::C

frame ::A::C

We return to the root frame and delete all created frames:

>> frame :: : delete A, C:

397

Example 3. Frames are useful for having a so-called “closed environment”:
Changing the value of an identifier x in a frame will not influence the value of
x in other frames. We now take a closer look at this behavior. Inside the root
frame, the value of x is set to 42:

>> x := 42:

Inside frame A, x is set to the string ”value inside frame A”. If x is accessed by
its name, we get the value belonging to the current frame:

>> frame A: x := "value inside frame A":
x

"value inside frame A"

In the root frame, x is not changed:

>> frame ..: x

42

The new frame B is created and no specific value is assigned to x inside this
frame. While accessing x, the search strategy for finding its value is used. The
value is found in the parent frame (which is the root frame):

>> frame B: x

42

The same holds if another subframe C is created. Again x has no value in this
subframe and the value is found in the first parent frame where x has a value:

>> frame C: frame; x

frame ::B::C

42

If an identifier has no value in any frame the value is searched for, the identifier
itself is returned:

>> y

y

We return to the root frame and delete the created frames:

>> frame :: : delete A, B:

398

Example 4. A similiar situation as in example 3 is created. But here frame B
and C are subframes of A:

>> x := 42: frame A:
x := "value inside frame A":
frame B: frame C

frame ::A::B::C

The current frame is changed to the root frame and the value of x is searched
in different frames. This is explained now in more detail. First, the value of x
is searched which is found in the root frame:

>> frame ::; x

frame ::

42

Then, the value of x is searched in the frame A. To be more precise, the value
of A is searched and found to be frame ::A. Then, the value of the slot named
x is looked up in this frame. This is the value of x in the frame A, which exists:

>> A::x

"value inside frame A"

This also explains the next result. First, the value of A is searched. The result
is the frame ::A . Then, the value of the slot B is accessed which is the frame
::A::B. Finally, the value of the slot x inside the frame ::A::B is searched
which is the value of the identifier x in the frame ::A::B which does not exist.
The search strategy for finding a value of an identifier is only used for the first
identifier in a frame path. After that, the usual mechanism for a slot access is
used.

The search strategy is not used recursively here:

>> A::B::x

A::B::x

The current frame is changed to the frame A::B::C. If A::x is accessed, the
value of the identifier A is searched. The value of A is the frame ::A found in
the root frame. After A is found, the slot x is accessed which is the value of x
inside the frame ::A:

>> frame A::B::C: A::x

"value inside frame A"

We return to the root frame and delete the created frames:

>> frame :: : delete A:

399

Example 5. Now, a frame path is used to write the value of an identifier.
First the value of x in the root frame is set:

>> x := 42:

The current frame is set to the root frame and the value of x belonging to the
frame A is set to the string ”value inside frame A”. The technical explanation
is similar to the read access using a frame path:

>> frame A: frame :: :
A::x := "value inside frame A":
x, A::x

42, "value inside frame A"

Even if we change the current frame to frame A and assign a value to A::y,
this sets the value of y belonging to frame A. The reason is again the search
strategy. First the value of A is searched. The result is the frame A belonging
to the identifier A in the root frame. Then, the value of y inside this frame is
set:

>> frame A: A::y := 12: y

12

We return to the root frame and delete all created frames:

>> frame :: : delete A:

Example 6. First, a frame hierarchy is created and some identifiers are as-
signed values valid only in particular frames:

>> x := 42 : frame A: y := 21: frame B: z := 1:

The identifier A is deleted. The frame A and all of its subframes are no longer
available:

>> frame :: : delete A:
A::y

Error: Unknown slot "A::y" [slot]

If the current frame is changed to frame A, A is newly created. No identifier has
a value in this frame:

>> frame A: y

y

400

Since the subframe B was deleted implicitly when deleting A, the next command
creates a new instance of frame B. No identifier has a value in this frame:

>> frame B: z

z

We return to the root frame and delete all created frames:

>> frame :: : delete A:

Example 7. As in the last example, a frame hierarchy is created and some
identifiers are assigned values valid only in special frames:

>> x := 42 : frame A: y := 21: frame B: z := 1:

Before the frame A is deleted, we assign its value to the identifier C in the root
frame:

>> frame :: : C := A:

Now, the identifier A is deleted: the frame A and all of its subframes are no
longer available. Due to the fact that C still contains the old frame A, we can
still change to the old frame A by using C. Since A was deleted, it is now an
“anonymous” frame:

>> delete A: frame C

frame ::AnonymousFrame

While it was still possible to change to the now anonymous frame A, all the
identifiers which had a value in the old frame A lost their values:

>> B, y

B, y

We return to the root frame and delete all created frames:

>> frame :: : delete A:

Example 8. One may read the value of an identifier using an exact frame
path. First, a frame hierarchy is created:

>> x := 42: frame A: x := 21: y := 13: frame B: x := 1:

401

Accessing the identifier x from the current frame A::B gives the result 1 because
x is defined in the current frame. Getting the value of x from other exactly
specified frames needs a qualified read access to these values:

>> x, ..::x, ::x

1, 21, 42

We present some other possibilities for accessing the value of x from frame A or
the root frame. In the first case, the value of x is searched in the frame A which
should be a subframe of the root frame. In the second case, it is searched in
the parent frame of the parent frame:

>> ::A::x, ..::..::x

21, 42

If the value of y in the current frame should be accessed, it is not enough to use
y because this would find the value of y in the parent frame A. To avoid this,
. can be used which represents the current frame. The output of .::y is the
unevaluated expression (_frame())::y because y has no value in the current
frame and . is the operator notation for _frame():

>> y, .::y

13, (_frame())::y

We return to the root frame and delete all created frames:

>> frame :: : delete A:

Example 9. In the last example, read access for the value of an identifier in
an exactly specified frame was shown. Now the same is done for write access.
First, a frame hierarchy is created:

>> frame A: frame B:

Now the same situation as in the last example should be created without leaving
the current frame B. This means that the value of x in the root frame should
be 42, in frame A it should be 21 and in frame B it should be 1. Also the value
of y in frame A should be 13:

>> x := 1: ..::x := 21: ::x := 42: ..::y := 13:
x, ..::x, ::x, ..::y

1, 21, 42, 13

The following commands provide an alternative to assign these values:

402

>> .::x := 1: ::A::x := 21: ..::..::x := 42: ::A::y := 13:
x, ..::x, ::x, ..::y

1, 21, 42, 13

We return to the root frame and delete all created frames:

>> frame :: : delete A:

Example 10. An identifier can have different properties in different frames:

>> delete x: assume(x > 0): getprop(x)

> 0

>> frame A: assume(x < 0): getprop(x)

< 0

In the root frame, x still has the property > 0:

>> frame .. : getprop(x)

> 0

It is not possible to use a frame path to specify an identifier for reading or
writing its properties:

>> getprop(.::x), getprop(A::x)

(_frame())::x, A::x

>> assume(.::x = 0)

Error: at least one side must be an (indexed) identifier [assu\
me]

We return to the root frame and delete all created frames:

>> frame :: : delete A:

403

Example 11. Deleting an identifier means deleting its value. After deletion,
the identifier exists as a symbol. In the following, the identifier x has no value
in the frame A; the value in the root frame is found:

>> x := 42: frame A : x

42

After x is deleted in the current frame, it has no value but exists as a symbol.
Accessing the value of x returns the identifier itself:

>> delete x: x

x

Now, the value 11 is assigned to y in the root frame. This value is found in the
current frame A:

>> ::y := 11: y

11

y is deleted in the current frame. Now, a frame path is used. As before, y
exists as a symbol in the current frame A. Accessing the value of y returns the
identifier itself:

>> delete ::A::y: y

y

We return to the root frame and delete all created frames:

>> frame :: : delete A:

Example 12. Domains have a unique data representation in the MuPAD sys-
tem. Frames do not allow to change methods of a domain only in special
frames. The new domain "Test" is created in the root frame and in the frame
A. However, both domains have the same key "Test". Hence, they are the same
although they were created in different frames:

>> T := newDomain("Test"): frame A: TT := newDomain("Test"):

The print method of the domain "Test" in the frame A is defined: it returns
the string ”Operands” together with the operands of an element of the domain:

>> TT::print := elem -> return("Operands", op(elem))

elem -> return("Operands", op(elem))

404

>> new(TT, 3)

"Operands", 3

Setting the print method in the frame A also set the print method of the domain
inside the root frame, since both domains are the same:

>> frame :: : expose(T::print)

elem -> return("Operands", op(elem))

>> new(T, 7)

"Operands", 7

We return to the root frame and delete all created frames:

>> frame :: : delete A:

Example 13. The following example shows how the frame path is parsed when
accessing the value of an identifier. First, a frame hierarchy is created:

>> delete x: frame A: frame B

frame ::A::B

Now, the value of x in the root frame is accessed. Since x has no value in the
root frame, symbolic slot calls are returned:

>> ..::..::x; .::..::..::x; ::x

(slot(_parentFrame(), ".."))::x

(slot(slot(_frame(), ".."), ".."))::x

(_rootFrame())::x

We return to the root frame and delete the created frames:

>> frame :: : delete A:

Changes:

A frame is a new keyword.

405

frandom – generate random floating point numbers

frandom() returns a pseudo-random floating point number from the interval
[0.0, 1.0).

frandom(seed) returns a generator of pseudo-random floating point numbers
from the interval [0.0, 1.0).

Call(s):

A frandom()

A frandom(seed)

Parameters:

seed — an initialization value for the generator: an integer

Return Value: frandom() returns a floating point number; frandom(seed)
returns a procedure (a pseudo-random number generator).

Side Effects: frandom is sensitive to the environment variable DIGITS which
determines the numerical working precision.

Related Functions: random, stats::uniformRandom

Details:

A The calls frandom() produce uniformly distributed floating point num-
bers from the interval [0.0, 1.0).

A r := frandom(seed) produces a random number generator r. Subsequent
calls r() return uniformly distributed floating point numbers from the in-
terval [0.0, 1.0). Different generators created with the same seed generate
the same sequences of numbers. Cf. Example 3. Generators created in
separate calls to frandom do not influence one another.

A As for all functions returning floating point numbers, frandom reacts to
DIGITS and returns numbers with the precision set by this variable.

A Each time MuPAD is started or re-initialized with the reset function,
random generators produce the same sequence of numbers.

A frandom is the recommended function for generating uniform random
floating point numbers. It is much faster than the function random which
produces uniform integer numbers.

406

In contrast to random, frandom does not react to the environment
variable SEED. !
A The function stats::uniformRandom allows to produce uniformly dis-

tributed floating point numbers on arbitrary finite intervals. The stats
library also provides random generators with various other distributions.

A frandom is a function of the system kernel.

Example 1. The following call produces a sequence of pseudo-random num-
bers. Note that an index variable i must be used in the construction of the
sequence. A call such as frandom() $ 8 would produce 8 copies of the same
random value:

>> frandom() $ i = 1..8

0.2703567032, 0.8142678572, 0.1145977439, 0.247668289,

0.436855213, 0.7507294917, 0.5143284818, 0.47002619

Example 2. frandom reacts to DIGITS:

>> DIGITS := 200: frandom(), frandom()

0.069563338270290396129397095438205056004224903765787803686798\
40876152721278941674172273204274776497805244573978990522720452\
61693133722455076106794668401482834372752724032599011122602004\
98029917237691462

,

0.214621811832755486840726972406260492132624504839255676795843\
02591874977618514168624948454363482487890706480451682373581068\
41206165610245768782024975458061499112144859607570873112705898\
6804671578401241

>> delete DIGITS:

Example 3. frandom(seed), for some integer value of seed, returns a gener-
ator of floating point numbers. For different generators created with the same
seed, the sequences of numbers will be identical (provided the value of DIGITS
does not change):

407

>> r1 := frandom(42):
r2 := frandom(42):
r1() $ i=1..4;
r2() $ i=1..4

0.1105445771, 0.8801762635, 0.8463755466, 0.4128521752

0.1105445771, 0.8801762635, 0.8463755466, 0.4128521752

Note that the sequences produced by these generators may differ when they are
called with significantly different values of DIGITS:

>> r1 := frandom(42): r2 := frandom(42): r1() $ i=1..4

0.1105445771, 0.8801762635, 0.8463755466, 0.4128521752

>> DIGITS := 20: r2() $ i=1..4

0.1105445769499155913, 0.26116556986774964568,

0.92427601333877321223, 0.81737003913431684486

>> delete r1, r2, DIGITS:

Background:

A frandom uses a linear congruence generator to directly manipulate the
internal representation of a DOM_FLOAT.

Changes:

A frandom is a new function.

fread – read and execute a file

fread(filename) reads and executes the MuPAD file filename.

fread(n) reads and executes the file associated with the file descriptor n.

Call(s):

A fread(filename <, Quiet> <, Plain>)

A fread(n <, Quiet> <, Plain>)

Parameters:
filename — the name of a file: a character string
n — a file descriptor provided by fopen: a positive integer

408

Options:

Plain — makes fread use its own parser context
Quiet — suppresses output during execution of fread

Return Value: the return value of the last statement of the file.

Related Functions: fclose, fileIO, FILEPATH, finput, fname, fopen,
fprint, ftextinput, input, loadproc, pathname, print, protocol, read,
READPATH, textinput, write, WRITEPATH

Details:

A fread(filename) reads the file and evaluates each MuPAD statement in
the file.

A fread is similar to read. The only difference is that fread does not
search for files in the directories given by READPATH and LIBPATH; fread
only searches for the file relative to the “working directory”.

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

On the Macintosh, an empty file name may be given. In this case, a
dialogue box is opened in which the user can choose a file. Further, on
the interactive level, MacMuPAD warns the user, if an existing file is
about to be overwritten.

Also absolute path names are processed by fread.

A fread can read MuPAD binary files (created via fprint or write) as well
as ASCII text files. fread recognizes the format of the file automatically.

A Instead of a file name, also a file descriptor of a file opened via fopen can
be used. Cf. example 3.

A Similar to procedures, the identifier LEVEL has the value 1 while the file’s
content is evaluated by fread.

A When a file is read with fread the variable FILEPATH contains the path
of the file.

A fread is a function of the system kernel.

Option <Quiet>:

A With this option, output is suppressed while reading and executing the
file. However, warnings, error messages as well as the output of print
commands are still visible.

409

Option <Plain>:

A With this option, the file is read in a new parser context. This means
that the history is not modified by the statements in the file. Further,
abbreviations set outside the file via alias or user defined operators are
ignored during the execution of the file. This option is useful for reading
initialization files in a clean environment.

Example 1. The following example is only functional under UNIX and Linux;
on other operating systems one must change the path names accordingly. First,
we use fprint to create a file containing three MuPAD statements:

>> fprint(Unquoted, Text, "/tmp/test", "a := 3; b := 5; a + b;"):

When reading the file, the statements are executed. Each produces a print
output. The second 8 below is the return value of fread:

>> delete a, b: fread("/tmp/test")

3

5

8

8

Now, the variables a and b have the values assigned inside the file :

>> a, b

3, 5

With the option Quiet , only the return value of fread is printed:

>> delete a, b: fread("/tmp/test", Quiet)

8

>> delete a, b:

410

Example 2. The next example demonstrates the option Plain . First, an
appropriate input file is created:

>> fprint(Unquoted, Text, "/tmp/test",
"f := proc(x) begin x^2 end_proc:",
"a := f(3): b := f(4):"):

We define an alias for f:

>> alias(f = "some text"):

An error occurs if we try to read the file without the option Plain . In the parser
context of the MuPAD session, the alias replaces f by the corresponding string
in the assignment f := However, strings cannot be assigned a value:

>> fread("/tmp/test"):

Error: Invalid left-hand side [_assign];
while reading file ’/tmp/test’

With the option Plain , no such error arises: the alias for f is ignored by fread:

>> fread("/tmp/test", Plain): a, b

9, 16

>> unalias(f): delete f, a, b:

Example 3. We use write to save the value of the identifier a in the file
“/tmp/test”:

>> a := PI + 1: write("/tmp/test", a): delete a:

This file is opened for reading with fopen:

>> n := fopen("/tmp/test")

16

The file descriptor returned by fopen can be passed to fread. Reading the file
restores the value of a:

>> fread(n): a

PI + 1

>> fclose(n): delete a:

411

freeze, unfreeze – create an inactive or active copy of a function

freeze(f) creates an inactive copy of the function f.

unfreeze(object) reactivates all inactive functions occurring in object and
evaluates the result.

Call(s):

A freeze(f)

A unfreeze(object)

Parameters:
f — a procedure or a function environment
object — any MuPAD object

Return Value: freeze returns an object of the same type as f. unfreeze
returns the evaluation of object after reactivating all inactive functions in it.

Related Functions: eval, hold, MAXDEPTH

Details:

A ff := freeze(f) returns a function that is an “inactive” copy of the
argument f. This means:

1. ff only evaluates its arguments, but does not compute anything
else,

2. ff is printed in the same way as f,

3. symbolic ff calls have the same type as symbolic f calls,

4. if f is a function environment, then ff has all the slots of f.

Note that ff evaluates its incoming parameters even if the function f has
the procedure option hold.

A freeze can be used when many operations with f are to be performed
that require f only in its symbolic form, but f need not be executed. See
example 2.

A Neither eval nor level can enforce the evaluation of an inactive function;
see example 2.

412

A unfreeze(object) reactivates all inactive functions occurring in object,
proceeding recursively along the structure of object, and then evaluates
the result.

A unfreeze uses misc::maprec to proceed recursively along the structure
of object. This means that for basic domains such as arrays, tables,
lists, or polynomials, the function unfreeze is applied to each operand of
object.

Note that if object is an element of a library domain, then the behavior
of unfreeze is specified by the method "maprec" which overloads the
function misc::maprec. If this method does not exist, then unfreeze
has no effect on object. See example 5.

A unfreeze does not operate on the body of procedures, therefore it is
recommended not to embed inactive functions inside procedures.

Example 1. We create an inactive form of the function environment int:

>> _int := freeze(int): F := _int(x*exp(x^2), x = 0..1)

2
int(x exp(x), x = 0..1)

The inactive form of int keeps every information that is known about the
function int, e.g., the output, the type, and the "float" slot for floating-point
evaluation:

>> F, type(F), float(F)

2
int(x exp(x), x = 0..1), "int", 0.8591409142

The original function environment int is not modified by freeze:

>> int(x*exp(x^2), x = 0..1)

exp(1)
------ - 1/2

2

Use unfreeze to reactivate the inactive function _int and evaluate the result:

>> unfreeze(F), unfreeze(F + 1/2)

exp(1) exp(1)
------ - 1/2, ------

2 2

413

Example 2. The function student::riemann makes use of freeze in order
to return a result where the function sum is preserved in its symbolic form:

>> a:= student::riemann(sin(x), x = 0..PI)

/ / PI (i3 + 1/2) \ \
PI sum| sin| ------------- |, i3 = 0..3 |

\ \ 4 / /

4

Only when applying unfreeze the sum is computed:

>> unfreeze(a)

1/2 1/2 1/2 1/2
PI ((2 + 2) + (2 - 2))

4

>> float(%)

2.052344306

Example 3. We demonstrate the difference between hold and freeze. The
result of the command S := hold(sum)(...) does not contain an inactive ver-
sion of sum, but the unevaluated identifier sum:

>> S := hold(sum)(1/n^2, n = 1..infinity)

/ 1 \
sum| --, n = 1..infinity |

| 2 |
\ n /

The next time S is evaluated, the identifier sum is replaced by its value, the
function environment sum, and the procedure computing the value of the infinite
sum is invoked:

>> S

2
PI

6

In contrast, evaluation of the result of freeze does not lead to an evaluation
of the inactive function:

414

>> S := freeze(sum)(1/n^2, n = 1..infinity)

/ 1 \
sum| --, n = 1..infinity |

| 2 |
\ n /

>> S

/ 1 \
sum| --, n = 1..infinity |

| 2 |
\ n /

An inactive function does not even react to eval:

>> eval(S)

/ 1 \
sum| --, n = 1..infinity |

| 2 |
\ n /

The only way to undo a freeze is to use unfreeze, which reactivates the
inactive function in S and then evaluates the result:

>> unfreeze(S)

2
PI

6

Example 4. Note that freeze(f) does not change the object f but returns a
copy of f in an inactive form. This means that computations with the inactive
version of f may contain the original function f.

For example, if we create an inactive version of the sine function:

>> Sin := freeze(sin):

and expand the term Sin(x+y), then the result is expressed in terms of the
(original) sine function sin:

>> expand(Sin(x + y))

cos(x) sin(y) + cos(y) sin(x)

415

Example 5. The function unfreeze uses misc::maprec to operate recursively
along the structure of object. For example, if object is an array containing
inactive functions, such as:

>> a := array(1..2,
[freeze(int)(sin(x), x = 0..2*PI), freeze(sum)(k^2, k = 1..n)]

)

+- 2 -+
| int(sin(x), x = 0..2 PI), sum(k , k = 1..n) |
+- -+

then unfreeze(a) operates on the operands of a:

>> unfreeze(a)

+- -+
| 2 3 |
| n n n |
| 0, - + -- + -- |
| 6 2 3 |
+- -+

This means that for library domains, the effect of unfreeze is specified by
the method "maprec". If the domain does not implement this method, then
unfreeze does not operate on the objects of this domain. For example, we
create a dummy domain and an object containing an inactive function as its
operand:

>> dummy := newDomain("dummy"):
o := new(dummy, freeze(int)(sin(x), x = 0..2*PI))

new(dummy, int(sin(x), x = 0..2 PI))

The function unfreeze applied to the object o has no effect:

>> unfreeze(o)

new(dummy, int(sin(x), x = 0..2 PI))

If we overload the function misc::maprec in order to operate on the first op-
erand of objects of the domain dummy, then unfreeze operates on o as desired:

>> dummy::maprec :=
x -> extsubsop(x,
1 = misc::maprec(extop(x,1), args(2..args(0)))

):
unfreeze(o)

new(dummy, 0)

416

ftextinput – read a text file

ftextinput(filename, x) reads a line from a text file, interprets the line as
a string and assigns this string to the identifier x.

ftextinput(n, x) reads from the file associated with the file descriptor n.

Call(s):

A ftextinput(filename)

A ftextinput(filename, x1, x2, ...)

A ftextinput(n)

A ftextinput(n, x1, x2, ...)

Parameters:
filename — the name of a file: a character string
n — a file descriptor provided by fopen: a positive integer
x1, x2, ... — identifiers

Return Value: the last line that was read from the file: a character string.

Related Functions: fclose, fileIO, finput, fname, fopen, fprint,
fread, input, pathname, print, protocol, read, READPATH, textinput,
write, WRITEPATH

Details:

A ftextinput(filename) reads the first line of the text file and returns it
as a string to the MuPAD session.

A ftextinput(filename, x1, x2, ...) reads the file line by line. The
i-th line is converted to a character string and assigned to the identifier xi.
The identifiers are not evaluated while executing ftextinput; previously
assigned values are overwritten.

A Instead of a file name, also a file descriptor n of a file opened via fopen can
be used. The functionality is as described above. However, there is one
difference: With a file name, the file is closed automatically after the data
were read. A subsequent call to ftextinput starts at the beginning of
the file. With a file descriptor, the file remains open (use fclose to close
the file). The next time data are read from this file, the reading continues
at the current position. Consequently, a file descriptor should be used, if
the individual lines in the file are to be read via several subsequent calls
of ftextinput. Cf. example 2.

417

A If the number of identifiers specified in the ftextinput call is larger than
the number of lines in the file, the exceeding identifiers are not assigned
any values. In such a case, ftextinput returns the void object of type
DOM_NULL.

A ftextinput interprets the file name as a pathname relative to the “work-
ing directory”.

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

On the Macintosh, an empty file name may be given. In this case, a
dialogue box is opened in which the user can choose a file.

Also absolute path names are processed by ftextinput.

A Expression sequences are not flattened by ftextinput and cannot be used
to pass several identifiers to ftextinput. Cf. example 3.

A For an overview of all file related MuPAD functions, also try ?fileIO.

A ftextinput is a function of the system kernel.

Example 1. First, we use fprint to create a text file with three lines:

>> fprint(Unquoted, Text, "test", "x + 1\n2nd line\n3rd line"):

We read the first two lines of the file and assign the corresponding strings to
the identifiers x1 and x2:

>> ftextinput("test", x1, x2): x1, x2

"x + 1", "2nd line"

If we try to read beyond the last line of the file, ftextinput returns the void
object of type DOM_NULL:

>> ftextinput("test", x1, x2, x3, x4); domtype(%)

DOM_NULL

>> x1, x2, x3, x4

"x + 1", "2nd line", "3rd line", x4

>> delete x1, x2, x3:

418

Example 2. We read some lines from a file using several calls of ftextinput.
We have to use a file descriptor for reading from the file. The file is opened for
reading with fopen:

>> fprint(Unquoted, Text, "test",
"x + 1\nx + 2\n3rd line\n4th line"):

>> n := fopen("test"):

The file descriptor returned by fopen can be passed to ftextinput for reading
the data:

>> ftextinput(n, x1, x2): x1, x2

"x + 1", "x + 2"

>> ftextinput(n, x3, x4): x3, x4

"3rd line", "4th line"

Finally, we close the file and delete the identifiers:

>> fclose(n): delete n, x1, x2, x3, x4:

Alternatively, the contents of a file can be read into a MuPAD session in the
following way:

>> n := fopen("test"):
for i from 1 to 4 do

x.i := ftextinput(n)
end_for:
x1, x2, x3, x4

"x + 1", "x + 2", "3rd line", "4th line"

>> fclose(n): delete n, i, x1, x2, x3, x4:

Example 3. Expression sequences are not flattened by ftextinput and cannot
be used to pass identifiers to ftextinput:

>> fprint(Unquoted, Text, "test", "1st line\n2nd line\n3rd line"):
ftextinput("test", (x1, x2), x3)

Error: Illegal argument [ftextinput]

The following call does not lead to an error because the identifier x12 is not
evaluated. Consequently, only one line is read from the file and assigned to
x12:

419

>> x12 := x1, x2: ftextinput("test", x12): x1, x2, x12

x1, x2, "1st line"

>> delete x12:

funcenv – create a function environment

funcenv creates a function environment. A function environment behaves like
an ordinary function with the additional possibility to define function attributes.
These are used to overload standard system functions such as diff, float etc.

Call(s):

A funcenv(f1 <, f2> <, slotTable>)

Parameters:
f1 — an arbitrary MuPAD object. Typically, a procedure. It

handles the evaluation of a function call to the function
environment.

f2 — a procedure handling the screen output of symbolic
function calls

slotTable — a table of function attributes (slots)

Return Value: a function environment of type DOM_FUNC_ENV.

Further Documentation: Chapter “Function Environments”of the Tutorial.

Related Functions: slot

Details:

A funcenv serves for generating a function environment of domain type
DOM_FUNC_ENV.

From a user’s point of view, function environments are similar to proced-
ures and can be called like any MuPAD function.

However, in contrast to simple procedures, a function environment allows
a tight integration into the MuPAD system. In particular, standard system
functions such as diff, expand, float etc. can be told how to act on
symbolic function calls to a function environment.

For this, a function environment stores special function attributes (slots)
in an internal table. Whenever an overloadable system function such
as diff, expand, float encounters an object of type DOM_FUNC_ENV, its

420

searches the function environment for a corresponding slot. If found, it
calls the corresponding slot and returns the value produced by the slot.

Slots can be incorporated into the function environment by creating a
table slotTable and passing this to funcenv, when the function envir-
onment is created. Alternatively, the function slot can be used to add
further slots to an existing function environment.

See example 1 below for further information.

A The first argument f1 of funcenv determines the evaluation of function
calls. With f:= funcenv(f1), the call f(x) returns the result f1(x).
Note that calls of the form f:= funcenv(f) are possible (and, in fact,
typical). This call embeds the procedure f into a function environment
of the same name. The original procedure f is stored internally in the
function environment f. After this call, further function attributes can
be attached to f via the slot function.

A The second argument f2 of funcenv determines the screen output of
symbolic function calls. Consider f:= funcenv(f1, f2). If the call f(x)
returns a symbolic function call f(x) with 0-th operand f, then f2 is
called: the return value of f2(f(x)) is used as the screen output of f(x).

Beware: f2(f(x)) should not produce a result containing a further
symbolic call of f, because this will lead to an infinite recursion,
causing an error message.

!

A The third argument slotTable of funcenv is a table containing function
attributes (slots). The table has to use strings as indices to address system
functions. E.g.,

slotTable := table("diff" = mydiff, "float" = myfloat):
f := funcenv(f1, f2, slotTable):

attaches the slot functions mydiff and myfloat to f. They are called
by the system functions diff and float, respectively, whenever they
encounter a symbolic expression f(x) with 0-th operand f. The internal
slot table can be changed or filled with additional function attributes via
the function slot.

A The documentation of float, print, and slot provides further examples
involving function environments.

A funcenv is a function of the system kernel.

Example 1. We want to introduce a function f that represents a solution of
the differential equation f ′(x) = x+ sin(x) f(x). First, we define a function f,
which returns any call f(x) symbolically:

>> f := proc(x) begin procname(args()) end_proc: f(x), f(3 + y)

421

f(x), f(y + 3)

Because of the differential equation f ′(x) = x+sin(x) f(x), derivatives of f can
be rewritten in terms of f. How can we tell the MuPAD system to differentiate
symbolic functions calls such as f(x) accordingly? For this, we first have to
embed the procedure f into a function environment:

>> f := funcenv(f):

The function environment behaves like the original procedure:

>> f(x), f(3 + y)

f(x), f(y + 3)

System functions such as diff still treat symbolic calls of f as calls to unknown
functions:

>> diff(f(x + 3), x)

D(f)(x + 3)

However, as a function environment, f can receive attributes that overload the
system functions. The following slot call attaches a dummy "diff" attribute
to f:

>> f := slot(f, "diff", mydiff): diff(2*f(x^2) + x, x)

2
2 mydiff(f(x), x) + 1

We attach a more meaningful "diff" attribute to f that is based on f ′(x) =
x + sin(x) f(x). Note, that arbitrary calls diff(f(y), x1, x2, ..) have to
be handled by this slot:

>> fdiff := proc(fcall) local y; begin
y:= op(fcall, 1);
(y + sin(y)*f(y))*diff(y, args(2..args(0)))

end_proc:
f := slot(f, "diff", fdiff):

Now, as far as differentiation is concerned, the function f is fully integrated into
MuPAD:

>> diff(f(x), x), diff(f(x), x, x)

x + f(x) sin(x), f(x) cos(x) + sin(x) (x + f(x) sin(x)) + 1

>> diff(sin(x)*f(x^2), x)

2 2 2 2
cos(x) f(x) + 2 x sin(x) (x + f(x) sin(x))

422

Since Taylor expansion around finite points only needs to evaluate derivatives,
also Taylor expansions of f can be computed:

>> taylor(f(x^2), x = 0, 9)

4 / f(0) \ 8 / f(0) \ 9
f(0) + x | ---- + 1/2 | + x | ---- + 1/8 | + O(x)

\ 2 / \ 12 /

>> delete f, fdiff:

Example 2. Suppose that you have defined a function f that may return itself
symbolically, and you want such symbolic expressions of the form f(x,...)
to be printed in a special way. To this end, embed your procedure f in a
function environment and supply an output procedure as second argument to
the corresponding funcenv call. Whenever an expression of the form f(x,...)
is to be printed, the output procedure will be called with the arguments x,...
of the expression:

>> f := funcenv(f,
proc(x) begin

if nops(x) = 2 then
"f does strange things with its arguments ".
expr2text(op(x, 1))." and ".expr2text(op(x,2))

else
FAIL

end
end):

>> delete a, b:
f(a, b)/2;
f(a, b, c)/2

f does strange things with its arguments a and b
--

2

f(a, b, c)

2

>> delete f:

423

Example 3. For all prefedined function environments, the second operand
is a built-in output function, of type DOM_EXEC. In particular, this is the case
for operators such as +, *, ^ etc. In the following example, we change the
output symbol for the power operator ^, which is stored in the third operand
of the built-in output function of the function environment _power, to a double
asterisk:

>> unprotect(_power):
_power := subsop(_power, [2, 3] = "**"):
a^b/2;
print(a^b/2):
_power := subsop(_power, [2, 3] = "^"):
protect(_power):

a**b

2

a**b

2

Background:

A Mathematical functions such as exp, ln etc. or abs, Re, Im etc. are imple-
mented as function environments.

gamma – the gamma function

gamma(x) represents the gamma function Γ(x) =
∫∞
0 e−t tx−1 dt.

Call(s):

A gamma(x)

Parameters:

x — an arithmetical expression or a floating point interval

Return Value: an arithmetical expression or a floating point interval.

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

424

Related Functions: beta, binomial, fact, igamma, psi

Details:

A The gamma function is defined for all complex arguments apart from the
singular points 0,−1,−2,

A It is related to the factorial function: gamma(x)=fact(x-1)=(x-1)! for
all positive integers x.

A If x is a floating point value, then a floating point value is returned. If
x is a floating point interval, a floating point interval is returned. If x is
a positive integer smaller than 1000, then an integer is returned. If x is
a rational number of domain type DOM_RAT satisfying 1<x<500, then the
functional relation Γ(x+ 1) = xΓ(x) is applied to “normalize” the result.
The functional relation

Γ(x)Γ(1− x) =
π

sin(πx)

is applied if x<1/2 is a rational number of domain type DOM_RAT that is
an integer multiple of 1/4 or 1/6. The call gamma(1/2) yields sqrt(PI);
gamma(infinity) yields infinity.

For all other arguments, a symbolic function call is returned.

A The float attribute of gamma is a kernel function, i.e., floating point eval-
uation is fast.

A The logarithmic derivative of gamma is implemented by the digamma func-
tion psi.

A The expand attribute uses the functional equation Γ(x+ 1) = xΓ(x), the
reflection formula

Γ(−x) =
−π

x sin(πx)Γ(x)
,

and the Gauß multiplication formula for Γ(kx) when k is a positive integer,
to rewrite gamma(x). Cf. example 3. For numerical x, the functional
equation is used to shift the argument to the range 0 < x < 1.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> gamma(15), gamma(23/2), gamma(sqrt(2)), gamma(x + 1)

1/2
13749310575 PI 1/2

87178291200, -----------------, gamma(2), gamma(x + 1)
2048

Floating point values are computed for floating point arguments:

425

>> gamma(11.5), gamma(2.0 + 10.0*I)

11899423.08, - 0.00001089258677 + 0.00000504737724 I

Example 2. gamma is singular for nonpositive integers:

>> gamma(-2)

Error: singularity [gamma]

Example 3. The functions diff, expand, float, limit, and series handle
expressions involving gamma:

>> diff(gamma(x^2 + 1), x), float(ln(3 + gamma(sqrt(PI))))

2 2
2 x psi(x + 1) gamma(x + 1), 1.367203476

>> expand(gamma(3*x - 4))

1/2 3 x
gamma(x) 3 3 gamma(x + 1/3) gamma(x + 2/3)
--
6 PI (3 x - 1) (3 x - 2) (3 x - 3) (3 x - 4)

>> limit(1/gamma(x), x = infinity),
limit(gamma(x - 4)/gamma(x - 10), x = 0)

0, 151200

>> series(gamma(x), x = 0, 3)

/ 2 2 \
| PI EULER |
| - --- + ------ |

1 | PI 12 2 | 2
- - EULER + x PI | -- + -------------- | + O(x)
x \ 6 PI /

The Stirling formula is obtained as an asymptotic series:

>> series(gamma(x), x = infinity, 4)

426

1/2 x 1/2 1/2 x 1/2 1/2 x 1/2
PI x 2 PI x 2 PI x 2
------------- + -------------- + --------------- +
1/2 3/2 5/2
x exp(x) 12 x exp(x) 288 x exp(x)

/ x \
| x |
O| ----------- |
| 7/2 |
\ x exp(x) /

Changes:

A Floating point intervals are now handled.

A The system function expand now implements the reflection formula and
the Gauß multiplication formula.

gcd – the greatest common divisor of polynomials

gcd(p, q, ...) returns the greatest common divisor of the polynomials p, q, . . .

Call(s):

A gcd(p, q, ...)

A gcd(f, g, ...)

Parameters:
p, q, ... — polynomials of type DOM_POLY
f, g, ... — polynomial expressions

Return Value: a polynomial, a polynomial expression, or the value FAIL.

Overloadable by: p, q, f, g

Related Functions: content, div, divide, factor, gcdex, icontent,
ifactor, igcd, igcdex, ilcm, lcm, mod, poly

427

Details:

A gcd(p, q, ...) calculates the greatest common divisor of any number
of polynomials. The coefficient ring of the polynomials may either be the
integers or the rational numbers, Expr , a residue class ring IntMod (n)
with a prime number n, or a domain.

All polynomials must have the same indeterminates and the same coeffi-
cient ring.

A Polynomial expressions are converted to polynomials. See poly for details.
FAIL is returned if an argument cannot be converted to a polynomial.

A The return value is of the same type as the input polynomials, i.e., either
a polynomial of type DOM_POLY or a polynomial expression.

A gcd returns 0 if all arguments are 0, or if no argument is given. If at least
one of the arguments is −1 or 1, then gcd returns 1.

A Use igcd if all arguments are known to be integers, since it is much faster
than gcd.

Example 1. The greatest common divisor of two polynomial expressions can
be computed as follows:

>> gcd(6*x^3 + 9*x^2*y^2, 2*x + 2*x*y + 3*y^2 + 3*y^3)

2
2 x + 3 y

>> f := (x - sqrt(2))*(x^2 + sqrt(3)*x-1):
g := (x - sqrt(2))*(x - sqrt(3)):
gcd(f, g)

1/2
x - 2

One may also choose polynomials as arguments:

>> p := poly(2*x^2 - 4*x*y - 2*x + 4*y, [x, y], IntMod(17)):
q := poly(x^2*y - 2*x*y^2, [x, y], IntMod(17)):
gcd(p, q)

poly(x - 2 y, [x, y], IntMod(17))

>> delete f, g, p, q:

428

Background:

A If the arguments are polynomials with coefficients from a domain, then
the domain must have the methods "gcd" and "_divide". The method
"gcd" must return the greatest common divisor of any number of domain
elements. The method "_divide" must divide two domain elements. If
domain elements cannot be divided, this method must return FAIL.

gcdex – the extended Euclidean algorithm for polynomials

gcdex(p, q, x) regards p and q as univariate polynomials in x and returns
their greatest common divisor as a linear combination of p and q.

Call(s):

A gcdex(p, q <, x>)

A gcdex(f, g, x)

Parameters:
p, q — polynomials of type DOM_POLY
f, g — polynomial expressions
x — an indeterminate: an identifier or an indexed identifier

Return Value: a sequence of three polynomials, or a sequence of three poly-
nomial expressions, or FAIL.

Overloadable by: p, q

Related Functions: factor, div, divide, gcd, ifactor, igcd, igcdex,
ilcm, lcm, mod, poly

Details:

A gcdex(p, q, x) returns a sequence g, s, t with three elements, where the
polynomial g is the greatest common divisor of p and q. The polynomials
s and t satisfy g = s p+ t q and deg(s) < deg(q), deg(t) < deg(p). These
data are computed by the extended Euclidean algorithm.

A gcdex only processes univariate polynomials:

• If the indeterminate x is specified, the input polynomials are re-
garded as univariate polynomials in x.

• If no indeterminate is specified, the indeterminate of the polyno-
mials is searched for internally. An error occurs if more than one
indeterminate is found.

429

Note that x must be specified if polynomial expressions are used on input.

A Polynomial expressions are converted to polynomials. See poly for details.
FAIL is returned if an argument cannot be converted to a polynomial.

A The returned polynomials are polynomial expressions if the input consists
of polynomial expressions. Otherwise, polynomials of type DOM_POLY are
returned.

A The coefficient ring of the polynomials must provide the method "_divide".
This method must return FAIL if domain elements cannot be divided.

A If the coefficient domain of the polynomial is not a field, then it may
not be possible to represent a greatest common divisor as a linear
combination of the input polynomials. In such a case, an error is
raised.

!

Example 1. The greatest common divisor of two univariate polynomials in
extended form can be computed as follows:

>> gcdex(poly(x^3 + 1), poly(x^2 + 2*x + 1))

poly(x + 1, [x]), poly(1/3, [x]), poly(- 1/3 x + 2/3, [x])

For multivariate polynomials, an indeterminate must be specified:

>> gcdex(poly(x^2*y), poly(x + y), x)

/ 1 \ / / 1 \ 1 \
poly(1, [x]), poly| --, [x] |, poly| | - -- | x + -, [x] |

| 3 | | | 2 | y |
\ y / \ \ y / /

>> gcdex(poly(x^2*y), poly(x + y), y)

/ 1 \ / 1 \
poly(1, [y]), poly| - --, [y] |, poly| -, [y] |

| 3 | \ x /
\ x /

>> gcdex(x^3 + a, x^2 + 1, x)

2
a + x 1 - x - a x

1, ------, ------------
2 2
a + 1 a + 1

430

genident – create an unused identifier

genident() creates an identifier not used before in the current session.

Call(s):

A genident()

A genident(S)

Parameters:

S — a character string

Return Value: an identifier.

Related Functions: delete, hold

Details:

A genident() creates an identifier with a name of the form Xi, where i is
a positive integer. It is guaranteed that the returned identifier has not
been used before in the current MuPAD session.

A If a string S is given as argument, then genident returns an identifier
with a name of the form Si, where i is a positive integer.

A The returned identifier does not have a value.

A genident is a function of the system kernel.

Example 1. We create three new identifiers. The second identifier has a
different prefix:

>> genident(), genident("Y"), genident()

X1, Y1, X2

In the next example, we assign a value to the identifier X4. Then the next two
calls to genident skip the name X4:

>> X4 := 5:
genident(), genident()

X3, X5

431

genpoly – create a polynomial using the “b”-adic expansion

genpoly(n, b, x) creates a polynomial p in the indeterminate x such that
p(b) = n.

Call(s):

A genpoly(n, b, x)

Parameters:
n — an integer, a polynomial of type DOM_POLY, or a polynomial

expression
b — an integer greater than 1
x — the indeterminate: an identifier

Return Value: a polynomial if the first argument is a polynomial or an in-
teger. Otherwise, a polynomial expression.

Related Functions: genident, indets, int2text, interpolate, mods,
numlib::g_adic, poly, text2int

Details:

A genpoly(n, b, x) creates a polynomial p in the variable x from the b-
adic expansion of n, such that p(b) = n. The integer coefficients of the
resulting polynomial are greater than −b/2 and less than or equal to b/2.

A The b-adic expansion of an integer n is defined by n =
∑m

i=0 cib
i, such

that the ci are symmetric remainders modulo b, i.e., −b/2 < ci ≤ b/2 for
all i (see mods). From this expansion the polynomial p =

∑m
i=0 cix

i is
created. The polynomial is defined over the coefficient ring Expr.

A If the first argument of genpoly is a (multivariate) polynomial, then it
must be defined over the coefficient ring Expr and must have only integer
coefficients. The third argument x must not be a variable of the polyno-
mial. In this case each integer coefficient is converted into a polynomial
in x as described above. The result is a polynomial in the variable x,
followed by the variables of the given polynomial. (x is the main variable
of the returned polynomial.)

A The first argument n may also be a polynomial expression. In this case,
it is converted into a polynomial using poly, then genpoly is applied
as described above, and the result is again converted into a polynomial
expression.

432

A If the first argument is an integer or a polynomial, then the result is a
polynomial of domain type DOM_POLY; otherwise it is a polynomial expres-
sion.

A genpoly is a function of the system kernel.

Example 1. We create a polynomial p in the indeterminate x such that p(7)
= 15. The coefficients of p are between -3 and 3:

>> p := genpoly(15, 7, x)

poly(2 x + 1, [x])

>> p(7)

15

Here is an example with a polynomial expression as input:

>> p := genpoly(15*y^2 - 6*y + 3*z, 7, x)

2 2
y + 3 z - x y + y + 2 x y

The return value has the same type as the first argument:

>> p := genpoly(poly(15*y^2 + 8*z, [y, z]), 7, x)

2 2
poly(2 x y + x z + y + z, [x, y, z])

We check the result:

>> p(7, y, z)

2
8 z + 15 y

getpid – the process ID of the running MuPAD kernel

On UNIX and Linux systems, getpid() returns the process ID of the running
MuPAD kernel.

Call(s):

A getpid()

433

Return Value: a nonnegative integer.

Related Functions: sysname, system

Details:

A On operating systems other than UNIX or Linux, getpid returns 0.

A The process ID may be useful information to communicate with other
processes or to send UNIX commands to the operating system via system.

A getpid is a function of the system kernel.

Example 1. Querying the process ID of the running kernel may produce a
result like this:

>> getpid()

16184

getprop – query properties of expressions

getprop(f) returns a mathematical property of the expression f.

Call(s):

A getprop(f)

A getprop()

Parameters:

f — an arithmetical expression

Return Value: getprop(f) returns a property of type Type::Property, or
the expression f itself. The call getprop() returns a property or the identifier
Global.

Related Functions: assume, is, property::hasprop, Type::Property,
unassume

434

Details:

A The property mechanism helps to simplify expressions involving identifiers
that carry “mathematical properties”. The function assume allows to
attach basic properties (“assumptions”) such as ’x is a real number’ or
’x is an odd integer’ to an identifier x, say. Arithmetical expressions
involving x may inherit such properties. E.g., ’1 + x^2 is positive’ if ’x
is a real number’.

getprop(f) examines the properties of all identifiers in the expression f
and derives a property of f.

See the property library for a description of all available properties.

A If the identifiers inside an expression have no properties, then getprop
returns the expression itself. In particular, if f is an identifier without
properties, then the result is again f. Cf. example 2.

An exception to this rule is the case where f involves one of the special
functions abs, Re, or Im with symbolic arguments. Independent of the
argument, these function values always represent real numbers, which
may give rise to a property of the whole expression f. Cf. example 4.

A The call getprop() returns the current “global property”. See assume for
details on setting global properties.

The protected identifier Global is used to store global properties. If no
global property is set, the identifier Global is returned. Cf. example 3.

A Only basic mathematical properties can be represented with the available
properties. Therefore, getprop performs certain simplifications during
the derivation of a property for an expression. Thus it may happen that
getprop derives a property that is weaker than the most specific property
that can be derived mathematically. Cf. example 5.

A The function is matches the properties of an expression with a given
property.

Example 1. If x is an integer, then x^2 + 1 must be a positive integer number:

>> assume(x, Type::Integer):
getprop(x^2 + 1)

[1, infinity[of Type::PosInt

If x represents a number in the interval [1, infinity[, the expression 1 - x
has the following property:

>> assume(x, Type::Interval([1], infinity)):
getprop(1 - x)

435

]-infinity, 0]

>> unassume(x):

Example 2. An expression is returned unchanged if it is constant, or if no
properties are attached to the identifiers involved:

>> getprop(x), getprop(x + 2*y), getprop(sin(3))

x, x + 2 y, sin(3)

Example 3. Properties that are assumed for all identifiers are stored in the
global variable Global. Presently, no global property is set:

>> getprop()

Global

In the following, a global property is set. Now, all identifiers have this property:

>> assume(Type::Real):
getprop(x), getprop(y), getprop((x + y)^2 + 1/2)

Type::Real, Type::Real, [1/2, infinity[of Type::Positive

The functions getprop and is combine the global property and the properties
of individual identifiers with the logical “and”:

>> assume(Type::Positive):
assume(x, Type::Integer):
getprop(x)

Type::PosInt

The global property may contradict the individual properties. In this case the
“empty property” property::Null is returned:

>> assume(Type::Positive):
assume(x < 0):
getprop(x)

property::Null

>> delete x: unassume():

436

Example 4. The functions abs, Re, and Im have a “minimal property”: they
produce real values. In fact, abs produces nonnegative real values:

>> delete x:
getprop(abs(x)), getprop(Re(x)), getprop(Im(x))

Type::NonNegative, Type::Real, Type::Real

Example 5. The set containing the squares of all prime numbers cannot be
represented by one of the properties available in the Type library. Therefore,
getprop returns the weaker property ’x^2 is a positive integer’:

>> assume(x, Type::Prime):
getprop(x^2)

Type::PosInt

>> unassume(x):

ground – ground term (constant coefficient) of a polynomial

ground(p) returns the constant coefficient p(0, 0, . . .) of the polynomial p.

Call(s):

A ground(p)

A ground(f)

A ground(f, vars)

Parameters:
p — a polynomial of type DOM_POLY
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers

Return Value: an element of the coefficient ring of p, an arithmetical expres-
sion, or FAIL.

Overloadable by: p, f

Related Functions: coeff, collect, degree, degreevec, lcoeff, ldegree,
lmonomial, lterm, nterms, nthcoeff, nthmonomial, nthterm, poly,
poly2list, tcoeff

437

Details:

A The first argument can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
ground.

A If the first argument f is not element of a polynomial domain, then ground
converts the expression to a polynomial via poly(f). If a list of indeterm-
inates is specified, then the polynomial poly(f, vars) is considered.

The constant coefficient is returned as an arithmetical expression.

A The result of ground is not fully evaluated. Evaluation can be enforced
by the function eval. Cf. example 2.

A ground returns FAIL if f cannot be converted to a polynomial in the
specified indeterminates. Cf. example 3.

Example 1. We demonstrate how the indeterminates influence the result:

>> f := 2*x^2 + 3*y + 1:
ground(f), ground(f, [x]), ground(f, [y]),
ground(poly(f)), ground(poly(f, [x])), ground(poly(f, [y]))

2 2
1, 3 y + 1, 2 x + 1, 1, 3 y + 1, 2 x + 1

The result is the evaluation at the origin:

>> subs(f, x = 0, y = 0), subs(f, x = 0), subs(f, y = 0)

2
1, 3 y + 1, 2 x + 1

Note the difference between ground and tcoeff:

>> g := 2*x^2 + 3*y:
ground(g), ground(g, [x]);
tcoeff(g), tcoeff(g, [x]);

0, 3 y

3, 3 y

>> delete f, g:

438

Example 2. The result of ground is not fully evaluated:

>> p := poly(27*x^2 + a, [x]): a := 5:
ground(p), eval(ground(p))

a, 5

>> delete p, a:

Example 3. The following expression is syntactically not a polynomial ex-
pression, and ground returns FAIL:

>> f := (x^2 - 1)/(x - 1): ground(f)

FAIL

After cancellation via normal, ground can compute the constant coefficient:

>> ground(normal(f))

1

>> delete f:

has – check if an object occurs in another object

has(object1, object2) checks, whether object2 occurs syntactically in object1.

Call(s):

A has(object1, object2)

A has(object1, l)

Parameters:
object1, object2 — arbitrary MuPAD objects
l — a list or a set

Return Value: either TRUE or FALSE

Overloadable by: object1

Related Functions: _in, _index, contains, hastype, op, subs, subsex

439

Details:

A has is a fast test for the existence of sub-objects or subexpressions. It
works syntactically, i.e., mathematically equivalent objects are considered
to be equal only if they are syntactically identical. See example 2.

A If object1 is an expression, then has(object1, object2) tests whether
object1 contains object2 as a subexpression. Only complete subexpres-
sions and objects occurring in the 0th operand of a subexpression are
found (see example 1).

A If object1 is a container, then has checks whether object2 occurs in an
entry of object1. See example 4.

A If the second argument is a list or a set l, then has returns TRUE if at least
one of the elements in l occurs in object1 (see example 3). In particular,
if l is the empty list or the empty set, then the return value is FALSE.

A If object1 is an element of a domain with a "has" slot, then the slot
routine is called with the same arguments, and its result is returned. If
the domain does not have such a slot, then FALSE will be returned. See
example 6.

If has is called with a list or set as second argument, then the "has" slot
of the domain of object1 is called for each object of the list or the set.
When the first object is found that occurs in object1, the evaluation is
terminated and TRUE is returned. If none of the objects occurs in object1,
FALSE will be returned.

A has is a function of the system kernel.

Example 1. The given expression has x as an operand:

>> has(x + y + z, x)

TRUE

Note that x + y is not a complete subexpression. Only x, y, z and x + y + z
are complete subexpressions:

>> has(x + y + z, x + y)

FALSE

However, has also finds objects in the 0th operand of a subexpression:

>> has(x + sin(x), sin)

TRUE

440

Every object occurs in itself:

>> has(x, x)

TRUE

Example 2. has works in a purely syntactical fashion. Although the two
expressions y*(x + 1) and y*x + y are mathematically equivalent, they differ
syntactically:

>> has(sin(y*(x + 1)), y*x + y),
has(sin(y*(x + 1)), y*(x + 1))

FALSE, TRUE

Complex numbers are not regarded as atomic objects:

>> has(2 + 5*I, 2), has(2 + 5*I, 5), has(2 + 5*I, I)

TRUE, TRUE, TRUE

In contrast, rational numbers are considered to be atomic:

>> has(2/3*x, 2), has(2/3*x, 3), has(2/3*x, 2/3)

FALSE, FALSE, TRUE

Example 3. If the second argument is a list or a set, has checks whether one
of the entries occurs in the first argument:

>> has((x + y)*z, [x, t])

TRUE

0th operands of subexpressions are checked as well:

>> has((a + b)*c, {_plus, _mult})

TRUE

441

Example 4. has works for lists, sets, tables, and arrays:

>> has([sin(f(a) + 2), cos(x), 3], {f, g})

TRUE

>> has({a, b, c, d, e}, {a, z})

TRUE

>> has(array(1..2, 1..2, [[1, 2], [3, 4]]), 2)

TRUE

For an array A, the command has(A,NIL) checks whether the array has any
uninitialized entries:

>> has(array(1..2, 1 = x), NIL),
has(array(1..2, [2, 3]), NIL)

TRUE, FALSE

For tables, has checks indices, entries, as well as the internal operands of a
table, given by equations of the form index=entry:

>> T := table(a = 1, b = 2, c = 3):
has(T, a), has(T, 2), has(T, b = 2)

TRUE, TRUE, TRUE

Example 5. has works syntactically. Although the variable x does not occur
mathematically in the constant polynomial p in the following example, the
identifier x occurs syntactically in p, namely, in the second operand:

>> delete x: p := poly(1, [x]):
has(p, x)

TRUE

Example 6. The second argument may be an arbitrary MuPAD object, even
from a user-defined domain:

>> T := newDomain("T"):
e := new(T, 1, 2);
f := [e, 3];

442

new(T, 1, 2)

[new(T, 1, 2), 3]

>> has(f, e), has(f, new(T, 1))

TRUE, FALSE

If the first argument of has belongs to a domain without a "has" slot, then has
always returns FALSE:

>> has(e, 1)

FALSE

Users can overload has for their own domains. For illustration, we supply
the domain T with a "has" slot, which puts the internal operands of its first
argument in a list and calls has for the list:

>> T::has := (object1, object2) -> has([extop(object1)], object2):

If we now call has with the object e of domain type T, the slot routine T::has
is invoked:

>> has(e, 1), has(e, 3)

TRUE, FALSE

The slot routine is also called if an object of domain type T occurs syntactically
in the first argument:

>> has(f, 1), has(f, 3)

TRUE, TRUE

hastype – test if an object of a specified type occurs in another
object

hastype(object, T) tests if an object of type T occurs syntactically in object.

Call(s):

A hastype(object, T <, inspect>)

Parameters:
object — an arbitrary MuPAD object
T — a type specifier, or a set or a list of type specifiers
inspect — a set of domain types

443

Return Value: either TRUE or FALSE.

Overloadable by: object

Related Functions: domtype, has, misc::maprec, testtype, Type, type

Details:

A hastype(object, T) tests if a sub-object s of type T occurs in object,
i.e., such that testtype(s, T) returns TRUE.

A The type specifier T may be either a domain type such as DOM_INT,
DOM_EXPR etc., a string as returned by the function type, or a Type ob-
ject. The latter are probably the most useful predefined values for the
argument T.

If T is not a valid type specifier, then hastype returns FALSE.

See example 1.

A If object is an expression, then hastype(object, T) tests whether object
contains a subexpression of type T; see example 1.

If object is a container, then hastype checks whether a sub-object of
type T occurs in an entry of object; see example 3.

A If the second argument is a list or a set, hastype checks whether a sub-
object of one of the types in T occurs in object. Cf. example 1.

A hastype works in a recursive fashion and descends into the following ob-
jects: expressions, arrays, lists, sets, and tables; see example 3.

hastype does not step into the other basic domains, such as rational
numbers, complex numbers, polynomials, or procedures; see example 2.

A If the third argument inspect is present, then hastype also steps recurs-
ively into sub-objects of the domain types given in inspect; cf. example
2.

A hastype looks only for sub-objects that are syntactically of type T.
Properties of identifiers set via assume are not taken into account;
cf. example 3.

!

Example 1. In this example, we first test if a given expression has a subex-
pression of type DOM_FLOAT:

>> hastype(1.0 + x, DOM_FLOAT)

TRUE

>> hastype(1 + x, DOM_FLOAT)

444

FALSE

We may also test if an expressions contains a subexpression of one of the two
types DOM_FLOAT or DOM_INT:

>> hastype(1.0 + x, {DOM_FLOAT, DOM_INT})

TRUE

While the first of following two tests returns FALSE, since tan is not a valid
type specifier, the second test yields TRUE, since the given expression contains
a subexpression of type "tan":

>> hastype(sin(tan(x) + 1/exp(1 - x)), tan),
hastype(sin(tan(x) + 1/exp(1 - x)), "tan")

FALSE, TRUE

You can also use type specifiers from the Type library:

>> hastype([-1, 10, -5, 2*I], Type::PosInt)

TRUE

Example 2. We demonstrate the use of the optional third argument. We want
to check if a procedure contains a subexpression of type "float". By default,
hastype does not descend recursively into a procedure:

>> f := x -> float(x) + 3.0:
hastype(f, "float")

FALSE

You can use the third argument to request the inspection of procedures expli-
citly:

>> hastype(f, "float", {DOM_PROC})

TRUE

Also, by default, hastype does not descend recursively into the basic domains
DOM_COMPLEX and DOM_RAT:

>> hastype(1 + I, DOM_INT), hastype(2/3, DOM_INT)

FALSE, FALSE

In order to inspect these data types, one has to use the third argument:

445

>> hastype(1 + I, DOM_INT, {DOM_COMPLEX}),
hastype(2/3, DOM_INT, {DOM_RAT})

TRUE, TRUE

It is also possible to inspect domains elements using the third argument. As
an example let us define a matrix element and ask for a subexpression of type
integer:

>> A:=matrix([[1, 1], [1, 0]]):
hastype(A, DOM_INT), hastype(A, DOM_INT, {Dom::Matrix()})

FALSE, TRUE

Example 3. We demonstrate how hastype effects on container objects. Let
us first stress tables:

>> hastype(table(1 = a), DOM_INT), hastype(table(a = 1), DOM_INT)

FALSE, TRUE

As shown, hastype does not inspect the indices of a table, but checks recursively
whether a sub-object of a given type occurs in an entry. This is also true for
arrays, lists and sets:

>> hastype(array(1..4, [1, 2, 3, 4]), DOM_INT),
hastype([1, 2, 3, 4], DOM_INT),
hastype({1, 2, 3, 4}, DOM_INT),
hastype([[a, [1]], b, c], DOM_INT)

TRUE, TRUE, TRUE, TRUE

hastype can only work syntactically, i.e. properties are not taken into account:

>> assume(a,Type::Integer):
hastype([a, b], Type::Integer), hastype([a, b], DOM_INT)

FALSE, FALSE

>> delete a:

heaviside – the Heaviside step function

heaviside(x) represents the Heaviside step function.

446

Call(s):

A heaviside(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

Related Functions: dirac

Details:

A If the argument represents a positive real number, then 1 is returned. If
the argument represents a negative real number, then 0 is returned. If
the argument is a complex number of domain type DOM_COMPLEX, then
undefined is returned. For all other arguments, an unevaluated function
call is returned.

A heaviside does not have a predefined value at the origin. Use

sysassign(heaviside(0),myValue)

and

sysassign(heaviside(float(0)),myFloatValue)

to assign your favorite values.

A The derivative of heaviside is the delta distribution dirac.

Example 1. heaviside returns 1 or 0 for arguments representing positive or
negative real numbers, respectively:

>> heaviside(-3), heaviside(-sqrt(3)), heaviside(-2.1),
heaviside(PI - exp(1)), heaviside(sqrt(3))

0, 0, 0, 1, 1

Arguments of domain type DOM_COMPLEX yield undefined:

>> heaviside(1 + I), heaviside(2/3 + 7*I), heaviside(0.1*I)

undefined, undefined, undefined

An unevaluated call is returned for other arguments:

>> heaviside(0), heaviside(x), heaviside(ln(-5)), heaviside(x + I)

447

heaviside(0), heaviside(x), heaviside(I PI + ln(5)),

heaviside(x + I)

Natural values at the origin are 0, 1/2, or 1:

>> prev_protection:= unprotect(heaviside):
heaviside(0) := 1/2: heaviside(0)

1/2

>> delete heaviside(0):
protect(heaviside, prev_protection):
delete prev_protection:

>> heaviside(0)

heaviside(0)

Example 2. heaviside reacts to assumptions set by assume:

>> assume(x > 0): heaviside(x)

1

>> unassume(x):

Example 3. The derivative of heaviside is the delta distribution dirac:

>> diff(heaviside(x - 4), x)

dirac(x - 4)

The integrator int handles heaviside:

>> int(exp(-x)*heaviside(x), x = -infinity..infinity)

1

We do not recommend to use heaviside in numerical integration. It is much
more efficient to split the quadrature into pieces, each of which having a smooth
integrand:

>> DIGITS := 3: numeric::int(exp(-x)*heaviside(x^2 - 2), x=-3..10)

16.2

448

>> numeric::int(exp(-x), x = -3..-2^(1/2)) +
numeric::int(exp(-x), x = 2^(1/2)..10)

16.2

>> delete DIGITS:

help – display a help page

help("word") or ?word displays the online help page related to word.

Call(s):

A help("word")

A ?word

Parameters:

word — any keyword

Return Value: the void object null() of type DOM_NULL.

Related Functions: info, Pref::ansi

Details:

A help("word") displays a help page with information about the keyword
"word".

A The exact form of the output depends on the platform. In the terminal
version, information is displayed as ASCII text. In XMuPAD and on Ma-
cOS or Windows platforms, the help page is displayed in a separate help
window with hypertext functionality. Highlighted words are hypertext
links, which can be followed by clicking on them with the mouse.

A The call ?word is a short form of help("word"). The ? command is not
a MuPAD function and cannot be used in expressions. It can only be
entered interactively and in a line of its own. The syntax ?word may not
be used in files to be read. Note that the search word word must neither
be put in quotation marks nor followed by a terminating semicolon.

A The keyword may contain the wildcards ? and *. ? represents any single
character, and * represents an arbitrarily long, possibly empty, sequence
of characters. There are three exceptions: ?* and ?‘*‘ lead directly to
the help page for _mult, and ?‘**‘ leads to the help page for _power. Cf.
example 1.

449

A If there is no help page for the specified keyword, then a list of keywords
with similar spelling is displayed. Cf. example 2.

A The command anames(All) returns a set with the names of all currently
loaded system functions. The command ?** returns a list of all available
help pages.

A The documentation for modules is not included in this help system. Ex-
ample 3 demonstrates the calls for obtaining information about modules
and their functions.

A help is a function of the system kernel.

Example 1. help expands wildcards:

>> ?*type

Try: ReturnType domtype hastype testtype type Type
Type::AnyType

An exception: ?* leads directly to the help page for _mult:

>> ?*

* -- multiply expressions

Introduction

a * b respectively _mult(a, b) computes the product a*b.

Call(s)

o a * b _mult(<a, b...>)

Parameters

a, b - arithmetical expressions

[...]

Example 2. There is no information on the non-existent function worm:

>> ?worm

Sorry, no help page available for ’worm’ !

Try: Word norm

450

Example 3. MuPAD supports C++ compiled kernel extensions, called dynamic
modules. The documentation of a dynamic module is not integrated into the
MuPAD hypertext help system, but is provided as plain text online documenta-
tion, which can be displayed via the "doc" method of the corresponding module,
e.g., util::doc:

>> module(util): util::doc()

MODULE
util - A collection of utility functions

INTRODUCTION
The module provides a collection of useful utility functions.

INTERFACE
util::busyWaiting, util::date, util::doc,
util::kernelPath, util::kernelPid, util::sleep,
util::time, util::userName

>> util::doc("kernelPath")

NAME
util::kernelPath - Returns the pathname of the MuPAD kernel

SYNOPSIS
util::kernelPath()

DESCRIPTION
This function returns the pathname of the MuPAD kernel.

EXAMPLES
>> util::kernelPath()

"C:\\PROGRA~1\\SCIFACE\\MUPADP~1.5\\BIN\\MUPKERN.EXE"

>> util::kernelPath()

"/usr/local/mupad/linux/bin/mupad"

SEE ALSO
util::kernelPid, util::userName

Background:

A In the terminal version, the viewer called to display the help pages in
ASCII format is given by the system variable PAGER. See Pref::ansi on
how to control the format of this output.

451

history – access an entry of the history table

history(n) returns the nth entry of the history table.

history() returns the index of the most recent entry in the history table.

Call(s):

A history(n)

A history()

Parameters:

n — a positive integer

Return Value: history(n) returns a list with two elements, and history()
returns a nonnegative integer.

Related Functions: fread, HISTORY, last, read

Details:

A The commands that are entered interactively in a MuPAD session, ex-
ecuted in a procedure, or read from a file, as well as the resulting MuPAD
outputs are stored in an internal data structure, the history table. history()
returns the index of the most recent entry in the history table. At inter-
active level, this is the number of commands that have been entered since
the start of the session or the last restart.

A history(n) returns the nth entry in the history table in form of a list with
two elements. The first element of this list is a MuPAD command, and
the second element is the result of this command returned by MuPAD.
The order of the entries in the history table is such that larger indices
correspond to more recent entries.

A The command last accesses the result entries from the history table.
The call last(n) is equivalent to history(history() - n + 1)[2] at
interactive level.

A The environment variable HISTORY determines the maximal number of
history entries that are stored at interactive level. The default value
is 20. Only the most recent entries are kept in memory. Thus valid
arguments for history are all integers between history() - HISTORY +
1 and history(). All other integers lead to an error message.

452

A The result returned by history is not evaluated again (see example 2).
Use the function eval to force a subsequent evaluation.

A Commands and their results are stored in the history table even if the
output is suppressed by a colon. See example 1.

A Compound statements, such as for, repeat, and while loops, if and
case branching instructions, and procedure definitions via proc are stored
in the history table as a whole at interactive level. See the help page of
last for examples.

A Commands appearing on the same input line lead to separate entries in the
history table if they are separated by a colon or a semicolon. In contrast,
a statement sequence is regarded as a single command (see example 3).

A Commands that are read from a file via fread or read are stored in the
history table, and at last the fread or read command is stored in the
history table (because the fread or read command is finished foremost
after reading the file). However, if the option Plain is used, then a
separate history table is in effect within the file, and the commands from
the file do not appear in the history table of the enclosing context.

A Note that every call of history modifies the history table and possibly
erases the earliest history entry.

A Every procedure has its own local history table. However, the entries
of this table cannot be accessed via history (see last); the command
history always refers to the history table at interactive level.

A history is a function of the system kernel.

Example 1. The index of the most recent entry in the history table increases
by one for each entered command, also by history(). Note that every com-
mand is stored in the history table, whether its output is suppressed by a colon
or not:

>> history(); sqrt(1764); history(): history()

3

42

6

history(history()) returns a list with two elements. The first element is the
last command, and the second element is the result returned by MuPAD, which
is equal to last(1) or %:

>> int(2*x*exp(x^2), x);
history(history()), last(1)

453

2
exp(x)

2 2 2
[int(2 x exp(x), x), exp(x)], exp(x)

The following command returns the next to last command and its result:

>> history(history() - 1)

2 2
[int(2 x exp(x), x), exp(x)]

A restart cleans up the history table:

>> reset():
history()

4

The output of the command history() above depends on the number of com-
mands in your MuPAD startup file userinit.mu.

Example 2. First a should be 0:

>> a := 0:
a

0

Now 1 is assigned to a:

>> a := 1:
a

1

The command history(history()-2) refers to the command a after assigning
0 to a, the return value of history is not the new value of a, because the result
returned by history is not evaluated again:

>> history(history() - 2)

[a, 0]

454

Example 3. The both commands leads to two entries in the history table.
The command history(history()-1) returns only the last command b:=a,
not both commands:

>> a := 0: b := a:
history(history() - 1)

[(a := 0), 0]

If the commands are entered as an statement sequence (enclosed in ()), they
leads to one entry. history(history()) picks out the last command, that is
the statement sequence:

>> (a := 0; b := a;):
history(history())

[(a := 0;
b := a), 0]

The last input

>> type(op(%, 1))

"_stmtseq"

hold – delay evaluation

hold(object) prevents the evaluation of object.

Call(s):

A hold(object)

Parameters:

object — any MuPAD object

Return Value: the unevaluated object.

Further Documentation: Chapter 5 of the MuPAD Tutorial.

Related Functions: context, delete, eval, freeze, genident, indexval,
level, proc, val

455

Details:

A When a MuPAD object is entered interactively, then the system evaluates
it and returns the evaluated result. When a MuPAD object is passed as
an argument to a procedure, then the procedure usually evaluates the
argument before processing it. Evaluation means that identifiers are re-
placed by their values and function calls are executed. hold is intended
to prevent such an evaluation when it is undesirable.

A A typical application of hold is when a function that can only process
numerical arguments, but not symbolical ones, is to be plotted or to be
subjected to some numerical algorithm. See example 6.

A Another possible reason for using hold is efficiency. For example, if a
function call f(x, y) with symbolic arguments is passed as argument
to another function, but is known to return itself symbolically, then the
possibly costly evaluation of the “inner” function call can be avoided by
passing the expression hold(f)(x, y) as argument to the“outer”function
instead. Then the arguments x, y are evaluated, but the call to f is not
executed. See examples 1 and 7.

A Since using hold may lead to strange effects, it is recommended to use it
only when absolutely necessary.

A hold only delays the evaluation of an object, but cannot completely pre-
vent it on the long run; see example 5.

You can use freeze to completely prevent the evaluation of a procedure
or a function environment.

A A MuPAD procedure can be declared with the option hold. This has the
effect that arguments are passed to the procedure unevaluatedly. See the
help page of proc for details.

A The functions eval or level can be used to force a subsequent evaluation
of an unevaluated object (see example 2). In procedures with option
hold, use context instead.

A hold is a function of the system kernel.

Example 1. In the following two examples, the evaluation of a MuPAD ex-
pression is prevented using hold:

>> x := 2:
hold(3*0 - 1 + 2^2 + x)

2
3 0 - 1 + 2 + x

456

>> hold(error("not really an error"))

error("not really an error")

Without hold, the results would be as follows:

>> x := 2:
3*0 - 1 + 2^2 + x

5

>> error("not really an error")

Error: not really an error

The following command prevents the evaluation of the operation _plus, but
not the evaluation of the operands:

>> hold(_plus)(3*0, -1, 2^2, x)

0 - 1 + 4 + 2

Note that in the preceding example, the arguments of the function call are
evaluated, because hold is applied only to the function _plus. In the following
example, the argument of the function call is evaluated, despite that fact that
f has the option hold:

>> f := proc(a)
option hold;

begin
return(a + 1)

end_proc:
x := 2:
hold(f)(x)

f(2)

This happens for the following reason. When f is evaluated, the option hold
prevents the evaluation of the argument x of f (see the next example). However,
if the evaluation of f is prevented by hold, then the option hold has no effect,
and MuPAD evaluates the operands, but not the function call.

The following example shows the expected behavior:

>> f(x), hold(f(x))

x + 1, f(x)

The function eval undoes the effect of hold. Note that it yields quite different
results, depending on how it is applied:

>> eval(f(x)), eval(hold(f)(x)), eval(hold(f(x))), eval(hold(f))(x)

3, 3, x + 1, x + 1

457

Example 2. Several hold calls can be nested to prevent subsequent evalu-
ations:

>> x := 2:
hold(x), hold(hold(x))

x, hold(x)

The result of hold(hold(x)) is the unevaluated operand of the outer call of
hold, that is, hold(x). Applying eval evaluates the result hold(x) and yields
the unevaluated identifier x:

>> eval(%)

2, x

Another application of eval yields the value of x:

>> eval(%)

2, 2

>> delete x, f:

Example 3. The following command prevents the evaluation of the operation
_plus, replaces it by the operation _mult, and then evaluates the result:

>> eval(subsop(hold(_plus)(2, 3), 0 = _mult))

6

Example 4. The function domtype evaluates its arguments:

>> x := 0:
domtype(x), domtype(sin), domtype(x + 2)

DOM_INT, DOM_FUNC_ENV, DOM_INT

Using hold, the domain type of the unevaluated objects can be determined: x
and sin are identifiers, and x + 2 is an expression:

>> domtype(hold(x)), domtype(hold(sin)), domtype(hold(x + 2))

DOM_IDENT, DOM_IDENT, DOM_EXPR

458

Example 5. hold prevents only one evaluation of an object, but it does not
prevent evaluation at a later time. Thus using hold to obtain a a symbol
without a value is usually not a good idea:

>> x := 2:
y := hold(x);
y

x

2

In this example, deleting the value of the identifier x makes it a symbol, and
using hold is not necessary:

>> delete x:
y := x;
y

x

x

However, the best way to obtain a new symbol without a value is to use
genident:

>> y := genident("x");
y

x1

x1

>> delete y:

Example 6. Suppose that we want to plot the graph of the piecewise continu-
ous function f(x) that is identically zero on the negative real axis and equal to
exp(−x) on the positive real axis:

>> f := x -> if x < 0 then 0 else exp(-x) end_if:

If we pass the symbolical expression f(x) as an argument to plotfunc2d, then
an error occurs:

>> delete x:
plotfunc(f(x), x = -2..2)

Error: Can’t evaluate to boolean [_less];
during evaluation of ’f’

459

The reason is that plotfunc2d evaluates its arguments, and the evaluation of
f(x) for a symbolical argument x leads to an error:

>> f(x)

Error: Can’t evaluate to boolean [_less];
during evaluation of ’f’

A solution is to use hold:

>> plotfunc2d(hold(f)(x), x = -2..2):

The same phenomenon occurs when we want to apply numerical integration to
f:

>> numeric::int(f(x), x = -2..2)

Error: Can’t evaluate to boolean [_less];
during evaluation of ’f’

>> numeric::int(hold(f)(x), x = -2..2)

0.8646647168

Example 7. The function int is unable to compute a closed form of the
following integral and returns a symbolic int call:

>> int(sin(x)*sqrt(sin(x) + 1), x)

1/2
int(sin(x) (sin(x) + 1) , x)

After the change of variables sin(x)=t, a closed form can be computed:

>> t := time():
f := intlib::changevar(int(sin(x)*sqrt(sin(x) + 1), x), sin(x) = y);
time() - t;
eval(f)

/ 1/2 \
| y (y + 1) |

int| ------------, y |
| 2 1/2 |
\ (1 - y) /

9210

1/2 / 2 y \
(y - 1) (y + 1) | --- + 4/3 |

\ 3 /

2 1/2
(1 - y)

460

Measuring computing times with time shows: Most of the time in the call
to intlib::changevar is spent in re-evaluating the argument. This can be
prevented by using hold:

>> t := time():
f := intlib::changevar(hold(int)(sin(x)*sqrt(sin(x) + 1), x),

sin(x) = y);
time() - t;

/ 1/2 \
| y (y + 1) |

int| ------------, y |
| 2 1/2 |
\ (1 - y) /

20

..., hull – convert to a floating point interval

hull(obj) returns a floating point interval enclosing obj.

Call(s):

A l ... r

A hull(object)

Parameters:

l, r, object — arbitrary MuPAD objects

Return Value: a floating point interval, the empty set, or FAIL.

Overloadable by: object

Side Effects: The function is sensitive to the environment variable DIGITS
which determines the numerical working precision. Each sub-object of object
may be evaluated multiple times and should not have any side-effects.

Related Functions: Dom::FloatIV, DIGITS, float, interval,
Pref::floatFormat, Pref::trailingZeroes

461

Details:

A l ... r is equivalent to hull(l, r).

A hull converts numerical and interval expressions to numerical intervals
of type DOM_INTERVAL. It accepts lists and sets of numerical expressions
or intervals as well as numerical expressions, intervals, and set-theoretic
functions of intervals and sets.

A ..., hull is mapped recursively to the operands of any expression given—
but for subexpressions, lists and sets are not accepted. Identifiers are
replaced by intervals, respecting a certain subset of properties. Cf. ex-
ample 3. Likewise, function calls and domain elements not overloading
..., hull are converted to the interval representing the complex plane.

A The output of floating point intervals is influenced by the same parameters
as the output of floating point numbers:

DIGITS, Pref::floatFormat, and Pref::trailingZeroes.

Example 1. hull returns an interval enclosing its arguments. You can also
use the operator ... instead of the function call:

>> hull(0, PI) = 0 ... PI

0.0 ... 3.141592654 = 0.0 ... 3.141592654

Infinities are displayed using RD_NINF for −∞ and RD_INF for ∞:

>> hull(-infinity, 1/4, 9/7), hull({-infinity, 1/4, 9/7})

RD_NINF ... 1.285714286, RD_NINF ... 1.285714286

Please note that any number whose absolute value is larger than MuPAD can
store in a float is considered infinite:

>> hull(0, 1e1000000)^4

0.0 ... RD_INF

Example 2. Inversion of intervals may lead to unions of intervals. If these are
not required, you may use hull to unify them:

>> 1/(-1 ... 1); hull(%)

RD_NINF ... -1.0 union 1.0 ... RD_INF

RD_NINF ... RD_INF

462

Example 3. The application of ..., hull to an identifier without a value
returns an interval representing the complex plane:

>> delete x: hull(x)

(RD_NINF ... RD_INF) + (RD_NINF ... RD_INF) I

Certain properties are respected during this conversion:

>> assume(x > 0): hull(x);
delete x:

0.0 ... RD_INF

This way, you can enclose the values of an expression:

>> hull(sin(abs(x)))

-1.0 ... 1.0

Calls to “unknown” functions are regarded as potentially returning the complex
plane:

>> hull(f(x))

(RD_NINF ... RD_INF) + (RD_NINF ... RD_INF) I

Changes:

A ..., hull is a new function.

hypergeom – the hypergeometric functions

hypergeom([a1, a2, ...], [b1, b2, ...], z) represents the hypergeomet-
ric function. With a = [a1, a2, . . . , ap] and b = [b1, b2, . . . , bq], the hypergeomet-
ric function of order p, q is defined as

pFq(a; b; z) =
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!
,

where (c)k = c · (c+1) · · · (c+k−1), (c)0 = 1 is the usual Pochhammer symbol.
The quantities a and b are called ‘the lists for the upper and lower parameters’,
respectively.

Call(s):

A hypergeom([a1, a2, ...], [b1, b2, ...], z)

463

Parameters:
a1, a2, ... — the ‘upper parameters’: arithmetical expressions
b1, b2, ... — the ‘lower parameters’: arithmetical expressions
z — the ‘argument’: an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: z

Side Effects: When called with floating point arguments, these functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Details:

A The hypergeometric function is defined for complex arguments ai, bj , and
z.

A A floating point value is returned if at least one of the arguments is a
floating point number and all other arguments can be converted to floating
point numbers.

A For most exact arguments, the hypergeometric function returns a symbolic
function call. If an upper parameter coincides with a lower parameter,
these values cancel and are removed from the parameter lists.

The following special values are implemented:

• pFp(a; a; z) = 0F0([]; []; z) = ez

• pFq(a; b; z) = 1 if the list of upper parameters a contains more zeroes
than the list of lower parameters b.

• pFq(a; b; 0) = 1.

If, after cancellation of identical parameters, the upper parameters con-
tain a negative integer larger than the largest negative integer in the lower
parameters, then pFq(a; b; z) is a polynomial in z. If all upper and lower
parameters as well as the argument z do not contain any symbolic iden-
tifiers, a corresponding explicit result is returned. If the parameters or z
contain symbols, expansion to the polynomial representation is available
via simplify. Cf. example 2.

A Also empty lists a = [] or b = [] may be passed to hypergeom. The
corresponding functions are:

0Fq([]; b; z) =
∞∑

k=0

1
(b1)k(b2)k · · · (bq)k

zk

k!
,

464

pF0(a; []; z) =
∞∑

k=0

(a1)k(a2)k · · · (ap)k
zk

k!
,

0F0([]; []; z) =
∞∑

k=0

zk

k!
= ez.

Example 1. Symbolic calls are returned for exact or symbolic arguments:

>> hypergeom([], [2], x),
hypergeom([1], [2, 3], PI),
hypergeom([1, 1/2], [1/3], x + 3*I)

hypergeom([], [2], x), hypergeom([1], [2, 3], PI),

hypergeom([1/2, 1], [1/3], x + 3 I)

Floating point values are returned for floating point arguments:

>> hypergeom([], [2], 3.0),
hypergeom([1], [2.0], PI),
hypergeom([PI], [2, 3], 4.0),
hypergeom([1, 2], [3, 4, 5, 6], 1.0*I),
hypergeom([1 + I], [1/(2 + I)], 1.0*I)

3.468649619, 7.047601352, 5.152314068,

0.9999801588 + 0.005555508314 I,

- 0.7438410785 - 0.5956994573 I

Example 2. 0F0([]; []; z) = ez:

>> hypergeom([], [], z)

exp(z)

Because identical values in a and b cancel, the same is true for pFp(a; a; z):

>> hypergeom([a, b], [a, b], z)

exp(z)

Any hypergeometric function, evaluated at 0, has the value 1:

>> hypergeom([a, b], [c, d, e], 0)

465

1

If, after cancelling identical parameters, the list of upper parameters contains
a zero, the resulting hypergeometric function is constant with the value 1:

>> hypergeom([0, 0, 2, 3], [a, 0, 4], z)

1

If, after cancelling identical parameters, the upper parameters contain a neg-
ative integer larger than the largest negative integer in the lower parameters,
the hypergeometric function is a polynomial. If all parameters as well as the
argument z are numerical, a corresponding explicit value is returned:

>> hypergeom([-4, -2 , 3], [-3, 1, 4], PI*sqrt(2))

2
6 PI 1/2
----- - 2 PI 2 + 1
5

For symbolic parameters or symbolic z, the polynomial representation may be
obtained via simplify:

>> hypergeom([-40, -5], [1, 4], z) =
simplify(hypergeom([-40, -5], [1, 4], z))

hypergeom([-40, -5], [1, 4], z) =

3 4 5
2 2470 z 45695 z 27417 z

50 z + 390 z + ------- + -------- + -------- + 1
3 84 280

>> hypergeom([-3, a], [b], z) =
simplify(hypergeom([-3, a], [b], z))

2
3 a z (- 2 a - 2)

hypergeom([a, -3], [b], z) = 1 - ------------------ -
2 b (b + 1)

3
a z (- a - 2) (- 2 a - 2) 3 a z
-------------------------- - -----

2 b (b + 1) (b + 2) b

If the largest negative integer in the list of lower parameters is larger than
the largest negative integer in the list of upper parameters, the corresponding
hypergeometric function is not defined (because its definition involves a division
by zero):

466

>> hypergeom([-40, -5, 3], [-3, 1, 4], z)

Error: illegal parameters [hypergeom]

Example 3. The functions float, diff, and series handle expressions in-
volving the hypergeometric functions:

>> float(ln(3 + hypergeom([17], [exp(1), ln(5)], sqrt(PI))))

3.488880173

>> diff(hypergeom([a, b], [c, d], x), x)

a b hypergeom([a + 1, b + 1], [c + 1, d + 1], x)
--

c d

Note that differentiation of a hypergeometric function w.r.t. one of its uppper
or lower parameters does not, in general, lead to hypergeometric functions.
Certain peculiar cases are an exception:

>> diff(hypergeom([a + 1, b], [a + 2], x), a)

b x hypergeom([a + 2, a + 2, b + 1], [a + 3, a + 3], x)

2
(a + 2)

>> series(hypergeom([1, 2], [3], x), x)

2 3 4 5
2 x x 2 x x 2 x 6

1 + --- + -- + ---- + -- + ---- + O(x)
3 2 5 3 7

Expansions about ∞ are possible:

>> series(hypergeom([1/2], [1/3], x), x = infinity, 3)

1/6 1/2 1/2 1/2 1/2
2 x PI exp(x) 3 PI exp(x) 3
------------------------ - ------------------ -

3 gamma(2/3) 5/6
18 x gamma(2/3)

1/2 1/2
5 PI exp(x) 3 / 1 \
-------------------- + O| ----- |

11/6 | 17/6 |
144 x gamma(2/3) \ x /

However, there are very few (if any) complete expansions for hypergeometric
functions about any of its upper or lower parameters.

467

Example 4. Often, at particular choices of parameters, the hypergeometric
function reduces to simpler special functions. For example, in the case of 1F1,
also known as the standard confluent hypergeometric function, the hypergeo-
metric function can be reduced to a Bessel function if its (single) lower para-
meter is exactly twice its (single) upper parameter. This is verified numerically
below:

>> v:= 1.0 + I: z:= float(PI):
hypergeom([v + 1/2], [2*v + 1], 2*I*z) =
(gamma(1 + v)*exp(I*z)*((z/2)^(-v))*besselJ(v, z))

- 0.2766083174 - 0.2537119431 I =

- 0.2766083174 - 0.2537119431 I

>> delete v, z:

In the following example, 2F1, which is known as the Gauss hypergeometric
function, can be reduced into a simple elementary function involving logarithms
when the parameters are [1, 1], [2], as verified numerically below:

>> eq := hypergeom([1, 1], [2], z) = -ln(1 - z)/z:
float(subs(eq, z = 1/3)), float(subs(eq, z = 1/2))

1.216395324 = 1.216395324, 1.386294361 = 1.386294361

>> delete eq:

Example 5. The interval [1,∞) is a branch cut for the hypergeometric func-
tion; the sign of the imaginary part changes when crossing the cut. The branch
cut belongs to the lower branch:

>> eq := hypergeom([1, 1], [2], z) = -ln(1 - z)/z:
float(subs(eq, z = 2 + I*10^(-DIGITS)))

7.853981633e-11 + 1.570796327 I =

7.853981634e-11 + 1.570796327 I

>> float(subs(eq, z = 2 - I*10^(-DIGITS)))

7.853981633e-11 - 1.570796327 I =

7.853981634e-11 - 1.570796327 I

>> float(subs(eq, z = 2))

1.532829442e-65 - 1.570796327 I = -1.570796327 I

468

Background:

A When no bj in the list b lies in the set {0,−1,−2, . . . }, the series

pFq(a; b; z) =
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

zk

k!

converges if one of the following conditions hold:

1. p ≤ q, |z| <∞;

2. p = q + 1, |z| < 1;

3. p = q + 1, |z| = 1,<(ψq) > 0;

4. p = q + 1, |z| = 1, z 6= 1,−1 < <(ψq) ≤ 0;

5. a contains a zero or a negative integer;

where ψq =
∑q

k=1 bk −
∑q+1

j=1 aj . The series diverges in the remaining
cases. If one of the parameters in a is equal to zero or a negative integer,
then the series terminates, turning into what is called a hypergeometric
polynomial.

The generalized hypergeometric function of order (p, q) is given by the
series definition in the region of convergence, while for p = q + 1, |z| ≥ 1,
it is defined as an analytic continuation of this series.

A The function pFq(a; b; z) is symmetric w.r.t. the parameters, i.e., it does
not depend on the order of the arrangement a1, a2, . . . in a or b1, b2, . . .
in b.

A As mentioned above, if some upper parameter is equal to n = 0,−1,−2, . . . ,
the function turns into a polynomial of degree n. If we relax the condi-
tion stated above for the lower parameters b and there is some lower
parameter equal to m = 0,−1,−2, . . . , the function pFq(a; b; z) also re-
duces to a polynomial in z provided n > m. It is undefined if m > n or
if no upper parameter is a non-positive integer (resulting in division by
zero in one of the series coefficients). The case m = n is handled by the
following rule.

A If for r values of the upper parameters, there are r values of the lower para-
meters equal to them (i.e., a = [a1, ..., ap−r, c1, ..., cr], b = [b1, ..., bq−r, c1, ..., cr]),
then the order (p, q) of the function pFq(a; b; z) is reduced to (p−r, q−r):

pFq([a1, . . . , cr]; [b1, . . . , cr]; z) = p−rFq−r([a1, . . . , ap−r]; [b1, . . . , bq−r]; z).

The above rules applies even if any of the ci happens to be zero or a
negative integer (for details, see Luke in the list of references, p.42).

469

A U(z) = pFq(a; b; z) satisfies a differential equation in z:

[δ (δ + b− 1)− z(δ + a)]U(z) = 0, δ = z
d
dz
,

where (δ+a) and (δ+b) stand for
∏p

i=1(δ+ai) and
∏q

j=1(δ+bj), respect-
ively. Thus, the order of this differential equation is max(p, q + 1) and
the hypergeometric function is only one of its solutions. If p < q+ 1, this
differential equation has a regular singularity at z = 0 and an irregular
singularity at z = ∞. If p = q + 1, the points z = 0, z = 1, and z = ∞
are regular singularities, thus explaining the convergence properties of the
hypergeometric series.

The analytic continuation for p = q + 1, |z| ≥ 1, is defined by selecting
the principal branch of this continuation (also denoted as pFq(a; b; z))
satisfying the condition |arg(1 − z)| < π, the cut [1,∞) is drawn in the
complex z-plane. In particular, the analytic continuation can be obtained
by means of an integral representation (for details, see Prudnikov et al.
in the references) or by the Meijer G function.

A References:

• Y.L. Luke,“The Special Functions and Their Approximations”, Vol. 1,
Academic Press, New York, 1969.

• A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, “Integrals and
Series”, Vol. 3: More Special Functions, Gordon and Breach, 1990.

• M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Func-
tions”, Dover Publications, New York, 9th printing, 1970.

Changes:

A hypergeom is a new function.

icontent – the content of a polynomial with rational coefficients

icontent(p) computes the content of the polynomial p with integer or rational
number coefficients, i.e., the gcd of its coefficients.

Call(s):

A icontent(p)

Parameters:
p — a polynomial or polynomial expression with integer or rational

number coefficients

470

Return Value: a nonnegative integer or rational number, or FAIL

Related Functions: coeff, content, factor, gcd, ifactor, igcd, ilcm,
lcm, poly, polylib::primpart

Details:

A icontent(p) calculates the content of a polynomial or polynomial ex-
pression with integer or rational coefficients, i.e., the greatest common di-
visor of the coefficients, such that p/icontent(p) has integral coefficients
whose greatest common divisor is 1. In particular, if p is itself an integer
or a rational number, then icontent returns abs(p) (see example 1).

A If p is a polynomial or polynomial expression with integer coefficients,
then the content is the greatest common divisor of the coefficients. If p is
a polynomial or polynomial expression with rational coefficients, then the
content is the greatest common divisor of the numerators of the coefficients
divided by the least common multiple of the denominators (see example 2).

A If p is a polynomial expression, then it is first converted into a polynomial
of domain type DOM_POLY using poly. If this conversion is not possible,
then icontent returns FAIL.

A icontent returns an error message if not all coefficients of p are integers
or rational numbers.

A icontent is a function of the system kernel.

Example 1. The first argument can be a polynomial or a polynomial expres-
sion. The following two calls of icontent are equivalent:

>> p := 6*x*y - 9*y^2 + 21:
icontent(poly(p)), icontent(p)

3, 3

The result of icontent is always nonnegative:

>> icontent(2*x - 4), icontent(-2*x + 4)

2, 2

The content of a constant polynomial is its absolute value:

>> icontent(0), icontent(-2), icontent(poly(-2, [x]))

0, 2, 2

471

Example 2. The content of a polynomial with rational coefficients is a rational
number in general:

>> q := 6/7*x*y - 9/4*y + 12:
icontent(poly(q)), icontent(q)

3/28, 3/28

The polynomial divided by its content has integral coefficients whose greatest
common divisor is 1:

>> q/icontent(q)

8 x y - 21 y + 112

>> icontent(%)

1

if – branch statement

if-then-else-end_if allows conditional branching in a program.

Call(s):

A if condition1
then casetrue1
<elif condition2 then casetrue2>
<elif condition3 then casetrue3>
<...>
<else casefalse>
end_if

A _if(condition1, casetrue1, casefalse)

Parameters:
condition1, condition2, ... — Boolean expressions
casetrue1, casetrue2, ..., casefalse — arbitrary sequences of

statements

Return Value: the result of the last command executed inside the if state-
ment. NIL is returned if no command was executed.

Further Documentation: Chapter 17 of the MuPAD Tutorial.

Related Functions: case, piecewise

472

Details:

A If the Boolean expression condition1 can be evaluated to TRUE, the
branch casetrue1 is executed and its result is returned. Otherwise, if
condition2 evaluates to TRUE, the branch casetrue2 is executed and its
result is returned etc. If all of the conditions evaluate to FALSE, the branch
casefalse is executed and its result is returned.

A All conditions that are evaluated during the execution of the if statement
must be reducible to either TRUE or FALSE. Conditions may be given by
equations or inequalities, combined with the logical operators and, or,
not. There is no need to enforce Boolean evaluation of equations and in-
equalities via bool. Implicitly, the if statement enforces “lazy” Boolean
evaluation via the functions _lazy_and or _lazy_or, respectively. A con-
dition leads to a runtime error if it cannot be evaluated to TRUE or FALSE
by these functions. Cf. example 3.

A The keyword end_if may be replaced by the keyword end.

A The statement if condition then casetrue else casefalse end_if
is equivalent to the function call _if(condition, casetrue, casefalse).

A _if is a function of the system kernel.

Example 1. The if statement operates as demonstrated below:

>> if TRUE then YES else NO end_if,
if FALSE then YES else NO end_if

YES, NO

The else branch is optional:

>> if FALSE then YES end_if

NIL

>> if FALSE
then if TRUE

then NO_YES
else NO_NO

end_if
else if FALSE

then YES_NO
else YES_YES

end_if
end_if

473

YES_YES

Typically, the Boolean conditions are given by equations, inequalities or Boolean
constants produced by system functions such as isprime:

>> for i from 100 to 600 do
if 105 < i and i^2 <= 17000 and isprime(i) then

print(expr2text(i)." is a prime")
end_if;
if i < 128 then

if isprime(2^i - 1) then
print("2^".expr2text(i)." - 1 is a prime")

end_if
end_if

end_for:

"107 is a prime"

"2^107 - 1 is a prime"

"109 is a prime"

"113 is a prime"

"127 is a prime"

"2^127 - 1 is a prime"

Example 2. Instead of using nested if-then-else statements, the elif state-
ment can make the source code more readable. However, internally the parser
converts such statements into equivalent if-then-else statements:

>> hold(if FALSE then NO elif TRUE then YES_YES else YES_NO end_if)

if FALSE then
NO

else
if TRUE then
YES_YES

else
YES_NO

end_if
end_if

474

Example 3. If the condition cannot be evaluated to either TRUE or FALSE, then
a runtime error is raised. In the following call, is(x > 0) produces UNKNOWN if
no corresponding property was attached to x via assume:

>> if is(x > 0) then
1

else
2

end_if

Error: Can’t evaluate to boolean [if]

Note that Boolean conditions using <, <=, >, >= must not involve symbolic
expressions:

>> if 1 < sqrt(2) then print("1 < sqrt(2)"); end_if

Error: Can’t evaluate to boolean [_less]

>> if 1 < float(sqrt(2)) then print("1 < float(sqrt(2))"); end_if

"1 < float(sqrt(2))"

>> if PI < 3.1416 then print("PI < 3.1416"); end_if

Error: Can’t evaluate to boolean [_less]

Example 4. This example demonstrates the correspondence between the func-
tional and the imperative use of the if statement:

>> condition := 1 > 0: _if(condition, casetrue, casefalse)

casetrue

>> condition := 1 > 2: _if(condition, casetrue, casefalse)

casefalse

>> delete condition:

id – the identity map

id(x) evaluates and returns x.

475

Call(s):

A id(x)

A id(x1, x2, ...)

Parameters:

x, x1, x2, ... — arbitrary MuPAD objects

Return Value: the sequence of the input parameters.

Details:

A id(x) evaluates and returns x; id(x1, x2, ...) returns the evalu-
ated arguments as an expression sequence; id() returns the void object
null().

A id is a function of the system kernel.

Example 1. id returns the evaluated arguments:

>> a := 2: id(a + 2)

4

>> id(a, b, 4 + 2)

2, b, 6

id() returns null():

>> domtype(id())

DOM_NULL

>> delete a:

Example 2. id is useful when working with functional expressions:

>> f := 3*id + sin + 5*id^2 + exp@(-id^2): f(x)

2 2
3 x + sin(x) + 5 x + exp(- x)

>> D(f)

2
10 id + cos - 2 id exp@- id + 3

476

>> delete f:

ifactor – factor an integer into primes

ifactor(n) computes the prime factorization n = s · pe1
1 · · · per

r of the integer
n, where s is the sign of n, p1, . . . , pr are the distinct positive prime divisors of
n, and e1, . . . , er are positive integers.

Call(s):

A ifactor(n <, UsePrimeTab>)

A ifactor(PrimeLimit)

Parameters:

n — an arithmetical expression representing an integer

Options:

UsePrimeTab — look only for those prime factors that are stored in
the internal prime table of the system

PrimeLimit — return the bound on the largest prime number in the
prime table

Return Value: an object of domain type Factored, or a symbolic ifactor
call.

Related Functions: content, factor, Factored, icontent, igcd, ilcm,
isprime, ithprime, nextprime, numlib::divisors, numlib::ecm,
numlib::mpqs, numlib::pollard, numlib::prevprime,
numlib::primedivisors

Details:

A The result of ifactor is an object of domain type Factored. Let f:=ifactor(n)
be such an object. Internally, it is represented by the list [s, p1, e1,
..., pr, er] of odd length 2r + 1, where r is the number of distinct
prime divisors of n. The pi are not necessarily sorted by magnitude.

You may extract the sign s, the primes pi, as well as the exponents ei by
means of the index operator [], so that f[1] = s, f[2] = p1, f[3]
= e1,

For example, the command f[2*i] $ i = 1..nops(f) div 2 returns all
distinct prime divisors of n. The call Factored::factors(f) yields the

477

same result, and Factored::exponents(f) returns a list of the exponents
ei for 1 ≤ i ≤ r.

The factorization of 0, 1, and −1 yields the single factor 0, 1, and −1,
respectively. In these cases, the internal representation is the list [0],
[1], and [-1], respectively.

The call coerce(f,DOM_LIST) returns the internal representation of a
factored object, i.e., the list as described above.

Note that the result of ifactor is printed as an expression, and it is
implicitly converted into an expression whenever it is processed further
by other MuPAD functions. For example, the result of ifactor(12) is
printed as 2^2*3, which is an expression of type "_mult".

See example 1 for illustrations, and the help page of Factored for more
details.

A If you do not need the prime factorization of n, but only want to know
whether it is composite or prime, use isprime instead, which is much
faster.

A ifactor returns an error when the argument is a number but not an
integer. A symbolic ifactor call is returned if the argument is not a
number.

Option <UsePrimeTab>:

A Internally, MuPAD has stored a pre-computed table of all prime num-
bers up to a certain bound. ifactor(n, UsePrimeTab) looks only for
prime factors that are stored in this internal prime number table, extracts
them from n, and returns the undecomposed product of all other prime
factors as a single factor. This is usually much faster than without the
option UsePrimeTab , but it does not necessarily yield the complete prime
factorization of n. See example 2.

Option <PrimeLimit>:

A ifactor(PrimeLimit) returns an integer, namely the bound on the largest
prime number in the internal prime number table. The table contains all
primes below this bound. The default values are: 1 000 000 on UNIX
systems, and 300 000 on MacOS and Windows platforms.

On UNIX platforms, the size of this table can be changed via the MuPAD
command line flag -L.

478

Example 1. To get the prime factorization of 120, enter:

>> f := ifactor(120)

3
2 3 5

You can access the internal representation of this factorization using the index
operator:

>> f[1]; // the sign
f[2*i] $ i=1..nops(f) div 2; // the factors
f[2*i + 1] $ i=1..nops(f) div 2; // the exponents

1

2, 3, 5

3, 1, 1

The internal representation of f, namely the list as described above, is returned
by the following command:

>> coerce(f, DOM_LIST)

[1, 2, 3, 3, 1, 5, 1]

The result of ifactor is an object of domain type Factored:

>> domtype(f)

Factored

This domain implements some features for handling such objects. Some of them
are described below.

You may extract the factors and exponents of the factorization also in the
following way:

>> Factored::factors(f), Factored::exponents(f)

[2, 3, 5], [3, 1, 1]

You can ask for the type of the factorization:

>> Factored::getType(f)

"irreducible"

This output means that all pi are prime. Other possible types are "squarefree"
(see polylib::sqrfree) or "unknown".

Multiplying factored objects preserves the factored form:

479

>> f2 := ifactor(12)

2
2 3

>> f*f2

5 2
2 3 5

It is important to note that you can apply nearly any function operating on
arithmetical expressions to an object of domain type Factored. The result is
usually not of this domain type:

>> expand(f);
domtype(%)

120

DOM_INT

The function type implicitly converts an object of domain type Factored into
an expression:

>> type(f)

"_mult"

For a detailed description of these objects, please refer to the help page of
the domain Factored.

Example 2. The factorizations of 0, 1, and -1 each have exactly one factor:

>> ifactor(0), ifactor(1), ifactor(-1)

0, 1, -1

>> map(%, coerce, DOM_LIST)

[0], [1], [-1]

The internal representation of the factorization of a prime number p is the list
[1, p, 1]:

>> coerce(ifactor(5), DOM_LIST)

[1, 5, 1]

480

Example 3. The bound on the prime number table is:

>> ifactor(PrimeLimit)

1000000

We assign a large prime number to p:

>> p := nextprime(10^12)

1000000000039

Completely factoring the 36 digit number 6*p^3 takes some time; the second
output line shows the time in seconds:

>> t := time():
f := ifactor(6*p^3);
(time() - t)/1000.0

3
2 3 1000000000039

12.34

>> Factored::getType(f)

"irreducible"

Extracting only the prime factors in the prime table is much faster, but it does
not yield the complete factorization; the factor p3 remains undecomposed:

>> t := time():
f := ifactor(6*p^3, UsePrimeTab);
(time() - t)/1000.0

2 3 1000000000117000000004563000000059319

0.21

>> Factored::getType(f)

"unknown"

Background:

A ifactor uses the elliptic curve method.

ifactor is an interface to the kernel function stdlib::ifactor. It calls
stdlib::ifactor with the given arguments and convert its result, which

481

is the list [s, p1, e1, ..., pr, er] as described above, into an object
of the domain type Factored.

You may directly call the kernel function stdlib::ifactor inside your
routines, in order to avoid this conversion and to decrease the running
time.

igamma – the incomplete Gamma function

igamma(a, x) represents the incomplete Gamma function
∫∞
x e−t ta−1 dt.

Call(s):

A igamma(a, x)

Parameters:

a, x — arithmetical expressions

Return Value: an arithmetical expression.

Overloadable by: a, x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: Ei, erfc, exp, fact, gamma, int

Details:

A A floating point value is returned if at least one of the arguments is a
floating point value and both arguments are numerical satisfying the re-
strictions below. In all other cases, symbolic calls of igamma and/or other
special functions may be returned.

A If a is real and positive, then floating point evaluation is possible for all
positive real x.

A Further, if a is an integer multiple of 1/2, then floating point evaluation
is possible for any complex x.

A Floating point evaluation may not be possible in other cases. In particular,
if a is not a real number, then a symbolic call of igamma is returned.

482

A The following simplifications and rewriting rules are implemented:

igamma(a, 0) → gamma(a),
igamma(0, x) → Ei(x),
igamma(1/2, x) → sqrt(PI) ∗ erfc(sqrt(x)),
igamma(1, x) → exp(−x).

For real numerical values of a of Type::Real satisfying |a| ≤ 500, the
functional relation

igamma(a, x) = xˆ(a− 1) ∗ exp(−x) + (a− 1) ∗ igamma(a− 1, x)

is used recursively to shift the first argument to the interval 0 ≤ a ≤ 1.
Thus rewriting in terms of Ei, erfc, and exp occurs if a is an integer
multiple of 1/2. Cf. example 1.

A The special value igamma(a, infinity) = 0 for a 6= infinity is imple-
mented.

A The floating point evaluation is fast and numerically stable, if both
arguments are real and positive. All other floating point evaluations
may be subject to numerical cancellation! Cf. example 3.

!

Example 1. We demonstrate some calls with exact and symbolic input data:

>> igamma(2, 3), igamma(1/7, x), igamma(sqrt(2), 3)

1/2
4 exp(-3), igamma(1/7, x), igamma(2 , 3)

>> igamma(a, 4), igamma(1 + I, x^2 + 1), igamma(a, infinity)

2
igamma(a, 4), igamma(1 + I, x + 1), 0

If the first argument a is a real numerical value with |a| ≤ 500, the functional
relations are used recursively until igamma is called with a first argument from
the the interval 0 ≤ a ≤ 1:

>> igamma(-1/10, 1), igamma(7/4, 1)

3 igamma(3/4, 1)
10 exp(-1) - 10 igamma(9/10, 1), exp(-1) + ----------------

4

If the first argument is an integer multiple of 1/2, then complete rewriting in
terms of Ei, erfc, and exp occurs:

>> igamma(-3, x), igamma(-5/2, x), igamma(8, x), igamma(13/2, 4)

483

/ 1 1 1 \ Ei(x)
exp(-x) | --- - ---- + ---- | - -----,

| 6 x 2 3 | 6
\ 6 x 3 x /

1/2 1/2
/ 8 4 2 \ 8 PI erfc(x)

exp(-x) | ------- - ------- + ------ | - ------------------
| 1/2 3/2 5/2 | 15
\ 15 x 15 x 5 x /

2 3 4 5
, exp(-x) (5040 x + 2520 x + 840 x + 210 x + 42 x +

1/2
6 7 210979 exp(-4) 10395 PI erfc(2)

7 x + x + 5040), -------------- + -------------------
16 64

Floating point values are computed for floating point arguments:

>> igamma(0.1, 4.0), igamma(7, 0.5), igamma(100, 100.0)

0.004420083058, 719.9992783, 4.542198121e155

Example 2. Fast and numerically stable floating point evaluation is available
for all real positive a and x:

>> igamma(1.0, 4.0), igamma(7.0, 10.2), igamma(12.3, 34.5)

0.01831563889, 84.97892788, 361.781135

If a is not real, then no floating point evaluation is available:

>> igamma(1.0*I, 4.0), igamma(7.0 - 3.2*I, 10.2)

igamma(1.0 I, 4.0), igamma(7.0 - 3.2 I, 10.2)

If a is not an integer multiple of 1/2, then no floating point evaluation is available
if x is not real and positive:

>> igamma(0.1, -4.0), igamma(3/4, 12.3 + 3.45*I)

igamma(0.1, -4.0), igamma(3/4, 12.3 + 3.45 I)

If a is an integer multiple of 1/2, then floating point evaluation is available for
any complex x:

>> igamma(-3/2, -4.0), igamma(12, 12.3 + 3.45*I)

2.363271801 - 2.925061501 I, 13266196.93 - 17206446.91 I

484

Example 3. The functional relation between igamma with different first argu-
ments is used to “normalize” the returned expressions:

>> igamma(-8, x), igamma(7/3, x)

Ei(x) / 1 1 1 1
----- + exp(-x) | -------- - ------- - -------- + ------- -
40320 | 2 40320 x 3 4

\ 40320 x 20160 x 6720 x

1 1 1 1 \
------- + ------ - ----- + ---- |,

5 6 7 8 |
1680 x 336 x 56 x 8 x /

/ 1/3 \
4 igamma(1/3, x) | 4 x 4/3 |
---------------- + exp(-x) | ------ + x |

9 \ 3 /

Note that such expansions are also used in floating point evaluations if a and
x are not real and positive. However, this representation may be numerically
unstable if |a| is large:

>> DIGITS := 10: igamma(-100, 100.0)

1.141161587e-221

>> DIGITS := 40: igamma(-100, 100.0)

1.855592139673963122879821176407517691282e-246

>> delete DIGITS:

Changes:

A The normalization to first arguments in the range 0 ≤ a ≤ 1 was restricted
to a of Type::Real with |a| ≤ 500.

igcd – the greatest common divisor of integers

igcd(i1, i2, ...) computes the greatest common divisor of the integers
i1, i2, . . .

485

Call(s):

A igcd(i1, i2, ...)

Parameters:

i1, i2, ... — arithmetical expressions representing integers

Return Value: a nonnegative integer, or a symbolic igcd call.

Related Functions: content, div, divide, factor, gcd, gcdex, icontent,
ifactor, igcdex, ilcm, lcm, mod

Details:

A igcd computes the greatest common nonnegative divisor of a sequence of
integers. igcd with a single numeric argument returns its absolute value.
igcd returns 0 when all arguments are 0 or no argument is given.

A igcd returns an error message if one argument is a number but not an
integer. If at least one of the arguments is 1 or -1, then igcd returns 1.
Otherwise, if one argument is not a number, then a symbolic igcd call is
returned.

A igcd is a function of the system kernel.

Example 1. We compute the greatest common divisor of some integers:

>> igcd(-10, 6), igcd(6, 10, 15)

2, 1

>> a := 4420, 128, 8984, 488:
igcd(a), igcd(a, 64)

4, 4

The next example shows some special cases:

>> igcd(), igcd(0), igcd(1), igcd(-1), igcd(2)

0, 0, 1, 1, 2

If one argument is not a number, then the result is a symbolic igcd call, except
in some special cases:

>> delete x:
igcd(a, x), igcd(1, x), igcd(-1, x)

igcd(4420, 128, 8984, 488, x), 1, 1

486

>> type(igcd(a, x))

"igcd"

igcdex – the extended Euclidean algorithm for two integers

igcdex(x, y) computes the nonnegative greatest common divisor g of the in-
tegers x and y and integers s and t such that g = sx+ ty.

Call(s):

A igcdex(x, y)

Parameters:

x, y — arithmetical expressions representing integers

Return Value: a sequence of three integers, or a symbolic igcdex call.

Related Functions: div, divide, factor, gcd, gcdex, ifactor, igcd,
ilcm, lcm, mod, numlib::igcdmult

Details:

A igcdex(x, y) returns an expression sequence g, s, t with three ele-
ments, where g is the nonnegative greatest common divisor of x and y
and s, t are integers such that g = sx+ ty. These data are computed by
the extended Euclidean algorithm for integers.

igcdex(0, 0) returns the sequence 0, 1, 0. If x is nonzero, then igcdex(0,
x) and igcdex(x, 0) return abs(x), 0, sign(x) and abs(x), sign(x),
0, respectively.

If both x and y are nonzero integers, then the numbers s,t satisfy the
inequalities |s| < |y/g| and |t| < |x/g|.

A If one of the arguments is a number but not an integer, then igcdex
returns an error message. If some argument is not a number, then igcdex
returns a symbolic igcdex call.

A The function numlib::igcdmult is an extension of igcdex for more than
two arguments.

A igcdex is a function of the system kernel.

487

Example 1. We compute the greatest common divisor of some integers:

>> igcdex(-10, 6)

2, 1, 2

>> igcdex(3839882200, 654365735423132432848652680)

109710920, -681651885490791809, 4

The returned numbers satisfy the described equation:

>> [g, s, t] := [igcdex(9, 15)];
g = s*9 + t*15

[3, 2, -1]

3 = 3

If one argument is not a number, the result is the a symbolic igcdex call:

>> delete x:
igcdex(4, x)

igcdex(4, x)

ilcm – the least common multiple of integers

ilcm(i1, i2, ...) computes the least common multiple of the integers i1, i2, . . .

Call(s):

A ilcm(i1, i2, ...)

Parameters:

i1, i2, ... — arithmetical expressions representing integers

Return Value: a nonnegative integer, or a symbolic ilcm call.

Related Functions: content, factor, gcd, gcdex, icontent, ifactor,
igcd, igcdex, lcm

488

Details:

A ilcm computes the least common nonnegative multiple of a sequence of
integers. ilcm with a single numeric argument returns its absolute value.
ilcm returns 1 when all arguments are 1 or -1 or no argument is given.

A ilcm returns an error message when one of the arguments is a number but
not an integer. If at least one of the arguments is 0, then ilcm returns 0.
Otherwise, if one argument is not a number, then a symbolic ilcm call is
returned.

A ilcm is a function of the system kernel.

Example 1. We compute the least common multiple of some integers:

>> ilcm(-10, 6), ilcm(6, 10, 15)

30, 30

>> a := 4420, 128, 8984, 488:
ilcm(a), ilcm(a, 64)

9689064320, 9689064320

The next example shows some special cases:

>> ilcm(), ilcm(0), ilcm(1), ilcm(-1), ilcm(2)

1, 0, 1, 1, 2

If one argument is not a number, then the result is a symbolic ilcm call, except
in some special cases:

>> delete x:
ilcm(a, x), ilcm(0, x)

ilcm(4420, 128, 8984, 488, x), 0

>> type(ilcm(a, x))

"ilcm"

in – membership

x in set is the “element of” relation. Further, the keyword in may also be
used in combination with the keywords for and $, where it means “iterate over
all operands.”

489

Call(s):

A x in set

A _in(x, set)

A for y in object do ... end_for

A f(y) $ y in object

Parameters:
x — an arbitrary MuPAD object
set — a set or an object of set-like type
y — an identifier or a local variable (DOM_VAR) of a

procedure
object, f(y) — arbitrary MuPAD objects

Overloadable by: x, set

Return Value: x in set just returns the input.

Related Functions: _seqin, bool, contains, for, has, is

Details:

A x in set is the MuPAD notation for the statement “x is a member of
set.”

A In conjunction with one of the keywords for or $, the meaning changes
to “iterate over all operands of the object”. See for and $ for details. Cf.
example 6.

A Apart from the usage with for and $, the statement x in object is
equivalent to the function call _in(x, object).

A x in set is just evaluated to itself. expand(x in set) tries to return an
equivalent expression without using the operator in, as described in the
following paragraphs.

A For sets of type DOM_SET, set unions, differences and intersections, x in
set is expanded to an equivalent Boolean expression of equations and
expressions involving in. Cf. example 1.

A If set is a solution set of a single equation in one unknown, given by a
symbolic call to solve, expanding in returns a Boolean condition that is
equivalent to x being a solution. Cf. example 2.

A If set is a RootOf expression, expanding in returns a Boolean condition
that is equivalent to x being a root of the corresponding equation. Cf.
example 3.

490

A The function bool and every function that uses boolean evaluation can
also handle many logical expressions involving in. Cf. example 4.

A The function is handles various logical statements involving in, including
a variety of types for the parameter set which are not handled by in itself.
Cf. example 5 for a few typical cases.

A Apart from the usual overloading mechanism by the first argument of an
in call, in can be overloaded by its second argument, too. This argument
must define the slot "set2expr" for this purpose. The slot will be called
with the arguments set, x.

Example 1. x in {1, 2, 3} is expanded into an equivalent statement in-
volving = and or:

>> expand(x in {1, 2, 3})

x = 1 or x = 2 or x = 3

The same happens if you replace x by a number, because Boolean expressions
are only evaluated inside certain functions such as bool or is:

>> expand(1 in {1, 2, 3}), bool(1 in {1, 2, 3}), is(1 in {1, 2, 3})

1 = 1 or 1 = 2 or 1 = 3, TRUE, TRUE

If only some part of the expression can be simplified this way, the returned
expression can contain unevaluated calls to in:

>> expand(x in {1, 2, 3} union A)

x in A or x = 1 or x = 2 or x = 3

Example 2. For symbolic calls to solve representing the solution set of a
single equation in one unknown, in can be used to check whether a particular
value lies in the solution set:

>> solve(x^2 = 2^x, x); expand(2 in %), bool(2 in %)

2 x
solve(x - 2 = 0, x)

0 = 0, TRUE

491

Example 3. in can be used to check whether a value is a member of the
solution set represented by a RootOf expression:

>> r := RootOf(x^2 - 1, x);
expand(1 in r), bool(1 in r), expand(2 in r), bool(2 in r)

2
RootOf(x - 1, x)

0 = 0, TRUE, 3 = 0, FALSE

>> expand((y - 1) in RootOf(x^2 - 1 - y^2 + 2*y, x))

2 2
2 y - y + (y - 1) - 1 = 0

>> expand(%)

0 = 0

>> delete r:

Example 4. Expressions with operator in are boolean expressions: they can
be used like equations or inequalities.

>> if 2 in {2, 3, 5} then "ok" end

"ok"

Example 5. The MuPAD function is can investigate membership of objects
in infinite sets. It respects properties of identifiers:

>> is(123 in Q_), is(2/3 in Q_)

TRUE, TRUE

>> assume(p, Type::Prime): is(p in Z_), is(p in Type::NonNegative)

TRUE, TRUE

>> unassume(p):

492

Example 6. In conjunction with for and $, y in object iterates y over all
operands of the object:

>> for y in [1, 2] do
print(y)

end_for:

1

2

>> y^2 + 1 $ y in a + b*c + d^2

2 2 2 4
a + 1, b c + 1, d + 1

>> delete y:

Changes:

A _in now just returns the unevaluated function call; a new slot "expand"
has been introduced to provide the old functionality.

indets – the indeterminates of an expression

indets(object) returns the indeterminates contained in object.

Call(s):

A indets(object)

A indets(object, PolyExpr)

A indets(object, RatExpr)

Parameters:

object — an arbitrary object

Options:

PolyExpr — return a set of arithmetical expressions such that object
is a polynomial expression in the returned expressions

RatExpr — return a set of arithmetical expressions such that object
is a rational expression in the returned expressions

Return Value: a set of arithmetical expressions.

493

Overloadable by: object

Related Functions: collect, domtype, op, poly, rationalize, type,
Type::Indeterminate, Type::PolyExpr, Type::RatExpr

Details:

A indets(object) returns the indeterminates of object as a set, i.e., the
identifiers without a value that occur in object, with the exception of
those identifiers occurring in the 0th operand of a subexpression of object
(see example 1).

A indets regards the special identifiers PI, EULER, CATALAN as indetermin-
ates, although they represent constant real numbers. If you want to ex-
clude these special identifiers, use indets(object) minus Type::ConstantIdents
(see example 1).

A If object is a polynomial, a function environment, a procedure, or a built-
in kernel function, then indets returns the empty set. See example 2.

A indets is a function of the system kernel.

Option <PolyExpr>:

A With this option, object is considered as a polynomial expression. Non-
polynomial subexpressions, such as sin(x), x^(1/3), 1/(x+1), or f(a,
b), are considered as indeterminates and are included in the returned set.
However, subexpressions such as f(2, 3) are considered as constants even
when the identifier f has no value. The philosophy behind this is that the
expression is constant because the operands are constant (see example 1).

A If object is an array, a list, a set, or a table, then indets returns a set of
arithmetical expressions such that each entry of object is a polynomial
expression in these expressions. See example 2.

Option <RatExpr>:

A With this option, object is considered as a rational expression. Similar to
PolyExpr , non-rational subexpressions are considered as indeterminates
(see example 1).

494

Example 1. Consider the following expression:

>> delete g, h, u, v, x, y, z:
e := 1/(x[u] + g^h) - f(1/3) + (sin(y) + 1)^2*PI^3 + z^(-3) * v^(1/2)

1/2
1 3 2 v

--------- + PI (sin(y) + 1) - f(1/3) + ----
h 3
g + x[u] z

>> indets(e)

{g, h, u, v, x, y, z, PI}

Note that the returned set contains x and u and not, as one might expect,
x[u], since internally x[u] is converted into the functional form _index(x,
u). Moreover, the identifier f is not considered an indeterminate, since it is the
0-th operand of the subexpression f(1/3).

Although PI mathematically represents a constant, it is considered an in-
determinate by indets. Use Type::ConstantIdents to circumvent this:

>> indets(e) minus Type::ConstantIdents

{g, h, u, v, x, y, z}

The result of indets is substantially different if one of the two options is spe-
cified:

>> indets(e, RatExpr)

h 1/2
{z, PI, sin(y), g , x[u], v }

Indeed, e is a rational expression in the“indeterminates”z, PI, sin(y), g^h,
x[u], v^(1/2): e is built from these atoms and the constant expression f(1/3)
by using only the rational operations + , -, *, /, and ^ with integer exponents.
Similarly, e is built from PI,sin(y),z^(-3),1/(g^h+x[u]),v^(1/2) and the
constant expression f(1/3) using only the polynomial operations +, -, *, and
^ with nonnegative integer exponents:

>> indets(e, PolyExpr)

{ 1 1 1/2 }
{ PI, sin(y), --, ---------, v }
{ 3 h }
{ z g + x[u] }

495

Example 2. indets also works for various other data types. Polynomials and
functions are considered to have no indeterminates:

>> delete x, y:
indets(poly(x*y, [x, y])), indets(sin), indets(x -> x^2+1)

{}, {}, {}

For container objects, indets returns the union of the indeterminates of all
entries:

>> indets([x, exp(y)]), indets([x, exp(y)], PolyExpr)

{x, y}, {x, exp(y)}

For tables, only the indeterminates of the entries are returned; indeterminates
in the indices are ignored:

>> indets(table(x = 1 + sin(y), 2 = PI))

{y, PI}

Background:

A If object is an element of a library domain T that has a slot "indets",
then the slot routine T::indets is called with object as argument. This
can be used to extend the functionality of indets to user-defined domains.
If no such slot exists, then indets returns the empty set.

indexval – indexed access to arrays and tables without evaluation

indexval(x, i) and indexval(x, i1, i2, ...) yields the entry of x cor-
responding to the indices i and i1, i2, ..., respectively, without evaluation.

Call(s):

A indexval(x, i)

A indexval(x, i1, i2, ...)

Parameters:
x — essentially a table or an array, however, also

allowed: a list, a finite set, an expression sequence,
or a character string

i, i1, i2, ... — indices. For most “containers” x, indices must be
integers. If x is a table, arbitrary MuPAD objects
can be used as indices.

496

Return Value: the entry of x corresponding to the index. When x is a table
or an array, the returned entry is not evaluated again.

Overloadable by: x

Related Functions: :=, _assign, _index, array, contains, DOM_ARRAY,
DOM_LIST, DOM_SET, DOM_STRING, DOM_TABLE, op, table

Details:

A The three calls indexval(x, i), _index(x, i), and x[i] all return the
element of index i in the array or table x. In contrast to _index and the
equivalent index operator [], however, indexval returns the correspond-
ing entry without evaluating it. This is sometimes desirable for efficiency
reasons.

A The arguments i or i1, i2, ... must be a valid indices of x, otherwise
an error message is printed (see example 3). When several indices i1,
i2, ... are given, they are interpreted as a higher-dimensional index
(see example 4).

A The first argument x may also be a list, a set, a string, or an expression
sequence. However, in these cases indexval behaves exactly like _index
and the index operator []: it returns the evaluation of the corresponding
element. In particular, indexval does not flatten its first argument.

A For all other basic domains, indexval behaves exactly like _index: either
an error occurs, or a symbolic indexval call is returned (see example 3).

A indexval does not work with matrices in the current version. How-
ever, the function _index return an entry of a matrix unevaluated. !
A indexval is a function of the system kernel.

Example 1. indexval works with tables:

>> T := table("1" = a, Be = b, ‘+‘ = a + b):
a := 1: b := 2:
indexval(T, Be), indexval(T, "1"), indexval(T, ‘+‘)

b, a, a + b

In contrast _index evaluates returned entries:

>> _index(T, Be), _index(T, "1"), _index(T, ‘+‘)

2, 1, 3

The next input line has the same meaning as the last:

497

>> T[Be], T["1"], T[‘+‘]

2, 1, 3

indexval works with arrays, too. The behavior is the same, but the indices
must be positive integers:

>> delete a, b:
A := array(1..2, 1..2, [[a, a + b], [a - b, b]]):
a := 1: b := 2:
indexval(A, 2, 2), indexval(A, 1, 1), indexval(A, 1, 2)

b, a, a + b

>> _index(A, 2, 2), _index(A, 1, 1), _index(A, 1, 2)

2, 1, 3

>> A[2, 2], A[1, 1], A[1, 2]

2, 1, 3

>> delete A, T, a, b:

Example 2. However, there is no difference between indexval and _index
for all other valid objects, e.g., lists:

>> delete a, b:
L := [a, b, 2]:
b := 5:
L[2], _index(L, 2), indexval(L, 2), op(L, 2)

5, 5, 5, 5

Similarly, there is no difference when the first argument is an expression se-
quence (which is not flattened by indexval):

>> delete a, b: S := a, b, 2:
b := 5:
S[2], _index(S, 2), indexval(S, 2), op(S, 2)

5, 5, 5, 5

>> delete L, S, a, b:

498

Example 3. If the second argument is not a valid index, an error occurs:

>> A := array(1..2, 1..2, [[a, b], [a, b]]):
indexval(A, 3)

Error: Index dimension mismatch [array]

>> indexval(A, 1, 0)

Error: Illegal argument [array]

>> indexval("12345", 5)

Error: Invalid index [string]

However, the result of indexval can also be a symbolic indexval call:

>> T := table(1 = a, 2 = b):
indexval(T, 3)

indexval(T, 3)

>> delete X, i:
indexval(X, i)

indexval(X, i)

>> delete A, T:

Example 4. For arrays the number of indices must be equal to the number of
dimensions of the array:

>> A := array(1..2, 1..2, [[a, b], [a, b]]):
a := 1: b := 2:
indexval(A, 1, 2), indexval(A, 2, 1)

b, a

Otherwise an error occurs:

>> indexval(A, 1)

Error: Index dimension mismatch [array]

Tables can have expression sequences as indices, too:

>> delete a, b:
T := table((1, 1) = a, (2, 2) = b):
a := 1: b := 2:
indexval(T, 1, 1), indexval(T, 2, 2)

499

a, b

>> delete A, T, a, b:

interpolate – polynomial interpolation

interpolate computes an interpolating polynomial through data over a rect-
angular grid.

Call(s):

A interpolate(xList, yList, X <, F>)

A interpolate(nodes, values, ind <, F>)

Parameters:
xList — the nodes: a list [x1, x2, ...] of distinct arithmetical

expressions
yList — the values: a list [y1, y2, ...] of arithmetical

expressions. This list must have the same length as xList.
X — an indeterminate or an arithmetical expression. An

indeterminate is either an identifier (of domain type
DOM_IDENT) or an indexed identifier (of type "_index").

nodes — a list [L1, . . . , Ld] of d lists Li defining a d-dimensional
rectangular grid

{(x1, . . . , xd) ; x1 ∈ L1 , . . . , xd ∈ Ld} .

The lists Li may have different lengths ni = nops(Li). The
elements of each Li must be distinct.

values — a d-dimensional array(1..n1, . . . , 1..nd, [. . .]) associating a
value with each grid point:

[L1[i1], . . . , Ld[id]] −→ values[i1, . . . , id] ,

i1 = 1, .., n1 , . . . , id = 1, .., nd .

ind — a list of d indeterminates or arithmetical expressions.
Indeterminates are either identifiers (of domain type
DOM_IDENT) or indexed identifiers (of type "_index").

Options:

F — either Expr or any field of category Cat::Field

500

Return Value: An interpolating polynomial P of domain type DOM_POLY in
the indeterminates specified by ind over the coefficient field F is returned. The
elements in ind that are not indeterminates but arithmetical expressions are
not used as indeterminates in P , but enter its coefficients: the polynomial is
“evaluated” at these points. If no element of ind is an indeterminate, the value
of the polynomial at the point specified by ind is returned. This is an element
of the field F or an arithmetical expression if F = Expr .

Related Functions: genpoly, numeric::cubicSpline,
numeric::cubicSpline2d, poly

Details:

A The call interpolate(xList, yList, X <, F>) with xList = [x1,
..., x.n] and yList = [y1, ..., y.n] returns the polynomial of de-
gree less than n in the variable X which interpolates the points (x1, y1),
. . . , (x.n, y.n).

This call with a 1-dimensional grid xList is equivalent to the correspond-
ing ’multi-dimensional’ call interpolate([xList], array(1..n, [yList]),
[X] <, F>).

A For d-dimensional interpolation, assume that indeterminates ind = [X1, . . . , Xd]
are specified. The interpolating polynomial P = poly(. . . , [X1, . . . , Xd], F)
satisfies

evalp(P,X1 = L1[i1], . . . , Xd = Ld[id]) = value[i1, . . . , id]

for all points [L1[i1], . . . , Ld[id]] in the grid. P is the polynomial of minimal
degree satisfying the interpolation conditions, i.e., degree(P,Xi) < ni.

A If only interpolating values at concrete numerical pointsX1 = v1, . . . , Xd =
vd are required, we recommend not to compute P with symbolic indeterm-
inates ind = [X1, . . . , Xd] and then evaluate P (v1, . . . , vd). It is faster to
compute this value directly by interpolate with ind = [v1, . . . , vd]. Cf.
examples 1 and 3.

Option <F>:

A The returned polynomial is of type poly(..., F).

A For the default field Expr , all input data may be arbitrary MuPAD ex-
pressions. Standard arithmetic over such expressions is used to compute
the polynomial.

A For F 6= Expr , the grid nodes as well as the entries of values must be
elements of F or must be convertible to such elements. Conversion of the
input data to elements of F is done automatically.

501

Example 1. We consider a 1-dimensional interpolation problem. To each node
xi, a value yi is associated. The interpolation polynomial P with P (xi) = yi is:

>> xList := [1, 2, 3]:
yList := [y1, y2, y3]:
P := interpolate(xList, yList, X)

/ / y1 y3 \ 2 / 5 y1 3 y3 \
poly| | -- - y2 + -- | X + | - ---- + 4 y2 - ---- | X +

\ \ 2 2 / \ 2 2 /

\
(3 y1 - 3 y2 + y3), [X] |

/

The evaluation of P at the point X = 5/2 is given by:

>> evalp(P, X = 5/2)

3 y2 y1 3 y3
---- - -- + ----
4 8 8

This value can also be computed directly without the symbolic polynomial:

>> interpolate(xList, yList, 5/2)

3 y2 y1 3 y3
---- - -- + ----
4 8 8

>> delete xList, yList, P:

Example 2. We demonstrate multi-dimensional interpolation. Consider data
over the following 2-dimensional 2× 3 grid:

>> XList := [1, 2]: YList := [1, 2, 3]:
values := array(1..2, 1..3, [[1, 2, 3], [3, 2, 1]]):
P := interpolate([XList, YList], values, [X, Y])

poly(- 2 X Y + 4 X + 3 Y - 4, [X, Y])

Next, interpolation over a 3-dimensional 2× 3× 2 grid is demonstrated:

>> L1 := [1, 2]: L2 := [1, 2, 3]: L3 := [1, 2]:
values := array(1..2, 1..3, 1..2,

[[[1, 4], [1, 2], [3, 3]], [[1, 4], [1, 3], [4, 0]]]):
interpolate([L1, L2, L3], values, [X, Y, Z])

502

2 2
poly(- 3 X Y Z + 7/2 X Y + 10 X Y Z - 23/2 X Y - 7 X Z +

2 2
8 X + 7/2 Y Z - 3 Y - 27/2 Y Z + 12 Y + 13 Z - 11,

[X, Y, Z])

>> delete XList, values, P, L1, L2, L3:

Example 3. We interpolate data over a 2-dimensional grid:

>> n1 := 4: L1 := [i $ i = 1..n1]:
n2 := 5: L2 := [i $ i = 1..n2]:
f := (X, Y) -> 1/(1 + X^2 + Y^2):
values := array(1..n1, 1..n2,

[[f(L1[i], L2[j]) $ j=1..n2] $ i=1..n1]):

First, we compute the symbolic polynomial:

>> P := interpolate([L1, L2], values, [X, Y])

3 4 3 3
poly(- 5563/23108085 X Y + 16376/4621617 X Y -

... -

4401895/3081078 Y + 4199983/2567565, [X, Y])

Fixing the value Y = 2.5, this yields a polynomial in X.

>> evalp(P, Y = 2.5)

3 2
poly(0.0007372500794 X - 0.002155538175 X -

0.03076935248 X + 0.1533997618, [X])

It can also be computed directly by using an evaluation point for the indeterm-
inate Y :

>> interpolate([L1, L2], values, [X, 2.5])

3 2
poly(0.0007372500794 X - 0.002155538175 X -

0.03076935248 X + 0.1533997618, [X])

503

If all indeterminates are replaced by evaluation points, the corresponding inter-
polation value is returned:

>> interpolate([L1, L2], values, [1.2, 2.5])

0.114646532

>> delete n1, n2, f, values, P:

Example 4. We demonstrate interpolation over a special coefficient field. Con-
sider the following data over a 2-dimensional 2× 3 grid:

>> XList := [3, 4]: YList := [1, 2, 3]:
values := array(1..2, 1..3, [[0, 1, 2], [3, 2, 1]]):

With the following call, these data are converted to integers modulo 7. Arith-
metic over this field is used:

>> F := Dom::IntegerMod(7):
P := interpolate([XList, YList], values, [X, Y], F)

poly(5 X Y + 5 X + 5, [X, Y], Dom::IntegerMod(7))

Evaluation of P at grid points reproduces the associated values converted to
the field:

>> evalp(P, X = XList[2], Y = YList[3]) = F(values[2, 3])

1 mod 7 = 1 mod 7

>> delete XList, YList, values, F, P:

Background:

A For a d-dimensional rectangular grid

{(x1, . . . , xd) ; x1 ∈ L1 , . . . , xd ∈ Ld}

specified by the lists

Lj = [xj1, . . . , xjnj] , j = 1, . . . , d

with associated values

P (x1i1 , . . . , xdid) = vi1,...,id ,

the interpolating polynomial in the indeterminates X1, . . . , Xd is given by

P (X1, . . . , Xd) =
n1∑

i1=1

· · ·
nd∑

id=1

vi1,...,id × p1i1(X1)× · · · × pdid(Xd)

504

with the Lagrange polynomials

pjk(X) =
∏

l=1,...,nj
l 6=k

X − xjl

xjk − xjl
, j = 1, . . . , d, k = 1, . . . , nj

associated with the k-th node of the j-th coordinate.

Changes:

A interpolate used to be numeric::lagrange.

A The simplified input syntax interpolate(xList, yList, x <, F>) was
introduced for 1-dimensional grids.

infinity – infinity

infinity represents the infinite point on the positive real semi-axis.

Related Functions: complexInfinity, undefined

Details:

A infinity is an element of the domain stdlib::Infinity. It may be
used in arithmetical operations. Some system functions accept infinity
as a parameter or return it as a result.

Example 1. infinity can be used in arithmetical operations with real num-
bers:

>> 7*infinity + 3, -3.0*infinity, 1/infinity,
infinity*infinity, infinity^2, sqrt(infinity)

infinity, -infinity, 0, infinity, infinity, infinity

Arithmetic with complex numbers or symbolic objects yields symbolic expres-
sions:

>> I*infinity + b

b + I infinity

The arithmetic responds to properties:

>> assume(a > 0): a*infinity

infinity

505

>> assume(a < 0): a*infinity

-infinity

>> unassume(a): a*infinity

a infinity

Cancellation of infinities yields undefined:

>> infinity - infinity, infinity/infinity

undefined, undefined

Some system functions accept infinity as a parameter or return it as result:

>> exp(infinity), sum(1/n, n = 1..infinity),
int(exp(-x^2), x = -infinity..infinity),
limit(x, x = infinity)

1/2
infinity, infinity, PI , infinity

info – prints short information

info(object) prints short information about object.

info() prints a list of all available MuPAD libraries.

Call(s):

A info(object)

A info()

Parameters:

object — any MuPAD object

Return Value: the void object null() of type DOM_NULL.

Side Effects: The formatting of the output of info is sensitive to the envir-
onment variable TEXTWIDTH.

Related Functions: help, export, print, setuserinfo, userinfo

506

Details:

A info prints a short descriptive information about object.

A If object is a domain, additional information is given about the methods
of the domain.

A A call to info without arguments prints the names of all available system
libraries.

A Users can add information about their own functions and domains by
overloading info. If object is a user-defined domain or function en-
vironment providing a slot "info", whose value is a string, then the call
info(object) prints this string. See example 2.

Example 1. With info(), you obtain a list of all libraries:

>> info()

-- Libraries:
Ax, Cat, Dom, Network, RGB,
Series, Type, adt, combinat, detools,
fp, generate, groebner, import, intlib,
linalg, linopt, listlib, matchlib, module,
numeric, numlib, ode, orthpoly, output,
plot, polylib, prog, property, solvelib,
specfunc, stats, stdlib, stringlib, student,
transform

The next example shows information about the library property:

>> info(property)

Library ’property’: properties of identifiers

-- Interface:
property::Null, property::hasprop, property::implies,
property::simpex

-- Exported:
assume, getprop, is, unassume

info prints information about preferences:

>> info(Pref::promptString)

A character string to be displayed as a prompt.

If no more information is available, a short type description is given:

507

>> info(a + b):
info([a, b]):

a + b -- an expression of type "_plus"
[a, b] -- of domain type ’DOM_LIST’

Example 2. info prints information about a function environment:

>> info(sqrt)

sqrt -- the square root

sqrt is a function environment and has a slot named "info":

>> domtype(sqrt), sqrt::info

DOM_FUNC_ENV, "sqrt -- the square root"

User-defined procedures can contain short information. By default, info does
only return some general information:

>> f := x -> x^2: info(f):

f -- a procedure of domain type ’DOM_PROC’

To improve this, we embed the function f into a function environment and store
an information string in its "info" slot:

>> f := funcenv(f):
f::info := "f -- the squaring function":
info(f)

f -- the squaring function

>> delete f:

Background:

A If the argument object of info is a domain, then the call info(object)
first prints the entry "info", which must be a string. Then the entry
"interface", which must be a set of identifiers, is used to display all
public methods, and the entry "exported", which is a set of identifiers
created by export, is used to display all exported methods.

508

Changes:

A info now prints more information like e.g. the type of an expression.

input – interactive input of MuPAD objects

input allows interactive input of MuPAD objects.

Call(s):

A input(<prompt1>)

A input(<prompt1,> x1, <prompt2,> x2, ...)

Parameters:
prompt1, prompt2, ... — input prompts: character strings
x1, x2, ... — identifiers

Return Value: the last input

Related Functions: finput, fprint, fread, ftextinput, print, read,
text2expr, textinput, write

Details:

A input() displays the prompt “Please enter expression :” and waits
for input by the user. The input, terminated by pressing the <Return>
key, is parsed and returned unevaluatedly.

A input(prompt1) uses the character string prompt1 instead of the default
prompt “Please enter expression :”.

A input(<prompt1,> x1) assigns the input to the identifier x1. The de-
fault prompt is used, if no prompt string is specified.

A Several objects can be read with a single input command. Each identifier
in the sequence of arguments makes input return a prompt, waiting for
input to be assigned to the identifier. A character string preceding the
identifier in the argument sequence replaces the default prompt (see ex-
ample 2). Arguments that are neither prompt strings nor identifiers are
ignored.

A The identifiers x1 etc. may have values. These are overwritten by input.

A input only parses the input objects for syntactical correctness. It does
not evaluate them. Use eval to evaluate the results (see example 3).

A input is a function of the system kernel.

509

Example 1. The default prompt is displayed. The input is returned without
evaluation:

>> input()

Please enter expression : << 1 + 2 >>

1 + 2

A character string is used as a prompt:

>> input("enter a number: ")

enter a number: << 5 >>

5

The input may be assigned to an identifier:

>> input(x)

Please enter expression : << 5 >>

5

>> x

5

A user-defined prompt is used, the input is assigned to an identifier:

>> input("enter a number: ", x)

enter a number: << 6 >>

6

>> x

6

>> delete x:

Example 2. If several objects are to be read, for each object a separate prompt
can be defined:

>> input("enter a matrix: ", A, "enter a vector: ", x)

510

enter a matrix: << matrix([[a11, a12], [a21, a22]]) >>
enter a vector: << matrix([x1, x2]) >>

matrix([x1, x2])

>> A, x

+- -+ +- -+
a11, a12		x1
	,	
a21, a22		x2
+- -+ +- -+

>> delete A, x:

Example 3. The following procedure asks for an expression and a variable.
After interactive input, the derivative of the expression with respect to the
variable is computed:

>> interactiveDiff :=
proc()
local f, x;

begin
f := input("enter an expression: ");
x := input("enter an identifier: ");
print(Unquoted, "The derivative of " . expr2text(f) .

" with respect to ". expr2text(x) . " is:");
diff(f, x)

end_proc:

>> interactiveDiff()

enter an expression: << x^2 + x*y^3 >>
enter an identifier: << x >>

The derivative of x^2 + x*y^3 with respect to x is:

3
2 x + y

The function input does not evaluate the input. This leads to the following
unexpected result:

>> f := x^2 + x*y^3:
z := x:
interactiveDiff()

511

enter an expression: << f >>
enter an identifier: << z >>

The derivative of f with respect to z is:

0

The following modification enforces full evaluation via eval:

>> interactiveDiff :=
proc()
local f, x;

begin
f := eval(input("enter an expression: "));
x := eval(input("enter an identifier: "));
print(Unquoted, "The derivative of " . expr2text(f) .

" with respect to ". expr2text(x) . " is:");
diff(f, x)

end_proc:

>> interactiveDiff()

enter an expression: << f >>
enter an identifier: << z >>

The derivative of x^2 + x*y^3 with respect to x is:

3
2 x + y

>> delete interactiveDiff, f, z:

int – definite and indefinite integration

int(f, x) computes the indefinite (formal) integral
∫
f(x) dx.

int(f, x = a..b) computes the definite integral
∫ b
a f(x) dx.

Call(s):

A int(f, x)

A int(f, x = a..b <, Continuous>)

A int(f, x = a..b <, PrincipalValue>)

512

Parameters:
f — the integrand: an arithmetical expression representing a

function in x
x — the integration variable: an identifier
a, b — the boundaries: arithmetical expressions

Options:

Continuous — do not look for discontinuities.
PrincipalValue — compute the Cauchy principal value of the

integral.

Return Value: an arithmetical expression.

Overloadable by: f

Side Effects: int is sensitive to properties of identifiers set by assume; see
example 4.

Further Documentation: Section 7.2 of the MuPAD Tutorial.

Related Functions: D, diff, intlib, limit, numeric::int, sum

Details:

A int(f, x) computes the antiderivative g =
∫
f dx, i.e., it determines

formally a function g with ∂g/∂x = f . Note:

• No constant of integration appears in the result.

• The result is not necessarily continuous, even if the integrand is
continuous. See “background” section for more details.

• In general, the derivative of the result coincides with f only on some
open interval of the real domain.

It is not always possible to decide algorithmically whether ∂g/∂x and
f are equivalent. This is due to the so-called zero equivalence problem,
which in general is undecidable.

A For the case of indefinite integration, the integration variable x is impli-
citly assumed to be real. For definite integration the integration variable
x is further implicitly assumed to be restricted to the given real range of
integration. See “background” section for more details.

This means that in general, the result of int need not be valid for non-real
values of x, e.g., the identity ln(exp(x)) = x is only valid for real values
of x and thus the same is true for

∫
ln(exp(x)) dx = x2/2.

513

A If MuPAD cannot find a closed form solution for the integral, then it
returns a symbolic int call. In this case, you can use numerical integration
(cf. example 2) or try to compute a series expansion of the integral (cf.
example 3).

A For definite integrals, int may not be able to find a closed form due to
singularities in the interval of integration. If the system can assert that
the integral does not exist mathematically, then it returns undefined. In
some cases, it may still be possible to obtain a result in closed form by
using assumptions or one of the options Continuous or PrincipalValue
(cf. example 4).

A Numerical approximations to a definite integral can be obtained with
numeric::int or float. Numerical integration is only possible if the
boundaries a and b can be converted into floating point numbers via
float. See example 2.

Option <Continuous>:

A For definite integration, the system may first compute an antiderivative
g of f with respect to x, such that ∂g/∂x = f . If g is continuous on
the interval [a, b], then the fundamental theorem of calculus

∫ b
a f(x) dx =

g(a) − g(b) is used to obtain the definite integral. Normally, it is tested
if g is continuous. In case of doubt a symbolic int call is returned. See
“background” section for more details.

The option Continuous is a technical option to tell the system that it
may assume that g is continuous. With the option Continuous , int
suppresses the search for discontinuities of g in the interval of integration
and uses the fundamental theorem of calculus without checking whether
it applies mathematically. See example 4.

Option <PrincipalValue>:

A If the interior of the interval of integration contains poles of the integrand
or the boundaries are a = −∞ and b = ∞, then the definite integral may
not exist in a strict mathematical sense. However, if the integrand changes
sign at all poles in the interval of integration, then a weaker form of definite
integral, the Cauchy principal value, which allows “infinite parts” of the
integral to the left and to the right of a pole to cancel each other, may
still exist. With the option PrincipalValue , int computes this Cauchy
principal value. If the usual definite integral exists, then it agrees with
the Cauchy principal value. See example 4.

514

Example 1. We compute the two indefinite integrals
∫

1
x ln x dx and

∫
1

x2−8
dx:

>> int(1/x/ln(x), x)

ln(ln(x))

>> int(1/(x^2 - 8), x)

1/2 1/2 1/2 1/2
2 ln(x - 2 2) 2 ln(x + 2 2)
------------------- - -------------------

8 8

We compute the definite integral of (x ln(x))−1 over the interval [e, e2]:

>> int(1/x/ln(x), x = exp(1)..exp(2))

ln(2)

The boundaries of definite integrals may be ±∞ as well:

>> int(exp(-x^2), x = 0..infinity)

1/2
PI

2

One can also determine multiple integrals such as, e.g., the definite multiple
integral

∫ a
0

∫ 1−x/a
0

∫ 1−x/a−y/b
0 dz dy dx:

>> int(int(int(1, z = 0..c*(1 - x/a - y/b)),
y = 0..b*(1 - x/a)), x = 0..a)

a b c

6

Example 2. The system cannot find a closed form for the following defin-
ite integral and returns a symbolic int call. You can obtain a floating point
approximation by applying float to the result:

>> int(sin(cos(x)), x = 0..1)

int(sin(cos(x)), x = 0..1)

>> float(%)

0.738642998

515

Alternatively, you can use the function numeric::int. This is recommended if
you are interested only in a numerical approximation, since it does not involve
any symbolic preprocessing and is therefore usually much faster than applying
float to a symbolic int call.

>> numeric::int(sin(cos(x)), x = 0..1)

0.738642998

Example 3. int cannot find a closed form for the following indefinite integral
and returns a symbolic int call:

>> int((x^2 + 1)/sqrt(x^3 + 1), x)

/ 2 \
| x + 1 |

int| -----------, x |
| 3 1/2 |
\ (x + 1) /

You can use series to obtain a series expansion of the integral:

>> series(%, x = 0)

3 4 6
x x x 7

x + -- - -- - -- + O(x)
3 8 12

Alternatively, you can compute a series expansion of the integrand and integrate
it afterwards. This is recommended if you are not interested in a closed form of
the integral, but only in a series expansion, since it is usually much faster than
the other way round:

>> int(series((x^2 + 1)/sqrt(x^3 + 1), x = 0), x)

3 4 6
x x x 7

x + -- - -- - -- + O(x)
3 8 12

Example 4. int correctly asserts that the following definite integral, where
the integrand has a pole in the interior of the interval of integration, is not
defined:

>> int(1/(x - 1), x = 0..2)

516

undefined

However, the Cauchy principle value of the integral exists:

>> int(1/(x - 1), x = 0..2, PrincipalValue)

0

If, however, the integrand contains a parameter, then int may not be able to
decide whether the integrand has poles in the interval of integration. In such a
case, a warning is issued and a symbolic int call is returned:

>> int(1/(x - a), x = 0..2)

Warning: Found potential discontinuities of the antiderivative\
.
Try option ’Continuous’ or use properties (?assume). [intlib::\
antiderivative]

/ 1 \
int| -----, x = 0..2 |

\ x - a /

We follow the suggestion given by the text of the warning and make an assump-
tion on the parameter a implying that the integrand has no poles in the interval
of integration. In this example, int is able to find a closed form of the integral:

>> assume(a > 2): int(1/(x - a), x = 0..2)

ln(2 - a) - ln(-a)

Alternatively, we can use the option Continuous to tell int that it may assume
that the integrand is continuous in the range of integration:

>> unassume(a): int(1/(x - a), x = 0..2, Continuous)

ln(2 - a) - ln(-a)

Mathematically, the result with option Continuous may be incorrect for some
values of the occurring parameters. In the example above, the result is incorrect
for 0 < a < 2. We therefore recommend to use this option only as a last resort.

Example 5. In this example we will stress the effects of assumptions on the
integration variable. See “background” section for more details.

The integration variable is implicitly assumed to be real, or even for a given
(real) interval of integration restricted to that interval. Among other things
this assumption has an impact on the simplification of results.

For example, to compute the following integral internally the so-called Risch
algorithm is used and only because of that implicit assumption the result is
simplified into a real representation.

517

>> int(1/cos(x)^2, x)

2 sin(2 x)

2 cos(2 x) + 2

In order to see what will happen without this implicit assumption one can
explicitly define the integration variable to be complex:

>> assume(x, Type::Complex): int(1/cos(x)^2, x)

2 I
- -------------------------
cos(2 x) - I sin(2 x) + 1

User-defined assumptions which are inconsistent with the assumptions made
internally in the integration do not lead to an integration error as they should.
However, the user must become aware of the inconsistency.

>> assume(x, Type::Imaginary): int(1/cos(x)^2, x)

Warning: Cannot integrate when x has property Type::Imaginary.
While integrating, we will assume x has property Type::Complex\
. [intlib::int]

2 I
- -------------------------
cos(2 x) - I sin(2 x) + 1

>> assume(x, Type::Integer): int(1/cos(x)^2, x)

Warning: Cannot integrate when x has property Type::Integer.
While integrating, we will assume x has property Type::Real. [\
intlib::int]

2 sin(2 x)

2 cos(2 x) + 2

The same holds for definite integration.

>> assume(x, Type::Interval(-5, -2)): int(x, x = 0..1)

Warning: While integrating, we will assume x has property [0, \
1] instead of given property]-5, -2[. [intlib::defInt]

1/2

518

Background:

A With the integration techniques used in computer algebra like table lookup
or Risch integration for an indefinite integral, in addition to the possible
discontinuities of the initial integrand, some more discontinuities may oc-
cur during the integration process. This is due to the fact that algebraic
numbers can be complex. It may cause branch problems in numerical
computation, since, e.g., the arguments to the logarithms may have com-
plex zeros while the initial integrand has no pole in the path of integration.
If the classical algorithm is used for rewriting complex logarithms as real-
valued arcus-tangents,

√
−1

d
dx

ln
(
u+

√
−1

u−
√
−1

)
= 2

d
dx

arctan(u)

where u is an element of K(x) such that u2 6= −1 and K is a subfield of
the reals, it does not eliminate the problem. However, it may be used in
some integration tables.

Thus, if such results are used for definite integration, it is necessary to in-
vestigate the search for discontinuities of the antiderivatives in the interval
of integration.

A The integration variable is implicitly assumed to be real (Type::Real).
Moreover, for definite integration, the range of validity is restricted to the
interval of integration (Type::Interval[a, b]).

If conflicts occur with user-defined properties by assume of iden-
tifiers, an appropriate warning is given. The warnings may
be toggled on and off with intlib::printWarnings(TRUE) and
intlib::printWarnings(FALSE).

In the case of indefinite integration the user-defined properties are used
if the conflict can be resolved. If not, but the given properties describe a
subset of the real numbers, the real assumption is used. Otherwise, while
integrating, the integration variable is assumed to be complex.

If, in the case of definite integration, the user-defined properties contains
the given integration interval, these properties are used. Otherwise, the
previously given assumption are set locally.

Cf. example 5.

A For details of the algorithms and simplification strategies see:

• M. Bronstein. A Unification of Liouvillian Extension. AAECC Ap-
plicable Algebra in Engineering, Communication and Computing.
1: 5–24, 1990.

• M. Bronstein. The Transcendental Risch Differential Equation. Journal
of Symbolic Computation. 9: 49–60, 1990.

519

• M. Bronstein. Symbolic Integration I: Transcendental Functions.
Springer. 1997.

• H. I. Epstein and B. F. Caviness. A Structure Theorem for the
Elementary Functions and its Application to the Identity Problem.
International Journal of Computer and Information Science. 8: 9–
37, 1979.

• W. Fakler. Vereinfachen von komplexen Integralen reeller Funk-
tionen. mathPAD 9 No. 1: 5-9, 1999.

• K. O. Geddes, S. R. Czapor and G. Labahn. Algorithms for Com-
puter Algebra. 1992.

int2text – convert an integer to a character string

int2text(n, b) converts the integer n to a string that corresponds to the b-
adic representation of n.

Call(s):

A int2text(n <, b>)

Parameters:
n — an integer
b — the base: an integer between 2 and 36. The default base is 10.

Return Value: a character string.

Related Functions: coerce, expr2text, genpoly, numlib::g_adic,
tbl2text, text2expr, text2int, text2list, text2tbl

Details:

A The string returned by int2text consists of the first b characters in

0, 1, . . . , 9, A,B, . . . , Z.

For bases larger than 10, the letters represent the b-adic digits larger than
9: A = 10, B = 11, . . . , Z = 35.

A For the bases 2, 8, or 16, int2text provides the conversion from decimal
representation to binary, octal, or hexadecimal representation, respect-
ively.

A int2text is the inverse of text2int.

520

A Since the output of the numerical datatypes in MuPAD uses the decimal
representation, strings are used by int2text to represent b-adic numbers.
The function numlib::g_adic provides an alternative representation via
lists.

A int2text is a function of the system kernel.

Example 1. Relative to the default base 10, int2text provides a mere data-
type conversion from DOM_INT to DOM_STRING:

>> int2text(123), int2text(-45678)

"123", "-45678"

Example 2. The decimal integer 32 has the following binary representation:

>> int2text(32, 2)

"100000"

The decimal integer 109 has the following hexadecimal representation:

>> int2text(10^9, 16)

"3B9ACA00"

Example 3. Negative integers can be converted as well:

>> int2text(-15, 8)

"-17"

interval – convert constant subexpressions to intervals

interval(object) converts all constant subexpressions of object to floating
point intervals.

Call(s):

A interval(object)

521

Parameters:

object — an arbitrary MuPAD object

Return Value: a MuPAD object

Related Functions: Dom::FloatIV, float, hull, misc::maprec

Details:

A interval is the analogue of float. While the latter converts exact num-
bers and numerical expressions to floating point approximations, interval
converts numbers and numerical expressions to enclosing floating point in-
tervals.

A If object is an arithmetical expression, interval(object) recursively
descends into the subexpressions of object and replaces all integers, ra-
tionals, and floating point numbers as well as the constant PI by floating
point intervals enclosing them. Afterwards, the resulting expression is
evaluated via interval arithmetic.

A If object is not an arithmetical expression, interval returns the object
unchanged.

A interval is a function of the system kernel.

Example 1. Only constant expressions such as numbers 1, 2/3, 0.123+4.5∗ I
etc. and numerical expressions PI + sqrt(2), sin(PI/24) etc. are converted to
floating point intervals. Symbolic objects such as identifiers, indexed identifiers
etc. are left untouched:

>> interval(4*x[1] + PI*x[2]^2/sin(1) + 1/4)

2
(4.0 ... 4.0) x[1] + (3.733453333 ... 3.733453334) x[2] +

(0.25 ... 0.25)

>> interval(f(g(2 + x) + sin(1)*sqrt(PI)))

f(g(x + (2.0 ... 2.0)) + (1.491468487 ... 1.491468488))

Example 2. Of the special MuPAD constants CATALAN, EULER and PI, presently
only PI can be converted to an enclosing floating point interval. The other con-
stants are left untouched:

>> interval(CATALAN), interval(EULER), interval(PI)

CATALAN, EULER, 3.141592653 ... 3.141592654

522

Changes:

A interval is a new function.

irreducible – test irreducibility of a polynomial

irreducible(p) tests if the polynomial p is irreducible.

Call(s):

A irreducible(p)

Parameters:

p — a polynomial of type DOM_POLY or a polynomial expression

Return Value: TRUE or FALSE.

Overloadable by: p

Related Functions: content, factor, gcd, icontent, ifactor, igcd,
ilcm, isprime, lcm, poly, polylib::divisors, polylib::primpart,
polylib::sqrfree

Details:

A A polynomial p ∈ k[x1, . . . , xn] is irreducible over the field k if p is noncon-
stant and is not a product of two nonconstant polynomials in k[x1, . . . , xn].

A irreducible returns TRUE if the polynomial is irreducible over the field
implied by its coefficients. Otherwise, FALSE is returned. See the function
factor for details on the coefficient field that is assumed implicitly.

A The polynomial may be either a (multivariate) polynomial over the ra-
tionals, a (multivariate) polynomial over a field (such as the residue class
ring IntMod(n) with a prime number n) or a univariate polynomial over
an algebraic extension (see Dom::AlgebraicExtension).

A Internally, a polynomial expression is converted to a polynomial of type
DOM_POLY before irreducibility is tested.

523

Example 1. With the following call, we test if the polynomial expression
x2− 2 is irreducible. Implicitly, the coefficient field is assumed to consist of the
rational numbers:

>> irreducible(x^2 - 2)

TRUE

>> factor(x^2 - 2)

2
x - 2

Since x2−2 factors over a field extension of the rationals containing the radical√
2, the following irreducibility test is negative:

>> irreducible(sqrt(2)*(x^2 - 2))

FALSE

>> factor(sqrt(2)*(x^2 - 2))

1/2 1/2 1/2
2 (x + 2) (x - 2)

The following calls use polynomials of type DOM_POLY. The coefficient field is
given explicitly by the polynomials:

>> irreducible(poly(6*x^3 + 4*x^2 + 2*x - 4, IntMod(13)))

TRUE

>> factor(poly(6*x^3 + 4*x^2 + 2*x - 4, IntMod(13)))

3 2
6 poly(x + 5 x - 4 x - 5, [x], IntMod(13))

>> irreducible(poly(3*x^2 + 5*x + 2, IntMod(13)))

FALSE

>> factor(poly(3*x^2 + 5*x + 2, IntMod(13)))

3 poly(x + 5, [x], IntMod(13)) poly(x + 1, [x], IntMod(13))

is – check a mathematical property of an expression

is(x, prop) checks whether the expression x has the mathematical property
prop.

is(y rel z) checks whether the relation rel holds for the expressions y and
z.

is(x in set) checks whether x is an element of the set.

524

Call(s):

A is(x, prop)

A is(y rel z)

A is(x in set)

Parameters:
x, y, z — arithmetical expressions
prop — a property
rel — one of =, <, >, <=, >=, <>
set — a property representing a set of numbers (e.g.,

Type::PosInt) or a set returned by solve; such a set can
be an element of Dom::Interval, Dom::ImageSet,
piecewise, or one of C_, R_, Q_, Z_.

Return Value: TRUE, FALSE, or UNKNOWN.

Related Functions: assume, bool, getprop, property::implies,
unassume

Details:

A The property mechanism helps to simplify expressions involving identifiers
that carry “mathematical properties”. The function assume allows to
attach basic properties (“assumptions”) such as ‘x is a real number’ or ‘x
is an odd integer’ to an identifier x, say. Arithmetical expressions involving
x may inherit such properties. E.g., ‘1 + x^2 is positive’ if ‘x is a real
number’. The function is is the basic tool for querying mathematical
properties.

See the property library for a description of all available properties.

A is queries the properties of the given expressions via getprop. Then it
checks whether the property prop or the relation y rel z can be derived
from the properties of x, y, and z. If this is the case, then is returns TRUE.
If is derives the logical negation of the property prop or the relation y
rel z, respectively, then it returns FALSE. Otherwise, is returns UNKNOWN.

A If a relation is given to is, and the operands are complex numbers or
identifiers with this property, is returns FALSE, because a relations holds
only with real objects. Cf. example 4.

A It may happen that is returns UNKNOWN, although the queried property
holds mathematically. Cf. example 5.

A In MuPAD, there also exists the function bool to check a relation y rel
z. However, there are two main differences between bool and is:

525

1. bool produces an error if it cannot decide whether the relation holds
or not; is(y rel z) returns UNKNOWN in this case.

2. bool does not take properties into account.

Cf. example 3.

A If bool(y rel z) returns TRUE, then so does is(y rel z). However, is
is more powerful than bool, even when no properties are involved. Cf.
example 3. On the other hand, is is usually much slower than bool.

A Be careful when using is in a condition of an if statement or a
for, while, or repeat loop: these constructs cannot handle the
value UNKNOWN. Use either is(...) = TRUE or a case statement.
Cf. example 6.

!

A If is needs to check whether a constant symbolic expression is zero, then
it may employ a heuristic numerical zero test based on floating point
evaluation. Despite internal numerical stabilization, this zero test may
return the wrong answer in exceptional pathological cases; in such a case,
is may return a wrong result as well.

Example 1. The identifier x is assumed to be an integer:

>> assume(x, Type::Integer):
is(x, Type::Integer), is(x > 0), is(x^2 >= 0)

TRUE, UNKNOWN, TRUE

The identifier x is assumed to be a positive real number:

>> assume(x > 0): is(x > 1), is(x >= 0), is(x < 0)

UNKNOWN, TRUE, FALSE

>> unassume(x):

Example 2. is can derive certain facts even when no properties were assumed
explicitly:

>> is(x > x + 1), is(abs(x) >= 0)

FALSE, TRUE

>> is(Re(exp(x)), Type::Real)

TRUE

526

Example 3. For relations between numbers, is yields the same answers as
bool:

>> bool(1 > 0), is(1 > 0)

TRUE, TRUE

However, on constant symbolic expressions, is can realize more than bool:

>> is(sin(5) > 1/2), is(PI^3 + 2 < 33), is(exp(1) > exp(0.9))

FALSE, FALSE, TRUE

>> bool(sin(5) > 1/2)

Error: Can’t evaluate to boolean [_less]

>> is(sqrt(2) > 1.4), is(PI > 3.1415)

TRUE, TRUE

>> bool(sqrt(2) > 1.4)

Error: Can’t evaluate to boolean [_less]

>> is(exp(5), Type::Real), is(PI, Type::PosInt)

TRUE, FALSE

Example 4. In the next example a relation with complex objects is given, the
returned value is FALSE:

>> is(0 < I), is(I + 1 > I), is(1 + 2*I <= 2 + 3*I)

FALSE, FALSE, FALSE

The identifier in the next example is assumed to be complex, but it could be
real too:

>> assume(x, Type::Complex):
is(x > 0)

UNKNOWN

With the following assumption the identifier x cannot be real, therefore is
returns FALSE:

>> assume(x, not Type::Real):
is(x >= 0)

527

FALSE

The next relation is false, either the identifier x is real, then the relation is false,
or the identifiers is not real, then the comparison is illegal:

>> unassume(x):
is(x + 1 < x)

FALSE

>> unassume(x):

Example 5. Here are some examples where the queried property can be de-
rived mathematically. However, the current implementation of is is not yet
strong enough to derive the property:

>> assume(x, Type::Real): is(abs(x) >= x)

UNKNOWN

>> assume(x, Type::Interval(0, PI)): is(sin(x) >= 0)

UNKNOWN

>> unassume(x):

Example 6. Care must be taken when using is in if statements or for,
repeat, while loops:

>> myabs := proc(x)
begin
if is(x >= 0) then
x

elif is(x < 0) then
-x

else
procname(x)

end_if
end_proc:

>> assume(x < 0): myabs(1), myabs(-2), myabs(x)

1, 2, -x

When the call of is returns UNKNOWN, an error occurs because if expects TRUE
or FALSE:

528

>> unassume(x): myabs(x)

Error: Can’t evaluate to boolean [if];
during evaluation of ’myabs’

The easiest way to achieve the desired functionality is a comparison of the result
of is with TRUE:

>> myabs := proc(x)
begin
if is(x >= 0) = TRUE then
x

elif is(x < 0) = TRUE then
-x

else
procname(x)

end_if
end_proc:

>> myabs(x)

myabs(x)

>> delete myabs:

Example 7. is can handle sets returned by solve. These include intervals of
type Dom::Interval and R_ = solvelib::BasicSet(Dom::Real):

>> assume(x >= 0): assume(x <= 1, _and):
is(x in Dom::Interval([0, 1])), is(x in R_)

TRUE, TRUE

The following solve command returns the solution as an infinite parameterized
set of type Dom::ImageSet:

>> unassume(x): solutionset := solve(sin(x) = 0, x)

{ X1*PI | X1 in Z_ }

>> domtype(solutionset)

Dom::ImageSet

is can be used to check whether an expression is contained in this set:

>> is(20*PI in solutionset), is(PI/2 in solutionset)

TRUE, FALSE

529

>> delete solutionset:

isprime – primality test

isprime(n) checks whether n is a prime number.

Call(s):

A isprime(n)

Parameters:

n — an arithmetical expression representing an integer

Return Value: either TRUE or FALSE, or a symbolic isprime call.

Related Functions: factor, ifactor, igcd, ilcm, irreducible, ithprime,
nextprime, numlib::primedivisors, numlib::prevprime,
numlib::proveprime

Details:

A isprime is a fast probabilistic prime number test (Miller-Rabin test). The
function returns TRUE when the positive integer n is either a prime number
or a strong pseudo-prime for 10 independently and randomly chosen bases.
Otherwise, isprime returns FALSE.

A If n is positive and isprime returns FALSE, then n is guaranteed to be
composite. If n is positive and isprime returns TRUE, then n is prime
with a very high probability.

Use numlib::proveprime for a prime number test that always returns
the correct answer. Note, however, that it is usually much slower than
isprime.

A isprime(0) and isprime(1) return FALSE. isprime returns always FALSE
if n is a negative integer.

A isprime returns an error message if its argument is a number but not an
integer. isprime returns a symbolic isprime call if the argument is not
a number.

A isprime is a function of the system kernel.

530

Example 1. The number 989999 is prime:

>> isprime(989999)

TRUE

>> ifactor(989999)

989999

In contrast to ifactor, isprime can handle large numbers:

>> isprime(2^(2^11) + 1)

FALSE

isprime(0) and isprime(1) return FALSE:

>> isprime(0), isprime(1)

FALSE, FALSE

Negative numbers yield FALSE as well:

>> isprime(-13)

FALSE

For non-numeric arguments, a symbolic isprime call is returned:

>> delete n: isprime(n)

isprime(n)

Background:

A Reference: Michael O. Rabin, Probabilistic algorithms, in J. F. Traub,
ed., Algorithms and Complexity, Academic Press, New York, 1976, pp.
21–39.

isqrt – integer square root

isqrt(n) computes an integer approximation to the square root of the integer
n.

Call(s):

A isqrt(n)

531

Parameters:

n — an arithmetical expression representing an integer

Return Value: a nonnegative integer, an integral multiple of I, or a symbolic
isqrt call.

Overloadable by: n

Related Functions: _power, icontent, ifactor, igcd, ilcm,
numlib::ispower, numlib::issqr, sqrt, trunc

Details:

A If n is a perfect square, then isqrt returns the unique nonnegative integer
whose square is n. More generally, if n is a nonnegative integer, then isqrt
computes trunc(sqrt(n)). Thus the approximation error is less than 1.

A If n is a negative integer, then isqrt computes trunc(sqrt(-n))*I.

A isqrt returns an error message if its argument is a number but not an
integer. isqrt returns a symbolic isqrt call if the argument is not a
number.

A isqrt is a function of the system kernel.

Example 1. We compute some integer square roots:

>> isqrt(4), isqrt(5)

2, 2

The approximation error is less than 1:

>> isqrt(99), float(sqrt(99))

9, 9.949874371

The integer square root of a negative integer is an integral multiple of I:

>> isqrt(-4), isqrt(-5)

2 I, 2 I

If the argument is not a number, the result is a symbolic isqrt call:

>> delete n: isqrt(n)

isqrt(n)

532

>> type(%)

"isqrt"

iszero – generic zero test

iszero(object) checks whether object is the zero element in the domain of
object.

Call(s):

A iszero(object)

Parameters:

object — an arbitrary MuPAD object

Return Value: either TRUE or FALSE

Overloadable by: object

Related Functions: _equal, Ax::normalRep, bool, is, normal, simplify,
sign

Details:

A Use the condition iszero(object) instead of object = 0 to decide whether
object is the zero element, because iszero(object) is more general than
object = 0. If the call bool(object = 0) returns TRUE, then iszero(object)
returns TRUE as well, but in general not vice versa (see example 1).

A If object is an element of a basic type, then iszero returns TRUE precisely
if one of the following is true: object is the integer 0 (of domain type
DOM_INT), the floating point value 0.0 (of domain type DOM_FLOAT), the
floating point interval (of domain type DOM_INTERVAL) 0...0, or the zero
polynomial (of domain type DOM_POLY). In the case of a polynomial, the
result FALSE is guaranteed to be correct only if the coefficients of the
polynomial are in normal form (i.e., if zero has a unique representation in
the coefficient ring). See also Ax::normalRep.

A If object is an element of a library domain, then the method "iszero"
of the domain is called and the result is returned. If this method does not
exist, then the function iszero returns FALSE.

533

A iszero performs a purely syntactical zero test. If iszero returns TRUE,
then the answer is always correct. If iszero returns FALSE, however,
then it may still be true that mathematically object represents zero (see
example 3). In such cases, the MuPAD functions normal or simplify may
be able to recognize this.

A iszero does not take into account properties of identifiers in object
that have been set via assume. In particular, you should not use
iszero in an argument passed to assume or is; use the form object
= 0 instead (see example 2).

!

A Do not use iszero in a condition passed to piecewise. In con-
trast to object = 0, the command iszero(object) is evaluated
immediately, before it is passed to piecewise, while the evaluation
of object = 0 is handled by piecewise itself. Thus using iszero
in a piecewise command usually leads to unwanted effects (see
example 4).

!

A iszero is a function of the system kernel.

Example 1. iszero handles the basic data types:

>> iszero(0), iszero(1/2), iszero(0.0), iszero(I), iszero(-1...1)

TRUE, FALSE, TRUE, FALSE, FALSE

iszero works for polynomials:

>> p:= poly(x^2 + y, [x]):
iszero(p)

FALSE

>> iszero(poly(0, [x, y]))

TRUE

iszero is more general than =:

>> bool(0 = 0), bool(0.0 = 0), bool(poly(0, [x]) = 0)

TRUE, FALSE, FALSE

>> iszero(0), iszero(0.0), iszero(poly(0, [x]))

TRUE, TRUE, TRUE

534

Example 2. iszero does not react to properties:

>> assume(a = b): is(a - b = 0)

TRUE

>> iszero(a - b)

FALSE

Example 3. Although iszero returns FALSE in the following example, the
expression in question mathematically represents zero:

>> iszero(sin(x)^2 + cos(x)^2 - 1)

FALSE

In this case simplify is able to decide this:

>> simplify(sin(x)^2 + cos(x)^2 - 1)

0

Example 4. iszero should not be used in a condition passed to piecewise:

>> delete x:
piecewise([iszero(x), 0], [x <> 0, 1])

piecewise(1 if x <> 0)

The first branch was discarded because iszero(x) immediately evaluates to
FALSE. Instead, use the condition x = 0, which is passed unevaluated to piecewise:

>> piecewise([x = 0, 0], [x <> 0, 1])

piecewise(0 if x = 0, 1 if x <> 0)

ithprime – the i-th prime number

ithprime(i) returns the i-th prime number.

Call(s):

A ithprime(i)

535

Parameters:

i — an arithmetical expression

Return Value: a prime number or an unevaluated call to ithprime

Related Functions: ifactor, igcd, ilcm, isprime, nextprime,
numlib::prevprime

Details:

A If the argument i is a positive integer, then ithprime returns the i-th
prime number. An unevaluated call is returned, if the argument is not of
type Type::Numeric. An error occurs if the argument is a number that
is not a positive integer.

A The first prime number ithprime(1) is 2.

A If the i-th prime number is contained in the system’s internal prime num-
ber table (see the help page for ifactor), then it is returned by a fast
kernel function. Otherwise, MuPAD iteratively calls nextprime, using
some suitable pre-computed value of ithprime as starting point. This is
still reasonably fast for i ≤ 1000000. If i exceeds this value, however, then
the run time grows exponentially with the number of digits of i.

Example 1. The first 10 prime numbers:

>> ithprime(i) $ i = 1..10

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

A larger prime:

>> ithprime(123456)

1632899

Symbolic arguments lead to an unevaluated call:

>> ithprime(i)

ithprime(i)

lambertV, lambertW – lower and upper real branch of the Lambert
function

For real x, the values y = lambertV(x) and y = lambertW(x) represent the real
solutions of the equation y ey = x.

536

Call(s):

A lambertV(x)

A lambertW(x)

Parameters:

x — an arithmetical expression

Return Value: an arithmetical expression.

Side Effects: When called with a floating point argument, the functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Details:

A For all real x ≥ 0, the equation y ey = x has exactly one real solution. It
is represented by y = lambertW(x).

For all real x in the range 0 > x > −e−1, there are exactly two real
solutions. The larger one is represented by y = lambertW(x), the smaller
one by y = lambertV(x).

Exactly one real solution lambertW(−e−1) = lambertV(−e−1) = −1 ex-
ists for x = −e−1.

A Thus, the upper branch lambertW is defined for real arguments from the
interval [−e−1,∞). It is monotonically increasing, attaining values in the
interval [−1,∞).

The lower branch lambertV is defined for real arguments from the interval
[−e−1, 0). It is monotonically decreasing, attaining values in the interval
[−1,−∞).

A The values lambertV(0) = −infinity and lambertW(0) = 0 are imple-
mented. Further, the result y is returned for some exact arguments of
the form x = y ey. For real floating point arguments from the range of
definition a floating point value is returned. For all other arguments,
unevaluated function calls are returned.

A The float attributes are kernel functions, i.e., floating point evaluation
is fast.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> lambertV(-4), lambertW(-3), lambertV(-5/2), lambertW(1/2),
lambertV(I), lambertW(1 + I), lambertV(x + 1)

537

lambertV(-4), lambertW(-3), lambertV(-5/2), lambertW(1/2),

lambertV(I), lambertW(1 + I), lambertV(x + 1)

Some exact values are found:

>> lambertV(-exp(-1)), lambertW(-2*exp(-2)),
lambertV(-3/2*exp(-3/2)), lambertW(exp(1)),
lambertW(2*exp(2)), lambertW(5/2*exp(5/2))

-1, -2, -3/2, 1, 2, 5/2

Floating point values are computed for floating point arguments:

>> lambertV(-0.3), lambertW(2000.0)

-1.781337023, 5.836731495

The following arguments are not from the range of definition and lead to une-
valuated calls:

>> lambertV(-1.0), lambertW(-0.4), lambertV(0.1),
lambertV(exp(1)), lambertV(5*exp(5))

lambertV(-1.0), lambertW(-0.4), lambertV(0.1),

lambertV(exp(1)), lambertV(5 exp(5))

Example 2. The functions diff, float, and series handle expressions in-
volving the Lambert function:

>> diff(lambertV(x), x), diff(lambertW(x), x)

lambertV(x) lambertW(x)
-------------------, -------------------
x (lambertV(x) + 1) x (lambertW(x) + 1)

>> float(ln(3 + lambertW(sqrt(PI))))

1.334475971

>> series(lambertW(x), x = 0);
series(lambertW(x), x = -1/exp(1), 3);
series(lambertV(x), x = -1/exp(1), 3);

538

3 4 5 6
2 3 x 8 x 125 x 54 x 7

x - x + ---- - ---- + ------ - ----- + O(x)
2 3 24 5

1/2 1/2 / 1 \1/2
- 1 + 2 exp(1) | x + ------ | -

\ exp(1) /

/ 1 \
2 exp(1) | x + ------ |

\ exp(1) / / / 1 \3/2 \
----------------------- + O| | x + ------ | |

3 \ \ exp(1) / /

1/2 1/2 / 1 \1/2
- 1 - 2 exp(1) | x + ------ | -

\ exp(1) /

/ 1 \
2 exp(1) | x + ------ |

\ exp(1) / / / 1 \3/2 \
----------------------- + O| | x + ------ | |

3 \ \ exp(1) / /

Background:

A Reference: R.M. Corless, D.J. Jeffrey and D.E. Knuth: “A sequence of
Series for the Lambert W Function”, in: Proceedings of ISSAC’97, Maui,
Hawaii. W.W. Kuechlin (ed.). New York: ACM, pp. 197-204, 1997.

Changes:

A Series expansions can now be computed via series.

last – access a previously computed object

% returns the result of the last command.

last(n) or %n returns the result of the nth previous command.

Call(s):

A last(n)

539

A %

A %n

Parameters:

n — a positive integer

Return Value: a MuPAD object.

Further Documentation: Chapter 12 of the MuPAD Tutorial.

Related Functions: HISTORY, history

Details:

A By default, MuPAD stores the last 20 commands and their results in an
internal history table. last(n) returns the result entry of the nth element
in this table, counted from the end of the table. Thus last(1) returns
the result of the last command, last(2) returns the result of the next
to last one, etc. Instead of last(n) one can also write more briefly %n.
Instead of last(1) or %1, one can use even more briefly %.

A The environment variable HISTORY determines the number of previous
results that can be accessed at interactive level, i.e., the number of entries
in the history table. In procedures, the length of this table is always 3,
independent of the value of HISTORY. Thus admissible values for n are the
integers between 1 and HISTORY at interactive level, and the integers 1,
2, 3 inside a procedure.

Use history to access entries of the history table at interactive level
directly, including the command that produced the corresponding result.

A The result returned by last or % is not evaluated again. Use the function
eval to force a subsequent evaluation. See example 4.

A last behaves differently at interactive level and in procedures. At
interactive level, compound statements, such as for, repeat, and
while loops and if and case branching instructions, are stored in
the history table as a whole. In procedures, the statements within
a compound statement are stored in a separate history table of this
procedure, but not the compound statement itself. See example 5.

!

A Commands and their results are stored in the history table even if the
output is suppressed by a colon. Thus the result of last(n) may differ
from the nth previous output that is visible on the screen at interactive
level. See example 1.

540

A Commands appearing on the same input line lead to separate entries in
the history table if they are separated by a colon or a semicolon. In
contrast, an expression sequence is regarded as a single command. See
example 2.

A Commands that are read from a file via fread or read are stored in the
history table before the fread or read command itself. If the option
Plain is used, then a separate history table is valid within the file, and
the commands from the file do not appear in the history table of the
enclosing context. See the help page of history for examples.

A Using last in procedures is generally considered bad programming style
and is therefore deprecated. Future MuPAD releases may no longer sup-
port the use of last within procedures.

A If the abbreviated syntax %n is used, then n must be a positive integer
literally. If this is not the case, but n evaluates to a positive integer, use
the equivalent functional notation last(n) (see example 3).

A last is a function of the system kernel.

Example 1. Here are some examples for using last at interactive level. Note
that last(n) refers to the nth previously computed result, whether it was
displayed or not:

>> a := 42;
last(1), %, %1

42

42, 42, 42

>> a := 34: b := 56: last(2) = %2

34 = 34

Example 2. Commands appearing on one input line lead to separate entries
in the history table:

>> "First command"; 11: 22; 33:

"First command"

22

>> last(1), last(2);

33, 22

541

If a sequence of commands is bracketed, it is regarded as a single command:

>> "First command"; (11: 22; 33:)

"First command"

33

>> last(1), last(2);

33, "First command"

An expression sequence is also regarded as a single command:

>> "First command"; 11, 22, 33;

"First command"

11, 22, 33

>> last(1), last(2);

11, 22, 33, "First command"

Example 3. Due of the fact that the MuPAD parser expects a number after
the % sign, there is a difference between the use of % and last. last can be
called with an expression that evaluates to a positive integer:

>> n := 2: a := 35: b := 56: last(n)

35

If you try the same with %, an error occurs:

>> n := 2: a := 35: b := 56: %n

Error: Unexpected ’identifier’ [line 2, col 0]

Example 4. The result of last is not evaluated again:

>> delete a, b:
c := a + b + a: a:= b: last(2)

2 a + b

Use eval to enforce the evaluation:

>> eval(%)

3 b

542

Example 5. We demonstrate the difference between the use of last at inter-
active level and in procedures:

>> 1: for i from 1 to 3 do i: print(last(1)): end_for:

1

1

1

Here last(1) refers to the most recent entry in the history table, which is the 1
executed before the for loop. We can also verify this by inspecting the history
table after these commands. The command history returns a list with two
elements. The first entry is a previously entered MuPAD command, and the
second entry is the result of this command returned by MuPAD. You see that
the history table contains the whole for loop as a single command:

>> history(history() - 1), history(history())

[1, 1], [(for i from 1 to 3 do
i;
print(last(1))

end_for), null()]

However, if the for loop defined above is executed inside a procedure, then we
obtain a different result. In the following example, last(1) refers to the last
evaluated expression, namely the i inside the loop:

>> f := proc()
begin
1: for i from 1 to 3 do i: print(last(1)): end_for

end_proc:

>> f():

1

2

3

The command history refers only to the interactive inputs and their results:

>> history(history())

[f(), null()]

543

lasterror – reproduce the last error

lasterror() reproduces the last error that occurred in the current MuPAD
session.

Call(s):

A lasterror()

Related Functions: error, traperror

Details:

A Typically, lasterror is used to reproduce errors that were caught by
traperror. Cf. example 2.

A lasterror is a function of the system kernel.

Example 1. We produce an error:

>> x := 0: y := 1/x

Error: Division by zero

This error may be reproduced by lasterror:

>> lasterror()

Error: Division by zero

A further error is produced:

>> error("my error")

Error: my error

>> lasterror()

Error: my error

>> delete x, y:

544

Example 2. The following procedure mysin computes the sine function of its
argument. In case of an error produced by the system function sin, it prints
information on the argument and reproduces the error:

>> mysin := proc(x)
local result;
begin
if traperror((result := sin(x))) = 0 then

return(result)
else

print(Unquoted, "the following error occurred " .
"when calling sin(".expr2text(x)."):");

lasterror()
end_if:

end:

Indeed, the system’s sine function produces an error for large floating point
arguments:

>> mysin(1.0*10^100)

the following error occurred when calling sin(1.0e100):
Error: Loss of precision;
during evaluation of ’sin’

>> delete mysin:

lcm – the least common multiple of polynomials

lcm(p, q, ...) returns the least common multiple of the polynomials p, q, . . .

Call(s):

A lcm(p, q, ...)

A lcm(f, g, ...)

Parameters:
p, q, ... — polynomials of type DOM_POLY
f, g, ... — polynomial expressions

Return Value: a polynomial, a polynomial expression, or the value FAIL.

Overloadable by: p, q, f, g

545

Related Functions: content, factor, gcd, gcdex, icontent, ifactor,
igcd, igcdex, ilcm, poly

Details:

A lcm(p, q, ...) calculates the greatest common divisor of any number
of polynomials. The coefficient ring of the polynomials may either be the
integers or the rational numbers, Expr , a residue class ring IntMod (n)
with a prime number n, or a domain.

All polynomials must have the same indeterminates and the same coeffi-
cient ring.

A Polynomial expressions are converted to polynomials. See poly for details.
FAIL is returned if an argument cannot be converted to a polynomial.

A The return value is of the same type as the input polynomials, i.e., either
a polynomial of type DOM_POLY or a polynomial expression.

A lcm returns 1 if all arguments are 1 or −1, or if no argument is given. If
at least one of the arguments is 0, then lcm returns 0.

A Use ilcm if all arguments are known to be integers, since it is much faster
than lcm.

Example 1. The least common multiple of two polynomial expressions can be
computed as follows:

>> lcm(x^3 - y^3, x^2 - y^2);

4 4 3 3
y - x + x y - x y

One may also choose polynomials as arguments:

>> p := poly(x^2 - y^2, [x, y], IntMod(17)):
q := poly(x^2 - 2*x*y + y^2, [x, y], IntMod(17)):
lcm(p, q)

3 2 2 3
poly(x - x y - x y + y , [x, y], IntMod(17))

>> delete f, g, p, q:

lcoeff – the leading coefficient of a polynomial

lcoeff(p) returns the leading coefficient of the polynomial p.

546

Call(s):

A lcoeff(p <, vars> <, order>)

Parameters:
p — a polynomial of type DOM_POLY or a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers
order — the term ordering: either LexOrder , or DegreeOrder , or

DegInvLexOrder , or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

Return Value: an element of the coefficient domain of the polynomial or
FAIL.

Overloadable by: p

Related Functions: coeff, collect, degree, degreevec, ground, ldegree,
lmonomial, lterm, nterms, nthcoeff, nthmonomial, nthterm, poly,
poly2list, tcoeff

Details:

A The argument p can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
lcoeff.

A If a list of indeterminates is provided, then p is regarded as a polynomial
in these indeterminates. Note that the specified list does not have to
coincide with the indeterminates of the input polynomial. Cf. example 1.

A The returned coefficient is “leading” with respect to the lexicographical
ordering, unless a different ordering is specified via the argument order.
Cf. example 2.

A The result of lcoeff is not fully evaluated. Evaluation can be enforced
by the function eval. Cf. example 3.

A lcoeff returns FAIL if the input polynomial cannot be converted to a
polynomial in the specified indeterminates. Cf. example 4.

A With the orderings LexOrder , DegreeOrder and DegInvLexOrder , lcoeff
calls a fast kernel function. Other orderings are handled by slower library
functions.

547

Example 1. We demonstrate how the indeterminates influence the result:

>> p := 2*x^2*y + 3*x*y^2 + 6:
lcoeff(p), lcoeff(p, [x, y]), lcoeff(p, [y, x])

3, 2, 3

Note that the indeterminates passed to lcoeff will be used, even if the poly-
nomial provides different indeterminates :

>> p := poly(2*x^2*y + 3*x*y^2, [x, y]):
lcoeff(p), lcoeff(p, [x, y]), lcoeff(p, [y, x]),
lcoeff(p, [y]), lcoeff(p, [z])

2 2
2, 2, 3, 3 x, 2 x y + 3 x y

>> delete p:

Example 2. We demonstrate how various orderings influence the result:

>> p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):
lcoeff(p), lcoeff(p, DegreeOrder), lcoeff(p, DegInvLexOrder)

5, 4, 3

The following call uses the reverse lexicographical order on 3 indeterminates:

>> lcoeff(p, Dom::MonomOrdering(RevLex(3)))

3

>> delete p:

Example 3. The result of lcoeff is not fully evaluated:

>> p := poly(a*x^2 + 27*x, [x]): a := 5:
lcoeff(p, [x]), eval(lcoeff(p, [x]))

a, 5

>> delete p, a:

548

Example 4. We define a polynomial over the integers modulo 7:

>> p := poly(3*x, [x], Dom::IntegerMod(7)): lcoeff(p)

3 mod 7

This polynomial cannot be regarded as a polynomial with respect to another
indeterminate, because the“coefficient”3*x cannot be interpreted as an element
of the coefficient ring Dom::IntegerMod(7):

>> lcoeff(p, [y])

FAIL

>> delete p:

ldegree – the lowest degree of the terms in a polynomial

ldegree(p) returns the lowest total degree of the terms of the polynomial p.

ldegree(p, x) returns the lowest degree of the terms in p with respect to the
variable x.

Call(s):

A ldegree(p)

A ldegree(p, x)

A ldegree(f <, vars>)

A ldegree(f <, vars>, x)

Parameters:
p — a polynomial of type DOM_POLY
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers
x — an indeterminate

Return Value: a nonnegative number. FAIL is returned if the input cannot
be converted to a polynomial.

Overloadable by: p, f

Related Functions: coeff, degree, degreevec, ground, lcoeff,
lmonomial, lterm, nterms, nthcoeff, nthmonomial, nthterm, poly,
poly2list, tcoeff

549

Details:

A If the first argument f is not element of a polynomial domain, then
ldegree converts the expression to a polynomial via poly(f). If a list of
indeterminates is specified, then the polynomial poly(f, vars) is con-
sidered.

A ldegree(f, vars, x) returns 0 if x is not an element of vars.

A The low degree of the zero polynomial is defined as 0.

A ldegree is a function of the system kernel.

Example 1. The lowest total degree of the terms in the following polynomial
is computed:

>> ldegree(x^3 + x^2*y^2)

3

The next call regards the expression as a polynomial in x with a parameter y:

>> ldegree(x^3 + x^2*y^2, x)

2

The next expression is regarded as a bi-variate polynomial in x and z with
coefficients containing the parameter y. The total degree with respect to x and
z is computed:

>> ldegree(x^3*z^2 + x^2*y^2*z, [x, z])

3

We compute the low degree with respect to x:

>> ldegree(x^3*z^2 + x^2*y^2*z, [x, z], x)

2

A polynomial in x and z is regarded constant with respect to any other variable,
i.e., its corresponding degree is 0:

>> ldegree(poly(x^3*z^2 + x^2*y^2*z, [x, z]), y)

0

length – the “length” of a MuPAD object (heuristic complexity)

length(object) returns an integer indicating the complexity of the object.

550

Call(s):

A length(object)

Parameters:

object — an arbitrary MuPAD object

Return Value: a nonnegative integer.

Related Functions: nops, op

Details:

A The (heuristic) complexity of an object may be useful in algorithms that
need to predict the complexity and time for manipulating objects. E.g.,
a symbolic Gaussian algorithm for solving linear equations prefers Pivot
elements of small complexity.

A The length of an object is determined as follows:

• Objects of domain type DOM_BOOL, DOM_DOMAIN, DOM_EXEC, DOM_FAIL,
DOM_FLOAT, DOM_FUNC_ENV, DOM_IDENT, DOM_NIL, DOM_VAR, and DOM_PROC_ENV
are regarded as “atomic”. They have length 1. In particular, the
length of identifiers and real floating point numbers is 1.

• The length of an integer is the number of decimal digits.

• The length of a string is the number of its characters.

• The length of composite objects such as complex numbers, rational
numbers, arithmetical expressions, lists, sets, arrays, tables etc. is
the sum of the lengths of the operands plus 1.

A length() yields 0.

A length does not return the number of elements or entries in sets,
lists or tables. Use nops instead! !

A length is a function of the system kernel.

Example 1. Intuitively, the length measures the complexity of an object:

>> length(1 + x) < length(x^3 + exp(a - b)/ln(45 - t) - 1234*I)

3 < 25

551

Example 2. We compute the lengths of some simple objects:

>> length(1.2), length(-1234.5), length(123456), length(-123456)

1, 1, 6, 6

>> length(17), length(123), length(17/123)

2, 3, 6

>> length(12), length(123), length(12 + 123*I)

2, 3, 6

>> length(x), length(x^2), length(x^12345)

1, 3, 7

>> length("123"), length("")

3, 0

>> length(x), length(a_long_name)

1, 1

Example 3. The length of an array is the sum of the lengths of all its elements
plus 1:

>> A := array(1..2, [x, y]): length(A) = length(x) + length(y) + 1

3 = 3

>> A[1] := 12345: length(A) = length(12345) + length(y) + 1

7 = 7

>> delete A:

Example 4. The operands of a table are the equations associating indices and
entries. The length of each operand is the length of the index plus the length
of the corresponding entry plus 1:

>> T[1] := 45: T

table(
1 = 45

)

552

>> length(T) = length(1 = 45) + 1

5 = 5

>> delete T:

level – evaluate an object with a specified substitution depth

level(object, n) evaluates object with substitution depth n.

Call(s):

A level(object)

A level(object, n)

Parameters:
object — any MuPAD object
n — a nonnegative integer less than 231

Return Value: the evaluated object.

Further Documentation: Chapter 5 of the MuPAD Tutorial.

Related Functions: context, eval, hold, indexval, LEVEL, MAXLEVEL, val

Details:

A When a MuPAD object is evaluated, identifiers occurring in it are replaced
by their values. This happens recursively, i.e., if the values themselves con-
tain identifiers, then these are replaced as well. level serves to evaluate
an object with a specified recursion depth for this substitution process.

A With level(object, 0), object is evaluated without replacing any iden-
tifier occurring in it by its value. In most cases, but not always, this
equivalent to hold(object), and object is returned unevaluated. See
example 3.

A With level(object, 1), all identifiers occurring in object are replaced
by their values, but not recursively, and then all function calls in the result
of the substitution are executed. This is how objects are evaluated within
a procedure by default.

553

A The call level(object) is equivalent to level(object, MAXLEVEL), i.e.,
identifiers occurring in object are recursively replaced by their values
up to substitution depth MAXLEVEL - 1, and an error occurs if the sub-
stitution depth MAXLEVEL is reached. Usually, this leads to a complete
evaluation of object. See example 1.

A You can use level without a second argument to request the complete
evaluation of an object not containing local variables or formal parameters
within a procedure. This may be necessary since by default, objects are
evaluated with substitution depth 1 within procedures. See example 2.

Otherwise, it should never be necessary to use level.

A level does not affect the evaluation of local variables and formal
parameters, of type DOM_VAR, in procedures. When such a local
variable occurs in object, then it is always replaced by its value,
independent of the value of n, and the value is not further recurs-
ively evaluated. See example 2.

!

A level works by temporarily setting the value of LEVEL to n, or to 231− 1
if n is not given. However, the value of MAXLEVEL remains unchanged.
If the substitution depth MAXLEVEL is reached, then an error message is
returned. See LEVEL and MAXLEVEL for more information on these envir-
onment variables.

A In contrast to most other functions, level does not flatten its first argu-
ment if it is an expression sequence. See example 5.

A level does not recursively descend into arrays, tables, matrices or
polynomials. Use the call map(object, eval) to evaluate the entries of
an array, a table, a matrix or mapcoeffs(object, eval) to evaluate the
coefficients of a polynomial. Cf. example 4 and example 6.

Further information concerning the evaluation of arrays, tables, matrices
or polynomials can be found on the eval help page.

A The maximal substitution depth of level depends on the environment
variable MAXLEVEL, while the maximum evaluation depth of the function
eval depends on the environment variable LEVEL. See example 7.

A Because eval evaluates the result again there is a difference between eval-
uating an expression with depth n by level in comparison with eval. See
example 7.

A As mentioned level does not affect the evaluation of local variables and
formal parameters, of type DOM_VAR, in procedures. Here eval behaves
different. See example 7 and the eval help page for more information.

A The result of level(hold(x)) is always x, because a full evaluation of
hold(x) leads to x. The same does not hold for eval(hold(x)), because
eval first evaluates its argument and then evaluates the result again.

554

A The evaluation of elements of a user-defined domain depends on the imple-
mentation of the domain. Usually domain elements remain unevaluated
by level. If the domain has a slot "evaluate", the corresponding slot
routine is called with the domain element as argument at each evaluation,
and hence it is called once when level is invoked. Cf. example 8.

A level is a function of the system kernel.

Example 1. We demonstrate the effect of level for various values of the
second parameter:

>> delete a0, a1, a2, a3, a4, b: b := b + 1:
a0 := a1: a1 := a2 + 2: a2 := a3 + a4: a3 := a4^2: a4 := 5:

>> hold(a0), hold(a0 + a2), hold(b);
level(a0, 0), level(a0 + a2, 0), level(b, 0);
level(a0, 1), level(a0 + a2, 1), level(b, 1);
level(a0, 2), level(a0 + a2, 2), level(b, 2);
level(a0, 3), level(a0 + a2, 3), level(b, 3);
level(a0, 4), level(a0 + a2, 4), level(b, 4);
level(a0, 5), level(a0 + a2, 5), level(b, 5);
level(a0, 6), level(a0 + a2, 6), level(b, 6);

a0, a0 + a2, b

a0, a0 + a2, b

a1, a1 + a3 + a4, b + 1

2
a2 + 2, a2 + a4 + 7, b + 2

a3 + a4 + 2, a3 + a4 + 32, b + 3

2 2
a4 + 7, a4 + 37, b + 4

32, 62, b + 5

32, 62, b + 6

Evaluating object by just typing object at the command prompt is equivalent
to level(object, LEVEL):

>> LEVEL := 2: MAXLEVEL := 4: a0, a2, b;
level(a0, LEVEL), level(a2, LEVEL), level(b, LEVEL)

555

2
a2 + 2, a4 + 5, b + 2

2
a2 + 2, a4 + 5, b + 2

If the second argument is omitted, then this corresponds to a complete evalu-
ation up to substitution depth MAXLEVEL - 1:

>> level(a0)

Error: Recursive definition [See ?MAXLEVEL]

>> level(a2)

30

>> level(b)

Error: Recursive definition [See ?MAXLEVEL]

>> delete LEVEL, MAXLEVEL:

Example 2. We demonstrate the behavior of level in procedures:

>> delete a, b, c: a := b: b := c: c := 42:
p := proc()
local x;

begin
x := a:
print(level(x, 0), x, level(x, 2), level(x)):
print(level(a, 0), a, level(a, 2), level(a)):

end_proc:
p()

b, b, b, b

a, b, c, 42

Since a is evaluated with the default substitution depth 1, the assignment x:=a
sets the value of the local variable x to the unevaluated identifier b. You can see
that any evaluation of x, whether level is used or not, simply replaces x by its
value b, but no further recursive evaluation happens. In contrast, evaluation of
the identifier a takes place with the default substitution depth 1, and level(a,
2) evaluates it with substitution depth 2.

Thus level without a second argument can be used to request the complete
evaluation of an object not containing any local variables or formal parameters.

556

Example 3. There are some rare cases where level(object, 0) and hold(object)
behaves different. This is the case if object is not an identifier, e.g., a nameless
function, because level influences only the evaluation of identifiers:

>> level((x -> x^2)(2),0), hold((x -> x^2)(2))

4, (x -> x^2)(2)

For the same reason level(object, 0) and hold(object) behave differently
if object is a local variable of a procedure:

>> f:=proc() local x; begin
x := 42;
hold(x), level(x, 0);

end_proc:
f();
delete f:

DOM_VAR(0,2), 42

Example 4. In contrast to lists and sets, evaluation of an array does not
evaluate its entries. Thus level has no effect for arrays either. The same holds
for tables and matrices. Use map to evaluate all entries of an array. On the
eval help page further examples can be found:

>> delete a, b:
L := [a, b]: A := array(1..2, L): a := 1: b := 2:
L, A, level(A), map(A, level), map(A, eval)

+- -+ +- -+ +- -+ +- -+
[1, 2], | a, b |, | a, b |, | a, b |, | 1, 2 |

+- -+ +- -+ +- -+ +- -+

Example 5. The first argument of level may be an expression sequence,
which is not flattened. However, it must be enclosed in parentheses:

>> delete a, b: a := b: b := 3:
level((a, b), 1);
level(a, b, 1)

b, 3
Error: Wrong number of arguments [level]

557

Example 6. Polynomials are inert when evaluated, and so level has no
effect:

>> delete a, x: p := poly(a*x, [x]): a := 2: x := 3:
p, level(p)

poly(a x, [x]), poly(a x, [x])

Use mapcoeffs and the function eval to evaluate all coefficients:

>> mapcoeffs(p, eval)

poly(2 x, [x])

If you want to substitute a value for the indeterminate x, use evalp:

>> delete x: evalp(p, x = 3)

3 a

As you can see, the result of an evalp call may contain unevaluated identifiers,
and you can evaluate them by an application of eval. It is necessary to use
eval instead of level because level does not evaluate its result:

>> eval(evalp(p, x = 3))

6

Example 7. The subtle difference between level and eval is shown. The
evaluation depth of eval is limited by the environment variable LEVEL. level
pays no attention to LEVEL, but rather continues evaluating its argument either
as many times as the second argument implies or until it has been evaluated
completely:

>> delete a0, a1, a2, a3:
a0 := a1 + a2: a1 := a2 + a3: a2 := a3^2 - 1: a3 := 5:
LEVEL := 1:
eval(a0), level(a0);

2
a2 + a3 + a3 - 1, 53

If the evaluation depth exceeds the value of MAXLEVEL, an error is raised in both
cases:

>> delete LEVEL:
MAXLEVEL := 3:
level(a0);

558

Error: Recursive definition [See ?MAXLEVEL]

>> delete LEVEL:
MAXLEVEL := 3:
eval(a0);
delete MAXLEVEL:

Error: Recursive definition [See ?MAXLEVEL]

It is not the same evaluating an expression ex with eval and an evaluation
depth n and by level((ex, n)), because eval evaluates its result:

>> LEVEL := 2: eval(a0), level(a0, 2);
delete LEVEL:

2
53, a2 + a3 + a3 - 1

level does not affect the evaluation of local variables of type DOM_VAR while
eval evaluates them with evaluation depth LEVEL, which is one in a procedure:

>> p := proc()
local x;

begin
x := a0:
print(eval(x), level(x)):

end_proc:
p()

2
a2 + a3 + a3 - 1, a1 + a2

Example 8. The evaluation of an element of a user-defined domain depends
on the implementation of the domain. Usually it is not further evaluated:

>> delete a: T := newDomain("T"):
e := new(T, a): a := 1:
e, level(e), map(e, level), val(e)

new(T, a), new(T, a), new(T, a), new(T, a)

If the slot "evaluate" exists, the corresponding slot routine is called for a do-
main element each time it is evaluated. We implement the routine T::evaluate,
which simply evaluates all internal operands of its argument, for our domain T.
The unevaluated domain element can still be accessed via val:

>> T::evaluate := x -> new(T, eval(extop(x))):
e, level(e), map(e, level), val(e);

559

new(T, 1), new(T, 1), new(T, 1), new(T, a)

>> delete e, T:

lhs, rhs – the left, respectively right hand side of equations,
inequalities, relations, intervals, and ranges

lhs(f) returns the left hand side of f.

rhs(f) returns the right hand side of f.

Call(s):

A lhs(f)

A rhs(f)

Parameters:
f — an equation x = y, an inequality x <> y, a relation x < y, a

relation x <= y, an interval x...y, or a range x..y

Return Value: an arithmetical expression.

Overloadable by: f

Related Functions: op

Details:

A The calls lhs(f) and rhs(f) are equivalent to the direct calls op(f, 1)
and op(f, 2), respectively, of the operand function op.

Example 1. We extract the left and right hand sides of various objects:

>> lhs(x = sin(2)), lhs(3.14 <> PI), lhs(x + 3 < 2*y),
rhs(a <= b), rhs(m-1..n+1)

x, 3.14, x + 3, b, n + 1

The operands of an expression depend on its internal representation. In particu-
lar, a “greater” relation is always converted to the corresponding “less” relation:

>> y > -infinity; lhs(y > -infinity)

560

-infinity < y

-infinity

>> y >= 4; rhs(y >= 4)

4 <= y

y

Example 2. We extract the left and right hand sides of the solution of the
following system:

>> s := solve({x + y = 1, 2*x - 3*y = 2})

{[x = 1, y = 0]}

>> map(op(s), lhs) = map(op(s), rhs)

[x, y] = [1, 0]

Calls to lhs and rhs may be easier to read than the equivalent calls to the
operand function op:

>> map(op(s), op, 1) = map(op(s), op, 2)

[x, y] = [1, 0]

However, direct calls to op should be preferred inside procedures for higher
efficiency.

>> delete s:

limit – compute a limit

limit(f, x = x0<, Real>) computes the bidirectional limit lim
x→x0

x−x0∈R\{0}
f(x).

limit(f, x = x0, Left) computes the one-sided limit lim
x→x0
x<x0

f(x).

limit(f, x = x0, Right) computes the one-sided limit lim
x→x0
x>x0

f(x).

Call(s):

A limit(f, x <= x0> <, dir>)

561

Parameters:
f — an arithmetical expression representing a function in x
x — an identifier
x0 — the limit point: an arithmetical expression, possibly infinity or

-infinity

Options:

dir — either Left , Right , or Real . This controls the direction of the
limit computation. The option Real is the default case and
means the bidirectional limit (i.e., there is no need to specify
this option).

Return Value: an arithmetical expression, an interval of type Dom::Interval,
an expression of type "limit", or FAIL.

Side Effects: The function is sensitive to the environment variable ORDER,
which determines the default number of terms in series computations (see
series and example 6 below).

Properties of identifiers set by assume are taken into account.

Overloadable by: f

Related Functions: asympt, diff, discont, int, O, series, taylor

Details:

A limit(f, x = x0<, Real>) computes the bidirectional limit of f when
x tends to x0 on the real axis. The limit point x0 may be omitted, in which
case limit assumes x0 = 0.

If the limit point x0 is ∞ or −∞, then the limit is taken from the left to
∞ or from the right to −∞, respectively.

If the left and right limits are different, then undefined is returned; see
example 2.

A limit(f, x = x0, Left) returns the limit when x tends to x0 from the
left. limit(f, x = x0, Right) returns the limit when x tends to x0
from the right. See example 2.

A If the system cannot compute a limit, but can assert that the function
f is bounded when x approaches x0, then a bounding interval, of type
Dom::Interval, for f(x) in a sufficiently small neighborhood of x0 is
returned. This may happen, e.g., if f oscillates infinitesimally fast in the
neighborhood of x0. Note, however, that the boundaries need not be
equal to the limes inferior and the limes superior of f for x → x0. See
example 4.

562

A If the limit cannot be computed, then the system returns a symbolic limit
call (see example 3).

A If f contains parameters, then limit reacts to properties of those para-
meters set by assume; see example 5. If the limit cannot be computed
without additional assumptions about the parameters, then limit indic-
ates this by a warning.

A Internally, limit tries to determine the limit from a series expansion of f
around x = x0 computed via series. If the number of terms in the series
expansion is too small to compute the limit, then limit returns FAIL. In
such a case, it may be necessary to increase the value of the environment
variable ORDER in order to find the limit (see example 6).

A limit works on a symbolic level and should not be called with
arguments containing floating point arguments. !

Example 1. The following command computes lim
x→0

1− cosx
x2

:

>> limit((1 - cos(x))/x^2, x)

1/2

A possible definition of e is given by the limit of the sequence
(
1 + 1

n

)n for
n→∞:

>> limit((1 + 1/n)^n, n = infinity)

exp(1)

Here is a more complex example:

>> limit(
(exp(x*exp(-x)/(exp(-x) + exp(-2*x^2/(x+1)))) - exp(x))/x,
x = infinity

)

-exp(2)

Example 2. The bidirectional limit of f(x) = 1/x for x→ 0 does not exist:

>> limit(1/x, x = 0)

undefined

You can compute the one-sided limits from the left and from the right by passing
the options Left and Right , respectively:

563

>> limit(1/x, x = 0, Left),
limit(1/x, x = 0, Right)

-infinity, infinity

Example 3. If limit is not able to compute the limit, then a symbolic limit
call is returned:

>> delete f: limit(f(x), x = infinity)

limit(f(x), x = infinity)

Example 4. The function sin(x) oscillates for x→∞. The limes inferior and
the limes superior are −1 and 1, respectively:

>> limit(sin(x), x = infinity)

[-1, 1]

In fact, for x→∞ the function f=sin(x) assumes every value in the returned
interval infinitely often. This need not be the case in general.

The boundaries of the interval returned by limit need not coincide with
the limit superior and the limit inferior, respectively. In the following example,
the limit inferior and the limit superior are in fact −

√
2 and

√
2, respectively:

>> limit(sin(x) + cos(x), x = infinity)

[-2, 2]

Example 5. limit is not able to compute the limit of xn for x→∞ without
additional information about the parameter n:

>> delete n: limit(x^n, x = infinity)

Warning: cannot determine sign of n [stdlib::limit::limitIV::_\
power]

n
limit(x , x = infinity)

However, for n > 0 the limit exists and equals ∞. We use assume to achieve
this:

>> assume(n > 0): limit(x^n, x = infinity)

564

infinity

Similarly, the limit is zero for n < 0:

>> assume(n < 0): limit(x^n, x = infinity)

0

Example 6. It may be necessary to increase the value of the environment
variable ORDER in order to find the limit, as in the following example:

>> limit((sin(tan(x^2)) - tan(sin(x^2)))/x^14, x = 0)

Warning: ORDER seems to be not big enough for series \
computation [stdlib::limit::lterm]

FAIL

>> ORDER := 8:
limit((sin(tan(x^2)) - tan(sin(x^2)))/x^14, x);
delete ORDER:

-1/30

Background:

A If a limit cannot be computed, then limit issues a warning with a possible
reason, as shown in examples 5 and 6. You may want to suppress these
warnings when you call limit from within your own procedures. You can
control this by means of the procedure stdlib::limit::printWarnings.

The calls stdlib::limit::printWarnings(TRUE) and
stdlib::limit::printWarnings(FALSE) switch the warnings that
limit issues on and off, respectively, and return the previous setting.
The command stdlib::limit::printWarnings() returns the current
setting, which is TRUE by default.

A limit first tries a series computation to determine the limit. If this fails,
then an algorithm based on the thesis of Dominik Gruntz: “On Computing
Limits in a Symbolic Manipulation System”, Swiss Federal Institute of
Technology, Zurich, Switzerland, 1995, is used.

Changes:

A One may specify the option Real to compute bidirectional limits.

565

linsolve – solve a system of linear equations

linsolve(eqs, vars) solves a system of linear equations with respect to the
unknowns vars.

Call(s):

A linsolve(eqs)

A linsolve(eqs, vars)

A linsolve(eqs, vars, ShowAssumptions)

A linsolve(eqs, vars, Domain = R)

Parameters:
eqs — a list or a set of linear equations or arithmetical expressions
vars — a list or a set of unknowns to solve for: typically identifiers or

indexed identifiers

Options:

ShowAssumptions — additionally return information about internal
assumptions that linsolve has made on
symbolic parameters in eqs

Domain = R — solve the system over the field R, which must be
a domain of category Cat::Field.

Return Value: Without the option ShowAssumptions , a list of simplified
equations is returned. It represents the general solution of the system eqs.
FAIL is returned if the system is not solvable.

With ShowAssumptions , a list [Solution, Constraints, Pivots] is re-
turned. Solution is a list of simplified equations representing the general solu-
tion of eqs. The lists Constraints and Pivots contain equations and inequal-
ities involving symbolic parameters in eqs. Internally, these were assumed to
hold true when solving the system.

Related Functions: linalg::matlinsolve, numeric::linsolve, solve

Details:

A linsolve(eqs, <, vars <, ShowAssumptions>>) solves the linear sys-
tem eqs with respect to the unknowns vars. If no unknowns are specified,
then linsolve solves for all indeterminates in eqs; the unknowns are de-
termined internally by indets(eqs,PolyExpr).

566

A linsolve(eqs, vars, Domain = R) solves the system over the domain
R, which must be a field, i.e., a domain of category Cat::Field.

Note that the return format does not allow to return kernel elements
if elements of the domain R cannot be multiplied with the symbolic
unknowns that span the kernel. In such a case, linsolve issues
a warning and returns only a special solution. The kernel can be
computed via linalg::matlinsolve for any field R.

!

A Each element of eqs must be either an equation or an arithmetical ex-
pression f, which is considered to be equivalent to the equation f = 0.

A The unknowns in vars need not be identifiers or indexed identifiers; ex-
pressions such as sin(x), f(x), or y^(1/3) are allowed as well. More
generally, any expression accepted as indeterminate by poly is a valid
unknown.

A If the option ShowAssumptions is not given and the system is solvable,
then the return value is a list of equations of the form var = value,
where var is one of the unknowns in vars and value is an arithmetical
expression that does not involve any of the unknowns on the left hand side
of a returned equation. Note that if the solution manifold has dimension
greater than zero, then some of the unknowns in vars will occur on the
right hand side of some returned equations, representing the degrees of
freedom. See example 3.

A If vars is a list, then the solved equations are returned in the the same
order as the unknowns in vars.

A The function linsolve can only solve systems of linear equations. Use
solve for nonlinear equations.

A linsolve is an interface function to the procedures numeric::linsolve
and linalg::matlinsolve. For more details see the help pages
numeric::linsolve, linalg::matlinsolve and the background section
of this help page.

A The system eqs is checked for linearity. Since such a test may be expens-
ive, it is recommended to use numeric::linsolve or linalg::matlinsolve
directly in cases you be sure that the system is linear.

A linsolve does not react to properties of identifiers set by assume.
!

Option <ShowAssumptions>:

A With this option, a list [Solution, Constraints, Pivots] is returned.
Solution is a list of solved equations representing the complete solu-
tion manifold of eqs, as described above. The lists Constraints and
Pivots contain equations and inequalities involving symbolic parameters

567

in eqs. Internally, these were assumed to hold true when solving the
system. [FAIL, [], []] is returned, if the system is not solvable. See
numeric::linsolve for more details.

Example 1. Equations and variables may be entered as sets or lists:

>> linsolve({x + y = 1, 2*x + y = 3}, {x, y}),
linsolve({x + y = 1, 2*x + y = 3}, [x, y]),
linsolve([x + y = 1, 2*x + y = 3], {x, y}),
linsolve([x + y = 1, 2*x + y = 3], [x, y])

[x = 2, y = -1], [x = 2, y = -1], [x = 2, y = -1],

[x = 2, y = -1]

Also expressions may be used as variables:

>> linsolve({cos(x) + sin(x) = 1, cos(x) - sin(x) = 0},
{cos(x), sin(x)})

[cos(x) = 1/2, sin(x) = 1/2]

Furthermore, indexed identifiers are valid, too:

>> linsolve({2*a[1] + 3*a[2] = 5, 7*a[2] + 11*a[3] = 13,
17*a[3] + 19*a[1] = 23}, {a[1], a[2], a[3]})

[a[1] = 691/865, a[2] = 981/865, a[3] = 398/865]

Next, we demonstrate the use of option Domain and solve a system over the
field Z23 with it:

>> linsolve([2*x + y = 1, -x - y = 0],
Domain = Dom::IntegerMod(23))

[x = 1 mod 23, y = 22 mod 23]

The following system does not have a solution:

>> linsolve({x + y = 1, 2*x + 2*y = 3}, {x, y})

FAIL

568

Example 2. We demonstrate the dependence of the solution of a systems from
involved parameters:

>> eqs := [x + a*y = b, x + A*y = b]:

>> linsolve(eqs, [x, y])

[x = b, y = 0]

Note that for a = A this is not the general solution. Using the option ShowAs-

sumptions it turns out, that the above result is the general solution subject to
the assumption a 6= A:

>> linsolve(eqs, [x, y], ShowAssumptions)

[[x = b, y = 0], [], [A - a <> 0]]

>> delete eqs:

Example 3. If the solution of the linear system is not unique, then some of
the unknowns are used as “free parameters” spanning the solution space. In the
following example the unknown z is such a parameter. It does not turn up on
the left hand side of the solved equations:

>> eqs := [x + y = z, x + 2*y = 0, 2*x - z = -3*y, y + z = 0]:

>> vars := [w, x, y, z]:

>> linsolve(eqs, vars)

[x = 2 z, y = -z]

Background:

A If the option Domain is not present, the system is solved by calling
numeric::linsolve with the option Symbolic .

A If the option Domain = R is given and R is one of the two domains
Dom::ExpressionField() or Dom::Float, then numeric::linsolve is
used to compute the solution of the system. This function uses a sparse
representation of the equations.

Otherwise, eqs is first converted into a matrix and then solved by linalg::matlinsolve.
A possibly sparse structure of the input system is not taken into account.

lllint – compute an LLL-reduced basis of a lattice

lllint(A) applies the LLL algorithm to the columns of the (not necessary
square) matrix A with integer entries.

569

Call(s):

A lllint(A, All)

A lllint(A)

Parameters:
A — a matrix, given as a list of row vectors, each row being a list of

integers

Return Value:

A With option All , a list [T, B] is returned, such that B = A*T and the
columns of B form an LLL-reduced basis of the lattice spanned by the
columns of A. Both T and B are given as lists of row vectors.

A Without option All , lllint only returns the transformation matrix T as
a list of row vectors.

Related Functions: linalg::basis, linalg::factorLU,
linalg::factorQR, linalg::gaussElim, linalg::hermiteForm,
linalg::orthog

Details:

A lllint applies the LLL algorithm to the columns of the matrix A. Math-
ematically, the input matrix can be an arbitrary matrix with integer
entries, possibly non-square, and possibly without full column rank.

The matrix is passed to lllint in form of a list of row vectors, where
each row vector is again a list of integers. The number of entries in each
row must be equal. The matrices returned by lllint have this form as
well.

The computations are done entirely with integers and are both accurate
and quite fast.

A You can use matrix to obtain a nicer screen output of the matrices. See
example 1.

A lllint is a function of the system kernel.

Example 1. We apply the LLL algorithm to a matrix with two rows and three
columns:

>> A := [[1, 2, 3], [4, 5, 6]]:
[T, B] := lllint(A, All)

[[[-1, 4], [1, -3], [0, 0]], [[1, -2], [1, 1]]]

570

We use matrix to print A,T, and B in a nicer form and check that indeed B =
A*T:

>> matrix(A), matrix(T), matrix(B)

+- -+
+- -+ | -1, 4 | +- -+
1, 2, 3				1, -2
	,	1, -3	,	
4, 5, 6				1, 1
+- -+ | 0, 0 | +- -+

+- -+

>> matrix(B) = matrix(A)*matrix(T)

+- -+ +- -+
1, -2		1, -2
	=	
1, 1		1, 1
+- -+ +- -+

The result is to be interpreted as follows: the two column vectors(
1
1

)
and

(
−2
1

)
form an LLL-reduced basis of the integer lattice generated by the three column
vectors (

1
4

)
,

(
2
5

)
, and

(
3
6

)
.

Without the option All , lllint returns only the transformation matrix T:

>> matrix(lllint([[1, 2, 3], [4, 5, 6]]))

+- -+
| -1, 4 |
| |
| 1, -3 |
| |
| 0, 0 |
+- -+

Background:

A References:

A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, Factoring polynomials
with rational coefficients. Math. Ann. 261, 1982, pp. 515–534.

571

Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra.
Cambridge University Press, 1999, Chapter 16.

George L. Nemhauser and Laurence A. Wolsey, Integer and Combinatorial
Optimization. New York, Wiley, 1988.

A. Schrijver, Theory of Linear and Integer Programming. New York,
Wiley, 1986.

lmonomial – the leading monomial of a polynomial

lmonomial(p) returns the leading monomial of the polynomial p.

Call(s):

A lmonomial(p <, vars> <, order> <, Rem>)

Parameters:
p — a polynomial of type DOM_POLY or a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers
order — the term ordering: either LexOrder or DegreeOrder or

DegInvLexOrder or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

Options:

Rem — makes lmonomial return a list with the leading monomial and
the “reductum”.

Return Value: a polynomial of the same type as p. An expression is returned
if p is an expression. FAIL is returned if the input cannot be converted to a
polynomial. With Rem , a list of two polynomials is returned.

Overloadable by: p

Related Functions: coeff, degree, degreevec, ground, lcoeff, ldegree,
lterm, nterms, nthcoeff, nthmonomial, nthterm, poly, poly2list, tcoeff

Details:

A The argument p can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
lmonomial.

572

A If a list of indeterminates is provided, then p is regarded as a polynomial
in these indeterminates. Note that the specified list does not have to
coincide with the indeterminates of the input polynomial. Cf. example 1.

A The returned monomial is “leading” with respect to the lexicographical
ordering, unless a different ordering is specified via the argument order.
Cf. example 2.

A lmonomial returns FAIL if the input polynomial cannot be converted to
a polynomial in the specified indeterminates. Cf. example 4.

A The result of lmonomial is not fully evaluated. It can be evaluated by
the functions mapcoeffs and eval. Cf. example 5.

A The leading monomial of the zero polynomial is the zero polynomial.

A For the orderings LexOrder , DegreeOrder and DegInvLexOrder , the res-
ult is computed by a fast kernel function. Other orderings are handled by
slower library functions.

Option <Rem>:

A With this option, a list with two polynomials is returned: the leading
monomial and the reductum. The reductum of a polynomial p is p -
lmonomial(p).

Example 1. We demonstrate how the indeterminates influence the result:

>> p := 2*x^2*y + 3*x*y^2 + 6:
lmonomial(p), lmonomial(p, [x, y]), lmonomial(p, [y, x])

2 2 2
3 x y , 2 x y, 3 x y

Note that the indeterminates passed to lmonomial will be used, even if the
polynomial provides different indeterminates :

>> p := poly(2*x^2*y + 3*x*y^2, [x, y]):
lmonomial(p), lmonomial(p, [x, y]), lmonomial(p, [y, x]),
lmonomial(p, [y]), lmonomial(p, [z])

2 2
poly(2 x y, [x, y]), poly(2 x y, [x, y]),

2 2
poly(3 y x, [y, x]), poly((3 x) y , [y]),

2 2
poly(2 x y + 3 x y , [z])

573

>> delete p:

Example 2. We demonstrate how various orderings influence the result:

>> p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):
lmonomial(p), lmonomial(p, DegreeOrder),
lmonomial(p, DegInvLexOrder)

4 3 2
poly(5 x , [x, y, z]), poly(4 x y z , [x, y, z]),

2 3
poly(3 x y z, [x, y, z])

The following call uses the reverse lexicographical order on 3 indeterminates:

>> lmonomial(p, Dom::MonomOrdering(RevLex(3)))

2 3
poly(3 x y z, [x, y, z])

>> delete p:

Example 3. We compute the reductum of a polynomial:

>> p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):
q := lmonomial(p, Rem)

2 2
[poly(2 x y, [x, y]), poly(3 x y + 6, [x, y])]

The leading monomial and the reductum add up to the polynomial p:

>> p = q[1] + q[2]

2 2
poly(2 x y + 3 x y + 6, [x, y]) =

2 2
poly(2 x y + 3 x y + 6, [x, y])

>> delete p, q:

574

Example 4. We define a polynomial over the integers modulo 7:

>> p := poly(3*x + 4, [x], Dom::IntegerMod(7)): lmonomial(p)

poly(3 x, [x], Dom::IntegerMod(7))

This polynomial cannot be regarded as a polynomial with respect to another
indeterminate, because the“coefficient”3*x cannot be interpreted as an element
of the coefficient ring Dom::IntegerMod(7):

>> lmonomial(p, [y])

FAIL

>> delete p:

Example 5. We demonstrate the evaluation strategy of lmonomial:

>> p := poly(6*x^6*y^2 + x^2 + 2, [x]): y := 4: lmonomial(p)

2 6
poly((6 y) x , [x])

Evaluation is enforced by eval:

>> mapcoeffs(%, eval)

6
poly(96 x , [x])

>> delete p, y:

ln – the natural logarithm

ln(x) represents the natural logarithm of x.

Call(s):

A ln(x)

Parameters:

x — an arithmetical expression or a floating point interval

Return Value: an arithmetical expression or a floating point interval

575

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: dilog, log, polylog

Details:

A The logarithm is defined for all complex arguments x 6= 0.

A For most exact arguments an unevaluated function call is returned. It is
subject to some simplifications:

• Arguments of the form x = exp(y) with y of the type Type::Numeric
yield the result ln(exp(y)) = y + k i 2π. Here k is some suitable in-
teger, such that the imaginary part of the result lies in the interval
(−π, π]. Similar simplifications occur for arguments of the form
x = exp(y)a.

• Negative integer and rational arguments x are rewritten according
to ln(x) = i π + ln(−x). Arguments of the form x = 1/n with some
integer n are rewritten according to ln(1/n) = − ln(n).

• The following special values are implemented: ln(1) = 0, ln(−1) =
i π, ln(± i) = ± i π/2, ln(infinity) = infinity, ln(−infinity) =
i π + infinity.

A Floating point results are computed for floating point arguments. The
imaginary part of the result takes values in the interval (−π, π]. The
negative real axis is a branch cut, the imaginary part of the result jumps
when crossing the cut. On the negative real axis, the imaginary part is π
according to ln(x) = i π + ln(−x), x < 0. Cf. example 2.

A For floating point interval arguments (of type DOM_INTERVAL), the re-
turn value will be of type DOM_INTERVAL, properly rounded outwards.
Note that this implies that the result does not contain complex (non-real)
numbers. See example 5.

A Note that arithmetical rules such as ln(x y) = ln(x) + ln(y) are not valid
throughout the complex plane. Use properties to mark identifiers as real
and apply functions such as expand, combine or simplify to manipulate
expressions involving ln. Cf. example 4.

576

Example 1. We demonstrate some calls with exact and symbolic input data:

>> ln(2), ln(-3), ln(1/4), ln(1 + I), ln(x^2)

2
ln(2), I PI + ln(3), -ln(4), ln(1 + I), ln(x)

Floating point values are computed for floating point arguments:

>> ln(123.4), ln(5.6 + 7.8*I), ln(1.0/10^20)

4.815431111, 2.261980065 + 0.948125538 I, -46.05170186

Some special symbolic simplifications are implemented:

>> ln(1), ln(-1), ln(exp(-5)), ln(exp(5 + 27/4*I))

0, I PI, -5, (5 + 27/4 I) - 2 I PI

Example 2. The negative real axis is a branch cut. The imaginary part of the
values returned by ln jump when crossing this cut:

>> ln(-2.0), ln(-2.0 + I/10^1000), ln(-2.0 - I/10^1000)

0.6931471806 + 3.141592654 I, 0.6931471806 + 3.141592654 I,

0.6931471806 - 3.141592654 I

Example 3. The functions diff, float, limit, series etc. handle expressions
involving ln:

>> diff(ln(x^2), x), float(ln(PI + I))

2
-, 1.192985153 + 0.3081690711 I
x

>> limit(ln(x)/x, x = infinity), series(x*ln(sin(x)), x = 0, 10)

3 5 7 9
x x x x 11

0, x ln(x) - -- - --- - ---- - ----- + O(x)
6 180 2835 37800

577

Example 4. The functions expand, combine, and simplify react to properties
set via assume. The following call does not produce an expanded result, because
the arithmetical rule ln(x y) = ln(x)+ln(y) does not hold for arbitrary complex
x, y:

>> expand(ln(x*y))

ln(x y)

However, the rule is valid, if one of the factors is real and positive:

>> assume(x > 0): expand(ln(x*y))

ln(x) + ln(y)

>> combine(%, ln)

ln(x y)

>> simplify(ln(x^3*y) - ln(x) - ln(y))

2 ln(x)

>> unassume(x):

Example 5. The logarithm of an interval is the image set of the logarithm
function over the set represented by the interval:

>> ln(1 ... 2)

-1.843143694e-18 ... 0.6931471806

>> ln(-1 ... 1)

(RD_NINF ... 0.0) + (-1.875958165e-2525222 ... 3.141592654) I

This definition extends to unions of intervals:

>> ln(1 ... 2 union 3 ... 4)

-1.843143694e-18 ... 0.6931471806 union

1.098612288 ... 1.386294362

578

Changes:

A Floating point intervals are accepted.

loadlib – load a library package

loadlib(libname) loads the library package libname.

Call(s):

A loadlib(libname)

Parameters:

libname — the package name: a string

Return Value: TRUE if the package has been loaded successfully, and FALSE
if the package was already loaded.

Related Functions: export, LIBPATH, loadmod, loadproc, package,
Pref::verboseRead

Details:

A loadlib is obsolete. Please use package instead.

A loadlib loads the library package with the name libname. The lib-
rary packages from the MuPAD distribution, such as, e.g., fp, are loaded
automatically at startup. Thus loadlib is only relevant for loading user
defined packages.

A loadlib searches for the initialization file of the given library package.
This may be either a MuPAD binary file libname.mb or a MuPAD text
file libname.mu, where libname is the name of the library package. The
file is searched for in the subdirectory LIBFILES relative to each of the
directories given by LIBPATH. loadlib first searches all corresponding
directories for the binary file libname.mb and reads the first matching
file. If none is found, then the text file libname.mu is tried.

The file fp.mu in the subdirectory LIBFILES of the directory where the
MuPAD system library is installed can be used as a model for a library
initialization file.

A You may make the system automatically load user defined library pack-
ages by adding the local directory where the packages reside to LIBPATH.
The initialization files for the library packages must be located in the
subdirectory LIBFILES of the local directory.

579

A loadlib returns TRUE if the package was found and successfully loaded.
FALSE is returned if the package is already loaded. An error occurs if the
package was not found.

A A library is loaded only once at the first call of loadlib. A subsequent
call does not re-load the same library.

loadmod – load a module

loadmod("modulename") loads the dynamic module named modulename.

loadmod() checks whether the MuPAD kernel supports dynamic modules.

Call(s):

A loadmod("modulename")

A loadmod()

Parameters:

"modulename" — the name of a module: a character string

Return Value: loadmod() returns TRUE or FALSE; loadmod("modulename")
returns a module domain of type DOM_DOMAIN.

Side Effects: loadmod("modulename") assigns a value to the identifier modulename.
E.g., after loadmod("stdmod"), the identifier stdmod has the loaded module as
its value.

Further Documentation: Dynamic Modules - User’s Manual and Program-
ming Guide for MuPAD 1.4, Andreas Sorgatz, Oct 1998, Springer Verlag,
Heidelberg, with CD-ROM, ISBN 3-540-65043-1.

Related Functions: external, export, module::new, package, unloadmod

Details:

A loadmod() returns TRUE if this MuPAD version supports the use of dy-
namic modules. Otherwise, it returns FALSE.

A loadmod("modulename") loads the dynamic module named modulename.
Doing this, it defines a corresponding module domain, assigns it to the
identifier modulename and returns the domain to the MuPAD session. A
previously assigned value of the identifier modulname is overwritten.

580

A If the module domain already exists, it is overwritten and the warning
’Warning: Redefinition of domain ...’ is displayed.

A The module file “modulename.mdm” is first searched for in the directories
defined in the variable READPATH, then in the current working directory
and, finally, in the MuPAD module directory.

A If the module cannot be loaded, the evaluation is aborted with an error
message.

A If the file “modulename.mdg” exists, then it contains MuPAD objects that
are likewise loaded and bound to the module domain. If an error occurs
while loading these objects, a warning is displayed and MuPAD tries once
more to load them at each call of the module functions affected by it.

A Apart from the module machine code file “modulename.mdm”, there may
also be a text file “modulename.mdh” containing a brief description of the
module. This documentation can be read online using the module function
modulename::doc() or modulename::doc("methodname"), respectively.

A loadmod is a function of the system kernel.

Example 1. The following call loads the dynamic module stdmod:

>> loadmod("stdmod")

stdmod

>> type(stdmod);

DOM_DOMAIN

Since modules are represented as domains, they can be used in the same way
as library packages or other MuPAD domains. E.g., a module function is called
with the prefix modulename:

>> stdmod::which("stdmod")

"/usr/local/mupad/linux/modules/stdmod.mdm"

As for libraries, info can also be used to get information about a loaded module:

>> info(stdmod)

Module: ’stdmod’ created on 28.Sep.00 by mmg R-2.0.0
Module: Extended Module Management

-- Interface:
stdmod::age, stdmod::doc, stdmod::help, stdmod::max,
stdmod::stat, stdmod::which

581

The function export exports all public functions of the module. After this, the
method "which" can be called without the domain prefix stdmod:

>> export(stdmod): which("stdmod")

"/usr/local/mupad/linux/modules/stdmod.mdm"

Example 2. Documentation of a dynamic module named modulename may be
provided by a plain text file “modulename.mdh” which must be located in the
same directory as the module file “modulename.mdm”. Such documentation can
be accessed as demonstrated below. Cf. module::help for details.

>> stdmod::doc()

MODULE
stdmod - Extended Module Management

INTRODUCTION
This module provides functions for an extended module ...

INTERFACE
age, doc, help, max, stat, which

Above, the introductory page of the module documentation was displayed. Be-
low, using the argument "doc", the help page of the function stdmod::doc is
shown:

>> stdmod::doc("doc")

NAME
stdmod::doc - Display online documentation

SYNOPSIS
...

SEE ALSO
info, module::help

Background:

A The kernel functions external, loadmod, and unloadmod provide basic
tools for accessing modules. Extended facilities are available with the
module library.

A Only one instance of a dynamic module can exist in memory at time. Each
further call of loadmod only reloads the machine code if it was unloaded
or displaced before. However, the module domain is always re-created on
loading.

582

A The machine code of dynamic modules can be unloaded during a MuPAD
session using the function unloadmod.

A MuPAD provides a module resource management which may displace the
machine code of dynamic modules if they are currently not needed, or if
there is a lack of memory resources.

A Besides dynamic modules, MuPAD also supports so-called static modules
which cannot be unloaded or displaced at runtime automatically. Also
refer to unloadmod.

loadproc – load an object on demand

loadproc loads a MuPAD object from a file when it is first accessed.

Call(s):

A object := loadproc(object, path, file)

Parameters:
object — any MuPAD object that is a valid left hand side for an

assignment
path — a relative path name with a terminating path separator: a

string
file — a file name without suffix: a string

Return Value: an element of the domain stdlib::LoadProc (see “Back-
ground” below).

Related Functions: export, finput, fread, LIBPATH, loadmod, package,
pathname, Pref::verboseRead, read

Details:

A The MuPAD library is quite big. However, users typically need only a
small part of the library. It would be very time and memory consuming
to load the whole library at startup. loadproc provides a concept for
delaying the process of loading a predefined object, such as a library
domain or a library procedure, until the time when it is first needed.

A loadproc returns an element of a special domain. This element only
stores the information about the file where object is defined, but it does
not yet read the file. This happens only when object is used for the first
time.

583

The path and the name of the file are given by the two strings path
and file, respectively. The function pathname is useful for creating path
names in a platform independent way.

A When object is evaluated for the first time, the system first tries to read
the MuPAD binary file

path . "." . file . ".mb",

where . is the concatenation operator. MuPAD searches for this file rel-
ative to the directories given by LIBPATH. The first matching file is read.
If the search fails, MuPAD tries the text file

path . "." . file . ".mu"

instead.

The corresponding file must contain the “real” definition of object,
typically a statement of the form object := value. If this is not
the case, the system may run into infinite recursion.

!

Finally, after the file has been read, value is returned as the value of
object. The whole loading process is transparent to the user. See the
example below for illustration.

A loadproc does not evaluate the first argument object, but the other
arguments are evaluated as usual.

A To avoid side-effects, alias definitions are not in effect while the file is read,
except those that are defined within the file. Alias definitions in the file
are local to the file only; they are removed when the loading is finished.

Example 1. At system startup, the identifier int is initialized as follows:

>> int := loadproc(int, pathname("STDLIB"), "int"):

This tells the system that it finds the actual definition of the integration func-
tion int in the file "STDLIB/int.mu", relative to the library path specified by
LIBPATH, which by default points to MuPAD’s installation directory.

When you first use int, e.g., by entering the command int(t^2,t), MuPAD
automatically loads the file "STDLIB/int.mu". This file contains the following
lines defining the actual function environment int:

int := funcenv(
proc(f, x = null())
begin
if args(0) = 0 then error("No argument given") end_if;
...

end_proc):

After the file has been read, the function environment is returned as the value
of int, and then the system proceeds as usual: the call int(t^2,t) is executed
and its result t^3/3 is returned.

584

Background:

A loadproc returns an object of the domain stdlib::LoadProc. This is an
internal data type; manipulating its elements should never be necessary.
Therefore it remains undocumented.

A Often a library source file provides definitions for several objects to be
loaded via loadproc. In such a case, it may happen that an object is
loaded even before it is first accessed, namely when another object is
accessed whose definition is located in the same source file.

log – the logarithm to an arbitrary base

log(b, x) represents the logarithm of x to the base b.

Call(s):

A log(b, x)

Parameters:
b — either an identifier of domain type DOM_IDENT or a real numerical

value of type Type::Positive.
x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: dilog, ln, polylog

Details:

A Mathematically, log(b, x) coincides with ln(x)/ ln(b). Cf. example 3. The
logarithm is defined for all complex arguments x 6= 0.

A The base b must be real, positive and not equal to 1. Internal simplifica-
tions are based on these assumptions.

A For most exact arguments an unevaluated function call is returned subject
to some simplifications:

• If b = exp(1), then log(b, x) = ln(x) is returned.

585

• Mathematically, log(b, by) = y holds true for any real y. This sim-
plification is implemented for the following cases: i) b is a symbolic
identifier and y is of type Type::Real, ii) b is numerical and y is
integer or rational.

• Negative integer and rational arguments x are rewritten according
to log(b, x) = i π/ ln(b)+log(b,−x). Rational arguments of the form
x = 1/n with some integer n are rewritten according to log(b, 1/n) =
− log(b, n).

• The following special values are implemented:

log(b, 1) = 0 , log(b,−1) =
i π

ln(b)
, log(b,± i) = ± i π

2 ln(b)
.

A Floating point results are computed if both arguments are numerical and
at least one of them is a floating point number. The imaginary part of
the result takes values in the interval (−π/ ln(b), π/ ln(b)] for b > 1 (in
the interval [π/ ln(b),−π/ ln(b)) for b < 1, respectively). The negative
real axis is a branch cut, the imaginary part of the result jumps when
crossing the cut. On the negative real axis, the imaginary part is π/ ln(b)
according to log(b, x) = i π/ ln(b) + log(b,−x), x < 0. Cf. example 2.

A Note that arithmetical rules such as log(b, x y) = log(b, x) + log(b, y) are
not valid throughout the complex plane. Use properties to mark identifiers
as real and apply functions such as expand or simplify to manipulate
expressions involving log. Cf. example 5.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> log(b, 2), log(2, 3), log(10, 10^2), log(10, 2*10^2),
log(2, I), log(b, x^2)

1/2 I PI 2
log(b, 2), log(2, 3), 2, log(10, 200), --------, log(b, x)

ln(2)

Note that the base may be a symbolic identifier. However, expressions are not
accepted:

>> log(b + 1, 2)

Error: base must be an identifier or of Type::Positive [log]

>> log(PI^2, 2)

Error: base must be an identifier or of Type::Positive [log]

Floating point values are computed for floating point arguments:

586

>> log(2, 123.4), log(2.0, 5.6 + 7.8*I), log(10.0, 2/10^20)

6.947198584, 3.263347423 + 1.367856012 I, -19.69897

Some special symbolic simplifications are implemented:

>> log(b, 1), log(b, -1), log(2/3, (4/9)^10), log(b, b^(-5))

I PI
0, -----, 20, -5

ln(b)

Example 2. The negative real axis is a branch cut. The imaginary part of the
values returned by log jump when crossing this cut:

>> log(10, -2.0),
log(10, -2.0 + I/10^1000),
log(10, -2.0 - I/10^1000)

0.3010299957 + 1.364376354 I, 0.3010299957 + 1.364376354 I,

0.3010299957 - 1.364376354 I

Example 3. Use rewrite to rewrite log in terms of ln:

>> rewrite(log(b, x), ln), rewrite(log(10, 200), ln)

ln(x) ln(200)
-----, -------
ln(b) ln(10)

Example 4. The functions diff, float, limit, series etc. handle expressions
involving log:

>> diff(log(b, x^2), x), float(log(10, PI + I))

2
-------, 0.5181068691 + 0.1338361271 I
x ln(b)

>> limit(log(10, x)/x, x = infinity),
series(x*log(x, sin(x)), x = 0)

3 5
x x 7

0, x - ------- - --------- + O(x)
6 ln(x) 180 ln(x)

587

Example 5. The functions expand and simplify react to properties set via
assume. The following call does not produce an expanded result, because the
arithmetical rule log(b, x y) = log(b, x) + log(b, y) does not hold for arbitrary
complex x, y. Note, however, that expand rewrites log in terms of ln:

>> expand(log(10, x*y))

ln(x y)

ln(10)

However, the rule is valid, if one of the factors is real and positive:

>> assume(x > 0): expand(log(b, x*y))

ln(x) ln(y)
----- + -----
ln(b) ln(b)

>> simplify(log(b, x^3*y) - log(b, x) - log(b, y))

2 log(b, x)

>> unassume(x):

lterm – the leading term of a polynomial

lterm(p) returns the leading term of the polynomial p.

Call(s):

A lterm(p <, vars> <, order>)

Parameters:
p — a polynomial of type DOM_POLY or a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers
order — the term ordering: either LexOrder or DegreeOrder or

DegInvLexOrder or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

Return Value: a polynomial of the same type as p. An expression is returned
if p is an expression. FAIL is returned if the input cannot be converted to a
polynomial.

588

Overloadable by: p

Related Functions: coeff, degree, degreevec, ground, lcoeff, ldegree,
lmonomial, nterms, nthcoeff, nthmonomial, nthterm, poly, poly2list,
tcoeff

Details:

A The argument p can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
lterm.

A The identity lterm(p) lcoeff(p) = lmonomial(p) holds.

A If a list of indeterminates is provided, then p is regarded as a polynomial
in these indeterminates. Note that the specified list does not have to
coincide with the indeterminates of the input polynomial. Cf. example 1.

A The returned term is “leading” with respect to the lexicographical order-
ing, unless a different ordering is specified via the argument order. Cf.
example 2.

A lterm returns FAIL if the input polynomial cannot be converted to a
polynomial in the specified indeterminates. Cf. example 3.

A The leading term of the zero polynomial is the zero polynomial.

A For the orderings LexOrder , DegreeOrder and DegInvLexOrder , the res-
ult is computed by a fast kernel function. Other orderings are handled by
slower library functions.

Example 1. We demonstrate how the indeterminates influence the result:

>> p := 2*x^2*y + 3*x*y^2 + 6:
lterm(p), lterm(p, [x, y]), lterm(p, [y, x])

2 2 2
x y , x y, x y

Note that the indeterminates passed to lterm will be used, even if the polyno-
mial provides different indeterminates :

>> p := poly(2*x^2*y + 3*x*y^2, [x, y]):
lterm(p), lterm(p, [x, y]), lterm(p, [y, x]),
lterm(p, [y]), lterm(p, [z])

2 2 2
poly(x y, [x, y]), poly(x y, [x, y]), poly(y x, [y, x]),

2
poly(y , [y]), poly(1, [z])

589

>> delete p:

Example 2. We demonstrate how various orderings influence the result:

>> p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):
lterm(p), lterm(p, DegreeOrder), lterm(p, DegInvLexOrder)

4 3 2
poly(x , [x, y, z]), poly(x y z , [x, y, z]),

2 3
poly(x y z, [x, y, z])

The following call uses the reverse lexicographical order on 3 indeterminates:

>> lterm(p, Dom::MonomOrdering(RevLex(3)))

2 3
poly(x y z, [x, y, z])

>> delete p:

Example 3. We define a polynomial over the integers modulo 7:

>> p := poly(3*x + 4, [x], Dom::IntegerMod(7)): lterm(p)

poly(x, [x], Dom::IntegerMod(7))

This polynomial cannot be regarded as a polynomial with respect to another
indeterminate, because the “coefficient” x cannot be interpreted as an element
of the coefficient ring Dom::IntegerMod(7):

>> lterm(p, [y])

FAIL

>> delete p:

Example 4. The leading monomial is the product of the leading coefficient
and the leading term:

>> p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):
mapcoeffs(lterm(p),lcoeff(p)) = lmonomial(p)

590

2 2
poly(2 x y, [x, y]) = poly(2 x y, [x, y])

>> delete p:

match – pattern matching

match(expression, pattern) checks whether the syntactical structure of expression
matches pattern, and if so, returns a set of replacement equations transforming
pattern into expression.

Call(s):

A match(expression, pattern <, option1, option2, ...>)

Parameters:
expression — a MuPAD expression
pattern — the pattern: a MuPAD expression
option1, option2, ... — optional arguments (see below)

Options:

Ass = {f1, f2, ...} — assume that the identifiers f1,
f2, ... represent associative
operators

Comm = {g1, g2, ...} — assume that the identifiers g1,
g2, ... represent
commutative operators

Cond = {p1, p2, ...} — conditional matching: consider
only matches for which the
conditions specified by the
procedures p1, p2, ... are
satisfied

Const = {c1, c2, ...} — assume that the identifiers c1,
c2, ... represent constants

Null = {h1 = e1, h2 = e2, ...} — assume that the identifiers e1,
e2, ... represent the neutral
elements with respect to the
operators h1, h2, ...,
respectively

Return Value: a set of replacement equations or FAIL.

Related Functions: matchlib::analyze, simplify, subs, subsex, subsop

591

Details:

A match computes a set of replacement equations S for the identifiers occur-
ring in pattern, such that subs(pattern, S) and expression coincide
up to associativity, commutativity, and neutral elements.

A Most of the functionality of match is available via additional op-
tions. However, match is still in an experimental state, and some
features may not work properly, yet.

!

A Without additional options, a purely syntactical matching is performed;
associativity, commutativity, or neutral elements are not taken into ac-
count. In this case, subs(pattern, S) = expression holds for the set S
of replacement equations returned by match if the matching was success-
ful. Cf. example 1.

You can declare these properties for operators via the options Ass , Comm ,
and Null (see below). Then subs(pattern, S) and expression need no
longer be equal in MuPAD, but they can be transformed into each other
by application of the rules implied by the options.

A Both expression and pattern may be arbitrary MuPAD expressions,
i.e., both atomic expressions such as numbers, Boolean constants, and
identifiers, and composite expressions.

A Each identifier without a value that occurs in pattern, including the 0th
operands, is regarded as a pattern variable, in the sense that it may be re-
placed by some expression in order to transform pattern into expression.
Use the option Const (see below) to declare identifiers as non-replaceable.

A With the exception of some automatic simplifications performed by the
MuPAD kernel, distributivity is not taken into account. Cf. example 5.

A match evaluates its arguments, as usual. This evaluation usually
encompasses a certain amount of simplification, which may change
the syntactical structure of both expression and pattern in an
unexpected way. Cf. example 6.

!

A Even if there are several possible matches, match returns at most one of
them. Cf. example 7.

A If the structure of expression does not match pattern, match returns
FAIL.

A If expression and pattern are equal, the empty set is returned.

A Otherwise, if a match is found and expression and pattern are differ-
ent, then a set S of replacement equations is returned. For each pattern
variable x occurring in pattern that is not declared constant via the op-
tion Const , S contains exactly one replacement equation of the form x =

592

y, and y is the expression to be substituted for x in order to transform
pattern into expression.

Option <Ass = {f1, f2, ...}>:

A It is assumed that operators f1, f2, ... are associative and may take
an arbitrary number of arguments, i.e., expressions such as f1(f1(a, b),
c), f1(a, f1(b, c)), and f1(a, b, c) are considered equal.

A No special rules for associative operators with less than two arguments
apply. In particular, f1(a) and a are not considered equal.

Option <Comm = {g1, g2, ...}>:

A The operators g1, g2, ... are assumed to be commutative, i.e., expres-
sions such as g1(a, b) and g1(b, a) are considered equal.

Option <Cond = {p1, p2, ...}>:

A Only matches satisfying the conditions specified by the procedures p1,
p2, ... are considered. Each procedure must take exactly one argument
and represents a condition on exactly one pattern variable. The name of
the procedure’s formal argument must be equal to the name of a pattern
variable occurring in pattern that is not declared constant via the option
Const . Each condition procedure must return an expression that the
function bool can evaluate to one of the Boolean values TRUE or FALSE.

Anonymous procedures created via -> can be used to express simple con-
ditions. Cf. example 8.

A If a possible match is found, given by a set of replacement equations S,
then match checks whether all specified conditions are satisfied by calling
bool(p1(y1) and p2(y2) and ...), where y1 is the expression to be
substituted for the pattern variable x1 that agrees with the formal argu-
ment of the procedure p1, etc. If the return value of the call is TRUE, then
match returns S. Otherwise, the next possible match is tried.

For example, if p1 is a procedure with formal argument x1, where x1 is
a pattern variable occurring in pattern, then a match S = {..., x1 =
y1, ...} is considered valid only if bool(p1(y1)) returns TRUE.

A There can be at most one condition procedure for each pattern variable.
If necessary, use the logical operators and and or as well as the control
structures if and case to combine several conditions for the same pattern
variable in one condition procedure. Cf. example 8.

593

Option <Const = {c1, c2, ...}>:

A The identifiers c1, c2, ... are regarded as constants, i.e., they must
match literally and must not be replaced in order to transform pattern
into expression.

Option <Null = {h1 = e1, h2 = e2, ...}>:

A It is assumed that e1, e2, ... are the neutral elements with respect to
the associative operations h1, h2, ... i.e., expressions such as h1(a,
e1), h1(e1, a), and h1(a) are considered equal.

A This declaration affects only operators that are declared associative via
the option Ass . Moreover, the neutral elements are not implicitly assumed
to be constants.

Example 1. All identifiers of the following pattern are pattern variables:

>> match(f(a, b), f(X, Y))

{X = a, Y = b, f = f}

The function f is declared non-replaceable:

>> match(f(a, b), f(X, Y), Const = {f})

{X = a, Y = b}

Example 2. The following call contains a condition for the pattern variable
X:

>> match(f(a, b), f(X, Y), Const = {f}, Cond = {X -> not has(X, a)})

FAIL

If the function f is declared commutative, the expression matches the given
pattern—in contrast to the preceding example:

>> match(f(a, b), f(X, Y), Const = {f}, Comm = {f},
Cond = {X -> not has(X, a)})

{X = b, Y = a}

594

Example 3. The following expression cannot be matched since the number of
arguments of the expression and the pattern are different:

>> match(f(a, b, c), f(X, Y), Const = {f})

FAIL

We declare the function f associative with the option Ass . In this case the
pattern matches the given expression:

>> match(f(a, b, c), f(X, Y), Const = {f}, Ass = {f})

{X = a, Y = f(b, c)}

Example 4. If, however, the function call in the pattern has more arguments
than the corresponding function call in the expression, no match is found:

>> match(f(a, b), f(X, Y, Z), Const = {f}, Ass = {f})

FAIL

If the neutral element with respect to the operator f is known, additional
matches are possible by substituting it for some of the pattern variables:

>> match(f(a, b), f(X, Y, Z), Const = {f}, Ass = {f}, Null = {f = 0})

{X = a, Y = b, Z = 0}

Example 5. Distributivity is not taken into account in general:

>> match(a*x + a*y, a*(X + Y), Const = {a})

FAIL

The next call finds a match, but not the expected one:

>> match(a*(x + y), X + Y)

{X = a (x + y), Y = 0}

The following declarations and conditions do not lead to the expected result,
either:

>> match(a*(x + y), a*X + a*Y, Const = {a},
Cond = {X -> X <> 0, Y -> Y <> 0})

FAIL

595

Example 6. Automatic simplifications can“destroy”the structure of the given
expression or pattern:

>> match(sin(-2), sin(X))

FAIL

The result is FAIL, because the first argument sin(-2) is evaluated:

>> sin(-2)

-sin(2)

You can circumvent this problem by using hold:

>> match(hold(sin(-2)), sin(X))

{X = -2}

Example 7. match returns only one possible match:

>> match(a + b + c + 1, X + Y)

{X = a, Y = b + c + 1}

To obtain other solutions, use conditions to exclude the solutions that you
already have:

>> match(a + b + c + 1, X + Y, Cond = {X <> a})

{Y = a, X = b + c + 1}

>> match(a + b + c + 1, X + Y, Cond = {X <> a and Y <> a})

{X = b, Y = a + c + 1}

>> match(a + b + c + 1, X + Y,
Cond = {X <> a and X <> b and Y <> a})

{X = c, Y = a + b + 1}

Example 8. Every pattern variable can have at most one condition procedure.
Simple conditions can be given by anonymous procedures (->):

>> match(a + b, X + Y, Cond = {X -> X <> a, Y -> Y <> b})

{X = b, Y = a}

596

Several conditions on a pattern variable can be combined in one procedure:

>> Xcond := proc(X) begin
if domtype(X) = DOM_IDENT then
X <> a and X <> b

else
X <> 0

end_if
end_proc:

>> match(sin(a*b), sin(X*Y), Cond = {Xcond})

{X = a b, Y = 1}

>> match(sin(a*c), sin(X*Y), Cond = {Xcond})

{Y = a, X = c}

>> delete Xcond:

matrix – create a matrix or a vector

matrix(m, n, [[a11, a12, ...], [a21, a22, ...], ...]) returns them×
n matrix a11 a12 · · ·

a21 a22 · · ·
...

...
...

 .

matrix(n, 1, [a1, a2, ...]) returns the n× 1 column vector a1

a2
...

 .

matrix(1, n, [a1, a2, ...]) returns the 1× n row vector(
a1 a2 · · ·

)
.

Call(s):

A matrix(ListOfRows)

A matrix(List)

A matrix(Array)

597

A matrix(Matrix)

A matrix(m, n)

A matrix(m, n, ListOfRows)

A matrix(1, n, List)

A matrix(m, 1, List)

A matrix(m, n, List, Diagonal)

A matrix(m, n, List, Banded)

A matrix(m, n, f)

A matrix(m, n, g, Diagonal)

Parameters:
ListOfRows — a nested list of at most m rows, each row being a list

with at most n elements
Array — a one- or two-dimensional array
Matrix — a matrix, i.e., an object of a data type of category

Cat::Matrix
m — the number of rows: a positive integer
n — the number of columns: a positive integer
List — a list
f — a function or a functional expression of two arguments
g — a function or a functional expression of one argument

Options:

Diagonal — create a diagonal matrix
Banded — create a banded Toeplitz matrix

Return Value: a matrix of the domain type Dom::Matrix().

Related Functions: array, DOM_ARRAY, Dom::Matrix, Dom::SparseMatrix,
sparsematrix

Details:

A matrix creates matrices and vectors. A vector with n entries is either an
n× 1 matrix (a column vector) or a 1× n matrix (a row vector).

Matrix and vector components must be arithmetical expressions. For
specific component domains, refer to the help page of Dom::Matrix.

A Arithmetical operations with matrices can be performed by using the
standard arithmetical operators of MuPAD.

E.g., if A and B are two matrices defined by matrix, then A + B computes
the sum and A * B computes the product of the two matrices, provided
that the dimensions are correct.

598

Similarly, A^(-1) or 1/A computes the inverse of a square matrix A if it
exists. Otherwise, FAIL is returned.

See example 1.

A Many system functions accept matrices as input, such as map, subs, has,
zip, conjugate to compute the complex conjugate of a matrix, norm
to compute matrix norms, or even exp to compute the exponential of a
matrix. See example 4.

A Most of the functions in MuPAD’s linear algebra package linalg work
with matrices. For example, to compute the determinant of a square mat-
rix A generated by matrix, call linalg::det(A). The command linalg::gaussJordan(A)
performs Gauss-Jordan elimination on A to transform A to its reduced row
echelon form. Cf. example 2.

See the help page of linalg for a list of available functions of this package.

A matrix is an abbreviation for the domain Dom::Matrix(). You find more
information about this data type for matrices on the corresponding help
page.

A Matrix components can be extracted by the usual index operator [],
which also works for lists, arrays, and tables. The call A[i, j] extracts
the matrix component in the ith row and the jth column.

Assignments to matrix components are performed similarly. The call A[i,
j] := c replaces the matrix component in the ith row and the jth column
of A by c.

If one of the indices is not in its valid range, then an error message is
issued.

The index operator also extracts submatrices. The call A[r1..r2, c1..c2]
creates the submatrix of A comprising the rows with the indices r1, r1 +
1, . . . , r2 and the columns with the indices c1, c1 + 1, . . . , c2 of A.

See examples 3 and 5.

A matrix(ListOfRows) creates an m × n matrix with components taken
from the nested list ListOfRows, where m is the number of inner lists of
ListOfRows, and n is the maximal number of elements of an inner list.
Each inner list corresponds to a row of the matrix. Both m and n must
be nonzero.

If an inner list has less than n entries, then the remaining components in
the corresponding row of the matrix are set to zero. See example 6.

It might be a good idea first to create a two-dimensional array from that
list before calling matrix. This is due to the fact that creating a matrix
from an array is the fastest way one can achieve. However, in this case
the sublists must have the same number of elements.

599

A matrix(List) creates an m × 1 column vector with components taken
from the nonempty list, where m is the number of entries of List. See
example 5.

A matrix(Array) or matrix(Matrix) create a new matrix with the same di-
mension and the components of Array or Matrix, respectively. The array
must not contain any uninitialized entries. If Array is one-dimensional,
then the result is a column vector. Cf. example 7.

A The call matrix(m, n) returns the m× n zero matrix.

A matrix(m, n, ListOfRows) creates an m × n matrix with components
taken from the list ListOfRows.

If m ≥ 2 and n ≥ 2, then ListOfRows must consist of at most m inner
lists, each having at most n entries. The inner lists correspond to the rows
of the returned matrix.

If an inner list has less than n entries, then the remaining components of
the corresponding row of the matrix are set to zero. If there are less than
m inner lists, then the remaining lower rows of the matrix are filled with
zeroes. See example 6.

A matrix(1, n, List) returns the 1×n row vector with components taken
from List. The list List must have at most n entries. If there are
fewer entries, then the remaining vector components are set to zero. See
example 5.

A matrix(m, 1, List) returns the m× 1 column vector with components
taken from List. The list List must have at most m entries. If there are
fewer entries, then the remaining vector components are set to zero. See
example 5.

A matrix(m, n, f) returns the matrix whose (i, j)th component is f(i,j).
The row index i runs from 1 to m and the column index j from 1 to n.
See example 8.

Option <Diagonal>:

A With the option Diagonal , diagonal matrices can be created with diag-
onal elements taken from a list, or computed by a function or a functional
expression.

A matrix(m, n, List, Diagonal) creates them×n diagonal matrix whose
diagonal elements are the entries of List; see example 9.

List must have at most min(m,n) entries. If it has fewer elements, then
the remaining diagonal elements are set to zero.

A matrix(m, n, g, Diagonal) returns the matrix whose ith diagonal ele-
ment is g(i), where the index i runs from 1 to min(m,n). See example 9.

600

Option <Banded>:

A With the option Banded , banded matrices can be created.

A banded matrix has all entries zero outside the main diagonal and some
of the adjacent sub- and superdiagonals.

A matrix(m, n, List, Banded) creates an m×n banded Toeplitz matrix
with the elements of List as entries. The number of entries of List must
be odd, say 2h+1, and must not exceed n. The bandwidth of the resulting
matrix is at most h.

All elements of the main diagonal of the created matrix are initialized
with the middle element of List. All elements of the ith subdiagonal are
initialized with the (h+ 1− i)th element of List. All elements of the ith
superdiagonal are initialized with the (h + 1 + i)th element of List. All
entries on the remaining sub- and superdiagonals are set to zero.

See example 10.

Example 1. We create the 2× 2 matrix(
1 5
2 3

)
by passing a list of two rows to matrix, where each row is a list of two elements,
as follows:

>> A := matrix([[1, 5], [2, 3]])

+- -+
| 1, 5 |
| |
| 2, 3 |
+- -+

In the same way, we generate the following 2× 3 matrix:

>> B := matrix([[-1, 5/2, 3], [1/3, 0, 2/5]])

+- -+
| -1, 5/2, 3 |
| |
| 1/3, 0, 2/5 |
+- -+

We can do matrix arithmetic using the standard arithmetical operators of
MuPAD. For example, the matrix product A · B, the 4th power of A, and
the scalar multiplication of A by 1

3 are given by:

601

>> A * B, A^4, 1/3 * A

+- -+ +- -+ +- -+
2/3, 5/2, 5		281, 600		1/3, 5/3
	,		,	
-1, 5, 36/5		240, 521		2/3, 1
+- -+ +- -+ +- -+

Since the dimensions of the matrices A and B differ, the sum of A and B is not
defined and MuPAD returns an error message:

>> A + B

Error: dimensions don’t match [(Dom::Matrix(Dom::ExpressionFie\
ld()))::_plus]

To compute the inverse of A, enter:

>> 1/A

+- -+
| -3/7, 5/7 |
| |
| 2/7, -1/7 |
+- -+

If a matrix is not invertible, then the result of this operation is FAIL:

>> C := matrix([[2, 0], [0, 0]])

+- -+
| 2, 0 |
| |
| 0, 0 |
+- -+

>> C^(-1)

FAIL

Example 2. In addition to standard matrix arithmetic, the library linalg of-
fers a lot of functions handling matrices. For example, the function linalg::rank
determines the rank of a matrix:

>> A := matrix([[1, 5], [2, 3]])

+- -+
| 1, 5 |
| |
| 2, 3 |
+- -+

602

>> linalg::rank(A)

2

The function linalg::eigenvectors computes the eigenvalues and the eigen-
vectors of A:

>> linalg::eigenvectors(A)

-- -- -- +- -+ -- --
			1/2		
			11		
	1/2		----- - 1/2		
	11 + 2, 1,		2		
			1		
-- -- -- +- -+ -- --

-- -- +- -+ -- -- --
		1/2			
		11			
1/2		- ----- - 1/2			
2 - 11 , 1,		2			
		1			
-- -- +- -+ -- -- --

To determine the dimension of a matrix use the function linalg::matdim:

>> linalg::matdim(A)

[2, 2]

The result is a list of two positive integers, the row and column number of the
matrix.

Use info(linalg) to obtain a list of available functions, or enter ?linalg
for details about this library.

Example 3. Matrix entries can be accessed with the index operator []:

>> A := matrix([[1, 2, 3, 4], [2, 0, 4, 1], [-1, 0, 5, 2]])

+- -+
| 1, 2, 3, 4 |
| |
| 2, 0, 4, 1 |
| |
| -1, 0, 5, 2 |
+- -+

603

>> A[2, 1] * A[1, 2] - A[3, 1] * A[1, 3]

7

You can redefine a matrix entry by assigning a value to it:

>> A[1, 2] := a^2: A

+- -+
| 2 |
| 1, a , 3, 4 |
| |
| 2, 0, 4, 1 |
| |
| -1, 0, 5, 2 |
+- -+

The index operator can also be used to extract submatrices. The following call
creates a copy of the submatrix of A comprising the second and the third row
and the first three columns of A:

>> A[2..3, 1..3]

+- -+
| 2, 0, 4 |
| |
| -1, 0, 5 |
+- -+

The index operator does not allow to replace a submatrix of a given matrix by
another matrix. Use linalg::substitute to achieve this.

Example 4. Some system functions can be applied to matrices. For example,
if you have a matrix with symbolic entries and want to have all entries in
expanded form, simply apply the function expand:

>> delete a, b:
A := matrix([
[(a - b)^2, a^2 + b^2],
[a^2 + b^2, (a - b)*(a + b)]

])

+- -+
| 2 2 2 |
| (a - b) , a + b |
| |
| 2 2 |
| a + b , (a + b) (a - b) |
+- -+

604

>> expand(A)

+- -+
| 2 2 2 2 |
| - 2 a b + a + b , a + b |
| |
| 2 2 2 2 |
| a + b , a - b |
+- -+

You can differentiate all matrix components with respect to some indeterminate:

>> diff(A, a)

+- -+
| 2 a - 2 b, 2 a |
| |
| 2 a, 2 a |
+- -+

The following command evaluates all matrix components at a given point:

>> subs(A, a = 1, b = -1)

+- -+
| 4, 2 |
| |
| 2, 0 |
+- -+

Note that the function subs does not evaluate the result of the substitution.
For example, we define the following matrix:

>> A := matrix([[sin(x), x], [x, cos(x)]])

+- -+
| sin(x), x |
| |
| x, cos(x) |
+- -+

Then we substitute x = 0 in each matrix component:

>> B := subs(A, x = 0)

+- -+
| sin(0), 0 |
| |
| 0, cos(0) |
+- -+

605

You see that the matrix components are not evaluated completely: for example,
if you enter sin(0) directly, it evaluates to zero.

The function eval can be used to evaluate the result of the function subs.
However, eval does not operate on matrices directly, and you must use the
function map to apply the function eval to each matrix component:

>> map(B, eval)

+- -+
| 0, 0 |
| |
| 0, 1 |
+- -+

The function zip can be applied to matrices. The following call combines
two matrices A and B by dividing each component of A by the corresponding
component of B:

>> A := matrix([[4, 2], [9, 3]]): B := matrix([[2, 1], [3, -1]]):
zip(A, B, ‘/‘)

+- -+
| 2, 2 |
| |
| 3, -3 |
+- -+

Example 5. A vector is either an m× 1 matrix (a column vector) or a 1× n
matrix (a row vector). To create a vector with matrix, pass the dimension of
the vector and a list of vector components as argument to matrix:

>> row_vector := matrix(1, 3, [1, 2, 3]);
column_vector := matrix(3, 1, [1, 2, 3])

+- -+
| 1, 2, 3 |
+- -+

+- -+
| 1 |
| |
| 2 |
| |
| 3 |
+- -+

If the only argument of matrix is a non-nested list or a one-dimensional array,
then the result is a column vector:

606

>> matrix([1, 2, 3])

+- -+
| 1 |
| |
| 2 |
| |
| 3 |
+- -+

For a row vector r, the calls r[1, i] and r[i] both return the ith vector
component of r. Similarly, for a column vector c, the calls c[i, 1] and c[i]
both return the ith vector component of c.

For example, to extract the second component of the vectors row_vector
and column_vector, we enter:

>> row_vector[2], column_vector[2]

2, 2

Use the function linalg::vecdim to determine the number of components of
a vector:

>> linalg::vecdim(row_vector), linalg::vecdim(column_vector)

3, 3

The number of components of a vector can also be determined directly by the
call nops(vector).

The dimension of a vector can be determined as described above in the case
of matrices:

>> linalg::matdim(row_vector),
linalg::matdim(column_vector)

[1, 3], [3, 1]

See the linalg package for functions working with vectors, and the help page
of norm for computing vector norms.

Example 6. In the following examples, we illustrate various calls of matrix
as described above. We start by passing a nested list to matrix, where each
inner list corresponds to a row of the matrix:

>> matrix([[1, 2], [2]])

+- -+
| 1, 2 |
| |
| 2, 0 |
+- -+

607

The number of rows of the created matrix is the number of inner lists, namely
m = 2. The number of columns is determined by the maximal number of entries
of an inner list. In the example above, the first list is the longest one, and hence
n = 2. The second list has only one element, and therefore the second entry in
the second row of the returned matrix was set to zero.

In the following call, we use the same nested list, but in addition pass two
dimension parameters to create a 4× 4 matrix:

>> matrix(4, 4, [[1, 2], [2]])

+- -+
| 1, 2, 0, 0 |
| |
| 2, 0, 0, 0 |
| |
| 0, 0, 0, 0 |
| |
| 0, 0, 0, 0 |
+- -+

In this case, the dimension of the matrix is given by the dimension parameters.
As before, missing entries in an inner list correspond to zero, and in addition
missing rows are treated as zero rows.

Example 7. A one- or two-dimensional array of arithmetical expressions, such
as:

>> a := array(1..3, 2..4,
[[1, 1/3, 0], [-2, 3/5, 1/2], [-3/2, 0, -1]]

)

+- -+
| 1, 1/3, 0 |
| |
| -2, 3/5, 1/2 |
| |
| -3/2, 0, -1 |
+- -+

can be converted into a matrix as follows:

>> A := matrix(a)

+- -+
| 1, 1/3, 0 |
| |
| -2, 3/5, 1/2 |
| |
| -3/2, 0, -1 |
+- -+

608

Arrays serve, for example, as an efficient structured data type for programming.
However, arrays do not have any algebraic meaning, and no mathematical op-
erations are defined for them. If you convert an array into a matrix, you can
use the full functionality defined for matrices as described above. For example,
let us compute the matrix 2A−A2 and the Frobenius norm of A:

>> 2*A - A^2, norm(A, Frobenius)

+- -+
| 5/3, 2/15, -1/6 | 1/2 1/2
| | 450 4037
| -1/20, 113/75, 6/5 |, --------------
| | 450
| -3, 1/2, -3 |
+- -+

Note that an array may contain uninitialized entries:

>> b := array(1..4): b[1] := 2: b[4] := 0: b

+- -+
| 2, ?[2], ?[3], 0 |
+- -+

matrix cannot handle arrays that have uninitialized entries, and responds with
an error message:

>> matrix(b)

Error: unable to define matrix over Dom::ExpressionField() [(D\
om::Matrix(Dom::ExpressionField()))::new]

We initialize the remaining entries of the array b and convert it into a matrix,
or more precisely, into a column vector:

>> b[2] := 0: b[3] := -1: matrix(b)

+- -+
| 2 |
| |
| 0 |
| |
| -1 |
| |
| 0 |
+- -+

609

Example 8. We show how to create a matrix whose components are defined
by a function of the row and the column index. The entry in the ith row and
the jth column of a Hilbert matrix (see also linalg::hilbert) is 1/(i+ j−1).
Thus the following command creates a 2× 2 Hilbert matrix:

>> matrix(2, 2, (i, j) -> 1/(i + j - 1))

+- -+
| 1, 1/2 |
| |
| 1/2, 1/3 |
+- -+

The following two calls produce different results. In the first call, x is regarded
as an unknown function, while it is a constant in the second call:

>> delete x:
matrix(2, 2, x), matrix(2, 2, (i, j) -> x)

+- -+ +- -+
x(1, 1), x(1, 2)		x, x
	,	
x(2, 1), x(2, 2)		x, x
+- -+ +- -+

Example 9. Diagonal matrices can be created by passing the option Diagonal

and a list of diagonal entries:

>> matrix(3, 4, [1, 2, 3], Diagonal)

+- -+
| 1, 0, 0, 0 |
| |
| 0, 2, 0, 0 |
| |
| 0, 0, 3, 0 |
+- -+

Hence, you can generate the 3× 3 identity matrix as follows:

>> matrix(3, 3, [1 $ 3], Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

610

Equivalently, you can use a function of one argument:

>> matrix(3, 3, i -> 1, Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

Since the integer 1 also represents a constant function, the following shorter
call creates the same matrix:

>> matrix(3, 3, 1, Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

Example 10. Banded Toeplitz matrices (see above) can be created with the
option Banded . The following command creates a matrix of bandwidth 3 with
all main diagonal entries equal to 2 and all entries on the first sub- and super-
diagonal equal to −1:

>> matrix(4, 4, [-1, 2, -1], Banded)

+- -+
| 2, -1, 0, 0 |
| |
| -1, 2, -1, 0 |
| |
| 0, -1, 2, -1 |
| |
| 0, 0, -1, 2 |
+- -+

map – apply a function to all operands of an object

map(object, f) applies the function f to all operands of object.

611

Call(s):

A map(object, f <, p1, p2, ...>)

Parameters:
object — an arbitrary MuPAD object
f — a function
p1, p2, ... — any MuPAD objects accepted by f as additional

parameters

Return Value: a copy of object with f applied to all operands.

Overloadable by: object

Related Functions: eval, mapcoeffs, misc::maprec, op, select, split,
subs, subsex, subsop, zip

Details:

A map(object, f) returns a copy of object where each operand x has been
replaced by f(x). The object itself is not modified by map (see example 2).

A The second argument f may be a procedure generated via -> or proc
(e.g., x -> x^2 + 1), a function environment (e.g., sin), or a functional
expression (e.g., sin@exp + 2*id).

A If optional arguments are present, then each operand x of object is re-
placed by f(x, p1, p2, ...) (see example 1).

A It is possible to apply an operator, such as + or *, to all operands of
object, by using its functional equivalent, such as _plus or _mult. See
example 1.

A In contrast to op, map does not decompose rational numbers and complex
numbers further. Thus, if the argument is a rational number or a complex
number, then f is applied to the number itself and not to the numerator
and the denominator or the real part and the imaginary part, respectively
(see example 3).

A If object is a string, then f is applied to the string as a whole and not
to the individual characters (see example 3).

A If object is an expression, then f is applied to the operands of f as
returned by op (see example 1).

A If object is an expression sequence, then this sequence is not flattened
by map (see example 4).

A If object is a polynomial, then f is applied to the polynomial itself and
not to all of its coefficients. Use mapcoeffs to achieve the latter (see
example 3).

612

A If object is a list, a set, or an array, then the function f is applied to all
elements of the corresponding data structure.

A If object is a table, the function f is applied to all entries of the
table, not to the indices (see example 9). The entries are the right
sides of the operands of a table.

!

A If object is an element of a library domain, then the slot "map" of the
domain is called and the result is returned. This can be used to extend
the functionality of map to user-defined domains. If no "map" slot exists,
then f is applied to the object itself (see example 10).

A map does not evaluate its result after the replacement; use eval to achieve
this. Nevertheless, internal simplifications occur after the replacement
(see example 8).

A map does not descend recursively into an object; the function f is only
applied to the operands at first level. Use misc::maprec for a recursive
version of map (see example 11).

A map is a function of the system kernel.

Example 1. map works for expressions:

>> map(a + b + 3, sin)

sin(a) + sin(b) + sin(3)

The optional arguments of map are passed to the function being mapped:

>> map(a + b + 3, f, x, y)

f(a, x, y) + f(b, x, y) + f(3, x, y)

In the following example, we add 10 to each element of a list:

>> map([1, x, 2, y, 3, z], _plus, 10)

[11, x + 10, 12, y + 10, 13, z + 10]

Example 2. Like most other MuPAD functions, map does not modify its first
argument, but returns a modified copy:

>> a := [0, PI/2, PI, 3*PI/2]:
map(a, sin)

[0, 1, 0, -1]

613

The list a still has its original value:

>> a

-- PI 3 PI --
| 0, --, PI, ---- |
-- 2 2 --

Example 3. map does not decompose rational and complex numbers:

>> map(3/4, _plus, 1), map(3 + 4*I, _plus, 1)

7/4, 4 + 4 I

map does not decompose strings:

>> map("MuPAD", text2expr)

MuPAD

map does not decompose polynomials:

>> map(poly(x^2 + x + 1), _plus, 1)

2
poly(x + x + 1, [x]) + 1

Use mapcoeffs to apply a function to all coefficients of a polynomial:

>> mapcoeffs(poly(x^2 + x + 1), _plus, 1)

2
poly(2 x + 2 x + 2, [x])

Example 4. The first argument is not flattened:

>> map((1, 2, 3), _plus, 2)

3, 4, 5

614

Example 5. Sometimes a MuPAD function returns a set or a list of big sym-
bolic expressions containing mathematical constants etc. To get a better intu-
ition about the result, you can map the function float to all elements, which
often drastically reduces the size of the expressions:

>> solve(x^4 + x^2 + PI, x)

{ 1/2 1/2 1/2 1/2 1/2 1/2
{ 2 ((1 - 4 PI) - 1) 2 ((1 - 4 PI) - 1)
{ - ---------------------------, ---------------------------,
{ 2 2

1/2 1/2 1/2
2 (- (1 - 4 PI) - 1)

- -----------------------------,
2

1/2 1/2 1/2 }
2 (- (1 - 4 PI) - 1) }
----------------------------- }

2 }

>> map(%, float)

{- 0.7976383425 - 1.065939457 I,

- 0.7976383425 + 1.065939457 I,

0.7976383425 - 1.065939457 I, 0.7976383425 + 1.065939457 I}

Example 6. In the following example, we delete the values of all global identi-
fiers in the current MuPAD session. The command anames(All, User) returns
a set with the names of all user-defined global identifiers having a value. Map-
ping the function _delete to this set deletes the values of all these identifiers.
Since the return value of _delete is the empty sequence null(), the result of
the call is the empty set:

>> x := 3: y := 5: x + y

8

>> map(anames(All, User), _delete)

{}

>> x + y

x + y

615

Example 7. It is possible to perform arbitrary actions with all elements of
a data structure via a single map call. This works by passing an anonymous
procedure as the second argument f. In the following example, we check that
the fact “an integer n ≥ 2 is prime if and only if ϕ(n) = n − 1”, where ϕ
denotes Euler’s totient function, holds for all integer 2 ≤ n < 10. We do this
by comparing the result of isprime(n) with the truth value of the equation
ϕ(n) = n− 1 for all elements n of a list containing the integers between 2 and
9:

>> map([2, 3, 4, 5, 6, 7, 8, 9],
n -> bool(isprime(n) = bool(numlib::phi(n) = n - 1)))

[TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE]

Example 8. The result of map is not evaluated further. If desired, you must
request evaluation explicitly by eval:

>> map(sin(5), float);
eval(%)

sin(5.0)

-0.9589242747

>> delete a:
A := array(1..1, [a]);
a := 0:
map(A, sin);
map(A, eval@sin);
delete a:

+- -+
| a |
+- -+

+- -+
| sin(a) |
+- -+

+- -+
| 0 |
+- -+

Nevertheless, certain internal simplifications take place, such as the calcula-
tion of arithmetical operations with numerical arguments. The following call
replaces sqrt(2) and PI by floating point approximations, and the system
automatically simplifies the resulting sum:

616

>> map(sin(5) + cos(5), float)

-0.6752620892

Example 9. map applied to a table changes only the right sides (the entries)
of each operand of the table. Assume the entries stand for net prices and the
sales tax (16 percent in this case) must be added:

>> T := table(1 = 65, 2 = 28, 3 = 42):
map(T, _mult, 1.16)

table(
3 = 48.72,
2 = 32.48,
1 = 75.4

)

Example 10. map can be overloaded for elements of library domains, if a slot
"map" is defined. In this example d is a domain, its elements contains two
integer numbers: an index and an entry (like a table). For nice input and
printing elements of this domain the slots "new" and "print" are defined:

>> d := newDomain("d"):
d::new := () -> new(d, args()):
d::print := object -> _equal(extop(object)):
d(1, 65), d(2, 28), d(3, 42)

1 = 65, 2 = 28, 3 = 42

Without a slot "map" the function f will be applied to the domain element
itself. Because the domain d has no slot "_mult", the result is the symbolic
_mult call:

>> map(d(1, 65), _mult, 1.16),
type(map(d(1, 65), _mult, 1.16))

1.16 (1 = 65), "_mult"

The slot "map" of this domain should map the given function only onto the
second operand of a domain element. The domain d gets a slot "map" and map
works properly (in the authors sense) with elements of this domain:

617

>> d::map := proc(obj, f)
begin
if args(0) > 2 then
d(extop(obj, 1), f(extop(obj, 2), args(3..args(0))))

else
d(extop(obj, 1), f(extop(obj, 2)))

end_if
end_proc:

map(d(1, 65), _mult, 1.16),
map(d(2, 28), _mult, 1.16),
map(d(3, 42), _mult, 1.16)

1 = 75.4, 2 = 32.48, 3 = 48.72

Example 11. map does not work recursively. Suppose that we want to de-nest
a nested list. We use map to apply the function op, which replaces a list by the
sequence of its operands, to all entries of the list l. However, this only affects
the entries at the first level:

>> l := [1, [2, [3]], [4, [5]]]:
map(l, op)

[1, 2, [3], 4, [5]]

Use misc::maprec to achieve the desired behavior:

>> [misc::maprec(l, {DOM_LIST} = op)]

[1, 2, 3, 4, 5]

mapcoeffs – apply a function to the coefficients of a polynomial

mapcoeffs(p, F, a1, a2, ...) applies the function F to the polynomial p
by replacing each coefficient c in p by F(c, a1, a2, ...).

Call(s):

A mapcoeffs(p, F <, a1, a2, ...>)

A mapcoeffs(f, <vars, > F <, a1, a2, ...>)

618

Parameters:
p — a polynomial of type DOM_POLY
F — a procedure
a1, a2, ... — additional parameters for the function F
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers

Return Value: a polynomial of type DOM_POLY, or a polynomial expression,
or FAIL.

Overloadable by: p, f

Related Functions: coeff, degree, degreevec, lcoeff, ldegree, lterm,
map, nterms, nthcoeff, nthmonomial, nthterm, poly, tcoeff

Details:

A For a polynomial p of type DOM_POLY generated by poly, the function F
must accept arguments from the coefficient ring of p and must produce
corresponding results.

A A polynomial expression f is first converted to a polynomial with the
variables given by vars. If no variables are given, they are searched for in
f. See poly about details of the conversion. FAIL is returned if f cannot
be converted to a polynomial. After applying the function F, the result is
converted to an expression.

A mapcoeffs evaluates its arguments. Note, however, that polynomials of
type DOM_POLY do not evaluate their coefficients for efficiency reasons. Cf.
example 4.

A mapcoeffs is a function of the system kernel.

Example 1. The function sin is mapped to the coefficients of a polynomial
expression in the indeterminates x and y:

>> mapcoeffs(3*x^3 + x^2*y^2 + 2, sin)

3 2 2
sin(2) + x sin(3) + x y sin(1)

The following call makes mapcoeffs regard this expression as a polynomial in x.
Consequently, y is regarded as a parameter that becomes part of the coefficients:

>> mapcoeffs(3*x^3 + x^2*y^2 + 2, [x], sin)

619

3 2 2
sin(2) + x sin(3) + x sin(y)

The system function _plus adds its arguments. In the following call, it is used
to add 2 to all coefficients by providing this shift as an additional argument:

>> mapcoeffs(c1*x^3 + c2*x^2*y^2 + c3, [x, y], _plus, 2)

3 2 2
c3 + x (c1 + 2) + x y (c2 + 2) + 2

Example 2. The function sin is mapped to the coefficients of a polynomial
in the indeterminates x and y:

>> mapcoeffs(poly(3*x^3 + x^2*y^2 + 2, [x, y]), sin)

3 2 2
poly(sin(3) x + sin(1) x y + sin(2), [x, y])

In the following call, the polynomial has the indeterminate x. Consequently, y
is regarded as a parameter that becomes part of the coefficients:

>> mapcoeffs(poly(3*x^3 + x^2*y^2 + 2, [x]), sin)

3 2 2
poly(sin(3) x + sin(y) x + sin(2), [x])

A user-defined function is mapped to a polynomial:

>> F := (c, a1, a2) -> exp(c + a1 + a2):
mapcoeffs(poly(x^3 + c*x, [x]), F, a1, a2)

3
poly(exp(a1 + a2 + 1) x + exp(c + a1 + a2) x, [x])

>> delete F:

Example 3. We consider a polynomial over the integers modulo 7:

>> p := poly(x^3 + 2*x*y, [x, y], Dom::IntegerMod(7)):

A function to be applied to the coefficients must produce values in the coefficient
ring of the polynomial:

>> mapcoeffs(p, c -> c^2)

3
poly(x + 4 x y, [x, y], Dom::IntegerMod(7))

620

The following call maps a function which converts its argument to an integer
modulo 3. Such a return value is not a valid coefficient of p:

>> mapcoeffs(p, c -> Dom::IntegerMod(3)(expr(c)))

FAIL

>> delete p:

Example 4. Note that polynomials of type DOM_POLY do not evaluate their
arguments:

>> delete a, x: p := poly(a*x, [x]): a := PI: p

poly(a x, [x])

Evaluation can be enforced by the function eval:

>> mapcoeffs(p, eval)

poly(PI x, [x])

We map the sine function to the coefficients of p. The polynomial does not
evaluate its coefficient sin(a) to 0:

>> mapcoeffs(p, sin)

poly(sin(a) x, [x])

The composition of sin and eval is mapped to the coefficients of the polyno-
mial:

>> mapcoeffs(p, eval@sin)

poly(0, [x])

>> delete p, a:

maprat – apply a function to the“rationalization”of an expression

maprat(object, f) applies the function f to the “rationalized” object.

Call(s):

A maprat(object, f <, inspect <, stop>>)

621

Parameters:
object — an arithmetical expression, or a sequence, or a set,

or a list of such expressions
f — a procedure or a functional expression
inspect, stop — sets of types or procedures

Return Value: an object returned by the function f.

Related Functions: map, rationalize

Details:

A maprat(object, f, inspect, stop) calls rationalize(object, inspect,
stop) to generate a rational expression in some “temporary variables”.
This rationalized expression is used as input to the function f. Finally, in
the return value of f, the“temporary variables”introduced by rationalize
are replaced by the original subexpressions in object.

A See the help page of rationalize for details and default values of the
parameters inspect and stop.

Example 1. The function partfrac computes a partial fraction decomposition
of rational expressions. It cannot be applied to general expressions:

>> object := cos(x)/(cos(x)^2 - sin(x)^2): partfrac(object, x)

Error: not a rational function [partfrac]

One may rationalize this expression to be able to apply partfrac:

>> rat := rationalize(object)

D1
---------, {D1 = cos(x), D2 = sin(x)}
2 2

D1 - D2

We compute the partial fraction decomposition of this rationalized expression
and, finally, re-substitute the “temporary variables” D1, D2:

>> part := partfrac(op(rat, 1), D1)

1 1
----------- + -----------
2 (D1 + D2) 2 (D1 - D2)

>> subs(part, op(rat, 2))

622

1 1
------------------- + -------------------
2 (cos(x) + sin(x)) 2 (cos(x) - sin(x))

maprat provides a shortcut. We define a function f that computes the partial
fraction decomposition of its argument with respect to the first indeterminate
found by indets:

>> f := object -> partfrac(object, indets(object)[1]):

maprat applies this function after internal rationalization:

>> maprat(object, f)

1 1
------------------- + -------------------
2 (cos(x) + sin(x)) 2 (cos(x) - sin(x))

>> delete object, rat, part, f:

Example 2. We apply the function gcd to two rationalized expressions. The
first argument to maprat is a sequence of the two expressions p, q, which gcd
takes as two parameters. Note the brackets around the sequence p, q:

>> p := (x - sqrt(2))*(x^2 + sqrt(3)*x - 1):
q := (x - sqrt(2))*(x - sqrt(3)):
maprat((p, q), gcd)

1/2
2 - x

>> delete p, q:

max – the maximum of numbers

max(x1, x2, ...) returns the maximum of the numbers x1, x2,

Call(s):

A max(x1, x2, ...)

Parameters:

x1, x2, ... — arbitrary MuPAD objects

623

Return Value: one of the arguments, a floating point number, or a symbolic
max call.

Overloadable by: x1, x2, ...

Related Functions: _leequal, _less, min, sysorder

Details:

A If the arguments of max are either integers, rational numbers, or float-
ing point numbers, then max returns the numerical maximum of these
arguments.

A Arguments of type DOM_INTERVAL (floating point intervals) are replaced
by their upper bounds.

A The call max() is illegal and leads to an error message. If there is only
one argument x1, then max evaluates x1 and returns it, after replacing
floating point intervals by their upper bounds (see example 2).

A If one of the arguments is infinity, then max returns infinity. If an
argument is -infinity, then it is removed from the argument list (see
example 3).

A max returns an error when one of its arguments is a complex number or a
floating point interval with non-zero imaginary part (see example 2).

A If one of the arguments is not a number, then a symbolic max call with
the maximum of the numerical arguments and the remaining evaluated
arguments is returned (see example 1).

Nested max calls with symbolic arguments are rewritten as a single max
call, i.e., they are flattened; see example 4.

A max does not react to properties of identifiers set via assume. Use simplify
to handle this (see example 4).

A max is a function of the system kernel.

Example 1. max computes the maximum of integers, rational numbers, and
floating point values:

>> max(-3/2, 7, 1.4)

7

Floating point intervals are replaced by their upper limits:

>> max(2...3 union 6...7, 4)

624

7.0

If the argument list contains symbolic expressions, then a symbolic max call is
returned:

>> delete b: max(-4, b + 2, 1, 3)

max(b + 2, 3)

>> max(sqrt(2), 1)

1/2
max(2 , 1)

Use simplify to simplify max expressions with constant symbolic arguments:

>> simplify(%)

1/2
2

Example 2. max with one argument returns the evaluated argument:

>> delete a: max(a), max(sin(2*PI)), max(2)

a, 0, 2

Even in this case, a floating point interval is replaced by its upper limit:

>> max(-10 ... 10)

10.0

Complex numbers lead to an error message:

>> max(0, 1, I)

Error: Illegal argument [max]

Example 3. infinity is always the maximum of arbitrary arguments:

>> delete x: max(100000000000, infinity, x)

infinity

-infinity is removed from the argument list:

>> max(100000000000, -infinity, x)

max(x, 100000000000)

625

Example 4. max does not take into account properties of identifiers set via
assume:

>> delete a, b, c:
assume(a > 0): assume(b > a, _and): assume(c > b, _and):
max(a, max(b, c), 0)

max(a, b, c, 0)

An application of simplify yields the desired result:

>> simplify(%)

c

Changes:

A Arguments of type DOM_INTERVAL are handled.

min – the minimum of numbers

min(x1, x2, ...) returns the minimum of the numbers x1, x2,

Call(s):

A min(x1, x2, ...)

Parameters:

x1, x2, ... — arbitrary MuPAD objects

Return Value: one of the arguments, a float, or a symbolic min call.

Overloadable by: x1, x2, ...

Related Functions: _leequal, _less, min, sysorder

Details:

A If the arguments of min are integers, rational numbers, or floating point
numbers, then min returns the numerical minimum of these arguments.

A Arguments of type DOM_INTERVAL (floating point intervals) are replaced
by their lower bounds.

626

A The call min() is illegal and leads to an error message. If there is only one
argument x1, then min evaluates x1 and returns it, unless it is a floating
point interval, in which case the lower bound is returned. See example 2.

A If one of the arguments is -infinity, then min returns -infinity. If
an argument is infinity, then it is removed from the argument list (see
example 3).

A min returns an error when one of its arguments is a complex number or a
floating point interval with on-zero imaginary part (see example 2).

A If one of the arguments is not a number, then a symbolic min call with
the minimum of the numerical arguments and the remaining evaluated
arguments is returned (see example 1).

Nested min calls with symbolic arguments are rewritten as a single min
call, i.e., they are flattened; see example 4.

A min does not react to properties of identifiers set via assume. Use simplify
to handle this (see example 4).

A min is a function of the system kernel.

Example 1. min computes the minimum of integers, rational numbers, and
floating point values:

>> min(-3/2, 7, 1.4)

-3/2

If the argument list contains symbolic expressions, then a symbolic min call is
returned:

>> delete b: min(-4, b + 2, 1, 3)

min(b + 2, -4)

>> min(sqrt(2), 1)

1/2
min(2 , 1)

Use simplify to simplify min expressions with constant symbolic arguments:

>> simplify(%)

1

Floating point intervals are replaced by their lower borders:

>> min(2...3 union 6...7, 4)

2.0

627

Example 2. min with one argument returns the evaluated argument:

>> delete a: min(a), min(sin(2*PI)), min(2)

a, 0, 2

Even in this situation, floating point intervals are replaced by their lower bounds:

>> min(-10...10)

-10.0

Complex numbers lead to an error message:

>> min(0, 1, I)

Error: Illegal argument [min]

Example 3. -infinity is always the minimum of arbitrary arguments:

>> delete x: min(-100000000000, -infinity, x)

-infinity

infinity is removed from the argument list:

>> min(-100000000000, infinity, x)

min(x, -100000000000)

Example 4. min does not take into account properties of identifiers set via
assume:

>> delete a, b, c:
assume(a > 0): assume(b > a, _and): assume(c > b, _and):
min(a, min(b, c), 0)

min(a, b, c, 0)

An application of simplify yields the desired result:

>> simplify(%)

0

628

Changes:

A Arguments of type DOM_INTERVAL are handled.

mod, modp, mods – the modulo functions

modp(x, m) computes the unique nonnegative remainder on division of the
integer x by the integer m.

mods(x, m) computes the integer r of least absolute value such that the integer
x− r is divisible by the integer m.

By default, x mod m and _mod(x, m) are both equivalent to modp(x, m).

Call(s):

A x mod m

A _mod(x, m)

A modp(x, m)

A mods(x, m)

Parameters:

x, m — arithmetical expressions

Return Value: an arithmetical expression.

Overloadable by: x, m

Side Effects: By default the operator mod and the function _mod are equivalent
to modp. This can be changed by assigning a new value to _mod; see example 5.

Related Functions: /, div, divide, Dom::IntegerMod, frac, gcd, gcdex,
igcd, igcdex, IntMod, powermod

Details:

A If m is a nonzero integer and x is an integer, then both modp and mods
return an integer r such that x = qm + r holds for some integer q. In
addition, we have 0 ≤ r < |m| for modp and −|m|/2 < r ≤ |m|/2 for mods.
See example 2. These conditions uniquely define r in both cases. In the
modp case, we have q = x div m.

629

A If m is a nonzero integer and x is a rational number, say x = u/v for two
nonzero coprime integers u and v, then modp and mods both compute an
integral solution r of the congruence vr ≡ u mod m. To this end, they first
compute an inverse w of v modulo m, such that vw− 1 is divisible by m.
This only works if v is coprime to m, i.e., if their greatest common divisor
is 1. Then modp(u*w, m) or mods(u*w, m), respectively, as described
above, is returned. Otherwise, if v and m are not coprime, then an error
message is returned. See example 2.

The number x - modp(x, m) is not an integral multiple of m in this case.

A If m is a (nonzero) rational number and x is an integer or a rational
number, then both modp and mods return an integer or a rational number
r such that x = qm + r holds for some integer q. In addition, we have
0 ≤ r < |m| for modp and −|m|/2 < r ≤ |m|/2 for mods, and these
conditions uniquely define r in both cases. See example 3.

A If the second argument m is 0, then an error message is returned.

A _mod(x, m) is the functional equivalent of the operator notation x mod
m. See example 1.

A By default, _mod is equivalent to modp.

A The functions modp and mods can be used to redefine the modulo operator.
E.g., after the assignment _mod:=mods, both the operator mod and the
equivalent function _mod return remainders of least absolute value. See
example 5.

A All functions return an error when one of the arguments is a floating point
number, a complex number, or not an arithmetical expression.

A If one of the arguments is not a number, then a symbolic function call is
returned. See example 4.

A _mod, modp, and mods are kernel functions.

Example 1. The example demonstrates the correspondence between the func-
tion _mod and the operator mod:

>> hold(_mod(23,5))

23 mod 5

>> 23 mod 5 = _mod(23,5)

3 = 3

630

Example 2. Here are some examples where the modulus is an integer. We see
that mod and modp are equivalent by default:

>> 27 mod 3, 27 mod 4, modp(27, 4), mods(27, 4)

0, 3, 3, -1

>> 27 = (27 div 4)*4 + modp(27, 4)

27 = 27

Let us now compute 22/3 modulo 5. The greatest common divisor of 3 and 5 is
1, and 2 is an inverse of 3 modulo 5. Thus 22/3 modulo 5 equals 22 · 2 modulo
5:

>> modp(22/3, 5) = modp(22*2, 5),
mods(22/3, 5) = mods(22*2, 5)

4 = 4, -1 = -1

The greatest common divisor of 15 and 27 is 3, so that 15 has no inverse modulo
27 and the following command fails:

>> modp(-22/15, 27)

Error: Modular inverse does not exist

However, we can compute −22/15 modulo 26, since 15 and 26 are coprime:

>> -22/15 mod 26

2

Example 3. Here are some examples where the modulus is a rational number.
We have 23/3 = 9 · 4/5 + 7/15 = 10 · 4/5 − 1/3 and 23 = 28 · 4/5 + 3/5 =
29 · 4/5− 1/5. Thus we obtain:

>> modp(23/3, 4/5), mods(23/3, 4/5),
modp(23, 4/5), mods(23, 4/5)

7/15, -1/3, 3/5, -1/5

631

Example 4. If one of the arguments is not a number, then a symbolic function
call is returned:

>> delete x, m:
x mod m, x mod 2, 2 mod m

x mod m, x mod 2, 2 mod m

modp and mods with non-numeric arguments are printed in the operator nota-
tion:

>> modp(x, m), mods(x, m)

x mod m, x mod m

Example 5. By default the binary operator mod and the equivalent function
_mod are both equivalent to modp. This can be changed by redefining _mod:

>> 11 mod 7, modp(11,7), mods(11,7)

4, 4, -3

>> _mod := mods: 11 mod 7;
_mod := modp:

-3

multcoeffs – multiply the coefficients of a polynomial with a
factor

multcoeffs(p, c) multiplies all coefficients of the polynomial p with the factor
c.

Call(s):

A multcoeffs(p, c)

A multcoeffs(f, <vars,> c)

Parameters:
p — a polynomial of type DOM_POLY
c — an arithmetical expression or an element of the coefficient ring

of p
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers

632

Return Value: a polynomial of type DOM_POLY, or a polynomial expression,
or FAIL.

Overloadable by: p, f

Related Functions: coeff, degree, degreevec, lcoeff, ldegree, lterm,
nterms, nthcoeff, nthmonomial, nthterm, poly, tcoeff

Details:

A A polynomial expression f is first converted to a polynomial with the
variables given by vars. If no variables are given, they are searched for in
f. See poly about details of the conversion. FAIL is returned if f cannot
be converted to a polynomial. After multiplication with c, the result is
converted to an expression.

A For a polynomial expression f, the factor c may be any arithmetical ex-
pression. For a polynomial p of type DOM_POLY, the factor c must be
convertible to an element of the coefficient ring of p.

A multcoeffs is a function of the system kernel.

Example 1. Some simple examples:

>> multcoeffs(3*x^3 + x^2*y^2 + 2, 5)

3 2 2
15 x + 5 x y + 10

>> multcoeffs(3*x^3 + x^2*y^2 + 2, c)

3 2 2
2 c + 3 c x + c x y

>> multcoeffs(poly(x^3 + 2, [x]), sin(y))

3
poly(sin(y) x + 2 sin(y), [x])

Example 2. Mathematically, multcoeffs(f, c) is the same as f*c. However,
multcoeffs produces an expanded form of the product which depends on the
indeterminates:

>> f := 3*x^3 + x^2*y^2 + 2:
multcoeffs(f, [x], c), multcoeffs(f, [y], c),
multcoeffs(f, [z], c)

633

3 2 2 2 2 3
2 c + 3 c x + c x y , c x y + c (3 x + 2),

3 2 2
c (3 x + x y + 2)

>> delete f:

new – create a domain element

new(T, object1, object2, ...) creates a new element of the domain T with
the internal representation object1, object2,

Call(s):

A new(T, object1, object2, ...)

Parameters:
T — a MuPAD domain
object1, object2, ... — arbitrary MuPAD objects

Return Value: an element of the domain T.

Related Functions: DOM_DOMAIN, domain, extop, extnops, extsubsop,
newDomain, op

Details:

A new is a low-level function for creating elements of library domains.

The internal representation of a domain element comprises a reference to
the corresponding domain and an arbitrary number of MuPAD objects,
the internal operands of the domain element.

A new(T, object1, object2, ...) creates a new element of the domain
T, whose internal representation is the sequence of operands object1,
object2, ..., and returns this element.

new(T) creates a new element of the domain T, whose internal represent-
ation is an empty sequence of operands.

634

A new is intended only for programmers implementing their own do-
mains in MuPAD. You should never use new directly to generate
elements of a predefined domain T; use the corresponding con-
structor T(...) instead, for the following reasons. The internal
representation of the predefined MuPAD domains may be subject to
changes more often than the interface provided by the constructor.
Moreover, in contrast to new, the constructors usually perform argu-
ment checking. Thus using new directly may lead to invalid internal
representations of MuPAD objects.

!

A New domains can be created via newDomain.

A You can access the operands of the internal representation of a domain
element via extop, which, in contrast to op, cannot be overloaded for the
domain. The function op is sometimes overloaded for a domain in order
to hide the internal, technical representation of an object and to provide
a more user friendly and intuitive interface.

A Similarly, the function extnops returns the number of operands of a do-
main element in the internal representation, and extsubsop modifies an
operand in the internal representation. These functions, in contrast to the
related functions nops and subsop, cannot be overloaded for a domain.

A You can write a constructor for your own domain T by providing a "new"
method. This method is invoked whenever the user calls T(arg1, arg2,
...). This is recommended since it provides a more elegant and intuitive
user interface than new. The "new" method usually performs some ar-
gument checking and converts the arguments arg1, arg2, ... into the
internal representation of the domain, using new (see example 1).

A new is a function of the system kernel.

Example 1. We create a new domain Time for representing clock times. The
internal representation of an object of this domain has two operands: the hour
and the minutes. Then we create a new domain element for the time 12 : 45:

>> Time := newDomain("Time"):
a := new(Time, 12, 45)

new(Time, 12, 45)

The domain type of a is Time, the number of operands is 2, and the operands
are 12 and 45:

>> domtype(a), extnops(a)

Time, 2

>> extop(a)

635

12, 45

We now implement a "new" method for our new domain Time, permitting sev-
eral input formats. It expects either two integers, the hour and the minutes, or
only one integer that represents the minutes, or a rational number or a floating
point number, implying that the integral part is the hour and the fractional part
represents a fraction of an hour corresponding to the minutes, or no arguments,
representing midnight. Additionally, the procedure checks that the arguments
are of the correct type:

>> Time::new := proc(HR = 0, MN = 0)
local m;

begin
if args(0) = 2 and domtype(HR) = DOM_INT

and domtype(MN) = DOM_INT then
m := HR*60 + MN

elif args(0) = 1 and domtype(HR) = DOM_INT then
m := HR

elif args(0) = 1 and domtype(HR) = DOM_RAT then
m := trunc(float(HR))*60 + frac(float(HR))*60

elif args(0) = 1 and domtype(HR) = DOM_FLOAT then
m := trunc(HR)*60 + frac(HR)*60

elif args(0) = 0 then
m := 0

else
error("wrong number or type of arguments")

end_if;
new(Time, trunc(m/60), trunc(m) mod 60)

end_proc:

Now we can use this method to create new objects of the domain Time, either by
calling Time::new directly, or, preferably, by using the equivalent but shorter
call Time(...):

>> Time::new(12, 45), Time(12, 45), Time(12 + 3/4)

new(Time, 12, 45), new(Time, 12, 45), new(Time, 12, 45)

>> Time(), Time(8.25), Time(1/2)

new(Time, 0, 0), new(Time, 8, 15), new(Time, 0, 30)

In order to have a nicer output for objects of the domain Time, we also define
a "print" method (see the help page for print):

>> Time::print := proc(TM)
begin
expr2text(extop(TM, 1)) . ":" .
stringlib::format(expr2text(extop(TM, 2)), 2, Right, "0")

end_proc:

636

>> Time::new(12, 45), Time(12, 45), Time(12 + 3/4)

12:45, 12:45, 12:45

>> Time(), Time(8.25), Time(1/2)

0:00, 8:15, 0:30

newDomain – create a new data type (domain)

newDomain(k) creates a new domain with key k.

newDomain(k, T) creates a copy of the domain T with new key k.

newDomain(k, t) creates a new domain with key k and slots from the table t.

Call(s):

A newDomain(k)

A newDomain(k, T)

A newDomain(k, t)

Parameters:
k — an arbitrary object; typically a string
T — a domain
t — the slots of the domain: a table

Return Value: an object of type DOM_DOMAIN.

Further Documentation: The document“Axioms, Categories and Domains”
is a detailed technical reference for domains.

Related Functions: DOM_DOMAIN, domain, domtype, new, slot

Details:

A Data types in MuPAD are called domains. newDomain is a low-level func-
tion for defining new data types. Cf. the corresponding entry in the Gloss-
ary for links to documentation about domains and more comfortable ways
of defining new data types. The help page of DOM_DOMAIN contains a tu-
torial example for defining a new domain via newDomain.

637

A Technically, a domain is something like a table. The entries of this table
are called slots or methods. They serve for extending the functionality of
standard MuPAD functions, such as the arithmetic operations + and *, the
special mathematical functions exp and sin, or the symbolic manipulation
functions simplify and normal, to objects of a domain in a modular,
object-oriented way, without the need to modify the source code of the
standard function. This is known as overloading .

The function slot and the equivalent operator :: serve for defining and
accessing a specific slot of a domain. The function op returns all slots of
a domain.

A Each domain has a distinguished slot "key", which is its unique identifica-
tion. There can be no two different domains with the same key. Typically,
but not necessarily, the key is a string. However, the key serves mainly
for internal and output purposes. Usually a domain is assigned to an
identifier immediately after its creation, and you access the domain via
this identifier.

A If a domain with the given key already exists, newDomain(k) returns that
domain; both other forms of calling newDomain yield an error.

A newDomain is a function of the system kernel.

Example 1. We create new domain with key "my-domain". This key is also
used for output, but without quotes:

>> T := newDomain("my-domain")

my-domain

You can create elements of this domain with the function new:

>> e := new(T, 42);
domtype(e)

new(my-domain, 42)

my-domain

With the slot operator ::, you can define a new slot or access an existing one:

>> op(T)

"key" = "my-domain"

>> T::key, T::myslot

"my-domain", FAIL

638

>> T::myslot := 42: op(T)

"myslot" = 42, "key" = "my-domain"

>> T::myslot^2

1764

If a domain with key k already exists, then newDomain(k) does not create a
new domain, but returns the existing domain instead:

>> T1 := newDomain("my-domain"):
op(T1)

"myslot" = 42, "key" = "my-domain"

Note that you cannot delete a domain; the command delete T only deletes
the value of the identifier T, but does not destroy the domain with the key
"my-domain":

>> delete T, T1:
T2 := newDomain("my-domain"):
op(T2);
delete T2:

"myslot" = 42, "key" = "my-domain"

Example 2. There cannot exist different domains with the same key at the
same time. Defining a slot for a domain implicitly changes all identifiers that
have this domain as their value:

>> T := newDomain("1st"): T1 := T:
op(T);
op(T1);

"key" = "1st"

"key" = "1st"

>> T1::mySlot := 42:
op(T);
op(T1);

"mySlot" = 42, "key" = "1st"

"mySlot" = 42, "key" = "1st"

To avoid this, you can create a copy of a domain. You must reserve a new,
unused key for that copy:

639

>> T2 := newDomain("2nd", T):
T2::anotherSlot := infinity:
op(T);
op(T2);

"mySlot" = 42, "key" = "1st"

"anotherSlot" = infinity, "mySlot" = 42, "key" = "2nd"

>> delete T, T1, T2:

Example 3. You can provide a domain with slots already when creating it:

>> T := newDomain("3rd",
table("myslot" = 42, "anotherSlot" = infinity)):

op(T);
T::myslot, T::anotherSlot

"key" = "3rd", "anotherSlot" = infinity, "myslot" = 42

42, infinity

>> delete T:

next – skip a step in a loop

next interrupts the current step in for, repeat, and while loops. Execution
proceeds with the next step of the loop.

Call(s):

A next

A _next()

Related Functions: break, case, for, quit, repeat, return, while

Details:

A The next statement is equivalent to the function call _next(). The return
value is the void object of type DOM_NULL.

640

A Inside for, repeat, and while loops, the next statement interrupts the
current step of the loop. In for statements, the loop variable is incre-
mented and execution continues at the beginning of the loop. Similarly,
the control conditions at the beginning of a while loop and in the until
clause of a repeat loop are verified, before execution continues at the
beginning of the loop.

A Outside for, repeat, and while loops, the next statement has no effect.

A _next is a function of the system kernel.

Example 1. In the following for loop, any step with even i is skipped:

>> for i from 1 to 5 do
if testtype(i, Type::Even) then next end_if;
print(i)

end_for:

1

3

5

In the following repeat loop, all steps with odd i are skipped:

>> i := 0:
repeat
i := i + 1;
if testtype(i, Type::Odd) then next end_if;
print(i)

until i >= 5 end_repeat:

2

4

>> delete i:

nextprime – the next prime number

nextprime(m) returns the smallest prime number larger than or equal to m.

Call(s):

A nextprime(m)

641

Parameters:

m — an arithmetical expression

Return Value: a prime number or a symbolic call to nextprime.

Related Functions: ifactor, igcd, ilcm, isprime, ithprime,
numlib::prevprime

Details:

A If the argument m is an integer, then nextprime returns the smallest prime
number larger than or equal to m. A symbolic call of type "nextprime" is
returned, if the argument is not of type Type::Numeric. An error occurs
if the argument is a number that is not an integer.

A The first prime number is 2.

A nextprime is a function of the system kernel.

Example 1. The first prime number is computed:

>> nextprime(-13)

2

If the argument of nextprime is a prime number, this number is returned:

>> nextprime(11)

11

We compute a large prime:

>> nextprime(56475767478567)

56475767478601

Symbolic arguments lead to a symbolic call:

>> nextprime(x)

nextprime(x)

642

Background:

A nextprime uses a fast probabilistic prime number test (Miller-Rabin test)
to decide if the computed result is a prime number. The result returned
by nextprime is either a prime number or a strong pseudo-prime for 10
randomly chosen bases.

A Reference: Michael O. Rabin, Probabilistic algorithms, in J. F. Traub,
ed., Algorithms and Complexity, Academic Press, New York, 1976, pp.
21-39.

nops – the number of operands

nops(object) returns the number of operands of the object.

Call(s):

A nops(object)

Parameters:

object — an arbitrary MuPAD object

Return Value: a nonnegative integer.

Overloadable by: object

Related Functions: extnops, extop, extsubsop, length, op, subsop

Details:

A See the help page of op for details on MuPAD’s concept of “operands”.

A For sets, lists, and tables, the function nops returns the number of ele-
ments or entries, respectively. Note that expressions of type DOM_EXPR
and arrays have a 0-th operand which is not counted by nops. For arrays,
also non-initialized elements are counted by nops.

A The void object null() of type DOM_NULL, the empty list [], the empty
set { }, and the empty table table() have no operands: nops returns 0.
Cf. example 1.

A Integers of domain type DOM_INT, real floating point numbers of domain
type DOM_FLOAT, Boolean constants of domain type DOM_BOOL, identifi-
ers of domain type DOM_IDENT, and strings of domain type DOM_STRING
are ‘atomic’ objects having only 1 operand: the object itself. Rational
numbers of domain type DOM_RAT and complex numbers of domain type

643

DOM_COMPLEX have 2 operands: the numerator and denominator and the
real part and imaginary part, respectively. Cf. example 2.

A In contrast to most other MuPAD functions, nops does not flatten expres-
sion sequences. Cf. example 3.

A nops is a function of the system kernel.

Example 1. The following expression has the type "_plus" and the three
operands a*b, 3*c, and d:

>> nops(a*b + 3*c + d)

3

For sets and lists, nops returns the number of elements. Note that the sublist
[1, 2, 3] and the subset {1, 2} each count as one operand in the following
examples:

>> nops({a, 1, [1, 2, 3], {1, 2}})

4

>> nops([[1, 2, 3], 4, 5, {1, 2}])

4

Empty objects have no operands:

>> nops(null()), nops([]), nops({}), nops(table())

0, 0, 0, 0

The number of operands of a symbolic function call is the number of arguments:

>> nops(f(3*x, 4, y + 2)), nops(f())

3, 0

Example 2. Integers and real floating point numbers only have one operand:

>> nops(12), nops(1.41)

1, 1

The same holds true for strings; use length to query the length of a string:

>> nops("MuPAD"), length("MuPAD")

644

1, 5

The number of operands of a rational number or a complex number is 2, even
if the real part is zero:

>> nops(-3/2), nops(1 + I), nops(2*I)

2, 2, 2

A function environment has 3 and a procedure has 13 operands:

>> nops(sin), nops(op(sin, 1))

3, 13

Example 3. Expression sequences are not flattened by nops:

>> nops((1, 2, 3))

3

In contrast to the previous call, the following command calls nops with three
arguments:

>> nops(1, 2, 3)

Error: Wrong number of arguments [nops]

norm – compute the norm of a matrix, a vector, or a polynomial

norm(M, kM) computes the norm of index kM of the matrix M.

norm(v, kv) computes the norm of index kv of the vector v.

norm(p, kp) computes the norm of index kp of the polynomial p.

Call(s):

A norm(M <, kM>)

A norm(v <, kv>)

A norm(p <, kp>)

A norm(f <, vars> <, kp>)

645

Parameters:
M — a matrix of domain type Dom::Matrix(...)
kM — the index of the matrix norm: either 1, or Frobenius or

Infinity . The default value is Infinity .
v — a vector (a 1-dimensional matrix)
kv — the index of the vector norm: either a positive integer, or

Frobenius , or Infinity . The default value is Infinity .
p — a polynomial generated by poly
f — a polynomial expression
vars — a list of identifiers or indexed identifiers, interpreted as the

indeterminates of f
kp — the index of the norm of the polynomial: a real number ≥ 1.

If no index is specified, the maximum norm (of index infinity)
is computed.

Return Value: an arithmetical expression.

Overloadable by: p, f

Related Functions: coeff, float, matrix, poly

Details:

A In MuPAD, there is no difference between matrices and vectors: a vector
is a matrix of dimension 1× n or n× 1, respectively.

A For an m × n matrix M = (Mij) with min(m,n) > 1, only the 1-norm
(maximum column sum)

norm(M, 1) = max
j=1,...,n

m∑
i=1

|Mij |,

the Frobenius norm

norm(M, Frobenius) =

√√√√ m∑
i=1

n∑
j=1

|Mij |2,

and the ∞-norm (maximum row sum)

norm(M) = norm(M, Infinity) = max
i=1,...,m

n∑
j=1

|Mij |

can be computed. The 1-norm and the Infinity -norm are operator
norms with respect to the corresponding norms on the vector spaces the
matrix is acting upon.

For numerical matrices, the spectral norm (the operator norm with respect
to the Euclidean norm (index 2)) is the largest singular value. It can be
computed via numeric::singularvalues.

646

A For vectors v = (vi), represented by matrices of dimension 1×n or n× 1,
norms with arbitrary positive integer indices k as well as Infinity can
be computed. For integers k > 1, the vector norms are given by

norm(v, k) =
(n∑

i=1

|vi|k
)1/k

for column vectors as well as for row vectors.

For indices 1, Infinity , and Frobenius , the vector norms are given by
the corresponding matrix norms. For column vectors, the 1-norm is the
sum norm

norm(v, 1) =
n∑

i=1

|vi|,

the Infinity -norm is the maximum norm

norm(v) = norm(v, Infinity) = max(|v1|, . . . , |vn|)

(this is the limit of the k-norms as k tends to infinity).

For row vectors, the 1-norm is the maximum norm, whilst the In-

finity -norm is the sum norm. !
The Frobenius norm coincides with norm(v, 2) for both column and row
vectors.

Cf. example 2.

A Matrices and vectors may contain symbolic entries. No internal float
conversion is applied.

A For matrix and vector norms, also refer to the help page of Dom::Matrix
(note that the function matrix generates matrices of type Dom::Matrix()).

A For polynomials p with coefficients ci, the norms are given by

norm(p) = max |ci| , norm(p, k) =
(∑

i |ci|k
)1/k

.

Also multivariate polynomials are accepted by norm. The coefficients with
respect to all indeterminates are taken into account.

A For polynomials, only numerical norms can be computed. The coefficients
of the polynomial must not contain symbolic parameters that cannot be
converted to floating point numbers. Coefficients containing symbolic
numerical expressions such as PI+1, sqrt(2) etc. are accepted. Internally,
they are converted to floating point numbers. Cf. example 3.

A For indices k> 1, norm(p, k) always returns a floating point number.
The 1-norm produces an exact result if all coefficients are integers or
rational numbers. The ∞-norm norm(p) produces an exact result, if the
coefficient of largest magnitude is an integer or a rational number. In
all other cases, also the 1-norm and the ∞-norm produce floating point
numbers. Cf. example 3.

647

A For polynomials over the coefficient ring IntMod(m), norm produces an
error.

A If the coefficient ring of the polynomial is a domain, it must implement
the method "norm". This method must return the norm of the coeffi-
cients as a number or as a numerical expression that can be converted
to a floating point number via float. With the coefficient norms ‖ci‖,
norm(p) computes the maximum norm maxi ‖ci‖; norm(p, k) computes
(
∑

i ‖ci‖k)1/k.

A A polynomial expression f is internally converted to the polynomial poly(f).
If a list of indeterminates is specified, the norm of the polynomial poly(f,
vars) is computed.

A For polynomials and polynomial expressions, the norms are computed by
a function of the system kernel.

Example 1. We compute various norms of a 2× 3 matrix:

>> M := matrix([[2, 5, 8], [-2, 3, 5]]):
norm(M) = norm(M, Infinity), norm(M, 1), norm(M, Frobenius)

1/2
15 = 15, 13, 131

For matrices, norm produces exact symbolic results:

>> M := matrix([[2/3, 63, PI],[x, y, z]]): norm(M)

max(PI + 191/3, abs(x) + abs(y) + abs(z))

>> norm(M, 1)

max(abs(x) + 2/3, abs(y) + 63, PI + abs(z))

>> norm(M, Frobenius)

2 2 2 2 1/2
(PI + abs(x) + abs(y) + abs(z) + 35725/9)

>> delete M:

Example 2. A column vector col and a row vector row are considered:

>> col := matrix([x1, PI]): row := matrix([[x1, PI]]): col, row

648

+- -+
| x1 | +- -+
| |, | x1, PI |
| PI | +- -+
+- -+

>> norm(col, 2) = norm(row, 2)

2 1/2 2 1/2
(x1 conjugate(x1) + PI) = (x1 conjugate(x1) + PI)

>> norm(col, 3) = norm(row, 3)

3 3 1/3 3 3 1/3
(PI + abs(x1)) = (PI + abs(x1))

Note that the norms of index 1 and Infinity have exchanged meanings for
column and row vectors:

>> norm(col, 1) = norm(row, Infinity)

PI + abs(x1) = PI + abs(x1)

>> norm(col, Infinity) = norm(row, 1)

max(abs(x1), PI) = max(abs(x1), PI)

>> delete col, row:

Example 3. The norms of some polynomials are computed:

>> p := poly(3*x^3 + 4*x, [x]): norm(p), norm(p, 1)

4, 7

If the coefficients are not integers or rational numbers, automatic conversion to
floating point numbers occurs:

>> p := poly(3*x^3 + sqrt(2)*x + PI, [x]): norm(p), norm(p, 1)

3.141592654, 7.555806216

Floating point numbers are always produced for indices > 1:

>> p := poly(3*x^3 + 4*x + 1, [x]):
norm(p, 1), norm(p, 2), norm(p, 5), norm(p, 10), norm(p)

8, 5.099019514, 4.174686339, 4.021974513, 4

>> delete p:

649

Example 4. The norms of some polynomial expressions are computed:

>> norm(x^3 + 1, 1), norm(x^3 + 1, 2), norm(x^3 + PI)

2, 1.414213562, 1

The following call yields an error, because the expression is regarded as a poly-
nomial in x. Consequently, symbolic coefficients 6 y and 9 y2 are found which
are not accepted:

>> f := 6*x*y + 9*y^2 + 2: norm(f, [x])

Error: Illegal argument [norm]

As a bivariate polynomial with the indeterminates x and y, the coefficients are
6, 9, and 2. Now, norms can be computed:

>> norm(f, [x, y], 1), norm(f, [x, y], 2), norm(f, [x, y])

17, 11.0, 9

>> delete f:

normal – normalize an expression

normal(f) returns the normal form of the rational expression f. This is a
rational expression with expanded numerator and denominator whose greatest
common divisor is 1.

normal(object) replaces the operands of object by their normalized form.

Call(s):

A normal(f<, List>)

A normal(object)

Parameters:
f — an arithmetical expression
object — a polynomial of type DOM_POLY, a list, a set, a table, an

array, an equation, an inequality, or a range

Options:

List — return a list consisting of the numerator and denominator of
f.

650

Return Value: an object of the same type as the input object. If the option
List was given, a list of two arithmetical expressions.

Overloadable by: object

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: collect, combine, denom, expand, factor, gcd,
indets, numer, partfrac, rationalize, rectform, rewrite, simplify

Details:

A If the argument f contains non-rational subexpressions such as sin(x),
x^(-1/3) etc., then these are replaced by auxiliary variables before nor-
malization. After normalization, these variables are replaced by the nor-
malization of the original subexpressions. Algebraic dependencies of the
subexpressions are not taken into account. The operands of the non-
rational subexpressions are normalized recursively.

A If the argument f contains floating point numbers, then these are re-
placed by rational approximants (see numeric::rationalize). In the
end, float is applied to the result.

A For special objects, normal is automatically mapped to its operands. In
particular, if object is a polynomial of domain type DOM_POLY, then its
coefficients are normalized. Further, if object is a set, a list, a table or an
array, respectively, then normal is applied to all entries. Further, the left
hand side and the right hand side of equations (type "_equal"), inequal-
ities (type "_unequal") and relations (type "_less" or "_leequal") are
normalized. Further, the operands of ranges (type "_range") are normal-
ized automatically.

Example 1. We compute the normal form of some rational expressions:

>> normal(x^2 - (x + 1)*(x - 1))

1

>> normal((x^2 - 1)/(x + 1))

x - 1

>> normal(1/(x + 1) + 1/(y - 1))

x + y

y - x + x y - 1

651

The following expression should be regarded as a rational expression in the
“indeterminates” y and sin(x):

>> normal(1/sin(x)^2 + y/sin(x))

y sin(x) + 1

2
sin(x)

Example 2. In the following, we give examples of non-rational expressions as
argument. First, we normalize the entries of a list:

>> [(x^2 - 1)/(x + 1), x^2 - (x + 1)*(x - 1)]

-- 2 --
| x - 1 2 |
| ------, x - (x - 1) (x + 1) |
-- x + 1 --

>> normal(%)

[x - 1, 1]

The coefficients of polynomials are normalized:

>> poly((x^2-1)/(x+1)*Y^2 + (x^2-(x+1)*(x-1))*Y - 1, [Y])

/ / 2 \ \
| | x - 1 | 2 2 |

poly| | ------ | Y + (x - (x - 1) (x + 1)) Y - 1, [Y] |
\ \ x + 1 / /

>> normal(%)

2
poly((x - 1) Y + Y - 1, [Y])

Example 3. If called with the option List , normal returns a list consisting
of the numerator and the denominator of the input.

>> normal((x^2-1)/(x^2+2*x+1), List)

[x - 1, x + 1]

Note that normal(f, List) is not the same as [numer(f), denom(f)]:

>> [numer, denom]((x^2-1)/(x^2+2*x+1))

2 2
[x - 1, 2 x + x + 1]

652

Changes:

A Floating point numbers in the input are not longer replaced by auxiliary
identifiers, but by rational approximants now.

A The new option List was introduced.

nterms – the number of terms of a polynomial

nterms(p) returns the number of terms of the polynomial p.

Call(s):

A nterms(p)

A nterms(f <, vars>)

Parameters:
p — a polynomial of type DOM_POLY
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers

Return Value: a nonnegative number. FAIL is returned if the input cannot
be converted to a polynomial.

Overloadable by: p

Related Functions: coeff, degree, degreevec, ground, lcoeff, ldegree,
lmonomial, lterm, nthcoeff, nthmonomial, nthterm, poly, poly2list,
tcoeff

Details:

A If the first argument f is not element of a polynomial domain, then nterms
converts the expression to a polynomial via poly(f). If a list of indeterm-
inates is specified, then the polynomial poly(f, vars) is considered.

A A zero polynomial has no terms: the return value is 0.

A nterms is a function of the system kernel.

653

Example 1. We give some self explaining examples:

>> nterms(x^2*y^2 + x^2 + y + 2, [x, y])

4

>> nterms(poly(x^2*y^2 + x^2 + y + 2))

4

>> nterms(poly(0, [x]))

0

Example 2. The following polynomial expression may be regarded as a poly-
nomial in different ways:

>> f := x^2*y^2 + x^2 + y + 2:
nterms(f, [x]), nterms(f, [y]), nterms(f, [x, y]),
nterms(f, [z])

2, 3, 4, 1

>> delete f:

nthcoeff – the n-th non-zero coefficient of a polynomial

nthcoeff(p, n) returns the n-th non-zero coefficient of the polynomial p.

Call(s):

A nthcoeff(p, <vars,> n <, order>)

Parameters:
p — a polynomial of type DOM_POLY or a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers
n — a positive integer
order — the term ordering: either LexOrder or DegreeOrder or

DegInvLexOrder or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

654

Return Value: an element of the coefficient domain of the polynomial. An
expression is returned if a polynomial expression is used as input. FAIL is
returned if n is larger than the actual number of terms.

Overloadable by: p

Related Functions: coeff, collect, degree, degreevec, ground, lcoeff,
ldegree, lmonomial, lterm, nterms, nthmonomial, nthterm, poly,
poly2list, tcoeff

Details:

A The argument p can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
nthcoeff.

A If a list of indeterminates is provided, then p is regarded as a polynomial
in these indeterminates. Note that the specified list does not have to
coincide with the indeterminates of the input polynomial.

A The “first” coefficient is the leading coefficient as returned by lcoeff, the
“last” coefficient is the trailing coefficient as returned by tcoeff.

A nthcoeff returned the n-th non-zero coefficient with respect to the lexico-
graphical ordering, unless a different ordering is specified via the argument
order. Cf. example 3.

A The result of nthcoeff is not fully evaluated. Evaluation can be enforced
by the function eval. Cf. example 4.

A A zero polynomial has no terms: nthcoeff returns FAIL.

A nthcoeff is a library routine. If no term ordering is specified, the argu-
ments are passed to a fast kernel routine.

Example 1. We give some self explaining examples:

>> p := poly(100*x^100 + 49*x^49 + 7*x^7, [x]):
nthcoeff(p, 1), nthcoeff(p, 2), nthcoeff(p, 3)

100, 49, 7

>> nthcoeff(p, 4)

FAIL

>> nthcoeff(poly(0, [x]), 1)

FAIL

>> delete p:

655

Example 2. We demonstrate how the indeterminates influence the result:

>> p := 2*x^2*y + 3*x*y^2 + 6:
nthcoeff(p, [x, y], 2), nthcoeff(p, [y, x], 2)

3, 2

>> p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):
nthcoeff(p, 1), nthcoeff(p, [y, x], 1)

2, 3

>> delete p:

Example 3. We demonstrate the effect of various term orders:

>> p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z])

4 3 2 2 3
poly(5 x + 4 x y z + 3 x y z + 2, [x, y, z])

>> nthcoeff(p, 1), nthcoeff(p, 1, DegreeOrder),
nthcoeff(p, 1, DegInvLexOrder)

5, 4, 3

The following call uses the reverse lexicographical order on 3 indeterminates:

>> nthcoeff(p, 1, Dom::MonomOrdering(RevLex(3)))

3

>> delete p:

Example 4. We demonstrate the evaluation strategy of nthcoeff:

>> p := poly(3*x^3 + 6*x^2*y^2 + 2, [x]): y := 4:
nthcoeff(p, 2)

2
6 y

Evaluation is enforced by eval:

>> eval(%)

96

656

>> delete p, y:

nthmonomial – the n-th monomial of a polynomial

nthmonomial(p, n) returns the n-th non-trivial monomial of the polynomial
p.

Call(s):

A nthmonomial(p, <vars,> n <, order>)

Parameters:
p — a polynomial of type DOM_POLY or a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers
n — a positive integer
order — the term ordering: LexOrder , or DegreeOrder , or

DegInvLexOrder , or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

Return Value: a polynomial of the same type as p. An expression is returned
if p is an expression. FAIL is returned if n is larger than the actual number of
terms of the polynomial.

Overloadable by: p

Related Functions: coeff, degree, degreevec, ground, lcoeff, ldegree,
lmonomial, lterm, nterms, nthcoeff, nthterm, poly, poly2list, tcoeff

Details:

A The argument p can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
nthmonomial.

A If a list of indeterminates is provided, then p is regarded as a polynomial
in these indeterminates. The return value is a polynomial in these inde-
terminates as well. Note that the specified list does not have to coincide
with the indeterminates of the input polynomial.

A The “first” monomial is the leading monomial as returned by lmonomial.

657

A nthmonomial returned the n-th non-trivial monomial with respect to the
lexicographical ordering, unless a different ordering is specified via the
argument order. Cf. example 3.

A The result of nthmonomial is not fully evaluated. It can be evaluated by
the functions mapcoeffs and eval. Cf. example 5.

A A zero polynomial has no terms: nthmonomial returns FAIL.

A nthmonomial is a library routine. If no term ordering is specified, the
arguments are passed to a fast kernel routine.

Example 1. We give some self explaining examples:

>> p := poly(100*x^100 + 49*x^49 + 7*x^7, [x]):
nthmonomial(p, 1), nthmonomial(p, 2), nthmonomial(p, 3)

100 49 7
poly(100 x , [x]), poly(49 x , [x]), poly(7 x , [x])

>> nthmonomial(p, 4)

FAIL

>> nthmonomial(poly(0, [x]), 1)

FAIL

>> delete p:

Example 2. We demonstrate how the indeterminates influence the result:

>> p := 2*x^2*y + 3*x*y^2 + 6:
nthmonomial(p, [x, y], 2), nthmonomial(p, [y, x], 2)

2 2
3 x y , 2 x y

>> p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):
nthmonomial(p, 2), nthmonomial(p, [y, x], 2)

2 2
poly(3 x y , [x, y]), poly(2 y x , [y, x])

>> delete p:

658

Example 3. We demonstrate the effect of various term orders:

>> p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):
nthmonomial(p, 1), nthmonomial(p, 1, DegreeOrder),
nthmonomial(p, 1, DegInvLexOrder)

4 3 2
poly(5 x , [x, y, z]), poly(4 x y z , [x, y, z]),

2 3
poly(3 x y z, [x, y, z])

>> delete p:

Example 4. This example features a user defined term ordering. Here we use
the reverse lexicographical order on 3 indeterminates:

>> order := Dom::MonomOrdering(RevLex(3)):
p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):
nthmonomial(p, 2, order)

3 2
poly(4 x y z , [x, y, z])

The following call produces all monomials:

>> nthmonomial(p, i, order) $ i = 1..nterms(p)

2 3 3 2
poly(3 x y z, [x, y, z]), poly(4 x y z , [x, y, z]),

4
poly(5 x , [x, y, z]), poly(2, [x, y, z])

>> delete order, p:

Example 5. We demonstrate the evaluation strategy of nthmonomial:

>> p := poly(3*x^3 + 6*x^2*y^2 + 2, [x]): y := 4:
nthmonomial(p, 2)

2 2
poly((6 y) x , [x])

Evaluation is enforced by eval:

659

>> mapcoeffs(%, eval)

2
poly(96 x , [x])

>> delete p, y:

nthterm – the n-th term of a polynomial

nthterm(p, n) returns the n-th non-zero term of the polynomial p.

Call(s):

A nthterm(p, <vars,> n <, order>)

Parameters:
p — a polynomial of type DOM_POLY or a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers
n — a positive integer
order — the term ordering: either LexOrder or DegreeOrder or

DegInvLexOrder or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

Return Value: a polynomial of the same type as p. An expression is returned
if a polynomial expression is used as input. FAIL is returned if n is larger than
the actual number of terms of the polynomial.

Overloadable by: p

Related Functions: coeff, degree, degreevec, ground, lcoeff, ldegree,
lmonomial, lterm, nterms, nthcoeff, nthmonomial, poly, poly2list,
tcoeff

Details:

A The argument p can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
nthterm.

A The identity nthterm(p, n) nthcoeff(p, n) = nthmonomial(p, n) holds.

660

A If a list of indeterminates is provided, then p is regarded as a polynomial
in these indeterminates. The return value is a polynomial in these inde-
terminates as well. Note that the specified list does not have to coincide
with the indeterminates of the input polynomial.

A The “first” term is the leading term as returned by lterm.

A nthterm returned the n-th non-zero term with respect to the lexicograph-
ical ordering, unless a different ordering is specified via the argument
order. Cf. example 3.

A A zero polynomial has no terms: nthterm returns FAIL.

A nthterm is a library routine. If no term ordering is specified, the argu-
ments are passed to a fast kernel routine.

Example 1. We give some self explaining examples:

>> p := poly(100*x^100 + 49*x^49 + 7*x^7, [x]):
nthterm(p, 1), nthterm(p, 2), nthterm(p, 3)

100 49 7
poly(x , [x]), poly(x , [x]), poly(x , [x])

>> nthterm(p, 4)

FAIL

>> nthterm(poly(0, [x]), 1)

FAIL

>> delete p:

Example 2. We demonstrate how the indeterminates influence the result:

>> p := 2*x^2*y + 3*x*y^2 + 6:
nthterm(p, [x, y], 2), nthterm(p, [y, x], 2)

2 2
x y , x y

>> p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):
nthterm(p, 2), nthterm(p, [y,x], 2)

2 2
poly(x y , [x, y]), poly(y x , [y, x])

>> delete p:

661

Example 3. We demonstrate the effect of various term orders:

>> p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x,y,z]):
nthterm(p, 1), nthterm(p, 1, DegreeOrder),
nthterm(p, 1, DegInvLexOrder)

4 3 2
poly(x , [x, y, z]), poly(x y z , [x, y, z]),

2 3
poly(x y z, [x, y, z])

>> delete p:

Example 4. This example features a user defined term ordering. Here we use
the reverse lexicographical order on 3 indeterminates:

>> order := Dom::MonomOrdering(RevLex(3)):
p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x,y,z]):
nthterm(p, 2, order)

3 2
poly(x y z , [x, y, z])

The following call produces all terms:

>> nthterm(p, i, order) $ i = 1..nterms(p)

2 3 3 2
poly(x y z, [x, y, z]), poly(x y z , [x, y, z]),

4
poly(x , [x, y, z]), poly(1, [x, y, z])

>> delete order, p:

Example 5. The n-th monomial is the product of the n-th coefficient and the
n-th term:

>> p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):
mapcoeffs(nthterm(p, 2), nthcoeff(p, 2)) =
nthmonomial(p, 2)

2 2
poly(3 x y , [x, y]) = poly(3 x y , [x, y])

662

>> delete p:

null – generate the void object of type DOM_NULL

null() returns the void object of domain type DOM_NULL.

Call(s):

A null()

Return Value: the void object of domain type DOM_NULL.

Related Functions: _exprseq, _stmtseq, FAIL, NIL

Details:

A null() returns the only object of domain type DOM_NULL. It represents
an empty sequence of MuPAD expressions or statements.

A The void object does not produce any output on the screen.

A Various systems functions such as print or reset return the void object.

A The void object is removed from sequences (“flattening”). It can be used
to remove elements from lists or sets. Cf. example 2.

A null is a function of the system kernel.

Example 1. null() returns the void object which does not produce any screen
output:

>> null()

The resulting object is of domain type DOM_NULL:

>> domtype(null())

DOM_NULL

This object represents the empty expression sequence and the empty statement
sequence:

>> domtype(_exprseq()), domtype(_stmtseq())

663

DOM_NULL, DOM_NULL

Some system functions such as print return the void object:

>> print("Hello world!"):

"Hello world!"

>> domtype(%)

DOM_NULL

Example 2. The void object is removed from lists, sets, and expression se-
quences:

>> [null(), a, b, null(), c], {null(), a, b, null(), c},
f(null(), a, b, null(), c)

[a, b, c], {a, b, c}, f(a, b, c)

>> a + null() + b = _plus(a, null(), b)

a + b = a + b

>> subsop([a, x, b], 2 = null()), subs({a, x, b}, x = null())

[a, b], {a, b}

However, null() is a valid entry in arrays and tables:

>> a := array(1..2): a[1] := 1: a[2] := null(): a

+- -+
| 1, null() |
+- -+

>> domtype(a[1]), domtype(a[2])

DOM_INT, DOM_NULL

>> t := table(null() = "void", 1 = 2.5, b = null())

table(
b = null(),
1 = 2.5,
null() = "void"

)

>> domtype(t[b]), t[]

DOM_NULL, "void"

>> delete a, t:

664

Example 3. The void object remains if you delete all elements from an ex-
pression sequence:

>> a := (1, b): delete a[1]: delete a[1]: domtype(a)

DOM_NULL

The operand function op returns the void object when applied to an object with
no operands:

>> domtype(op([])), domtype(op({})), domtype(op(f()))

DOM_NULL, DOM_NULL, DOM_NULL

>> delete a:

numer – the numerator of a rational expression

numer(f) returns the numerator of the expression f.

Call(s):

A numer(f)

Parameters:

f — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: f

Related Functions: denom, factor, gcd, normal

Details:

A numer regards the input as a rational expression: non-rational subexpres-
sions such as sin(x), x^(1/2) etc. are internally replaced by “temporary
variables”. The numerator of this rationalized expression is computed, the
temporary variables are finally replaced by the original subexpressions.

A Numerator and denominator are not necessarily cancelled: the nu-
merator returned by numer may have a non-trivial gcd with the de-
nominator returned by denom. Preprocess the expression by normal
to enforce cancellation of common factors. Cf. example 2.

!

665

Example 1. We compute the numerators of some expressions:

>> numer(-3/4)

-3

>> numer(x + 1/(2/3*x -2/x))

3
2 x - 3 x

>> numer((cos(x)^2 -1)/(cos(x) -1))

2
cos(x) - 1

Example 2. numer performs no cancellations if the rational expression is of
the form “numerator/denominator”:

>> r := (x^2 - 1)/(x^3 - x^2 + x - 1): numer(r)

2
x - 1

This numerator has a common factor with the denominator of r; normal en-
forces cancellation of common factors:

>> numer(normal(r))

x + 1

However, automatic normalization occurs if the input expression is a sum:

>> numer(r + x/(x + 1) + 1/(x + 1) - 1)

x + 1

>> delete r:

ode – the domain of ordinary differential equations

ode(eq, y(x)) represents an ordinary differential equation (ODE) for the func-
tion y(x).

ode({eq1, eq2, ...}, {y1(x), y2(x), ...}) represents a system of ODEs
for the functions y1(x), y2(x) etc.

666

Call(s):

A ode(eq, y(x))

A ode({eq <, inits>}, y(x))

A ode({eq1, eq2, ... <, inits>}, {y1(x), y2(x), ...})

Parameters:
eq, eq1, eq2, ... — equations or arithmetical expressions in the

unknown functions and their derivatives with
respect to x. An arithmetical expression is
regarded as an equation with vanishing right
hand side.

y, y1, y2, ... — the unknown functions: identifiers
x — the independent variable: an identifier
inits — the initial or boundary conditions: a sequence

of equations

Return Value: an object of type ode.

Further Documentation: Section 8.3 of the Tutorial.

Related Functions: numeric::odesolve, numeric::odesolve2, plot::ode

Details:

A In the equations eq, eq1 etc., the unknown functions must be represented
by y(x), y1(x) etc. Derivatives may be represented either by the diff
function or by the differential operator D. Note that the token ’ provides
a handy short cut: y’(x) = D(y)(x) ≡ diff(y(x), x).

A The unknown functions must be univariate in the independent variable x.
Multivariate expressions such as y(x, t) are not accepted.

A Initial and boundary conditions are defined by sequences of equations
involving the unknown functions or their derivatives on the left hand side.
The corresponding values must be specified on the right hand side of the
equations. In particular, the differential operator D (or the token ’) must
be used to specify values of derivatives at some point. E.g.,

y(1) = 2, y’(0) = 0, y (0) = 1

is a valid sequence of boundary conditions for inits.

Boundary conditions of the first and second kind are allowed. Mixed
conditions are not accepted.

The initial/boundary points and the corresponding initial/boundary val-
ues may be symbolic expressions.

667

A For scalar initial value or boundary value problems, use ode({eq, inits},
y(x)) to specify the conditions.

A For systems of ODEs, there must be as many equations as unknown func-
tions.

A The main purpose of the ode domain is to provide an environment for
overloading the function solve.

In the case of one single equation (possibly together with initial or bound-
ary conditions), solve returns a set of explicit solutions or an implicit
solution. Each element of the set represents a solution branch.

In the case of a system of equations, solve returns a set of lists of equa-
tions for the unknown functions. Each list represents a solution branch.

An symbolic solve call is returned if no solution is found.

A After setuserinfo(ode, 10), a solve command provides information
on MuPAD’s way of solving ODEs.

Example 1. In the following, we show how to create and solve a scalar ODE.
First, we define the ODE x2 y′(x)+3x y(x) = sin(x)/x. We use the quote token
’ to represent derivatives:

>> eq := ode(x^2*y’(x) + 3*x*y(x) = sin(x)/x, y(x))

/ sin(x) 2 \
ode| 3 x y(x) - ------ + x diff(y(x), x), y(x) |

\ x /

We get an element of the domain ode which we can now solve:

>> solve(eq)

{ C1 + cos(x) }
{ - ----------- }
{ 3 }
{ x }

>> delete eq:

Example 2. An initial value problem is defined as a set consisting of the ODE
and the initial conditions:

>> ivp := ode({f’’(t) + 4*f(t) = sin(2*t),
f(0) = a, f’(0) = b}, f(t))

668

ode({f(0) = a, D(f)(0) = b, 4 f(t) + diff(f(t), t, t) -

sin(2 t)}, f(t))

>> solve(ivp)

{ sin(2 t) b sin(2 t) t cos(2 t) }
{ -------- + a cos(2 t) + ---------- - ---------- }
{ 8 2 4 }

>> delete ivp:

Example 3. With some restrictions, it is also possible to solve systems of
ODEs. First, we define a system:

>> sys := {x’(t) - x(t) + y(t) = 0, y’(t) - x(t) - y(t) = 0}

{y(t) - x(t) + D(x)(t) = 0, D(y)(t) - y(t) - x(t) = 0}

A call to solve yields the general solution with arbitrary parameters:

>> solution := solve(ode(sys, {x(t), y(t)}))

{[y(t) = C7 exp((1 + I) t) + C8 exp((1 - I) t),

x(t) = I C7 exp((1 + I) t) - I C8 exp((1 - I) t)]}

To verify the result, we substitute it back into the system sys. However, for
the substitution, it is necessary to rewrite the system into a notation using the
diff function:

>> eval(subs(rewrite(sys, diff), op(solution)))

{0 = 0}

>> delete sys, solution:

Example 4. In this example, we point out the various return formats of ode’s
solve facility. First, we solve an ODE with an initial condition. The solution
involves a symbolic integral:

>> solve(ode({y’(x) + x*y(x) = cos(x), y(0) = 3}, y(x)))

{ / 2 \ 2 1/2 }
{ | x | int(cos(t4) exp(t4) , t4 = 0..x) }
{ 3 exp| - -- | + ----------------------------------- }
{ \ 2 / 2 1/2 }
{ exp(x) }

669

The following system is solved incompletely:

>> sys := {x’(t) = -3*y(t)*z(t),
y’(t) = 3*x(t)*z(t),
z’(t) = -x(t)*y(t)}:

solution := solve(ode(sys, {x(t), y(t), z(t)}))

2 1/2 2 1/2
{[x(t) = (C10 - C11 + 3 z(t)) , y(t) = (- C10 - 3 z(t))]

2 1/2
, [x(t) = (C10 - C11 + 3 z(t)) ,

2 1/2
y(t) = - (- C10 - 3 z(t))],

2 1/2
[x(t) = - (C10 - C11 + 3 z(t)) ,

2 1/2
y(t) = (- C10 - 3 z(t))], [

2 1/2
x(t) = - (C10 - C11 + 3 z(t)) ,

2 1/2
y(t) = - (- C10 - 3 z(t))]}

In these four different solutions branches, no solution for the unknown function
z(t) is provided. In fact, the partial solution above is subject to a further
condition on z(t). We substitute the first of our four solutions back into the
system sys:

>> eval(subs(rewrite(sys, diff), solution[1]))

{ 2 1/2
{ diff(z(t), t) = - (- C10 - 3 z(t))
{
{

2 1/2 3 z(t) diff(z(t), t)
(C10 - C11 + 3 z(t)) , - -------------------- =

2 1/2
(- C10 - 3 z(t))

2 1/2
3 z(t) (C10 - C11 + 3 z(t)) ,

670

3 z(t) diff(z(t), t) 2 1/2 }
------------------------ = - 3 z(t) (- C10 - 3 z(t)) }

2 1/2 }
(C10 - C11 + 3 z(t)) }

For each solution branch, there remains is exactly one differential equation for
z(t) to solve.

>> delete sys, solution:

Example 5. It may happen that MuPAD cannot solve a given equation. In
such a case, a symbolic solve command is returned:

>> solve(ode(y’(x) + y(x)^2 = b + a*x, y(x)))

2
solve(ode(- b - a x + diff(y(x), x) + y(x) , y(x)))

Example 6. MuPAD’s ODE solver contains algebraic algorithms for comput-
ing Liouvillian solutions of linear ordinary differential equations over the ra-
tional functions as well. These algorithms are based on differential Galois the-
ory. For second order equations, an algorithm similar to the Kovacic algorithm is
implemented. However, instead of computing the so-called Riccati-polynomial
of a solution, this algorithm computes the solutions directly using formulas.
Only when both solutions are algebraic functions, then in three cases it is ne-
cessary to compute the minimal polynomial of a solution, again using formulas.
Hence, for Kovacic’s famous example

y′′ +
(

3
16x2

+
2

9(x− 1)2
− 3

16x(x− 1)

)
y = 0,

it is possible to compute the minimal polynomial of solution:

>> solve(ode(y’’(x) + (3/(16*x^2) + 2/(9*(x - 1)^2)
- 3/(16*x*(x - 1)))*y(x), y(x)))

24 8 8
{C13 RootOf(_Y1 + 2985984 x (x - 1) -

4 8 6 2 16 3
2799360 x _Y1 (x - 1) - 4320 x _Y1 (x - 1) -

5 4 1/2 1/2 7
165888 x _Y1 (x - 2) (I x 3 - I 3) +

3 12 1/2 1/2 1/2 4
5760 I x _Y1 3 (x - 2) (I x 3 - I 3) , _Y1)}

671

MuPAD may find Liouvillian solutions for higher order equations as well. How-
ever, there is no guarantee that all of them are found. The following third order
equation can be solved completely:

>> solve(ode(diff(y(x), x, x, x)
+ diff(y(x), x, x)*(2*x^2 - 1)/(2*x^2 - 2*x)
+ diff(y(x), x)*(295*x - 491*x^2 + 196*x^3 - 98)

/(196*x^2 - 392*x^3 + 196*x^4)
+ y(x)*(3*x - x^2 - 1)

/(196*x^2 - 392*x^3 + 196*x^4), y(x)))

{
{ 1/2 1/14
{ C17 (2 x + 2 (x (x - 1)) - 1) +
{
{
{
{

C18
-------------------------------- +

1/2 1/14
(2 x + 2 (x (x - 1)) - 1)

/
| 1/2 1/14
| C16 (2 x + 2 (x (x - 1)) - 1)
|
\

/
| 1/2
| int(exp(-x) (x (x - 1))
|
\

1/2 1/14
(2 x + 2 (x (x - 1)) - 1) , x) /

1/2 1/7
(2 x + 2 (x (x - 1)) - 1) -

/ 1/2 \ \ \ }
| exp(-x) (x (x - 1)) | | | }

int| --------------------------------, x | | | / 28 }
| 1/2 1/14 | | | }
\ (2 x + 2 (x (x - 1)) - 1) / / / }

}

672

}

Background:

A The implemented solution methods mainly stem from

• Daniel Zwillinger. Handbook of differential equations. San Diego:
Academic Press (1992).

The algebraic algorithms for solving linear ODEs are described in

• Winfried Fakler. Algebraische Algorithmen zur Lösung von linearen
Differentialgleichungen. Stuttgart, Leipzig: Teubner, Reihe MuPAD
Reports (1999).

• Winfried Fakler. On second order homogeneous linear differential
equations with Liouvillian solutions. Theor. Comp. Science 187,
27-48 (1997).

op – the operands of an object

op(object) returns all operands of the object.

op(object, i) returns the i-th operand.

op(object, i..j) returns the i-th to j-th operands.

Call(s):

A op(object)

A op(object, i)

A op(object, i..j)

A op(object, [i1, i2, ...])

Parameters:
object — an arbitrary MuPAD object
i, j — nonnegative integers
i1, i2, ... — nonnegative integers or ranges of such integers

Return Value: a sequence of operands or the requested operand. FAIL is
returned if no corresponding operand exists.

Overloadable by: object

673

Related Functions: _index, contains, extnops, extop, extsubsop, map,
new, nops, select, split, subsop, zip

Details:

A MuPAD objects are composed of simpler parts: the “operands”. The func-
tion op is the tool to decompose objects and to extract individual parts.
The actual definition of an operand depends on the type of the object.
The ’Background’ section below explains the meaning for some of the
basic data types.

A op(object) returns a sequence of all operands except the 0-th one. This
call is equivalent to op(object, 1..nops(object)). Cf. example 1.

A op(object, i) returns the i-th operand. Cf. example 2.

A op(object, i..j) returns the i-th to j-th operands as an expression
sequence; i and j must be nonnegative integers with i smaller or equal
to j. This sequence is equivalent to op(object, k) $ k = i..j. Cf.
example 3.

A op(object, [i1, i2, ...]) is an abbreviation for the recursive call
op(...op(op(object, i1), i2), ...) if i1, i2, ... are integers.

A call such as op(object, [i..j, i2]) with integers i < j corresponds
to map(op(object, i..j), op, i2). Cf. example 4.

A op returns FAIL if the specified operand does not exist. Cf. example 5.

A Expressions of domain type DOM_EXPR, arrays and floating point intervals
have a 0-th operand.

• For expressions, this is “the operator” connecting the other oper-
ands. In particular, for symbolic function calls, it is the name of the
function.

• For an array, the 0-th operand is a sequence consisting of an integer
(the dimension of the array) and a range for each array index.

• For a floating point interval, the value of the 0-th operand depends
on the precise type of the interval: If the interval is a union of
rectangles, the 0-th operand is hold(_union). If the interval is
not a union and consists only of real numbers, the 0-th operand is
hold(hull). In the remaining case of a rectangle with non-vanishing
imaginary part, the 0-th operand is FAIL.

Other basic data types such as lists or sets do not have a 0-th operand.
Cf. example 6.

674

A For library domains, op is overloadable. In the "op" method, the internal
representation can be accessed with extop. It is sufficient to handle the
cases op(x), op(x, i), and op(x, i..j) in the overloading method, the
call op(x, [i1, i2, ...]) needs not be considered. Cf. example 7.

A op is not overloadable for kernel domains.

A op is a function of the system kernel.

Example 1. The call op(object) returns all operands:

>> op([a, b, c, [d, e], x + y])

a, b, c, [d, e], x + y

>> op(a + b + c^d)

d
a, b, c

>> op(f(x1, x2, x3))

x1, x2, x3

Example 2. The call op(object, i) extracts a single operand:

>> op([a, b, c, [d, e], x + y], 4)

[d, e]

>> op(a + b + c^d, 3)

d
c

>> op(f(x1, x2, x3), 2)

x2

Example 3. The call op(object, i..j) extracts a range of operands:

>> op([a, b, c, [d, e], x + y], 3..5)

c, [d, e], x + y

>> op(a + b + c^d, 2..3)

675

d
b, c

>> op(f(x1, x2, x3), 2..3)

x2, x3

A range may include the 0-th operand if it exists:

>> op(a + b + c^d, 0..2)

_plus, a, b

>> op(f(x1, x2, x3), 0..2)

f, x1, x2

Example 4. The call op(object, [i1, i2, ...]) specifies suboperands:

>> op([a, b, c, [d, e], x + y], [4, 1])

d

>> op(a + b + c^d, [3, 2])

d

>> op(f(x1, x2, x3 + 17), [3, 2])

17

Also ranges of suboperands can be specified:

>> op([a, b, c, [d, e], x + y], [4..5, 2])

e, y

>> op(a + b + c^d, [2..3, 1])

b, c

>> op(f(x1, x2, x3 + 17), [2..3, 1])

x2, x3

Example 5. Nonexisting operands are returned as FAIL:

>> op([a, b, c, [d, e], x + y], 8), op(a + b + c^d, 4),
op(f(x1, x2, x3), 4)

FAIL, FAIL, FAIL

676

Example 6. For expressions of type DOM_EXPR, the 0-th operand is “the oper-
ator” connecting the other operands:

>> op(a + b + c, 0), op(a*b*c, 0), op(a^b, 0), op(a[1, 2], 0)

_plus, _mult, _power, _index

For symbolic function calls, it is the name of the function:

>> op(f(x1, x2, x3), 0), op(sin(x + y), 0), op(besselJ(0, x), 0)

f, sin, besselJ

The 0-th operand of an array is a sequence consisting of the dimension of the
array and a range for each array index:

>> op(array(3..100), 0)

1, 3..100

>> op(array(1..2, 1..3, 2..4), 0)

3, 1..2, 1..3, 2..4

No 0-th operand exists for other kernel domains:

>> op([1, 2, 3], 0), op({1, 2, 3}, 0), op(table(1 = y), 0)

FAIL, FAIL, FAIL

Example 7. For library domains, op is overloadable. First, a new domain d
is defined via newDomain. The "new" method serves for creating elements of
this type. The internal representation of the domain is a list of all arguments
of this "new" method:

>> d := newDomain("d"): d::new := () -> new(dom, [args()]):

The "op" method of this domain is defined. It is to return the elements of a
sorted copy of the internal list which is accessed via extop:

>> d::op := proc(x, i = null())
local internalList;

begin
internalList := extop(x, 1);
op(sort(internalList), i)

end_proc:

By overloading, this method is called when the operands of an object of type d
are requested via op:

677

>> e := d(3, 7, 1): op(e); op(e, 2); op(e, 1..2)

1, 3, 7

3

1, 3

>> delete d, e:

Example 8. Identifiers, integers, real floating point numbers, character strings,
and the Boolean constants are “atomic” objects. The only operand is the object
itself:

>> op(x), op(17), op(0.1234), op("Hello World!")

x, 17, 0.1234, "Hello World!"

For rational numbers, the operands are the numerator and the denominator:

>> op(17/3)

17, 3

For complex numbers, the operands are the real part and the imaginary part:

>> op(17 - 7/3*I)

17, -7/3

Example 9. For sets, op returns the elements according to the internal order.
Note that this order may differ from the ordering with which sets are printed
on the screen:

>> s := {1, 2, 3}

{1, 2, 3}

>> op(s)

3, 2, 1

Indexed access to set elements uses the ordering visible on the screen:

>> s[1], s[2], s[3]

1, 2, 3

678

Note that access to set elements via op is much faster than indexed calls:

>> s := {sqrt(i) $ i = 1..500}:
time([op(s)])/time([s[i] $ i = 1..nops(s)]);

1/364

>> delete s:

Example 10. The operands of a list are its entries:

>> op([a, b, c, [d, e]])

a, b, c, [d, e]

>> op([[a11, a12], [a21, a22]], [2, 1])

a21

Example 11. Internally, the operands of an array form a “linear” sequence
containing all entries:

>> op(array(1..2, 1..2, [[11, 12], [21, 22]]))

11, 12, 21, 22

Undefined entries are returned as NIL:

>> op(array(1..2, 1..2))

NIL, NIL, NIL, NIL

Example 12. The operands of a table consist of equations relating the indices
and the corresponding entries:

>> T := table((1, 2) = x + y, "diff(sin)" = cos, a = b)

table(
a = b,
"diff(sin)" = cos,
(1, 2) = x + y

)

>> op(T)

a = b, "diff(sin)" = cos, (1, 2) = x + y

>> delete T:

679

Example 13. Expression sequences are not flattened:

>> op((a, b, c), 2)

b

Note, however, that the arguments passed to op are evaluated. In the following
call, evaluation of x flattens this object:

>> x := hold((1, 2), (3, 4)): op(x, 1)

1

Use val to prevent simplification of x:

>> op(val(x), 1)

1, 2

>> delete x:

Background:

A We explain the meaning of “operands” for some basic data types:

• Identifiers, integers, real floating point numbers, character strings,
as well as the Boolean constants are “atomic” objects. They have
only one operand: the object itself. Cf. example 8.

• A rational number of type DOM_RAT has two operands: the numer-
ator and the denominator. Cf. example 8.

• A complex number of type DOM_COMPLEX has two operands: the real
part and the imaginary part. Cf. example 8.

• The operands of a set are its elements.

Note that the ordering of the elements as printed on the screen
does not necessarily coincide with the internal ordering re-
ferred to by op. Cf. example 9.

!

• The operands of a list are its elements. Cf. example 10.

• The operands of arrays are its entries. Undefined entries are re-
turned as NIL. Cf. the examples 11 and 6.

• The operands of tables are the equations associating an index with
the corresponding entry. Cf. example 12.

• The operands of an expression sequence are its elements. Note that
such sequences are not flattened by op. Cf. example 13.

680

• The operands of a symbolic function call such as f(x, y, ...) are
the arguments x, y etc. The function name f is the 0-the operand.

• In general, the operands of expressions of type DOM_EXPR are given
by their internal representation. There is a 0-th operand (“the op-
erator”) corresponding to the type of the expression. Internally, the
operator is a system function, the expression corresponds to a func-
tion call. E.g., a + b + c has to be interpreted as _plus(a, b, c),
a symbolic indexed call such as A[i, j] corresponds to _index(A,
i, j). The name of the system function is the 0-th operand (i.e.,
_plus and _index in the previous examples), the arguments of the
function call are the further operands.

operator – define a new operator symbol

operator(symb, f, T, prio) defines a new operator symbol symb of type T
with priority prio. The function f evaluates expressions using the new operator.

operator(symb, Delete) removes the definition of the operator symbol symb.

Call(s):

A operator(symb, f <, T, prio>)

A operator(symb, Delete)

Parameters:
symb — the operator symbol: a character string.
f — the function evaluating expressions using the operator.
T — the type of the operator: one of the options Prefix , Postfix ,

Binary or Nary . The default is Nary .
prio — the priority of the operator: an integer between 1 and 1999.

The default is 1300.

Options:

Prefix — the operator is a unary operator with prefix notation
Postfix — the operator is a unary operator with postfix notation
Binary — the operator is a non-associative binary operator with

infix notation
Nary — the operator is an associative binary operator with infix

notation
Delete — the operator with symbol symb is deleted

Return Value: the void object of type DOM_NULL.

681

Side Effects: The new operator symbol symb is known by the parser and may
be used to enter expressions. The new operator symbol will not be used when
reading files using the function read with the option Plain .

Details:

A operator is used to define new user-defined operator symbols or to delete
them.

A Given the operator symbol "++", say, with evaluating function f, the
following expressions are built by the parser, depending on the type of
the operator:

Prefix: The input ++x results in f(x).

Postfix: The input x++ results in f(x).

Binary: The input x ++ y ++ z results in f(f(x, y), z).

Nary: The input x ++ y ++ z results in f(x, y, z)).

A There may exist operator symbols which are prefixes of other operator
symbols. The scanner reads as many characters as possible and chooses
the longest matching operator symbol. Cf. example 3.

A It is not possible to define two operators with the same symbol. So one
may not define a unary ++ and a binary ++ at the same time.

A The following restrictions exist for the operator symbol string symb:

• It may not be longer than 32 characters.

• It may not start with a white-space.

• It may not start with a \ (backslash) character.

Thus, the strings " @" and "\\/" are not allowed. Please note that cur-
rently operator does not check these restrictions.

A Builtin operators may be redefined.

A It is not possible to define out-fix operators like |x| or 3-nary or other
types of operators.

A The new operator symbol is also used if files are read, with one exception:
if a file is read with the function read using the option Plain , the new
operator is not taken into account. (This option is used if MuPAD library
files are read, because otherwise user-defined operators could change the
meaning of the source code in an uncontrolled way.)

682

A Currently, there is no comfortable way to configure the output of ex-
pressions containing user-defined operators. (One may use the function
builtin to define the text output of expressions. This, however, is not
recommended.)

A See the MuPAD 2.0 quick reference for the precedence of the builtin op-
erators.

Option <Prefix>:

A The operator is regarded as a unary operator with prefix notation. Given
the operator symbol "++" and the evaluation function f, the input ++x is
parsed as the expression f(x).

Option <Postfix>:

A The operator is regarded as a unary operator with postfix notation. Given
the operator symbol "++" and the evaluation function f, the input x++ is
parsed as the expression f(x).

Option <Binary>:

A The operator is regarded as a non-associative binary operator with infix
notation. Given the operator symbol "++" and the evaluation function f,
the input x ++ y ++ z is parsed as the expression f(f(x, y), z), i.e.
the operator binds left-to-right.

Option <Nary>:

A The operator is regarded as an associative n-ary operator with infix nota-
tion. Given the operator symbol "++" and the evaluation function f, the
input x ++ y ++ z is parsed as the expression f(x, y, z).

Example 1. This example shows how to define an operator symbol for the
bit-shift operation (as in the language C):

>> bitshiftleft := (a, b) -> a * 2^b:
operator("<<", bitshiftleft, Binary, 950):

After this call, the symbol can be used to enter expressions:

>> 2 << 1, x << y

683

y
4, x 2

>> operator("<<", Delete):

Example 2. Identifiers may be used as operator symbols:

>> operator("x", _vector_product, Binary, 1000):

>> a x b x c

_vector_product(_vector_product(a, b), c)

>> operator("x", Delete):

Example 3. This example shows that the scanner tries to match the longest
operator symbol:

>> operator("~", F, Prefix, 1000):
operator("~>", F1, Prefix, 1000):
operator("~~>", F2, Prefix, 1000):

>> ~~ x, ~~> x, ~ ~> x, ~~~> x

F(F(x)), F2(x), F(F1(x)), F(F2(x))

>> operator("~", Delete):
operator("~>", Delete):
operator("~~>", Delete):

Background:

A When the scanner reads a new token, it first discards any whitespace
and backslash characters. Then it tries to match user-defined operator
symbols. The longest user-defined operator symbol matching the scanned
characters is made the next token. If no user-defined operator symbol
matches, it scans for the built-in tokens.

A The parser uses both recursive-descend and a operator precedence parsing.
Built-in and user-defined operators are parsed using operator precedence.

package – load a package of new library functions

package(dirname) loads a new library package.

684

Call(s):

A package(dirname <, Quiet> <, Forced>)

Parameters:

dirname — a valid directory path: a character string

Options:

Quiet — suppresses screen output while loading the library
Forced — enforces reloading of libraries that are already loaded

Return Value: the value of the last statement in the initialization file init.mu
of the package.

Side Effects: The path dirname/lib is prepended to the search path LIBPATH.
The path dirname/modules/OSName is prepended to the search path READPATH
(OSName is the name of the operating system; cf. sysname). This way, library
functions are first searched for in the package. Modules contained in the pack-
age are found automatically. In case of a naming conflict, a package function
overrides a function of the system’s main library.

Related Functions: export, FILEPATH, LIBPATH, loadmod, loadproc,
newDomain, PACKAGEPATH, read, READPATH

Details:

A In MuPAD, procedures implementing algorithms from a specific math-
ematical area are organized as libraries. E.g., numlib is the library for
number theory, numeric is the library for numerical algorithms etc. Also
the user should organize collections of related functions as a library pack-
age. With a suitable structure of the folder containing the files with the
source code, the whole library can be loaded into the MuPAD session via
a call to package.

A Formally, a library is a domain. The functions in the library are its slots
and are accessed by the “slot operator” :: as in numlib::fibonacci,
numeric::int etc.

A Typically, either a new library domain is to be created and its functions
are to be loaded by package, or new functions are to be added to an
existing library domain of MuPAD’s standard installation. The detailed
example 1 below is devoted to the former case, whereas example 2 covers
the latter case. Special care should be taken, when existing libraries are
modified: the user should make sure that existing functionality is not
overwritten or destroyed by the modification.

685

A The folder mypack, say, containing the library package to be loaded can be
placed anywhere in the filesystem. The pathname specified in a package
call may be an absolut path (from the root to mypack). Alternatively, a
path relative to the “working directory” may be specified.

Note that the “working directory” is different on different operating sys-
tems. On Windows systems, for example, the “working directory” is the
folder, where MuPAD is installed. On UNIX or Linux systems, it is the
directory in which the current MuPAD session was started.

If the environment variable PACKAGEPATH contains the path to the folder
mypack, package only needs the name of the package as its argument,
which is "mypack".

A The folder mypack must have the same hierarchical structure as the stand-
ard MuPAD library. In particular, it must have a subfolder lib containing
the source files of the package. Inside the lib folder, an initialization file
init.mu must exist.

For example, on a UNIX or Linux system, the folder mypack should have
the following structure (up to different path separators, the same holds
for other operating systems as well):

mypack/lib/init.mu
mypack/lib/LIBFILES/mylib.mu
mypack/lib/MYLIB/stuff.mu
mypack/lib/MYLIB/...
mypack/lib/MYLIB/SUBDIR/morestuff.mu
mypack/lib/MYLIB/SUBDIR/...

Typically, the initialization file init.mu uses loadproc commands to
define the objects (new library domains and/or functions) of the pack-
age.

If a new library domain is to be created, the lib folder should contain a
subfolder LIBFILES with a file LIBFILES/mylib.mu. The loadproc com-
mands inside init.mu should refer to the file mylib.mu. Inside this file,
the new library domain should be created via newDomain. The functions
(slots) of this new library domain should again be declared via loadproc
commands that refer to the actual location of the files containing the
source code of these functions. The code files should be organized in
folders such as lib/MYLIB, lib/MYLIB/SUBDIR etc.

This structure and the loading mechanism corresponds to the organization
of MuPAD’s main library. It uses the initialization file MuPAD_ROOT_PATH/lib/sysinit.mu.

A If a new library domain mylib, say, is to be generated by the pack-
age, the initialization file mypack/lib/init.mu should refer to the file
LIBFILES/mylib.mu where the library is actually created:

// -------- file mypack/lib/init.mu --------

686

// load the library domain ’mylib’
alias(path = pathname("LIBFILES")):
mylib := loadproc(mylib, path, "mylib"):
unalias(path):
stdlib::LIBRARIES := stdlib::LIBRARIES union {"mylib"}:
// The return value of the package call:
null():
// ---------- end of file init.mu ----------

By adding the new library domain mylib to the set stdlib::LIBRARIES,
a call to package will automatically launch the info function to print
information about the new package. The information includes the string
mylib::info that should be defined in LIBFILES/mylib.mu.

The value of the last statement in the file init.mu is the return value of a
package call. Typically, this is the null() object to avoid any unwanted
screen output when loading the package. Alternatively, some useful in-
formation such as the string "package ’mylib’ successfully loaded"
may be returned.

Cf. example 1 for further details.

A The file LIBFILES/mylib.mu should generate the new library domain via
newDomain. Some standard entries such as mylib::Name, mylib::info,
and mylib::interface should be defined. The functions mylib::function1
etc. of the new library should refer to the actual code files via loadproc:

// ---- file mypack/lib/LIBFILES/mylib.mu ----
// mylib -- a library containing my functions
mylib := newDomain("mylib"):
mylib::Name := "mylib":
mylib::info := "Library ’mylib’: a library with my functions":
mylib::interface := {hold(function1), hold(function2), ...}:
// define the functions implemented in ../MYLIB/function1.mu etc:
alias(path = pathname("MYLIB")):
mylib::function1 := loadproc(mylib::function1, path, "function1"):
mylib::function2 := loadproc(mylib::function2, path, "function2"):
...
unalias(path):
// define the functions implemented in ../MYLIB/SUBDIR/more1.mu etc:
alias(path = pathname("MYLIB", "SUBDIR")):
mylib::more1 := loadproc(mylib::more1, path, "more1"):
mylib::more2 := loadproc(mylib::more2, path, "more2"):
...
unalias(path):
null():
// -------- end of file mylib.mu ------------

687

Cf. example 1 for further details.

A When a package initialisation file is read the variable FILEPATH contains
the path of the file.

Option <Quiet>:

A This option suppresses printing of information about the package during
loading.

Option <Forced>:

A Usually, a package is loaded only once; a further attempt to reload the
package causes an error. This option allows to enforce reloading of pack-
ages that are already loaded.

Example 1. In the following, we demonstrate how a package should be organ-
ized that generates a new library domain containing user-defined functions. In
example 2, we load the same functions, but include them in one of MuPAD’s
standard libraries rather than create a new library domain.

Suppose we have implemented some functions operating on integers such as
a factorial function and a new function for computing powers of integers. It
is a good idea to combine these functions into one package. The new library
domain is to be called numfuncs (for elementary number theoretic functions).
It is organized as a package stored in the folder demoPack1. This folder has the
following structure:

demoPack1/lib/init.mu
demoPack1/lib/LIBFILES/numfuncs.mu
demoPack1/lib/NUMFUNCS/factorial.mu
demoPack1/lib/NUMFUNCS/russian.mu

The initialization file init.mu may be implemented as follows:

// ----- file demoPack1/lib/init.mu -----
// loads the library ’numfuncs’
alias(path = pathname("LIBFILES")):
numfuncs := loadproc(numfuncs, path, "numfuncs"):
stdlib::LIBRARIES := stdlib::LIBRARIES union {"numfuncs"}:
unalias(path):
// return value of package:
"library ’numfuncs’ successfully loaded":
// -------- end of file init.mu ---------

688

The function pathname is used to create the pathname in a form that is appro-
priate for the currently used operating system. The loadproc call refers to the
actual definition of the new library domain in the file LIBFILES/numfuncs.mu:

// --- file demoPack1/lib/LIBFILES/numfuncs.mu ---
// numfuncs -- the library for elementary number theory
numfuncs := newDomain("numfuncs"):
numfuncs::Name := "numfuncs":
numfuncs::info := "Library ’numfuncs’: the library of ".

"functions for elementary number theory":
numfuncs::interface := {hold(factorial), hold(russianPower)}:
// define the functions implemented in ../NUMFUNCS/factorial.mu etc:
alias(path = pathname("NUMFUNCS")):
numfuncs::factorial :=

loadproc(numfuncs::factorial, path, "factorial"):
numfuncs::odd :=

loadproc(numfuncs::odd, path, "russian"):
numfuncs::russianPower :=

loadproc(numfuncs::russianPower, path, "russian"):
unalias(path):
null():
// --------- end of file numfuncs.mu ---------

Here, the new library domain is created via newDomain. Any library domain
should have the entries Name and info. One may also define an interface
entry, which is to contain all the functions a user should be aware of.

This file also contains the definitions of the functions factorial, odd, and
russianPower which are implemented in the subfolder demoPack1/lib/NUMFUNCS.
(See example 2 for details of the implementation; just replace numlib by numfuncs.)

The function numfuncs::factorial is implemented in a separate file. The
functions numfuncs::odd and numfuncs::russianPower are both installed in
the file russian.mu.

Note that numfuncs::odd is not added to the interface slot, because it is a
utility function that should not be seen and used by the user.

Finally, we demonstrate the loading of the library package. Suppose that
we have several packages, installed in the folder myMuPADFolder:

/home/myLoginName/myMuPADFolder/demoPack1
/home/myLoginName/myMuPADFolder/demoPack2
...

The library numfuncs installed in demoPack1 is loaded by a call to the package
function:

>> PACKAGEPATH := "/home/myLoginName/myMuPADFolder/", PACKAGEPATH:
package("demoPack1")

689

Library ’numfuncs’: the library of functions for elementary \
number theory

-- Interface:
numfuncs::factorial, numfuncs::russianPower

"library ’numfuncs’ successfully loaded"

In the initialization file init.mu, the new library was added to stdlib::LIBRARIES.
For the reason, loading causes the above information about the library to be
printed. By default, a library package can be loaded only once:

>> package("demoPack1")

Warning: Package already defined. For redefinition use option \
Forced [package]

Following the warning, we overwrite the existing library numfuncs by another
call to package using the option Forced :

>> package("demoPack1", Forced)

Warning: Package redefined [package]

"library ’numfuncs’ successfully loaded"

After loading, the new library numfuncs is fully integrated into the system. Its
functions can be called like any other function of MuPAD’s main library:

>> numfuncs::factorial(41)

33452526613163807108170062053440751665152000000000

>> numfuncs::russianPower(123, 12)

11991163848716906297072721

Example 2. We demonstrate how a package should be organized that adds
new functions to an existing library domain.

We consider the same functions as in example 1. However, instead of cre-
ating a new library domain, we wish to add these functions to the existing
library domain numlib of MuPAD’s main library. In particular, the package is
to install the new functions numlib::factorial and numlib::russianPower.
Before loading such functions, we should make sure that they do not overwrite
existing functions of the standard numlib installation. As a simple test to check
that the standard installation does not provide a function numlib::factorial,
one may simply try to call this function:

690

>> numlib::factorial

FAIL

Indeed, this function does not exist yet and shall now be provided by an exten-
sion installed in a folder demoPack2:

demoPack2/lib/init.mu
demoPack2/lib/NUMLIB/factorial.mu
demoPack2/lib/NUMLIB/russian.mu

In this case, no new library domain is to be created. Hence, in contrast to
example 1, no file demoPack2/lib/LIBFILES/numlib.mu needs to be installed
(which would be in conflict with the corresponding file defining the numlib
library domain of the standard installation). Instead, the new functions may
be declared directly in the initialization file init.mu as follows:

// ------ file demoPack2/lib/init.mu -------
// loads additional functions for the existing library ’numlib’
numlib::interface := numlib::interface

union {hold(factorial), hold(russianPower)}:
// define the functions implemented in ../NUMLIB/factorial.mu etc:
alias(path = pathname ("NUMLIB")):
numlib::factorial :=

loadproc(numlib::factorial, path, "factorial"):
numlib::odd :=

loadproc(numlib::odd, path, "russian"):
numlib::russianPower :=

loadproc(numlib::russianPower, path, "russian"):
unalias(path):
// return value of package:
"new numlib functions successfully loaded":
// ---------- end of file init.mu ----------

Similar to example 1, we added the main functions to the existing interface
slot of numlib.

We now have a look into the files factorial.mu and russian.mu containing
the source code of the functions:

// ---- file demoPack2/lib/NUMLIB/factorial.mu ----
numlib::factorial :=
proc(n : Type::NonNegInt) : Type::PosInt
// factorial(n) computes n!

begin
if n = 0 then 1
else n*numlib::factorial(n - 1)
end_if

end_proc:
// -------- end of file factorial.mu ---------

691

The routine numlib::odd is a utility function for numlib::russianPower. Both
functions are coded in one file:

// ---- file demoPack2/lib/NUMLIB/russian.mu ----
numlib::odd := m -> not(iszero(m mod 2)):

numlib::russianPower :=
proc(m : DOM_INT, n : Type::NonNegInt) : DOM_INT
// computes the n-th power of m using the
// russian peasant method of multiplication
local d;

begin
d := 1;
while n>0 do
if numlib::odd(n) then
d := d*m;
n := n - 1;

else
m := m*m;
n := n div 2;

end_if
end_while;
d

end_proc:
// ----------- end of file russian.mu ------------

Finally, we demonstrate the loading of the functions. Suppose that we have
several packages, installed in the folder myMuPADFolder:

/home/myLoginName/myMuPADFolder/demoPack1
/home/myLoginName/myMuPADFolder/demoPack2
...

The functions installed in demoPack2 are loaded by a call to the package func-
tion:

>> PACKAGEPATH := "/home/myLoginName/myMuPADFolder", PACKAGEPATH:
package("demoPack2")

"new numlib functions successfully loaded"

The new functions added to the interface slot of numlib are listed by an info
call:

>> info(numlib)

692

Library ’numlib’: the package for elementary number theory

-- Interface:
numlib::Lambda, numlib::Omega,
...
numlib::factorial, numlib::fibonacci,
...
numlib::proveprime, numlib::russianPower,
...

After loading, the new functions are fully integrated into the library and can
be called like any other function of MuPAD’s library:

>> numlib::factorial(41)

33452526613163807108170062053440751665152000000000

>> numlib::russianPower(123, 12)

11991163848716906297072721

Changes:

A package now looks in PACKAGEPATH for packages.

pade – Pade approximation

pade(f, ..) computes a Pade approximant of the expression f.

Call(s):

A pade(f, x <, [m, n]>)

A pade(f, x = x0 <, [m, n]>)

Parameters:
f — an arithmetical expression or a series of domain type

Series::Puiseux generated by the function series
x — an identifier
x0 — an arithmetical expression. If x0 is not specified, then x0 = 0 is

assumed.

Options:

[m, n] — a list of nonnegative integers specifying the order of the
approximation. The default values are [3, 3].

693

Return Value: an arithmetical expression or FAIL.

Related Functions: series

Details:

A The Pade approximant of order [m,n] around x = x0 is a rational expres-
sion

(x− x0)p a0 + a1 (x− x0) + · · ·+ am (x− x0)m

1 + b1 (x− x0) + · · ·+ bn (x− x0)n

approximating f . The parameters p and a0 are given by the leading
order term f = a0 (x− x0)p +O((x− x0)p+1) of the series expansion of f
around x = x0. The parameters a1, . . . , bn are chosen such that the series
expansion of the Pade approximant coincides with the series expansion of
f to the maximal possible order.

A The expansion points infinity, -infinity, and complexInfinity are
not allowed.

A If no series expansion of f can be computed, then FAIL is returned. Note
that series must be able to produce a Taylor series or a Laurent series
of f , i.e., an expansion in terms of integer powers of x− x0 must exist.

Example 1. The Pade approximant is a rational approximation of a series
expansion:

>> f := cos(x)/(1 + x): P := pade(f, x, [2, 2])

2
2 x - 7 x + 12

2
14 x + x + 12

For most expressions of leading order 0, the series expansion of the Pade ap-
proximant coincides with the series expansion of the expression through order
m+ n:

>> S := series(f, x, 6)

2 3 4 5
x x 13 x 13 x 6

1 - x + -- - -- + ----- - ----- + O(x)
2 2 24 24

This differs from the expansion of the Pade approximant at order 5:

>> series(P, x, 6)

694

2 3 4 5
x x 13 x 85 x 6

1 - x + -- - -- + ----- - ----- + O(x)
2 2 24 144

The series expansion can be used directly as input to pade:

>> pade(S, x, [2, 3]), pade(S, x, [3, 2])

2 2 3
12 - 5 x 12 x + 7 x - 7 x - 12

-------------------, -----------------------
2 3 2

12 x + x + x + 12 13 x - 12

Both Pade approximants approximate f through order m+ n = 5:

>> map([%], series, x)

-- 2 3 4 5
| x x 13 x 13 x 6
| 1 - x + -- - -- + ----- - ----- + O(x),
-- 2 2 24 24

2 3 4 5 --
x x 13 x 13 x 6 |

1 - x + -- - -- + ----- - ----- + O(x) |
2 2 24 24 --

>> delete f, P, S:

Example 2. The following expression does not have a Laurent expansion
around x = 0:

>> series(x^(1/3)/(1 - x), x)

1/3 4/3 7/3 10/3 13/3 16/3 19/3
x + x + x + x + x + x + O(x)

Consequently, pade fails:

>> pade(x^(1/3)/(1 - x), x, [3, 2])

FAIL

695

Example 3. Note that the specified orders [m,n] do not necessarily coincide
with the orders of the numerator and the denominator if the series expansion
does not start with a constant term:

>> pade(x^10*exp(x), x, [2, 2]), pade(x^(-10)*exp(x), x, [2, 2])

10 11 12 2
12 x + 6 x + x 6 x + x + 12
--------------------, --------------------

2 10 11 12
x - 6 x + 12 12 x - 6 x + x

partfrac – compute a partial fraction decomposition

partfrac(f, x) returns the partial fraction decomposition of the rational ex-
pression f with respect to the variable x.

Call(s):

A partfrac(f <, x>)

Parameters:
f — a rational expression in x
x — the indeterminate: typically, an identifier or an indexed identifier.

Return Value: an arithmetical expression.

Overloadable by: f

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: collect, denom, divide, expand, factor, normal,
numer, rectform, rewrite, simplify

Details:

A Consider the rational expression f(x) = g(x)+p(x)/q(x) with polynomials
g, p, q satisfying degree(p) < degree(q). Here, q = denom(f) is the
denominator of f , and g, p, given by (g, p) = divide(numer(f), q,
[x]), are the quotient and the remainder of the polynomial division of
the numerator of f by the denominator q. Let

q(x) = q1(x)e1 · q2(x)e2 · . . .

696

be a factorization of the denominator into nonconstant and pairwise coprime
polynomials qi with integer exponents ei. The partial fraction decompos-
ition based on this factorization is a representation

f(x) = g(x) +
p11(x)
q1(x)

+ · · ·+ p1e1(x)
q1(x)e1

+
p21(x)
q2(x)

+ · · ·+ p2e2(x)
q2(x)e2

+ · · ·

with polynomials pij satisfying degree(pij) < degree(qi). In particular,
the polynomials pij are constant if qi is a linear polynomial.

partfrac uses the factors qi of q = denom(f) found by the function
factor. The factorization is computed over the field implied by the coef-
ficients of the denominator (see factor for details). Cf. example 2.

A The second argument x in a call to partfrac can be omitted if f has only
one indeterminate.

A The partial fraction decomposition can also be computed for expressions
that are rational with respect to a symbolic function call. This function
call must be specified as the indeterminate. Cf. example 3.

Example 1. In the following calls, there is no need to specify an indeterminate
because the rational expressions are univariate:

>> partfrac(x^2/(x^3 - 3*x + 2))

5 1 4
--------- + ---------- + ---------
9 (x - 1) 2 9 (x + 2)

3 (x - 1)

>> partfrac(23 + (x^4 + x^3)/(x^3 - 3*x + 2))

19 2 8
x + --------- + ---------- + --------- + 24

9 (x - 1) 2 9 (x + 2)
3 (x - 1)

The following expression contains two indeterminates x and y. One has to
specify the variable with respect to which the partial fraction decomposition
shall be computed:

>> f := x^2/(x^2 - y^2): partfrac(f, x), partfrac(f, y)

y y x x
--------- - --------- + 1, --------- + ---------
2 (x - y) 2 (x + y) 2 (x + y) 2 (x - y)

>> delete f:

697

Example 2. In the following, we demonstrate the dependence of the partial
fraction decomposition on the function factor:

>> partfrac(1/(x^2 + 2), x)

1

2
x + 2

Note that the denominator x2 + 2 does not factor over the rational numbers:

>> factor(x^2 + 2)

2
x + 2

However, it factors over the extension containing
√
−2. In the following calls,

this extended coefficient field is implicitly assumed by factor and, consequently,
by partfrac:

>> factor(sqrt(-2)*x^2 + 2*sqrt(-2))

1/2 1/2 1/2
(I 2) (x - I 2) (x + I 2)

>> partfrac(x/(sqrt(-2)*x^2 + 2*sqrt(-2)), x)

1/2 / 1 1 \
- 1/2 I 2 | -------------- + -------------- |

| 1/2 1/2 |
\ 2 (x - I 2) 2 (x + I 2) /

Example 3. Rational expressions of symbolic function calls may also be de-
composed into partial fractions:

>> partfrac(1/(sin(x)^4 - sin(x)^2 + sin(x) - 1), sin(x))

2
2 sin(x) sin(x)

- -------- - ------- - 2/3
1 3 3

-------------- + --------------------------
3 (sin(x) - 1) 2 3

sin(x) + sin(x) + 1

698

Changes:

A partfrac is now overloadable.

patchlevel – the patch number of the installed MuPAD library

patchlevel() returns the patch number of the currently installed MuPAD lib-
rary.

Call(s):

A patchlevel()

Return Value: a nonnegative integer.

Related Functions: Pref::kernel, version

Details:

A patchlevel provides information about the patches installed in the local
MuPAD setup. Patches (bug-fixes) to a release of the mathematical lib-
raries are provided by Sciface Software or the MuPAD group. Whenever
a new patch is installed, the patch level is increased by 1. The currently
used library is determined by its version number (cf. the function version)
together with its patch number.

A patchlevel is not related to the kernel version (Pref::kernel).

A Each new MuPAD version is initially released with patch number 0.

A To get information about new patches, please visit our web site at www.mupad.de.

Example 1. To query the version of the MuPAD library of your local install-
ation, ask for its version number

>> version()

[2, 5, 0]

and for its patch number:

>> patchlevel()

0

If the returned patch number is greater than zero, a patch was installed.

699

pathname – create a platform dependent path name

pathname(dir, subdir, ...) returns a relative path name valid on the used
operating system.

Call(s):

A pathname(dir, subdir, ..)

A pathname(Root , dir, subdir, ..)

Parameters:

dir, subdir, .. — names of directories: character strings

Options:

Root — makes pathname generate an absolute path name

Return Value: a string.

Related Functions: fclose, fileIO, finput, fopen, fprint, fread,
ftextinput, LIBPATH, loadproc, package, print, protocol, read, READPATH,
write, WRITEPATH

Details:

A pathname is used to specify pathnames via MuPAD strings. Directories
and subdirectories are concatenated in a suitable way creating a valid
pathname for the currently used operating system. For example, this
mechanism may be used to specify the location of library files independent
of the platform.

A In order to create valid path names for the operating systems supported by
MuPAD, the conventions holding for the corresponding operating system
must be complied with. In particular, the names must not contain the
characters “/” , “\” or “:”. Compliance with these conventions is tested
by pathname.

A Under Windows, pathname does not allow to specify a volume to become
part of the path name. Names are always relative to the current volume.

A Examples:

700

call result platform
pathname("lib", "linalg") "lib/linalg/" UNIX/Linux

"lib\\linalg\\" Windows
":lib:linalg:" MacOS

pathname(Root, "lib", "linalg") "/lib/linalg/" UNIX/Linux
"\\lib\\linalg\\" Windows
"lib:linalg:" MacOS

A For an overview of all file related MuPAD functions, also try ?fileIO.

Example 1. The following examples are created on a UNIX/Linux system:

>> pathname("lib", "linalg")

"lib/linalg/"

>> pathname(Root, "lib", "linalg") . "det.mu"

"/lib/linalg/det.mu"

pdivide – pseudo-division of polynomials

pdivide(p, q) computes the pseudo-division of the univariate polynomials p
and q.

Call(s):

A pdivide(p, q <, mode>)

A pdivide(f, g <, [x]> <, mode>)

Parameters:
p, q — univariate polynomials of type DOM_POLY.
f, g — arithmetical expressions
x — an identifier or an indexed identifier. Multivariate expressions

are regarded as univariate polynomials in the indeterminate x.

Options:

mode — either Quo or Rem . With Quo , only the pseudo-quotient is
returned; with Rem , only the pseudo-remainder is returned.

Return Value: a polynomial, or a polynomial expression, or a sequence of
an element of the coefficient ring of the input polynomials and two polynomi-
als/polynomial expressions, or the value FAIL.

701

Overloadable by: p, q, f, g

Related Functions: content, degree, divide, factor, gcd, gcdex,
ground, lcoeff, multcoeffs, poly

Details:

A pdivide(p, q) computes the pseudo-division of the univariate polynomi-
als p and q. It returns the sequence b, s, r, where b = lcoeff(q)^(degree(p)
- degree(q) + 1) is an element of the coefficient ring of the polynomials.
The polynomials s (the pseudo-quotient) and r (the pseudo-remainder)
satisfy b p = s q + r, degree(p) = degree(s) + degree(q), degree(r) <
degree(q).

A The first two arguments can be either polynomials or arithmetical expres-
sions.

Polynomials must be of the same type, i.e., their variables and coefficient
rings must be identical.

Expressions are internally converted to polynomials (see the function
poly). If no indeterminate x is specified, all symbolic variables in the
expressions are regarded as indeterminates. FAIL is returned if more than
one indeterminate is found. FAIL is also returned if the expressions cannot
be converted to polynomials.

The resulting polynomials have the same type as the first two arguments,
i.e., they are either polynomials of type DOM_POLY or polynomial expres-
sions.

A In contrast to divide, pdivide does not require that the coefficient ring of
the polynomials implements a "_divide" slot: coefficients are not divided
in this algorithm.

A pdivide is a function of the system kernel.

Example 1. This example shows the result of the pseudo-division of two poly-
nomials:

>> p:= poly(x^3 + x + 1): q:= poly(3*x^2 + x + 1):
[b, s, r] := [pdivide(p, q)]

[9, poly(3 x - 1, [x]), poly(7 x + 10, [x])]

The result satisfies the following equation:

>> multcoeffs(p, b) = s*q + r

3 3
poly(9 x + 9 x + 9, [x]) = poly(9 x + 9 x + 9, [x])

702

Pseudo-quotients and pseudo-remainders can be computed separately:

>> pdivide(p, q, Quo), pdivide(p, q, Rem)

poly(3 x - 1, [x]), poly(7 x + 10, [x])

>> delete p, q, b, s, r:

Example 2. The coefficient ring can be an arbitrary ring, e.g., the residue
class ring of integers modulo 8:

>> pdivide(poly(x^3 + x + 1, IntMod(8)),
poly(3*x^2 + x + 1, IntMod(8)))

1, poly(3 x - 1, [x], IntMod(8)), poly(- x + 2, [x], IntMod(8))

Example 3. Here the input consists of multivariate polynomial expressions
which are regarded as univariate polynomials in x:

>> pdivide(x^3 + x + y, a*x^2 + x + 1, [x])

2 2
a , a x - 1, a y + x (a (a - 1) + 1) + 1

Example 4. The first argument cannot be converted to a polynomial. The
return value is FAIL:

>> pdivide(1/x, x)

FAIL

piecewise – the domain of conditionally defined objects

piecewise([condition1, object1], [condition2, object2], ...) gen-
erates a conditionally defined object that equals object1 if condition1 is
satisfied, object2 if condition2 is satisfied, etc.

Creating Elements:

A piecewise([condition1, object1], [condition2, object2], ...)

703

Parameters:
condition1, condition2, ... — Boolean constants or expressions

representing logical formulas
object1, object2, ... — arbitrary objects

Side Effects: Properties of identifiers set by assume are taken into account.

Related Functions: _case, _if, assume, bool, is

Details:

A piecewise differs from the if and case branching statements in two ways.
First, the property mechanism is used to decide the truth of the conditions.
Hence the result depends on the properties of the identifiers that appear
in the conditions. Second, piecewise treats conditions mathematically,
while if and case evaluate them syntactically. Cf. example 2.

A A pair [condition, object] is called a branch. If condition is provably
false, then the branch is discarded altogether. If condition is provably
true, then piecewise returns object. If none of the conditions is provably
true, an object of type piecewise is created containing all branches that
have not been discarded.

If all conditions are provably false, or if no branch is given, then piecewise
returns undefined. Cf. example 1.

A The conditions need not be exhaustive, nor need they exclude each other.
If you substitute values for the occurring parameters, it may happen that
all conditions become false, but it may also happen that more than one
condition becomes true.

A If several conditions are simultaneously true, piecewise returns the first
object defined under a condition that is recognized to be true. The user
has to ensure that the objects corresponding to the true conditions all
have the same mathematical meaning. You cannot rely on the system to
recognize the first mathematically true condition as true.

A Whenever an object of type piecewise is evaluated, the truth of the con-
ditions is checked again for the current values and the current properties
of the identifiers involved. This may be used to simplify the result of a
computation under various different assumptions.

A Conditionally defined objects may be nested: both conditions and objects
may be conditionally defined themselves. piecewise automatically de-
nests (“flattens”) such objects. For example, “if A then (if B then C)”
becomes “if A and B then C”. Cf. example 7.

A Arithmetical and set-theoretic operations work for conditionally defined
objects, provided these operations are defined for all objects contained in

704

the branches. If f is such an operation and p1, p2, ... are conditionally
defined objects, then f(p1, p2, ...) is the conditionally defined object
consisting of all branches of the form [condition1 and condition2 and
..., f(object1, object2, ...)], where
[condition1, object1] is a branch of p1, [condition2, object2] is
a branch of p2, etc. This can also be understood as follows: applying f
commutes with any assignment to free parameters in the conditions.

Conditionally defined objects can also be mixed with other objects in such
operations: If, e.g., p1 is not a conditionally defined object, it is handled
like a conditionally defined object with the only branch [TRUE, p1].

Cf. examples 3 and 6.

A In particular, the previous remark holds for unary operators and func-
tions with one argument: if called with a conditionally defined object as
argument, they are mapped to the objects in each branch. Cf. example 5.

Mathematical Methods

Method _in: membership with piecewise on the left hand side

_in(piecewise p, set S)

A This method returns a logical formula that is equivalent to “p is an
element of S”.

A This method overloads _in.

Method contains: apply the function contains to the objects in all
branches

contains(piecewise p, any a)

A This method applies the function contains with second argument
a to the objects in all branches of p. The result is in general again
a conditionally defined object.

A This method overloads the function contains. The objects in all
branches must be valid first arguments for contains.

Method diff: (partial) differentiation

diff(piecewise p <, identifier x, ...>)

A This method differentiates the objects in all branches of p with
respect to the given variables, starting with the leftmost one.

A If no variables are given, p is returned.

A This method overloads diff.

705

Method discont: determine the discontinuities of a piecewise defined
function

discont(piecewise p, identifier x <, domain F>)

A This method returns a superset of the discontinuities of p regarded
as a function depending on x, namely, the union of the results of ap-
plying discont to the objects in all branches of p, plus the boundary
points of the conditions of p with respect to x.

A The objects in all branches of p must be arithmetical expressions.

A This method overloads discont.

A The optional third parameter has the same meaning as for the func-
tion discont.

discont(piecewise p, x=a..b <, domain F>)

A As for the function discont, only discontinuities in the given inter-
val are returned.

Method piecewise::disregardPoints: heuristic for simplifying condi-
tions

piecewise::disregardPoints(piecewise p)

A Apply the heuristic “consider equalities to be false” to conditions
that are recognized neither as true nor as false. Since the set of zer-
oes of an equation usually has Lebesgue measure zero, this heuristic
tends to produce a simpler case distinction that is equivalent to the
original one for almost all values of the parameters. Cf. example 6.

Method expand: apply the function expand to the objects in all branches

expand(piecewise p)

A This method overloads expand.

Method factor: apply the function factor to the objects in all branches

factor(piecewise p)

A This method overloads factor.

706

Method piecewise::getElement: get any element of a conditionally
defined set

piecewise::getElement(piecewise p)

A This method returns an element that is common to the objects in
all branches of p. All such objects must represent sets.

A The result is FAIL if no such common element can be found.

A This method overloads the function solvelib::getElement.

Method has: test for the existence of a subobject

has(piecewise p, any a)

A This method tests whether a appears syntactically somewhere in
the conditions or the objects of p; it returns TRUE if this is the case,
and FALSE otherwise.

A This method overloads has.

Method int: definite and indefinite integration of a piecewise defined
function

int(piecewise p, identifier x <, range r>)

A If no range is given, this method computes the indefinite integral
of p, where p is regarded as a piecewise defined function of x. It
applies the function int to the objects in all branches of p.

A If a range a..b is given, this method computes the definite integral
of p when x runs through that range.

A This method overloads int.

Method piecewise::invlaplace: apply the function transform::invlaplace
to the objects in all branches

piecewise::invlaplace(piecewise p, identfier x, identifier t)

A This method overloads the function transform::invlaplace.

707

Method piecewise::isFinite: test whether a piecewise defined set is
finite

piecewise::isFinite(piecewise p)

A This method returns TRUE if the objects in all branches of p are
finite sets, and it returns FALSE if the objects in all branches of p
are infinite sets. Otherwise, it returns UNKNOWN.

A This method overloads solvelib::isFinite.

Method piecewise::laplace: apply the function transform::laplace
to the objects in all branches

piecewise::laplace(piecewise p, identifier x, identifier t)

A This method overloads the function transform::laplace.

Method normal: apply the function normal to the objects in all branches

normal(piecewise p)

A This method overloads normal.

Method partfrac: apply the function partfrac to the objects in all
branches

partfrac(piecewise p)

A This method overloads partfrac.

Method piecewise::restrict: impose an additional condition

piecewise::restrict(any p, condition C)

A If p is not a conditionally defined object, this method creates the
conditionally defined object with a single branch [C, p]. If p is
conditionally defined, each condition cond in p is replaced by cond
and C.

708

Method piecewise::set2expr: membership with piecewise on the right
hand side

piecewise::set2expr(piecewise p, identifier x)

A This method returns a logical formula with free parameter x that is
equivalent to “x is an element of p”.

A The objects in all branches of p must represent sets.

A This method overloads the system function _in.

Method simplify: simplify a conditionally defined object

simplify(piecewise p)

A This method performs the following simplifications:

• First, simplify is applied to the objects in all branches.

• Branches defining the same object are collected.

• If the condition of some branch implies that a free parameter
is constant, the parameter is replaced by that constant in the
object of that branch.

Cf. example 7.

A This method overloads simplify.

Method solve: solve a conditionally defined equation or inequality

solve(piecewise p, identifier x <, option1, option2, ...>)

A This method solves p for the variable x. The objects in all branches
of p must be either equations, inequalities, or arithmetical expres-
sions; each arithmetical expression e is replaced by an equation e =
0.

A For each branch [condition, object] of p, with object being an
equation or inequality, the method determines the set of all values x
such that both condition and object become true mathematically,
and returns the union of all obtained sets. The return value may be
a conditionally defined set.

A This method overloads the function solve. See the corresponding
help page for a description of the available options and an overview
of the types of sets that may be returned.

709

Method piecewise::solveConditions: isolate a given identifier in all
conditions

piecewise::solveConditions(piecewise p, identifier x)

A This method rewrites each condition of p containing x in the form
“x in S” for some appropriate set S.

Method piecewise::Union: union of a system of sets

piecewise::Union(piecewise p, identifier x, set indexset)

A This method returns the set of all elements of elements of p, where
p is regarded as a system of sets parameterized by x and x runs
through all elements of indexset.

A The objects in all branches of p must represent sets.

A For each branch [condition, object] of p, this method does the
following. It substitutes for x in object all those values from indexset
satisfying condition and takes the union over all obtained sets.
Then it returns the union over the resulting sets for all branches.

A This method overloads the function solvelib::Union.

Access Methods

Method _concat: merge piecewise objects

_concat(piecewise p, ...)

A This method returns a conditionally defined object comprising the
branches of all arguments.

A This method overloads _concat.

Method piecewise::branch: nth branch

piecewise::branch(piecewise p, positive integer n)

A This method returns the nth branch of p as a list.

Method piecewise::numberOfBranches: number of branches

piecewise::numberOfBranches(piecewise p)

A This method returns the number of branches of p.

710

Method piecewise::condition: the condition in a specific branch

piecewise::condition(piecewise p, positive integer i)

A This method returns the condition of the ith branch of p. Cf.
example 4.

Method piecewise::expression: the object in a specific branch

piecewise::expression(piecewise p, positive integer i)

A This method returns the object of the ith branch of p. Cf. ex-
ample 4.

Method piecewise::insert: insert a branch at a given position

piecewise::insert(piecewise p, branch b, positive integer i)

A This method returns p with the branch b inserted at position i.

A b can either be a branch extracted from another conditionally defined
object using extop, or a list [condition, object].

A The integer i must not exceed the number of branches of p plus
one.

A Cf. example 4.

Method piecewise::extmap: apply a function to the objects in all
branches

piecewise::extmap(piecewise p, any f <, any a, ...>)

A For each branch [condition, object] of p, object is replaced by
f(object <, a, ...>).

Method piecewise::mapConditions: apply a function to the conditions
in all branches

piecewise::mapConditions(piecewise p, any f <, any a, ...>)

A For each branch [condition, object] of p, condition is replaced
by f(condition <, a, ...>).

711

Method map: apply the function map to the objects in all branches

map(any p, any f <, any a, ...>)

A For each branch [condition, object] of p, object is replaced by
map(object, f <, a, ...>).

A This method overloads map.

Method op: apply the function op to the objects in all branches

op(piecewise p <, furtherargs, ...>)

A For each branch [condition, object] of p, object is replaced by
op(object<,furtherargs, ...>).

Method piecewise::remove: remove a branch

piecewise::remove(piecewise p, positive integer i)

A This method returns a conditionally defined object obtained from p
by deleting the ith branch. Cf. example 4.

Method piecewise::splitBranch: split a branch into two branches

piecewise::splitBranch(piecewise p, positive integer i, condi-

tion newcondition)

A This method returns a conditionally defined object obtained from
p by splitting the ith branch into two branches. Let [condition,
object] be the ith branch; then the new branches are [condition
and newcondition, object] and [condition and not newcondition,
object].

Method piecewise::selectConditions: select branches depending on
their condition

piecewise::selectConditions(piecewise p, any f <, any a, ...>)

A This method works like the function select with the selection cri-
terion given by f applied to the conditions of p. It returns the piece-
wise object derived from p by removing every branch [condition,
object] for which f(condition <, a, ...>) does not yield TRUE.

A For every condition in p, f(condition <, a, ...>) must return
a Boolean constant.

A If none of the conditions satisfies the selection criterion, undefined
is returned.

712

Method piecewise::splitConditions: split branches depending on
conditions

piecewise::splitConditions(piecewise p, any f <, any a, ...>)

A This method works like the function split with the splitting cri-
terion given by f applied to the conditions of p. It returns a list
of three conditionally defined objects, comprising those branches
[condition, object] of p for which f(condition <, a, ...>)
yields TRUE, FALSE, and UNKNOWN, respectively.

If, for some of the three Boolean values, no branch yields that value,
then the returned list contains undefined instead of a conditionally
defined object with zero branches at the corresponding position.

A For every condition in p, f(condition <, a, ...>) must return
a Boolean constant.

A Cf. example 4.

Method subs: substitution

subs(piecewise p, substitution s, ...)

A This method performs the substitution(s) s in both the conditions
and the objects of p.

A This method overloads the function subs. The calling syntax is
identical to that function; cf. the corresponding help page for a
description of the various types that are allowed for s.

Method zip: apply a binary operation pointwise

zip(any p1, any p2, any f)

A If both p1 and p2 are conditionally defined objects, then this method
returns the conditionally defined object comprising all branches of
the form [condition1 and condition2, f(object1, object2)],
where [condition1, object1] is a branch of p1 and [condition2,
object2] is a branch of p2.

A If we regard conditionally defined objects as functions from the set
A of parameter values to a set B of objects, this method imple-
ments the canonical extension of the binary operation f on B to the
binary operation g on the set BA of all functions from A to B via
(g(p1, p2))(a) = f(p1(a), p2(a)) for all a in A.

A If only one of the first two arguments—p1, say—is of type piecewise,
then each branch [condition, object] of p1 is replaced by [condition,
f(object, p2)].

713

A If neither p1 nor p2 are of type piecewise, then piecewise::zip(p1,
p2, f) returns f(p1, p2).

A This method overloads zip.

Example 1. We define f as the characteristic function of the interval [0, 1]:

>> f := x -> piecewise([x < 0 or x > 1, 0], [x >= 0 or x <= 1, 1])

x -> piecewise([x < 0 or 1 < x, 0], [0 <= x or x <= 1, 1])

None of the conditions can be evaluated to TRUE or FALSE, unless more is known
about the variable x. When we evaluate f at some point, the conditions are
checked again:

>> f(0), f(2), f(I)

1, 0, undefined

Example 2. piecewise performs a case analysis using the property mechan-
ism. It checks whether the given conditions are mathematically true or false;
it may also decide that not enough information is available. In the following
example, it cannot be decided whether a is zero as long as no assumptions on
a have been made:

>> delete a:
p := piecewise([a = 0, 0], [a <> 0, 1/a])

/ 1 \
piecewise| 0 if a = 0, - if a <> 0 |

\ a /

In contrast, if-statements evaluate the conditions syntactically: a=0 is technic-
ally false since the identifier a and the integer 0 are different objects:

>> if a = 0 then 0 else 1/a end

1
-
a

Moreover, piecewise takes properties of identifiers into account:

>> assume(a = 0):
p;
delete a, p:

0

714

Example 3. Conditionally defined objects can be created by rewriting special
functions:

>> f := rewrite(sign(x), piecewise)

/
piecewise| 1 if 0 < x, -1 if x < 0, 0 if x = 0,

|
\

x \
-------------------- if x in C_ minus R_ |

2 2 1/2 |
(Im(x) + Re(x)) /

In contrast to MuPAD, most people like to regard sign as a function defined
for real numbers only. You might therefore want to restrict the domain of f:

>> f := piecewise::restrict(f, x in R_)

piecewise(1 if 0 < x, -1 if x < 0, 0 if x = 0)

Conditionally defined arithmetical expressions allow roughly the same opera-
tions as ordinary arithmetical expressions. The result of an arithmetical oper-
ation is only defined at those points where all of the arguments are defined:

>> f + piecewise([x < 2, 5])

piecewise(6 if 0 < x and x < 2, 4 if x < 0, 5 if x = 0)

Example 4. There are several methods for extracting branches, conditions,
and objects. Consider the following conditionally defined object:

>> f := piecewise([x > 0, 1], [x < -3, x^2])

2
piecewise(1 if 0 < x, x if x < -3)

You can extract a specific condition or object:

>> piecewise::condition(f, 1), piecewise::expression(f, 2)

2
0 < x, x

The function extop extracts whole branches:

>> extop(f, 1)

715

1 if 0 < x

You can form another piecewise defined object out of those branches for which
the condition satisfies a given selection criterion, or split the input into two
piecewise defined objects, as the system functions select and split do it for
lists:

>> piecewise::selectConditions(f, has, 0)

piecewise(1 if 0 < x)

>> piecewise::splitConditions(f, has, 0)

2
[piecewise(1 if 0 < x), piecewise(x if x < -3), undefined]

You can also create a copy of f with some branches added or removed:

>> piecewise::remove(f, 1)

2
piecewise(x if x < -3)

>> piecewise::insert(f, [x > -3 and x < 0, sin(x)], 2)

2
piecewise(1 if 0 < x, sin(x) if x < 0 and -3 < x, x if x < -3)

Example 5. Most unary functions are overloaded for piecewise by mapping
them to the objects in all branches of the input. This can also be achieved using
piecewise::extmap:

>> f := piecewise([x >= 0, arcsin(x)], [x < 0, arccos(x)]):
sin(f)

2 1/2
piecewise(x if 0 <= x, (- x + 1) if x < 0)

>> piecewise::extmap(f, sin)

2 1/2
piecewise(x if 0 <= x, (- x + 1) if x < 0)

716

Example 6. Sets may also be conditionally defined. Such sets are sometimes
returned by solve:

>> S := solve(a*x = 0, x)

piecewise(C_ if a = 0, {0} if a <> 0)

The usual set-theoretic operations work for such sets:

>> S intersect Dom::Interval(3, 5)

piecewise(]3, 5[if a = 0, {} if a <> 0)

Sometimes it is interesting to exclude the “rare cases” which only cover a small
set of parameter values:

>> piecewise::disregardPoints(S)

{0}

Example 7. Consider the following case distinction:

>> p1 := piecewise([a > 0, a^2], [a <= 0, -a^2]):
p2 := piecewise([b > 0, a + b], [b = 0, p1 + b], [b < 0, a + b])

piecewise(a + b if b <> 0 and b in R_,

2 2
b + a if 0 < a and b = 0, b - a if b = 0 and a <= 0)

Note that the system has moved the case analysis done in p1 to the top level
automatically. However, some simplifications are still possible: the branches
b>0 and b<0 can be collected, and in the case b=0 the identifier b may be
replaced by the value 0:

>> simplify(p2)

2
piecewise(a + b if b <> 0 and b in R_, a if 0 < a and b = 0,

2
- a if b = 0 and a <= 0)

717

Background:

A The operands of a conditionally defined object, i.e., the branches, are
pairs consisting of a condition and the object valid under that condition.
They are of a special data type stdlib::branch.

A Methods overloading system functions always assume that they have been
called via overloading, and that there is some conditionally defined object
among their arguments. All other methods do not assume that one of their
arguments is of type piecewise. This simplifies the use of piecewise: it
is always allowed to enter p:=piecewise(...) and to call some method of
piecewise with p as argument. You need not care about the special case
where p is not of type piecewise because some condition in its definition
is true or all conditions are false.

Changes:

A The method map now applies the function map to all branches; this used to
be piecewise::mapMap in version 2.0. The method piecewise::extmap
must be used to map a given function to all branches.

A The method op now applies the function op to all branches; this used to
be piecewise::mapOp in version 2.0. The function extop must be used
to extract branches.

A The method discont now accepts a second argument of the form x=a..b,
too.

A New methods branch, splitBranch, and numberOfBranches have been
added.

A New methods laplace, invlaplace, partfrac, and factor have been
added.

plot – display graphical objects on the screen

plot(scene) displays a graphical scene on the screen.

plot(object1, object2, ...) displays the graphical objects object1, object2
etc. on the screen.

Call(s):

A plot(scene)

A plot(object1 <, object2, ...> <, option1, option2, ...>)

718

Parameters:
scene — a graphical scene: an object of domain

type plot::Scene
object1, object2, ... — 2D or 3D graphical objects
option1, option2, ... — scene options of the form OptionName =

value

Overloadable by: object1

Related Domains: plot::Scene

Related Functions: plot2d, plot3d

Details:

A Graphical scenes may be created by plot::Scene. See the corresponding
help page for details.

A The parameters object1, object2 etc. must be graphical objects gener-
ated by routines of the library plot. Graphical primitives include func-
tion graphs (of domain type plot::Function2d and plot::Function3d),
points and polygons (of domain type plot::Point and plot::Polygon,
respectively), and surfaces (of domain type plot::Surface3d). Cf. ex-
ample 1.

A High level functions of the plot library such as plot::vectorfield,
plot::ode, or plot::implicit return more complex graphical objects
that can also be rendered via the function plot. Cf. example 2.

A Scene options option1, option2 etc. are specified by equations OptionName
= value. Please refer to the help page of plot::Scene for a table of all
admissible plot options.

A The graphical objects object1, object2 etc. must have the same
dimension. A mix of two- and three-dimensional primitives in a
single scene is not supported!

!

Example 1. The following calls return objects representing the graphs of the
sine and the cosine function on the interval [0, 2π]:

>> f1 := plot::Function2d(sin(x), x = 0..2*PI);
f2 := plot::Function2d(cos(x), x = 0..2*PI, Color = RGB::Blue)

plot::Function2d(sin(x), x = 0..2 PI)

plot::Function2d(cos(x), x = 0..2 PI)

The following call renders these graphs:

719

>> plot(f1, f2)

This call uses the default values of the scene options as documented on
the help page of plot::Scene. Scene options may be passed as additional
parameters to plot. For example, to draw grid lines in the background of the
previous plot, we enter:

>> plot(f1, f2, GridLines = Automatic)

720

See plotOptions2d for details on the GridLines option.

>> delete f1, f2:

Example 2. The plot library contains various routines for creating more
complex graphical objects such as vectorfields, solution curves of ordinary dif-
ferential equations, and implicitly defined curves.

For example, to plot the implicitly defined curve x2 + x+ 2 = y2 with x, y
from the interval [−5, 5], we use the function plot::implicit:

>> plot(
plot::implicit(

x^3 + x + 2 - y^2, x = -5..5, y = -5..5
),
Scaling = Constrained
)

721

Here we used the Scaling option to guarantee an aspect ratio 1:1 between
the x and y coordinates independent of the window size (see plotOptions2d
for details).

Background:

A Technically, plot is not a function but a domain representing the library
plot. Thus, when calling plot(...), the method plot::new(...) is
called.

The method "new" works as follows: If the parameter scene is given, the
method "getPlotdata" of the domain plot::Scene is called. It returns
the graphical scene in a plot2d conforming syntax (or plot3d if the scene
is three-dimensional). Then the result is passed to the function plot2d
or plot3d, respectively.

If the graphical objects object1, object2 etc. are given as parameters,
the method plot::new first creates a scene of domain type plot::Scene
consisting of these objects. Then it proceeds as described above.

722

plot2d – 2D plots

plot2d(object1, object2, ...) generates a 2D plot of graphical objects
such as parametrized curves, points, and polygons.

Call(s):

A plot2d(<SceneOptions,> object1, object2, ...)

Parameters:

object1, object2, ... — graphical objects as described below

Options:

SceneOptions — a sequence of scene options. These determine the
general appearance of the graphical scene. See
?plotOptions2d for details.

Return Value: MuPAD’s graphics tool is called to render the graphical scene,
and the null() object is returned to the MuPAD session.

Related Functions: plot, plotfunc2d, plot3d, plotfunc3d

Details:

A plot2d is a low level interface to create 2D plots from graphical prim-
itives. For graphs of functions, the specialized routines plotfunc2d and
plot::Function2d are more convenient. For graphical scenes built from
primitives, we recommend to use the plot library, which provides various
primitives and tools. In most cases, the user will find it more convenient
to use the plot library rather than plot2d.

A There are two types of graphical objects that are accepted by plot2d: i)
lists of graphical primitives (points and polygons) and ii) parametrized
curves.

A i) Lists of graphical primitives are objects of the following form:

[Mode = List , [primitive1, primitive2, ...] <, Options>]

The available primitives are points, polygons and filled polygons generated
by the MuPAD functions point and polygon, respectively. You can use
such primitives to build more complicated graphical objects.

Options are specified by equations OptionName = value. The following
table gives an overview of the available options:

723

OptionName admissible values default value
Color [Flat], [Flat , [r,g,b]],

[Height],
[Height , [r,g,b], [R,G,B]],
[Function , f]

[Height]

LineStyle SolidLines , DashedLines SolidLines

LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Title strings ""
TitlePosition [x, y]

See the description below for further details on each option.

A ii) Parametric curves are given by a parametrization u 7→ [x(u), y(u)]
with expressions x(u), y(u) defining the x, y-coordinates as functions of
a curve parameter u. In plot2d, a curve is defined by an object of the
following form:

[Mode = Curve , [x(u), y(u)], u = [umin, umax] <, Options>]

The parametrization x(u), y(u) consists of arithmetical expressions in one
indeterminate u (an identifier). They must not contain any other symbolic
parameters that cannot be converted to real floating point numbers. The
range of the curve parameter u is given by the real numbers or numerical
expressions umin and umax.

If the parametrization is given by user-defined functions that accept only
numerical values, premature evaluation can be avoided using hold(x)(u),
hold(y)(u) with the symbolic curve parameter u.

Options are specified by equations OptionName = value. All options for a
list of primitives can be used. For curves, the following additional options
are available:

OptionName admissible values default value
Grid [n] [100]
Smoothness [n] [0]
Style [Points], [Lines],

[LinesPoints], [Impulses]
[Lines]

See the description below for further details on each option.

A The graph of a function f(x) can be plotted as a parametrized curve

[Mode = Curve, [x, f(x)], x = [xmin, xmax] <, Options>]

However, it is more convenient to use plotfunc2d or plot::Function2d
to plot or generate function graphs. Furthermore, in contrast to plot2d,
the latter handle functions with singularities.

724

A MuPAD graphics can be saved in a variety of graphical formats. In a
plot2d command, the PlotDevice scene option allows to specify the
conversion into the two MuPAD specific formats ’Ascii ’ and ’Binary ’.
See the help page plotOptions2d for details.

For graphical standard formats such as Postscript , JPEG , TIFF etc., no
direct conversion is available by a plot command inside a MuPAD session.
Instead, conversion has to be requested interactively via the graphical
interface of the rendering tool VCam. In a MuPAD Pro notebook, double
click on the graphics to activate this interface. Using the menu item
“Edit/Save Graphics ..”, you can choose the desired format in the “Export
Graphics” dialog box.

Option <Color = value>:

A This option determines the color of the object. Admissible values are
[Flat], [Flat , [r,g,b]], [Height], [Height , [r,g,b], [R,G,B]]
and [Function , f]. The default is Color = [Height].

• With Color = [Flat], the object is displayed with a flat color.
The actual color is chosen automatically.

• With Color = [Flat , [r, g, b]], the object is displayed with
a flat color. The values r, g, b represent the red, green and blue
contributions according to the RGB color model. They must be
real numbers between 0 and 1. Pre-defined colors are provided by
MuPAD’s RGB data structure.

• With Color = [Height], the color varies with the y-coordinate.
The actual colors are chosen automatically.

• With Color = [Height , [r, g, b], [R, G, B]], the color varies
with the y-coordinate. The parts of the object with small values of
y are displayed with the color [r, g, b], parts with large values of
y are displayed with the color [R, G, B]. Interpolated color values
are used in between.

• With Color = [Function , f], users may implement their own
coloring scheme. The parameter f must be a MuPAD procedure
returning a color as a list [r, g, b].

– Inside a curve object, the function f must accept three para-
meters:

f := proc(x, y, u) begin ...; return([r, g, b]) end:

During the numerical evaluation of the plot, this function is
called with the arguments (x(u), y(u), u), where u is the
curve parameter and x(u), y(u) are the corresponding co-
ordinates.

725

– Inside a list of primitives, the function f must accept two
parameters:

f := proc(x, y) begin ...; return([r, g, b]) end:

During the numerical evaluation of the plot this function is
called with arguments (x, y) from the viewing range of the
object.

Note that polygons are always displayed with a flat color.

If the color function f is created inside a procedure, using
local variables of this procedure, then this procedure must
use option escape.

!

Option <Grid = [n]>:

A This option determines the number of sample points of the curve. The
graphics uses linear interpolation between adjacent sample points. The in-
teger n must be larger than 1. The default is Grid = [100]. Large values
of n generate a smooth curve. Alternatively, the Smoothness parameter
can be increased.

Option <LineStyle = value>:

A This option determines the style in which lines are displayed. Admissible
values are SolidLines and DashedLines ; the default is LineStyle =
SolidLines .

Option <LineWidth = n>:

A This option sets the width of the lines belonging to the object. Admissible
values for n are nonnegative integers; the default is LineWidth = 1.

Option <PointStyle = value>:

A This option sets the style in which point objects are displayed. Admiss-
ible values are Circles , Squares , FilledCircles , and FilledSquares .
The default is PointStyle = FilledSquares .

726

Option <PointWidth = n>:

A This option sets the size of point objects. Admissible values for n are
positive integers; the default is PointWidth = 30.

Option <Smoothness = [n]>:

A This option determines the number of interpolation points between the
sample points determined by the Grid option. Admissible values for n are
integers between 0 and 20; the default is Smoothness = [0]. Lines are
depicted as linear segments connecting these interpolation points. Con-
sequently, large values of n produce smooth lines.

Option <Style = value>:

A This option sets the style in which curves are displayed. Admissible values
are [Points], [Lines], [LinesPoints] and [Impulses]. The default
is Style = [Lines].

• With Style = [Points], only the sample points determined by the
Grid option are displayed.

• With Style = [Lines], the curve is displayed as a collection of
line segments connecting the sample points.

• With Style = [LinesPoints], both the sample points as well as
the connecting line segments are displayed.

• With Style = [Impulses], the curve is displayed like a “histo-
gram”: vertical lines from the bottom of the scene to the sample
points are drawn.

Option <Title = TitleString >:

A This option adds the text given by the string TitleString to the object.
The default is the empty string Title = "", i.e., no title.

727

Option <TitlePosition = [x, y]>:

A This option determines the position of the object title. The parameters
x, y must be numerical values between 0 and 10. The position [0, 0]
denotes the upper left corner of the scene, the position [10, 10] denotes
the lower right corner.

Note that the specified positions are relative to the entire scene. Con-
sequently, if titles are specified for several objects, their positions should
differ to avoid overlap.

A Object titles can be moved interactively with the mouse to any appropri-
ate position inside the scene.

Example 1. We plot a semi-circle of radius 1, parametrized by the polar
angle u. The scene option Scaling = Constrained ensures that the circle is
not deformed to an ellipse:

>> plot2d(Scaling = Constrained, Labeling = TRUE,
[Mode = Curve, [cos(u), sin(u)], u = [0, PI]])

Example 2. We define two point primitives, a line primitive and a filled poly-
gon:

728

>> point1 := point(1, 1, Color = RGB::Red):
point2 := point(-1, 1, Color = RGB::Green):
line := polygon(point(1, 0), point(0, 1), point(0, 0),

Color = RGB::Blue):
triangle := polygon(point(0, 0), point(0, 1), point(-1, 0),

Closed = TRUE, Filled = TRUE,
Color = RGB::Antique):

These are combined to a graphical object:

>> object := [Mode = List, [point1, point2, line, triangle]]:

Finally, this object is plotted:

>> plot2d(BackGround = RGB::White, PointWidth = 50,
PointStyle = FilledCircles, object)

>> delete point1, point2, line, triangle, object:

Example 3. The graph of the sine function is diplayed using different styles:

>> plot2d(BackGround = RGB::White, ForeGround = RGB::Black,
Labeling = TRUE, PointWidth = 50,
[Mode = Curve, [x, sin(10*x)], x = [0, 1],
Color = [Flat, RGB::Red], Grid = [50], Smoothness = [0],
PointStyle = FilledSquares, Style = [Points]

729

],
[Mode = Curve, [x, 0.1 + sin(10*x)], x = [0, 1],
Color = [Flat, RGB::Green],
Grid = [20], Smoothness = [1],
PointStyle = FilledCircles, Style = [LinesPoints]
],
[Mode = Curve, [x, 0.2 + sin(10*x)], x = [0, 1],
Color = [Flat, RGB::Blue], Grid = [100], Style = [Lines]
])

Example 4. We demonstrate the ViewingBox option.

>> spiral := [Mode = Curve, [u*cos(u), u*sin(u)], u = [0, 2*PI],
Grid = [50]]:

First, this object is plotted without clipping:

>> plot2d(Axes = Box, Labeling = TRUE, spiral)

730

In the next plot, the object is clipped to the horizontal range x ∈ [−4, 1] and
the vertical range y ∈ [−2, 2]:

>> plot2d(Axes = Box, Labeling = TRUE,
ViewingBox = [-4..1, -2..2], spiral)

731

>> delete spiral:

Example 5. We demonstrate user-defined color functions. The following func-
tion produces admissible RGB-values between 0 and 1 for objects with coordin-
ates from the range x ∈ [0, 1] and y ∈ [0, 1]:

>> myColor := (x, y) -> [x, 0.5 + abs(x - y)/(1 + x + y), y]:

The unit square is to be colored by the function above. We cover the square
by 2n2 triangles, each of which is displayed with a flat color determined by
myColor:

>> n := 30:
plot2d([Mode = List,

[polygon(point((i-1)/n, (j-1)/n),
point((i-1)/n, j /n),
point(i /n, j /n),
Filled = TRUE
) $ i = 1..n $ j = 1..n,

polygon(point((i-1)/n, (j-1)/n),
point(i /n, (j-1)/n),
point(i /n, j /n),

732

Filled = TRUE
) $ i = 1..n $ j = 1..n

],
Color = [Function, myColor]
]):

>> delete myColor, n:

plot3d – 3D plots

plot3d(object1, object2, ...) generates a 3D plot of graphical objects
such as curves, surfaces, points, and polygons.

Call(s):

A plot3d(<SceneOptions,> object1, object2, ...)

Parameters:

object1, object2, ... — graphical objects as described below

Options:

SceneOptions — a sequence of scene options. These determine the
general appearance of the graphical scene. See
?plotOptions3d for details.

733

Return Value: MuPAD’s graphics tool is called to render the graphical scene,
and the null() object is returned to the MuPAD session.

Related Functions: plot, plotfunc2d, plot2d, plotfunc3d

Details:

A plot3d is a low level interface to create 3D plots from graphical prim-
itives. For graphs of functions, the specialized routines plotfunc3d and
plot::Function3d are more convenient. For graphical scenes built from
primitives, we recommend to use the plot library, which provides various
primitives and tools. In most cases, the user will find it more convenient
to use the plot library rather than plot3d.

A There are three types of graphical objects that can be plotted by plot3d:
i) lists of graphical primitives (points and polygons), ii) parametrized
curves, and iii) parametrized surfaces.

A i) Lists of graphical primitives are objects of the following form:

[Mode = List , [primitive1, primitive2, ...] <, Options>]

The available primitives are points, polygons and filled polygons generated
by the MuPAD functions point and polygon, respectively. You can use
such primitives to build more complicated graphical objects.

Options are specified by equations OptionName = value. The following
table gives an overview of the available options:

OptionName admissible values default value
Color [Flat], [Flat , [r,g,b]],

[Height],
[Height , [r,g,b], [R,G,B]],
[Function , f]

[Height]

LineStyle SolidLines , DashedLines SolidLines

LineWidth positive integers 1
PointStyle Circles , FilledCircles ,

FilledSquares , Squares
FilledSquares

PointWidth positive integers 30
Title strings ""
TitlePosition [x, y]

See the description below for further details on each option.

A ii) Parametric curves are given by a parametrization u 7→ [x(u), y(u), z(u)]
with expressions x(u), y(u), z(u) defining the coordinates as functions of
a curve parameter u. In plot3d, a curve is defined by an object of the
following form:

[Mode =Curve , [x(u),y(u),z(u)], u = [umin,umax] <, Options>]

734

The parametrization x(u), y(u), z(u) consists of arithmetical expressions
in one indeterminate u (an identifier). They must not contain any other
symbolic parameters that cannot be converted to real floating point num-
bers. The range of the curve parameter u is given by the real numbers or
numerical expressions umin and umax.

If the parametrization is given by user-defined functions that accept only
numerical values, then premature evaluation can be avoided using hold(x)(u),
hold(y)(u), hold(z)(u) with the symbolic curve parameter u.

Options are specified by equations OptionName = value. All options for a
list of primitives can be used. For curves, the following additional options
are available:

OptionName admissible values default value
Grid [integer] [100]
Smoothness [integer] [0]
Style [Points], [Lines],

[LinesPoints], [Impulses]
[Lines]

See the description below for further details on each option.

A iii) Parametric surfaces are given by a map (u, v) 7→ [x(u, v), y(u, v), z(u, v)]
with expressions x(u, v), y(u, v), z(u, v) defining the coordinates as func-
tions of two surface parameters u, v. In plot3d, a surface is defined by
an object of the following form:

[Mode = Surface, [x(u, v), y(u, v), z(u, v)],
u = [umin, umax], v = [vmin, vmax] <, Options>]

The parametrization x(u,v), y(u,v), z(u,v) consists of arithmetical ex-
pressions in two indeterminates u, v (identifiers). They must not contain
any other symbolic parameters that cannot be converted to real floating
point numbers. The ranges of the surface parameters u and v are given
by the real numbers or numerical expressions umin, umax and vmin, vmax,
respectively.

If the parametrization is given by user-defined functions that accept only
numerical values, then premature evaluation can be avoided using hold(x)(u,v),
hold(y)(u,v), hold(z)(u,v) with the symbolic surface parameters u, v.

Options are specified by equations OptionName = value. All options for
a list of primitives can be used. For surfaces, the following additional
options are available:

OptionName admissible values default value
Grid [integer, integer] [20, 20]
Smoothness [integer, integer] [0, 0]

735

OptionName admissible values default value
Style [Points] [ColorPatches ,

[WireFrame , Mesh] AndMesh]
[WireFrame , ULine]
[WireFrame , VLine]
[HiddenLine , Mesh]
[HiddenLine , ULine]
[HiddenLine , VLine]
[ColorPatches , Only]
[ColorPatches , AndMesh]
[ColorPatches , AndULine]
[ColorPatches , AndVLine]
[Transparent , Only]
[Transparent , AndMesh]
[Transparent , AndULine]
[Transparent , AndVLine]

See the description below for further details on each option.

A The graph of a function f(x, y) can be plotted as a parametrized surface

[Mode = Surface, [x, y, f(x, y)], x = [xmin, xmax],
y = [ymin, ymax] <, Options>]:

However, it is more convenient to use plotfunc3d or plot::Function3d
to plot or generate function graphs.

A MuPAD graphics can be saved in a variety of graphical formats. In a
plot3d command, the PlotDevice scene option allows to specify the
conversion into the two MuPAD specific formats ’Ascii ’ and ’Binary ’.
See the help page plotOptions3d for details.

For graphical standard formats such as Postscript , JPEG , TIFF etc., no
direct conversion is available by a plot command inside a MuPAD session.
Instead, conversion has to be requested interactively via the graphical
interface of the rendering tool VCam. In a MuPAD Pro notebook, double
click on the graphics to activate this interface. Using the menu item
“Edit/Save Graphics ..”, you can choose the desired format in the “Export
Graphics” dialog box.

Option <Color = value>:

A This option determines the color of the object. Admissible values are
[Flat], [Flat , [r,g,b]], [Height], [Height , [r,g,b], [R,G,B]]
and [Function , f]. The default is Color = [Height].

• With Color = [Flat], the object is displayed with a flat color.
The actual color is chosen automatically.

736

• With Color = [Flat , [r, g, b]], the object is displayed with
a flat color. The values r, g, b represent the red, green and blue
contributions according to the RGB color model. They must be
real numbers between 0 and 1. Pre-defined colors are provided by
MuPAD’s RGB data structure.

• With Color = [Height], the color varies with the y-coordinate.
The actual colors are chosen automatically.

• With Color = [Height , [r, g, b], [R, G, B]], the color varies
with the y-coordinate. The parts of the object with small values of
y are displayed with the color [r, g, b], parts with large values of
y are displayed with the color [R, G, B]. Interpolated color values
are used in between.

• With Color = [Function , f], users may implement their own
coloring scheme. The parameter f must be a MuPAD procedure
returning a color as a list [r, g, b].

– Inside a list of primitives, the function f must accept three
parameters:

f := proc(x, y, z) begin ..; return([r, g, b]) end:

During the numerical evaluation of the plot this function is
called with arguments (x, y, z) from the viewing range of
the object.

Note that polygons are always displayed with a flat color.

– Inside a curve object, the function f must accept four para-
meters:

f := proc(x, y, z, u) begin ..; return([r, g, b]) end:

During the numerical evaluation of the plot this function is
called with the arguments (x(u), y(u), z(u), u), where u
is the curve parameter and x(u), y(u), z(u) are the corres-
ponding coordinates.

– Inside a surface object, the function f must accept five para-
meters:

f := proc(x, y, z, u, v) begin ..; return([r, g, b])
end:

During the numerical evaluation of the plot this function is
called with the arguments (x(u,v), y(u,v), z(u,v), u, v),
where u, v are the curve parameters and x(u,v), y(u,v),
z(u,v) are the corresponding coordinates.

If the color function f is created inside a procedure, using
local variables of this procedure, then this procedure must
use option escape.

!

737

Option <Grid = [n] (for curves) >:

A Inside curve objects, this option determines the number of sample points.
The graphics uses linear interpolation between adjacent sample points.
The integer n must be larger than 1; the default is Grid = [100]. Large
values of n generate a smooth curve. Alternatively, the Smoothness para-
meter can be increased.

Option <Grid = [nu, nv] (for surfaces) >:

A Inside surface objects, this option determines the number of sample points
for the surface parameters u and v. The graphics uses linear interpola-
tion between adjacent sample points. The integers nu, nv must be larger
than 1; the default is Grid = [20, 20]. Large values of nu, nv gener-
ate a smooth surface. Alternatively, the Smoothness parameters can be
increased.

Option <LineStyle = value>:

A This option determines the style in which lines are displayed. Admissible
values are SolidLines and DashedLines ; the default is LineStyle =
SolidLines .

Option <LineWidth = n>:

A This option sets the width of the lines belonging to the object. Admissible
values for n are nonnegative integers; the default is LineWidth = 1.

Option <PointStyle = value>:

A This option sets the style in which point objects are displayed. Admiss-
ible values are Circles , Squares , FilledCircles , and FilledSquares .
The default is PointStyle = FilledSquares .

738

Option <PointWidth = n>:

A This option sets the size of point objects. Admissible values for n are
positive integers; the default is PointWidth = 30.

Option <Smoothness = [n] (for curves) >:

A Inside curve objects, this option determines the number of additional in-
terpolation points between the sample points of the curve parameter de-
termined by the Grid option. Admissible values for n are integers between
0 and 20; the default is Smoothness = [0]. Lines are depicted as lin-
ear segments connecting these interpolation points. Consequently, large
values of n produce smooth lines.

Option <Smoothness = [nu, nv] (for surfaces) >:

A Inside surface objects, this option determines the number of interpolation
points between the sample points of the surface parameters determined
by the Grid option. Linear interpolation is used between interpolation
points. Admissible values for nu, nv are integers between 0 and 20; the de-
fault is Smoothness = [0, 0]. Large values of nu, nv generate a smooth
surface.

Option <Style = value (for curves) >:

A This option sets the style in which curves are displayed. Admissible values
are [Points], [Lines], [LinesPoints] and [Impulses]. The default
is Style = [Lines].

• With Style = [Points], only the sample points determined by the
Grid option are displayed.

• With Style = [Lines], the curve is displayed as a collection of
line segments connecting the sample points.

• With Style = [LinesPoints], both the sample points as well as
the connecting line segments are displayed.

• With Style = [Impulses], the curve is displayed like a “histo-
gram”: vertical lines from the bottom of the scene to the sample
points are drawn.

739

Option <Style = value (for surfaces) >:

A This option sets the style in which parametrized surfaces are displayed.
The default is Style = [ColorPatches , AndMesh].

• With Style = [Points], only the sample points determined by the
Grid option are displayed.

• With Style = [WireFrame , Mesh], a wireframe with the para-
meter lines of both surface parameters is displayed.

• With Style = [WireFrame , ULine], a wireframe consisting of the
parameter lines of the parameter u is displayed.

• With Style = [WireFrame , VLine], a wireframe consisting of the
parameter lines of the parameter v is displayed.

• With Style = [HiddenLine , Mesh], the surface is displayed as an
opaque object. Additionally, the parameter lines of both parameters
are displayed.

• With Style = [HiddenLine , ULine], the surface is displayed as
an opaque object. Additionally, the parameter lines of the para-
meter u are displayed.

• With Style = [HiddenLine , VLine], the surface is displayed as
an opaque object. Additionally, the parameter lines of the para-
meter v are displayed.

• With Style = [ColorPatches , Only], the surface is displayed as
an opaque object. All surface patches are colored. No parameter
lines are displayed.

• With Style = [ColorPatches , AndMesh], the surface is displayed
as an opaque object. All surface patches are colored. Additionally,
the parameter lines of both parameters are displayed.

• With Style = [ColorPatches , AndULine], the surface is dis-
played as an opaque object. All surface patches are colored. Addi-
tionally, the parameter lines of the parameter u are displayed.

• With Style = [ColorPatches , AndVLine], the surface is dis-
played as an opaque object. All surface patches are colored. Addi-
tionally, the parameter lines of the parameter v are displayed.

• With Style = [Transparent , Only], the surface patches are filled
with patterns, simulating semi-transparency. No parameter lines are
displayed.

740

• With Style = [Transparent , AndMesh], the surface patches are
filled with patterns, simulating semi-transparency. Additionally, the
parameter lines of both parameters are displayed.

• With Style = [Transparent , AndULine], the surface patches are
filled with patterns, simulating semi-transparency. Additionally, the
parameter lines of the parameter u are displayed.

• With Style = [Transparent , AndVLine], the surface patches are
filled with patterns, simulating semi-transparency. Additionally, the
parameter lines of the parameter v are displayed.

Please note that the Style option Transparent is not available under
Windows. When Transparent is choosen it is internally changed to Col-

orPatches automatically.

Option <Title = TitleString >:

A This option adds the text given by the string TitleString to the object.
The default is the empty string Title = "", i.e., no title.

Option <TitlePosition = [x, y]>:

A This option determines the position of the object title. The parameters
x, y must be numerical values between 0 and 10. The position [0, 0]
denotes the upper left corner of the scene, the position [10, 10] denotes
the lower right corner.

Note that the specified positions are relative to the entire scene. Con-
sequently, if titles are specified for several objects, their positions should
differ to avoid overlap.

A Object titles can be moved interactively with the mouse to any appropri-
ate position inside the scene.

Example 1. We demonstrate plotting of graphical primtives. First, three
point primitives, a line primitive and a filled polygon are defined:

741

>> p1 := point(0, 0, 0, Color = RGB::Red):
p2 := point(0, 1, 1/2, Color = RGB::Green):
p3 := point(-1, 1, 1, Color = RGB::Blue):
line := polygon(point(0, 0, 0), point(0, 1, 1/2),

point(-1, 1, 1), Closed = TRUE,
Color = RGB::Black):

triangle := polygon(point(0, 0, 0), point(-1, 0.2, 0.4),
point(-1, 1, 0), Closed = TRUE,
Filled = TRUE, Color = RGB::Antique):

These are combined to a graphical object:

>> object := [Mode = List, [p1, p2, p3, line, triangle]]:

Finally, this object is plotted:

>> plot3d(BackGround = RGB::White, ForeGround = RGB::Black,
PointWidth = 70, PointStyle = FilledCircles,
Axes = Box, object)

>> delete p1, p2, p3, line, triangle, object:

Example 2. We plot curves. The following picture demonstrates various
styles:

742

>> plot3d(Axes = Box, Ticks = 0,
BackGround = RGB::White, ForeGround = RGB::Black,
[Mode = Curve, [u, -PI, cos(u)], u = [-PI, PI],
Grid = [40], Style = [Points], PointWidth = 40
],
[Mode = Curve, [u, -PI/3, cos(u)], u = [-PI, PI],
Grid = [40], Style = [Lines]
],
[Mode = Curve, [u, PI/3, cos(u)], u = [-PI, PI],
Grid = [40], Style = [LinesPoints], PointWidth = 30
],
[Mode = Curve, [u, PI, cos(u)], u = [-PI, PI],
Grid = [40], Style = [Impulses]
]):

The following command plots a “histogram style” graph of the cosine func-
tion defined over the unit circle in the x-y-plane:

>> plot3d(Axes = Box, Ticks = 5, CameraPoint = [20, -10, 30],
BackGround = RGB::White, ForeGround = RGB::Black,
Labeling = TRUE, Labels = ["x", "y", "z"],
Title = "A curve in space",
[Mode = Curve, [cos(u), sin(u), sin(3*u)], u = [0, 2*PI],
Grid = [200], Style = [Impulses]
])

743

The following command plots a spiral on the unit sphere:

>> plot3d(Axes = Box, Ticks = 0, Scaling = Constrained,
Title = "spiral", TitlePosition = Below,
[Mode = Curve,
[cos(12*u*PI)*sin(u*PI),
sin(12*u*PI)*sin(u*PI),
cos(u*PI)],
u = [0, 1], Grid = [50], Smoothness = [5]
])

744

Example 3. We demonstrate surface plots. The next command generates
spheres of radius 1 parametrized by polar coordinates. It illustrates various
surface styles:

>> plot3d(Axes = Box, Ticks = 0, Scaling = Constrained,
BackGround = RGB::White, ForeGround = RGB::Black,
CameraPoint = [6, -21, 8],
[Mode = Surface,
[-2.5 + sin(u)*cos(v), sin(u)*sin(v), cos(u)],
u = [0, PI], v = [0, 2*PI],
Grid = [20, 20], Smoothness = [0, 0],
Style = [HiddenLine, Mesh]
],
[Mode = Surface,
[sin(u)*cos(v), sin(u)*sin(v), cos(u)],
u = [0, PI], v = [0, 2*PI],
Grid = [15, 30], Smoothness = [0, 0],
Style = [ColorPatches, AndULine]
],
[Mode = Surface,
[2.5 + sin(u)*cos(v), sin(u)*sin(v), cos(u)],
u = [0, PI], v = [0, 2*PI],
Grid = [10, 10], Smoothness = [0, 0],

745

Style = [Transparent, AndVLine]
])

The effect of the options Grid and Smoothness is demonstrated by discs in
the x-y-plane:

>> plot3d(Axes = None, Scaling = Constrained,
BackGround = RGB::White, ForeGround = RGB::Black,
CameraPoint = [0, -1, 20],
[Mode = Surface, [-2.5 + v*sin(u), v*cos(u), 0],
u = [-PI, PI], v = [0, 1], Style = [WireFrame, Mesh],
Grid = [6, 6], Smoothness = [0, 0]
],
[Mode = Surface, [v*sin(u), v*cos(u), 0],
u = [-PI, PI], v = [0, 1], Style = [WireFrame, Mesh],
Grid = [6, 6], Smoothness = [3, 2]
],
[Mode = Surface, [2.5 + v*sin(u), v*cos(u), 0],
u = [-PI, PI], v = [0, 1], Style = [WireFrame, Mesh],
Grid = [20, 10], Smoothness = [0, 0]
])

746

The graph of a function is plotted as a parametrized surface:

>> plot3d(Axes = Box, Ticks = 8,
BackGround = RGB::White, ForeGround = RGB::Black,
Title = "Plot of sin(u^2 + v^2)", TitlePosition = Below,
[Mode = Surface, [u, v, sin(u^2 + v^2)],
u = [0, PI], v = [0, PI],
Grid = [30, 30], Style = [HiddenLine, Mesh]
])

747

Various objects of different type are combined to a graphical scene:

>> plot3d(Axes = None, Scaling = Constrained,
BackGround = RGB::White, ForeGround = RGB::Black,
Title = "Three surfaces and a curve",
TitlePosition = Below,
CameraPoint = [13, -24, 20],
[Mode = Surface,
[(4 + cos(v))*cos(u), (4 + cos(v))*sin(u), sin(v)],
u = [0, 2*PI], v = [0, 2*PI],
Grid = [20, 20], Smoothness = [2, 0],
Style = [HiddenLine, Mesh]
],
[Mode = Surface,
[2*cos(u)*sin(v), 2*sin(u)*sin(v), 2*cos(v)],
u = [0, 2*PI], v = [0, PI],
Grid = [10, 10], Smoothness = [2, 2],
Style = [ColorPatches, AndMesh]
],
[Mode = Surface, [u, v, -3], u = [-5, 5], v = [-5, 5],
Grid = [5, 5], Smoothness = [0, 0],
Style = [ColorPatches, Only]
],
[Mode = Curve,
[6*cos(12*u)*sin(u), 6*sin(12*u)*sin(u), 6*cos(u)],

748

u = [0, PI], Grid = [50], Smoothness = [5],
Title = "spiral"
])

Example 4. We demonstrate user-defined color functions. The following func-
tion produces admissible RGB-values between 0 and 1 for objects with coordin-
ates x, y, z ∈ [−1, 1]:

>> myColor := (x, y, z, u, v) ->
[(abs(x) + 1)/2, abs(x - y)/(3 + z), abs(y)]:

A hyperboloid over the unit square is to be colored by the function above. We
plot the graph of the function (x, y) 7→ x2 − y2 as a parametrized surface:

>> plot3d(Axes = Box,
BackGround = RGB::White, ForeGround = RGB::Black,
[Mode = Surface, [x, y, x^2 - y^2],
x = [-1, 1], y = [-1, 1],
Grid = [15, 15], Smoothness = [3, 3],
Style = [ColorPatches, AndMesh],
Color = [Function, myColor]
])

749

>> delete myColor:

plotfunc2d – 2D plots of function graphs

plotfunc2d(f1, f2, ...) generates a 2D plot of the graphs of the univariate
functions f1, f2 etc.

Call(s):

A plotfunc2d(<SceneOptions,> f1, f2, ... <, Grid = n>)

A plotfunc2d(<SceneOptions,> f1, f2, ..., x = xmin..xmax <,
Grid = n>)

A plotfunc2d(<SceneOptions,> f1, f2, ..., x = xmin..xmax,
y = ymin..ymax <, Grid = n>)

750

Parameters:
f1, f1, ... — the functions: arithmetical expressions or piecewise

objects containing one indeterminate x
x — the horizontal coordinate: an identifier
xmin, xmax — the horizontal plot range: finite real numerical

expressions
y — a dummy name for the vertical coordinate: an

identifier. This name is used to label the y-axis.
ymin, ymax — the vertical plot range: finite real numerical

expressions

Options:

SceneOptions — a sequence of scene options. These determine the
general appearance of the graphical scene. See
?plotOptions2d for details.

Grid = n — sets the number of sample points used for the plot.
The integer n must be larger than 1; the default is
Grid = 100.

Return Value: MuPAD’s graphics tool is called to render the graphical scene.
The null() object is returned to the MuPAD session.

Related Functions: plot, plot::Function2d, plot2d, plot3d,
plotfunc3d

Details:

A The functions must not contain any symbolic parameters apart from x
that cannot be converted to floating point values.

A If no horizontal plot range is specified, the default range x = -5..5 is
used.

A If a vertical range y = ymin..ymax is specified, only function values between
ymin and ymax are displayed. The name y of the vertical coordinate is
arbitrary: any identifier may be used.

A Non-real function values are ignored. Cf. example 2.

A Functions with singularities are handled. Cf. example 3.

A Discontinuities and piecewise defined functions are handled. Cf. examples 5, 6.

A The graph of a function f(x) can also be plotted by plot2d as a para-
metrized curve

[Mode = Curve , [x, f(x)], x = [xmin, xmax] <, Options>]:

This way, ranges, color options and style options can be specified separ-
ately for each function. See the help page of plot2d for details.

751

A The plot library provides the routine plot::Function2d which allows to
create a function graph as a graphical primitive, and to combine it with
other graphical objects.

A MuPAD graphics can be saved in a variety of graphical formats. In a
plotfunc2d command, the PlotDevice scene option allows to specify
the conversion into the two MuPAD specific formats ’Ascii ’ and ’Binary ’.
See the help page plotOptions2d for details.

For graphical standard formats such as Postscript , JPEG , TIFF etc., no
direct conversion is available by a plot command inside a MuPAD session.
Instead, conversion has to be requested interactively via the graphical
interface of the rendering tool VCam. In a MuPAD Pro notebook, double
click on the graphics to activate this interface. Using the menu item
“Edit/Save Graphics ..”, you can choose the desired format in the “Export
Graphics” dialog box.

Option <Grid = n>:

A This option determines the number of sample points (function evalu-
ations). The graphics uses linear interpolation between adjacent sample
points. The integer n must be larger than 1; the default is Grid = 100.
Large values of n generate a smooth graph.

Example 1. The following command draws the sine and the cosine functions
on the interval [−π, π]:

>> plotfunc2d(sin(x), cos(x), x = -PI..PI):

752

Example 2. Only real functions values are plotted:

>> plotfunc2d(sqrt(1 - x), sqrt(x), x = -2..2):

753

Example 3. The following functions have singularities in the specified interval:

>> plotfunc2d(x/(x^3 - 4*x), x = -5..5):

>> plotfunc2d(1/sin(x), tan(x), x = 0..2*PI):

754

Example 4. We define a vertical range to which the function graph is restric-
ted:

>> plotfunc2d(tan(x), x = -3..3, y = -10..10):

755

Example 5. The following function has a jump discontinuity:

>> plotfunc2d((x^2 - x)/(2*abs(x - 1)), x = -3..3, y = -3..3)

756

Example 6. Piecewise defined functions are handled:

>> f := piecewise([x < 1, -x^2 + 1], [x >= 1, x]):
plotfunc2d(BackGround = RGB::White,

ForeGround = RGB::Black,
GridLines = Automatic,
Ticks = [Steps = 1, Steps = 1],
f(x), x = -3..3, y = -3..3)

757

>> f := piecewise([x <= 0, x], [x > 0, 1/x]):
plotfunc2d(BackGround = RGB::White,

ForeGround = RGB::Black,
GridLines = Automatic,
Ticks = [Steps = 1, Steps = 1],
f(x), x = -3..3, y = -3..3)

758

>> delete f:

Example 7. We use the scene option AxesScaling to create a logarithmic
plot:

>> plotfunc2d(AxesScaling = [Lin, Log], x^2, x^3, x = 1/10..10^3):

759

We demonstrate various further scene options in a doubly logarithmic plot:

>> plotfunc2d(Axes = Box,
AxesScaling = [Log, Log],
Discont = FALSE,
BackGround = RGB::White,
ForeGround = RGB::Black,
GridLines = Automatic,
GridLinesStyle = SolidLines,
GridLinesColor = RGB::Gray,
Ticks = [[10^i $ i = -1..3], [10^i $ i = -3..9]],
x^2, x^3/(1 + x^(1/2)), x^3, x = 1/10..10^3):

760

plotfunc3d – 3D plots of function graphs

plotfunc3d(f1, f2, ...) generates a 3D plot of the graphs of the bivariate
functions f1, f2 etc.

Call(s):

A plotfunc3d(<SceneOptions,> f1, f2, ... <, Grid = [nx,
ny]>)

A plotfunc3d(<SceneOptions,> f1, f2, ..., x = xmin..xmax
<, Grid = [nx, ny]>)

A plotfunc3d(<SceneOptions,> f1, f2, ..., x = xmin..xmax,
y = ymin..ymax <, Grid = [nx, ny]>)

Parameters:
f1, f1, ... — the functions: arithmetical expressions or piecewise

objects containing two indeterminates x, y
x, y — the independent variables: identifiers
xmin, xmax — the plot range for x: finite real numerical expressions
ymin, ymax — the plot range for y: finite real numerical expressions

761

Options:

SceneOptions — a sequence of scene options. These determine the
general appearance of the graphical scene. See
?plotOptions3d for details.

Grid = [nx, ny] — sets the number of sample points in the x and y
direction. The integers nx, ny must be larger
than 1; the default is Grid = [20, 20].

Return Value: MuPAD’s graphics tool is called to render the graphical scene.
The null() object is returned to the MuPAD session.

Related Functions: plot, plot::Function3d, plot2d, plot3d,
plotfunc2d

Details:

A The functions must not contain any symbolic parameters apart from x
and y that cannot be converted to floating point values.

A If no plot range is specified, the default ranges x = -5..5 and y = -5..5
are used.

A Piecewise defined functions are handled. Cf. example 4.

A The graph of a function f(x, y) can also be plotted by plot3d as a para-
metrized surface:

[Mode = Surface, [x, y, f(x, y)], x = [xmin, xmax],
y = [ymin, ymax] <, Options>]:

This way ranges, color options, style options etc. can be specified separ-
ately for each function. See the help page of plot3d for details.

A The plot library provides the routine plot::Function3d which allows to
create a function graph as a graphical primitive, and to combine it with
other graphical objects.

A MuPAD graphics can be saved in a variety of graphical formats. In a
plotfunc3d command, the PlotDevice scene option allows to specify
the conversion into the two MuPAD specific formats ’Ascii ’ and ’Binary ’.
See the help page plotOptions3d for details.

For graphical standard formats such as Postscript , JPEG , TIFF etc., no
direct conversion is available by a plot command inside a MuPAD session.
Instead, conversion has to be requested interactively via the graphical
interface of the rendering tool VCam. In a MuPAD Pro notebook, double
click on the graphics to activate this interface. Using the menu item
“Edit/Save Graphics ..”, you can choose the desired format in the “Export
Graphics” dialog box.

762

Option <Grid = [nx, ny]>:

A This option determines the number of sample points in the x and y dir-
ection. The graphics uses linear interpolation between adjacent sample
points. The integers nx, ny must be larger than 1; the default is Grid =
[20, 20]. Large values of nx, ny generate a smooth graph.

Example 1. The following command draws two functions over the unit square:

>> plotfunc3d(BackGround = RGB::White,
ForeGround = RGB::Black,
Axes = Box,
sin(x^2 + y^2), cos(x^2 - y^2),
x = 0..1, y = 0..1):

Example 2. We demonstrate the effect of various scene options:

>> plotfunc3d(Axes = Box, Ticks = 5,
abs(x + I*y), x = -1..1, y = -1..1)

763

>> plotfunc3d(Arrows = FALSE, Axes = Corner, Ticks = 8,
Grid = [40, 40], CameraPoint = [10, -5, 15],
abs(x + I*y), x = -1..1, y = -1..1)

764

Example 3. In contrast to plotfunc2d, non-real function values cause an
error:

>> plotfunc3d(sqrt(1 - x^2 - y^2), x = -1..1, y = -1..1):

Error: Plot function(s) must return real numbers.
Type of the returned value is DOM_COMPLEX;

during evaluation of ’plot3d’

Example 4. Piecewise defined functions are handled:

>> f := piecewise([x < y, -x^2 + 1], [x >= y, 1 - y^2]):
plotfunc3d(BackGround = RGB::White,

ForeGround = RGB::Black,
Ticks = [Steps = 1, Steps = 1, Steps = 1],
f(x, y), x = -3..3, y = -3..3)

765

>> delete f:

Example 5. We use the scene option AxesScaling to create a logarithmic
plot:

>> plotfunc3d(AxesScaling = [Lin, Lin, Log],
exp(x + y^2), x = 0..10, y = 0..10):

766

plotOptions2d – scene options for 2D plots

This page describes the scene options that may be used when generating 2D
graphics via plot2d, plotfunc2d, plot::Scene, or plot. Scene options are
attributes that determine the general appearance of a graphical scene such as
background color, title, axes style etc.

Call(s):

A plot2d(<SceneOpt1, SceneOpt2, ...>, graphical objects)

A plotfunc2d(<SceneOpt1, SceneOpt2, ...>, graphical objects)

A plot::Scene(graphical objects, <SceneOpt1, SceneOpt2, ...>)

A plot(graphical objects, <SceneOpt1, SceneOpt2, ...>)

Related Functions: plot, plot::Scene, plot, plot2d, plotfunc2d,
plot3d, plotfunc3d, plotOptions3d

Parameters:
graphical objects — see the help pages of plot2d, plotfunc2d,

plot::Scene, and plot for details

767

Options:

SceneOpt1, SceneOpt2, ... — scene options: each is an equation of
the form OptionName = value.

OptionName admissible values default value
Arrows TRUE, FALSE FALSE
Axes Box , Corner , None , Origin Origin

AxesOrigin Automatic , [x0, y0] Automatic

AxesScaling [Lin /Log , Lin /Log] [Lin , Lin]
AxesInFront TRUE, FALSE FALSE
BackGround [r, g, b] RGB::White
Discont TRUE, FALSE FALSE (plot2d)

TRUE (plotfunc2d)
FALSE (plot)
FALSE (plot::Scene)

FontFamily "helvetica", "lucida", .. "helvetica"
FontSize positive integers 8
FontStyle "bold", .. "bold"
ForeGround [r, g, b] RBG::Black
GridLines Automatic , None or [xValue,

yValue]. Admissible values for
xValue, yValue are Automatic ,
integers, Steps = d or Steps =
[d, n].

None

GridLinesColor [r, g, b] RGB::Gray
GridLinesWidth positive integers 5
GridLinesStyle SolidLines , DashedLines DashedLines

Labeling TRUE, FALSE TRUE
Labels [string, string] ["x", "y"]
LineStyle SolidLines , DashedLines SolidLines

LineWidth positive integers 1
PlotDevice Screen , "filename",

["filename",Ascii],
["filename",Binary]

Screen

PointStyle Circles , FilledCircles ,
FilledSquares , Squares

FilledSquares

PointWidth positive integers 30
RealValuesOnly TRUE, FALSE FALSE (plot2d)

TRUE (plotfunc2d)
FALSE (plot::Scene)
FALSE (plot)

Scaling Constrained , UnConstrained UnConstrained

768

OptionName admissible values default value
Ticks Automatic , None , an integer or

[xValue, yValue]. Admissible
values for xValue, yValue are
Automatic , an integer, Steps =
d, Steps = [d, n], or a list of
user defined ticks.

Automatic

Title strings "" (plot2d)
"f(x)" (plotfunc2d)
"" (plot::Scene)
"" (plot)

TitlePosition Above , Below , [x, y] Above

ViewingBox Automatic or [xValue,
yValue]. Admissible values for
xValue, yValue are Automatic or
a range a..b.

Automatic

Option <Arrows = value>:

A This option determines, whether the axes are drawn with or without an
arrow tip. Admissible values are TRUE or FALSE; the default is Arrows =
FALSE. This option is ignored if Axes = None or Axes = Box .

Option <Axes = value>:

A This option sets the style of the axes. Admissible values are Box , Corner ,
None , and Origin ; the default is Axes = Origin .

• With Axes = Box , a frame around the scene is drawn.

• With Axes = Corner , the x-axis is drawn below the scene, the
y-axis is drawn left of the scene. The axes cross at the lower left
corner of the scene.

• With Axes = None , no axes are drawn.

• With Axes = Origin , a coordinate cross is drawn. It is centered
at the point set by AxesOrigin .

Option <AxesOrigin = value>:

A This option sets the point where the coordinate axes cross. Admissible
values are Automatic and [x0, y0]; the default is AxesOrigin = Auto-

matic .

769

• With AxesOrigin = Automatic , the coordinate axes cross in the
mathematical origin (0, 0) of the x-y-plane, provided it is inside the
viewing range of the plot. If this not the case, then the axes cross
at the point of the viewing range that is closest to the mathematical
origin.

• With AxesOrigin = [x0, y0], the coordinate axes cross at the
specified point. Admissible values for the coordinates are real nu-
merical expressions as well as the identifiers XMin , XMax , YMin ,
YMax . These are the extremal coordinates of the scene which are
determined internally when the plot is evaluated.

Option <AxesScaling = [xScale, yScale] >:

A This option sets the scaling of the coordinates. Admissible values for
xScale and yScale are either Lin for a linear scale or Log for a logar-
ithmic scale. The default is AxesScaling = [Lin ,Lin].

A For logarithmic scales, the viewing range of the plot should not extend to
negative coordinate values. With RealValuesOnly = TRUE, negative co-
ordinate ranges are clipped from logarithmic plots. With RealValuesOnly

= FALSE, such values cause an error.

Option <AxesInFront = value>:

A This option determines, whether the axes are drawn in front of the graph-
ical objects of the scene instead of behind. Admissible values are TRUE
or FALSE; the default is AxesInFront = FALSE. This option is ignored if
Axes = None or Axes = Box .

Option <BackGround = [r, g, b]>:

A This option defines the background color, i.e., the color of the canvas.
The values r, g, b must be real numbers between 0 and 1. They represent
the red, green, and blue contributions according to the RGB color model.
Pre-defined colors are provided by MuPAD’s RGB data structure. The
default is BackGround = [1, 1, 1] = RGB::White.

770

Option <Discont = value>:

A This option determines, whether the graphical objects are checked for
discontinuities. Admissible values are TRUE and FALSE; the default is
Discont = FALSE for plot2d, plot::Scene, plot, and Discont = TRUE
in plotfunc2d, respectively.

• Discont = TRUE enables symbolic checking of discontinuities. If
found, unwanted graphical effects such as spurious lines at the dis-
continuities are eliminated.

• Discont = FALSE disables the check.

A The symbolic search for discontinuities may be costly. Do specify Discont

= FALSE when the objects are known to be continuous!

A Note that some objects of the plot library also have an object attrib-
ute Discont which overrides the value of the scene option Discont . In
particular, for plot::Function2d and plot::Curve2d, the default of the
object attribute is Discont = TRUE, which overrides the default scene
option Discont = FALSE in calls to plot::Scene and plot.

Option <FontFamily = FontFamilyString >:

A This option defines the font family used for titles, axes labels, and tick la-
bels. The string FontFamilyString may be one of "helvetica", "lucida"
etc. The default is FontFamily = "helvetica".

Option <FontSize = n>:

A This option defines the size of the font used for titles, axes labels, and tick
labels. The integer n may have values between 7 and 36. The default is
FontSize = 8.

Option <FontStyle = FontStyleString >:

A This option defines the style of the font used for titles, axes labels, and
tick labels. The string FontStyleString may be one of "bold", The
default is FontStyle = "bold".

771

Option <ForeGround = [r, g, b]>:

A This option defines the foreground color, i.e., the color for the axes, the
axes labels, the tick marks, the tick labels, and the titles. Points and
borderlines of filled polygons are also displayed in this color. The values
r, g, b must be real numbers between 0 and 1. They represent the red,
green, and blue contributions according to the RGB color model. Pre-
defined colors are provided by MuPAD’s RGB data structure. The default
is ForeGround = [0, 0, 0] = RGB::Black.

A Note that the foreground color does not determine the color of the graph-
ical objects. These are either chosen automatically, or they may be defined
by the color option of the objects.

Option <GridLines = value>:

A This option determines whether grid lines are drawn in the background
of the plot. Admissible values are None , Automatic or a list [xValue,
yValue]; the default is GridLines = None .

• With GridLines = None , no grid lines are drawn.

• With GridLines = Automatic , grid lines are drawn that are at-
tached to the tick marks.

• With GridLines = [xValue, yValue] the grid lines can be spe-
cified separately for each direction.

The values xValue and yValue may be Automatic , a nonnegative integer,
Steps = d or Steps = [d, n].

• Automatic produces grid lines attached to the tick marks. Grid-

Lines = [Automatic , Automatic] is the same as GridLines =
Automatic .

• A nonnegative integer value sets the minimal number of grid lines.
The actual number of grid lines as well as their positions are chosen
heuristically. If the number 0 is specified, then no grid lines are
produced. GridLines = n is equivalent to GridLines = [n, n].

• Steps = d produces grid lines at the positions j d with all integer
values j leading to gridlines inside the viewing range of the plot.
The distance d between two grid lines must be a real positive value.

• Steps = [d, n] is equivalent to Steps = d/(n+1), i.e., further n
grid lines are placed between the grid lines produced by Steps =
d. The parameter n must be a nonnegative integer.

772

Option <GridLinesColor = [r, g, b]>:

A This option defines the color of the grid lines. The values r, g, b must be
real numbers between 0 and 1. They represent the red, green, and blue
contributions according to the RGB color model. Pre-defined colors are
provided by MuPAD’s RGB data structure. The default is GridLines =
RGB::Gray.

Option <GridLinesWidth = n>:

A This option sets the width of the grid lines. Admissible values for n are
nonnegative integers; the default is GridLinesWidth = 5.

Option <GridLinesStyle = value>:

A This option sets the style of the grid lines. Admissible values are Solid-

Lines and DashedLines . The default is GridLinesStyle = Dashed-

Lines .

Option <Labeling = value>:

A This option determines, whether the axes are displayed with axes labels
and tick mark labels. Admissible values are TRUE or FALSE; the default is
Labeling = TRUE.

A Note that the default labeling of the axes may be changed via Labels .
Further, the tick marks and the tick mark labels may be set via Ticks .

Option <Labels = [xString, yString]>:

A This option sets the labels of the axes to the text given by the strings
xString and yString. The default is Labels = ["x", "y"].

773

Option <LineStyle = value>:

A This option sets the style in which all line objects of the scene are dis-
played. Admissible values are SolidLines and DashedLines ; the default
is LineStyle = SolidLines .

A Line objects are graphs of functions, curves defined by [Mode = Curve,
..], and polygons generated via [Mode = List, [..polygons..]]. You
can use the option LineStyle in the graphical objects to override this
scene option and display each line object in its individual line style.

Option <LineWidth = n>:

A This option sets the width of all line objects in the scene. Admissible
values for n are nonnegative integers; the default is LineWidth = 1.

A Line objects are graphs of functions, curves defined by [Mode = Curve,
..], and polygons generated via [Mode = List, [..polygons..]]. You
can use the option LineWidth in the graphical objects to override this
scene option and display each line object in its individual line style.

Option <PlotDevice = value>:

A This option determines, which plotting device is to be used for ren-
dering the scene. Admissible values are Screen , a string "filename",
["filename", Ascii] or ["filename", Binary]. The default is Plot-
Device = Screen .

• With PlotDevice = Screen , the plot is displayed on the screen.

• With PlotDevice = ["filename", format], the plot is written to
the file named filename in the specified graphical format. Available
formats are Ascii and Binary . These are mupad specific formats
understood by MuPAD’s graphical tool VCam. A file in such a
format can later be opened and rendered by VCam.

• PlotDevice = "filename" is the same as PlotDevice = ["filename",
Binary].

A Note that MuPAD graphics can also be saved in a variety of standard
graphical formats such as Postscript , JPEG , TIFF etc. However, con-
version into these formats cannot be specified by a plot command inside a
MuPAD session. You have to use the graphical interface of the rendering
tool VCam: In a MuPAD Pro notebook, double click on the graphics to

774

activate the VCam interface. Using the menu item “Edit/Save Graph-
ics...”, you can choose the desired format in the “Export Graphics” dialog
box.

Option <PointStyle = value>:

A This option sets the style in which all point objects in the current scene
are displayed. Admissible values are Circles , Squares , FilledCircles ,
and FilledSquares . The default is PointStyle = FilledSquares .

A Point objects are graphical primitives generated via MuPAD’s function
point. They can be displayed via plot2d using objects of the type [Mode
= List, [..points..]]. You can use the object option PointStyle to
override this scene option and display each point with its individual style.

Option <PointWidth = n>:

A This option sets the size of all point objects in the current scene. Ad-
missible values for n are positive integers; the default is PointWidth =
30.

A Point objects are graphical primitives generated via MuPAD’s function
point. They can be displayed via plot2d using objects of the type [Mode
= List, [..points..]]. You can use the object option PointWidth to
override this scene option and display each point with its individual width.

Option <RealValuesOnly = value>:

A If a graphical object such as a function produces a complex value dur-
ing the evaluation of the plot, then an error occurs. Specifying Real-

ValuesOnly = TRUE, such errors are trapped. Only those parts of the
objects producing real values are plotted. E.g., with this option the func-
tion sqrt(x) can be plotted over the interval x ∈ [−1, 1]: the plot only
displays the real function values for x ≥ 0.

With RealValuesOnly = FALSE no internal check is performed. The
renderer produces an error, when it encounters a complex value.

The default is RealValuesOnly = FALSE in plot2d, plot::Scene, and
plot, while it is RealValuesOnly = TRUE in plotfunc2d.

A The short form RealsOnly is synonymous with RealValuesOnly .

A Checking for real values may be costly. Do specify RealsOnly = FALSE
when the objects are known to be real valued!

775

A Note that some objects of the plot library also have an object attribute
RealValuesOnly which overrides the value of the scene option Real-

ValuesOnly . In particular, for plot::Function2d and plot::Curve2d,
the default of the object attribute is RealValuesOnly = TRUE, which
overrides the default scene option RealValuesOnly = FALSE in calls to
plot::Scene and plot.

Option <Scaling = value>:

A This option determines the aspect ratio of the x and y coordinates. Ad-
missible values are Constrained and UnConstrained ; the default is Scal-
ing = UnConstrained .

• With Scaling = Constrained , the aspect ratio of the coordinates
is 1 : 1. In particular, circles appear as circles. This mode is not
appropriate, if the x-diameter of the scene differs significantly from
the y-diameter.

• With Scaling = UnConstrained , the aspect ratio of the coordin-
ates is chosen such that the scene fills the canvas optimally. In
particular, circles may appear as ellipses.

Option <Ticks = value>:

A This option defines the ticks on the axes. Admissible values are None ,
Automatic , a nonnegative integer or a list [xValue, yValue]. The de-
fault is Ticks = Automatic .

• With Ticks = None , no ticks are drawn.

• With Ticks = Automatic , ticks are chosen heuristically.

• With Ticks = n, the minimum value for the ticks on both axes
is specified by the nonnegative integer n. Note that more ticks
than specified may be drawn in order to place them at reasonable
positions.

• With Ticks = [xValue, yValue], the ticks can be specified sep-
arately for each axis.

The values xValue and yValue may be Automatic , a nonnegative integer,
Steps = d, Steps = [d, n], or a list of user-defined ticks.

• Automatic produces heuristically chosen ticks. Ticks = Automatic

is equivalent to Ticks = [Automatic , Automatic].

776

• A nonnegative integer value sets the minimal number of ticks. The
actual number of ticks as well as their positions are chosen heurist-
ically. If the number 0 is specified, then no tick marks are produced.
Ticks = n is equivalent to Ticks = [n, n].

• Steps = d produces ticks at the positions j d with all integer values
j leading to ticks inside the viewing range of the plot. The distance
d between two ticks must be a real positive value.

• Steps = [d, n] produces the same “large” ticks as Steps = d.
Between such ticks further n smaller ticks are positioned. The para-
meter n must be a nonnegative integer. The“large”ticks carry labels
if Labeling = TRUE. The “small” ticks do not carry labels.

• Ticks can be placed at arbitrary positions by a list [t1, t2, ..].
Admissible values for t1, t2 etc. are real numerical expressions de-
fining the positions of the ticks. Alternatively, any element of the
list may be an equation of the form t = label, where t is a numer-
ical value and label is a string. This produces a tick at the position
t with the string as label. The label is diplayed if Labeling = TRUE
is specified. E.g.,

Ticks = [[0.2, PI = "PI"], [sqrt(2), 2, 3]]

produces two ticks on the x-axis at the positions x = 0.2 and x = π.
The second tick carries the label "PI". On the y-axis, three ticks
without lables are produced.

If ticks outside the viewing range of the plot are specified, then
the viewing range is extended automatically such that all ticks are
visible.

Option <Title = TitleString >:

A This option adds the text given by the string TitleString to the scene.
In plot2d, plot::Scene, and plot, the default is the empty string Title

= "", i.e., no title. In plotfunc2d, the expressions defining the functions
to be plotted are converted to title strings.

Option <TitlePosition = value>:

A This option determines the position of the title. Admissible values are
Above , Below , and [x, y]; the default is TitlePosition = Above .

• With TitlePosition = Above , the title is centered above the scene.

• With TitlePosition = Below , the title is centered below the scene.

777

• With TitlePosition = [x, y], the title may be placed at any
position in the scene. The parameters x, y must be real numerical
values between 0 and 10. The position [0, 0] denotes the upper
left corner of the scene, the position [10, 10] denotes the lower
right corner.

A The title can be dragged interactively with the mouse to any appropriate
position inside the scene.

Option <ViewingBox = value>:

A This option sets the viewing box for the scene, i.e., the range of x and y co-
ordinates that are visible on the canvas. Admissible values are Automatic
and [xValue, yValue]; the default is ViewingBox = Automatic .

• With ViewingBox = Automatic , the viewing box is chosen such
that the entire scene is visible.

• The values xValue and yValue may be Automatic or a range a..b.
Admissible values for a and b are real numerical expressions as well
as the identifiers XMin , XMax , YMin , YMax . These are the extremal
coordinates of the scene which are determined internally when the
plot is evaluated.

A Clipping to a viewing box can be expensive! Do use the default Viewing-
Box = Automatic whenever this is appropriate.

Changes:

A The new option AxesInFront was introduced.

plotOptions3d – scene options for 3D plots

This page describes the scene options that may be used when generating 3D
graphics via plot3d, plotfunc3d, plot::Scene, or plot. Scene options are
attributes that determine the general appearance of a graphical scene such as
camera point, background color, title, axes style etc.

778

Call(s):

A plot3d(<SceneOpt1, SceneOpt2, ...>, graphical objects)

A plotfunc3d(<SceneOpt1, SceneOpt2, ...>, graphical objects)

A plot::Scene(graphical objects, <SceneOpt1, SceneOpt2, ...>)

A plot(graphical objects, <SceneOpt1, SceneOpt2, ...>)

Parameters:
graphical objects — see the help pages of plot3d, plotfunc3d,

plot::Scene, and plot for details

Options:

SceneOpt1, SceneOpt2, .. — scene options: each is an equation of
the form OptionName = value.

OptionName admissible values default value
Arrows TRUE, FALSE FALSE
Axes Box , Corner , None , Origin Box

AxesOrigin Automatic , [x0, y0, z0] Automatic

AxesScaling [Lin /Log , Lin /Log , Lin /Log] [Lin , Lin , Lin]
BackGround [r, g, b] RGB::White
CameraPoint Automatic , [x, y, z] Automatic

FocalPoint Automatic , [x, y, z] Automatic

FontFamily "helvetica", "lucida", .. "helvetica"
FontSize positive integers 8
FontStyle "bold", .. "bold"
ForeGround [r, g, b] RBG::Black
Labeling TRUE, FALSE TRUE
Labels [string, string, string] ["x","y","z"]
LineStyle SolidLines , DashedLines SolidLines

LineWidth positive integers 1
PlotDevice Screen , "filename",

["filename",Ascii],
["filename",Binary]

Screen

PointStyle Circles , FilledCircles ,
FilledSquares , Squares

FilledSquares

PointWidth positive integers 30
Scaling Constrained , UnConstrained UnConstrained

Ticks Automatic , None , an integer or
[xValue, yValue, zValue].
Admissible values for xValue,
yValue, zValue are
Automatic , an integer, Steps
= d, Steps = [d, n], or a list
of user defined ticks.

Automatic

779

OptionName admissible values default value
Title strings "" (plot3d)

"f(x, y)"
(plotfunc3d)

"" (plot::Scene)
"" (plot)

TitlePosition Above , Below , [x, y] Above

ViewingBox Automatic Automatic

Related Functions: plot, plot::Scene, plot, plot2d, plotfunc2d,
plotOptions2d, plot3d, plotfunc3d

Option <Arrows = value>:

A This option determines, whether the axes are drawn with or without an
arrow tip. Admissible values are TRUE or FALSE; the default is Arrows =
FALSE. This option is ignored if Axes = None or Axes = Box .

Option <Axes = value>:

A This option sets the style of the axes. Admissible values are Box , Corner ,
None , and Origin ; the default is Axes = Box .

• With Axes = None , no axes are drawn.

• With Axes = Box , a box around the scene is drawn.

• With Axes = Corner , a coordinate cross is drawn. It is centered
at one of the corners of the scene.

• With Axes = Origin , a coordinate cross is drawn. It is centered
at the point set by AxesOrigin .

Option <AxesOrigin = value>:

A This option sets the point where the coordinate axes cross. Admissible
values are Automatic and [x0, y0, z0]; the default is AxesOrigin =
Automatic .

• With AxesOrigin = Automatic , the coordinate axes cross in the
mathematical origin (0, 0, 0), provided it is inside the viewing range
of the plot. If this not the case, then the axes cross at the point of
the viewing range that is closest to the mathematical origin.

780

• With AxesOrigin = [x0, y0, z0], the coordinate axes cross at
the specified point. Admissible values for the coordinates are real
numerical expressions as well as the identifiers XMin , XMax , YMin ,
YMax , ZMin , ZMax . These are the extremal coordinates of the scene
which are determined internally when the plot is evaluated.

Option <AxesScaling = [xScale, yScale, zScale] >:

A This option sets the scaling of the coordinates. Admissible values for
xScale, yScale, and zScale are either Lin for a linear scale or Log for
a logarithmic scale. The default is AxesScaling = [Lin ,Lin ,Lin].

A For logarithmic scales, make sure that the viewing range of the plot does
not extend to negative coordinate values. Otherwise, an error occurs!

Option <BackGround = [r, g, b]>:

A This option defines the background color, i.e., the color of the canvas.
The values r, g, b must be real numbers between 0 and 1. They represent
the red, green, and blue contributions according to the RGB color model.
Pre-defined colors are provided by MuPAD’s RGB data structure. The
default is BackGround = [1, 1, 1] = RGB::White.

Option <CameraPoint = value>:

A This option sets the position of the observer’s camera. The optical axis of
the camera is the vector from the CameraPoint to the FocalPoint . The
value may be Automatic or a vector [x, y, z]. With the default Auto-
matic , the camera position is chosen automatically outside the graphical
scene. Also a user-defined point should lie outside the scene. A point
close to the scene leads to perspective distortion. A point far from the
scene prevents such distortion (parallel projection). The size of the pro-
jected scene is independent of the distance: the projection is enlarged
automatically such that it fills the canvas.

Option <FocalPoint = value>:

A This option sets the point the observer’s camera is pointing to. The optical
axis of the camera is the vector from the CameraPoint to the FocalPoint .
The value may be Automatic or a vector [x, y, z]. With the default
Automatic , the focal point is chosen automatically as the center of the
graphical scene.

781

Option <FontFamily = FontFamilyString >:

A This option defines the font family used for titles, axes labels, and tick la-
bels. The string FontFamilyString may be one of "helvetica", "lucida"
etc. The default is FontFamily = "helvetica".

Option <FontSize = n>:

A This option defines the size of the font used for titles, axes labels, and tick
labels. The integer n may have values between 7 and 36. The default is
FontSize = 8.

Option <FontStyle = FontStyleString >:

A This option defines the style of the font used for titles, axes labels, and
tick labels. The string FontStyleString may be one of "bold", The
default is FontStyle = "bold".

Option <ForeGround = [r, g, b]>:

A This option defines the foreground color, i.e., the color for the axes, the
axes labels, the tick marks, the tick labels, and the titles. Points and
borderlines of filled polygons are also displayed in this color. The values
r, g, b must be real numbers between 0 and 1. They represent the red,
green, and blue contributions according to the RGB color model. Pre-
defined colors are provided by MuPAD’s RGB data structure. The default
is ForeGround = [0, 0, 0] = RGB::Black.

A Note that the foreground color does not determine the color of the graph-
ical objects. These are either chosen automatically, or they may be defined
by the color option of the objects.

Option <Labeling = value>:

A This option determines, whether the axes are displayed with axes labels
and tick mark labels. Admissible values are TRUE or FALSE; the default is
Labeling = TRUE.

782

A Note that the default labeling of the axes may be changed via Labels .
Further, the tick marks, and the tick mark labels may be set via Ticks .

Option <Labels = [xString, yString, zString]>:

A This option sets the labels of the axes to the text given by the strings
xString, yString, and zString. The default is Labels = ["x", "y",
"z"].

Option <LineStyle = value>:

A This option sets the style in which all line objects of the scene are dis-
played. Admissible values are SolidLines and DashedLines ; the default
is LineStyle = SolidLines .

A Line objects are graphs of functions, curves defined by [Mode = Curve,
..], the parameter lines of surfaces, and polygons generated via [Mode
= List, [..polygons..]]. You can use the option LineStyle in the
graphical objects to override this scene option and display each line object
in its individual line style.

Option <LineWidth = n>:

A This option sets the width of all line objects in the scene. Admissible
values for n are nonnegative integers; the default is LineWidth = 1.

A Line objects are graphs of functions, curves defined by [Mode = Curve,
..], and polygons generated via [Mode = List, [..polygons..]]. You
can use the option LineWidth in the graphical objects to override this
scene option and display each line object in its individual line style.

Option <PlotDevice = value>:

A This option determines, which plotting device is to be used for ren-
dering the scene. Admissible values are Screen , a string "filename",
["filename", Ascii] or ["filename", Binary]. The default is Plot-
Device = Screen .

• With PlotDevice = Screen , the plot is displayed on the screen.

783

• With PlotDevice = ["filename", format], the plot is written to
the file named filename in the specified graphical formats. Avail-
able formats are Ascii and Binary . These are mupad specific
formats understood by MuPAD’s graphical tool VCam. A file in
such a format can later be opened and rendered by VCam.

• PlotDevice = "filename" is the same as PlotDevice = ["filename",
Binary].

A Note that MuPAD graphics can also be saved in a variety of standard
graphical formats such as Postscript , JPEG , TIFF etc. However, con-
version into these formats cannot be specified by a plot command inside a
MuPAD session. You have to use the graphical interface of the rendering
tool VCam: In a MuPAD Pro notebook, double click on the graphics to
activate the VCam interface. Using the menu item “Edit/Save Graphics
..”, you can choose the desired format in the “Export Graphics” dialog
box.

Option <PointStyle = value>:

A This option sets the style in which all point objects in the current scene
are displayed. Admissible values are Circles , Squares , FilledCircles ,
and FilledSquares . The default is PointStyle = FilledSquares .

A Point objects are graphical primitives generated via MuPAD’s function
point. They can be displayed via plot3d using objects of the type [Mode
= List, [..points..]]. You can use the object option PointStyle to
override this scene option and display each point with its individual style.

Option <PointWidth = n>:

A This option sets the size of all point objects in the current scene. Ad-
missible values for n are positive integers; the default is PointWidth =
30.

A Point objects are graphical primitives generated via MuPAD’s function
point. They can be displayed via plot3d using objects of the type [Mode
= List, [..points..]]. You can use the object option PointWidth to
override this scene option and display each point with its individual width.

784

Option <Scaling = value>:

A This option determines the aspect ratio of the x, y, z coordinates. Admiss-
ible values are Constrained and UnConstrained ; the default is Scaling
= UnConstrained .

• With Scaling = Constrained , the aspect ratio of the coordinates
is 1 : 1 : 1. In particular, spheres appear as spheres. This mode is
not appropriate if the diameters of the scene in the three directions
differ significantly.

• With Scaling = UnConstrained , the aspect ratio of the coordin-
ates is chosen such that the scene fills the canvas optimally. In
particular, spheres may appear as ellipsoids.

Option <Ticks = value>:

A This option defines the ticks on the axes. Admissible values are None ,
Automatic , a nonnegative integer or a list [xValue, yValue, zValue].
The default is Ticks = Automatic .

• With Ticks = None , no ticks are drawn.

• With Ticks = Automatic , ticks are chosen heuristically.

• With Ticks = n, the minimum value for the ticks on the three
axes is specified by the nonnegative integer n. Note that more ticks
than specified may be drawn in order to place them at reasonable
positions.

• With Ticks = [xValue, yValue, zValue], the ticks can be spe-
cified separately for each axis.

The values xValue, yValue, and zValue may be Automatic , a nonnegat-
ive integer, Steps = d, Steps = [d, n], or a list of user-defined ticks.

• Automatic produces heuristically chosen ticks. Ticks = Automatic

is equivalent to Ticks = [Automatic , Automatic , Automatic].

• A nonnegative integer value sets the minimal number of ticks. The
actual number of ticks as well as their positions are chosen heurist-
ically. If the number 0 is specified, then no tick marks are produced.
Ticks = n is equivalent to Ticks = [n, n, n].

• Steps = d produces ticks at the positions j d with all integer values
j leading to ticks inside the viewing range of the plot. The distance
d between two ticks must be a real positive value.

785

• Steps = [d, n] produces the same “large” ticks as Steps = d.
Between such ticks further n smaller ticks are positioned. The para-
meter n must be a nonnegative integer. The“large”ticks carry labels
if Labeling = TRUE. The “small” ticks do not carry labels.

• Ticks can be placed at arbitrary positions by a list [t1, t2, ..].
Admissible values for t1, t2 etc. are real numerical expressions de-
fining the positions of the ticks. Alternatively, any element of the
list may be an equation of the form t = label, where t is a numer-
ical value and label is a string. This produces a tick at the position
t with the string as label. The label is diplayed if Labeling = TRUE
is specified. E.g.,

Ticks = [[0.2, PI = "PI"], [sqrt(2), 2, 3], [1, 2, 3]]

produces two ticks on the x-axis at the positions x = 0.2 and x = π.
The second tick carries the label "PI". On the y- and z-axes, three
ticks without lables are produced.

If ticks outside the viewing range of the plot are specified, then
the viewing range is extended automatically such that all ticks are
visible.

Option <Title = TitleString >:

A This option adds the text given by the string TitleString to the scene.
In plot3d, plot::Scene, and plot, the default is the empty string Title

= "", i.e., no title. In plotfunc3d, the expressions defining the functions
to be plotted are converted to title strings.

Option <TitlePosition = value>:

A This option determines the position of the title. Admissible values are
Above , Below , and [x, y]; the default is TitlePosition = Above .

• With TitlePosition = Above , the title is centered above the scene.

• With TitlePosition = Below , the title is centered below the scene.

• With TitlePosition = [x, y], the title may be placed at any
position in the scene. The parameters x, y must be real numerical
values between 0 and 10. The position [0, 0] denotes the upper
left corner of the scene, the position [10, 10] denotes the lower
right corner.

A The title can be dragged interactively with the mouse to any appropriate
position inside the scene.

786

Option <ViewingBox = value>:

A This option sets the viewing box for the scene, i.e., the range of x, y,
z that are visible on the canvas. Presently, the only admissible value
is Automatic . The viewing box is chosen such that the entire scene is
visible.

point – generate a graphical point primitive

point(x, y) defines a 2D point with the coordinates x and y.

point(x, y, z) defines a 3D point with the coordinates x, y and z.

Call(s):

A point(x, y <, Color = [r, g, b]>)

A point(x, y, z <, Color = [r, g, b]>)

Parameters:

x, y, z — real numbers

Options:

Color = [r, g, b] — sets an RGB color given by the amount of red,
green, and blue. The parameters r, g, b must
be real numbers between 0 and 1.

Return Value: an object of type DOM_POINT.

Related Functions: plot, plot::Point, plot2d, plot3d, plotfunc2d,
plotfunc3d, polygon, RGB

Details:

A point defines a 2D or 3D point. It can be displayed graphically via
plot2d/plot3d using the list format [Mode = List, [..points..]].

A The coordinates and color values must be numerical expressions
that can be converted to real floating point numbers. Symbolic
expressions such as PI + 1, exp(sqrt(2)) etc. are accepted and
converted to floating point numbers automatically. Note, however,
that expressions involving symbolic identifiers are not accepted! Cf.
example 3.

!

787

A The plot library provides the alternative point primitive plot::Point.
This object is more flexible than the kernel object generated by point.
The first can be used with all functions of the plot library, whereas the
latter can only be used in a call to plot2d or plot3d.

A point is a function of the system kernel.

Option <Color = [r, g, b]>:

A The color values r, g, b must be numerical expressions that can be con-
verted to real floating point numbers from the interval [0.0, 1.0]. An error
occurs if any of these values is not in this range. Symbolic expressions
such as PI - 2, exp(-sqrt(2)) etc. are accepted. Note, however, that
expressions involving symbolic identifiers are not accepted! Cf. example 3.

A The domain RGB contains many predefined colors.

Operands: The first two, respectively three, operands of a point are the co-
ordinates. The last operand is the list [r, g, b] defining the point color. This
operand is NIL if no color was specified.

Example 1. point with two arguments defines a 2D point:

>> point(1, PI)

point(1, 3.141592654)

Points generated by point represent graphical primitives that can be displayed
via plot2d and plot3d using the list format [Mode = List, [..points..]]:

>> plot2d(Scaling = UnConstrained, PointWidth = 30,
[Mode = List, [point(i/10, sin(i/10)) $ i=0..63]])

788

Example 2. Points may be defined with a given color:

>> point(0, 1, PI, Color = [1/2, 0, PI - 2*sqrt(2)])

point(0, 1, 3.141592654, Color = [0.5, 0.0, 0.3131655288])

The domain RGB contains many pre-defined colors:

>> point(1.0, 0.0, 1.0, Color = RGB::Red)

point(1.0, 0.0, 1.0, Color = [1.0, 0.0, 0.0])

Example 3. Symbolic coordinates or colors are not accepted:

>> point(x, y, z)

Error: Illegal argument [point]

>> point(1, 2, Color = [r, g, b])

Error: Illegal color specification [point]

However, one can create lists of points using symbolic loop variables:

789

>> mypoints := [point(i/40, exp(-i/40),
Color = [1 - 1/i, i/(1 + i), exp(-i/40)])

$ i = 1..40]:
plot2d(PointWidth = 30, [Mode = List, mypoints])

>> delete mypoints:

poly – create a polynomial

poly(f) converts a polynomial expression f to a polynomial of the kernel do-
main DOM_POLY.

Call(s):

A poly(f <, [x1, x2, ...]> <, ring>)

A poly(p <, [x1, x2, ...]> <, ring>)

A poly(list, [x1, x2, ...] <, ring>)

790

Parameters:
f — a polynomial expression
x1, x2, ... — the indeterminates of the polynomial: typically,

identifiers or indexed identifiers.
ring — the coefficient ring: either Expr , or IntMod (n) with

some integer n > 1, or a domain of type DOM_DOMAIN.
The default is the ring Expr of arbitrary MuPAD
expressions.

p — a polynomial of type DOM_POLY generated by poly
list — a list containing coefficients and exponents

Return Value: a polynomial of the domain type DOM_POLY. FAIL is returned
if conversion to a polynomial is not possible.

Related Functions: Dom::DistributedPolynomial,
Dom::MultivariatePolynomial, Dom::Polynomial,
Dom::UnivariatePolynomial, RootOf, coeff, collect, degree, degreevec,
divide, evalp, expr, factor, gcd, ground, indets, lcoeff, ldegree,
lmonomial, lterm, mapcoeffs, nterms, nthcoeff, nthmonomial, nthterm,
poly2list, polylib, tcoeff

Details:

A MuPAD provides the kernel domain DOM_POLY to represent polynomials.
The arithmetic for this data structure is more efficient than the arithmetic
for polynomial expressions. Moreover, this domain allows to use special
coefficient rings that cannot be represented by expressions. The function
poly is the tool for generating polynomials of this type.

A poly(f, [x1, x2, ...], ring) converts the expression f to a polyno-
mial in the indeterminates x1, x2, ... over the specified coefficient ring.
The expression f need not be entered in expanded form, it is internally
expanded by poly.

If no indeterminates are given, they are searched for internally. An error
occurs if no indeterminates are found.

The ring Expr is used if no coefficient ring is specified. In this case,
arbitrary MuPAD expressions are allowed as coefficients.

poly returns FAIL if the expression cannot be converted to a polynomial.
Cf. example 9.

A poly(p, [x1, x2, ...], ring) converts a polynomial p of type DOM_POLY
to a polynomial in the indeterminates x1, x2, ... over the specified coef-
ficient ring. Note that both the indeterminates as well as the coefficient
ring are part of the data structure DOM_POLY. This call may be used to
change these data in a given polynomial p of this type.

If no indeterminates are specified, the indeterminates of p are used.

791

If no coefficient ring is specified, the ring of p is used.

Cf. examples 7 and 8.

A poly(list, [x1, x2, ...], ring) converts a list of coefficients and ex-
ponents to a polynomial in the indeterminates x1, x2, ... over the spe-
cified coefficient ring. Cf. examples 3 and 6. This call is the fastest way
of creating a polynomial of type DOM_POLY.

The list must contain an element for each non-zero monomial of the poly-
nomial, i.e., it is possible to use sparse input involving only non-zero
terms. In particular, an empty list results in the zero polynomial.

Each element of the list must in turn be a list with two elements: the
coefficient of the monomial and the exponent or exponent vector. For a
univariate polynomial in the variable x, say, the list

[[c1, e1], [c2, e2], . . .]

corresponds to c1 x
e1 + c2 x

e2 + · · · . For a multivariate polynomial, the
exponent vectors are lists containing the exponents of all indeterminates
of the polynomial. The order of the exponents must be the same as the
order given by the list of indeterminates. For a multivariate polynomial
in the variables x1, x2, . . ., say, the term list

[[c1, [e11, e12, . . .]], [c2, [e21, e22, . . .]], . . .]

corresponds to c1 xe11
1 xe12

2 · · ·+ c2 x
e21
1 xe22

2 · · ·+ · · · .
The order of the elements of the term list does not affect the resulting
polynomial. There may be multiple entries corresponding to the same
term: the coefficients are added in such cases.

With this call, term lists returned by poly2list can be reconverted to
polynomials.

A The order of the indeterminates is given by their position in the input list
[x1, x2, ...]. If not specified, they are searched for internally in the
expression f and their order is determined by the system. Cf. example 2.

A The indeterminates need not be identifiers or indexed identifiers. Any ex-
pression can be used as an indeterminate as long as it is not rational. E.g.,
the expressions sin(x), f(x), or y^(1/3) are accepted as indeterminates.
Cf. example 4.

A poly is a function of the system kernel.

Option <ring>:

A The default ring Expr represents arbitrary MuPAD expressions. Mathem-
atically, this ring coincides with Dom::ExpressionField(). Note, how-
ever, that polynomials distinguish Expr and Dom::ExpressionField().
In particular, arithmetic over Expr is faster.

792

A The ring IntMod (n) represents the residue class ring Z/nZ, using the
symmetrical representation. Here, n must be an integer greater than
1. Mathematically, this ring coincides with Dom::IntegerMod(n). Note,
however, that polynomials distinguish IntMod (n) and Dom::IntegerMod(n).
In particular, arithmetic over IntMod is faster, coefficients requested by
coeff etc. are returned as integers of type DOM_INT. Cf. examples 5, 6,
and 8.

A Any domain of type DOM_DOMAIN can be used as a coefficient ring if the
domain provides arithmetical operations. See the “Background” section
below for further details.

If a coefficient domain is specified, only elements of the domain are accep-
ted as coefficients. On input, poly tries to convert a polynomial expres-
sion f to a polynomial over the coefficient ring. For some coefficient rings,
however, it is not possible to use arithmetical expressions to represent a
polynomial, because multiplication with the indeterminates may not be
a valid operation in the ring. In this case, the polynomial can be defined
via a term list. Cf. example 6.

Example 1. A call of poly creates a polynomial from a polynomial expression:

>> p := poly(2*x*(x + 3))

2
poly(2 x + 6 x, [x])

The operators *, +, - and ^ work on polynomials:

>> p^2 - p + poly(x, [x])

4 3 2
poly(4 x + 24 x + 34 x - 5 x, [x])

For multiplication with a constant, one must either convert the constant to a
polynomial of the appropriate type, or one can use multcoeffs:

>> poly(c, [x])*p = multcoeffs(p, c)

2 2
poly((2 c) x + (6 c) x, [x]) = poly((2 c) x + (6 c) x, [x])

>> delete p:

793

Example 2. A polynomial may be created with parameters. In the following
call, y is a parameter and not an indeterminate:

>> poly((x*(y + 1))^2, [x])

2 2
poly((y + 1) x , [x])

If no indeterminates are specified, they are searched for automatically. In the
following call, the previous expression is converted to a multivariate polynomial:

>> poly((x*(y + 1))^2)

2 2 2 2
poly(y x + 2 y x + x , [y, x])

The order of the indeterminates can be specified explicitly:

>> poly((x*(y + 1))^2, [x, y])

2 2 2 2
poly(x y + 2 x y + x , [x, y])

Example 3. The following polynomials are created by term lists:

>> poly([[c2, 3], [c1, 7], [c3, 0]], [x])

7 3
poly(c1 x + c2 x + c3, [x])

>> poly([[c2, 3], [c1, 7], [c3, 0], [a, 3]], [x])

7 3
poly(c1 x + (a + c2) x + c3, [x])

For multivariate polynomials, exponent vectors must be specified via lists:

>> poly([[c1, [2, 2]], [c2, [2, 1]], [c3, [2, 0]]], [x, y])

2 2 2 2
poly(c1 x y + c2 x y + c3 x , [x, y])

Example 4. Expressions such as f(x) may be used as indeterminates:

>> poly(f(x)*(f(x) + x^2))

2 2
poly(x f(x) + f(x) , [x, f(x)])

794

Example 5. The residue class ring IntMod (7) is a valid coefficient ring:

>> p := poly(9*x^3 + 4*x - 7, [x], IntMod(7))

3
poly(2 x - 3 x, [x], IntMod(7))

Internally, modular arithmetic is used when computing with polynomials over
this ring:

>> p^3

9 7 5 3
poly(x - x - 2 x + x , [x], IntMod(7))

Note, however, that coefficients are not returned as elements of a special domain,
but as plain integers of type DOM_INT:

>> coeff(p)

2, -3

>> delete p:

Example 6. The input syntax using term lists may be combined with a given
coefficient ring:

>> poly([[9, 3], [4, 1], [-2, 0]], [x], IntMod(7))

3
poly(2 x - 3 x - 2, [x], IntMod(7))

Note that the input coefficients are interpreted as elements of the coefficient
domain, i.e., conversions such as 9 mod 7 → 2 occur on input. We can also use
the domain Dom::IntegerMod(7) to define an equivalent polynomial. However,
in contrast to IntMod (7), the coefficients a represented by the numbers 0, . . . , 6
rather than −3, . . . , 3:

>> poly([[9, 3], [4, 1], [-2, 0]], [x], Dom::IntegerMod(7))

3
poly(2 x + 4 x + 5, [x], Dom::IntegerMod(7))

Note that the following attempt to define a polynomial via an expression fails,
because the domain Dom::IntegerMod(7) does not permit multiplication with
identifiers:

>> c := Dom::IntegerMod(7)(3)

795

3 mod 7

>> poly(c*x^2, [x], Dom::IntegerMod(7))

FAIL

In such a case, term lists allow to specify the polynomial:

>> poly([[c, 2]], [x], Dom::IntegerMod(7))

2
poly(3 x , [x], Dom::IntegerMod(7))

>> delete c:

Example 7. It is possible to change the indeterminates in a polynomial:

>> p:= poly(((a + b)*x - a^2)*x, [x]): p, poly(p, [a, b])

2 2
poly((a + b) x + (- a) x, [x]),

2 2 2
poly((-x) a + x a + x b, [a, b])

Example 8. It is possible to change the coefficient ring of a polynomial:

>> p := poly(-4*x + 5*y - 5, [x, y], IntMod(7)):
p, poly(p, IntMod(3))

poly(3 x - 2 y + 2, [x, y], IntMod(7)),

poly(y - 1, [x, y], IntMod(3))

Example 9. Here we create a polynomial over the coefficient ring Dom::Float:

>> poly(3*x - y, Dom::Float)

poly(- 1.0 y + 3.0 x, [y, x], Dom::Float)

The identifier y cannot turn up in coefficients from this ring, because it cannot
be converted to a floating point number:

>> poly(3*x - y, [x], Dom::Float)

FAIL

796

Background:

A A domain must contain certain entries if it is to be used as a coefficient
domain:

• The entry "zero" must provide the neutral element with respect to
addition.

• The entry "one" must provide the neutral element with respect to
multiplication.

• The method "_plus" must add domain elements.

• The method "_negate" must return the inverse with respect to
addition.

• The method "_mult" must multiply domain elements.

• The method "_power" must compute integer powers of a domain
element. It is called with the domain element as the first argument
and an integer as the second argument.

A Further, the following methods should be defined. They are called by
functions such as gcd, diff, divide, norm etc.:

• The method "gcd" must return the greatest common divisor of do-
main elements.

• The method "diff" must differentiate a domain element with re-
spect to a variable.

• The method "_divide" must divide two domain elements. It must
return FAIL if division is not possible.

• The method "norm" must compute the norm of a domain element
and return it as a number.

• The method "convert" must convert an expression to a domain
element. It must return FAIL if this is not possible.

This method is called to convert the coefficients of polynomial ex-
pressions to coefficients of the specified domain. If this method does
not exist then only domain elements can be used to specify the coef-
ficients.

• The method "expr" must convert a domain element to an expres-
sion.

The system function expr calls this method to convert a polyno-
mial over the coefficient domain to a polynomial expression. If this
method does not exist, domain elements are simply inserted into the
expression.

797

A When converting a polynomial over a certain coefficient domain into a
polynomial over the same domain, but a different set of indeterminates,
the conversion can be made much more efficient if the domain has the
axiom Ax::indetElements. It is implicitly assumed that this axiom holds
for the domain IntMod(n), but not for Expr.

Changes:

A The axiom Ax::indetElements is taken into acount.

poly2list – convert a polynomial to a list of terms

poly2list(p) returns a term list containing the coefficients and exponent vec-
tors of the polynomial p.

Call(s):

A poly2list(p)

A poly2list(f <, vars>)

Parameters:
p — a polynomial of type DOM_POLY
f — a polynomial expression
vars — a list of indeterminates of the polynomial: typically, identifiers

or indexed identifiers

Return Value: a list containing the coefficients and exponent vectors of the
polynomial. FAIL is returned if a given expression cannot be converted to a
polynomial.

Related Functions: coeff, coerce, degree, degreevec, lcoeff, poly,
tcoeff

Details:

A The returned term list is a list where each element represents a monomial
of the polynomial with non-zero coefficient. The monomials are also
represented as lists, each containing two elements: The first element is
the coefficient and the second the exponent or exponent vector of the
monomial. If the polynomial is univariate, exponents are returned, oth-
erwise exponent vectors are returned. Exponent vectors have the same
form as returned by the function degreevec. A zero polynomial results
in an empty list.

798

A The elements of the term list are sorted lexicographically according to the
exponent vectors. This is also the ordering used internally for the terms
of polynomials.

A poly2list(f, vars) is equivalent to poly2list(poly(f, vars)): First,
the polynomial expression f is converted to a polynomial in the variables
vars over the expressions. Then that polynomial is converted to a term
list. If the variables vars are not given, the free identifiers contained in
f are used as variables. See poly about details on how the expression is
converted to a polynomial. FAIL is returned if the expression cannot be
converted to a polynomial.

A poly2list is a function of the system kernel.

Example 1. The following expressions define univariate polynomials. Thus
the term lists contain exponents and not exponent vectors:

>> poly2list(2*x^100 + 3*x^10 + 4)

[[2, 100], [3, 10], [4, 0]]

>> poly2list(2*x*(x + 1)^2)

[[2, 3], [4, 2], [2, 1]]

Specification of a list of indeterminates allows to distinguish symbolic paramet-
ers from the indeterminates:

>> poly2list(a*x^2 + b*x + c, [x])

[[a, 2], [b, 1], [c, 0]]

Example 2. In this example the polynomial is bivariate, thus exponent vectors
are returned:

>> poly2list((x*(y + 1))^2, [x, y])

[[1, [2, 2]], [2, [2, 1]], [1, [2, 0]]]

Example 3. In this example a polynomial of domain type DOM_POLY is given.
This form must be used if the polynomial has coefficients that does not consist
of expressions:

>> poly2list(poly(-4*x + 5*y - 5, [x, y], IntMod(7)))

[[3, [1, 0]], [-2, [0, 1]], [2, [0, 0]]]

799

polygon – generate a graphical polygon primitive

polygon(p1, p2, ...) defines a polygon with vertices p1, p2 etc.

Call(s):

A polygon(p1, p2, ... <, Closed = b1> <, Filled = b2> <,
Color = [r, g, b]>)

Parameters:
p1, p2, ... — graphical points created by the function point. A 2D

polygon is created if all points are 2D points. 3D
points create a 3D polygon.

Options:

Closed = b1 — b1 may be either TRUE or FALSE. If TRUE, the
first point p1 is internally appended to the
points, thus creating a closed polygon. The
default is Closed = FALSE.

Filled = b2 — b2 may be either TRUE or FALSE. If FALSE, the
polygon is a curve consisting of line segments.
If TRUE, the polygon is rendered as a filled
area. The default is Filled = FALSE.

Color = [r, g, b] — sets an RGB color given by the amount of red,
green and blue. The parameters r, g, b must
be real numbers between 0 and 1.

Return Value: an object of domain type DOM_POLYGON.

Related Functions: plot, plot::Polygon, plot2d, plot3d, plotfunc2d,
plotfunc3d, point, RGB

Details:

A Polygons generated by polygon represent graphical primitives that can
be displayed via plot2d or plot3d using the list format [Mode = List,
[..primitives..]].

A The plot library provides the alternative primitive plot::Polygon. This
object is more flexible than the kernel object generated by polygon. The
first can be used with all functions of the plot library, whereas the latter
can only be used in a call to plot2d or plot3d.

A polygon is a function of the system kernel.

800

Option <Filled = b2>:

A With Filled = TRUE a closed polygon is created, i.e., the first point p1
is appended to the points. The plot functions render the polygon as a
filled area.

A If Closed = FALSE, the edges of the polygon are rendered with the same
color as the interior. If Closed = TRUE, the edges are rendered in the
foreground color of the scene.

A Filled 3D polygons may not consist of more than three points (tri-
angles). Use plot::Polygon to generate more complex filled 3D
polygons.

!

Option <Color = [r, g, b]>:

A The color values r, g, b must be numerical expressions that can be con-
verted to real floating point numbers from the interval [0.0, 1.0]. An error
occurs if any of these values is not in this range. Symbolic expressions
such as PI - 2, exp(-sqrt(2)) etc. are accepted. Note, however, that
expressions involving symbolic identifiers are not accepted!

A Point colors may be specified in the definition of the vertices via the
function point. These colors are ignored.

A The domain RGB contains many predefined colors.

Operands: The first operands of a polygon are the vertices as specified in the
generating call to polygon. The third but last operand is the list [r, g, b]
defining the polygon color. This operand is NIL, if no color was specified. The
second but last operand is the Boolean b1 corresponding to Closed = b1. The
last operand is the Boolean b2 corresponding to Filled = b2.

Example 1. We define the vertices of a 2D triangle:

>> p1 := point(0, 0): p2 := point(0, 1): p3 := point(1, 0):

We use plot2d to render the edges of the triangle:

>> plot2d(Axes = None, [Mode = List,
[polygon(p1, p2, p3, Closed = TRUE, Color = RGB::Black)]
])

801

The following command renders the triangle area:

>> plot2d(Axes = None, [Mode = List,
[polygon(p1, p2, p3, Filled = TRUE, Color = RGB::Red)]])

The following command renders the triangle area and the edges:

802

>> plot2d(Axes = None, [Mode = List,
[polygon(p1, p2, p3, Closed = TRUE, Filled = TRUE,
Color = RGB::Red)]])

>> delete p1, p2, p3:

Example 2. We define 2D points on the graph of the cosine function:

>> for i from 0 to 12 do
p[i] := point(i, cos(i*PI/6)):

end_for:

These points are used to build a polygon:

>> plot2d(Scaling = UnConstrained,
[Mode = List, [polygon(p[i] $ i = 0..12)]])

803

The following command plots the area between the graph of the cosine
function and the x-axis:

>> plot2d(Scaling = UnConstrained, [Mode = List,
[polygon(point(0, 0), p[i] $ i = 0..12, point(12, 0),

Closed = TRUE, Filled = TRUE)]])

804

The following command plots splits the area between the graph of the cosine
function and the x-axis into trapezoids. The trapezoids are plotted as a list of
filled polygons:

>> plot2d(Scaling = UnConstrained, [Mode = List,
[polygon(point(i, 0), p[i], p[i+1], point(i + 1, 0),

Closed = TRUE, Filled = TRUE) $ i = 0..11]])

805

>> delete p:

Example 3. We define the vertices of a 3D triangle:

>> a := point(0, 0, 1): b := point(1, 1, 1): c := point(1, 0, 1):

We render the triangle in various modes:

>> plot3d(Axes = None, [Mode = List, [polygon(a, b, c)]])

806

>> plot3d(Axes = None,
[Mode = List, [polygon(a, b, c, Closed = TRUE)]])

>> plot3d(Axes = None,
[Mode = List, [polygon(a, b, c, Filled = TRUE)]])

807

>> plot3d(Axes = None, [Mode = List,
[polygon(a, b, c, Closed = TRUE, Filled = TRUE)]])

808

>> plot3d(Axes = None, LineWidth = 30, [Mode = List,
[polygon(a, b, c, Closed = TRUE, Filled = TRUE)]])

>> delete a, b, c:

polylog – the polylogarithm function

polylog(n,x) represents the polylogarithm function Lin(x) of index n at the
point x.

Call(s):

A polylog(n, x)

Parameters:
n — an arithmetical expression representing an integer
x — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: x

809

Side Effects: When called with a floating point argument x, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: dilog, ln

Details:

A For a complex number x of modulus |x| < 1, the polylogarithm function
of index n is defined as

Lin(x) =
∞∑

k=1

xk

kn
.

This function is extended to the whole complex plane by analytic con-
tinuation.

A If n is an integer and x a floating point number, then a floating point
result is computed.

A If n is an integer ≤ 1, then an explicit expression is returned for any
input parameter x. If n is an integer > 1 or if n is a symbolic expression,
then an unevaluated call of polylog is returned, unless x is a floating
point number. If n is a numerical value, but not an integer, then an error
occurs.

A Some special values for n = 2 are implemented (cf. dilog). The values
Lin(0) = 0 and Lin(1) = zeta(n) are implemented for any n. Further-
more, Lin(−1) = (21−n − 1) zeta(n) for any n 6= 1.

A Lin(x) has a singularity at the point x = 1 for indices n ≤ 1. For indices
n ≥ 1, the point x = 1 is a branch point. The branch cut is the real
interval [1,∞). A jump occurs when crossing this cut. Cf. example 2.

A Mathematically, polylog(2,x) coincides with dilog(1-x).

Example 1. Explicit results are returned for integer indices n ≤ 1:

>> polylog(-5, x), polylog(-1, x), polylog(0, x), polylog(1, x)

2 3 4 5
x + 26 x + 66 x + 26 x + x x x
------------------------------, --------, -----, -ln(1 - x)

6 2 1 - x
(1 - x) (1 - x)

An unevaluated call is returned if the index is an integer n > 1 or a symbolic
expression:

810

>> polylog(2, x), polylog(n^2 + 1, 2), polylog(n + 1, 2.0)

2
polylog(2, x), polylog(n + 1, 2), polylog(n + 1, 2.0)

Floating point values are computed for integer indices n and floating point
arguments x:

>> polylog(-5, -1.2), polylog(10, 100.0 + 3.2*I)

-0.2326930882, 104.9131863 + 11.44600047 I

An error occurs if n is a numerical value, but not an integer:

>> polylog(5/2, x)

Error: first argument must be an integer [polylog]

Some special symbolic values are implemented:

>> polylog(4, 1), polylog(5, -1), polylog(2, I)

4 2
PI 15 zeta(5) PI
---, - ----------, I CATALAN - ---
90 16 48

>> assume(n <> 1): polylog(n, -1)

1 - n
- zeta(n) (1 - 2)

>> unassume(n): polylog(n, -1)

polylog(n, -1)

Example 2. For indices n ≥ 1, the real interval [1,∞) is a branch cut. The
values returned by polylog jump when crossing this cut:

>> polylog(3, 1.2 + I/10^1000) - polylog(3, 1.2 - I/10^1000)

0.1044301529 I

811

Example 3. The functions diff, float, limit, and series handle expres-
sions involving polylog:

>> diff(polylog(n, x), x), float(polylog(4, 3 + I))

polylog(n - 1, x)
-----------------, 3.177636803 + 1.859135861 I

x

>> series(polylog(4, sin(x)), x = 0)

2 3 4 5 6
x 25 x 13 x 1523 x 49 x 7

x + -- - ----- - ----- + ------- + ----- + O(x)
16 162 768 405000 51840

Background:

A The polylogarithms are characterized by d
dx Lin(x) = 1

x Lin−1(x) in con-
junction with Lin(0) = 0 and Li1(x) = − ln(1 − x). Lin(x) is a rational
function in x for n ≤ 0.

A Lin has a branch cut along the real interval [1,∞) for indices n ≥ 1. The
value at a point x on the cut coincides with the limit “from below”:

Lin(x) = lim
ε→0+

Lin(x− ε i) = lim
ε→0+

Lin(x+ ε i)− 2π i
(n− 1)!

ln(x)n−1 .

A Reference: L. Lewin, “Polylogarithms and Related Functions”, North Hol-
land (1981). L. Lewin (ed.), “Structural Properties of Polylogarithms”,
Mathematical Surveys and Monographs Vol. 37, American Mathematical
Society, Providence (1991).

Changes:

A The "series" attribute was extended. Now, asymptotic expansions are
available.

powermod – compute a modular power of a number or a polynomial

powermod(b, e, m) computes be mod m.

Call(s):

A powermod(b, e, m)

812

Parameters:
b — the base: a number, or a polynomial of type DOM_POLY, or a

polynomial expression
e — the power: a nonnegative integer
m — the modulus: a number, or a polynomial of type DOM_POLY, or a

polynomial expression

Return Value: Depending on the type of b, the return value is a number, a
polynomial or a polynomial expression. FAIL is returned if an expression cannot
be converted to a polynomial.

Overloadable by: b

Related Functions: _mod, divide, modp, mods, poly

Details:

A If b and m are numbers, the modular power be mod m can also be com-
puted by the direct call b^e mod m. However, powermod(b, e, m) avoids
the overhead of computing the intermediate result be and computes the
modular power much more efficiently.

A If b is a rational number, then the modular inverse of the denominator is
calculated and multiplied with the numerator.

A If the modulus m is an integer, then the base b must either be a num-
ber, a polynomial expression or a polynomial that is convertible to an
IntMod(m)-polynomial.

A If the modulus m is a polynomial expression, then the base b must either
be a number, a polynomial expression or a polynomial over the coefficient
ring of MuPAD expressions.

A If the modulus m is a polynomial of domain type DOM_POLY, then the base
b must either be a number, or a polynomial of the same type as m or a
polynomial expression that can be converted to a polynomial of the same
type as m.

A Note that the system function _mod in charge of modular arithmetic may
be changed by the user; see the help page of _mod. The function powermod
calls _mod and reacts accordingly. Cf. example 5.

A Internally, polynomials are divided by the function divide.

813

Example 1. We compute 3123456 mod 7:

>> powermod(3, 123456, 7)

1

If the base is a rational number, the modular inverse of the denominator is
computed and multiplied with the numerator:

>> powermod(3/5, 1234567, 7)

2

Example 2. The coefficients of the following polynomial expression are com-
puted modulo 7:

>> powermod(x^2 + 7*x - 3, 10, 7)

2 4 6 14 16 18 20
3 x - x - 3 x + x - x - 2 x + x - 3

Example 3. The power of the following polynomial expression is reduced mod-
ulo the polynomial x2 + 1:

>> powermod(x^2 + 7*x - 3, 10, x^2 + 1)

1029668584 x - 534842913

Example 4. The type of the return value coincides with the type of the base:
a polynomial is returned if the base is a polynomial:

>> powermod(poly(x^2 + 7*x - 3), 2, x^2 + 1),
powermod(poly(x^2 + 7*x - 3), 2, poly(x^2 + 1))

poly(- 56 x - 33, [x]), poly(- 56 x - 33, [x])

If the base is a polynomial expression, powermod returns a polynomial expres-
sion:

>> powermod(x^2 + 7*x - 3, 2, x^2 + 1),
powermod(x^2 + 7*x - 3, 2, poly(x^2 + 1))

- 56 x - 33, - 56 x - 33

814

Example 5. The following re-definition of _mod switches to a symmetric rep-
resentation of modular numbers:

>> alias(R = Dom::IntegerMod(17)):
_mod := mods: powermod(poly(2*x^2, R), 3, poly(3*x + 1, R))

poly(-4, [x], R)

The following command restores the default representation:

>> _mod := modp: powermod(poly(2*x^2, R), 3, poly(3*x + 1, R))

poly(13, [x], R)

>> unalias(R):

print – print objects to the screen

print(object) displays object on the screen.

Call(s):

A print(<Unquoted ,> <NoNL ,> <KeepOrder ,> object1, object2,
...)

Parameters:

object1, object2, ... — any MuPAD objects

Options:

Unquoted — Display character strings without quotation marks and
with expanded control characters ’\n’, ’\t’, and ’\\’.

NoNL — Like Unquoted , but no newline is put at the end.
PRETTYPRINT is implicitly set to FALSE.

KeepOrder — Display operands of sums (of type "_plus") always in
the internal order.

Return Value: print returns the void object null() of type DOM_NULL.

Overloadable by: object1, object2, ...

Side Effects: print is sensitive to the environment variables DIGITS, PRETTYPRINT,
and TEXTWIDTH, and to the output preferences Pref::floatFormat, Pref::keepOrder,
Pref::matrixSeparator, Pref::timesDot, and Pref::trailingZeroes.

815

Related Functions: DIGITS, DOM_FUNC_ENV, expose, expr2text, finput,
fprint, fread, funcenv, input, Pref::floatFormat, Pref::keepOrder,
Pref::matrixSeparator, Pref::timesDot, Pref::trailingZeroes,
PRETTYPRINT, protocol, read, TEXTWIDTH, userinfo, write

Details:

A At interactive level, the result of a MuPAD command entered at the com-
mand prompt is usually displayed on the screen automatically. print
serves to generate additional output from within loops or procedures.

A Apart from some exceptions mentioned below, the output generated by
print is identical to the usual output of MuPAD results at interactive
level.

A print evaluates its arguments sequentially from left to right (cf. ex-
ample 2) and displays the results on the screen. The individual outputs
are separated by commas. A new line is started at the end of the output
if this is not suppressed by the option NoNL .

A The output width for print is limited by the environment variable TEXTWIDTH.
Cf. example 3.

A The style of the output is determined by the value of the environment
variable PRETTYPRINT. Cf. example 4. print will always produce ASCII
output, even under Windows when typesetting is enabled for the result
outputs.

A print descends recursively into the operands of an object. For each sub-
object s, print first determines its domain type T. If the domain T has a
"print" slot, then print issues the call T::print(s) to the slot routine.
In contrast to the overloading mechanism for most other MuPAD func-
tions, print processes the result of this call recursively, and the result of
the recursive process is printed at the position of s (cf. example 5).

The result returned by the "print" method must not contain the
domain element s itself as a subobject, since this leads to infinite
recursion (cf. example 6). The same remark also applies to the
output procedures of function environments (see below).

!

If T is a built-in kernel domain without a "print" slot, then the output
of s is handled by print itself.

If T is a library domain without a "print" slot and the internal operands
of s are op1, op2, ..., then s is printed as new(T, op1, op2, ...).
(See example 5.)

A Even the output of elements of a kernel domain can be changed by defining
a "print" method. Cf. example 7.

816

A "print" methods may return strings or expressions. Strings are always
printed unquoted. Expressions are printed in normal mode. If they con-
tain strings, they will be printed with quotation marks. Cf. example 8.

A The output of an expression is determined by the 0th operand of the ex-
pression. If the 0th operand is a function environment, then its second
operand handles the output of the expression (cf. examples 9 and 10).
Otherwise, the expression is printed in functional notation.

A In contrast to the usual output of MuPAD objects at interactive level,
print does not perform resubstitution of aliases (see Pref::alias for de-
tails). Moreover, the routines defined via Pref::output and Pref::postOutput
are not called by print. Cf. example 15.

A The output of floating point numbers depends on the environment
variable DIGITS and the settings of Pref::floatFormat (exponential or
floating point representation) and Pref::trailingZeroes (printing of
trailing zeroes). Cf. example 19.

A For an overview of all file related MuPAD functions, also try ?fileIO.

A print is a function of the system kernel.

Option <Unquoted>:

A With this option, character strings are displayed without quotation marks.
Moreover, the control characters ’\n’, ’\t’, and ’\\’ in strings are ex-
panded into a new line, a tabulator skip, and a single backslash ’\’,
respectively. Cf. example 11.

A The control character ’\t’ is expanded with tab-size 8. The following
character is placed in the next column i with i mod 8 = 0.

Option <NoNL>:

A This option has the same functionality as Unquoted . In addition, the new
line at the end of the output is suppressed. Cf. example 13.

A Moreover, this option implicitly sets PRETTYPRINT to FALSE.

Option <KeepOrder>:

A This option determines the order of terms in sums. Normally, the system
sorts the terms of a sum such that a positive term is in the first position
of the output. If KeepOrder is given, no such re-ordering takes place and
sums are printed in the internal order. Cf. example 14.

817

A This behavior can also be controlled via Pref::keepOrder. More pre-
cisely, the call print(KeepOrder , ...) generates the same output as
the following command:

Pref::keepOrder(Always): print(...): Pref::keepOrder(%2):

Example 1. This example shows a simple call of print with strings as argu-
ments. They are printed with quotation marks:

>> print("Hello", "You"." !"):

"Hello", "You !"

Example 2. Like most other functions, print evaluates its arguments. In the
following call, x evaluates to 0 and cos(0) evaluates to 1:

>> a := 0: print(cos(a)^2):

1

Use hold if you want to print the expression cos(a)^2 literally:

>> print(hold(cos(a)^2)):

2
cos(a)

>> delete a:

Example 3. print is sensitive to the current value of TEXTWIDTH:

>> print(expand((a + b)^4)):
old := TEXTWIDTH: TEXTWIDTH := 30:
print(expand((a + b)^4)):
TEXTWIDTH := old:

4 4 3 3 2 2
a + b + 4 a b + 4 a b + 6 a b

4 4 3 3
a + b + 4 a b + 4 a b +

2 2
6 a b

>> delete old:

818

Example 4. print is sensitive to the current value of PRETTYPRINT:

>> print(a/b):
old := PRETTYPRINT: PRETTYPRINT := FALSE:
print(a/b):
PRETTYPRINT := old:

a
-
b

a/b

>> delete old:

Example 5. We demonstrate how to achieve formatted output for elements of
a user-defined domain. Suppose that we want to write a new domain Complex
for complex numbers. Each element of this domain has two operands: the real
part r and the imaginary part s:

>> Complex := newDomain("Complex"): z := new(Complex, 1, 3):
z + 1;
print(z + 1):

(new(Complex, 1, 3)) + 1

(new(Complex, 1, 3)) + 1

Now we want a nicer output for elements of this domain, namely in the form
r+s*I, where I denotes the imaginary unit. We implement the slot routine
Complex::print to handle this. This slot routine will be called by MuPAD
with an element of the domain Complex as argument whenever such an element
is to be printed on the screen:

>> Complex::print := (z -> extop(z, 1) + extop(z, 2)*I):
z + 1;
print(z + 1):

(1 + 3 I) + 1

(1 + 3 I) + 1

>> delete Complex, z:

819

Example 6. The result of a "print" method must not contain the argument as
a subobject; otherwise this leads to infinite recursion. In the following example,
the slot routine T::print would be called infinitly often. MuPAD tries to trap
such infinite recursions and prints ‘????‘ instead:

>> T := newDomain(T): T::print := id:
new(T, 1);
print(new(T, 1)):

‘????‘

‘????‘

>> delete T:

Example 7. Even "print" methods for kernel domains are possible. This
example shows how to redefine the output of polynomials by printing only the
polynomial expression:

>> poly(x + 1);
print(poly(x + 1)):

poly(x + 1, [x])

poly(x + 1, [x])

>> unprotect(DOM_POLY): DOM_POLY::print := p -> op(p, 1):
poly(x + 1);
print(poly(x + 1)):
delete DOM_POLY::print: protect(DOM_POLY):

x + 1

x + 1

Example 8. If a "print" method returns a string, it will be printed unquoted:

>> Example := newDomain("Example"): e := new(Example, 1):
Example::print := x -> "elementOfExample":
print(e):

elementOfExample

If a "print"-method returns an expression, it will be printed in normal mode.
If the expression contains strings, they will be printed in the usual way with
quotation marks:

820

>> Example::print := x -> ["elementOfExample", extop(x)]:
print(e):

["elementOfExample", 1]

>> delete Example, e:

Example 9. Suppose that you have defined a function f that may return itself
symbolically, and you want such symbolic expressions of the form f(x,...)
to be printed in a special way. To this end, embed your procedure f in a
function environment and supply an output procedure as second argument to
the corresponding funcenv call. Whenever an expression of the form f(x,...)
is to be printed, the output procedure will be called with the arguments x,...
of the expression:

>> f := funcenv(f,
proc(x) begin

if nops(x) = 2 then
"f does strange things with its arguments ".
expr2text(op(x, 1))." and ".expr2text(op(x,2))

else
FAIL

end
end):

>> delete a, b:
f(a, b)/2;
f(a, b, c)/2

f does strange things with its arguments a and b
--

2

f(a, b, c)

2

>> delete f:

Example 10. For all prefedined function environments, the second operand
is a built-in output function, of type DOM_EXEC. In particular, this is the case
for operators such as +, *, ^ etc. In the following example, we change the
output symbol for the power operator ^, which is stored in the third operand
of the built-in output function of the function environment _power, to a double
asterisk:

821

>> unprotect(_power):
_power := subsop(_power, [2, 3] = "**"):
a^b/2;
print(a^b/2):
_power := subsop(_power, [2, 3] = "^"):
protect(_power):

a**b

2

a**b

2

Example 11. With the option Unquoted , quotation marks are omitted:

>> print(Unquoted, "Hello", "You"." !"):

Hello, You !

With Unquoted the special characters ’\t’ and ’\n’ are expanded:

>> print(Unquoted, "As you can see\n".
"’\\n’ is the newline character\n".
"\tand ’\\t’ a tabulator"):

As you can see
’\n’ is the newline character

and ’\t’ a tabulator

Example 12. It is useful to construct output strings using expr2text and the
concatenation operator .:

>> d := 5: print(Unquoted, "d plus 3 = ".expr2text(d + 3)):

d plus 3 = 8

>> delete d:

822

Example 13. With the option NoNL , no new line is put at the end of the output
and PRETTYPRINT is implicitly set to FALSE. Apart from that, the behavior is
the same as with the option Unquoted :

>> print(NoNL, "Hello"): print(NoNL, ", You"." !\n"):
print(NoNL, "As you can see PRETTYPRINT is FALSE: "):
print(NoNL, x^2-1): print(NoNL, "\n"):

Hello, You !
As you can see PRETTYPRINT is FALSE: x^2 - 1

Example 14. If the option KeepOrder is given, sums are printed in their
internal order:

>> print(b - a): print(KeepOrder, b - a):

b - a

- a + b

Example 15. Alias resubstitution (see Pref::alias) takes place for normal
result outputs in an interactive session, but not for outputs generated by print:

>> delete a, b: alias(a = b):
a; print(a):
unalias(a):

a

b

In contrast to the usual result output, print does not react to Pref::output:

>> old := Pref::output(generate::TeX):
sin(a)^b; print(sin(a)^b):
Pref::output(old):

"\\sin\\left(a\\right)^b"

b
sin(a)

The same is true for Pref::postOutput:

>> old := Pref::postOutput("postOutput was called"):
a*b; print(a*b):
Pref::postOutput(old):

823

a b
postOutput was called

a b

>> delete old:

Example 16. The output of summands of a sum depends on the form of
these summands. If the summand is a _mult expression, only the first and last
operand of the product are taken into account for determining the sign of that
term in the output. If one of them is a negative number then the ”+”-symbol
in the sum is replaced by a ”-”-symbol:

>> print(hold(a + b*c*(-2)),
hold(a + b*(-2)*c),
hold(a + (-2)*b*c)):

a - 2 b c, a + b (-2) c, a - 2 b c

This has to be taken into account when writing "print"-methods for polynomial
domains.

Example 17. Usually, MuPAD does not print a multiplication symbol for
products and just concatenates the factors with spaces in between. You can
explicitly request that a multiplication symbol be printed via Pref::timesDot:

>> a*b*c;
print(a*b*c):

a b c

a b c

>> old := Pref::timesDot(" * "):
a*b*c;
print(a*b*c):
Pref::timesDot(old):

a * b * c

a * b * c

>> delete old:

824

Example 18. The column separator in the output of matrices or two-dimensional
arrays can be changed via Pref::matrixSeparator:

>> a := array(1..2, 1..2, [[11, 12], [22, 23]]):
a; print(a):

+- -+
| 11, 12 |
| |
| 22, 23 |
+- -+

+- -+
| 11, 12 |
| |
| 22, 23 |
+- -+

>> old := Pref::matrixSeparator(" "):
a; print(a):
Pref::matrixSeparator(old): delete a:

+- -+
| 11 12 |
| |
| 22 23 |
+- -+

+- -+
| 11 12 |
| |
| 22 23 |
+- -+

If the output width of a matrix would exceed TEXTWIDTH, then it is printed in
a textual form:

>> print(array(1..4, 1..4, (2, 2) = 2)):
print(array(1..10, 1..10, (5, 5) = 55)):

+- -+
| ?[1, 1], ?[1, 2], ?[1, 3], ?[1, 4] |
| |
| ?[2, 1], 2, ?[2, 3], ?[2, 4] |
| |
| ?[3, 1], ?[3, 2], ?[3, 3], ?[3, 4] |
| |
| ?[4, 1], ?[4, 2], ?[4, 3], ?[4, 4] |

825

+- -+

array(1..10, 1..10,
(5, 5) = 55

)

>> delete old, a:

Example 19. Floating point numbers are usually printed in fixed-point nota-
tion. You can change this to floating-point form with mantissa and exponent
via Pref::floatFormat:

>> print(0.000001, 1000.0): old := Pref::floatFormat("e"):
print(0.000001, 1000.0): Pref::floatFormat(old):

0.000001, 1000.0

1.0e-6, 1.0e3

In the default output of floating point numbers, trailing zeroes are cut off. This
behavior can be changed via Pref::trailingZeroes:

>> print(0.000001, 1000.0): old := Pref::trailingZeroes(TRUE):
print(0.000001, 1000.0): Pref::trailingZeroes(old):

0.000001, 1000.0

0.000001000000000, 1000.000000

The number of digits of floating point numbers in output depends on the en-
vironment variable DIGITS:

>> print(float(PI)):
DIGITS := 20: print(float(PI)):
DIGITS := 30: print(float(PI)):

3.141592654

3.1415926535897932385

3.14159265358979323846264338328

>> delete old, DIGITS:

826

Example 20. The output order of sets differs from the internal order of sets,
which is returned by op:

>> s := {a, b, c}:
s;
print(s):
op(s)

{a, b, c}

{a, b, c}

c, b, a

The index operator [] can be used to access the elements of a set with respect
to the output order:

>> s[1], s[2], s[3]

a, b, c

>> delete s:

Example 21. The output of a domain is determined by its "Name" slot if it
exists, and otherwise by its key :

>> T := newDomain("T"):
T;
print(T):

T

T

>> T::Name := "domain T":
T;
print(T):

domain T

domain T

>> delete T:

827

Example 22. It is sometimes desirable to combine strings with “pretty” ex-
pressions in an output. This is not possible via expr2text. On the other hand,
an output with commas as separators is usually regarded as ugly. The following
dummy expression sequence may be used to achieve the desired result. It uses
MuPAD’s internal function for standard operator output builtin(1100,...),
with priority 20—the priority of _exprseq—and with an empty operator sym-
bol ””:

>> myexprseq := funcenv(myexprseq,
builtin(1100, 20, "", "myexprseq")):

print(Unquoted,
myexprseq("String and pretty expression ", a^b, ".")):

b
String and pretty expression a .

>> delete myexprseq:

Background:

A The output order of sets differs from the internal order of sets, which
can be obtained via op. For this reordering in the output, the kernel calls
the method DOM_SET::sort, which takes the set as argument and returns
a sorted list. The elements of the set are then printed in the order given
by this list.

proc – define a procedure

proc - end_proc defines a procedure.

Call(s):

A (x1, x2, ...) -> body

A proc(
x1 <= default1> <: type1>,
x2 <= default2> <: type2>, ...
)<: returntype>

<name pname;>
<option option1, option2, ...;>
<local local1, local2, ...;>
<save global1, global2, ...;>
begin
body

end_proc

A _procdef(...)

828

Parameters:
x1, x2, ... — the formal parameters of the procedure:

identifiers
default1, default2, ... — default values for the parameters:

arbitrary MuPAD objects
type1, type2, ... — admissible types for the parameters:

type objects as accepted by the
function testtype

returntype — admissible type for the return value: a
type object as accepted by the function
testtype

pname — the name of the procedure: an
expression

option1, option2, ... — available options are: escape , hold ,
noDebug , remember

local1, local2, ... — the local variables: identifiers
global1, global2, ... — global variables: identifiers
body — the body of the procedure: an arbitrary

sequence of statements

Return Value: a procedure of type DOM_PROC.

Related Functions: args, context, debug, expose, hold, MAXDEPTH,
newDomain, Pref::ignoreNoDebug, Pref::noProcRemTab, Pref::typeCheck,
Pref::warnDeadProcEnv, return, save, testargs, Type

Details:

A Procedures f := proc(x1, x2, ...) ... end_proc may be called like
a system function in the form f(x1, x2, ...). The return value of this
call is the value of the last command executed in the procedure body (or
the value returned by the body via the function return).

A The procedure declaration (x1, x2, ...) -> body is equivalent to proc(x1,
x2, ...) begin body end_proc. It is useful for defining simple proced-
ures that do not need local variables. E.g., f := x -> x^2 defines the
mathematical function f : x 7→ x2. If the procedure uses more than
one parameter, use brackets as in f := (x, y) -> x^2 + y^2. Cf. ex-
ample 1.

A A MuPAD procedure may have an arbitrary number of parameters. For
each parameter, a default value may be specified. This value is used if no
actual value is passed when the procedure is called. E.g.,

f := proc(x = 42) begin body end_proc

defines the default value of the parameter x to be 42. The call f() is
equivalent to f(42). Cf. example 2.

829

A For each parameter, a type may be specified. This invokes an automatic
type checking when the procedure is called. E.g.,

f := proc(x : DOM_INT) begin body end_proc

restricts the argument x to integer values. If the procedure is called with
an argument of a wrong data type, the evaluation is aborted with an
error message. Cf. example 3. Checking the input parameters should be
a standard feature of every procedure. Also refer to testargs.

Also an automatic type checking for the return value may be implemented
specifying returntype. Cf. example 3.

A With the keyword name, a name may be defined for the procedure, e.g.,

f := proc(...) name myName; begin body end_proc.

There is a special variable procname associated with a procedure which
stores its name. When the body returns a symbolic call procname(args()),
the actual name is substituted. This is the name defined by the optional
name entry. If no name entry is specified, the first identifier the procedure
has been assigned to is used as the name, i.e., f in this case. Cf. example 4.

A With the keyword option, special features may be specified for a proced-
ure:

escape must be used if the procedure creates and returns a new pro-
cedure which accesses local values of the enclosing procedure. Cf.
example 5. This option should only be used if necessary. Also refer
to Pref::warnDeadProcEnv.

hold prevents the procedure from evaluating the actual parameters it is
called with. Cf. example 6.

noDebug prevents the MuPAD source code debugger from entering this
procedure. Also refer to Pref::ignoreNoDebug. Cf. example 7.

remember instructs the procedure to store each computed result in a
so-called remember table. When this procedure is called later with
the same input parameters, the result is read from this table and
needs not be computed again. This may speed up, e.g., recurs-
ive procedures drastically. Cf. example 8. However, the remem-
ber table may grow large and use a lot of memory. Also refer to
Pref::noProcRemTab.

A With the keyword local, the local variables of the procedure are specified,
e.g.,

f := proc(...) local x, y; begin body end_proc.

Cf. example 9.

Local variables cannot be used as “symbolic variables” (identifiers). They
must be assigned values before they can be used in computations.

830

Note that the names of global MuPAD variables such DIGITS, READPATH
etc. should not be used as local variables. Also refer to the keyword save.

A With the keyword save, a local context for global MuPAD variables is
created, e.g.,

f := proc(...) save DIGITS; begin DIGITS := newValue; ... end_proc.

This means that the values these variables have on entering the procedure
are restored on exiting the procedure. This is true even if the procedure
is exited because of an error. Cf. example 10.

A One can define procedures that accept a variable number of arguments.
E.g., one may declare the procedure without any formal parameters. In-
side the body, the actual parameters the procedure is called with may be
accessed via the function args. Cf. example 11.

A Calling a procedure name f, say, usually does not print the source code of
the body to the screen. Use expose(f) to see the body. Cf. example 12.

A The environment variable MAXDEPTH limits the“nesting depth”of recursive
procedure calls. The default value is MAXDEPTH = 500. Cf. example 8.

A If a procedure is a domain slot, the special variable dom contains the name
of the domain the slot belongs to. If the procedure is not a domain slot,
the value of dom is NIL.

A Instead of end_proc, also the keyword end can be used.

A The imperative declaration proc - end_proc internally results in a call of
the kernel function _procdef. There is no need to call _procdef directly.

A _procdef is a function of the system kernel.

Example 1. Simple procedures can be generated with the “arrow operator”
->:

>> f := x -> x^2 + 2*x + 1:
f(x), f(y), f(a + b), f(1.5)

2 2 2
2 x + x + 1, 2 y + y + 1, 2 a + 2 b + (a + b) + 1, 6.25

>> f := n -> isprime(n) and isprime(n + 2):
f(i) $ i = 11..18

TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE

The following command maps an “anonymous” procedure to the elements of a
list:

>> map([1, 2, 3, 4, 5, 6], x -> x^2)

831

[1, 4, 9, 16, 25, 36]

>> delete f:

Example 2. The declaration of default values is demonstrated. The following
procedure uses the default values if the procedure call does not provide all
parameter values:

>> f := proc(x, y = 1, z = 2) begin [x, y, z] end_proc:
f(x, y, z), f(x, y), f(x)

[x, y, z], [x, y, 2], [x, 1, 2]

No default value was declared for the first argument. A warning is issued if this
argument is missing:

>> f()

Warning: Uninitialized variable ’x’ used;
during evaluation of ’f’

[NIL, 1, 2]

>> delete f:

Example 3. The automatic type checking of procedure arguments and return
values is demonstrated. The following procedure accepts only positive integers
as argument:

>> f := proc(n : Type::PosInt) begin n! end_proc:

An error is raised if an unsuitable parameter is passed:

>> f(-1)

Error: Wrong type of 1. argument (type ’Type::PosInt’ expected,
got argument ’-1’);

during evaluation of ’f’

In the following procedure, automatic type checking of the return value is in-
voked:

>> f := proc(n : Type::PosInt) : Type::Integer
begin
n/2

end_proc:

832

An error is raised if the return value is not an integer:

>> f(3)

Error: Wrong type of return value (type ’Type::Integer’ expected,
value is ’3/2’);

during evaluation of ’f’

>> delete f:

Example 4. The name entry of procedures is demonstrated. A procedure
returns a symbolic call to itself by using the variable procname that contains
the current procedure name:

>> f := proc(x)
begin
if testtype(x,Type::Numeric)
then return(float(1/x))
else return(procname(args()))

end_if
end_proc:
f(x), f(x + 1), f(3), f(2*I)

f(x), f(x + 1), 0.3333333333, -0.5 I

Also error messages use this name:

>> f(0)

Error: Division by zero;
during evaluation of ’f’

If the procedure has a name entry, this entry is used:

>> f := proc(x)
name myName;
begin
if testtype(x,Type::Numeric)
then return(float(1/x))
else return(procname(args()))

end_if
end_proc:
f(x), f(x + 1), f(3), f(2*I)

myName(x), myName(x + 1), 0.3333333333, -0.5 I

>> f(0)

833

Error: Division by zero;
during evaluation of ’myName’

>> delete f:

Example 5. The option escape is demonstrated. This option must be used
if the procedure returns another procedure that references a formal parameter
or a local variable of the generating procedure:

>> f := proc(n)
begin
proc(x) begin x^n end_proc

end_proc:

Without the option escape , the formal parameter n of f leaves its scope: g :=
f(3) references n internally. When g is called, it cannot evaluate n to the value
3 that n had inside the scope of the function f:

>> g := f(3): g(x)

Warning: Uninitialized variable ’unknown’ used;
during evaluation of ’g’
Error: Illegal operand [_power];
during evaluation of ’g’

option escape instructs the procedure f to deal with variables escaping the
local scope. Now, the procedure g := f(3) references the value 3 rather than
the formal parameter n of f, and g can be executed correctly:

>> f := proc(n)
option escape;
begin
proc(x) begin x^n end_proc

end_proc:
g := f(3): g(x), g(y), g(10)

3 3
x , y , 1000

>> delete f, g:

Example 6. The option hold is demonstrated. With hold, the procedure sees
the actual parameter in the form that was used in the procedure call. Without
hold, the function only sees the value of the parameter:

834

>> f := proc(x) option hold; begin x end_proc:
g := proc(x) begin x end_proc:
x := PI/2:
f(sin(x) + 2) = g(sin(x) + 2), f(1/2 + 1/3) = g(1/2 + 1/3)

sin(x) + 2 = 3, 1/2 + 1/3 = 5/6

Procedures using option hold can evaluate the arguments with the function
context:

>> f := proc(x) option hold; begin x = context(x) end_proc:
f(sin(x) + 2), f(1/2 + 1/3)

sin(x) + 2 = 3, 1/2 + 1/3 = 5/6

>> delete f, g, x:

Example 7. The option noDebug is demonstrated. The debug command
starts the debugger which steps inside the procedure f. After entering the
debugger command c (continue), the debugger continues the evaluation:

>> f := proc(x) begin x end_proc: debug(f(42))

Activating debugger...

#0 in f($1=42) at /tmp/debug0.556:4
mdx> c
Execution completed.

42

With the option noDebug , the debugger does not step into the procedure:

>> f := proc(x) option noDebug; begin x end_proc: debug(f(42))

Execution completed.

42

>> delete f:

Example 8. The option remember is demonstrated. The print command
inside the following procedure indicates if the procedure body is executed:

835

>> f:= proc(n : Type::PosInt)
option remember;
begin

print("computing ".expr2text(n)."!");
n!

end_proc:
f(5), f(10)

"computing 5!"

"computing 10!"

120, 3628800

When calling the procedure again, all values that were computed before are
taken from the internal“remember table”without executing the procedure body
again:

>> f(5)*f(10) + f(15)

"computing 15!"

1308109824000

option remember is used in the following procedure which computes the Fibon-
acci numbers F (0) = 0, F (1) = 1, F (n) = F (n− 1) + F (n− 2) recursively:

>> f := proc(n : Type::NonNegInt)
option remember;
begin

if n = 0 or n = 1 then return(n) end_if;
f(n - 1) + f(n - 2)

end_proc:

>> f(123)

22698374052006863956975682

Due to the recursive nature of f, the arguments are restricted by the maximal
recursive depth (see MAXDEPTH):

>> f(1000)

Error: Recursive definition [See ?MAXDEPTH];
during evaluation of ’Type::testtype’

Without option remember , the recursion is rather slow:

>> f := proc(n : Type::NonNegInt)
begin

if n = 0 or n = 1 then return(n) end_if;
f(n - 1) + f(n - 2)

end_proc:

836

>> f(28)

317811

>> delete f:

Example 9. We demonstrate the use of local variables:

>> f := proc(a)
local x, y;
begin
x := a^2;
y := a^3;
print("x, y" = (x, y));
x + y

end_proc:

The local variables x and y do not coincide with the global variables x, y outside
the procedure. The call to f does not change the global values:

>> x := 0: y := 0: f(123), x, y

"x, y" = (15129, 1860867)

1875996, 0, 0

>> delete f, x, y:

Example 10. The save declaration is demonstrated. The following procedure
changes the environment variable DIGITS internally. Because of save DIGITS,
the original value of DIGITS is restored after return from the procedure:

>> myfloat := proc(x, digits)
save DIGITS;
begin
DIGITS := digits;
float(x);

end_proc:

The current value of DIGITS is:

>> DIGITS

10

837

With the default setting DIGITS = 10, the following float conversion suffers from
numerical cancellation. Due to the higher internal precision, myfloat produces
a more accurate result:

>> x := 10^20*(PI - 21053343141/6701487259):
float(x), myfloat(x, 20)

-32.0, 0.02616403997

The value of DIGITS was not changed by the call to myfloat:

>> DIGITS

10

The following procedure needs a global identifier, because local variables cannot
be used as integration variables in the int function. Internally, the global
identifier x is deleted to make sure that x does not have a value:

>> f := proc(n)
save x;
begin
delete x;
int(x^n*exp(-x), x = 0..1)

end_proc:

>> x := 3: f(1), f(2), f(3)

1 - 2 exp(-1), 2 - 5 exp(-1), 6 - 16 exp(-1)

Because of save x, the previously assigned value of x is restored after the
integration:

>> x

3

>> delete myfloat, x, f:

Example 11. The following procedure accepts an arbitrary number of argu-
ments. It accesses the actual parameters via args, puts them into a list, reverses
the list via revert, and returns its arguments in reverse order:

>> f := proc()
local arguments;
begin

arguments := [args()];
op(revert(arguments))

end_proc:

838

>> f(a, b, c)

c, b, a

>> f(1, 2, 3, 4, 5, 6, 7)

7, 6, 5, 4, 3, 2, 1

>> delete f:

Example 12. Use expose to see the source code of a procedure:

>> f := proc(x = 0, n : DOM_INT)
begin
sourceCode;

end_proc

proc f(x, n) ... end

>> expose(f)

proc(x = 0, n : DOM_INT)
name f;

begin
sourceCode

end_proc

>> delete f:

product – definite and indefinite products

product(f, i) computes the indefinite product of f(i) with respect to i, i.e.,
a closed form g such that g(i+ 1)/g(i) = f(i).

product(f, i = a..b) tries to find a closed form representation of the product∏b
i=a f(i).

Call(s):

A product(f, i)

A product(f, i = a..b)

Parameters:
f — an arithmetical expression depending on i
i — the product index: an identifier
a, b — the boundaries: arithmetical expressions

839

Return Value: an arithmetical expression.

Related Functions: _mult, *, sum

Details:

A product serves for simplifying symbolic products. It should not be used
for multiplying a finite number of terms: if a and b are integers of type
DOM_INT, the call _mult(f $ i = a..b) is more efficient than product(f,
i = a..b).

A product(f, i) computes the indefinite product of f with respect to i.
This is an expression g such that f(i) = g(i+ 1)/g(i).

A product(f, i = a..b) computes the definite product with i running
from a to b.

If b-a is a nonnegative integer then the explicit product f(a) · f(a +
1) · · · f(b) is returned.

If b-a is a negative integer, then the reciprocal of the result of product(f,
i = b+1..a-1) is returned. If the latter is zero, then the system issues
an error message. With this convention, the rule

product(f, i = a..b) * product(f, i = b+1..c) = product(f, i =
a..c)

is satisfied for any a, b, and c.

A The system returns a symbolic product call if it cannot compute a closed
form representation of the product.

Example 1. Each of the following two calls computes the product 1 ·2 ·3 ·4 ·5:

>> product(i, i = 1..5) = _mult(i $ i = 1..5)

120 = 120

However, using _mult is usually more efficient when the boundaries are integers
of type DOM_INT.

There is a closed form of this definite product from 1 to n:

>> product(i, i = 1..n)

gamma(n + 1)

Since the upper boundary is a symbolic identifier n, _mult cannot handle this
product:

>> _mult(i $ i = 1..n)

840

Error: Illegal argument [_seqgen]

The corresponding indefinite product is:

>> product(i, i);

gamma(i)

The indefinite and the definite product of 2i+ 1 are:

>> product(2*i + 1, i)

i
2 gamma(i + 1/2)

>> product(2*i + 1, i = 1..n)

n + 1
2 gamma(n + 3/2)

1/2
PI

The boundaries may be symbolic expressions or ±∞ as well:

>> product(2*i/(i + 2), i = a..b)

b + 1
gamma(a + 2) gamma(b + 1) 2

a
gamma(a) gamma(b + 3) 2

>> product(i^2/(i^2 - 1), i = 2..infinity)

2

The system cannot find closed forms of the following two products and returns
symbolic product calls:

>> delete f: product(f(i), i)

product(f(i), i)

>> product((1 + 2^(-i)), i = 1..infinity)

/ 1 \
product| -- + 1, i = 1..infinity |

| i |
\ 2 /

841

protect – protect an identifier

protect(x) protects the identifier x.

Call(s):

A protect(x <, protectionlevel>)

Parameters:

x — an identifier

Options:

protectionlevel — one of the flags ProtectLevelError ,
ProtectLevelWarning , or ProtectLevelNone .
The default value is ProtectLevelWarning .

Return Value: the previous protection level of x: either ProtectLevelError
or ProtectLevelWarning or ProtectLevelNone .

Related Functions: unprotect

Details:

A protect(x, ProtectLevelError) sets full write-protection for the iden-
tifier. Any subsequent attempt to assign a value to the identifier will lead
to an error.

A protect(x, ProtectLevelWarning) sets a “soft” protection. Any sub-
sequent assignment to the identifier results in a warning message. How-
ever, the identifier will be assigned a value, anyway.

protect(x) is equivalent to protect(x, ProtectLevelWarning).

A protect(x, ProtectLevelNone) removes any protection from the iden-
tifier. This call is equivalent to unprotect(x).

A Overwriting protected identifiers such as the names of MuPAD func-
tions may damage your current session. !

842

Example 1. The following call protects the identifier important with the
protection level “ProtectLevelWarning ”:

>> protect(important, ProtectLevelWarning)

ProtectLevelNone

The identifier can still be overwritten:

>> important := 1

Warning: protected variable important overwritten

1

We protect the identifier with the level “ProtectLevelError ”:

>> protect(important, ProtectLevelError)

ProtectLevelWarning

Now, it is no longer possible to overwrite important:

>> important := 2

Error: Identifier ’important’ is protected [_assign]

The identifier keeps its previous value:

>> important

1

In order to overwrite this value, we must unprotect important:

>> protect(important, ProtectLevelNone)

ProtectLevelError

>> important := 2

2

The identifier is protected again with the default level“ProtectLevelWarning ”’:

>> protect(important)

ProtectLevelNone

>> important := 1

Warning: protected variable important overwritten

1

>> unprotect(important): delete important:

843

Example 2. protect does not evaluate its first argument. Here the identifier
x can still be overwritten, while its value – which is the identifier y – remains
write protected:

>> protect(y, ProtectLevelError): x := y: protect(x): x := 1

Warning: protected variable x overwritten

1

>> y := 2

Error: Identifier ’y’ is protected [_assign]

>> unprotect(x): unprotect(y): delete x, y:

Background:

A protect does not evaluate its first argument. This way identifiers can be
protected that have been assigned a value.

A Identifiers starting with a # are implicitly protected and cannot be as-
signed a value nor receive assumptions.

Changes:

A The options None , Warning and Error were renamed to ProtectLevelNone ,
ProtectLevelWarning and ProtectLevelError .

protocol – create a protocol of a MuPAD session

protocol(filename) starts a protocol of the current MuPAD session in the file
with the name filename.

protocol(n) writes into the file associated with the file descriptor n.

protocol() stops the protocol.

Call(s):

A protocol(filename <, InputOnly>)

A protocol(n <, InputOnly>)

A protocol()

Parameters:
filename — the name of a file: a character string
n — a file descriptor provided by fopen: a positive integer

844

Options:

InputOnly — only input is protocolled

Return Value: the void object of type DOM_NULL.

Side Effects: The function is sensitive to the environment variable WRITEPATH.
If this variable has a value, then the protocol file is created in the corresponding
directory. Otherwise, the file is created in the “current working directory”.

Related Functions: fclose, fileIO, finput, fname, fopen, fprint,
fread, ftextinput, pathname, print, read, READPATH, write, WRITEPATH

Details:

A protocol writes a protocol of input commands and corresponding MuPAD
output to a text file.

A The file may be specified directly by its name. This either creates a
new file or overwrites an existing file. protocol opens and closes the file
automatically.

If WRITEPATH does not have a value, protocol interprets the file name as
a pathname relative to the “working directory”.

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

On the Macintosh, an empty file name may be given. In this case, a
dialogue box is opened in which the user can choose a file. Further, on
the interactive level, MacMuPAD warns the user, if an existing file is
about to be overwritten.

Also absolute path names are processed by protocol.

A Alternatively, the file may be specified by a file descriptor n. In this case,
the file must have been opened via fopen(Text, filename, Write) or
fopen(Text, filename, Append). This returns the file descriptor as an
integer n. Note that fopen(filename) opens the file in read-only mode.
A subsequent protocol command to this file causes an error.

The file is not closed automatically by protocol() and must be closed
by a subsequent call to fclose.

A A call of protocol without arguments terminates a running protocol and
closes the corresponding file. Closing the protocol file with fclose also
terminates the protocol.

A If a new protocol is started while a protocol is running, then the old one
is terminated and the corresponding file is closed.

A For an overview of all file related MuPAD functions, also try ?fileIO.

845

Option <InputOnly>:

A The protocol file only contains the input lines. All output is omitted.

Example 1. We open a text file test in write mode with fopen:

>> n := fopen(Text, "test", Write):

A protocol is written into this file:

>> protocol(n):
1 + 1, a/b;
solve(x^2 = 2);
protocol():

The file now has the following content:

1 + 1, a/b;

a
2, -

b
solve(x^2 = 2)

1/2 1/2
{[x = 2], [x = - 2]}

protocol():

Example 2. The protocol file is opened directly by protocol. Only input is
protocolled:

>> protocol("test", InputOnly):
1 + 1; a/b;
solve(x^2 = 2);
protocol():

The file now has the following content:

1 + 1; a/b;
solve(x^2 = 2);
protocol():

846

psi – the digamma/polygamma function

psi(x) represents the digamma function, i.e., the logarithmic derivative Ψ(x) =
Γ′(x)/Γ(x) of the gamma function.

psi(x, n) represents the n-th polygamma function, i.e., the n-th derivative
Ψ(n)(x).

Call(s):

A psi(x)

A psi(x, n)

Parameters:
x — an arithmetical expression
n — a nonnegative integer

Return Value: an arithmetical expression.

Overloadable by: x

Side Effects: When called with a floating point value x, the function is sensit-
ive to the environment variable DIGITS which determines the numerical working
precision.

Related Functions: beta, binomial, fact, gamma, zeta

Details:

A psi(x, 0) is equivalent to psi(x).

A The digamma/polygamma function is defined for all complex arguments
x apart from the singular points 0,−1,−2,

A If x is a floating point value, then a floating point value is returned.

Simplifcations are implemented for rational numbers x with |x| < 500. In
particular, if x = numer(x)/k with denominators k = 1, 2, 3, 4 or 6, the
functional equation

Ψ(n)(x+ 1) = Ψ(n)(x) +
(−1)nn!
xn+1

,

is used to obtain a result with an argument x from the interval (0, 1].

Some explicit formulas are implemented including

847

psi(1) = -EULER,

psi(1, n) = (-1)^(n + 1)*n!*zeta(n + 1), n > 0,

psi(1/2) = -2*ln(2) - EULER,

psi(1/2, n) = (-1)^(n + 1)*n!*(2^(n + 1) - 1)*zeta(n + 1), n >
0.

The special values

psi(infinity) = psi(infinity, 0) = infinity

and

psi(infinity, n) = 0 for n > 0

are implemented.

For all other arguments, a symbolic function call of psi is returned.

A The float attribute of the digamma function psi(x) is a kernel function,
i.e., floating point evaluation is fast. The float attribute of the poly-
gamma function psi(x, n) with n > 0 is a library function. Note that
psi(float(x)) and psi(float(x), n) rather than float(psi(x)) and
float(psi(x, n)) should be used for float evaluation because, for ra-
tional values of x, the computation of the symbolic result psi(x), psi(x,
n) may be costly. Further, the float evaluation of the symbolic result may
be numerically unstable.

A The expand attribute uses the functional equation

Ψ(n)(x+ 1) = Ψ(n)(x) +
(−1)nn!
xn+1

,

the nth derivative of the reflection formula

Ψ(−x) = Ψ(x) +
1
x

+ π cot(πx),

and the Gauß multiplication formula for Ψ(n)(kx) when k is a positive
integer, to rewrite psi(x, n). For numerical x, the functional equation
is used to shift the argument to the range 0 < x < 1. Cf. examples 3 and
4.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> psi(-3/2), psi(4, 1), psi(3/2, 2)

2
PI

8/3 - 2 ln(2) - EULER, --- - 49/36, 16 - 14 zeta(3)
6

>> psi(x + sqrt(2), 4), psi(infinity, 5)

848

1/2
psi(x + 2 , 4), 0

Floating point values are computed for floating point arguments:

>> psi(-5.2), psi(1.0, 3), psi(2.0 + 3.0*I, 10)

6.065773152, 6.493939402, 0.7526409593 - 2.299472238 I

Example 2. psi is singular for nonpositive integers:

>> psi(-2)

Error: singularity [psi]

Example 3. For positive integers and rational numbers x with denominators
2, 3, 4 and 6, respectively, the result is expressed in terms of EULER, PI, ln, and
zeta if |x| < 500:

>> psi(-5/2), psi(-3/2, 1), psi(13/3, 2), psi(11/6, 4)

2
PI

46/15 - 2 ln(2) - EULER, --- + 40/9,
2

3 1/2
4 PI 3

75535713/1372000 - ---------- - 26 zeta(3),
9

5 1/2
176 PI 3 - 90024 zeta(5) + 186624/3125

For larger arguments, the expand attribute can be used to obtain such expres-
sions:

>> psi(1000, 1)

psi(1000, 1)

>> expand(%)

2
PI
--- -
6

835458876624295851523752364295.../50820720104325812617835292...

849

Example 4. The functions diff, expand, float, limit, and series handle
expressions involving psi:

>> diff(psi(x^2 + 1, 3), x), float(ln(3 + psi(sqrt(PI))))

2
2 x psi(x + 1, 4), 1.183103343

>> expand(psi(15/7))

psi(1/7) + 63/8

>> expand(psi(2*x + 3, 2))

psi(x, 2) 1 2 2 psi(x + 1/2, 2)
--------- + ---- + ---------- + ---------- + ---------------

8 3 3 3 8
4 x (2 x + 1) (2 x + 2)

>> limit(x*psi(x), x = 0), limit(psi(x, 3), x = infinity)

-1, 0

>> series(psi(x), x = 0), series(psi(x, 3), x = infinity, 3)

2 3 4
1 x PI 2 x PI 4 5

- - - EULER + ----- - x zeta(3) + ------ - x zeta(5) + O(x),
x 6 90

2 3 2 / 1 \
-- + -- + -- + O| -- |
3 4 5 | 6 |
x x x \ x /

Changes:

A Special formulas for rational numbers with denominators 1, 2, 3, 4 or 6,
respectively, were implemented.

A The system function expand now implements the reflection formula and
the Gauß multiplication formula.

quit – terminate the MuPAD session

On the interactive level, the statement quit terminates the MuPAD session.

850

Call(s):

A quit

A _quit()

Related Functions: break, next, Pref::callOnExit, reset, return

Details:

A The quit statement is equivalent to the call _quit().

A If quit is used on the interactive level, it terminates the running MuPAD
session and returns to the system level where MuPAD was started.

A quit should not be used in a procedure. However, if it is used, only this
procedure is terminated. Note that in this case the return value of the
procedure is undefined. Use return to terminate a procedure.

A When using a non-terminal version of MuPAD such as the MuPAD Pro
Notebook, the Apple Macintosh user interfaces or the X11 user inter-
faces, the corresponding Quit button of the MuPAD session window must
be used rather than the quit statement. In these versions, the quit
statement leads to an error message.

A When a MuPAD session is terminated, so-called exit handlers are executed
before exiting the MuPAD kernel. Exit handlers can be installed via the
function Pref::callOnExit.

A _quit is a function of the system kernel.

Example 1. In this example, the Linux/UNIX terminal version of MuPAD is
started and then terminated using the quit statement:

myprompt> mupad

---- MuPAD 2.0.0 -- The Open Computer Algebra System
/| /|
---- | Copyright (c) 1997 - 2000 by SciFace Software
| *--|-* All rights reserved.
|/ |/
---- Universität Paderborn, FB-17, Mathematik

>> quit
myprompt>

851

Example 2. In a MuPAD version with a graphical user interface, e.g., under
Windows 9x/NT/2000, the Apple Macintosh operating system, or Linux/UNIX
with X11/Motif, a quit command results in the following error message:

>> quit

Warning: Quit the kernel via the user interface [quit]

radsimp – simplify radicals in arithmetical expressions

radsimp simplifies arithmetical expressions containing radicals.

Call(s):

A radsimp(z)

Parameters:

z — an arithmetical expression

Return Value: an arithmetical expression.

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: combine, ifactor, normal, rectform, simplify

Details:

A radsimp(z) tries to simplify the radicals in the expression z. The result
is mathematically equivalent to z.

A The call radsimp(z) is equivalent to simplify(z, sqrt).

Example 1. We demonstrate the simplification of constant expressions with
square roots and higher order radicals:

>> radsimp(3*sqrt(7)/(sqrt(7) - 2)),
radsimp(sqrt(5 + 2*sqrt(6)));
radsimp(sqrt(5*sqrt(3) + 6*sqrt(2))),
radsimp(sqrt(3 + 2*sqrt(2)))

852

1/2 1/2 1/2
2 7 + 7, 2 + 3

3/4 1/2 1/4 1/2
3 + 2 3 , 2 + 1

>> radsimp((1/2 + 1/4*3^(1/2))^(1/2))

1/2 1/2 1/2
2 2 3
---- + ---------
4 4

>> radsimp((5^(1/3) - 4^(1/3))^(1/2))

2/3 2/3 1/3 1/3
4 5 4 5
---- - ---- + ---------
6 3 3

>> radsimp(sqrt(3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))
+ 14))

1/2
2 + 3

>> radsimp(2*2^(1/4) + 2^(3/4) - (6*2^(1/2) + 8)^(1/2))

0

>> radsimp(sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))
- sqrt(10 + 6*sqrt(3)))

0

Example 2. In some cases, you get the best result by using radsimp in com-
bination with simplify :

>> radsimp(sqrt(9^(1/3) + 6*3^(1/3) + 9)); simplify(%)

2/3
9
---- + 3
3

1/3
3 + 3

853

Example 3.

>> x := sqrt(3)*I/2 + 1/2: y := x^(1/3) + x^(-1/3): z := y^3 - 3*y

/ 1 1/2 1/3 \3
| --------------------- + (1/2 I 3 + 1/2) | -
| 1/2 1/3 |
\ (1/2 I 3 + 1/2) /

1/2 1/3 3
3 (1/2 I 3 + 1/2) - ---------------------

1/2 1/3
(1/2 I 3 + 1/2)

>> radsimp(z)

1

>> delete x, y, z:

Example 4. radsimp also works on arithmetical expressions containing vari-
ables:

>> z := x/(sqrt(3) - 1) - x/2

x x
-------- - -
1/2 2
3 - 1

>> radsimp(z) = expand(radsimp(z))

/ 1/2 \ 1/2
| 3 | x x 3

x | ---- + 1/2 | - - = ------
\ 2 / 2 2

>> delete z:

Background:

A For constant algebraic expressions, radsimp constructs a tower of algeb-
raic extensions of Q using the domain Dom::AlgebraicExtension. It
tries to return the simplest possible form.

854

A This function is based on an algorithm described in Borodin, Fagin, Hop-
croft and Tompa, “Decreasing the Nesting Depth of Expressions Involving
Square Roots”, JSC 1, 1985, pp. 169-188.
In some special cases, an algorithm based on Landau, ”How to tangle
with a nested radical”, The Mathematical Intelligencer 16, 1994, no. 2,
pp. 49-55, is used.

random – generate random integer numbers

random() returns a random integer number between 0 and 1012.

random(n1..n2) returns a procedure that generates random integers between
n1 and n2.

Call(s):

A random()

A random(n1..n2)

A random(n)

Parameters:
n1, n2 — integers with n1 ≤ n2
n — a positive integer

Return Value: random() returns a nonnegative integer. The calls random(n1..n2)
and random(n) return a procedure of type DOM_PROC.

Side Effects: random as well as the random number generators created by it
are sensitive to the environment variable SEED.

Related Functions: frandom, stats::uniformRandom

Details:

A The calls random() return uniformly distributed random integers between
0 and 999999999988 (≈ 1012).

A r := random(n1..n2) produces a random number generator r. Sub-
sequent calls r() generate uniformly distributed random integers between
n1 and n2.

A random(n) is equivalent to random(0, n - 1).

855

A The global variable SEED is used for initializing or changing the sequence
of random numbers. It may be assigned any nonzero integer. The value
of SEED fixes the sequence of random numbers. This may be used to reset
random generators and reproduce random sequences.

SEED is set to a default value when MuPAD is initialized. Thus, each time
MuPAD is started or re-initialized with the reset function, the random
generators produce the same sequence of numbers.

A Several random generators produced by random may run simultaneously.
All generators make use of the same global variable SEED.

A For producing uniformly distributed floating points numbers, it is recom-
mended to use the faster function frandom instead. The stats library
provides random generators with various other distributions. Cf. ex-
ample 4.

Example 1. The following call produces a sequence of random integers. Note
that an index variable i must be used in the construction of the sequence. A
call such as random() $ 8 would produce 8 copies of the same random value:

>> random() $ i = 1..8

427419669081, 321110693270, 343633073697, 474256143563,

558458718976, 746753830538, 32062222085, 722974121768

The following call produces a “die” that is rolled 20 times:

>> die := random(1..6): die() $ i = 1..20

2, 2, 2, 4, 4, 3, 3, 2, 1, 4, 4, 6, 1, 1, 1, 2, 4, 2, 1, 3

The following call produces a “coin” that produces “head” or “tail”:

>> coin := random(2): coin() $ i = 1..10

1, 0, 1, 1, 0, 1, 0, 1, 0, 0

>> subs(%, [0 = head, 1 = tail])

tail, head, tail, tail, head, tail, head, tail, head, head

>> delete dice, coin:

856

Example 2. random is sensitive to the global variable SEED which is set and
reset when MuPAD is (re-)initialized. The seed may also be set by the user.
Random sequences can be reproduced by starting with a fixed SEED:

>> SEED := 1: random() $ i = 1..4

427419669081, 321110693270, 343633073697, 474256143563

>> SEED := 1: random() $ i = 1..4

427419669081, 321110693270, 343633073697, 474256143563

Example 3. random allows to create several random number generators for
different ranges of numbers, and to use them simultaneously:

>> r1 := random(0..4): r2 := random(2..9): [r1(), r2()] $ i = 1..6

[1, 4], [0, 2], [1, 3], [0, 5], [2, 2], [4, 7]

>> delete r1, r2:

Example 4. random can be used to build a random generator for uniformly
distributed floating point numbers. The following generator produces such num-
bers between -1.0 and 1.0:

>> r := float@random(-10^DIGITS..10^DIGITS)/10^DIGITS:
r() $ i = 1..12;

0.2920457876, 0.3747019439, -0.5968604725, -0.9375052697,

0.1053530039, -0.3513692809, 0.5590763459, -0.0607326312,

-0.4571489053, 0.2600608968, 0.9760099364, 0.5982933733

However, it is strongly recommended to use the much more efficient functions
frandom or stats::uniformRandom instead:

>> r := stats::uniformRandom(-1, 1, Seed = 10^10):
r() $ i = 1..12

-0.06841411958, 0.2765669032, 0.2567349114, 0.7462262409,

-0.05021280233, -0.8537725277, 0.9460955434, -0.4278325857,

0.2170908991, 0.3648317893, 0.7506129998, 0.6918057213

>> delete r:

857

Background:

A random implements a linear congruence generator. The sequence of pseudo-
random numbers generated by calling random() over and over again is
f(x), f(f(x)), ..., where x is the initial value of SEED and f is the function
x 7→ a x mod m with suitable integer constants a and m.

rationalize – transform an expression into a rational expression

rationalize(object) transforms the expression object into an equivalent ra-
tional expression by replacing non-rational subexpressions by newly generated
variables.

Call(s):

A rationalize(object, <, inspect <, stop>>)

Parameters:
object — an arithmetical expression or a set or list of such

expressions
inspect — subexpressions to operate on: a set of types, or a

procedure, or NIL. The default is NIL, i.e., all
subexpressions are to be inspected.

stop — subexpressions to be leaft unchanged: a set of types, or a
procedure, or NIL. The default is the set {DOM_INT,
DOM_RAT, DOM_IDENT}, i.e., integers, rational numbers and
identifiers are not replaced by variables.

Return Value: a sequence consisting of the rationalized object and a set of
substitution equations.

Related Functions: indets, maprat, rewrite, simplify, subs

Details:

A An expression or a subexpression is regarded as “non-rational”, if it is
neither a sum, nor a product, nor a power with an integer exponent.

rationalize(object, inspect, stop) “walks” recursively through the
expression tree of object as long as the types of the subexpressions are
in inspect. All non-rational subexpressions of a type not matching stop
are replaced by variables D1, D2, etc.

A rationalize returns a sequence (rat, subsSet). The rationalized ob-
ject rat contains new variables, which are specified by the set of “substi-
tution equations”subsSet. The relation object = subs(rat, subsSet)
holds.

858

A If inspect is NIL, all subexpressions are inspected. If inspect is a set
of types, all subexpressions matching one of these types are inspected.
If inspect is a procedure, all subexpressions x, say, with inspect(x) =
TRUE are inspected.

Any subexpression not matching inspect is replaced by a variable.

A If stop is NIL, then all inspected non-rational subexpressions are replaced
by variables. If stop is a set of types, any non-rational subexpression
matching one of these types is left untouched. If stop is a procedure,
any non-rational subexpression x, say, with stop(x) = TRUE is leaft un-
touched.

A The types in inspect and stop may be strings as returned by the type
function, or domain types such as DOM_INT, DOM_RAT etc.

Example 1. rationalize operates on single arithmetical expressions as well
as on lists and sets of expressions:

>> rationalize(2*sqrt(3) + 0.5*x^3)

3 1/2
2 D2 + D1 x , {D2 = 3 , D1 = 0.5}

>> rationalize([(x - sqrt(2))*(x^2 + sqrt(3)),
(x - sqrt(2))*(x - sqrt(3))])

2 1/2 1/2
[(x - D3) (D4 + x), (x - D3) (x - D4)], {D3 = 2 , D4 = 3 }

Example 2. rationalize allows to specify which kinds of subexpressions are
to be inspected and which kinds of subexpressions are to be leaft unchanged.
In the following call, the subexpression x^3 (of type "_power") is not inspected
and replaced by a variable:

>> rationalize(2*sqrt(3) + 0.5*x^3, {"_plus", "_mult"})

3 1/2
2 D5 + D6 D7, {D6 = x , D5 = 3 , D7 = 0.5}

In the following call, all subexpressions are inspected. Neither floating point
numbers nor integers nor identifiers are replaced:

>> rationalize(2*sqrt(3) + 0.5*x^3, NIL,
{DOM_FLOAT, DOM_INT, DOM_IDENT})

3 1/2
2 D8 + 0.5 x , {D8 = 3 }

859

read – search, read, and execute a file

read(filename) searches for the file filename in certain directories, reads and
executes it.

read(n) reads and executes the file associated with the file descriptor n.

Call(s):

A read(filename <, Quiet> <, Plain>)

A read(n <, Quiet> <, Plain>)

Parameters:
filename — the name of a file: a character string
n — a file descriptor provided by fopen: a positive integer

Options:

Plain — makes read use its own parser context
Quiet — suppresses output during execution of read

Return Value: the return value of the last statement of the file.

Related Functions: fclose, fileIO, FILEPATH, finput, fname, fopen,
fprint, fread, ftextinput, input, LIBPATH, loadproc, pathname, print,
protocol, READPATH, textinput, write, WRITEPATH

Details:

A read(filename) searches for the file in various directories:

• First, the name is interpreted as a relative file name: filename is
concatenated to each directory given by the environment variable
READPATH.

• Then the file name is interpreted as an absolute path name.

• Then the file name is interpreted relative to the“working directory”.

• Last, the file name is concatenated to each directory given by the
environment variable LIBPATH.

If a file can be opened with one of this names, then the file is read and
executed with fread.

860

A Please note that the“working directory”, which is used to interpret relative
file names, depends on the operating system. On Windows systems, the
“working directory” is the folder, where MuPAD is installed. On UNIX or
Linux systems, it is the directory where MuPAD was started.

A A path separator (“/” on UNIX or Linux, “\” on Windows and “:” on the
Macintosh) is inserted as neccessary when concatenating a given path and
filename.

A On the Macintosh, an empty file name may be given. In this case a
dialogue box is opened in which the user can choose a file.

A read(n) with a file descriptor n as returned by fopen is equivalent to the
call fread(n).

A See the function fread for details about reading and executing the file’s
content and for a detailed description of the options Plain and Quiet .

A When a file is read with read the variable FILEPATH contains the path of
the file.

A For an overview of all file related MuPAD functions, also try ?fileIO.

Example 1. The following example only works under UNIX and Linux; on
other operating systems one must change the path names accordingly. First,
we use write to store values in the file “testfile.mb” in the “/tmp” directory:

>> a := 3: b := 5: write("/tmp/testfile.mb", a, b):

The following command specifies the file by its absolute path name. After
reading the file, the values of a and b are restored:

>> delete a, b: read("/tmp/testfile.mb"): a, b

3, 5

Alternatively, we define “/tmp” as the search directory and provide a relative
path name. Note that the path separator “/” is inserted by read:

>> delete a, b: READPATH := "/tmp": read("testfile.mb"): a, b

3, 5

We may also use fopen to open the file and read its content. Note that fopen
does not search for the file like read, thus we must enter an absolute path name
or a name relative to the working directory:

>> delete a, b:
n := fopen("/tmp/testfile.mb"): read(n): fclose(n):
a, b

861

3, 5

>> delete a, b, READPATH, n

readbytes, writebytes – read or write binary data from or to a
file

readbytes(filename) reads the binary file named filename. The data in the
file are returned as a list of numbers.

readbytes(n) reads the file associated with the file descriptor n.

writebytes(filename, list) writes a list of MuPAD numbers as a stream of
binary data to the file filename.

writebytes(n, list) writes the contents of the list to the file associated with
the file descriptor n.

Call(s):

A readbytes(filename <, m> <, format> <, byteorder>)

A readbytes(n <, m> <, format> <, byteorder>)

A writebytes(filename, list <, format> <, byteorder>)

A writebytes(n, list <, m> <, format> <, byteorder>)

Parameters:
filename — the name of a file: a character string or the flag TempFile

n — a file descriptor provided by fopen: a positive integer.
The file must have been be opened using the fopen-flag
Raw .

list — a list of MuPAD numbers that are to be written to the
file. The entries must match the specified format.

m — the number of values to be read or written: a positive
integer.

Options:

format — the format of the binary data: either Byte ,
SignedByte , Short , SignedShort , Word , SignedWord ,
Float or Double . The default format is Byte .

byteorder — the byte ordering: either BigEndian or LittleEndian .
The default odering is BigEndian .

Return Value: readbytes returns a list of MuPAD numbers (either integers
or floating point numbers); writebytes returns the void object null() of type
DOM_NULL.

862

Side Effects: The function readbytes is sensitive to the environment variable
READPATH. First, the file is searched in the “working directory”. If it cannot be
found there, all paths in READPATH are searched.

The function writebytes is sensitive to the environment variable WRITEPATH.
If this variable has a value, the file is created in the corresponding directory.
Otherwise, the file is created in the “working directory.”

Related Functions: fclose, fileIO, FILEPATH, finput, fname, fopen,
fprint, fread, ftextinput, pathname, print, protocol, read, READPATH,
write, WRITEPATH

Details:

A readbytes and writebytes are MuPAD functions that enable the user to
read or write arbitrary files and interpret their contents as a sequence of
numbers.

A These functions are particularly useful to work on data provided by or
destined for external programs. You can use them, for example, to imple-
ment encryption or compression algorithms in MuPAD. Cf. example 2.

A The results of readbytes and writebytes depend on the interpretation
of the binary data set by the format option. When reading/writing
a file, you can interpret it as a stream of Byte , SignedByte , Short ,
SignedShort , Word , SignedWord , Float or Double . These are stand-
ard formats that are used by many program packages to write/read data.
Cf. example 1.

Be sure to read/write the data in the appropriate way. You need to know
the format used by the program which created the file or is supposed to
read the file, respectively.

A When writing data via writebytes, each entry in the list is checked for
whether it can be converted to the specified format. If this is not the case,
writebytes raises an error. Cf. example 4.

A The file may be specified directly by its name. In this case, writebytes
creates a new file or overwrites an existing file. See the help page of fopen
for the special flag TempFile .

If a file name is specified, readbytes and writebytes open and close the
file automatically.

If WRITEPATH or READPATH have no value, writebytes and readbytes
interpret the file name as a pathname relative to the “working directory.”

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

863

On the Macintosh, an empty file name may be given. In this case, a
dialog box is opened in which the user can choose a file. Further, on the
interactive level, MacMuPAD warns the user if an existing file is about to
be overwritten.

Absolute path names are processed by readbytes and writebytes, too.

A If a file name is specified, each call to readbytes/writebytes opens the
file at the beginning. If the file was opened via fopen, subsequent calls of
readbytes or writebytes with the corresponding file descriptor start at
the point in the file that was reached by the last readbytes/writebytes
command.

Hence, if you want to read/write a file by portions, you must open it with
fopen and use the returned file descriptor instead of the filename. Cf.
example 3.

If the file is to be opened via fopen, be sure to pass the flag Raw to
fopen. Otherwise, readbytes and writebytes raise an error. !

A If the number of bytes in the file in a readbytes call is not a multiple
of units of the specified format, the data are read up to the last
complete number. The remaining bytes are ignored. Cf. example 5.

!

A For an overview of all file related MuPAD functions, also try ?fileIO.

A writebytes is a function of the system kernel.

Option <Byte, SignedByte>:

A A byte is an 8-bit binary number. Therefore, a byte can have 28 different
values. For Byte , these are the integers from 0 to 255. For SignedByte ,
they are the integers from −128 to 127.

A With Byte , the data are read/written in 8-bit blocks, interpreted as un-
signed bytes. When writing, the numbers are checked for being in the
range from 0 to 255.

A With SignedByte , the data are read or written using the 2-complement.

A Byte is the default format.

A Cf. example 1 for an overview over the different format-options.

Option <Short, SignedShort>:

A A ’short’ is a 16-bit binary number (2 bytes). Therefore, a ’short’ can
have 216 different values. For Short , these are the integers from 0 to
65536. For SignedShort , they are the integers from −32768 to 32767.

864

A Cf. the flags BigEndian and LittleEndian for details on the byte or-
dering.

A The semantics of Short or SignedShort is analogeous to that of Byte

or SignedByte , respectively.

Option <Word, SignedWord>:

A A ’word’ is a 32-bit binary number (4 bytes). Therefore, a ’word’ can
have 232 different values. For Word , these are the integers from 0 to
4294967296. For SignedWord , they are the integers from −2147483648 to
2147483647.

A Cf. the flags BigEndian and LittleEndian for details on the byte or-
dering.

A The semantics of Word or SignedWord is analogeous to that of Byte or
SignedByte , respectively.

Option <Float, Double>:

A A ’float’ is a 32-bit representation of a real number (4 bytes). A ’double’
is a 64-bit representation of a real number (8 bytes).

Floats and doubles are read/written in the format of the ma-
chine/operating system MuPAD is currently running on. Therefore,
the results may differ between different platforms.

!

Binary files containig floating point numbers are, in general, not portable
to other platforms.

A Cf. the flags BigEndian and LittleEndian for details on the byte or-
dering.

A The semantics of Float or Double is analogeous to that of Byte or
SignedByte , respectively.

Option <BigEndian, LittleEndian>:

A BigEndian and LittleEndian specify the order in which the bytes are ar-
ranged for Short , SignedShort , Word , SignedWord , Float , and Double .

865

A For all formats, the data are written in 8-bit blocks (bytes). This also
includes the formats where a unit is longer than one byte (all formats
but Byte and SignedByte). With BigEndian , the bytes with the most
significant bits (’high bits’) are written first. With LittleEndian , the
bytes with the least significant bits are written first.

If, for example, Short is selected, there are 16 bits that are to be writ-
ten. If you pass BigEndian , first the byte with the bits for 215 to 28

and then the byte with the bits for 27 to 20 are written. If you specify
LittleEndian , the order of the bytes is reversed.

A BigEndian and LittleEndian have no effect if the formats Byte or
SignedByte are specified.

A BigEndian is the default byte order.

A Cf. example 6 for the effects of BigEndian and LittleEndian .

Example 1. In this example, we write a sequence of numbers to the file
test.tst with the default settings. Then, we load them back in:

>> writebytes("test.tst", [42, 17, 1, 3, 5, 7, 127, 250]):

>> readbytes("test.tst")

[42, 17, 1, 3, 5, 7, 127, 250]

We now read the above data with some other option: SignedByte interprets
all values from 0 to 127 exactly as Byte does. Higher values x, however, are
interpreted as x− 256. For example, 250− 256 = −6:

>> readbytes("test.tst", SignedByte)

[42, 17, 1, 3, 5, 7, 127, -6]

Short interprets two bytes to be one number. Therefore, the eight written
bytes are interpreted as four numbers. For example, the first 2 bytes yield
42 · 28 + 17 = 10769:

>> readbytes("test.tst", Short)

[10769, 259, 1287, 32762]

With the flag LittleEndian , the byte order is reversed. For example, the first
2 bytes now yield 17 · 28 + 42 = 4394:

>> readbytes("test.tst", Short, LittleEndian)

[4394, 769, 1797, 64127]

866

Word interprets four bytes to be one number. Therefore, the eight written bytes
give two numbers. The first 4 bytes yield 10769 · 216 + 259 = 705757443:

>> readbytes("test.tst", Word)

[705757443, 84377594]

Double interprets eight bytes to represent one floating-point number. The
interpretation is machine dependent and may be different for you:

>> readbytes("test.tst", Double)

[4.633737352e-106]

Example 2. We use readbytes and writebytes to encrypt the file created
in the previous example with a simple ’Caesar type encoding’: Any integer x
(a byte) is replaced by x+ 13 mod 256:

>> L := readbytes("test.tst"):
L := map(L, x -> (x + 13 mod 256)):
writebytes("test.tst", L):

Knowing the encryption, we can successfully decrypt the file:

>> L := readbytes("test.tst")

[55, 30, 14, 16, 18, 20, 140, 7]

>> map(L, x -> (x - 13 mod 256))

[42, 17, 1, 3, 5, 7, 127, 250]

>> delete L:

Example 3. In this example, we use fopen to write and read a file in portions:

>> n := fopen("test.tst", Write, Raw):
for i from 1 to 10 do writebytes(n, [i]) end_for:
fclose(n):

Equivalently, we could have written all data in one go:

>> n := fopen("test.tst", Write, Raw):
writebytes(n, [i $ i = 1..10]):
fclose(n):

We read the data byte by byte:

867

>> n := fopen("test.tst", Read, Raw):
readbytes(n, 1), readbytes(n, 1), readbytes(n, 1);
fclose(n):

[1], [2], [3]

The next command reads in portions of 5 bytes each:

>> n := fopen("test.tst", Read, Raw):
readbytes(n, 5), readbytes(n, 5);
fclose(n):

[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]

>> delete n, i:

Example 4. An error is raised if the data do not match the specified format.
Here, -5 does not match Byte . This format does not include negative numbers:

>> writebytes("test.tst", [42, 17, -5, 7], Byte)

Error: Illegal argument [writebytes]

Example 5. Here we demonstrate what happens if the number of bytes in
the file does not match a multiple of units of the specified format. Since both
SignedShort and Float consist of numbers of 2 bytes each, the trailing 5-th
byte corresponding to 11 is ignored:

>> writebytes("test.tst", [42, 17, 7, 9, 11], Byte):
readbytes("test.tst", SignedShort),
readbytes("test.tst", Float)

[10769, 1801], [1.28810279e-13]

Example 6. Here we show the effects of BigEndian and LittleEndian :

>> writebytes("test.tst", [129, 255, 145, 171, 191, 253], Byte):
L1 := readbytes("test.tst", Short, BigEndian)

[33279, 37291, 49149]

>> L2 := readbytes("test.tst", Short, LittleEndian)

[65409, 43921, 64959]

868

We look at the data in a binary representation (see numlib::g_adic for details).
The effect of using LittleEndian instead of BigEndian is to exchange the first
8 bits and the last 8 bits of each number:

>> map(L1, numlib::g_adic, 2)

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1],

[1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1],

[1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1]]

>> map(L2, numlib::g_adic, 2)

[[1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1],

[1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1]]

>> delete L1, L2:

Changes:

A readbytes and writebytes are new functions.

repeat, while – repeat and while loop

repeat - end_repeat is a loop that evaluates its body until a specified stop-
ping criterion is satisfied.

while - end_while represents a loop that evaluates its body while a specified
condition holds true.

Call(s):

A repeat
body

until condition end_repeat

A _repeat(body, condition)

A while condition do
body

end_while

A _while(condition, body)

869

Parameters:
body — the body of the loop: an arbitrary sequence of

statements
condition — a Boolean expression

Return Value: the value of the last command executed in the body of the
loop. If no command was executed, the value NIL is returned. If the body of
a while loop is not evaluated due to a false condition, the void object of type
DOM_NULL is returned.

Further Documentation: Chapter 16 of the MuPAD Tutorial.

Related Functions: break, for, next, _lazy_and, _lazy_or

Details:

A In a repeat loop, first body and then condition are evaluated until
condition evaluates to TRUE.

A In a while loop, condition is evaluated before the body is executed for
the first time. If condition evaluates to TRUE, the loop is entered and
body and condition are evaluated until condition evaluates to FALSE.

A In contrast to the while loop, the body of a repeat loop is always eval-
uated at least once.

A The body may consist of any number of statements which must be separ-
ated either by a colon : or a semicolon ;. Only the last evaluated result
inside the body (the return value of the loop) is printed on the screen.
Use print to see intermediate results.

A The Boolean expression condition must be reducible to either TRUE or
FALSE. Internally, the condition is evaluated in the lazy evaluation context
of the functions _lazy_and and _lazy_or.

A The statements next and break can be used in repeat and while loops
in the same way as in for loops.

A The keywords end_repeat and end_while may be replaced by the keyword
end.

A The imperative forms repeat - end_repeat and while - end_while
are equivalent to corresponding calls of the functions _repeat and _while,
respectively. In most cases, the imperative forms should be preferred be-
cause they lead to simpler code.

A _repeat and _while are functions of the system kernel.

870

Example 1. Intermediate results of statements within a repeat and while
loop are not printed to the screen:

>> i := 1:
s := 0:
while i < 3 do
s := s + i;
i := i + 1;

end_while

3

Above, only the return value of the loop is displayed. Use print to see inter-
mediate results:

>> i := 1:
s := 0:
while i < 3 do
print("intermediate sum" = s);
s := s + i;
i := i + 1;
s

end_while

"intermediate sum" = 0

"intermediate sum" = 1

3

>> delete i, s:

Example 2. A simple example is given, how a repeat loop can be expressed
via an equivalent while loop. For other examples, this may be more complicated
and additional initializations of variables may be needed:

>> i := 1:
repeat
print(i);
i := i + 1;

until i = 3 end:

1

2

871

>> i := 1:
while i < 3 do
print(i);
i := i + 1;

end:

1

2

>> delete i:

Example 3. The Boolean expression condition must evaluate to TRUE or
FALSE:

>> condition := UNKNOWN:
while not condition do
print(Condition = condition);
condition := TRUE;

end_while:

Error: Unexpected boolean UNKNOWN [while]

To avoid this error, change the stopping criterion to condition <> TRUE:

>> condition := UNKNOWN:
while condition <> TRUE do
print(Condition = condition);
condition := TRUE;

end_while:

Condition = UNKNOWN

>> delete condition:

Example 4. We demonstrate the correspondence between the functional and
the imperative form of the repeat and while loop, respectively:

>> hold(_repeat((statement1; statement2), condition))

repeat
statement1;
statement2

until condition end_repeat

>> hold(_while(condition, (statement1; statement2)))

872

while condition do
statement1;
statement2

end_while

rec – the domain of recurrence equations

rec(eq, y(n)) represents a recurrence equation for the sequence y(n).

Call(s):

A rec(eq, y(n) <, cond>)

Parameters:
eq — an equation or an arithmetical expression
y — the unknown function: an identifier
n — the index: an identifier
cond — a set of initial or boundary conditions

Return Value: an object of type rec.

Related Functions: ode, solve, sum

Details:

A rec(eq, y(n)) creates an object of type rec representing a recurrence
equation for y(n).

The equation eq must involve only shifts y(n + i) with integer values of
i; at least one such expression must be present in eq. An arithmetical
expression eq is equivalent to the equation eq = 0.

Initial or boundary conditions cond must be specified as sets of equations
of the form {y(n0) = y0, y(n1) = y1, ...} with arithmetical expres-
sions n0, n1, . . . that must not contain the identifier n, and arithmetical
expressions y0, y1, . . . that must not contain the identifier y.

A The main purpose of the rec domain is to provide an environment for
overloading the function solve. For a recurrence r of type rec, the call
solve(r) returns a set representing an affine subspace of the complete
solution space. Its only entry is an expression in n that may contain free
parameters such as C1, C2 etc. Cf. the examples 1, 4, and 5.

A Currently only linear recurrences with coefficients that are rational func-
tions of n can be solved. solve handles recurrences with constant coef-
ficients, it finds hypergeometric solutions of first order recurrences, and

873

polynomial solutions of higher order recurrences with non-constant coef-
ficients.

A solve is not always able to find the complete solution space. Cf. ex-
ample 5. If solve cannot find a solution, then the solve call is returned
symbolically. For parametric recurrences, the output of solve may be a
conditionally defined set of type piecewise. Cf. example 6.

Example 1. The first command defines the homogeneous first order recurrence
equation y(n + 1) = 2 (n + 1) y(n)/n for the sequence y(n). It is solved by a
call to the solve function:

>> rec(y(n + 1) = 2*y(n)*(n + 1)/n, y(n))

/ 2 y(n) (n + 1) \
rec| y(n + 1) - --------------, y(n), {} |

\ n /

>> solve(%)

n
{n C1 2 }

Thus, the general solution of the recurrence equation is y(n) = C1 n 2n, where
C1 is an arbitrary constant.

Example 2. In the next example, the homogeneous first order recurrence
y(n + 1) = 3 (n + 1) y(n) with the initial condition y(0) = 1 is solved for the
unknown sequence y(n):

>> solve(rec(y(n + 1) = 3*(n + 1)*y(n), y(n), {y(0) = 1}))

n
{3 gamma(n + 1)}

Thus, the solution is y(n) = 3n · Γ(n + 1) = 3n · n! for all integers n ≥ 0 (Γ is
the gamma function).

Example 3. In the following example, the inhomogeneous second order recur-
rence y(n+ 2)− 2 y(n+ 1) + y(n) = 2 is solved for the unknown sequence y(n).
The initial conditions y(0) = −1 and y(1) = m with some parameter m are
taken into account by solve:

>> solve(rec(y(n + 2) - 2*y(n + 1) + y(n) = 2, y(n),
{y(0) = -1, y(1) = m}))

2
{m n + n - 1}

874

Example 4. We compute the general solution of the homogeneous second
order recurrence y(n+ 2) + 3 y(n+ 1) + 2 y(n) = 0:

>> solve(rec(y(n + 2) + 3*y(n + 1) + 2*y(n), y(n)))

n n
{C6 (-1) + C7 (-2) }

Here, C6 and C7 are arbitrary constants.

Example 5. For the following homogeneous third order recurrence with non-
constant coefficients, the system only finds the polynomial solutions:

>> solve(rec(n*y(n + 3) = (n + 3)*y(n), y(n)))

{n C9}

Example 6. The following homogeneous second order recurrence with con-
stant coefficients involves a parameter a. The solution set depends on the value
of this parameter, and solve returns a piecewise object:

>> solve(rec(a*y(n + 2) = y(n), y(n)))

/ { / 1 \n / 1 \n }
piecewise| {0} if a = 0, { C11 | ---- | + C10 | - ---- | }

| { | 1/2 | | 1/2 | }
\ { \ a / \ a / }

\
if a <> 0 |

|
/

Example 7. The following homogeneous second order recurrence with non-
constant coefficients involves a parameter a. Although it has a polynomial
solution for a = 2, the system does not recognize this:

>> solve(rec(n*y(n + 2) = (n + a)*y(n), y(n)))

{0}

875

Background:

A For homogeneous recurrences with constant coefficients, solve computes
the roots of the characteristic polynomial. If some of them cannot be
given in explicit form, i.e., only by means of RootOf, then solve does not
return a solution. Otherwise, the complete solution space is returned.

A For first order homogeneous recurrences with nonconstant coefficients,
solve returns the complete solution space if the coefficients of the re-
currence can be factored into at most quadratic polynomials. Otherwise,
solve does not return a solution.

A For homogeneous recurrences of order at least two with nonconstant coef-
ficients, solve finds the complete space of all polynomial solutions.

A Currently, inhomogeneous recurrences can only be solved if they have a
polynomial solution. The previous remarks apply.

A For parametric recurrences, the system may not find solutions that are
valid only for special values of the parameters. Cf. example 7.

rectform – rectangular form of a complex expression

rectform(z) computes the rectangular form of the complex expression z, i.e.,
it splits z into z = <(z) + i=(z).

Call(s):

A rectform(z)

Parameters:
z — an arithmetical expression, a polynomial, a series expansion, an

array, a list, or a set

Return Value: an element of the domain rectform if z is an arithmetical
expression, and an object of the same type as z otherwise.

Side Effects: The function is sensitive to properties of identifiers set via
assume; see example 3.

Overloadable by: z

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: abs, assume, collect, combine, conjugate, expand,
Im, normal, radsimp, Re, rewrite, sign, simplify

876

Details:

A rectform(z) tries to split z into its real and imaginary part and to return
z in the form <(z) + i=(z).

rectform works recursively, i.e., it first tries to split each subexpression
of z into its real and imaginary part and then tackles z as a whole.

A Use Re and Im to extract the real and imaginary parts, respectively, from
the result of rectform. See example 1.

A rectform is more powerful than a direct application of Re and Im to z.
However, usually it is much slower. For constant arithmetical expressions,
it is therefore recommended to use the functions Re and Im directly. See
example 2.

A The main use of rectform is for symbolic expressions, and properties of
identifiers are taken into account (see assume). An identifier without any
property is assumed to be complex valued. See example 3.

A If z is a array, a list, or a set, then rectform is applied to each entry of
z.

If z is a polynomial or a series expansion, of type Series::Puiseux or
Series::gseries, then rectform is applied to each coefficient of z.

See example 5.

A The result r := rectform(z) is an element of the domain rectform.
Such a domain element consists of three operands, satisfying the following
equality:
z = op(r, 1) + I*op(r, 2) + op(r, 3).
The first two operands are real arithmetical expressions, and the third
operand is an expression that cannot be splitted into its real and imaginary
part.

Sometimes rectform is unable to compute the required decomposition.
Then it still tries to return some partial information by extracting as much
as possible from the real and imaginary part of z. The extracted parts
are stored in the first two operands, and the third operand contains the
remainder, where no further extraction is possible. In extreme cases, the
first two operands may even be zero. Example 6 illustrates some possible
cases.

A Arithmetical operations with elements of the domain type rectform are
possible. The result of an arithmetical operation is again an element of
this domain (see example 4).

A Most MuPAD functions handling arithmetical expressions (e.g., expand,
normal, simplify etc.) can be applied to elements of type rectform.
They act on each of the three operands individually.

877

A Use expr to convert the result of rectform into an element of a basic
domain; see example 4.

Example 1. The rectangular form of sin(z) for complex values z is:

>> delete z: r := rectform(sin(z))

sin(Re(z)) cosh(Im(z)) + (cos(Re(z)) sinh(Im(z))) I

The real and the imaginary part can be extracted as follows:

>> Re(r), Im(r)

sin(Re(z)) cosh(Im(z)), cos(Re(z)) sinh(Im(z))

The complex conjugate of r can be obtained directly:

>> conjugate(r)

sin(Re(z)) cosh(Im(z)) - (cos(Re(z)) sinh(Im(z))) I

Example 2. The real and the imaginary part of a constant arithmetical ex-
pression can be determined by the functions Re and Im, as in the following
example:

>> Re(ln(-4)) + I*Im(ln(-4))

I PI + ln(4)

In fact, they work much faster than rectform. However, they fail to compute
the real and the imaginary part of arbitrary symbolic expressions, such as for
the term ei sin z:

>> delete z: f := exp(I*sin(z)):
Re(f), Im(f)

Re(exp(I sin(z))), Im(exp(I sin(z)))

The function rectform is more powerful. It is able to split the expression above
into its real and imaginary part:

>> r := rectform(f)

cos(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z))) +

(sin(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z)))) I

Now we can extract the real and the imaginary part of f:

878

>> Re(r)

cos(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z)))

>> Im(r)

sin(sin(Re(z)) cosh(Im(z))) exp(-cos(Re(z)) sinh(Im(z)))

Example 3. Identifiers without properties are considered to be complex vari-
ables:

>> delete z: rectform(ln(z))

2 2
ln(Im(z) + Re(z))
------------------- + I arg(I Im(z) + Re(z))

2

However, you can affect the behavior of rectform by attaching properties to
the identifiers. For example, if z assumes only real negative values, the real and
the imaginary part simplify considerably:

>> assume(z < 0): rectform(ln(z))

ln(-z) + I PI

Example 4. We compute the rectangular form of the complex variable x:

>> delete x: a := rectform(x)

Re(x) + I Im(x)

Then we do the same for the real variable y:

>> delete y: assume(y, Type::Real): b := rectform(y)

y

>> domtype(a), domtype(b)

rectform, rectform

We have stored the results, i.e., the elements of domain type rectform, in the
two identifiers a and b. We compute the sum of a and b, which is again of
domain type rectform, i.e., it is already splitted into its real and imaginary
part:

879

>> c := a + b

(y + Re(x)) + I Im(x)

>> domtype(c)

rectform

The result of an arithmetical operation between an element of domain type
rectform and an arbitrary arithmetical expression is of domain type rectform
as well:

>> delete z: d := a + 2*b + exp(z)

(2 y + Re(x) + cos(Im(z)) exp(Re(z))) +

I (Im(x) + sin(Im(z)) exp(Re(z)))

>> domtype(d)

rectform

Use the function expr to convert an element of domain type rectform into an
element of a basic domain:

>> expr(d)

2 y + I Im(x) + Re(x) + cos(Im(z)) exp(Re(z)) +

I sin(Im(z)) exp(Re(z))

>> domtype(%)

DOM_EXPR

Example 5. rectform also works for polynomials and series expansions, namely
individually on each coefficient:

>> delete x, y: p := poly(ln(-4) + y*x, [x]):
rectform(p)

poly((Re(y) + I Im(y)) x + (ln(4) + I PI), [x])

Similarly, rectform works for lists, sets, or arrays, where it is applied to each
individual entry:

>> a := array(1..2, [x, y]):
rectform(a)

880

+- -+
| Re(x) + I Im(x), Re(y) + I Im(y) |
+- -+

Note that rectform does not work directly for other basic data types. For
example, if the input expression is a table of arithmetical expressions, then
rectform responds with an error message:

>> a := table("1st" = x, "2nd" = y):
rectform(a)

Error: invalid argument, expecting an arithmetical expression \
[rectform::new]

Use map to apply rectform to the operands of such an object:

>> map(a, rectform)

table(
"2nd" = Re(y) + I Im(y),
"1st" = Re(x) + I Im(x)

)

Example 6. This example illustrates the meaning of the three operands of an
object returned by rectform.

We start with the expression x + sin(y), for which rectform is able to
compute a complete decomposition into real and imaginary part:

>> delete x, y: r := rectform(x + sin(y))

(Re(x) + sin(Re(y)) cosh(Im(y))) +

I (Im(x) + cos(Re(y)) sinh(Im(y)))

The first two operands of r are the real and imaginary part of the expression,
and the third operand is 0:

>> op(r)

Re(x) + sin(Re(y)) cosh(Im(y)),

Im(x) + cos(Re(y)) sinh(Im(y)), 0

Next we consider the expression x + f(y), where f(y) represents an unknown
function in a complex variable. rectform can split x into its real and imaginary
part, but fails to do this for the subexpression f(y):

>> delete f: r := rectform(x + f(y))

881

Re(x) + I Im(x) + f(y)

The first two operands of the returned object are the real and the imaginary
part of x, and the third operand is the remainder f(y), for which rectform was
not able to extract any information about its real and imaginary part:

>> op(r)

Re(x), Im(x), f(y)

>> Re(r), Im(r)

Re(x) + Re(f(y)), Im(x) + Im(f(y))

Sometimes rectform is not able to extract any information about the real and
imaginary part of the input expression. Then the third operand contains the
whole input expression, possibly in a rewritten form, due to the recursive mode
of operation of rectform. The first two operands are 0. Here is an example:

>> r := rectform(sin(x + f(y)))

sin(f(y) + I Im(x) + Re(x))

>> op(r)

0, 0, sin(f(y) + I Im(x) + Re(x))

>> Re(r), Im(r)

Re(sin(f(y) + I Im(x) + Re(x))),

Im(sin(f(y) + I Im(x) + Re(x)))

Example 7. Advanced users can extend rectform to their own special math-
ematical functions (see section “Backgrounds” below). To this end, embed your
mathematical function into a function environment f and implement the be-
havior of rectform for this function as the "rectform" slot of the function
environment.

If a subexpression of the form f(u,..) occurs in z, then rectform issues
the call f::rectform(u,..) to the slot routine to determine the rectangular
form of f(u,..).

For illustration, we show how this works for the sine function. Of course, the
function environment sin already has a "rectform" slot. We call our function
environment Sin in order not to overwrite the existing system function sin:

882

>> Sin := funcenv(Sin):
Sin::rectform := proc(u) // compute rectform(Sin(u))
local r, a, b;

begin
// recursively compute rectform of u
r := rectform(u);

if op(r, 3) <> 0 then
// we cannot split Sin(u)
new(rectform, 0, 0, Sin(u))

else
a := op(r, 1); // real part of u
b := op(r, 2); // imaginary part of u
new(rectform, Sin(a)*cosh(b), cos(a)*sinh(b), 0)

end_if
end:

>> delete z: rectform(Sin(z))

Sin(Re(z)) cosh(Im(z)) + (cos(Re(z)) sinh(Im(z))) I

If the if condition is true, then rectform is unable to split u completely into
its real and imaginary part. In this case, Sin::rectform is unable to split
Sin(u) into its real and imaginary part and indicates this by storing the whole
expression Sin(u) in the third operand of the resulting rectform object:

>> delete f: rectform(Sin(f(z)))

Sin(f(z))

>> op(%)

0, 0, Sin(f(z))

Background:

A If a subexpression of the form f(u,..) occurs in z and f is a function
environment, then rectform attempts to call the slot "rectform" of f to
determine the rectangular form of f(u,..). In this way, you can extend
the functionality of rectform to your own special mathematical functions.

The slot "rectform" is called with the arguments u,.. of f. If the slot
routine f::rectform is not able to determine the rectangular form of
f(u,..), then it should return new(rectform(0,0,f(u,..))). See ex-
ample 7. If f does not have a slot "rectform", then rectform returns
the object new(rectform(0,0,f(u,..))) for the corresponding subex-
pression.

883

A Similarly, if an element d of a library domain T occurs as a subexpression
of z, then rectform attempts to call the slot "rectform" of that domain
with d as argument to compute the rectangular form of d.

If the slot routine T::rectform is not able to determine the rectangular
form of d, then it should return new(rectform(0,0,d)).

If the domain T does not have a slot "rectform", then rectform returns
the object new(rectform(0,0,d)) for the corresponding subexpression.

register – remove the memory limit of the demo version

register(Name, Key) registers the MuPAD installation on UNIX platforms.

Call(s):

A register(Name, Key)

Parameters:
Name — the name entry of the registration code: a string
Key — the registration key: a string

Return Value: TRUE if the registration was successful, and otherwise FALSE.

Further Documentation: See the MuPAD license agreement, which can be
obtained from http://www.sciface.com/mupad_download/reg_form.html.

Details:

A The free MuPAD versions that you can download from the web have a
built-in memory limit of 6 megabytes. register removes this memory
limit on UNIX platforms.

On Windows platforms, you can register your MuPAD version via the item
“Register” of the “Help” menu.

On Macintosh platforms, choose “About MuPAD” in the Apple menu and
then “Register”.

A You obtain a registration key via the following web page:
http://www.sciface.com/mupad_download/reg_form.html

A You need write access to the directory tree where MuPAD was installed
in order to register. If unsure, register as user root. Cf. example 3.

884

Example 1. If the key is correct and the registration was successful, register
returns TRUE:

>> register("My name", "12345-67890-ABCDE")

Memory limitation removed.

TRUE

Example 2. If you enter an invalid key, you will get the following message:

>> register("My name", "invalid key")

Wrong password or not registered user.

FALSE

Example 3. If the key is correct, but you have no write permission to the
directory tree where MuPAD was installed, the following happens:

>> register("My name", "12345-67890-ABCDE")

Cannot remove memory limitation.

FALSE

reset – re-initialize a MuPAD session

reset() re-initializes a MuPAD session, so that if behaves like a freshly started
session afterwards.

Call(s):

A reset()

Return Value: the void object null() of type DOM_NULL.

Related Functions: delete, quit

885

Details:

A reset initializes a MuPAD session. After a call of reset() the current
session will behave like a freshly started MuPAD session. reset deletes the
values of all identifiers and resets the environment variables to their de-
fault values. Finally, the initialization files sysinit.mu and userinit.mu
are read again.

A reset is permitted only at interactive level. Within a procedure, an error
occurs.

A reset is a function of the system kernel.

Example 1. reset deletes the values of all identifiers and resets environment
variables to their default values:

>> a := 1: DIGITS := 5: reset(): a, DIGITS

a, 10

return – exit a procedure

return(x) terminates the execution of a procedure and returns x.

Call(s):

A return(x)

Parameters:

x — any MuPAD object

Return Value: x.

Related Functions: DOM_PROC, proc, ->

Details:

A Usually, MuPAD ends a procedure when all statements of the procedure
body were processed. In this case, the return value of the procedure is
the result of the last statement that was executed.

Alternatively, the call return(x) inside a procedure leads to immediate
exit from the procedure: x is evaluated and becomes the return value of
the procedure. Execution proceeds after the point where the procedure
was invoked.

886

A x may be an expression sequence, i.e., calls such as return(x1, x2, ...)
are allowed.

A return() returns the void object of type DOM_NULL.

A Note that return is a function, not a keyword. A statement such as
return x; works in the programming language C, but causes a syntax
error in MuPAD.

A If called outside a procedure, return(x) just returns x.

A return is a function of the system kernel.

Example 1. This example shows the implementation of a maximum function
(which, in contrast to the system function max, accepts only two arguments). If
x is larger than y, the value of x is returned and the execution of the procedure
mymax stops. Otherwise, return(x) is not called. Consequently, y is the last
evaluated object defining the return value:

>> mymax := proc(x : Type::Real, y : Type::Real)
begin

if x > y then
return(x)

end_if;
y

end_proc:

>> mymax(3, 2), mymax(4, 5)

3, 5

>> delete mymax:

Example 2. return() returns the void object:

>> f := x -> return(): type(f(anything))

DOM_NULL

>> delete f:

887

Example 3. If return is called on the interactive level, the evaluated argu-
ments are returned:

>> x := 1: return(x, y)

1, y

>> delete x:

revert – revert lists or character strings, invert series expansions

revert reverses the ordering of the elements in a list and the ordering of char-
acters in a string. For a series expansion, it returns the functional inverse.

Call(s):

A revert(object)

Parameters:
object — a list, a character string, or a series expansion of type

Series::Puiseux

Return Value: an object of the same type as the input object, or a symbolic
call of type "revert".

Overloadable by: object

Related Functions: series, substring

Details:

A revert is a general function to compute inverses with respect to func-
tional composition, or to reverse the order of operands. This type of
functionality may be extended to further types of objects via overloading.

A Currently, the MuPAD library provides functionality for strings and lists,
where revert reverses the order of the elements or characters, respect-
ively. Further, for series expansions, the functional inverse is returned.

A For all other types of MuPAD objects that do not overload revert, the
symbolic expression revert(object) is returned.

888

Example 1. revert operates on lists and character strings:

>> revert([1, 2, 3, 4, 5])

[5, 4, 3, 2, 1]

>> revert("nuf si DAPuM ni gnimmargorP")

"Programming in MuPAD is fun"

revert operates on series:

>> revert(series(sin(x), x)) = series(arcsin(x), x)

3 5 3 5
x 3 x 7 x 3 x 7

x + -- + ---- + O(x) = x + -- + ---- + O(x)
6 40 6 40

The functional inverse of the expansion of exp around x = 0 is the expansion
of the inverse function ln around x = exp(0) = 1:

>> revert(series(exp(x), x, 3)) = series(ln(x), x = 1, 2)

2
(x - 1) 3

(x - 1) - -------- + O((x - 1)) =
2

2
(x - 1) 3

(x - 1) - -------- + O((x - 1))
2

Example 2. For all other types of objects, a symbolic function call is returned:

>> revert(x + y)

revert(x + y)

The following series expansion is not of type Series::Puiseux. Instead, a
generalized expansion of type Series::gseries is produced. Consequently,
revert does not compute an inverse:

>> revert(series(exp(-x)/(1 + x), x = infinity, 3))

/ 1 1 1 / 1 \ \
revert| -------- - --------- + --------- + O| --------- | |

| x exp(x) 2 3 | 4 | |
\ x exp(x) x exp(x) \ x exp(x) / /

889

rewrite – rewrite an expression

rewrite(f, target) transforms an expression f to a mathematically equival-
ent form, trying to express f in terms of the specified target function.

Call(s):

A rewrite(f, target)

Parameters:
f — an arithmetical or boolean expression
target — the target function to be used in the representation: one of

andor , cot, coth, diff, D, exp, fact, gamma, heaviside,
ln, piecewise, sign, sincos , sinhcosh , tan, or tanh

Return Value: an arithmetical expression.

Overloadable by: f

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: collect, combine, expand, factor, normal, partfrac,
rationalize, rectform, simplify

Details:

A The target indicates the function that is to be used in the desired repres-
entation. Symbolic function calls in f are replaced by the target function
if this is mathematically valid.

A With the target exp, all trigonometric and hyperbolic functions are re-
written in terms of exp. Further, the inverse functions as well as arg are
rewritten in terms of ln.

A With the target sincos , the functions tan, cot, exp, sinh, cosh, tanh,
and coth are rewritten in terms of sin and cos.

A With the target sinhcosh , the functions exp, tanh, coth, sin, cos, tan,
and cot are rewritten in terms of sinh and cosh.

A With the target diff, symbolic calls of the differential operator D are re-
written in terms of symbolic calls of the function diff. E.g., D(f)(x) is
converted to diff(f(x), x). A univariate expression D(f)(x) is rewrit-
ten if x is an identifier or an indexed identifier. A multivariate expression

890

D([n1, n2, ...], f)(x1, x2, ...) is rewritten if x1, x2 are distinct
identifiers or indexed identifiers. Trying to rewrite a multivariate call
D(f)(x1, x2, ...) of the univariate dervative D(f) raises an error.

A With the target D, symbolic diff calls are rewritten in terms of the
differential operator D. Derivatives of univariate function calls such as
diff(f(x), x) are rewritten as D(f)(x). Derivatives of multivariate
function calls are expressed via D([n1, n2, ...], f). E.g., diff(f(x,
y), x) is rewritten as D([1], f)(x, y).

A With the target andor , the logical operators xor, ==>, and <=> are re-
written in terms of and, or, and not.

Example 1. This example demonstrates the use of rewrite:

>> rewrite(D(D(f))(x), diff)

diff(f(x), x, x)

>> diff(f(x, x), x) = rewrite(diff(f(x, x), x), D)

diff(f(x, x), x) = D([1], f)(x, x) + D([2], f)(x, x)

>> rewrite(fact(n), gamma), rewrite(gamma(n), fact);

gamma(n + 1), fact(n - 1)

>> rewrite(sign(x), heaviside), rewrite(heaviside(x), sign);

sign(x)
2 heaviside(x) - 1, ------- + 1/2

2

>> rewrite(heaviside(x), piecewise)

piecewise(1 if 0 < x, heaviside(0) if x = 0, 0 if x < 0)

Example 2. Trigonometric functions can be rewritten in terms of exp, sin,
cos etc.:

>> rewrite(tan(x), exp), rewrite(cot(x), sincos),
rewrite(sin(x), tan)

/ x \
2 2 tan| - |

I exp(I x) - I cos(x) \ 2 /
- ---------------, ------, -------------

2 sin(x) / x \2
exp(I x) + 1 tan| - | + 1

\ 2 /

891

>> rewrite(arcsinh(x), ln)

2 1/2
ln(x + (x + 1))

Changes:

A The new targets D and andor were introduced.

RGB – predefined color names

RGB::Name evaluates to a list [r, g, b] representing the color ’Name’ by its
red, green and blue contributions according to the RGB color model.

RGB::ColorNames() provides a list of all predefined color names.

RGB::ColorNames(subname) provides a list of all predefined color names that
contain subname.

Call(s):

A RGB::Name

A RGB::ColorNames()

A RGB::ColorNames(subname)

Parameters:
Name — the name of a color: an identifier
subname — a part of a color name: an identifier

Return Value: RGB::Name evaluates to a list [r, g, b] of real floating point
numbers between 0.0 and 1.0. RGB::ColorNames returns a list of predefined
color names.

Related Functions: plot2d, plotfunc2d, plot3d, plotfunc3d

Details:

A The RGB values may be used in plot commands.

892

Example 1. The basic colors of the RGB model are red, green and blue:

>> RGB::Red, RGB::Green, RGB::Blue

[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]

The following call returns all predefined color names containing ’Olive’:

>> RGB::ColorNames(Olive)

[OliveDrab, Olive, OliveGreenDark]

The RGB values of these colors are:

>> RGB::OliveDrab, RGB::Olive, RGB::OliveGreenDark

[0.419599, 0.556902, 0.137303],

[0.230003, 0.370006, 0.170003],

[0.333293, 0.419599, 0.184301]

Example 2. The following command plots a filled grey triangle with black
border lines on a white background:

>> plot2d(BackGround = RGB::White,
ForeGround = RGB::Black,
Labeling = TRUE,
[Mode = List, [polygon(point(0, 0),

point(1, 0),
point(0, 1),
Closed = TRUE,
Filled = TRUE,
Color = RGB::LightGrey)]

])

save – save the state of an identifier

In a procedure, the statement ‘save x;’ saves the state of the global identifier
x.

Call(s):

A save x1, x2, ...

A _save(x1, x2, ...)

893

Parameters:

x1, x2, ... — symbols evaluating to identifiers

Return Value: the void object of type DOM_NULL.

Related Functions: proc

Details:

A The save statement saves the states of identifiers—i.e., their values and
properties—during the execution of procedures. The original state of the
identifiers is restored when procedure execution is finished. This holds
even when an error occurs.

The save statement is to be used only inside the body of a procedure. It
cannot be called on the interactive level.

A The arguments of the save statement are evaluated as usual. In the
statement ‘save x;’, the symbol x must evaluate to an identifier y, say.
It is the state of the identifier y that is saved.

A The save statement is very similar to the save declaration for proced-
ures. The main difference to the declaration is that, in order to make the
declaration, one has to know the names of the identifiers to be saved in
advance. The save statement allows to save identifiers which are known
only at run-time.

A The save statement is usually used in order to temporarily change the
properties of an identifier, for example by calling the function assume.
Eventually, the original properties of the identifiers are restored even if
an error occurs.

A The statement ‘save x1, x2, ...;’ is equivalent to the function call
_save(x1, x2, ...).

A _save is a function of the system kernel.

Example 1. First, we define a property for the identifier y:

>> assume(y < 0)

< 0

The properties of the identifier stored in x are changed temporarily during the
execution of the following procedure p:

894

>> p := proc(x : DOM_IDENT)
begin

save x;
assume(x > 0);
is(x > 0)

end_proc:

From the procedure’s result, we see that the properties of y were changed during
the execution of p:

>> p(y)

TRUE

However, the original properties were restored after exiting p. The identifier y
has its original properties:

>> is(y > 0), is(y < 0)

FALSE, TRUE

The restoration of the original properties is guaranteed even if some error occurs
inside the procedure. The following procedure q raises an error after changing
the identifier given by x:

>> q := proc(x : DOM_IDENT)
begin

save x;
assume(x > 0);
error("some error")

end_proc:
q(y)

Error: some error [q]

Nevertheless, the original assumptions about y are restored:

>> is(y > 0), is(y < 0)

FALSE, TRUE

>> unassume(y): delete p, q:

Changes:

A save is a new statement.

A In previous MuPAD releases, identifiers could only be saved with the save
declaration for procedures. Now, the save statement may also be used to
save an identifier at run-time.

895

select – select operands

select(object, f) returns a copy of the object with all operands removed
that do not satisfy a criterion defined by the procedure f.

Call(s):

A select(object, f <, p1, p2, ...>)

Parameters:
object — a list, a set, a table, an expression sequence, or an

expression of type DOM_EXPR
f — a procedure returning a Boolean value
p1, p2, ... — any MuPAD objects accepted by f as additional

parameters

Return Value: an object of the same type as the input object.

Overloadable by: object

Related Functions: map, op, split, zip

Details:

A select is a fast and handy function for picking out elements of lists, sets,
tables etc. that satisfy a criterion set by the procedure f.

A The function f must return a value that can be evaluated to one of the
Boolean values TRUE, FALSE, or UNKNOWN. It may either return one of these
values directly, or it may return an equation or an inequality that can be
simplified to one of these values by the function bool.

A Internally, the function f is applied to all operands x of the input object
via the call f(x, p1, p2, ...). If the result is not TRUE, this operand
is removed. The original object is not modified in this process.

The output object is of the same type as the input object, i.e., a list yields
a list, a set yields a set etc.

A An input object that is an expression sequence is not flattened. Cf. ex-
ample 2.

A Also “atomic” objects such as numbers or identifiers can be passed to
select as first argument. Such objects are handled like sequences with a
single operand.

896

A select is a function of the system kernel.

Example 1. select handles lists and sets. In the first example, we select all
true statements from a list of logical statements. The result is again a list:

>> select([1 = 1, 1 = 2, 2 = 1, 2 = 2], bool)

[1 = 1, 2 = 2]

In the following example, we extract the subset of all elements that are recog-
nized as zero by iszero:

>> select({0, 1, x, 0.0, 4*x}, iszero)

{0, 0.0}

select also works on tables:

>> T:= table(1 = "y", 2 = "n", 3 = "n", 4 = "y", 5 = "y"):
select(T, has, "y")

table(
5 = "y",
4 = "y",
1 = "y"

)

The following expression is a sum, i.e., an expression of type "_plus". We
extract the sum of all terms that do not contain x:

>> select(x^5 + 2*x + y - 4, _not@has, x)

y - 4

We extract all factors containing x from the following product. The result is
a product with exactly one factor, and therefore, is not of the syntactical type
"_mult":

>> select(11*x^2*y*(1 - y), has, x)

2
x

>> delete T:

897

Example 2. select works for expression sequences:

>> select((1, -4, 3, 0, -5, -2), testtype, Type::Negative)

-4, -5, -2

The $ command generates such expression sequences:

>> select(i $ i = 1..20, isprime)

2, 3, 5, 7, 11, 13, 17, 19

Atomic objects are treated as expression sequences of length one:

>> select(5, isprime)

5

The following result is the void object null() ob type DOM_NULL:

>> domtype(select(6, isprime))

DOM_NULL

Example 3. It is possible to pass an “anonymous procedure” to select. This
allows to perform more complex actions with one call. In the following example,
the command anames(All) returns a set of all identifiers that have a value in the
current MuPAD session. The select statement extracts all identifiers beginning
with the letter "h":

>> select(anames(All), x -> expr2text(x)[0] = "h")

{has, hold, help, hull, hastype, history, heaviside, hypergeom}

series – compute a (generalized) series expansion

series(f, x = x0) computes the first terms of a series expansion of f with
respect to the variable x around the point x0.

Call(s):

A series(f, x < = x0> <, order> <, dir> <, NoWarning>)

898

Parameters:
f — an arithmetical expression representing a function in x
x — an identifier
x0 — the expansion point: an arithmetical expression. If not

specified, the default expansion point 0 is used.
order — the number of terms to be computed: a nonnegative integer

or infinity. The default order is given by the environment
variable ORDER (default value 6).

Options:

dir — either Left , Right , Real , or Undirected . If no
expansion exists that is valid in the complex plane, this
argument can be used to request expansions that only
need to be valid along the real line. The default is
Undirected .

NoWarning — supresses warning messages printed during the series
computation. This can be useful if series is called
within user-defined procedures.

Return Value: If order is a nonnegative integer, then series returns either
an object of the domain type Series::Puiseux or Series::gseries, an ex-
pression of type "series", or, if f is a RootOf expression, a set of type Type::Set.
If order = infinity, then series returns an arithmetical expression.

Side Effects: The function is sensitive to the environment variable ORDER,
which determines the default number of terms in series computations.

Overloadable by: f

Related Functions: asympt, limit, O, ORDER, RootOf, Series::gseries,
Series::Puiseux, solve, taylor, Type::Series

Details:

A series tries to compute either the Taylor series, the Laurent series, the
Puiseux series, or a generalized series expansion of f around x = x0. See
Series::gseries for details on generalized series expansions.

The mathematical type of the series returned by series can be queried
using the type expression Type::Series.

A If series cannot compute a series expansion of f, a symbolic function
call is returned. This is an expression of type "series". Cf. example 11.

A Mathematically, the expansion computed by series is valid in some
neighborhood of the expansion point in the complex plane. Usually, this
is an open disc centered at x0. However, if the expansion point is a branch

899

point, then the returned expansion may not approximate the function f
for values of x close to the branch cut. Cf. example 12.

Using the options Left or Right , one can compute directed expansions
that are valid along the real axis. With the option Real , a two-sided
expansion along the real axis is computed. Cf. examples 5 and 6.

A If x0 is infinity or -infinity, then a directed series expansion along the
real axis from the left to the positive real infinity or from the right to the
negative real infinity, respectively, is computed. If x0 is complexInfinity
and dir is not specified or Undirected , then an undirected series expan-
sion around the complex infinity, i.e., the north pole of the Riemann
sphere, is computed. Specifying x0 = infinity is equivalent to x0 =
complexInfinity and dir = Left . Similarly, x0 = -infinity is equi-
valent to x0 = complexInfinity and dir = Right . Cf. example 7.

Such a series expansion is computed as follows: The series variable x in
f is replaced by x = 1/u (or x = −1/u for x0 = -infinity). Then, a
series expansion of f around u = 0 is computed. Finally, u = 1/x (or
u = −1/x, respectively) is substituted in the result.

Mathematically, the result of such a series expansion is a series in 1/x.
However, it may happen that the coefficients of the returned series depend
on the series variable. See the corresponding paragraph below.

A The number of requested terms for the expansion is order if specified.
Otherwise, the value of the environment variable ORDER is used. One can
change the default value 6 by assigning a new value to ORDER.

The number of terms is counted from the lowest degree term on for finite
expansion points, and from the highest degree term on for expansions
around infinity, i.e., “order” has to be regarded as a “relative truncation
order”.

series implements a limited amount of precision management to circum-
vent cancellation. If the number of terms of the computed expansion is
less than order, a second series computation with a higher value of order
is tried automatically, and the result of the latter is returned.

Nevertheless, the actual number of terms in the resulting series
expansion may differ from the requested number of terms. Cf. ex-
amples 14 and 13.

!

A In some cases, when cancellation occurs, it may happen that the requested
order is too small to compute a series expansion. In such a case, the
computation is aborted with an error message. Cf. example 14.

A Expansions of symbolic integrals can be computed. Cf. example 15.

A If f is an expression of type "RootOf", then series returns the set of
all nonzero series solutions of the corresponding algebraic equation. Cf.
example 9.

900

A If order has the value infinity, then the system tries to convert the first
argument into a formal infinite series, i.e., it computes a general formula
for the n-th coefficient in the Taylor expansion of f. The result is an
inactive symbolic sum or a polynomial expression. Cf. example 10.

A If series returns a series expansion of domain type Series::Puiseux, it
may happen that the “coefficients” of the returned series depend on the
series variable. In this case, the expansion is not a proper Puiseux series
in the mathematical sense. Cf. examples 7 and 8. However, if the series
variable is x and the expansion point is x0, then the following is valid for
each coefficient function c(x) and every positive ε: c(x)(x−x0)ε converges
to zero and c(x)(x−x0)−ε is unbounded when x approaches x0. Similarly,
if the expansion point is ∞, then, for every positive ε, c(x)x−ε converges
to zero and c(x)xε is unbounded when x approaches ∞.

A The function returns a domain object that can be manipulated by the
standard arithmetical operations. Moreover, the following methods are
available: ldegree returns the exponent of the leading term; Series::Puiseux::order
returns the exponent of the error term; expr converts to an arithmetical
expression, removing the error term; coeff(s, n) returns the coefficient
of the term of s with exponent n; lcoeff returns the leading coefficient;
revert computes the inverse with respect to composition; diff and int
differentiate and integrate a series expansion, respectively; map applies a
function to all coefficients. See the help pages for Series::Puiseux and
Series::gseries for further details.

A series works on a symbolic level and should not be called with
arguments containing floating point arguments. !

Example 1. We compute a series expansion of sin(x) around x = 0. The
result is a Taylor series:

>> s := series(sin(x), x)

3 5
x x 7

x - -- + --- + O(x)
6 120

Syntactically, the result is an object of domain type Series::Puiseux:

>> domtype(s)

Series::Puiseux

The mathematical type of the series expansion can be queried using the type
expression Type::Series:

>> testtype(s, Type::Series(Taylor))

901

TRUE

Various system functions are overloaded to operate on series objects. E.g., the
function coeff can be used to extract the coefficients of a series expansion:

>> coeff(s, 5)

1/120

The standard arithmetical operators can be used to add or multiply series ex-
pansions:

>> s + 2*s, s*s

3 5 4 6
x x 7 2 x 2 x 8

3 x - -- + -- + O(x), x - -- + ---- + O(x)
2 40 3 45

>> delete s:

Example 2. This example computes the composition of s by itself, i.e. the
series expansion of sin(sin(x)).

>> s := series(sin(x), x): s @ s = series(sin(sin(x)), x)

3 5 3 5
x x 7 x x 7

x - -- + -- + O(x) = x - -- + -- + O(x)
3 10 3 10

>> delete s:

Example 3. We compute the series expansion of the tangent function around
the origin in two ways:

>> series(sin(x), x) / series(cos(x), x) = series(tan(x), x)

3 5 3 5
x 2 x 7 x 2 x 7

x + -- + ---- + O(x) = x + -- + ---- + O(x)
3 15 3 15

>> bool(%)

TRUE

902

Example 4. We compute a Laurent expansion around the point 1:

>> s := series(1/(x^2 - 1), x = 1)

2 3 4
1 (x - 1) (x - 1) (x - 1) (x - 1)

--------- - 1/4 + ------- - -------- + -------- - -------- +
2 (x - 1) 8 16 32 64

5
O((x - 1))

>> testtype(s, Type::Series(Taylor)),
testtype(s, Type::Series(Laurent))

FALSE, TRUE

Example 5. Without an optional argument or with the option Undirected ,
the sign function is not expanded:

>> series(x*sign(x^2 + x), x) =
series(x*sign(x^2 + x), x, Undirected)

2 7 2 7
x sign(x + x) + O(x) = x sign(x + x) + O(x)

Some simplification occurs if one requests an expansion that is valid along the
real axis only:

>> series(x*sign(x^2 + x), x, Real)

7
x sign(x) + O(x)

The sign vanishes from the result if one requests a one-sided expansion along
the real axis:

>> series(x*sign(x^2 + x), x, Right),
series(x*sign(x^2 + x), x, Left)

7 7
x + O(x), - x + O(x)

903

Example 6. In MuPAD, the heaviside function is defined only on the real
axis. Thus an undirected expansion in the complex plane does not make sense:

>> series(x*heaviside(x + 1), x)

Warning: Could not find undirected series expansion; try option\
‘Left’, ‘Right’, or ‘Real’ [Series::main]

series(x heaviside(x + 1), x)

After specifying corresponding options, the system computes an expansion along
the real axis:

>> series(x*heaviside(x + 1), x, Real),
series(x*heaviside(x + 1), x, Right)

7 7
x + O(x), x + O(x)

At the point I in the complex plane, the function heaviside is not defined,
and neither is a series expansion:

>> series(heaviside(x), x = I, Real)

Error: heaviside is not defined for non-real expansion points \
[heaviside::series]

Example 7. We compute series expansions around infinity:

>> s1 := series((x + 1)/(x - 1), x = complexInfinity)

2 2 2 2 2 / 1 \
1 + - + -- + -- + -- + -- + O| -- |

x 2 3 4 5 | 6 |
x x x x \ x /

>> s2 := series(psi(x), x = infinity)

1 1 1 / 1 \
ln(x) - --- - ----- + ------ + O| -- |

2 x 2 4 | 6 |
12 x 120 x \ x /

>> domtype(s1), domtype(s2)

Series::Puiseux, Series::Puiseux

Although both expansions are of domain type Series::Puiseux, s2 is not
a Puiseux series in the mathematical sense, since the first term contains a
logarithm, which has an essential singularity at infinity:

904

>> testtype(s1, Type::Series(Puiseux)),
testtype(s2, Type::Series(Puiseux))

TRUE, FALSE

>> coeff(s2)

ln(x), -1/2, -1/12, 0, 1/120

The following expansion is of domain type Series::gseries:

>> s3 := series(exp(x)/(1 - x), x = infinity, 4)

exp(x) exp(x) exp(x) exp(x) / exp(x) \
- ------ - ------ - ------ - ------ + O| ------ |

x 2 3 4 | 5 |
x x x \ x /

>> domtype(s3)

Series::gseries

>> delete s1, s2, s3:

Example 8. Oscillating but bounded functions may appear in the“coefficients”
of a series expansion as well:

>> s := series(sin(x + 1/x), x = infinity)

cos(x) sin(x) cos(x) sin(x) cos(x) / 1 \
sin(x) + ------ - ------ - ------ + ------ + ------ + O| -- |

x 2 3 4 5 | 6 |
2 x 6 x 24 x 120 x \ x /

>> domtype(s), testtype(s, Type::Series(Puiseux))

Series::Puiseux, FALSE

>> coeff(s, -1)

cos(x)

905

Example 9. The algebraic equation y5−y−x = 0 cannot be resolved in terms
of radicals:

>> solve(y^5 - y - x, y)

5
RootOf(X9 - X9 - x, X9)

However, series can compute all series solutions of this equation around x = 0:

>> series(%, x = 0)

{ 2 3 4 5
{ 5 7 x 5 x 5 x 385 x x 6
{ - x - x + O(x), - 1 + - + ---- + ---- + ------ + -- + O(x),
{ 4 32 32 2048 4

2 3 4 5
x 5 x 5 x 385 x x 6

1 + - - ---- + ---- - ------ + -- + O(x),
4 32 32 2048 4

3 5
x 2 5 x 4 x 6

- I + - - 5/32 I x - ---- + 385/2048 I x + -- + O(x),
4 32 4

3 5 }
x 2 5 x 4 x 6 }

I + - + 5/32 I x - ---- - 385/2048 I x + -- + O(x) }
4 32 4 }

It may happen that the series solutions themselves are expressed in terms of
RootOf’s:

>> series(RootOf(y^5 -(x + 2*x^2)*y^3 - x^3*y^2
+ (x^3 + x^4)*y + x^4 + x^5, y), x)

{ 3/2 5/2 7/2 9/2 11/2
{ 1/2 x x x 5 x 7 x 13/2
{ - x - ---- + ---- - ---- + ------ - ------- + O(x),
{ 2 8 16 128 256

3/2 5/2 7/2 9/2 11/2 }
1/2 x x x 5 x 7 x 13/2 }
x + ---- - ---- + ---- - ------ + ------- + O(x) }

2 8 16 128 256 }

union { x*z1 + O(x^7) | z1 in RootOf(z1 - z1^3 + 1, z1) }

906

The coefficients of the algebraic equation are allowed to be transcendental. They
are internally converted into Puiseux series by series:

>> series(RootOf(y^3 - y - exp(x - 1) + 1, y), x = 1, 4)

{ 2 3
{ (x - 1) 7 (x - 1) 4
{ - (x - 1) - -------- - ---------- + O((x - 1)),
{ 2 6

2 3
(x - 1) (x - 1) 5 (x - 1) 4

1 + ------- - -------- + ---------- + O((x - 1)),
2 8 24

2 3 }
(x - 1) 5 (x - 1) 23 (x - 1) 4 }

- 1 + ------- + ---------- + ----------- + O((x - 1)) }
2 8 24 }

An error occurs if some coefficient cannot be expanded into a Puiseux series:

>> series(RootOf(y^3 - y - exp(x), y), x = infinity)

Error: cannot expand coefficients of RootOf(y^3 - y - exp(1/x), y)\
into Puiseux series [Series::algebraic]

Example 10. In this example, we compute a formula for the n-th coefficient
an in the Taylor expansion of the function exp(−x) =

∑
n≥0 anx

n around zero,
by specifying infinity as order. The result is a symbolic sum:

>> series(exp(-x), x, infinity)

/ n1 n1 \
| x (-1) |

sum| ------------, n1 = 0..infinity |
\ n1 gamma(n1) /

If the input is a polynomial expression, then so is the output:

>> series(x^5 - 1, x = 1, infinity)

2 3 4 5
5 (x - 1) + 10 (x - 1) + 10 (x - 1) + 5 (x - 1) + (x - 1)

907

Example 11. No asymptotic expansion is implemented for the Lambert W-
function, and series returns a symbolic function call:

>> series(lambertW(x), x = infinity)

series(lambertW(x), x = infinity)

>> domtype(%), type(%)

DOM_EXPR, "series"

Example 12. The branch cut of the logarithm and the square root is the
negative real axis. For a series expansion on the branch cut, series uses the
function signIm to return an expansion that is valid in an open disc around the
expansion point:

>> series(ln(x), x = -1, 3)

2 3
(x + 1) (x + 1) 4

I PI signIm(x) - (x + 1) - -------- - -------- + O((x + 1))
2 3

>> series(sqrt(x), x = -1, 3)

signIm(x)
signIm(x) ---------
--------- 2

2 (x + 1) (-1)
(-1) - --------------------- -

2

signIm(x)

2 2
(x + 1) (-1) 3
---------------------- + O((x + 1))

8

The situation is more intricate when the expansion point is a branch point.
The following expansion of the function arcsin(x + 1) is valid in an open disc
around the branch point 0:

>> series(arcsin(x + 1), x, 4)

908

1/2 1/2 2 1/2 1/2
PI 1/2 1/2 x 2 (-x) 3 x 2 (-x)
-- - 2 (-x) + -------------- - ----------------- +
2 12 160

3 1/2 1/2
5 x 2 (-x) 9/2
----------------- + O(x)

896

However, the expansion of f = ln(x + I*x^3) around the branch point 0 that
is returned by series does not approximate f for values of x that are close to
the negative real axis:

>> f := ln(x + I*x^3);
g := series(f, x, 4);

3
ln(x + I x)

2 4
ln(x) + I x + O(x)

>> DIGITS := 20:
float(subs([f, expr(g)], x = -0.01 + 0.0000001*I));
delete DIGITS:

[- 4.605170178938091416 - 3.1415026535903362385 I,

- 4.605170183938091368 + 3.1416826535897835718 I]

The situation is similar for algebraic branch points:

>> f := sqrt(x + I*x^3);
g := series(f, x, 4);

3 1/2
(x + I x)

1/2 5/2 9/2
x + 1/2 I x + O(x)

>> DIGITS := 20:
float(subs([f, expr(g)], x = -0.01 + 0.0000001*I));
delete DIGITS:

[0.0000044999999871937500725 - 0.1000000002512499991 I,

- 0.00000449999999906875 + 0.10000000012625 I]

>> delete f, g:

909

Example 13. The first six terms, including zeroes, of the following two series
expansions agree:

>> series(sin(tan(x)), x, 12);
series(tan(sin(x)), x, 12);

3 5 7 9 11
x x 55 x 143 x 968167 x 13

x + -- - -- - ----- - ------ - ---------- + O(x)
6 40 1008 3456 39916800

3 5 7 9 11
x x 107 x 73 x 41897 x 13

x + -- - -- - ------ - ----- + --------- + O(x)
6 40 5040 24192 39916800

If we want to compute the series expansion of the difference sin(tan(x)) -
tan(sin(x)), cancellation happens and produces too few terms in the result.
series detects this automatically and performs a second series computation
with increased precision:

>> series(sin(tan(x)) - tan(sin(x)), x, 6)

7 9 11
x 29 x 1913 x 13

- -- - ----- - -------- + O(x)
30 756 75600

It may nevertheless happen that the result has too few terms; cf. example 14.
If rational exponents occur in the series expansion, then it may even happen

that the result has more than the number of terms requested by the third
argument:

>> series(x^2*exp(x) + x*sqrt(sin(x)), x, 3)

7/2 4
3/2 2 3 x x 5
x + x + x - ---- + -- + O(x)

12 2

Example 14. In the following example, the specified order for the expansion
is too small to compute the reciprocal, due to cancellation:

>> series(exp(x), x, 4)

2 3
x x 4

1 + x + -- + -- + O(x)
2 6

910

>> series(1/(exp(x) - 1 - x - x^2/2 - x^3/6), x, 2)

Error: order too small [Series::Puiseux::_invert]

After increasing the order, an expansion is computed, but possibly with fewer
terms:

>> series(1/(exp(x) - 1 - x - x^2/2 - x^3/6), x, 3);
series(1/(exp(x) - 1 - x - x^2/2 - x^3/6), x, 4)

24 24 / 1 \
-- - ---- + O| -- |
4 3 | 2 |
x 5 x \ x /

24 24 4 12
-- - ---- + ----- + ----- + O(1)
4 3 2 875 x
x 5 x 25 x

Example 15. series and int support each other. On the one hand, series
expansions can be integrated:

>> int(series(1/(2 - x), x), x = 0..1)

6
int(O(x), x = 0..1) + 1327/1920

On the other hand, series knows how to handle symbolic integrals:

>> int(x^x, x)

x
int(x , x)

>> series(%, x = 0, 3)

/ 2 \
2 / ln(x) \ 3 | ln(x) ln(x) | 4

x + x | ----- - 1/4 | + x | - ----- + ------ + 1/27 | + O(x)
\ 2 / \ 9 6 /

>> int(exp(-x*sin(t)), t = 0.. x)

int(exp(-x sin(t)), t = 0..x)

>> series(%, x = 0)

911

3 5
x 5 x 7

x - -- + ---- + O(x)
2 24

>> int(cos((x*t^2 + x^2*t))^(1/3), t = 0..2)

2 2 1/3
int(cos(t x + t x) , t = 0..2)

>> series(%, x)

2 3 4 5
16 x 4 x 100 x 16 x 6

2 - ----- - ---- - ------ - ----- + O(x)
15 3 81 9

Example 16. Users can extend the power of series by implementing series
attributes (slots) for their own special mathematical functions.

We illustrate how to write such a series attribute, using the case of the
exponential function. (Of course, this function already has a series attribute
in MuPAD, which you can inspect via expose(exp::series).) In order not to
overwrite the already existing attribute, we work on a copy of the exponential
function called Exp.

The series attribute must be a procedure with four arguments. This pro-
cedure is called whenever a series expansion of Exp with an arbitrary argument
is to be computed. The first argument is the argument of Exp in the series
call. The second argument is the series variable; the expansion point is always
the origin 0; other expansion points are internally moved to the origin by a
change of variables. The third and the fourth argument are identical with the
order and the dir argument of series, respectively.

For example, the command series(Exp(x^2 + 2), x, 5) is internally con-
verted into the call Exp::series(x^2 + x, x, 5, Undirected). Here is an
example of a series attribute for Exp.

>> // The series attribute for Exp. It handles the call
// series(Exp(f), x = 0, order, dir)
ExpSeries := proc(f, x, order, dir)
local t, x0, s, r, i;

begin
// Expand the argument into a series.
t := series(f, x, order, dir);

// Determine the order k of the lowest term in t, so that
// t = c*x^k + higher order terms, for some nonzero c.
k := ldegree(t);

912

if k = FAIL then
// t consists only of an error term O(..)
error("order too small");

elif k < 0 then
// This corresponds to an expansion of exp around infinity,
// which does not exist for the exponential
// function, since it has an essential singularity. Thus we
// return FAIL, which makes series return unevaluatedly. For
// other special functions, you may add an asymptotic
// expansion here.
return(FAIL);

else // k >= 0
// This corresponds to an expansion of exp around a
// finite point x0. We write t = x0 + y, where all
// terms in y have positive order, use the
// formula exp(x0 + y) = exp(x0)*exp(y) and compute
// the series expansion of exp(y) as the functional
// composition of the Taylor series of exp(x) around
// x = 0 with t - x0. If your special function has
// any finite singularities, then they should be
// treated here.
x0 := coeff(t, x, 0);
s := Series::Puiseux::create(1, 0, order,

[1/i! $ i = 0..(order - 1)], x, 0, dir);
return(Series::Puiseux::scalmult(s @ (t - x0), Exp(x0), 0))

end_if
end_proc:

This special function must be embedded in a function environment. The fol-
lowing command defines Exp as a function environment and copies the code for
evaluating the system function exp. The subsop command achieves that Exp
with symbolic arguments is returned as Exp and not as exp, see the help page
for DOM_PROC.

>> Exp := funcenv(subsop(op(exp, 1), 6 = hold(Exp)), NIL, NIL):
Exp(1), Exp(-1.0), Exp(x^2 + x)

2
Exp(1), 0.3678794412, Exp(x + x)

series can already handle this“new”function, but it can only compute a Taylor
expansion with symbolic derivatives:

>> ORDER := 3: series(Exp(x), x = 0)

913

2
x D(D(Exp))(0) 3

1 + x D(Exp)(0) + --------------- + O(x)
2

One can define the series attribute of Exp by assigning the procedure above
to its series slot:

>> Exp::series := ExpSeries:

Now we can test the new attribute:

>> series(Exp(x^2 + x), x = 0) = series(exp(x^2 + x), x = 0)

2 2
3 x 3 3 x 3

1 + x + ---- + O(x) = 1 + x + ---- + O(x)
2 2

>> series(Exp(x^2 + x), x = 2) = series(exp(x^2 + x), x = 2)

2
27 Exp(6) (x - 2) 3

Exp(6) + 5 Exp(6) (x - 2) + ------------------ + O((x - 2)) =
2

2
27 exp(6) (x - 2) 3

exp(6) + 5 exp(6) (x - 2) + ------------------ + O((x - 2))
2

>> series(Exp(x^2 + x), x = 0, 0)

Error: order too small [ExpSeries]

>> series(Exp(x^2 + x), x = infinity)

2
series(Exp(x + x), x = infinity)

Another possibility to obtain series expansions of user-defined functions is to
define the diff attribute of the corresponding function environment. This
is used by series to compute a Taylor expansion when no series attribute
exists. However, this only works when a Taylor expansion exists, whilst a
series attribute can handle more general types of series expansions as well.

>> delete ExpSeries, Exp:

914

Changes:

A Branch points and branch cuts are handled better; cf. example 12.

A The precision management was improved; cf. example 13.

A The new option Undirected was introduced.

A Undirected expansions around complexInfinity are now possible.

A series can now compute series solutions of an algebraic equation specified
by a RootOf expression. Then the return value is a set of type Type::Set.
Cf. example 9.

A The internal structure of the datatype Series::Puiseux, which is re-
turned by most calls to series, has changed. See the corresponding help
page for more details.

setuserinfo – set an information level

setuserinfo(f, n) sets the information level for the function f to n, thus
activating or deactivating userinfo commands built into f.

Call(s):

A setuserinfo(f, n <, style>)

A setuserinfo(f)

A setuserinfo(n)

A setuserinfo(NIL)

A setuserinfo()

Parameters:
f — a procedure, the name of a domain or the flag Any

n — the “information level”: a nonnegative integer
style — either Name or Quiet

Options:

Name — causes userinfo to append the name of the calling
procedure to the printed message

Quiet — causes userinfo to suppress the prefix “Info:” at the
beginning of a line

Return Value: the previously set information level.

Related Functions: print, userinfo, warning

915

Details:

A The information level controls the printing of information by the function
userinfo. This function is built into various library routines to display
progress information during the execution of algorithms.

A setuserinfo(f, n <, style>) sets the information level of f to the
value n and returns the previously set value. Setting an information level
for a domain does not change previously set information levels of the
methods of this domain.

A setuserinfo(f) returns the current information level of f without chan-
ging it.

A setuserinfo(Any , n <, style>) sets the global information level to
the value n and returns the previously set value. Note, that this does not
change previously set information levels of domains and procedures.

A setuserinfo(n) is equivalent to setuserinfo(Any , n).

A setuserinfo(Any) returns the global information level without changing
it.

A setuserinfo(NIL) resets the information level of all functions and do-
mains to the default value 0. With this value, no information is printed
by userinfo.

A setuserinfo() returns a table of all previously set information levels.
This table is cleared by the call setuserinfo(NIL).

Example 1. We define a procedure f that prints information via userinfo:

>> f := proc(x)
begin
userinfo(1, "enter ’f’");
userinfo(2, "the argument is " . expr2text(x));
x^2

end_proc:

After activating the userinfo commands inside f via setuserinfo, any call to
f prints status information:

>> setuserinfo(f, 1, Name): f(5)

Info: enter ’f’ [f]

25

The information level of f is increased:

916

>> setuserinfo(f, 2): f(4)

Info: enter ’f’
Info: the argument is 4

16

The prefix “Info:” shall not be printed:

>> setuserinfo(f, 2, Quiet): f(3)

enter ’f’
the argument is 3

9

The userinfo commands are deactivated by clearing all information levels glob-
ally:

>> setuserinfo(NIL): f(2)

4

>> delete f:

share – create a unique data representation

share() creates a unique data representation for every MuPAD object. This
function serves a highly technical purpose. Usually, there should be no need for
a user to call this function.

Call(s):

A share()

Return Value: the void object of type DOM_NULL.

Related Functions: bytes

Details:

A If share is executed, a unique data representation is created for every
MuPAD object before the next command is executed on the interactive
level. This means that every MuPAD object is only located once in the
physical memory. Thus, share reduces the number of logical bytes used
in a MuPAD session.

917

A share is a very time consuming function which also needs a lot of memory
during its execution.

A share is not executed immediately; it is only executed on returning to
the interactive level. Therefore, it cannot be used in procedures to release
memory during a longer computation.

A share is a function of the system kernel.

Example 1. The following example was carried out in a fresh MuPAD session.
One sees that share reduces the number of logical bytes. However, one observes
that the kernel needs some extra physical memory for executing the share call.
The output of the example will differ on different machines:

>> int(x, x): bytes()

1980600, 2191872, 2147483647

>> share(): bytes()

1201076, 2830848, 2147483647

sign – the sign of a real or complex number

sign(z) returns the sign of the number z.

Call(s):

A sign(z)

Parameters:

z — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: z

Side Effects: sign respects properties of identifiers. For real expressions, the
result may depend on the value of the environment variable DIGITS.

Related Functions: abs, conjugate, Im, Re

918

Details:

A Mathematically, the sign of a complex number z 6= 0 is defined as z/|z|.
For real numbers, this reduces to 1 or −1.

A sign(0) and sign(0.0) return 0. The user may redefine this value by a
direct assignment, e.g.:

unprotect(sign): sign(0) := 1: protect(sign):

A If the type of z is DOM_INT, DOM_RAT, or DOM_FLOAT, a fast kernel function
is used to determine the sign. The return value is either −1, 0, or 1.

A If the sign of the expression cannot be determined, a symbolic function
call is returned. Certain simplifications are implemented. In particular,
numerical factors of symbolic products are simplified. Cf. example 2.

A The expand function rewrites the sign of a product to a product of signs.
E.g., expand(sign(x*y)) yields sign(x)*sign(y). Cf. example 2.

A For constant expressions such as PI - sqrt(2), exp(I*3) - I*sin(3)
etc., internal floating point evaluation is used to determine, whether the
expression represents a nonzero real number. If so, the sign −1 or 1
is returned. Internally, the floating point approximation is checked for
reliability. Cf. example 4.

Example 1. We compute the sign of various real numbers and expressions:

>> sign(-8/3), sign(3.2), sign(exp(3) - sqrt(2)*PI), sign(0)

-1, 1, 1, 0

The sign of a complex number z is the complex number z/abs(z):

>> sign(0.5 + 1.1*I), sign(2 + 3*I), sign(exp(sin(2 + 3*I)))

1/2
0.4138029443 + 0.9103664775 I, (2/13 + 3/13 I) 13 ,

exp(I cos(2) sinh(3))

Example 2. sign yields a symbolic, yet simplified, function call if identifiers
are involved:

>> sign(x), sign(2*x*y), sign(2*x + y), sign(PI*exp(2 + y))

sign(x), sign(x y), sign(2 x + y), sign(exp(y + 2))

919

In special cases, the expand function may provide further simplifications:

>> expand(sign(2*x*y)), expand(sign(PI*exp(2 + y)))

sign(x) sign(y), sign(exp(y))

Example 3. sign respects properties of identifiers:

>> sign(x + PI)

sign(x + PI)

>> assume(x > -3): sign(x + PI)

1

>> unassume(x):

Example 4. The following rational number approximates π to about 20 digits:

>> p := 157079632679489661923/50000000000000000000:

With the standard precision DIGITS = 10, the float test inside sign does not
give a decisive answer, whether p is larger or smaller than π:

>> float(PI - p)

0.0

This result is subject to numerical roundoff and does not allow a conclusion on
the sign of the number PI - p. The float test inside sign checks the reliablity
of floating point approximations. In this case, no simplified result is returned:

>> sign(PI - p)

sign(PI - 157079632679489661923/50000000000000000000)

With increased DIGITS, a reliable decision can be taken:

>> DIGITS := 20: sign(PI - p)

1

>> delete p, DIGITS:

signIm – the sign of the imaginary part of a complex number

signIm(z) represents the sign of Im(z).

920

Call(s):

A signIm(z)

Parameters:

z — an arithmetical expression representing a complex number

Return Value: either ±1, 0, or a symbolic call of type "signIm".

Side Effects: Properties of identifiers set via assume are taken into account.

Overloadable by: z

Details:

A signIm(z) indicates whether the complex number z lies in the upper or
in the lower half plane: signIm(z) yields 1 if Im(z)> 0, or if z is real and
z< 0. At the origin: signIm(0)=0. For all other numerical arguments,
−1 is returned. Thus, signIm(z)=sign(Im(z)) if z is not on the real
axis.

A If the position of the argument in the complex plane cannot be determ-
ined, then a symbolic call is returned. If appropriate, the reflection rule
signIm(-x) = -signIm(x) is used.

A The functions diff and series treat signIm as a constant function. Cf.
example 2.

A The following relation holds for arbitrary complex z and p:

(−z)p = zp (−1)−p signIm(z).

Example 1. For numerical values, the position in the complex plane can al-
ways be determined:

>> signIm(2 + I), signIm(- 4 - I*PI), signIm(0.3), signIm(-2/7),
signIm(-sqrt(2) + 3*I*PI)

1, -1, -1, 1, 1

Symbolic arguments without properties lead to symbolic calls:

>> signIm(x), signIm(x - I*sqrt(2))

1/2
signIm(x), signIm(x - I 2)

Properties set via assume are taken into account:

921

>> assume(x, Type::Real): signIm(x - I*sqrt(2))

-1

>> assume(x > 0): signIm(x)

-1

>> assume(x < 0): signIm(x)

1

>> assume(x = 0): signIm(x)

0

>> unassume(x):

Example 2. signIm is a constant function, apart from the jump discontinuities
along the real axis. These discontinuities are ignored by diff:

>> diff(signIm(z), z)

0

Also series treats signIm as a constant function:

>> series(signIm(z/(1 - z)), z = 0)

/ z \ 6
signIm| ------- | + O(z)

\ - z + 1 /

Changes:

A The reflection signIm(-x) = -signIm(x) was implemented.

simplify – simplify an expression

simplify(f) tries to simplify the expression f by applying term rewriting rules.

simplify(f, target) restricts the simplification to term rewriting rules ap-
plicable to the target function(s).

922

Call(s):

A simplify(f <, target>)

A simplify(l <, target>)

Parameters:
f — an arithmetical expression
l — a set, a list, an array, or a polynomial of type DOM_POLY

Options:

target — one of the identifiers cos, sin, exp, ln, sqrt, logic , or
relation

Return Value: an object of the same type as the input object f or l, respect-
ively.

Overloadable by: f, l

Side Effects: Without a target option, simplify reacts to properties of iden-
tifiers.

Further Documentation: Chapter “Manipulating Expressions” of the Tu-
torial.

Related Functions: collect, combine, expand, factor, match, normal,
radsimp, rectform, rewrite

Details:

A In a call without a target option, first a simplification of the expression“as
a whole” is tried. This includes rewriting of products of trigonometric and
exponential terms. Next, simplify is recursively applied to the operands
of the expression. In this process, the "simplify" methods of the special
functions contained in the expression are called.

A The call simplify(f) implies all simplifications that can be achieved with
the targets sin, cos, exp, and ln.

A The call simplify(f, sqrt) is equivalent to radsimp(f). With this
option, constant radical expressions are simplified.

A In the call simplify(l <, target>), simplification is applied to the
operands of the object l.

923

Option <target>:

A With the targets sin, cos, exp, and ln, only specific simplifications such
as rewriting of products of trigonometric or exponential terms occur.

A The option sqrt invokes radsimp, i.e., simplification of constant radicals
occur. See radsimp for details.

A With the option logic , rules of Boolean algebra are applied to Boolean
expressions; the property mechanism it not used to decide the truth of
the atoms.

A The option relation is obsolete now, since arithmetical operations for
equations and inequalities are now available in MuPAD. It is still available
for compatibility reasons, but will be removed in future versions.

Example 1. simplify tries to simplify algebraic expressions:

>> simplify(exp(x)-exp(x/2)^2)

0

>> f := sin(x)^2 + cos(x)^2 + (exp(x) - 1)/(exp(x/2) + 1):
simplify(f)

/ x \
exp| - |

\ 2 /

Only special simplifications occur if special target functions are specified:

>> simplify(f, sin)

/ x \
exp(x) + exp| - |

\ 2 /

/ x \
exp| - | + 1

\ 2 /

>> simplify(f, exp)

2 2 / x \
cos(x) + sin(x) + exp| - | - 1

\ 2 /

>> delete f:

924

Example 2. The option sqrt serves for simplifying radicals:

>> simplify(sqrt(4 + 2*sqrt(3)), sqrt)

1/2
3 + 1

>> x := 1/2 + sqrt(23/108):
y := x^(1/3) + 1/3/x^(1/3):
z := y^3 - y

/ / 1/2 1/2 \1/3 \3
| 1 | 3 23 | |
| ------------------------- + | ---------- + 1/2 | | -
| / 1/2 1/2 \1/3 \ 18 / |
| | 3 23 | |
| 3 | ---------- + 1/2 | |
\ \ 18 / /

/ 1/2 1/2 \1/3
| 3 23 | 1
| ---------- + 1/2 | - -------------------------
\ 18 / / 1/2 1/2 \1/3

| 3 23 |
3 | ---------- + 1/2 |
\ 18 /

>> simplify(z, sqrt)

1

>> delete x, y, z:

Example 3. The option logic serves for simplifying Boolean expressions:

>> simplify((a and b) or (a and (not b)), logic)

a

Example 4. User–defined functions can have "simplify" attributes. For ex-
ample, suppose we know that f is an additive function (but we do not know
more about f). Hence we cannot compute the function value of f at any point
except zero, but we can tell MuPAD to use the additivity:

925

>> f := funcenv(x -> if iszero(x) then 0 else procname(x) end):
f::simplify := proc(F)

local argument;
begin
argument := op(F,1);
if type(argument) = "_plus" then
map(argument, f)

else
F

end
end:

>> f(x + 3*y) - f(3*y) = simplify(f(x + 3*y) - f(3*y))

f(x + 3 y) - f(3 y) = f(x)

We could still refine the "simplify" attribute of f such that it also turns f(3*y)
into 3*f(y). However, it is certainly a matter of taste whether f(x) + f(y) is
really simpler than f(x+y). The reverse rule (rewriting f(x)+f(y) as f(x+y))
is not context-free and cannot be implemented in a "simplify" attribute.

sin, cos, tan, csc, sec, cot – the trigonometric functions

sin(x) represents the sine function.

cos(x) represents the cosine function.

tan(x) represents the tangent function sin(x)/cos(x).

csc(x) represents the cosecant function 1/sin(x).

sec(x) represents the secant function 1/cos(x).

cot(x) represents the cotangent function cos(x)/sin(x).

Call(s):

A sin(x)

A cos(x)

A tan(x)

A csc(x)

A sec(x)

A cot(x)

Parameters:

x — an arithmetical expression or a floating point interval

926

Return Value: an arithmetical expression or a floating point interval

Overloadable by: x

Side Effects: When called with a floating point argument, the functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: arcsin, arccos, arctan, arccsc, arcsec, arccot

Details:

A The arguments have to be specified in radians, not in degrees. E.g., use
π to specify an angle of 180 o.

A All trigonometric functions are defined for complex arguments.

A Floating point values are returned for floating point arguments. Floating
point intervals are returned for floating point interval arguments. Une-
valuated function calls are returned for most exact arguments.

A Translations by integer multiples of π are eliminated from the argument.
Further, arguments that are rational multiples of π lead to simplified res-
ults; symmetry relations are used to rewrite the result using an argument
from the standard interval [0, π/2). Explicit expressions are returned for
the following arguments:

0,
π

2
,
π

3
,
π

4
,
π

5
,

2π
5
,
π

6
,
π

8
,

3π
8
,
π

10
,

3π
10
,
π

12
,

5π
12

.

Cf. example 2.

A The result is rewritten in terms of hyperbolic functions, if the argument
is a rational multiple of I. Cf. example 3.

A The functions expand and combine implement the addition theorems for
the trigonometric functions. Cf. example 4.

A The trigonometric functions do not respond to properties set via assume.
Use simplify to take such properties into account. Cf. example 4.

A sec(x) and csc(x) are immediately rewritten as 1/cos(x) and 1/sin(x),
respectively. Use expand or rewrite to rewrite expressions involving tan
and cot in terms of sin and cos. Cf. example 5.

A The inverse functions are implemented by arcsin, arccos, arctan, arccsc,
arcsec, and arccot, respectively. Cf. example 6.

A The float attributes are kernel functions, i.e., floating point evaluation is
fast.

927

Example 1. We demonstrate some calls with exact and symbolic input data:

>> sin(PI), cos(1), tan(5 + I), csc(PI/2), sec(PI/11), cot(PI/8)

1 1/2
0, cos(1), tan(5 + I), 1, ---------, 2 + 1

/ PI \
cos| -- |

\ 11 /

>> sin(-x), cos(x + PI), tan(x^2 - 4)

2
-sin(x), -cos(x), tan(x - 4)

Floating point values are computed for floating point arguments:

>> sin(123.4), cos(5.6 + 7.8*I), cot(1.0/10^20)

-0.7693905459, 946.4239673 + 770.3351731 I, 1.0e20

Floating point intervals are computed for interval arguments:

>> sin(0 ... 1), cos(20 ... 30), tan(0 ... 5)

0.0 ... 0.8414709849, -1.0 ... 1.0, RD_NINF ... RD_INF

For the functions with discontinuities, the result may be a union of intervals:

>> csc(-1 ... 1), tan(1 ... 2)

RD_NINF ... -1.188395105 union 1.188395105 ... RD_INF,

RD_NINF ... -2.022053061 union 1.557407724 ... RD_INF

Example 2. Some special values are implemented:

>> sin(PI/10), cos(2*PI/5), tan(123/8*PI), cot(-PI/12)

1/2 1/2
5 5 1/2 1/2
---- - 1/4, ---- - 1/4, 2 + 1, - 3 - 2
4 4

Translations by integer multiples of π are eliminated from the argument:

>> sin(x + 10*PI), cos(3 - PI), tan(x + PI), cot(2 - 10^100*PI)

sin(x), -cos(3), tan(x), cot(2)

928

All arguments that are rational multiples of π are transformed to arguments
from the interval [0, π/2):

>> sin(4/7*PI), cos(-20*PI/9), tan(123/11*PI), cot(-PI/13)

/ 3 PI \ / 2 PI \ / 2 PI \ / PI \
sin| ---- |, cos| ---- |, tan| ---- |, - cot| -- |

\ 7 / \ 9 / \ 11 / \ 13 /

Example 3. Arguments that are rational multiples of I are rewritten in terms
of hyperbolic functions:

>> sin(5*I), cos(5/4*I), tan(-3*I)

I sinh(5), cosh(5/4), -I tanh(3)

For other complex arguments, use expand to rewrite the result:

>> sin(5*I + 2*PI/3), cos(5/4*I - PI/4), tan(-3*I + PI/2)

/ 2 PI \ / PI \ / PI \
sin| ---- + 5 I |, cos| 5/4 I - -- |, tan| -- - 3 I |

\ 3 / \ 4 / \ 2 /

>> expand(sin(5*I + 2*PI/3)), expand(cos(5/4*I - PI/4)),
expand(tan(-3*I + PI/2))

1/2 1/2
3 cosh(5) 2 cosh(5/4)
------------ - 1/2 I sinh(5), -------------- +

2 2

1/2 I cosh(3)
1/2 I 2 sinh(5/4), - ---------

sinh(3)

Example 4. The expand function implements the addition theorems:

>> expand(sin(x + PI/2)), expand(cos(x + y))

cos(x), cos(x) cos(y) - sin(x) sin(y)

The combine function uses these theorems in the other direction, trying to
rewrite products of trigonometric functions:

>> combine(sin(x)*sin(y), sincos)

929

cos(x - y) cos(x + y)
---------- - ----------

2 2

The trigonometric functions do not immediately respond to properties set via
assume:

>> assume(n, Type::Integer): sin(n*PI), cos(n*PI)

sin(n PI), cos(n PI)

Use simplify to take such properties into account:

>> simplify(sin(n*PI)), simplify(cos(n*PI))

n
0, (-1)

>> assume(n, Type::Odd): sin(n*PI + x), simplify(sin(n*PI + x))

sin(x + n PI), -sin(x)

>> y := cos(x - n*PI) + cos(n*PI - x): y , simplify(y)

cos(x - n PI) + cos(n PI - x), -2 cos(x)

>> delete n, y:

Example 5. Various relations exist between the trigonometric functions:

>> csc(x), sec(x)

1 1
------, ------
sin(x) cos(x)

The function expand rewrites all trigonometric functions in terms of sin and
cos:

>> expand(tan(x)), expand(cot(x))

sin(x) cos(x)
------, ------
cos(x) sin(x)

Use rewrite to obtain a representation in terms of a specific target function:

>> rewrite(tan(x)*exp(2*I*x), sincos), rewrite(sin(x), cot)

930

/ x \
2 cot| - |

sin(x) (cos(2 x) + I sin(2 x)) \ 2 /
------------------------------, -------------

cos(x) / x \2
cot| - | + 1

\ 2 /

Example 6. The inverse functions are implemented by arcsin, arccos etc.:

>> sin(arcsin(x)), sin(arccos(x)), cos(arctan(x))

2 1/2 1
x, (1 - x) , -----------

2 1/2
(x + 1)

Note that arcsin(sin(x)) does not necessarily yield x, because arcsin pro-
duces values with real parts in the interval [−π/2, π/2]:

>> arcsin(sin(3)), arcsin(sin(1.6 + I))

PI - 3, 1.541592654 - 1.0 I

Example 7. Various system functions such as diff, float, limit, or series
handle expressions involving the trigonometric functions:

>> diff(sin(x^2), x), float(sin(3)*cot(5 + I))

2
2 x cos(x), - 0.01668502608 - 0.1112351327 I

>> limit(x*sin(x)/tan(x^2), x = 0)

1

>> series((tan(sin(x)) - sin(tan(x)))/sin(x^7), x = 0)

2 4
29 x 1913 x 6

1/30 + ----- + ------- + O(x)
756 75600

931

Changes:

A floating point intervals are handled

A diff(cot(x), x) now returns -cot(x)^2 - 1 instead of -1/sin(x)^2.

sinh, cosh, tanh, csch, sech, coth – the hyperbolic functions

sinh(x) represents the hyperbolic sine function.

cosh(x) represents the hyperbolic cosine function.

tanh(x) represents the hyperbolic tangent function sinh(x)/cosh(x).

csch(x) represents the hyperbolic cosecant function 1/sinh(x).

sech(x) represents the hyperbolic secant function 1/cosh(x).

coth(x) represents the hyperbolic cotangent function cosh(x)/sinh(x).

Call(s):

A sinh(x)

A cosh(x)

A tanh(x)

A csch(x)

A sech(x)

A coth(x)

Parameters:

x — an arithmetical expression or a floating point interval

Return Value: an arithmetical expression or a floating point interval

Overloadable by: x

Side Effects: When called with a floating point argument, the functions are
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: arcsinh, arccosh, arctanh, arccsch, arcsech,
arccoth

932

Details:

A Theses functions are defined for complex arguments.

A Floating point values are returned for floating point arguments. Floating
point intervals are returned for floating point interval arguments. Une-
valuated function calls are returned for most exact arguments.

A Arguments that are integer multiples of i π/2 lead to simplified results.
If the argument involves a negative numerical factor of Type::Real, then
symmetry relations are used to make this factor positive. Cf. example 2.

A The special values

sinh(0) = 0, sinh(±infinity) = ±infinity,
cosh(0) = 1, cosh(±infinity) = infinity,

tanh(0) = 0, tanh(±infinity) = ±1,
coth(±infinity) = ±1
are implemented.

A The functions expand and combine implement the addition theorems for
the hyperbolic functions. Cf. example 3.

A sech(x) and csch(x) are rewritten as 1/cosh(x) and 1/sinh(x), re-
spectively. Use expand or rewrite to rewrite expressions involving tanh
and coth in terms of sinh and cosh. Cf. example 4.

A The inverse functions are implemented by arcsin, arccos, arctan, arccsc,
arcsec, and arccot, respectively. Cf. example 5.

A The float attributes are kernel functions, i.e., floating point evaluation is
fast.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> sinh(I*PI), cosh(1), tanh(5 + I), csch(PI), sech(1/11), coth(8)

1 1
0, cosh(1), tanh(5 + I), --------, ----------, coth(8)

sinh(PI) cosh(1/11)

>> sinh(x), cosh(x + I*PI), tanh(x^2 - 4)

2
sinh(x), cosh(x + I PI), tanh(x - 4)

Floating point values are computed for floating point arguments:

>> sinh(123.4), cosh(5.6 + 7.8*I), coth(1.0/10^20)

933

1.953930316e53, 7.295585032 + 135.0143985 I, 1.0e20

For floating point intervals, intervals enclosing the image are calculated:

>> cosh(-1 ... 1), tanh(-1 ... 1)

1.0 ... 1.543080635, -0.7615941560 ... 0.7615941560

For functions with discontinuities, evaluation over an interval may result in a
union of intervals:

>> coth(-1 ... 1)

RD_NINF ... -1.313035285 union 1.313035285 ... RD_INF

Example 2. Simplifications are implemented for arguments that are integer
multiples of i π/2:

>> sinh(I*PI/2), cosh(40*I*PI), tanh(-10^100*I*PI),
coth(-17/2*I*PI)

I, 1, 0, 0

Negative real numerical factors in the argument are rewritten via symmetry
relations:

>> sinh(-5), cosh(-3/2*x), tanh(-x*PI/12), coth(-12/17*x*y*PI)

/ 3 x \ / x PI \ / 12 x y PI \
-sinh(5), cosh| --- |, - tanh| ---- |, - coth| --------- |

\ 2 / \ 12 / \ 17 /

Example 3. The expand function implements the addition theorems:

>> expand(sinh(x + PI*I)), expand(cosh(x + y))

-sinh(x), cosh(x) cosh(y) + sinh(x) sinh(y)

The combine function uses these theorems in the other direction, trying to
rewrite products of hyperbolic functions:

>> combine(sinh(x)*sinh(y), sinhcosh)

cosh(x + y) cosh(x - y)
----------- - -----------

2 2

934

Example 4. Various relations exist between the hyperbolic functions:

>> csch(x), sech(x)

1 1
-------, -------
sinh(x) cosh(x)

The function expand rewrites all functions in terms of sinh and cosh:

>> expand(tanh(x)), expand(coth(x))

sinh(x) cosh(x)
-------, -------
cosh(x) sinh(x)

Use rewrite to obtain a representation in terms of a specific target function:

>> rewrite(tanh(x)*exp(2*x), sinhcosh), rewrite(sinh(x), tanh)

/ x \
2 tanh| - |

sinh(x) (cosh(2 x) + sinh(2 x)) \ 2 /
-------------------------------, --------------

cosh(x) / x \2
1 - tanh| - |

\ 2 /

>> rewrite(sinh(x)*coth(y), exp), rewrite(exp(x), coth)

2 / exp(x) exp(-x) \ / x \
(exp(y) + 1) | ------ - ------- | coth| - | + 1

\ 2 2 / \ 2 /
----------------------------------, -------------

2 / x \
exp(y) - 1 coth| - | - 1

\ 2 /

Example 5. The inverse functions are implemented by arcsinh, arccosh etc.:

>> sinh(arcsinh(x)), sinh(arccosh(x)), cosh(arctanh(x))

2 1/2 1
x, (x - 1) , ---------------------

1/2 1/2
(x + 1) (1 - x)

Note that arcsinh(sinh(x)) does not necessarily yield x, because arcsinh
produces values with imaginary parts in the interval [−π/2, π/2]:

935

>> arcsinh(sinh(3)), arcsinh(sinh(1.6 + 100*I))

3, 1.6 - 0.5309649149 I

Example 6. Various system functions such as diff, float, limit, or series
handle expressions involving the hyperbolic functions:

>> diff(sinh(x^2), x), float(sinh(3)*coth(5 + I))

2
2 x cosh(x), 10.01749636 - 0.0008270853591 I

>> limit(x*sinh(x)/tanh(x^2), x = 0)

1

>> series((tanh(sinh(x)) - sinh(tanh(x)))/sinh(x^7), x = 0)

2 4
29 x 1913 x 6

- 1/30 + ----- - ------- + O(x)
756 75600

>> series(tanh(x), x = infinity)

2 2 2 2 2
1 - ------- + ------- - ------- + ------- - -------- +

2 4 6 8 10
exp(x) exp(x) exp(x) exp(x) exp(x)

/ 1 \
O| -------- |
| 12 |
\ exp(x) /

Changes:

A Floating point intervals are handled.

A diff(tanh(x), x) now returns tanh(x)^2 + 1 instead of 1/cosh(x)^2.

slot – method or entry of a domain or a function environment

slot(d, "n") returns the value of the slot named "n" of the object d.

slot(d, "n", v) creates or changes the slot "n". The value v is assigned to
the slot.

936

Call(s):

A d :: n

A slot(d, "n")

A d :: n := v

A slot(d, "n", v)

A object :: dom

A slot(object, "dom ")

Parameters:
d — a domain or a function environment
n — the name of the slot: an identifier
v — the new value of the slot: an arbitrary MuPAD object
object — an arbitrary MuPAD object

Return Value: slot(d, "n") returns the value of the slot; slot(d, "n",
v) returns the object d with the added or changed slot; slot(object, "dom ")
returns the domain type of the object.

Overloadable by: d

Related Functions: DOM_DOMAIN, DOM_FUNC_ENV, domain, frame, funcenv,
newDomain

Details:

A The function slot is used for defining methods and entries of data types
(domains) or for defining attributes of function environments. Such meth-
ods, entries, or attributes are called slots. They allow to overload system
functions by user defined domains and function environments. See the
“Background” section below for further information.

A The function slot is also used for accessing the value of an identifier in
a frame. The values of identifiers in frames can be interpreted as slots of
frames with the corresponding names. Complete information concerning
the access of values of identifiers in frames can be found on the frame
help page.

A Any MuPAD object has a special slot named "dom ". It holds the domain
the object belongs to: slot(object, "dom ") is equivalent to domtype(object).
The value of this special slot cannot be changed. Cf. example 1.

A Apart from the special slot "dom ", only domains and function environ-
ments may have further slots.

The call slot(d, "n") is equivalent to d::n. It returns the value of the
slot.

937

The call slot(d, "n", v) returns the object d with an added or changed
slot "n" bearing the value v.

A For a function environment d, the call slot(d, "n", v) returns a copy
of d with the changed slot "n". The function environment d itself is not
changed! Use the assignment d := slot(d, "n", v) to modify d. Cf.
example 2.

For a domain d, however, the call slot(d, "n", v) modifies d as a side-
effect! This is the so-called “reference effect” of domains. Cf. example 3.

A If a non-existing slot is accessed, FAIL is returned as the value of the slot.
Cf. example 4.

A The ::-operator is a shorthand notation to access a slot.

The expression d::n, when not appearing on the left hand side of an
assignment, is equivalent to slot(d, "n").

The command d::n := v assigns the value v to the slot "n" of d. This
assignment is almost equivalent to changing or creating a slot via d:=
slot(d, "n", v). Note the following subtle semantical difference between
these assignments: in d::n := v, the identifier d is evaluated with level
1, i.e., the slot "n" is attached to the value of d. In slot(d, "n", v),
the identifier d is fully evaluated. See example 6.

A With delete d::n or delete slot(d,"n"), the slot "n" of the function
environment or the domain d is deleted. Cf. example 5. The special slot
"dom" cannot be deleted.

A The first argument of slot is not flattened. This allows to access the slots
of expression sequences and null() objects. Cf. example 7.

A For domains, there is a special mechanism to create new values for slots
on demand. If a non existing slot is read, the method "make_slot" of the
domain is called in order to create the slot. If such a method does not
exist, FAIL is returned. Cf. example 8.

A slot is a function of the system kernel.

Example 1. Every object has the slot "dom ":

>> slot(x, "dom") = domtype(x),
slot(45, "dom") = domtype(45),
slot(sin, "dom") = domtype(sin)

DOM_IDENT = DOM_IDENT, DOM_INT = DOM_INT,

DOM_FUNC_ENV = DOM_FUNC_ENV

938

Example 2. Here we access the existing "float" slot of the function envir-
onment sin implementing the sine function. The float slot is again a function
environment and may be called like any MuPAD function. Note, however, the
different functionality: in contrast to sin, the float slot always tries to compute
a floating point approximation:

>> s := slot(sin, "float"): s(1) , sin(1)

0.8414709848, sin(1)

With the following command, s becomes the function environment sin apart
from a changed "float" slot. The slot call has no effect on the original sin
function because slot returns a copy of the function environment:

>> s := slot(sin, "float", x -> float(x - x^3/3!)):
s(PI/3) = sin(PI/3), s::float(1) <> sin::float(1)

1/2 1/2
3 3
---- = ----, 0.8333333333 <> 0.8414709848
2 2

>> delete s:

Example 3. If you are using the slot function to change slot entries in a
domain, you must be aware that you are modifying the domain. This is in
contrast to changing slots of function environments (see example 2):

>> old_one := slot(Dom::Float, "one")

1.0

>> newDomFloat := slot(Dom::Float, "one", 1):
slot(newDomFloat, "one"), slot(Dom::Float, "one")

1, 1

We restore the original state:

>> slot(Dom::Float, "one", old_one): slot(Dom::Float, "one")

1.0

>> delete old_one, newDomFloat:

939

Example 4. The function environment sin does not contain a "sign" slot.
So accessing this slot yields FAIL:

>> slot(sin, "sign"), sin::sign

FAIL, FAIL

Example 5. We define a function environment for a function computing the
logarithm to the base 10:

>> log10 := funcenv(x -> log(10, x)):

If the function info is to give some information about log10, we have to define
the "info" slot for this function. For function environments, slot returns a
copy of the original object, so the result of the slot call has to be assigned to
log10:

>> log10 := slot(log10, "info",
"log10 -- the logarithm to the base 10"):

>> info(log10)

log10 -- the logarithm to the base 10

The delete statement is used for deleting a slot:

>> delete log10::info: info(log10)

log10 -- a library procedure [try ?log10 for help]

It is not possible to delete the special slot "dom":

>> delete log10::dom

Error: Illegal argument [delete]

>> delete log10:

Example 6. Here we demonstrate the subtle difference between the slot func-
tion and the use of the ::-operator in assignments. The following call adds a
"xyz" slot to the domain DOM_INT of integer numbers:

>> delete b: d := b: b := DOM_INT: slot(d, "xyz", 42):

The slot "xyz" of DOM_INT is changed, because d is fully evaluated with the
result DOM_INT. Hence, the slot DOM_INT::xyz is set to 42:

940

>> slot(d, "xyz") , slot(DOM_INT, "xyz")

42, 42

Here is the result when using the ::-operator: d is only evaluated with level 1,
i.e., it is evaluated to the identifier b. However, there is no slot b::xyz, and an
error occurs:

>> delete b: d := b: b := DOM_INT: d::xyz := 42

Error: Unknown slot "d::xyz" [slot]

>> delete b, d:

Example 7. The first argument of slot is not flattened. This allows access
to the slots of expression sequences and null() objects:

>> slot((a, b), "dom"), slot(null(), "dom")

DOM_EXPR, DOM_NULL

Example 8. We give an example for the use of the function make_slot. The
element undefined of the domain stdlib::Undefined represents an undefined
value. Any function f should yield f(undefined) = undefined. Inside the
implementation of stdlib::Undefined, we find:

>> undef := newDomain("stdlib::Undefined"):
undefined := new(undef):
undef::func_call := proc() begin undefined end_proc;
undef::make_slot := undef::func_call:

The following mechanism takes place automatically for a function f that is over-
loadable by its first argument: in the call f(undefined), it is checked whether
the slot undef::f exists. If this is not the case, the make_slot function creates
this slot “on the fly”, producing the value undefined. Thus, via overloading,
f(undefined) returns the value undefined.

Example 9. The following example is rather advanced and technical. It
demonstrates overloading of the slot function to implement slot access and
slot assignments for other objects than domains (DOM_DOMAIN) or function en-
vironments (DOM_FUNC_ENV). The following example defines the slots "numer"
and "denom" for rational numbers. The domain DOM_RAT of such numbers does
not have slots "numer" and "denom":

>> domtype(3/4)

941

DOM_RAT

>> slot(3/4, "numer");

Error: Unknown slot "(3/4)::numer" [slot]

We can change DOM_RAT, however. For this, we have to unprotect DOM_RAT
temporarily:

>> unprotect(DOM_RAT):
_assign(DOM_RAT::slot,
proc(r : DOM_RAT, n : DOM_STRING, v=null(): DOM_INT)

local i : DOM_INT;
begin

i := contains(["numer", "denom"], n);
if i = 0 then

error("Unknown slot \"".expr2text(r)."::".n."\"")
end;
if args(0) = 3 then

subsop(r, i = v)
else

op(r, i)
end

end_proc):

Now, we can access the operands of rational numbers, which are the numerator
and the denominator respectively, via our new slots:

>> slot(3/4, "numer"), (3/4)::numer,
slot(3/4, "denom"), (3/4)::denom

3, 3, 4, 4

>> a := 3/4: slot(a, "numer", 7)

7/4

>> a::numer := 11: a

11/4

We restore the original behaviour:

>> delete DOM_RAT::slot, a: protect(DOM_RAT, Error):

942

Background:

A Overloading of system functions by domain elements is typically imple-
mented as follows. If a library function f, say, is to be overloadable by
user defined data types, a code segment as indicated by the following
lines is appropriate. It tests whether the domain x::dom of the argument
x contains a method f. If this is the case, this domain method is called:

f:= proc(x)
begin
// check if f is overloaded by x
if x::dom::f <> FAIL then

// use the method of the domain of x
return(x::dom::f(args()))

else
// execute the code for the function f

endif
end_proc:

A By overloading the function slot, slot access and slot assignment can be
implemented for other objects than domains or function environments.
Cf. example 9.

A In principle, the name n of a slot may be an arbitrary MuPAD object.
Note, however, that the ::-operator cannot access slots defined by slot(d,
n, v) if the the name n is not a string.

A Strings may be used in conjunction with the ::-operator: the calls d::"n"
and d::n are equivalent.

Changes:

A slot is now also used to access the value of an identifier in a frame.

solve – solve equations and inequalities

solve(eq, x) returns the set of all complex solutions of an equation or in-
equality eq with respect to x.

solve(system, vars) solves a system of equations for the variables vars.

solve(eq, vars) is equivalent to solve([eq], vars).

solve(system, x) is equivalent to solve(system, [x]).

solve(eq) without second argument is equivalent to solve(eq, S) where S is
the set of all indeterminates in eq. The same holds for solve(system).

943

Call(s):

A solve(eq, x <, options>)

A solve(eq, vars <, options>)

A solve(eq <, options>)

A solve(system, x <, options>)

A solve(system, vars <, options>)

A solve(system <, options>)

A solve(ODE)

A solve(REC)

Parameters:
eq — a single equation or an inequality of type "_equal",

"_less", "_leequal", or "_unequal". Also an arithmetical
expression is accepted and regarded as an equation with
vanishing right hand side.

x — the indeterminate to solve for: an identifier or an indexed
identifier

vars — a non-empty set or list of indeterminates to solve for
system — a set, list, array, or table of equations and/or arithmetical

expressions. Expressions are regarded as equations with
vanishing right hand side.

ODE — an ordinary differential equation: an object of type ode.
REC — a recurrence equation: an object of type rec.

944

Options:

MaxDegree = n — do not use explicit formulas involving
radicals to solve polynomial equations of
degree larger than n. The default value of
the positive integer n is 2.

BackSubstitution = b — do or do not perform back substitution
when solving algebraic systems; b must be
TRUE or FALSE. The default value is TRUE.

Multiple — returns the solution set as an object of
type Dom::Multiset, indicating the
multiplicity of polynomial roots. This
option is only allowed for polynomial
equations and polynomial expressions.

PrincipalValue — return only one solution as a set with one
element

Domain = d — return the set of all solutions that are
elements of d. d must represent a subset of
the complex numbers (for example, the
reals or the integers) or must be a domain
over which polynomials can be factored,
e.g., a finite field. In the latter case, this
option is only allowed for polynomial
equations. If this option is missing, all
solutions in the set of complex numbers
are returned.

IgnoreProperties — return also solutions that are not
consistent with the properties of the
variable x.

IgnoreSpecialCases — If a case analysis becomes necessary,
ignore all cases which suppose some
parameter in the equation to be an
element of a fixed finite set.

DontRewriteBySystem — Do not try to solve an equation by
transforming it into an equivalent system
of equations. This option decreases the
running time, at the cost of not being able
to solve certain equations.

Return Value: solve(eq, x) returns an object that represents a mathem-
atical set (see “Details”) . A call to solve returns a set of lists if one of the
arguments is a set or a list, or if the first argument is an array or a table, or
if the second argument is missing. Each list consists of equations, where the
left hand side contains a variable to be solved for. solve may also return an
expression of the form x in S, where x is one of the variables to solve for, and
S is some set.

Overloadable by: eq

945

Side Effects: solve reacts to properties of identifiers.

Related Functions: linsolve, numeric::linsolve, numeric::solve,
RootOf, solvers

Details:

A The solve routine provides a unified interface to a variety of specialized
solvers. See ?solvers for an overview.

A If no indeterminates are specified, the set of all indeterminates appearing
in eq (or system, respectively) is used. Indeterminates are identifiers
(except mathematical constants such as PI, EULER etc.) and indexed
identifiers. Indeterminates that appear only inside function names or
indices are discarded. Cf. example 8.

A If a list of indeterminates to solve for is specified, the components of the
resulting solution vectors are sorted according to the specified ordering of
the indeterminates. If indeterminates are specified by a set, some ordering
of the indeterminates is chosen internally.

A The sets returned by solve can be of many different types (an over-
view is given in the “Background” section below). You can never foresee
what type of set will be returned. However, they have a unified inter-
face of functions that may be applied to all of them. These functions
include the set-theoretic operations intersect, union, and minus. Cf. ex-
ample 2. Further, pointwise defined arithmetical operations +, * etc. can
be applied. The function solvelib::getElement serves for extracting
elements. The function solvelib::isFinite tests whether the solution
set returned by solve is finite.

A solve(eq, x) returns only those solutions that are consistent with the
properties of x. Cf. example 9. When solving a system of equations
for several variables, the properties of the variables to solve for may, but
need not be taken into account. If the option IgnoreProperties is given,
properties are not used.

A For inequalities, it is assumed that the variable(s) to solve for (but not
necessarily the free parameters) are real.

A An inequality a<=b or a<b can only hold if both sides are real. In partic-
ular, a=b does not imply a<=b.

A Since solve may be overloaded, special domains for equations of special
kinds can be written. The MuPAD library itself uses this feature in the
case of differential equations (see ode) and recurrence equations (see rec).
Thus, solve provides an interface for solving differential and recurrence
equations. See the helppages of ode and rec for examples.

946

A The command float(hold(solve)(equations, indeterminates <, options>))
yields a numerical solution. It is equivalent to the call numeric::solve(equations,
indeterminates <, options>). See the help page of numeric::solve
for the available options. In particular, starting points and search ranges
for the numerical search can be specified. Note that for non-polynomial
equations, only a single numerical solution is searched for. Cf. example 12.

In contrast to solve, numeric::solve does not react to properties
of identifiers set via assume. !

Option <Multiple>:

A With this option, solve returns a set of type Dom::Multiset.

A Trying to solve the zero polynomial with option Multiple causes an error
since infinite multisets cannot be represented in MuPAD .

A If the solution is of type RootOf, this option is ignored.

Option <PrincipalValue>:

A With this option, only one solution is returned even if several solutions
exist. If the equation does not have a solution, an empty set is returned.

A If no single element of the set of solutions can be found, the result is a
symbolic call of solve. In particular, this is the case if the set of solutions
is piecewise defined and no element is common to all cases.

A This option may also be used, when equations are to be solved for sev-
eral variables. In this case, a set containing only one list (representing a
solution vector) is returned.

Option <MaxDegree = n>:

A This option enables/disables the use of explicit formulas for the zeroes of
polynomials; other methods such as factorization are always applied. For
polynomial equations, the given maximal degree n refers to the factors of
the polynmials and not to the input polynomial.

A For polynomials of degree larger than 4, no explicit formulas exist. It
makes no difference whether MaxDegree is set to 4 or to a higher value.

947

Option <BackSubstitution = b>:

A An object of type "RootOf" is never substituted into a variable. Hence,
even if BackSubstitution is set to TRUE, the solution for one variable
may be the set of roots of a polynomial depending on another variable.

Option <Domain = d>:

A Equations and systems in more than one variable cannot be solved over
domains.

A Two kinds of Domains d are possible: subsets of C_ and domains where
polynomials can be factored (for polynomial equations only).

A A subset of C_ can be any kind of set returned by solve (see the “Back-
ground”section). Instead of C_, R_, Q_, and Z_, the corresponding domains
of the domains package Dom::Complex, Dom::Real, Dom::Rational, and
Dom::Integer may be used.

A In addition, domains d may overload this part of the solver as follows:
equations and systems are solved by the "domsolve" method; if that one
does not exist, equations are solved by the "solve_eq" method, while sys-
tems are not allowed as arguments in this case; finally, if that method also
does not exist, polynomials are solved by the "solve_poly" method, while
any first argument to solve that cannot be converted to a polynomial is
illegal. The "domsolve" method is called domsolve(eq, var, options),
where eq and var have the same meaning as for solve, and options is a
table of options. The methods "solve_eq" and "solve_poly" have the
same calling syntax, but with eq being an arithmetical expression or a
polynomial, respectively, in this cases.

Option <IgnoreSpecialCases>:

A This option makes solve apply some kind of heuristics in order to reduce
the number of branches in piecewise defined objects: all equalities are
assumed to be FALSE, except those that the property mechanism can prove
to be TRUE; for example, all denominators that are not provably zero are
assumed to be nonzero. This option tends to decrease the number of
piecewise defined objects in results considerably.

948

Option <DontRewriteBySystem>:

A Rewriting by an equivalent system is mainly used for solving equations
with nested roots. Since solving the resulting system tends to take much
time, this option may be used to make the solver less powerful but quicker.

Example 1. Usually, a set of type DOM_SET is returned if an equation has a
finite number of solutions:

>> solve(x^4 - 5*x^2 + 6*x = 2, x)

1/2 1/2
{1, 3 - 1, - 3 - 1}

Example 2. The solution set may also be an infinite discrete set:

>> S := solve(sin(x*PI/7) = 0, x)

{ 7*X2 | X2 in Z_ }

To pick out the solutions in a certain finite interval, just intersect the solution
set with the interval:

>> S intersect Dom::Interval(-22, 22)

{-21, -14, -7, 0, 7, 14, 21}

>> delete S:

Example 3. Sometimes, a call to simplify or normal may be necessary to
obtain a simple result.

>> solve(cos(PI*x) = 0)

x in { 1/PI*(1/2*PI + X4*PI) | X4 in Z_ }

>> normal(%)

x in { X4 + 1/2 | X4 in Z_ }

949

Example 4. The solution set of an inequality is usually an interval or a union
of intervals:

>> solve(x^2 > 5, x)

]5^(1/2), infinity[union]-infinity, -5^(1/2)[

Example 5. For all but two numbers x, their square does not equal 7:

>> solve(x^2 <> 7, x)

1/2 1/2
C_ minus {7 , - 7 }

Example 6. In some cases, the solution is a union of an infinite family of sets.
Such infinite unions are represented using solvelib::Union:

>> solve(x^x = 3, x)

solvelib::Union(solve(x ln(x) = 2 I X5 PI + ln(3), x), X5, Z_)

Example 7. Piecewise defined objects occur if an equation contains symbolic
parameters in addition to the variable to solve for. The well-known solution
formula for the quadratic equation ax2 + bx + c = 0 is only valid for a <> 0;
otherwise the equation reduces to bx = −c, where again two cases b <> 0 and
b = 0 must be treated separately. Finally, if b = 0, the equation c = 0 may be
true — then, every x is a solution — or false — then, no x is a solution.

>> S := solve(a*x^2 + b*x + c, x)

/
|
|
|

piecewise| C_ if a = 0 and b = 0 and c = 0,
\

{} if a = 0 and b = 0 and c <> 0,

{ 2 1/2
{ b (- 4 a c + b)
{ - - - -----------------

{ c } { 2 2

950

{ - - } if a = 0 and b <> 0, { -----------------------,
{ b } { a

2 1/2 } \
b (- 4 a c + b) } |

- - + ----------------- } |
2 2 } |

----------------------- } if a <> 0 |
a } /

You might want to make additional assumptions and re-evaluate the result:

>> assume(a <> 0): S

{ 2 1/2 2 1/2 }
{ b (b - 4 a c) (b - 4 a c) b }
{ - - - --------------- --------------- - - }
{ 2 2 2 2 }
{ ---------------------, ------------------- }
{ a a }

>> delete S: unassume(a):

Example 8. If no indeterminates are specified, the set of all indeterminates
in the equation is used:

>> solve(x^2 = 3)

1/2 1/2
{[x = 3], [x = - 3]}

Indeterminates are only searched for outside operators and indices. Hence,
neither f nor y is an indeterminate of the following equation:

>> solve(f(x[y]) = 7)

solve({f(x[y]) = 7}, [x[y]])

Example 9. If the unknown to solve carries a mathematical property, only
the solutions compatible with that property are returned. In the following, x is
assumed to be a positive number (implying that x is real):

>> assume(x, Type::Positive): solve(x^4 = 1, x)

{1}

951

Without a property, all complex solutions are returned:

>> unassume(x): solve(x^4 = 1, x)

{-1, 1, -I, I}

Example 10. Using the option Multiple , the multiplicity of zeroes of polyno-
mials becomes visible. Below, we see that x = −1 is a double zero of x3+2x2+x,
while x = 0 has only multiplicity one:

>> solve(x^3 + 2*x^2 + x, x, Multiple)

{[0, 1], [-1, 2]}

Example 11. If BackSubstitution is set to FALSE, the solution for a variable
y may contain another variable x to solve for, but only if x appears on the right
of y in the list of indeterminates.

>> solve({x^2 + y = 1, x - y = 2}, [y, x], BackSubstitution = FALSE)

{ -- 1/2 --
{ | 13 |
{ | y = x - 2, x = - ----- - 1/2 |,
{ -- 2 --

-- 1/2 -- }
| 13 | }
| y = x - 2, x = ----- - 1/2 | }
-- 2 -- }

>> solve({x^2 + y = 1, x - y = 2}, {x, y})

{ -- 1/2 1/2 --
{ | 13 13 |
{ | x = - ----- - 1/2, y = - ----- - 5/2 |,
{ -- 2 2 --

-- 1/2 1/2 -- }
| 13 13 | }
| x = ----- - 1/2, y = ----- - 5/2 | }
-- 2 2 -- }

Although BackSubstitution is switched on in the following example, the solu-
tion for y still depends on x because variables are never substituted by objects
of type "RootOf".

952

>> solve({x^2 + y = 1, x - y = 2}, [y, x], MaxDegree = 1)

2
{[y = x - 2, x = RootOf(X7 + X7 - 3, X7)]}

Example 12. MuPAD’s solver does not find an exact symbolic solution of the
following equation:

>> solve(2^x = x^2, x)

x 2
solve(2 - x = 0, x)

Applying float invokes the numerical solver:

>> float(%)

{-0.766664696}

Avoiding the overhead of the symbolic solver, the numerical solver is called
directly via the following command:

>> float(hold(solve)(2^x - x^2, x))

{-0.766664696}

When applied to a non-polynomial equation, the numerical solver returns at
most one solution, even if there are more. Search ranges can be specified to
find other solutions:

>> float(hold(solve)(2^x - x^2, x = 0..3))

{2.0}

As an alternative to float(hold(solve)(...)), the numerical solver numeric::solve
can be called directly:

>> numeric::solve(2^x - x^2, x = 3..6)

{4.0}

For polynomial equations, the numerical solver returns all complex solutions:

>> solve(x^4 + x^3 = 3*x, x)

2 3
{0} union RootOf(X8 + X8 - 3, X8)

>> float(%)

953

{0.0} union {- 1.087279705 + 1.171312111 I,

- 1.087279705 - 1.171312111 I, 1.17455941}

>> eval(%)

{1.17455941, 0.0, - 1.087279705 + 1.171312111 I,

- 1.087279705 - 1.171312111 I}

In general, we recommend not to use intermediate symbolic results if numerical
approximations are desired. Note that symbolic preprocessing may be time
consuming, and the numerical evaluation of symbolic results may be numerically
unstable. A direct call to the numerical solver numeric::solve avoids such
problems.

Background:

A The following types of sets may be returned by solve:

• finite sets (type DOM_SET);

• symbolic calls to the function solve;

• zero sets of polynomials (type RootOf). solve returns this type if
it is not able or, by virtue of the option MaxDegree, not allowed to
solve the equation explicitly in terms of radicals;

• set-theoretic expressions (types "_union", "_intersect", and "_minus");

• symbolic calls of solvelib::Union. These represent unions over
parametrized systems of sets;

• the sets C,R,Q, and Z (type solvelib::BasicSet);

• intervals (type Dom::Interval);

• image sets of functions (type Dom::ImageSet);

• piecewise defined objects, where every branch defines some set of
one of the mentioned types (type piecewise).

Changes:

A New options DontRewriteBySystem and IgnoreProperties have been
introduced.

A solve now reacts to "solve_eq" and "solve_poly" slots of domains.

954

solvers – an overview of MuPAD’s solvers

Besides the general solve command, MuPAD provides a variety of specialized
solvers for special types of equations. The specialized solvers only handle a
subclass of problems, but are more efficient than the general solve.

Call(s):

A detools::pdesolve(..)

A linalg::matlinsolve(..)

A linalg::matlinsolveLU(..)

A linalg::vandermondeSolve(..)

A linsolve(..)

A numeric::linsolve(..)

A numeric::matlinsolve(..)

A numeric::fsolve(..)

A numeric::odesolve(..)

A numeric::odesolve2(..)

A numeric::odesolveGeometric(..)

A numeric::polyroots(..)

A numeric::polysysroots(..)

A numeric::realroot(..)

A numeric::realroots(..)

A numeric::solve(..)

A numlib::mroots(..)

A numlib::lincongruence(..)

A numlib::msqrts(..)

A polylib::realroots(..)

A series(..)

A solve(..)

Details:

A The following types of equations can be solved:

955

type of equation available solvers
system of linear equations solve

linsolve
linalg::matlinsolve
linalg::matlinsolveLU
linalg::vandermondeSolve
numeric::linsolve
numeric::matlinsolve
numeric::solve

univariate polynomial equation solve
polylib::realroots
numeric::solve
numeric::polyroots

bivariate polynomial equation solve
series

system of polynomial equations solve
numeric::solve
numeric::polysysroots

arbitrary univariate equation solve
numeric::solve
numeric::realroot
numeric::realroots

system of arbitrary equations solve
numeric::solve
numeric::fsolve

inequalities solve
system of ordinary differential solve
equations numeric::odesolve

numeric::odesolve2
numeric::odesolveGeometric

recurrence equation solve
partial differential equations detools::pdesolve
congruence numlib::lincongruence

numlib::mroots
numlib::msqrts

A detools::pdesolve allows to solve partial differential equations. This
first version of the solver is not yet very powerful; essentially only the
method of characteristics has been implemented for quasi-linear first order
equations.

A linalg::vandermondeSolve is the recommended solver for systems of
linear equations with a coefficient matrix of Vandermonde type.

A linalg::matlinsolve solves systems of linear equations given by a coef-
ficient matrix. The coefficient domain may be an arbitrary field.

For coefficients of basic type such as expressions, integers, rationals, float-

956

ing point numbers etc. we recommend to use numeric::matlinsolve in-
stead.

A linalg::matlinsolveLU solves systems of linear equations over arbitrary
fields with a coefficient matrix given by an LU-decomposition.

A linsolve is the recommended solver for systems of linear equations over
arbitrary non-elementary coefficient domains. If the coefficients are of
basic type such as expressions, integers, rationals, floating point numbers
etc., then we recommend to use numeric::linsolve instead.

A numeric::linsolve is a fast numerical solver for systems of linear equa-
tions. It is also capable of computing exact symbolic solutions, if the
coefficients are MuPAD expressions. If the solution is to be computed
over some non-basic coefficient domain, then linsolve must be used.

A numeric::matlinsolve is a fast numerical solver for systems of linear
equations given by a coefficient matrix. It is also capable of computing
exact symbolic solutions, if the coefficients are MuPAD expressions. If the
solution is to be computed over some non-basic coefficient domain, then
linalg::matlinsolve must be used.

A numeric::fsolve is the general numerical solver for systems of arbitrary
equations. It returns only one solution.

A numeric::odesolve is the numerical solver for initial value problems of
systems of ordinary differential equations.

A numeric::odesolve2 encapsulates numeric::odesolve in a function. This
provides a convenient interface to numeric::odesolve.

A numeric::odesolveGeometric is a specialized solver for ODEs on homo-
geneous manifolds embedded in a matrix space.

A numeric::polyroots computes numerical approximations of all roots of
a single univariate polynomial.

A numeric::polysysroots computes all roots of a system of multivariate
polynomial equations. This is a hybrid algorithm using symbolic Gröbner
techniques and numerical post-processing.

A numeric::realroot computes a single real root of an arbitrary real equa-
tion.

A numeric::realroots isolates all real roots of a single arbitrary real equa-
tion via interval arithmethic.

A numeric::solve provides a common interface to the solvers
numeric::fsolve, numeric::linsolve, numeric::polyroots, and
numeric::polysysroots. It determines the type of the input equa-
tion(s) and calls one of these routines.

957

A numlib::lincongruence solves linear congruences.

A numlib::mroots solves polynomial congruences.

A numlib::msqrts computes the modular square roots of a number.

A polylib::realroots provides exact isolation of all real roots of a single
univariate real polynomial.

A series(RootOf(p, y), x = x0) computes all series solutions around x =
x0 of the polynomial equation p(y) = 0.

A solve is the general solver for equations and systems of equations as well
as inequalities; it also provides an interface to solving ordinary differential
equations (see ode) and recursion relations (see rec).

The library solvelib provides various utilities for handling the output of
solve.

sort – sort a list

sort(list) returns a sorted copy of the list.

Call(s):

A sort(list <, f>)

Parameters:
list — a list of arbitrary MuPAD objects
f — a procedure defining the ordering

Return Value: a list.

Overloadable by: list

Related Functions: sysorder

Details:

A sort sorts the list in “ascending order”.

A If no procedure f is specified by the user, lists are sorted as follows:

• A list with real numbers of syntactical type Type::Real is sorted
numerically.

• A list of character strings is sorted lexicographically.

958

• In all other cases, the list is sorted according to the system’s internal
order, i.e., sort(list) is equivalent to sort(list, sysorder).

The internal order is a well-ordering. It is not session dependent, but
may differ between different MuPAD versions. No special features
of the internal sorting mechanism should be assumed by the user.
Such sorting may be useful to produce a unique representation of
lists.

A When strings are compared, capital letters are sorted in front of
small letters. E.g., "Z" is smaller than "abc". !
A Sets and tables do not have a unique internal order (sysorder).

Consequently, sorting does not lead to a unique ordering, if ele-
ments of the list are sets or tables, or contain sets or tables as
(sub)operands. Cf. example 2.

!

A A procedure f may be specified to define the sorting criteria. It is used to
compare the ordering of pairs of list elements and is called in the form f(x,
y) with elements x, y from the list. It must return a Boolean expression
that can be evaluated to either TRUE or FALSE. TRUE indicates that x is to
be sorted left of y. Consequently, the elements of the ordered list L :=
sort(list, f) satisfy bool(f(L[i], L[j])) = TRUE for i < j.

If the ordering provided by f is not a well-ordering, sorting is not ’stable’
and elements with the same order may be swapped.

A The mean run time for sorting n elements is O(n log n).

A sort is a function of the system kernel.

Example 1. Real numbers of syntactical type Type::Real are sorted numer-
ically:

>> sort([4, -1, 2/3, 0.5])

[-1, 0.5, 2/3, 4]

Strings are sorted lexicographically:

>> sort(["chip", "alpha", "Zip"])

["Zip", "alpha", "chip"]

Other types of objects are sorted according to their internal ordering. This also
holds for lists with elements of different types:

>> sort([4, -1, 2/3, 0.5, "alpha"])

["alpha", -1, 4, 2/3, 0.5]

>> sort([4, -1, 2/3, 0.5, I])

[-1, 4, 2/3, I, 0.5]

959

Example 2. There is no unique internal order for sets and tables:

>> sort([{1}, {2}]) <> sort([{2}, {1}])

[{1}, {2}] <> [{2}, {1}]

>> sort([table("a" = 42), table("a" = 43)]) <>
sort([table("a" = 43), table("a" = 42)])

-- table(table(--
| "a" = 42 , "a" = 43 | <>
--)) --

-- table(table(--
| "a" = 43 , "a" = 42 |
--)) --

Example 3. The following list is sorted according to a user-defined criteron:

>> sort([-2, 1, -3, 4], (x, y) -> abs(x) < abs(y))

[1, -2, -3, 4]

Background:

A A variant of the Quicksort algorithm is used.

sparsematrix – create a sparse matrix or a sparse vector

sparsematrix(m, n, [[a11, a12, ...], [a21, a22, ...], ...]) returns
an m× n matrix of the domain type Dom::SparseMatrix().

sparsematrix(m, 1, [a1, a2, ...]) returns an m× 1 column vector of the
domain type Dom::SparseMatrix().

sparsematrix(1, n, [a1, a2, ...]) returns an 1 × n row vector of the
domain type Dom::SparseMatrix().

Call(s):

A sparsematrix(ListOfRows)

A sparsematrix(List)

A sparsematrix(Array)

960

A sparsematrix(Matrix)

A sparsematrix(m, n)

A sparsematrix(m, n, ListOfRows)

A sparsematrix(m, n, Table)

A sparsematrix(m, n, [(i1, j1) = value1, (i2, j2) = value2,
...])

A sparsematrix(m, n, List, Diagonal)

A sparsematrix(m, n, List, Banded)

A sparsematrix(m, n, f)

A sparsematrix(m, n, g, Diagonal)

A sparsematrix(1, n, List)

A sparsematrix(1, n, Table)

A sparsematrix(1, n, [j1 = value1, j2 = value2, ...])

A sparsematrix(m, 1, List)

A sparsematrix(m, 1, Table)

A sparsematrix(m, 1, [i1 = value1, i2 = value2, ...])

Parameters:
ListOfRows — a nested list of rows, each row being a list of

arithmetical expressions
List — a list of arithmetical expressions
Array — a one- or two-dimensional array
Matrix — a matrix, i.e., an object of a data type of

category Cat::Matrix
Table — a table of matrix components
m — the number of rows: a positive integer
n — the number of columns: a positive integer
f — a function or a functional expression of two

arguments
g — a function or a functional expression of one

argument
i1, i2 ... — row indices: integers between 1 and m
j1, j2 ... — column indices: integers between 1 and m
value1, value2 ... — matrix entries: arithmetical expressions

Options:

Diagonal — create a diagonal matrix
Banded — create a banded Toeplitz matrix

Return Value: a matrix of the domain type Dom::SparseMatrix().

Related Functions: array, DOM_ARRAY, Dom::Matrix, Dom::SparseMatrix,
matrix

961

Details:

A sparsematrix is equivalent to Dom::SparseMatrix().

A sparsematrix creates matrices and vectors with a sparse internal repres-
entation. A column vector is represented as an m × 1 matrix.. A row
vector is represented as a 1× n matrix.

Matrix and vector components must be arithmetical expressions (numbers
and/or symbolic expressions). If sparse matrices over special component
rings are desired, use the domain constructor Dom::SparseMatrix with a
suitable component ring.

A Arithmetical operations with sparse matrices can be performed by using
the standard arithmetical operators of MuPAD.

E.g., if A and B are two matrices defined by sparsematrix, then A + B
computes the sum and A * B computes the product of the two sparse
matrices, provided that the dimensions are appropriate.

Similarly, A^(-1) or 1/A computes the inverse of a square sparse matrix
A if it can be inverted. Otherwise, FAIL is returned.

Cf. example 1.

A Many system functions accept sparse matrices as input, such as map, subs,
has, zip, conjugate, norm or exp. Cf. example 4.

A Most of the functions in MuPAD’s linear algebra package linalg work
with sparse matrices. For example, to compute the determinant of a
square sparse matrix A, call linalg::det(A). The command linalg::gaussJordan(A)
performs Gauss-Jordan elimination on A to transform A to its reduced row
echelon form.

For numerical matrix computations, the corresponding functions of the
numeric package accept sparse matrices.

A Sparse matrix components can be extracted by the usual index operator [
], which also works for lists, arrays, and tables. The call A[i, j] extracts
the sparse matrix component in the i-th row and the j-th column.

Assignments to matrix components are performed similarly. The call A[i,
j] := c replaces the matrix component in the i-th row and the j-th
column of A by c.

If one of the indices is not in its valid range, an error message is issued.

The index operator also extracts submatrices. The call A[r1..r2, c1..c2]
creates the submatrix of A comprising the rows with the indices r1, r1 +
1, . . . , r2 and the columns with the indices c1, c1 + 1, . . . , c2 of A.

Cf. examples 3 and 5.

962

A sparsematrix(ListOfRows) creates an m × n sparse matrix with com-
ponents taken from the nested list ListOfRows, where m is the number
of inner lists of ListOfRows, and n is the maximal number of elements of
an inner list. Each inner list corresponds to a row of the matrix. Both m
and n must be non-zero.

If a row has less than n entries, the remaining entries in the corresponding
row of the sparse matrix are regarded as zero. Cf. example 7.

A sparsematrix(List) creates an m × 1 column vector with components
taken from the non-empty list, where m is the number of entries of List.
Cf. example 5.

A sparsematrix(Array) or sparsematrix(Matrix) create a new sparse
matrix with the same dimension and the components of Array or Matrix,
respectively. The array must not contain any uninitialized entries. If
Array is one-dimensional, the result is a column vector. Cf. example 8.

A The call sparsematrix(m, n) returns the m× n zero sparse matrix.

A sparsematrix(m, n, ListOfRows) creates an m× n sparse matrix with
components taken from the list ListOfRows.

If m ≥ 2 and n ≥ 2, then ListOfRows must consist of at most m inner
lists, each having at most n entries. The inner lists correspond to the rows
of the returned sparse matrix.

If a row has less than n entries, the remaining components of the corres-
ponding row of the sparse matrix are regarded as zero. If there are less
than m rows, the remaining lower rows of the sparse matrix are filled with
zeroes. Cf. example 7.

A sparsematrix(m,n,Table) creates an m × n sparse matrix with com-
ponents taken from the table Table. The table entries Table[i,j] with
positive integer values of i and j define the corresponding entries of the
sparse matrix. Zero entries need not be specified in the table. This way,
sparse table input can be used to create the matrix.

For large sparse matrices, the fastest way of creation is the generation
of an empty table that is filled by indexed assignments and then passed
to sparsematrix. Alternatively, one may first create an empty sparse
matrix via sparsematrix(m, n) and then fill in the non-zero entries via
indexed assigments. Note that the indexed assignment to a sparse matrix
is somewhat slower than the indexed assignment to a table.

A sparsematrix(m, n, [(i1, j1) = value1, (i2, j2) = value2, ...])
is a further way to create a sparse matrix specifying only the non-zero
entries A[i1, j1] = value1, A[i2, j2] = value2 etc. The ordering of
the entries in the input list is irrelevant.

A sparsematrix(m, n, f) returns the sparse matrix whose (i, j)-th com-
ponent is the return value of the function call f(i,j). The row index i
runs from 1 to m and the column index j from 1 to n. Cf. example 9.

963

A sparsematrix(m, 1, List) returns the m× 1 column vector with com-
ponents taken from List. The list List must have no more than m entries.
If there are fewer entries, the remaining vector components are regarded
as zero. Cf. example 5.

A sparsematrix(m, 1, Table) returns the m×1 column vector with com-
ponents taken from Table. The table Table must have no more than m
entries. If there are fewer entries, the remaining vector components are
regarded as zero. Cf. example 6.

A sparsematrix(m, 1, [i1 = value1, i2 = value2, ...]) provides a
way to create a sparse column vector specifying only the non-zero entries
A[i1] = value1, A[i2] = value2 etc. The ordering of the entries in the
input list is irrelevant.

A sparsematrix(1, n, List) returns the 1 × n row vector with compon-
ents taken from List. The list List must not have more than n entries.
If there are fewer entries, the remaining vector components are regarded
as zero. Cf. example 5.

A sparsematrix(1, n, Table) returns the 1×n row vector with compon-
ents taken from Table. The table Table must not have more than n
entries. If there are fewer entries, the remaining vector components are
regarded as zero. Cf. example 6.

A sparsematrix(1, n, [j1 = value1, j2 = value2, ...]) provides a
way to create a sparse row vector specifying only the non-zero entries
A[j1] = value1, A[j2] = value2 etc. The ordering of the entries in the
input list is irrelevant.

Option <Diagonal>:

A With this option, diagonal matrices can be created with diagonal elements
taken from a list, or computed by a function or a functional expression.

A sparsematrix(m, n, List, Diagonal) creates the m×n diagonal mat-
rix whose diagonal elements are the entries of List. Cf. example 10.

List must have no more than min(m,n) entries. If it has fewer elements,
the remaining diagonal elements are regarded as zero.

A sparsematrix(m, n, g, Diagonal) returns the sparse matrix whose i-
th diagonal element is g(i), where the index i runs from 1 to min(m,n).
Cf. example 10.

964

Option <Banded>:

A With this option, sparse banded Toeplitz matrices can be created.

A banded sparse matrix has zero entries outside the main diagonal and
some of the adjacent sub- and superdiagonals.

A sparsematrix(m, n, List, Banded) creates an m×n banded Toeplitz
matrix with the elements of List as entries. The number of entries of List
must be odd, say 2h+ 1, where h must not exceed n. The bandwidth of
the resulting sparse matrix is at most h.

All elements of the main diagonal of the created sparse matrix are initial-
ized with the middle element of List. All elements of the i-th subdiagonal
are initialized with the (h + 1 − i)-th element of List. All elements of
the i-th superdiagonal are initialized with the (h + 1 + i)-th element of
List. All entries on the remaining sub- and superdiagonals are regarded
as zero.

Cf. example 11.

Example 1. We create a 2× 2 sparse matrix by passing a list of two rows to
sparsematrix, where each row is a list of two elements:

>> A := sparsematrix([[1, 5], [2, 3]])

+- -+
| 1, 5 |
| |
| 2, 3 |
+- -+

In the same way, we generate the following 2× 3 sparse matrix:

>> B := sparsematrix([[-1, 5/2, 3], [1/3, 0, 2/5]])

+- -+
| -1, 5/2, 3 |
| |
| 1/3, 0, 2/5 |
+- -+

We can do matrix arithmetic using the standard arithmetical operators of
MuPAD. For example, the matrix product A ·B, the fourth power of A, and the
scalar multiplication of A by 1

3 are given by:

>> A * B, A^4, 1/3 * A

965

+- -+ +- -+ +- -+
2/3, 5/2, 5		281, 600		1/3, 5/3
	,		,	
-1, 5, 36/5		240, 521		2/3, 1
+- -+ +- -+ +- -+

Since the dimensions of the sparse matrices A and B differ, the sum of A and
B is not defined and MuPAD returns an error message:

>> A + B

Error: dimensions do not match [(Dom::SparseMatrix(Dom::Expres\
sionField()))::_plus]

To compute the inverse of A, enter:

>> 1/A

+- -+
| -3/7, 5/7 |
| |
| 2/7, -1/7 |
+- -+

If a sparse matrix is not invertible, the result of this operation is FAIL:

>> C := sparsematrix([[2, 0], [0, 0]])

+- -+
| 2, 0 |
| |
| 0, 0 |
+- -+

>> C^(-1)

FAIL

>> delete A, B, C:

Example 2. In addition to standard matrix arithmetic, the library linalg
offers numerous functions handling sparse matrices. For example, the function
linalg::rank determines the rank of a sparse matrix:

>> A := sparsematrix([[1, 5], [2, 3]])

+- -+
| 1, 5 |
| |
| 2, 3 |
+- -+

966

>> linalg::rank(A)

2

The function linalg::eigenvectors computes the eigenvalues and the eigen-
vectors of A:

>> linalg::eigenvectors(A)

-- -- -- +- -+ -- --
			1/2		
			11		
	1/2		----- - 1/2		
	11 + 2, 1,		2		
			1		
-- -- -- +- -+ -- --

-- -- +- -+ -- -- --
		1/2			
		11			
1/2		- ----- - 1/2			
2 - 11 , 1,		2			
		1			
-- -- +- -+ -- -- --

To determine the dimension of a sparse matrix use the function linalg::matdim:

>> linalg::matdim(A)

[2, 2]

The result is a list of two positive integers, the row and column number of the
sparse matrix.

Use info(linalg) to obtain a list of available functions, or enter ?linalg
for details about this library.

>> delete A:

Example 3. Matrix entries can be accessed with the index operator []:

>> A := sparsematrix([[1, 2, 3, 4], [2, 0, 4, 1], [-1, 0, 5, 2]])

+- -+
| 1, 2, 3, 4 |
| |
| 2, 0, 4, 1 |
| |
| -1, 0, 5, 2 |
+- -+

967

>> A[2, 1] * A[1, 2] - A[3, 1] * A[1, 3]

7

You can redefine a sparse matrix entry by assigning a value to it:

>> A[1, 2] := a^2: A

+- -+
| 2 |
| 1, a , 3, 4 |
| |
| 2, 0, 4, 1 |
| |
| -1, 0, 5, 2 |
+- -+

The index operator can also be used to extract submatrices. The following call
creates a copy of the submatrix of A comprising the second and the third row
and the first three columns of A:

>> A[2..3, 1..3]

+- -+
| 2, 0, 4 |
| |
| -1, 0, 5 |
+- -+

The index operator does not allow to replace a submatrix of a given sparse
matrix by another matrix. Use linalg::substitute to achieve this.

>> delete A:

Example 4. Some system functions can be applied to sparse matrices. For
example, if you have a sparse matrix with symbolic entries and want to have
all entries in expanded form, simply apply the function expand:

>> delete a, b:
A := sparsematrix([
[(a - b)^2, a^2 + b^2],
[a^2 + b^2, (a - b)*(a + b)]

])

+- -+
| 2 2 2 |
| (a - b) , a + b |
| |
| 2 2 |
| a + b , (a + b) (a - b) |
+- -+

968

>> expand(A)

+- -+
| 2 2 2 2 |
| - 2 a b + a + b , a + b |
| |
| 2 2 2 2 |
| a + b , a - b |
+- -+

You can differentiate all sparse matrix components with respect to some inde-
terminate:

>> diff(A, a)

+- -+
| 2 a - 2 b, 2 a |
| |
| 2 a, 2 a |
+- -+

The following command evaluates all sparse matrix components at a given point:

>> subs(A, a = 1, b = -1)

+- -+
| 4, 2 |
| |
| 2, 0 |
+- -+

Note that the function subs does not evaluate the result of the substitution.
For example, we define the following matrix:

>> A := sparsematrix([[sin(x), x], [x, cos(x)]])

+- -+
| sin(x), x |
| |
| x, cos(x) |
+- -+

Then we substitute x = 0 in each matrix component:

>> B := subs(A, x = 0)

+- -+
| sin(0), 0 |
| |
| 0, cos(0) |
+- -+

969

You see that the sparse matrix components are not evaluated completely. For
example, if you enter sin(0) directly, it evaluates to zero.

The function eval can be used to evaluate the result of the function subs.
However, eval does not operate on matrices directly, and you must use the
function map to apply the function eval to each sparse matrix component:

>> map(B, eval)

+- -+
| 0, 0 |
| |
| 0, 1 |
+- -+

The function zip can be applied to sparse matrices. The following call
combines two matrices A and B by dividing each component of A by the cor-
responding component of B:

>> A := sparsematrix([[4, 2], [9, 3]]):
B := sparsematrix([[2, 1], [3, -1]]):
A, B, zip(A, B, ‘/‘)

+- -+ +- -+ +- -+
4, 2		2, 1		2, 2
	,		,	
9, 3		3, -1		3, -3
+- -+ +- -+ +- -+

>> delete A, B:

Example 5. A vector is either an m × 1 sparse matrix (a column vector) or
a 1 × n sparse matrix (a row vector). To create a vector with sparsematrix,
pass the dimension of the vector and a list of vector components as argument
to sparsematrix:

>> row_vector := sparsematrix(1, 3, [1, 2, 3]);
column_vector := sparsematrix(3, 1, [1, 2, 3])

+- -+
| 1, 2, 3 |
+- -+

+- -+
| 1 |
| |
| 2 |
| |
| 3 |
+- -+

970

If the only argument of sparsematrix is a non-nested list or a one-dimensional
array, the result is a column vector:

>> sparsematrix([1, 2, 3])

+- -+
| 1 |
| |
| 2 |
| |
| 3 |
+- -+

For a row vector r, the calls r[1, i] and r[i] both return the i-th vector
component of r. Similarly, for a column vector c, the calls c[i, 1] and c[i]
both return the i-th vector component of c.

We extract the second component of the vectors defined above:

>> row_vector[2] = row_vector[1, 2],
column_vector[2] = column_vector[2, 1]

2 = 2, 2 = 2

Use the function linalg::vecdim to determine the number of components of
a vector:

>> linalg::vecdim(row_vector), linalg::vecdim(column_vector)

3, 3

The number of components of a vector can also be determined directly by the
call nops(vector).

The dimension of a vector can be determined as described above in the case
of sparse matrices:

>> linalg::matdim(row_vector),
linalg::matdim(column_vector)

[1, 3], [3, 1]

See the linalg package for functions working with vectors, and the help page
of norm for computing vector norms.

>> delete row_vector, column_vector:

971

Example 6. A vector is either an m× 1 sparse matrix (a column vector) or a
1×n sparse matrix (a row vector). To create a vector with sparsematrix, one
may also pass the dimension of the vector and a table of vector components as
argument to sparsematrix:

>> delete v1, v2, t1, t2:
t1 := table():
t1[1,1] := 1:
t1[1,2] := 2:
t1[1,3] := 3:
v1 := sparsematrix(1, 3, t1);

+- -+
| 1, 2, 3 |
+- -+

>> t2 := table():
t2[1,1] := 1:
t2[2,1] := 2:
t2[3,1] := 3:
v2 := sparsematrix(3, 1, t2);

+- -+
| 1 |
| |
| 2 |
| |
| 3 |
+- -+

All functions applied to the vectors in the previous example (see above) can
can also be used on these vectors.

>> delete t1, t2, v1, v2:

Example 7. In the following examples, we illustrate various calls of sparsematrix
as described above. We start by passing a nested list to sparsematrix, where
each inner list corresponds to a row of the sparse matrix:

>> sparsematrix([[1, 2], [2]])

+- -+
| 1, 2 |
| |
| 2, 0 |
+- -+

972

The number of rows of the created created sparse matrix is the number of inner
lists, namely m = 2. The number of columns is determined by the maximal
number of entries of an inner list. In the example above, the first list is the
longest one, and hence n = 2. The second list has only one element and,
therefore, the second entry in the second row of the returned sparse matrix was
set to zero.

In the following call, we use the same nested list, but in addition pass two
dimension parameters to create a 4× 4 matrix:

>> sparsematrix(4, 4, [[1, 2], [2]])

+- -+
| 1, 2, 0, 0 |
| |
| 2, 0, 0, 0 |
| |
| 0, 0, 0, 0 |
| |
| 0, 0, 0, 0 |
+- -+

In this case, the dimension of the sparse matrix is given by the dimension
parameters. As before, missing entries in an inner list correspond to zero, and
in addition missing rows are treated as zero rows.

Example 8. A one- or two-dimensional array of arithmetical expressions, such
as:

>> a := array(1..3, 2..4,
[[1, 1/3, 0], [-2, 3/5, 1/2], [-3/2, 0, -1]]

)

+- -+
| 1, 1/3, 0 |
| |
| -2, 3/5, 1/2 |
| |
| -3/2, 0, -1 |
+- -+

can be converted into a matrix as follows:

>> A := sparsematrix(a)

+- -+
| 1, 1/3, 0 |
| |
| -2, 3/5, 1/2 |
| |
| -3/2, 0, -1 |
+- -+

973

Arrays serve, for example, as an efficient structured data type for programming.
However, arrays do not have any algebraic meaning, and no mathematical op-
erations are defined for them. If you convert an array into a matrix, you can
use the full functionality defined for sparse matrices as described above. For
example, let us compute the matrix 2A−A2 and the Frobenius norm of A:

>> 2*A - A^2, norm(A, Frobenius)

+- -+
| 5/3, 2/15, -1/6 | 1/2 1/2
| | 2 4037
| -1/20, 113/75, 6/5 |, ------------
| | 30
| -3, 1/2, -3 |
+- -+

Note that an array may contain uninitialized entries:

>> b := array(1..4): b[1] := 2: b[4] := 0: b

+- -+
| 2, ?[2], ?[3], 0 |
+- -+

sparsematrix cannot handle arrays that have uninitialized entries, and re-
sponds with an error message:

>> sparsematrix(b)

Error: unable to define matrix over Dom::ExpressionField() [(D\
om::SparseMatrix(Dom::ExpressionField()))::new]

We initialize the remaining entries of the array b and convert it into a matrix,
or more precisely, into a column vector:

>> b[2] := 0: b[3] := -1: sparsematrix(b)

+- -+
| 2 |
| |
| 0 |
| |
| -1 |
| |
| 0 |
+- -+

>> delete a, A, b:

974

Example 9. We show how to create a sparse matrix whose components are
defined by a function of the row and the column index. The entry in the i-th
row and the j-th column of a Hilbert matrix (see also linalg::hilbert) is
1/(i+ j − 1). Thus the following command creates a 2× 2 Hilbert matrix:

>> sparsematrix(2, 2, (i, j) -> 1/(i + j - 1))

+- -+
| 1, 1/2 |
| |
| 1/2, 1/3 |
+- -+

The following two calls produce different results. In the first call, x is regarded
as an unknown function, while it is a constant in the second call:

>> delete x:
sparsematrix(2, 2, x), sparsematrix(2, 2, (i, j) -> x)

+- -+ +- -+
x(1, 1), x(1, 2)		x, x
	,	
x(2, 1), x(2, 2)		x, x
+- -+ +- -+

Example 10. Diagonal matrices can be created by passing the option Diag-

onal and a list of diagonal entries:

>> sparsematrix(3, 4, [1, 2, 3], Diagonal)

+- -+
| 1, 0, 0, 0 |
| |
| 0, 2, 0, 0 |
| |
| 0, 0, 3, 0 |
+- -+

One can generate the 3× 3 identity matrix as follows:

>> sparsematrix::identity(3)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

975

Here are alternative ways to create this matrix:

>> sparsematrix(3, 3, [1 $ 3], Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

Equivalently, you can use a function of one argument:

>> sparsematrix(3, 3, i -> 1, Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

Since the integer 1 also represents a constant function, the following shorter
call creates the same matrix:

>> sparsematrix(3, 3, 1, Diagonal)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

To demonstrate the use of tables for creating sparse matrices we can also create
the identity matrix above by the lines:

>> t := table(): t[1, 1] := 1: t[2, 2] := 1: t[3, 3] := 1:
sparsematrix(3, 3, t)

+- -+
| 1, 0, 0 |
| |
| 0, 1, 0 |
| |
| 0, 0, 1 |
+- -+

>> delete t:

976

Example 11. Banded Toeplitz matrices can be created with the option Ban-

ded . The following command creates a tri-diagonal matrix with constant bands:

>> sparsematrix(4, 4, [-1, 2, -1], Banded)

+- -+
| 2, -1, 0, 0 |
| |
| -1, 2, -1, 0 |
| |
| 0, -1, 2, -1 |
| |
| 0, 0, -1, 2 |
+- -+

Example 12. Sparse matrices can also be created by using a table:

>> t := table():
t[1, 2] := 12:
t[3, 1] := 31:
t[3, 2] := 32:
t

table(
(3, 2) = 32,
(3, 1) = 31,
(1, 2) = 12

)

The missing table entries correspond to empty matrix entries:

>> A := sparsematrix(4, 6, t)

+- -+
| 0, 12, 0, 0, 0, 0 |
| |
| 0, 0, 0, 0, 0, 0 |
| |
| 31, 32, 0, 0, 0, 0 |
| |
| 0, 0, 0, 0, 0, 0 |
+- -+

By using tables, one can easily create large sparse matrices without being forced
to define all zero entries of the matrix. Note that this is a great advantage over
using arrays where every component has to be initialized before.

>> delete t, A:

977

Example 13. The method "doprint" of Dom::SparseMatrix() prints only
the non-zero components of a sparse matrix:

>> A := sparsematrix(4, 6):
A[1, 2]:= 12: A[3, 1]:= 31: A[3, 2]:= 32:
A::dom::doprint(A)

Dom::SparseMatrix()(4, 6, [(1, 2) = 12, (3, 1) = 31,

(3, 2) = 32])

>> delete A:

Changes:

A sparsematrix is a new function.

split – split an object

split(object, f) splits the object into a list of three objects. The first list
entry is an object consisting of those operands of the input object that satisfy
a criterion defined by the procedure f. The second list entry is built from
the operands that violate the criterion. The third list entry is built from the
operands for which it is unknown whether the criterion is satisfied.

Call(s):

A split(object, f <, p1, p2, ...>)

Parameters:
object — a list, a set, a table, an expression sequence, or an

expression of type DOM_EXPR
f — a procedure returning a Boolean value
p1, p2, ... — any MuPAD objects accepted by f as additional

parameters

Return Value: a list with three objects of the same type as the input object.

Overloadable by: object

Related Functions: map, op, select, zip

978

Details:

A The function f must return a value that can be evaluated to one of the
Boolean values TRUE, FALSE, or UNKNOWN. It may either return one of these
values directly, or it may return an equation or an inequality that can be
simplified to one of these values by the function bool.

A The function f is applied to all operands x of the input object via the call
f(x, p1, p2, ...). Depending on the result TRUE, FALSE, or UNKNOWN,
this operand is inserted into the first, the second, or the third output
object, respectively.

The output objects are of the same type as the input object, i.e., a list is
split into three lists, a set into three sets, a table into three tables etc.

A If the input object is an expression sequence, then neither the input se-
quence nor the output (a list containing three sequences) are flattened.

A Also “atomic” objects such as numbers or identifiers can be passed to
split as first argument. Such objects are handled like sequences with a
single operand.

A split is a function of the system kernel.

Example 1. The following command checks which of the integers in the list
are prime:

>> split([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], isprime)

[[2, 3, 5, 7], [1, 4, 6, 8, 9, 10], []]

The return value is a list of three lists. The first list contains the prime numbers,
the second list contains all other numbers. The third list is empty, because for
any number of the input list, it can be decided whether it is prime or not.

Example 2. With the optional arguments p1, p2, ... one can use functions
that need more than one argument. For example, contains is a handy function
to be used with split. The following call splits a list of sets into those sets
that contain x and those that do not:

>> split([{a, x, b}, {a}, {x, 1}], contains, x)

[[{a, b, x}, {x, 1}], [{a}], []]

The elements of the returned list are of of type DOM_LIST, because the given
expression was a list. If the given expression is of another type, e.g., DOM_SET,
also the elements of the result are of type DOM_SET, too:

>> split({{a, x, b}, {a}, {x, 1}}, contains, x)

[{{x, 1}, {a, b, x}}, {{a}}, {}]

979

Example 3. We use the function is to split an expression sequence into sub-
sequences. This function returns UNKNOWN if it cannot derive the queried prop-
erty:

>> split((-2, -1, a, 0, b, 1, 2), is, Type::Positive)

[(1, 2), (-2, -1, 0), (a, b)]

Example 4. We split a table of people marked as male or female:

>> people := table("Tom" = "m", "Rita" = "f", "Joe" = "m"):
[male, female, dummy] := split(people, has, "m"):

>> male

table(
"Joe" = "m",
"Tom" = "m"

)

>> female

table(
"Rita" = "f"

)

>> dummy

table()

>> delete people, male, female, dummy:

sqrt – the square root function

sqrt(z) represents the square root of z.

Call(s):

A sqrt(z)

Parameters:

z — an arithmetical expression

Return Value: an arithmetical expression.

980

Overloadable by: z

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: _power, isqrt, numlib::issqr

Details:

A x = sqrt(z) represents the solution of x2 = z that has a nonnegative real
part. In particular, it represents the positive root for real positive z. For
real negative z, it represents the complex root with positive imaginary
part.

A A floating point result is returned for floating point arguments. Note
that the branch cut is chosen as the negative real semi-axis. The values
returned by sqrt jump when crossing this cut. Cf. example 2.

A Certain simplifications of the argument may occur. In particular, positive
integer factors are extracted from some symbolic products. Cf. example 3.

A Note that sqrt(x2) cannot be simplified to x for all complex numbers
(e.g., sqrt(x2) = −x for real x < 0). Cf. example 4.

A Mathematically, sqrt(z) coincides with z^(1/2) = _power(z,1/2). How-
ever, sqrt provides more simplifications than _power. Cf. example 5.

Example 1. We demonstrate some calls with exact and symbolic input data:

>> sqrt(2), sqrt(4), sqrt(36*7), sqrt(127)

1/2 1/2 1/2
2 , 2, 6 7 , 127

>> sqrt(1/4), sqrt(1/2), sqrt(3/4), sqrt(25/36/7), sqrt(4/127)

1/2 1/2 1/2 1/2
2 3 5 7 2 127

1/2, ----, ----, ------, --------
2 2 42 127

>> sqrt(-4), sqrt(-1/2), sqrt(1 + I)

1/2 1/2
2 I, 1/2 I 2 , (1 + I)

>> sqrt(x), sqrt(4*x^(4/7)), sqrt(4*x/3), sqrt(4*(x + I))

981

1/2 2/7 / 4 x \1/2 1/2
x , 2 x , | --- | , (4 x + 4 I)

\ 3 /

Example 2. Floating point values are computed for floating point arguments:

>> sqrt(1234.5), sqrt(-1234.5), sqrt(-2.0 + 3.0*I)

35.13545218, 35.13545218 I, 0.8959774761 + 1.674149228 I

A jump occurs when crossing the negative real semi axis:

>> sqrt(-4.0), sqrt(-4.0 + I/10^100), sqrt(-4.0 - I/10^100)

2.0 I, 2.5e-101 + 2.0 I, 2.5e-101 - 2.0 I

Example 3. The square root of symbolic products involving positive integer
factors is simplified:

>> sqrt(20*x*y*z)

1/2 1/2
2 (x y z) 5

Example 4. Square roots of squares are not simplified, unless the argument
is real and its sign is known:

>> sqrt(x^2*y^4)

2 4 1/2
(x y)

>> assume(x > 0): sqrt(x^2*y^4)

4 1/2
x (y)

>> assume(x < 0): sqrt(x^2*y^4)

4 1/2
- x (y)

982

Example 5. sqrt provides more simplifications than the _power function:

>> sqrt(4*x), (4*x)^(1/2) = _power(4*x, 1/2)

1/2 1/2 1/2
2 x , (4 x) = (4 x)

strmatch – match a pattern in a character string

strmatch(text, pattern) checks whether the strings text and pattern co-
incide. The pattern may contain wildcards.

strmatch(text, pattern, Index) checks whether the text contains the pat-
tern as a substring. If so, the position of the first occurrence of pattern is
returned.

Call(s):

A strmatch(text, pattern)

A strmatch(text, pattern, Index)

Parameters:

text, pattern — character strings

Options:

Index — makes strmatch look for substrings in text coinciding with
the pattern. If the pattern is not found, FALSE is returned.
Otherwise, the location of the first occurrence is returned as
a list of two integers.

Return Value: Without Index , either TRUE or FALSE is returned. With In-

dex , a list of two nonnegative integers or FALSE is returned.

Overloadable by: text, pattern

Related Functions: _concat, length, substring, stringlib::contains,
stringlib::pos

Details:

A The pattern may contain the wildcards \? and *. The wildcard \? rep-
resents any single character or no character. The wildcard * represents
arbitrary (possibly empty) substrings.

983

A The string text must not contain wildcards.

A In MuPAD strings, the character \ is represented by \\. Cf. example 3.

A The library stringlib provides further functions for handling strings.

A strmatch is a function of the system kernel.

Option <Index>:

A strmatch(text, pattern, Index) checks whether text contains the
string pattern as a substring. If so, a list [i, j] is returned. The
integer i is the index of the first character of the matching substring, j
is the index of the last character. I.e., substring(text, i, j-i+1) =
pattern. Only the first occurrence of pattern inside text is found. If
no match is found, FALSE is returned.

A Note that indexing of the characters in text starts with 0.
!

A If a wildcard is used in pattern, then the largest match is found. E.g., in
the text "XXabcbXX", the pattern "a*b" matches the substring "abcb"
rather than the substring "ab".

Example 1. We do a simple comparison of strings:

>> s := "Hamburg": strmatch(s, "Hamburg")

TRUE

>> strmatch(s, "Ham"), strmatch(s, "burg")

FALSE, FALSE

>> delete s:

Example 2. This example demonstrates wildcards. The wildcard \? repres-
ents a single character or no character:

>> strmatch("Mississippi", "Miss\?issip\?i")

TRUE

The wildcard * represents any string including the empty string:

>> strmatch("Mississippi", "Mi*i*pp*i*")

TRUE

984

In the following call, no match is found:

>> strmatch("Mississippi", "Mis\?i*ppi*i")

FALSE

Example 3. The character ? is not a wildcard:

>> strmatch("Mississippi", "Miss?issip\?i")

FALSE

In MuPAD strings, the character \ is represented as \\: Consequently, \\ is
regarded as a single character:

>> s := "a\\b": s[0], s[1], s[2]

"a", "\\", "b"

>> strmatch("Missi\\ssippi", "Missi\?ssippi")

TRUE

>> delete s:

Example 4. With the option Index , you can check whether a string con-
tains another string. If so, the position of the substring in the source string is
returned:

>> strmatch("cdxxcd", "xx", Index)

[2, 3]

Only the first occurrence of the pattern is found:

>> strmatch("cdxxcd", "cd", Index)

[0, 1]

The largest match is found:

>> strmatch("cdxxcxcd", "x*x", Index)

[2, 5]

>> strmatch("cdxxcd", "xx*", Index)

[2, 5]

985

>> strmatch("cdxxcd", "*xx*", Index)

[0, 5]

subs – substitute into an object

subs(f, old = new) returns a copy of the object f in which all operands
matching old are replaced by the value new.

Call(s):

A subs(f, old = new <, Unsimplified>)

A subs(f, old1 = new1, old2 = new2, ... <, Unsimplified>)

A subs(f, [old1 = new1, old2 = new2, ...] <, Unsimplified>)

A subs(f, {old1 = new1, old2 = new2, ...} <, Unsimplified>)

A subs(f, table(old1 = new1, old2 = new2, ...) <, Unsimpli-

fied>)

A subs(f, s1, s2, ... <, Unsimplified>)

Parameters:
f — an arbitrary MuPAD object
old, old1, old2, ... — arbitrary MuPAD objects
new, new1, new2, ... — arbitrary MuPAD objects
s1, s2, ... — either equations old = new, or lists or sets

of such equations, or tables whose entries
are interpreted as such equations.

Options:

Unsimplified — prevents simplification of the returned object after
substitution

Return Value: a copy of the input object with replaced operands.

Overloadable by: f

Related Functions: extnops, extop, extsubsop, has, map, match, op,
subsex, subsop

986

Details:

A subs returns a modified copy of the object, but does not change the object
itself.

A subs(f, old = new) searches f for operands matching old. Each such
operand is replaced by new. Cf. example 1.

A The call subs(f, old1 = new1, old2 = new2, ...) invokes a“sequen-
tial substitution”: the specified substitutions are processed in sequence
from left to right. Each substitution is carried out and the result is pro-
cessed further with the next substitution. Cf. example 3.

A The call subs(f, [old1 = new1, old2 = new2, ...]) invokes a “par-
allel substitution”; each substitution refers to the operands of the original
input object f, not to the operands of “intermediate results” produced by
previous substitutions. If multiple substitutions of an operand are spe-
cified, only the first one is carried out. Parallel substitution is also invoked
when the substitutions are specified by sets or tables. Cf. example 4.

A The call subs(f, s1, s2, ...) describes the most general form of sub-
stitution which may combine sequential and parallel substitutions. This
call is equivalent to subs(... subs(subs(f, s1), s2), ...). Depend-
ing on the form of s1, s2, . . . , sequential or parallel substitutions as
described above are carried out in each step. Cf. example 5.

A Only operands accessible via the function op are replaced (“syntactical
substitution”). A more “semantical” substitution is available with the
function subsex, which also identifies and replaces partial sums and products.
Cf. example 6.

A After substitution, the result is not evaluated. Use the function
eval to enforce evaluation. Cf. example 7. !
A Operands of expression sequences can be replaced by subs. Such objects

are not flattened. Cf. example 8.

A The call subs(f) is allowed; it returns f without modifications.

A subs is a function of the system kernel.

Option <Unsimplified>:

A As the last step of a substitution, the modified object is simplified (how-
ever, not evaluated). This option suppresses this final simplification. Cf.
example 9.

987

Example 1. We demonstrate some simple substitutions:

>> subs(a + b*a, a = 4)

4 b + 4

>> subs([a * (b + c), sin(b +c)], b + c = a)

2
[a , sin(a)]

Example 2. To replace the sine function in an expression, one has to prevent
the evaluation of the identifier sin via hold. Otherwise, sin is replaced by
its value, i.e., by the function environment defining the system’s sine function.
Inside the expression sin(x), the 0-th operand sin is the identifier, not the
function environment:

>> domtype(sin), domtype(hold(sin)), domtype(op(sin(x), 0));

DOM_FUNC_ENV, DOM_IDENT, DOM_IDENT

>> subs(sin(x), sin = cos), subs(sin(x), hold(sin) = cos)

sin(x), cos(x)

Example 3. The following call leads to a sequential substitution x → y → z:

>> subs(x^3 + y*z, x = y, y = z)

2 3
z + z

Example 4. We demonstrate the difference between sequential and parallel
substitutions. Sequential substitutions produce the following results:

>> subs(a^2 + b^3, a = b, b = a)

2 3
a + a

>> subs(a^2 + b^3, b = a, a = b)

2 3
b + b

988

In contrast to this, parallel substitution swaps the identifiers:

>> subs(a^2 + b^3, [a = b, b = a])

3 2
a + b

In the following call, substitution of y + x for a yields the intermediate result
y + 2*x. From there, substitution of z for x yields y + 2 z:

>> subs(a + x, a = x + y, x = z)

y + 2 z

Parallel substitution produces a different result. In the next call, x + y is
substituted for a. Simultaneously, the operand x of the original expression a +
x is replaced by z:

>> subs(a + x, [a = x + y, x = z])

x + y + z

The same happens when the substitutions are specified by a set of equations:

>> subs(a + x, {a = x + y, x = z})

x + y + z

Further, parallel substitution is used when specifying the substitutions by a
table:

>> T := table(): T[a] := x + y: T[x] := z: T

table(
x = z,
a = x + y

)

>> subs(a + x, T)

x + y + z

>> delete T:

Example 5. We combine sequential and parallel substitutions:

>> subs(a + x, {a = x + y, x = z}, x = y)

2 y + z

989

Example 6. Only operands found by op are replaced. The following expression
contains the subexpression x + y as the operand op(f, [1, 2]):

>> f := sin(z*(x + y)): op(f, [1, 2]);

x + y

Consequently, this subexpression can be replaced:

>> subs(f, x + y = z)

2
sin(z)

Syntactically, the following sum does not contain the subexpression x + y. Con-
sequently, it is not replaced by the following call:

>> subs(x + y + z, x + y = z)

x + y + z

In contrast to subs, the function subsex finds and replaces partial sums and
products:

>> subsex(x + y + z, x + y = z)

2 z

>> subs(a*b*c, a*c = 5), subsex(a*b*c, a*c = 5)

a b c, 5 b

>> delete f:

Example 7. The result of subs is not evaluated. In the following call, the
identifier sin is not replaced by its value, i.e., by the procedure defining the
behavior of the system’s sine function. Consequently, sin(PI) is not simplified
to 0 by this procedure:

>> subs(sin(x), x = PI)

sin(PI)

The function eval enforces evaluation:

>> eval(subs(sin(x), x = PI))

0

990

Example 8. Operands of expression sequences can be subtituted. Note that
sequences need to be enclosed in brackets:

>> subs((a, b, a*b), a = x)

x, b, b x

Example 9. The option Unsimplified suppresses simplification:

>> subs(a + b + 2, a = 1, b = 0, Unsimplified)

1 + 0 + 2

Example 10. If we try to substitute something in a domain, the substitution
is ignored. We define a new domain with the methods "foo" and "bar":

>> mydomain := newDomain("Test"):
mydomain::foo := x -> 4*x:
mydomain::bar := x -> 4*x^2:

Now we try to replace every 4 inside the domain by 3:

>> mydomain := subs(mydomain, 4 = 3):

However, this substitution did not have any effect:

>> mydomain::foo(x), mydomain::bar(x)

2
4 x, 4 x

To substitute objects in a domain method, we have to substitute in the indi-
vidual methods:

>> mydomain::foo := subs(mydomain::foo, 4 = 3):
mydomain::bar := subs(mydomain::bar, 4 = 3):
mydomain::foo(x), mydomain::bar(x)

2
3 x, 3 x

>> delete mydomain:

subsex – extended substitution

subsex(f, old = new) returns a copy of the object f in which all expressions
matching old are replaced by the value new. In contrast to the function subs,
subsex also replaces “incomplete” subexpressions.

991

Call(s):

A subsex(f, old = new <, Unsimplified>)

A subsex(f, old1 = new1, old2 = new2, ... <, Unsimplified>)

A subsex(f, [old1 = new1, old2 = new2, ...] <, Unsimplified>)

A subsex(f, {old1 = new1, old2 = new2, ...} <, Unsimplified>)

A subsex(f, table(old1 = new1, old2 = new2, ...) <, Unsimpli-

fied>)

A subsex(f, s1, s2, ... <, Unsimplified>)

Parameters:
f — an arbitrary MuPAD object
old, old1, old2, ... — arbitrary MuPAD objects
new, new1, new2, ... — arbitrary MuPAD objects
s1, s2, ... — either equations old = new, or lists or sets

of such equations, or tables whose entries
are interpreted as such equations.

Options:

Unsimplified — prevents simplification of the returned object after
substitution

Return Value: a copy of the input object with replaced operands.

Overloadable by: f

Related Functions: extnops, extop, extsubsop, has, map, match, op,
subs, subsop

Details:

A subsex returns a modified copy of the object, but does not change the
object itself.

A subsex(f, old = new) searches f for subexpressions matching old. Each
such subexpression is replaced by new.

A In most cases, subsex leads to the same result as subs. However, in con-
trast to subs, subsex allows to replace “incomplete” subexpressions such
as a + b in a sum a + b + c. In general, combinations of the operands
of the n-ary “operators” +, *, and, _exprseq, intersect, or, _lazy_and,
_lazy_or, and union can be replaced. In particular, partial sums and
partial products can be replaced. Note that these operations are assumed
to be commutative, e.g., subsex(a*b*c, a*c = new) does replace the
partial product a*c by new. Cf. examples 1 and 2.

992

A subsex is much slower than subs! If subs can do the substitution, use
subs rather than subsex.

A The call subsex(f, old1 = new1, old2 = new2, ...) invokes a “se-
quential substitution”. See the subs help page for details.

A The call subsex(f, [old1 = new1, old2 = new2, ...]) invokes a“par-
allel substitution”. See the subs help page for details.

A The call subsex(f, s1, s2, ...) describes the most general form of
substitution which may combine sequential and parallel substitutions.
This call is equivalent to subsex(... subsex(subsex(f, s1), s2), ...).
Depending on the form of s1, s2, . . . , sequential or parallel substitutions
are carried out in each step. An example can be found on the subs help
page.

A After substitution, the result is not evaluated. Use the function eval to
enforce evaluation. Cf. example 3.

A Operands of expression sequences can be replaced by subsex. Such ob-
jects are not flattened. Cf. example 4.

A The call subsex(f) is allowed; it returns f without modifications.

A subsex is a function of the system kernel.

Option <Unsimplified>:

A As the last step of a substitution, the modified object is simplified (how-
ever, not evaluated). This option suppresses this final simplification. An
example can be found on the subs help page.

Example 1. We demonstrate some simple substitutions; subsex finds and
replaces partial sums and products:

>> subsex(a + b + c, a + c = x)

b + x

>> subsex(a*b*c, a*c = x)

b x

>> subsex(a * (b + c) + b + c, b + c = a)

2
a + a

>> subsex(a + b*c*d + b*d, b*d = c);

2
a + c + c

993

Example 2. We replace subexpressions inside an expression sequence and a
symbolic union of sets:

>> subsex((a, b, c, d), (b, d) = w)

a, c, w

>> subsex(a union b union c, a union b = w)

c union w

The same can be achieved by using the functional equivalent _union of the
operator union:

>> subsex(_union(a, b, c), _union(a, b) = w)

c union w

Example 3. The result of subsex is not evaluated. In the following call,
the identifier sin is not replaced by its value, i.e., by the procedure defining
the behavior of the system’s sine function. Consequently, sin(2*PI) is not
simplified to 0 by this procedure:

>> subsex(sin(2*x*y), x*y = PI)

sin(2 PI)

The function eval enforces evaluation:

>> eval(subsex(sin(2*x*y), x*y = PI))

0

Example 4. Operands of expression sequences can be subtituted. Note that
sequences need to be enclosed in brackets:

>> subsex((a, b, a*b*c), a*b = x)

a, b, c x

994

Example 5. The option Unsimplified suppresses simplification:

>> subsex(2 + a + b, a + b = 0, Unsimplified)

2 + 0

subsop – replace operands

subsop(object, i = new) returns a copy of the object in which the i-th op-
erand is replaced by the value new.

Call(s):

A subsop(object, i1 = new1, i2 = new2, ... <, Unsimplified>)

Parameters:
object — any MuPAD object
i1, i2, ... — integers or lists of integers
new1, new2, ... — arbitrary MuPAD objects

Options:

Unsimplified — prevents simplification of the returned object after
substitution

Return Value: the input object with replaced operands or FAIL.

Overloadable by: object

Related Functions: extnops, extop, extsubsop, map, match, op, subs,
subsex

Details:

A subsop returns a modified copy of the object, but does not change the
object itself.

A subsop(object, i = new) replaces the operand op(object, i) by new.
Operands are specified in the same way as with the function op: i may
be an integer or a list of integers. E.g., subsop(object, [j, k] = new)
replaces the suboperand op(op(object, j), k). Cf. example 2.

In contrast to op, ranges cannot be used in subsop to specify more than
one operand to replace. Several substitution equations have to be specified
instead.

995

A If several operands are to be replaced, the specified substitutions are pro-
cessed in sequence from left to right. Each substitution is carried out and
the result is processed further with the next substitution. The intermedi-
ate objects are not simplified.

A The result of subsop is not evaluated further. It can be evaluated via the
function eval. Cf. example 3.

A Operands of expression sequences can be replaced by subsop. Such ob-
jects are not flattened.

A Note that the order of the operands may change by replacing operands
and evaluating the result. Cf. example 4.

A FAIL is returned if an operand cannot be accessed.

A Substitution via subsop is faster than via subs or subsex.

A The call subsop(object) is allowed; it returns the object without modi-
fications.

A subsop is a function of the system kernel.

Option <Unsimplified>:

A As the last step of a substitution, the modified object is simplified (how-
ever, not evaluated). This option suppresses this final simplification. Cf.
example 3.

Example 1. We demonstrate how to replace one or more operands of an
expression:

>> x := a + b: subsop(x, 2 = c)

a + c

>> subsop(x, 1 = 2, 2 = c)

c + 2

Also the 0-th operand of an expression (the “operator”) can be replaced:

>> subsop(x, 0 = _mult)

a b

The variable x itself was not affected by the substitutions:

>> x

a + b

>> delete x:

996

Example 2. The following call specifies the suboperand c by a list of integers:

>> subsop([a, b, f(c)], [3, 1] = x)

[a, b, f(x)]

Example 3. This example demonstrates the effect of simplification. The fol-
lowing substitution replaces the first operand a by 2. The result simplifies to
3:

>> subsop(a + 1, 1 = 2)

3

The option Unsimplified suppresses the simplification:

>> subsop(a + 1, 1 = 2, Unsimplified)

2 + 1

The next call demonstrates the difference between simplification and evaluation.
After substitution of PI for x, the identifier sin is not evaluated, i.e., the body
of the system function sin is not executed:

>> subsop(sin(x), 1 = PI)

sin(PI)

Evaluation of sin simplifies the result:

>> eval(%)

0

Example 4. The order of operands may change by substitutions. Substituting
z for the identifier b changes the internal order of the terms in x:

>> x := a + b + c: op(x)

a, b, c

>> x := subsop(x, 2 = z): op(x)

a, c, z

>> delete x:

997

Background:

A For overloading subsop, it is sufficient to handle the cases subsop(object)
and subsop(object, i = new).

The case where the position of the operand to be replaced is given by a
list is always handled recursively: First, op is called with the list bar the
last element to find the object to substitute in (using the overloading of
op if present, storing all the intermediate results), then the substitution
is performed on that sub-object (using the overloading of subsop of the
form subsop(subobj, i = new)). The result is substituted into the last-
but-one result of the recursive op call, again respecting any overloading
of subsop, and so on up to the front of the list.

substring – extract a substring from a string

substring(string, i) returns the (i+ 1)-st character of a string.

substring(string, i, l) returns the substring of length l starting with the
(i+ 1)-st character of the string.

substring(string, i..j) returns the substring consisting of the characters
i+ 1 through j + 1.

Call(s):

A substring(string, i)

A substring(string, i, l)

A substring(string, i..j)

Parameters:
string — a nonempty character string
i — an integer between 0 and length(string) - 1
l — an integer between 0 and length(string) - i
j — an integer between i and length(string) - 1

Return Value: a character string.

Related Functions: length, strmatch, stringlib::subs

Details:

A The positions of the characters in a string are indexed from 0 to
length(string) - 1. !

A The empty string "" is returned if the length l = 0 is specified.

998

A substring is a function of the system kernel.

Example 1. We extract individual characters from a string:

>> substring("0123456789", i) $ i = 0..9

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"

Substrings of various lengths are extracted:

>> substring("0123456789", 0, 2), substring("0123456789", 4, 4)

"01", "4567"

Substrings of length 0 are empty strings:

>> substring("0123456789", 4, 0)

""

Ranges may be used to specify the substrings:

>> substring("0123456789", 0..9)

"0123456789"

Note that the position of the characters is counted from 0:

>> substring("123456789", 4..8)

"56789"

Example 2. The following while loop removes all trailing blank characters
from a string:

>> string := "MuPAD ":
while substring(string, length(string) - 1) = " " do
string := substring(string, 0..length(string) - 2)

end_while

"MuPAD"

The following for loop looks for consecutive blank characters in a string and
shrinks such spaces to a single blank character:

999

>> string := "MuPAD - the open computer algebra system":
result := substring(string, 0):
space_count := 0:
for i from 1 to length(string) - 1 do
if substring(string, i) <> " " then
result := result . substring(string, i);
space_count := 0

elif space_count = 0 then
result := result . substring(string, i);
space_count := space_count + 1

end_if
end_for:
result

"MuPAD - the open computer algebra system"

>> delete string, result, space_count, i:

sum – definite and indefinite summation

sum(f, i) computes a symbolic antidifference of f(i) with respect to i.

sum(f, i = a..b) tries to find a closed form representation of the sum
∑b

i=a f(i).

Call(s):

A sum(f, i)

A sum(f, i = a..b)

A sum(f, i = RootOf(p, x))

Parameters:
f — an arithmetical expression depending on i
i — the summation index: an identifier
a, b — the boundaries: arithmetical expressions
p — a polynomial of type DOM_POLY or a polynomial expression
x — an indeterminate of p

Return Value: an arithmetical expression.

Related Functions: _plus, +, int, numeric::sum, product, rec

1000

Details:

A sum serves for simplifying symbolic sums (the discrete analog of integra-
tion). It should not be used for adding a finite number of terms: if a and
b are integers of type DOM_INT, the call _plus(f $ i = a..b) is more
efficient than sum(f, i = a..b). See example 3.

A sum(f, i) computes the indefinite sum of f with respect to i. This is an
expression g such that f(i) = g(i+ 1)− g(i).

A sum(f, i = a..b) computes the definite sum with i running from a to
b.

If b - a is a nonnegative integer, then the explicit sum f(a)+ f(a+1)+
· · ·+ f(b) is returned.

If b - a is a negative integer, then the negative of the result of sum(f,
i = b+1..a-1) is returned. With this convention, the rule

sum(f, i = a..b) + sum(f, i = b+1..c) = sum(f, i = a..c)

is satisfied for any a, b, and c.

A sum(f, i = RootOf(p, x)) computes the sum with i extending over all
roots of the polynomial p with respect to x.

If f is a rational function of i, a closed form of the sum will be found.

See example 2.

A The system returns a symbolic call of sum if it cannot compute a closed
form representation of the sum.

A Infinite symbolic sums without symbolic parameters can be evaluated nu-
merically via float or numeric::sum. Cf. example 4.

Example 1. We compute some indefinite sums:

>> sum(1/(i^2 - 1), i)

1 1
- --- - ---------
2 i 2 (i - 1)

>> sum(1/i/(i + 2)^2, i)

psi(i + 2, 1) 1 1
------------- - --- - -------

2 4 i 4 i + 4

>> sum(binomial(n + i, i), i)

1001

i binomial(i + n, i)

n + 1

>> sum(binomial(n, i)/2^n - binomial(n + 1, i)/2^(n + 1), i)

2 i binomial(n, i) - i binomial(n + 1, i)

n n n
2 2 - 4 i 2 + 2 n 2

We compute some definite sums. Note that ±∞ are valid boundaries:

>> sum(1/(i^2 + 21*i), i = 1..infinity)

18858053/108636528

>> sum(1/i, i = a .. a + 3)

1 1 1 1
- + ----- + ----- + -----
a a + 1 a + 2 a + 3

Example 2. We compute some sums over all roots of a polynomial:

>> sum(i^2, i = RootOf(x^3 + a*x^2 + b*x + c, x))

2
a - 2 b

>> sum(1/(z + i), i = RootOf(x^4 - y*x + 1, x))

3
y + 4 z

4

y z + z + 1

Example 3. sum can compute finite sums with integer boundaries of type
DOM_INT:

>> sum(1/(i^2 + i), i = 1..100)

100/101

>> sum(binomial(n, i), i = 0..4)

1002

n + binomial(n, 2) + binomial(n, 3) + binomial(n, 4) + 1

>> expand(%)

2 3 4
7 n 11 n n n
--- + ----- - -- + -- + 1
12 24 12 24

However, it is usually more efficient to use _plus in such a case:

>> _plus(1/(i^2 + i) $ i = 1..100)

100/101

>> _plus(binomial(n, i) $ i = 0..4)

n + binomial(n, 2) + binomial(n, 3) + binomial(n, 4) + 1

However, if one of the boundaries is symbolic, then _plus cannot be used:

>> _plus(1/(i^2 + i) $ i = 1..n)

Error: Illegal argument [_seqgen]

>> _plus(binomial(n, i) $ i = 0..n)

Error: Illegal argument [_seqgen]

>> sum(1/(i^2 + i), i = 1..n), sum(binomial(n, i), i = 0..n)

n n
-----, 2
n + 1

Example 4. The following infinite sum cannot be computed symbolically:

>> sum(ln(i)/i^5, i = 1..infinity)

/ ln(i) \
sum| -----, i = 1..infinity |

| 5 |
\ i /

We obtain a floating point approximation via float:

>> float(%)

0.02857378051

1003

Alternatively, the function numeric::sum can be used directly. This is usually
much faster than applying float, since it avoids the overhead of sum attempting
to compute a symbolic representation:

>> numeric::sum(ln(i)/i^5, i = 1..infinity)

0.02857378051

Example 5. sum does not find a closed form for the following definite sum. It
returns a recurrence formula (see rec) for the sum instead:

>> sum(binomial(n, i)^3, i = 0..n)

/ / 2
| | 8 u2(n) (n + 1)

solve| rec| u2(n + 2) - ---------------- -
| | 2
\ \ (n + 2)

2
u2(n + 1) (21 n + 7 n + 16)
----------------------------, u2(n), {u2(0) = 1, u2(1) = 2}

2
(n + 2)

\ \
| |
| |
| |
/ /

Background:

A The function sum implements Abramov’s algorithm for rational expres-
sions, Gosper’s algorithm for hypergeometric expressions, and Zeilberger’s
algorithm for the definite summation of holonomic expressions.

sysname – the name of the operating system

sysname() returns information on the operating system on which MuPAD is
currently executed.

1004

Call(s):

A sysname(<Arch>)

Options:

Arch — makes sysname return more specific information on the
architecture

Return Value: a character string.

Related Functions: system

Details:

A sysname() returns one of the following strings:

• "UNIX" for UNIX and Linux operating systems,

• "MSDOS" for MSDOS operating systems including MS-Windows,

• "MACOS" for Apple Macintosh operating systems.

A sysname(Arch) returns a more specific name of the operating system as a
character string. On some architectures, this information is not available
and the same string is returned as by sysname().

A sysname is a function of the system kernel.

Example 1. On an MS-DOS or MS-Windows operating system (Microsoft),
sysname returns the following values:

>> sysname(), sysname(Arch)

"MSDOS", "MSDOS"

Example 2. On a current Linux operating system such as Linux 2.0 using
libc-6.0, sysname returns the following values:

>> sysname(), sysname(Arch)

"UNIX", "linux"

1005

Example 3. On a Solaris operating system (SunOS, Sun Microsystems), sysname
returns the following values:

>> sysname(), sysname(Arch)

"UNIX", "Solaris"

Example 4. On an Apple Macintosh operating system, sysname returns the
following values:

>> sysname(), sysname(Arch)

"MACOS", "MACOS"

sysorder – compare objects according to the internal order

sysorder(object1, object2) returns TRUE if MuPAD’s internal order of object1
is less than or equal to the order of object2. Otherwise, FALSE is returned.

Call(s):

A sysorder(object1, object2)

Parameters:

object1, object2 — arbitrary MuPAD objects

Return Value: TRUE or FALSE.

Related Functions: _less, listlib::removeDupSorted, sort

Details:

A A unique internal order exists for almost all objects that are created in a
MuPAD session. sysorder compares two objects according to this internal
order.

The exceptions are sets and tables. They do not have a unique
internal order. This implies that also objects containing sets or
tables as (sub)operands do not have an unique internal order. Cf.
example 3.

!

1006

A One should not try and use the internal order to sort objects according to
specific criteria. E.g., its does not necessarily reflect the natural ordering
of numbers or strings. Further, the internal order may differ between
different MuPAD versions.

The only feature one may rely upon is its uniqueness. Cf. example 4.

A sysorder is a function of the system kernel.

Example 1. We give some examples how sysorder behaves in the current
MuPAD version. For nonnegative integer numbers, the internal order is equal
to the natural order. However, for rational numbers or negative integers, this
is not true:

>> sysorder(3, 4) = bool(3 <= 4),
sysorder(45, 33) = bool(45 <= 33),
sysorder(0, 4) = bool(0 <= 4)

TRUE = TRUE, FALSE = FALSE, TRUE = TRUE

>> sysorder(1/3, 1/4) <> bool(1/3 <= 1/4),
sysorder(-4, 2) <> bool(-4 <= 2),
sysorder(-4, -2) <> bool(-4 <= -2)

TRUE <> FALSE, FALSE <> TRUE, FALSE <> TRUE

Example 2. For character strings or names of identifiers, the internal order is
not lexicographical:

>> sysorder("abc", "baa"), sysorder("abc", "bab"),
sysorder("abc", "bac")

FALSE, FALSE, TRUE

>> sysorder(abc, baa), sysorder(abc, bab), sysorder(abc, bac)

FALSE, FALSE, TRUE

Example 3. There is no unique internal order for sets and tables:

>> sysorder({1, 2, 3}, {4, 5, 6}), sysorder({4, 5, 6}, {1, 2, 3})

FALSE, FALSE

>> sysorder(table("a" = 42), table("a" = 43)),
sysorder(table("a" = 43), table("a" = 42))

FALSE, FALSE

1007

Example 4. We give a simple application of sysorder. Suppose, we want to
implement a function f, say, whose only known property is its skewness f(-x)
= -f(x). Expressions involving f should be simplified automatically, e.g., f(x)
+ f(-x) should yield zero for any argument x. To achieve this, we use sysorder
to decide, whether a call f(x) should return f(x) or -f(-x):

>> f := proc(x) begin
if sysorder(x, -x) then

return(-procname(-x))
else return(procname(x))
end_if;

end_proc:

For numerical arguments, f prefers to rewrite itself with positive arguments:

>> f(-3), f(3), f(-4.5), f(4.5), f(-2/3), f(2/3)

-f(3), f(3), -f(4.5), f(4.5), -f(2/3), f(2/3)

For other arguments, the result is difficult to predict:

>> f(x), f(-x), f(sqrt(2) + 1), f(-sqrt(2) - 1)

1/2 1/2
-f(-x), f(-x), - f(- 2 - 1), f(- 2 - 1)

With this implementation, expressions involving f simplify automatically:

>> f(x) + f(-x) - f(3)*f(x) + f(-3)*f(-x) + sin(f(7)) + sin(f(-7))

0

>> delete f:

system – execute a command of the operating system

system("command") executes a command of the operating system or a program,
respectively.

Call(s):

A system("command")

A !command

Parameters:
"command" — a command of the operating system or a name of a

program as a MuPAD character string

1008

Return Value: the “error code”: an integer.

Related Functions: sysname

Details:

A !command is almost equivalent to system("command"); however, !command
does not return any value to the MuPAD session.

A The syntax !command is allowed during interactive input only, not when
reading MuPAD input from a file. “!” must be the first character on the
input line.

A system is not available in all MuPAD versions. In particular, versions
running under a Windows operating system do not support this function.
If not available, a call to system results in the following error message:

Error: Function not available for this client [system].

A system("command") sends the command to the operating system. E.g.,
this command may start another application program on the computer.
The return value 0 indicates that the command was executed success-
fully. Otherwise, an integer error code is returned which depends on the
operating system and the command.

A If the called command writes output to stderr on UNIX systems, the
output will go to MuPAD’s stderr. If system is called in XMuPAD, the
output will be redirected to the shell which called XMuPAD.

A system is a function of the system kernel.

Example 1. On a UNIX or Linux system, the date command is executed.
The command output is printed to the screen, the error code 0 for successful
execution is returned to the MuPAD session:

>> errorcode := system("date"):

Fri Sep 29 14:42:13 MEST 2000

>> errorcode

0

Now the date command is called with the command line option ’+%m’ in
order to display the current month only:

>> errorcode := system("date ’+%m’"):

09

1009

Missing the prefix ’+’ in the command line option of date, date and there-
fore system returns an error code. Note that the error output goes to stderr:

>> system("date ’%m’")

date: invalid date ’%m’

1

>> delete errorcode:

Example 2. The output of a program started with the system command
cannot be accessed in MuPAD directly, but it can be redirected into a file and
then be read using the read or ftextinput command:

>> system("echo communication example > comm_file"):
ftextinput("comm_file")

"communication example"

>> system("rm -f comm_file"):

table – create a table

table() creates a new empty table.

table(index1 = entry1, index2 = entry2, ...) creates a new table with
the given indices and entries.

Call(s):

A table()

A table(index1 = entry1, index2 = entry2, ...)

Parameters:
index1, index2, ... — the indices: arbitrary MuPAD objects
entry1, entry2, ... — the corresponding entries: arbitrary MuPAD

objects

Return Value: an object of type DOM_TABLE.

Related Functions: _assign, _index, array, assignElements, delete,
DOM_ARRAY, DOM_LIST, DOM_TABLE, indexval

1010

Details:

A In MuPAD, tables are the most flexible objects for storing data. In contrast
to arrays or lists, arbitrary MuPAD objects can be used as indices. Indexed
access to table entries is fast and nearly independent of the size of the
table. Thus, tables are suitable containers for large data.

A For a table T, say, an indexed call T[index] returns the corresponding
entry. If no such entry exists, the indexed expression T[index] is returned
symbolically.

A An indexed assignment of the form T[index] := entry adds a new entry
to an existing table T or overwrites an existing entry associated with the
index.

A table is used for the explicit creation of a table. There also is the following
mechanism for creating a table implicitly.

If the value of an identifier T, say, is neither a table nor an array nor a
list, then an indexed assignment T[index] := entry is equivalent to T
:= table(index = entry). I.e., implicitly, a new table with one entry
is created. Cf. example 2.

If the value of T was either a table or an array or a list, then the in-
dexed assignment only inserts a new entry without changing the type of
T implicitly.

A Table entries can be deleted with the function delete. Cf. example 3.

A table is a function of the system kernel.

Example 1. The following call creates a table with two entries:

>> T := table(a = 13, c = 42)

table(
c = 42,
a = 13

)

The data may be accessed via indexed calls. Note the symbolic result for the
index b which does not have a corresponding entry in the table:

>> T[a], T[b], T[c]

13, T[b], 42

Entries of a table may be changed via indexed assignments:

>> T[a] := T[a] + 10: T

1011

table(
c = 42,
a = 23

)

Expression sequences may be used as indices or entries, respectively. Note,
however, that they have to be enclosed in brackets when using them as input
parameters for table:

>> T := table((a, b) = "hello", a + b = (50, 70))

table(
a + b = (50, 70),
(a, b) = "hello"

)

>> T[a + b]

50, 70

Indexed access does not require additional brackets:

>> T[a, b] := T[a, b]." world": T

table(
a + b = (50, 70),
(a, b) = "hello world"

)

>> delete T:

Example 2. Below, a new table is created implicitly by an idexed assigment
using an identifier T without a value:

>> delete T: T[4] := 7: T

table(
4 = 7

)

>> delete T:

1012

Example 3. Use delete to delete entries:

>> T := table(a = 1, b = 2, (a, b) = (1, 2))

table(
(a, b) = (1, 2),
b = 2,
a = 1

)

>> delete T[b], T[a, b]: T

table(
a = 1

)

>> delete T:

taylor – compute a Taylor series expansion

taylor(f, x = x0) computes the first terms of the Taylor series of f with
respect to the variable x around the point x0.

Call(s):

A taylor(f, x < = x0> <, order>)

Parameters:
f — an arithmetical expression representing a function in x
x — an identifier
x0 — the expansion point: an arithmetical expression; if not

specified, the default expansion point 0 is used.
order — the number of terms to be computed: a nonnegative integer;

the default order is given by the environment variable ORDER
(default value 6).

Return Value: an object of domain type Series::Puiseux or a symbolic
expression of type "taylor".

Side Effects: The function is sensitive to the environment variable ORDER,
which determines the default number of terms in series computations.

Overloadable by: f

Related Functions: asympt, diff, limit, O, series, Series::Puiseux,
Type::Series

1013

Details:

A taylor tries to compute the Taylor series of f around x = x0. Three
cases can occur:

1. taylor is able to compute the corresponding Taylor series. In this
case, the result is a series expansion of domain type Series::Puiseux.
Use expr to convert it to an arithmetical expression of domain type
DOM_EXPR. Cf. example 1.

2. taylor is able to decide that the corresponding Taylor series does
not exist. In this case, an error is raised. Cf. example 2.

3. taylor is not able to determine whether the corresponding Taylor
series exists or not. Internally, the function series is called; it re-
turns a symbolical call. In this case, also taylor returns a symbolic
expression of type "taylor". Cf. example 3.

A Mathematically, the expansion computed by taylor is valid in some open
disc around the expansion point in the complex plane.

A If x0 is complexInfinity, then an expansion around the complex infinity,
i.e., the north pole of the Riemann sphere, is computed. If x0 is infinity
or -infinity, a directed series expansion valid along the real axis is
computed.

Such an expansion is computed as follows: The series variable x in f is
replaced by x = ±1/u. Then a directed series expansion at u = 0 from
the right is computed. If x0 = complexInfinity, then an undirected
expansion around u = 0 is computed. Finally, u = ±1/x is substituted in
the result.

Mathematically, the result of an expansion around complexInfinity or
±infinity is a power series in 1/x. Cf. example 4.

A The number of requested terms for the expansion is order if specified.
Otherwise, the value of the environment variable ORDER is used. You can
change the default value 6 by assigning a new value to ORDER.

The number of terms is counted from the lowest degree term on for finite
expansion points, and from the highest degree term on for expansions
around infinity, i.e., “order” has to be regarded as a “relative truncation
order”.

Note, however, that the actual number of terms in the resulting
series expansion may differ from the requested number of terms.
See the help page of series for details and examples.

!

A taylor uses the more general series function series to compute the
Taylor expansion. See the corresponding help page for series for details
about the parameters and the data structure of a Taylor series expansion.

1014

Example 1. We compute a Taylor series around the default point 0:

>> s := taylor(exp(x^2), x)

4 6
2 x x 8

1 + x + -- + -- + O(x)
2 6

The result of taylor is of the following domain type:

>> domtype(s)

Series::Puiseux

If we apply the function expr to a series, we get an arithmetical expression
without the order term:

>> expr(s); domtype(%)

4 6
2 x x
x + -- + -- + 1

2 6

DOM_EXPR

>> delete s:

Example 2. A Taylor series expansion of f(x) = 1
x2−1

around x = 1 does not
exist. Therefore, taylor responds with an error message:

>> taylor(1/(x^2 - 1), x = 1)

Error: does not have a Taylor series expansion, try ’series’ [\
taylor]

Following the advice given in this error message, we try series to compute a
more general series expansion. A Laurent expansion does exist:

>> series(1/(x^2 - 1), x = 1)

2 3 4
1 (x - 1) (x - 1) (x - 1) (x - 1)

--------- - 1/4 + ------- - -------- + -------- - -------- +
2 (x - 1) 8 16 32 64

5
O((x - 1))

1015

Example 3. If a Taylor series expansion cannot be computed, then the func-
tion call with evaluated arguments is returned symbolically together with a
warning:

>> taylor(1/exp(x^a), x = 0)

Warning: could not compute Taylor series expansion; try ’serie\
s’ with option ’Left’, ’Right’, or ’Real’ for a more general e\
xpansion [taylor]

/ 1 \
taylor| -------, x = 0 |

| a |
\ exp(x) /

In this example, also series returns a symbolic function call. Even if you try
one of the proposed options, series is not able to compute a series expansion.

Here is another example where no Taylor expansion can be computed. How-
ever, series with an optional argument yields a more general type of expansion
in this case:

>> taylor(psi(1/x), x = 0)

Warning: could not compute Taylor series expansion; try ’serie\
s’ with option ’Left’, ’Right’, or ’Real’ for a more general e\
xpansion [taylor]

/ / 1 \ \
taylor| psi| - |, x = 0 |

\ \ x / /

>> series(psi(1/x), x = 0, Right)

2 4
x x x 6

- ln(x) - - - -- + --- + O(x)
2 12 120

Example 4. This is an example of a directed Taylor expansion along the real
axis around infinity:

>> taylor(exp(1/x), x = infinity)

1 1 1 1 1 / 1 \
1 + - + ---- + ---- + ----- + ------ + O| -- |

x 2 3 4 5 | 6 |
2 x 6 x 24 x 120 x \ x /

1016

In fact, this is even an undirected expansion:

>> taylor(exp(1/x), x = complexInfinity)

1 1 1 1 1 / 1 \
1 + - + ---- + ---- + ----- + ------ + O| -- |

x 2 3 4 5 | 6 |
2 x 6 x 24 x 120 x \ x /

Changes:

A Taylor expansions around complexInfinity are now possible.

tbl2text – concatenate the strings in a table

tbl2text concatenates all entries of a table of character strings.

Call(s):

A tbl2text(strtab)

Parameters:

strtab — a table of character strings

Return Value: a character string.

Related Functions: _concat, coerce, expr2text, int2text, text2expr,
text2list, text2tbl

Details:

A The table must be indexed by 1, 2, 3 etc. All entries must be character
strings. They are concatenated in the order of their indices.

A tbl2text restores strings split by text2tbl.

A tbl2text is a function of the system kernel.

1017

Example 1. A character string can be created from an arbitrary number of
table entries:

>> tbl2text(table(1 = "Hell", 2 = "o", 3 = " ", 4 = "world."))

"Hello world."

tcoeff – the trailing coefficient of a polynomial

tcoeff(p) returns the trailing coefficient of the polynomial p.

Call(s):

A tcoeff(p <, vars> <, order>)

Parameters:
p — a polynomial of type DOM_POLY or a polynomial expression
vars — a list of indeterminates of the polynomial: typically,

identifiers or indexed identifiers
order — the term ordering: either LexOrder , or DegreeOrder , or

DegInvLexOrder , or a user-defined term ordering of type
Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder .

Return Value: an element of the coefficient domain of the polynomial or
FAIL.

Overloadable by: p

Related Functions: coeff, collect, degree, degreevec, ground, lcoeff,
ldegree, lmonomial, lterm, nterms, nthcoeff, nthmonomial, nthterm, poly,
poly2list

Details:

A The argument p can either be a polynomial expression, or a polynomial
generated by poly, or an element of some polynomial domain overloading
tcoeff.

A If a list of indeterminates is provided, then p is regarded as a polynomial
in these indeterminates. Note that the specified list does not have to
coincide with the indeterminates of the input polynomial. Cf. example 1.

1018

A The returned coefficient is “trailing” with respect to the lexicographical
ordering, unless a different ordering is specified via the argument order.
Cf. example 2.

A The result of tcoeff is not fully evaluated. Evaluation can be enforced
by the function eval. Cf. example 3.

A tcoeff returns FAIL if the input polynomial cannot be converted to a
polynomial in the specified indeterminates. Cf. example 4.

A With the ordering LexOrder , tcoeff calls a fast kernel function. Other
orderings are handled by slower library functions.

Example 1. We demonstrate how the indeterminates influence the result:

>> p := 2*x^2*y + 3*x*y^2:
tcoeff(p), tcoeff(p, [x, y]), tcoeff(p, [y, x])

2, 3, 2

Note that the indeterminates passed to tcoeff will be used, even if the poly-
nomial provides different indeterminates :

>> p := poly(2*x^2*y + 3*x*y^2, [x, y]):
tcoeff(p), tcoeff(p, [x, y]), tcoeff(p, [y, x]),
tcoeff(p, [y]), tcoeff(p, [z])

2 2 2
3, 3, 2, 2 x , 2 x y + 3 x y

>> delete p:

Example 2. We demonstrate how various orderings influence the result:

>> p := poly(5*x^4 + 4*x^3*y + 3*x^2*y^3*z, [x, y, z]):
tcoeff(p), tcoeff(p, DegreeOrder), tcoeff(p, DegInvLexOrder)

3, 4, 5

The following call uses the reverse lexicographical order on 3 indeterminates:

>> tcoeff(p, Dom::MonomOrdering(RevLex(3)))

5

>> delete p:

1019

Example 3. The result of tcoeff is not fully evaluated:

>> p := poly(27*x^2 + a*x, [x]): a := 5:
tcoeff(p, [x]), eval(tcoeff(p, [x]))

a, 5

>> delete p, a:

Example 4. We define a polynomial over the integers modulo 7:

>> p := poly(3*x, [x], Dom::IntegerMod(7)): tcoeff(p)

3 mod 7

This polynomial cannot be regarded as a polynomial with respect to another
indeterminate, because the“coefficient”3*x cannot be interpreted as an element
of the coefficient ring Dom::IntegerMod(7):

>> tcoeff(p, [y])

FAIL

>> delete p:

testargs – decide whether procedure arguments should be tested

Inside a procedure, testargs indicates whether the procedure was called on
the interactive level.

Call(s):

A testargs()

A testargs(b)

Parameters:

b — TRUE or FALSE

Return Value: TRUE or FALSE.

Related Functions: proc, testtype, Pref::typeCheck

1020

Details:

A Checking the input parameters of a procedure may be costly. For this
reason, most functions of the MuPAD libraries are implemented according
to the following philosophy:

If a procedure is called on the interactive level, i.e., if its parameters are
supplied interactively by the user, then the parameters should be checked.
If the input parameters do not comply with the documented specification
of the procedure, then appropriate error messages should be returned to
notify the user of wrong usage.

If the procedure is called by another procedure, then no check of the para-
meters should be performed to improve efficiency. The calling procedure
is supposed to make sure that appropriate parameters are passed.

testargs is the tool to check whether the arguments should be tested:
called inside the body of a procedure, testargs() returns TRUE if the
procedure was called on the interactive level. Otherwise, it returns FALSE.

A testargs has two modes. In the “standard mode”, its functionality is as
described above. In the “debugging mode”, the call testargs() always
returns TRUE. This supports the debugging of procedures: any function
using testargs checks its parameters and returns useful error messages
if called in an inappropriate way.

The call testargs(TRUE) switches to the “debugging mode”, i.e., para-
meter testing is switched on globally.

The call testargs(FALSE) switches to the “standard mode”, i.e., para-
meter testing is used only on the interactive level.

The call testargs(b) returns the previously set value.

A Checking the input parameters of a procedure can also be controlled with
the function Pref::typeCheck.

A testargs is a function of the system kernel.

Example 1. The following example demonstrates how testargs should be
used inside a procedure. The function p is to generate a sequence of n zeroes;
its argument should be a positive integer:

>> p := proc(n)
begin

if testargs() then
if not testtype(n, Type::PosInt) then

error("expecting a positive integer");
end_if;

end_if;
return(0 $ n)

end_proc:

1021

Its argument is checked when p is called on the interactive level:

>> p(13/2)

Error: expecting a positive integer [p]

Calling p from within a procedure with an inappropriate parameter does not
invoke the argument testing. The following error message is not issued by p. It
is caused by the attempt to evaluate 0 $ n:

>> f := proc(n) begin p(n) end_proc: f(13/2)

Error: Illegal argument [_seqgen];
during evaluation of ’p’

We switch on the “debugging mode” of testargs:

>> testargs(TRUE):

Now also a non-interactive call to p produces an informative error message:

>> f(13/2)

Error: expecting a positive integer [p]

We clean up, restoring the “standard mode” of testargs:

>> testargs(FALSE): delete f, g:

testtype – syntactical type checking

testtype(object, T) checks whether the object is syntactically of type T.

Call(s):

A testtype(object, T)

Parameters:
object — any MuPAD object
T — a type object

Return Value: TRUE or FALSE.

Overloadable by: object, T

Related Functions: coerce, domtype, hastype, is, type, Type

1022

Details:

A The type object T may be either a domain type such as DOM_INT, DOM_EXPR
etc., a string as returned by the function type, or a Type object. The latter
are probably the most useful predefined values for the argument T.

A testtype performs a purely syntactical check. Use is for se-
mantical checks taking into account properties of identifiers! !
A See the “background” section below for details on the overloading mech-

anism.

A testtype is a function of the system kernel.

Example 1. The following call tests, whether the first argument is an expres-
sion. Expressions are basic objects of domain type DOM_EXPR:

>> testtype(x + y, DOM_EXPR)

TRUE

The type function distinguishes expressions. The corresponding type string is
a valid type object for testtype:

>> type(x + y), testtype(x + y, "_plus")

"_plus", TRUE

The following call tests, whether the first argument is an integer by querying,
whether it is of domain type DOM_INT:

>> testtype(7, DOM_INT)

TRUE

Note that testtype performs a purely syntactical test. Mathematically, the
integer 7 is a rational number. However, the domain type DOM_RAT does not
encompass DOM_INT:

>> testtype(7, DOM_RAT)

FALSE

The Type library provides more flexible type objects. E.g., Type::Rational
represents the union of DOM_INT and DOM_RAT:

>> testtype(7, Type::Rational)

TRUE

1023

The number 7 matches other types as well:

>> testtype(7, Type::PosInt), testtype(7, Type::Prime),
testtype(7, Type::Numeric), testtype(7, Type::Odd)

TRUE, TRUE, TRUE, TRUE

Example 2. Subtypes of expressions can be specified via character strings:

>> type(f(x)), type(sin(x))

"function", "sin"

>> testtype(sin(x), "function"), testtype(sin(x), "sin"),
testtype(sin(x), "cos")

TRUE, TRUE, FALSE

Example 3. We demonstrate how to implement a customized type object
“div3” which is to represent integer multiples of 3. One has to create a new
domain with a “testtype” attribute:

>> div3 := newDomain("divisible by 3?"):
div3 := slot(div3, "testtype",

proc(x) begin
return(testtype(x/3, Type::Integer))

end_proc):

Via overloading, the command testtype(object, div3) calls this slot:

>> testtype(5, div3), testtype(6, div3), testtype(sin(1), div3)

FALSE, TRUE, FALSE

>> delete div3:

Background:

A Overloading of testtype works as follows: First, it is checked whether
domtype(object) = T or type(object) = T holds. If so, testtype re-
turns TRUE.

A Next, the method "testtype" of the domain object::dom is called with
the arguments object, T. If this method returns a result other than FAIL,
then testtype returns this value.

1024

A If the method object::dom::testtype does not exist or if this method
returns FAIL, then overloading by the second argument is used:

• If T is a domain, then the method "testtype" of T is called with
the arguments object, T.

• If T is not a domain, then the method "testtype" of T::dom is
called with the arguments object, T.

text2expr – convert a character string to an expression

text2expr(text) interprets the character string text as MuPAD input and
generates the corresponding object.

Call(s):

A text2expr(text)

Parameters:

text — a character string

Return Value: a MuPAD object.

Related Functions: coerce, expr2text, input, int2text, tbl2text,
text2int, text2list, text2tbl

Details:

A The text must correspond to syntactically correct MuPAD input. Oth-
erwise, text2expr produces an error. Typically, strings created from
MuPAD objects via expr2text can be reconverted to corresponding ob-
jects.

A The object is returned without being further evaluated. Evaluation can
be enforced using the function eval.

A The text does not need to be terminated with a “;” or a “:” character,
respectively.

A text2expr is a function of the system kernel.

1025

Example 1. A character string is converted to a simple expression. The newly
created expression is not evaluated automatically:

>> text2expr("21 + 21")

21 + 21

It may be evaluated via eval:

>> eval(%)

42

Example 2. A character string is converted to a statement sequence:

>> text2expr("x:= 3; x + 2 + 1"); eval(%)

(x := 3;
x + 2 + 1)

6

>> x

3

>> delete x:

Example 3. A matrix is converted to a string:

>> matrix([[a11, a12], [a21, a22]])

+- -+
| a11, a12 |
| |
| a21, a22 |
+- -+

>> expr2text(%)

"Dom::Matrix()(array(1..2, 1..2, (1,1) = a11, (1,2) = a12, (2,\
1) = a21, (2,2) = a22))"

The string is reconverted to a matrix:

>> text2expr(%)

1026

Dom::Matrix()(array(1..2, 1..2, (1, 1) = a11, (1, 2) = a12,

(2, 1) = a21, (2, 2) = a22))

>> eval(%)

+- -+
| a11, a12 |
| |
| a21, a22 |
+- -+

text2int – convert a character string to an integer

text2int(text, b) converts a character string corresponding to an integer in
b-adic representation to an integer of type DOM_INT.

Call(s):

A text2int(text <, b>)

Parameters:
text — a character string
b — the base: an integer between 2 and 36. The default base is 10.

Return Value: an integer.

Related Functions: coerce, expr2text, genpoly, int2text,
numlib::g_adic, tbl2text, text2expr, text2list, text2tbl

Details:

A The text is interpreted as a b-adic representation. Its must consist of
the first b characters in 0, 1, . . . , 9, A,B, . . . , Z. Also lower case letters
a, b, . . . , z are accepted. For bases larger than 10, the letters can be used
to represent the b-adic digits larger than 9: a = A = 10, . . . , z = Z = 35.

A text2int is the inverse of int2text.

A text2int is a function of the system kernel.

1027

Example 1. Relative to the default base 10, text2int provides a mere data-
type conversion from DOM_STRING to DOM_INT:

>> text2int("123"), text2int("-45678")

123, -45678

Example 2. The characters of the input string are interpreted as digits with
respect to the specified base, the return value is a standard MuPAD integer
represented with respect to the decimal system. The following example converts
integers from the base 2 and 16, respectively, to the base 10:

>> text2int("101", 2), text2int("101", 16)

5, 257

The digit “3” does not exist in a binary representation:

>> text2int("103", 2)

Error: Illegal argument [text2int]

Example 3. For bases larger than 10, letters represent the b-adic digits larger
than 9:

>> text2int("3B9ACA00", 16), text2int("Z", 36) = text2int("z", 36)

1000000000, 35 = 35

text2list, text2tbl – split a character string into substrings

text2list splits a character string into a list of substrings.

text2tbl splits a character string into a table of substrings.

Call(s):

A text2list(text, separators <, Cyclic>)

A text2tbl(text, separators <, Cyclic>)

Parameters:
text — the text to be analyzed: a character string
separators — delimiters: a list of character strings. The empty string

"" is not accepted as a delimiter.

1028

Options:

Cyclic — the delimiter list is used cyclicly

Return Value: a list, respectively a table, of character strings.

Related Functions: coerce, expr2text, int2text, tbl2text, text2expr,
text2int

Details:

A Both functions split a string into substrings, using the strings in the list
separators as delimiters. text2list returns a list containing the sub-
strings; text2tbl returns a table, using the indices 1, 2, 3 etc.

A Without the option Cyclic , the text is split as follows. The first occur-
rence of one of the delimiters in separators is located in text. If no
delimiter is found, the full text is returned as the only substring. Oth-
erwise, the substring up to the delimiter defines the first substring. The
delimiter is the second substring. The remaining text is processed as
above until there are no more characters left.

Without Cyclic , the result does not depend on the order of the delimiters.

A With the option Cyclic , the first delimiter in separators is used to
identify the first substring. The delimiter itself is the second substring.
Then the second delimiter in separators is used to identify the third
substring etc.

After using the last delimiter of the list, the first one is used again, until
the whole text is processed or until the current delimiter is not found in
the remaining text.

With Cyclic , the result depends on the order of the delimiters.

A tbl2text restores strings split by text2tbl.

A text2list, text2tbl are functions of the system kernel.

Example 1. The following example demonstrates the difference in calling
text2list with and without the option Cyclic :

>> text2list("This is a simple example!", ["is", "mp"])

["Th", "is", " ", "is", " a si", "mp", "le exa", "mp", "le!"]

>> text2list("This is a simple example!", ["is", "mp"], Cyclic)

["Th", "is", " is a si", "mp", "le example!"]

1029

Example 2. The following example demonstrates the difference in calling
text2tbl with and without the option Cyclic :

>> text2tbl("This is a simple example!", ["is", "mp"])

table(
9 = "le!",
8 = "mp",
7 = "le exa",
6 = "mp",
5 = " a si",
4 = "is",
3 = " ",
2 = "is",
1 = "Th"

)

>> text2tbl("This is a simple example!", ["is", "mp"], Cyclic)

table(
5 = "le example!",
4 = "mp",
3 = " is a si",
2 = "is",
1 = "Th"

)

textinput – interactive input of text

textinput allows interactive input of text.

Call(s):

A textinput(<prompt1>)

A textinput(<prompt1,> x1, <prompt2,> x2, ...)

Parameters:
prompt1, prompt2, ... — input prompts: character strings
x1, x2, ... — identifiers

Return Value: the last input, converted to a character string.

Related Functions: finput, fname, fprint, fread, ftextinput, input,
print, read, text2expr, write

1030

Details:

A textinput() displays the prompt “Please enter text :” and waits for
input by the user. The input is converted to a character string, which is
returned as the function’s return value.

A textinput(prompt1) uses the character string prompt1 instead of the
default prompt “Please enter text :”.

A textinput(<prompt1,> x1) converts the input to a character string and
assigns this string to the identifier x1. The default prompt is used, if no
prompt string is specified.

A Several input values can be read with a single textinput command. Each
identifier in the sequence of arguments makes textinput return a prompt,
waiting for input to be assigned to the identifier. A character string
preceeding the identifier in the argument sequence replaces the default
prompt. Cf. example 3. Arguments that are neither prompt strings nor
identifiers are ignored.

A Using a terminal version of MuPAD, the input must be terminated with
the control character <CTRL-D> (the cursor has to be positioned behind
the last character of the current input line). Graphical user interfaces of
MuPAD may open a separate window for reading the input.

A The input may extend over several lines. In the output string, MuPAD
uses the character \n (carriage return) to separate lines.

A Input characters with a leading \ are not interpreted as control characters,
but as two separate characters.

A The identifiers x1 etc. may have values. These are overwritten by textinput.

A textinput is a function of the system kernel.

Example 1. The default prompt is displayed, the input is converted to a
character string and returned:

>> textinput()

Please enter text input: << myinput >>

"myinput"

1031

Example 2. A user-defined prompt is used, the input is assigned to the iden-
tifier x:

>> textinput("enter your name: ", x)

enter your name: << Turing >>

"Turing"

>> x

"Turing"

>> delete x:

Example 3. If several values are to be read, separate prompts can be defined
for each value:

>> textinput("She: ", hername, "He: ", hisname)

She: << Bonnie >>
He: << Clyde >>

"Clyde"

>> hername, hisname

"Bonnie", "Clyde"

>> delete hername, hisname:

rtime, time – measure real time and CPU time

rtime() returns the real time in milliseconds that elapsed since the start of the
current MuPAD session.

rtime(a1, a2, ...) returns the real time needed to evaluate all arguments.

time() returns the total CPU time in milliseconds that was spent by the current
MuPAD process.

time(a1, a2, ...) returns the CPU time needed by the current MuPAD pro-
cess to evaluate all arguments.

1032

Call(s):

A rtime()

A rtime(a1, a2, ...)

A time()

A time(a1, a2, ...)

Parameters:

a1, a2, ... — arbitrary MuPAD objects

Return Value: a nonnegative integer giving the elapsed time in milliseconds.

Related Functions: prog::profile

Details:

A The result of rtime is the real time. Thus, rtime can be used to measure
the total time spent by the MuPAD process as well as by external processes
spawned from inside the MuPAD session. Note, that an interactive call of
rtime() is not very useful, since the idle time of the user is included. How-
ever, rtime(a1, a2, ...) often yields a useful and more realistic timing
than time(a1, a2, ...) if the evaluation of the arguments spawns ex-
ternal processes. Such a situation may arise in a numerical computation
because some routines of the numeric library call external numerical tools
using hardware floats. Cf. example 4.

A The result of time() comprises all the computation time spent by the
MuPAD process. This includes the time for system initialization and read-
ing input (parsing). However, it excludes the time spent by other external
processes, even if they were spawned from inside the MuPAD session or
if they were started by a system command. Further, in an interactive
session, the idle time between the execution of MuPAD commands is ex-
cluded.

A If no external process besides MuPAD are running, the timings returned
by rtime(a1, a2, ...) and time(a1, a2, ...) roughly coincide.

A The time returned by time is computed in a system-dependent way, usu-
ally counting the number of clock ticks of the system clock. Hence, the
result is a multiple of the system’s time unit and cannot be more precise
than 1 such unit. E.g., the time unit is 10 milliseconds for many UNIX
systems.

A On computers without “time-sharing”, such as the Macintosh, real time
and CPU time roughly coincide.

A rtime and time are functions of the system kernel.

1033

Example 1. This example shows how to do a time measurement and assign
the computed value to an identifier at the same time. Note that the assignment
needs extra parenthesis when passed as argument:

>> time((a := int(exp(x)*sin(x), x)))

220

>> a

sin(x) exp(x) cos(x) exp(x)
------------- - -------------

2 2

>> delete a:

Alternatively, one may time groups of statements in the following way:

>> t0 := time():
command1
command2
...
time() - t0

Example 2. Here we use rtime to compute the elapsed hours, minutes and
seconds since this session was started:

>> t := rtime()/1000:
h := trunc(t/3600):
m := trunc(t/60 - h*60):
s := trunc(t - m*60 - h*3600):

>> print(Unquoted, "This session is running for " .
h . " hours, " .
m . " minutes and " .
s . " seconds.")

This session is running for 0 hours, 0 minutes and 10 seconds.

>> delete t, h, m, s:

Example 3. To obtain a nicer output, the measured time can be multiplied
with the appropriate time unit:

>> time((a := isprime(2^1000 - 1)))*msec

1034

700 msec

>> time((a := isprime(2^1000 - 1)))*sec/1000.0

0.7 sec

>> delete a:

Example 4. The routine numeric::inverse for inverting numerical matrices
tries to use an external hardware floating point tool. Assuming this tool to be
available, the timings for inverting a large matrix may be as follows:

>> A := linalg::hilbert(300):
time(numeric::inverse(A))*msec,
rtime(numeric::inverse(A))*msec

1210 msec, 2013 msec

The real time MuPAD needs for sending the matrix and receiving the inverse
is about 1.2 seconds. Ignoring other external processes, the external floating
point tool needs about 0.8 seconds to invert the matrix. This adds up to the
time indicated by rtime.

>> delete A:

Background:

A On a UNIX system, the time is measured using a system call to the
function ’time’ on that system.

Changes:

A In previous releases, the last three digits of the time returned by rtime
were always 0, i.e., the precision of the time measured by rtime was only
one second. Now, rtime produces more precise results.

traperror – trap errors

traperror(object) traps errors produced by the evaluation of object.

traperror(object, t) does the same. Moreover, it stops the evaluation if it
is not finished after a real time of t seconds.

1035

Call(s):

A traperror(object)

A traperror(object, t)

Parameters:
object — any MuPAD object
t — the time limit: a nonnegative integer

Return Value: a nonnegative integer.

Related Functions: error, prog::error, lasterror

Details:

A traperror traps errors caused by the evaluation of the object. Syntactical
errors, i.e., errors on parsing the object, cannot be caught. The same holds
true for fatal errors causing the termination of MuPAD.

A traperror returns the error code 0 if no error happened. The error code is
1320 if the given time limit t is exceeded (’Execution time exceeded’).
The error code is 1028 if the error was raised by the command error.

A If traperror has no time limit set and an ’Execution time exceeded’
error is raised by an enclosing traperror(..., t) command, then this er-
ror is not trapped by the inner traperror. It is trapped by the traperror
call that has set the time limit. Cf. example 4.

A The object can be an assignment which, for syntactical reasons, must
be enclosed in additional brackets. The following code fragment demon-
strates a typical application of traperror:

if traperror((x := SomeErrorProneFunction())) = 0 then
DoSomethingWith(x);

else RespondToTheError();
end_if;

A Use lasterror to reproduce the trapped error.

A traperror is a function of the system kernel.

Example 1. Errors that happen during the execution of kernel functions have
various error codes, depending on the problem. E.g., ’Division by zero’ pro-
duces the error code 1025:

>> y := 1/x: traperror(subs(y, x = 0))

1025

1036

>> lasterror()

Error: Division by zero [_power]

The following attempt to compute a huge floating point number fails because
of numerical overflow. The corresponding error code is 20:

>> traperror(exp(12345678.9))

20

>> lasterror()

Error: Overflow/underflow in arithmetical operation;
during evaluation of ’exp::float’

Example 2. All errors raised using the function error have the error code
1028. Errors during the execution of library functions are of this kind:

>> traperror(error("My error!"))

1028

>> lasterror()

Error: My error!

Example 3. We try to factor a polynomial, but give up after ten seconds:

>> traperror(factor(x^1000 + 4*x + 1), 10)

1320

>> lasterror()

Error: Execution time exceeded;
during evaluation of ’faclib::univ_mod_gcd’

Example 4. Here we have two nested traperror calls. The inner call contains
an unterminated loop and the outer call has a time limit of 2 seconds. When
the execution time is exceeded, this special error is not trapped by the inner
traperror call. Because of the error, print(1) is never executed:

>> traperror((traperror((while TRUE do 1 end)); print(1)), 2)

1037

1320

>> lasterror()

Error: Execution time exceeded

type – the type of an object

type(object) returns the type of the object.

Call(s):

A type(object)

Parameters:

object — any MuPAD object

Return Value: a domain type of type DOM_DOMAIN or a character string.

Overloadable by: object

Related Functions: coerce, domtype, hastype, testtype, Type

Details:

A If object is not an expression of domain type DOM_EXPR, then type(object)
is equivalent to domtype(object), i.e., type returns the domain type of
the object.

A If object is an expression of domain type DOM_EXPR, then its type is
determined by its 0-th operand (the “operator”). If the operator has a
"type" slot, then type returns this value, which usually is a string. If the
operator has no "type" slot, then type returns the string "function".

A In contrast to most other functions, type does not flatten arguments that
are expression sequences. Cf. example 4.

A type is a function of the system kernel.

Example 1. If an object is not an expression, its type equals its domain type:

>> type(3)

DOM_INT

1038

Example 2. The operator of a sum is _plus; the type slot of that operator is
"_plus":

>> type(x + y*z)

"_plus"

type evaluates its argument: thereby, the difference of x and y becomes the
sum of x and (-1)*y. Its type is not "_subtract", but "_plus":

>> type(x - y)

"_plus"

Example 3. If the operator of an expression is not a function environment
having a type slot, the expression is of type "function":

>> type(f(2))

"function"

Example 4. The following call to type is not regarded as a call with two
arguments, because expression sequences in the argument are not flattened:

>> type((2, 3))

"_exprseq"

unassume – delete the properties of an identifier

unassume(x) deletes the properties of the identifier x.

Call(s):

A unassume(x)

A unassume(<Global>)

Parameters:

x — an identifier or a list or a set of identifiers

Options:

Global — deletes the “global property”

1039

Return Value: the void object null().

Related Functions: assume, delete, getprop, is

Details:

A unassume serves for deleting properties of identifiers set via assume. See
?property for a short description of the property mechanism.

A If x is a list or a set of identifiers, then the properties of all specified
identifiers are deleted.

A The calls unassume() and unassume(Global) are equivalent. This de-
letes the “global property” which is used for all identifiers. See assume for
details on setting a global property.

A The command delete x deletes the value and the properties of the iden-
tifier x.

Example 1. Properties are attached to the identifiers x and y:

>> assume(x > 0): assume(y < 0): getprop(x), getprop(y)

> 0, < 0

>> sign(x), sign(y)

1, -1

unassume or delete deletes the properties:

>> unassume(x): delete y: getprop(x), getprop(y)

x, y

>> sign(x), sign(y)

sign(x), sign(y)

The properties of several identifiers can be deleted simultaneously by passing a
list or a set to unassume:

>> assume(x > y): unassume([x, y]): getprop(x), getprop(y)

x, y

1040

Example 2. All identifiers are assumed to represent real numbers. We set the
corresponding global property:

>> assume(Global, Type::Real): getprop(x), getprop(y), getprop(z)

Type::Real, Type::Real, Type::Real

>> Re(x), Im(y), Re(x*y*z)

x, 0, x y z

unassume() or unassume(Global) deletes the global property:

>> unassume(): Re(x), Im(y), Re(x*y*z)

Re(x), Im(y), Re(x y z)

universe – the set-theoretical universe

universe represents the set-theoretical universe of all objects.

Related Functions: _union, _intersect, _minus, DOM_SET

Details:

A universe is the only element of the domain stdlib::Universe.

A The standard set operations such as union, intersection and subtraction
can be used with universe.

Example 1. We show some basic set operations involving universe:

>> universe union {a}

universe

>> universe intersect {a}

{a}

>> {a} minus universe

{}

1041

unloadmod – unload a module

unloadmod("modulename") unloads the dynamic module named modulename.

unloadmod() tries to unload all currently loaded dynamic modules.

Call(s):

A unloadmod("modulename" <, Force>)

A unloadmod()

Parameters:

"modulename" — the name of a module: a character string

Options:

Force — forces the module manager to unload a static module.

Return Value: the void object of type DOM_NULL.

Side Effects: Unloading the machine code of a module does not affect the
module domain. Accessing this module domain, the machine code of the cor-
responding module is reloaded automatically if needed. The function reset
unloads all dynamic modules.

Further Documentation: Dynamic Modules - User’s Manual and Program-
ming Guide for MuPAD 1.4, Andreas Sorgatz, Oct 1998, Springer Verlag,
Heidelberg, with CD-ROM, ISBN 3-540-65043-1.

Related Functions: external, loadmod, module::displace, module::new,
unexport

Details:

A unloadmod("modulename") unloads the machine code of the module from
the MuPAD process and the main memory.

A unloadmod produces an error if one tries to unload a static module without
using the option Force .

A unloadmod is a function of the system kernel.

1042

Example 1. Dynamic modules can be unloaded at runtime to save memory
resources or to change and re-compile the modules (rapid prototyping).

>> loadmod("stdmod"): unloadmod():

After unloading, the machine code is reloaded automatically if needed:

>> stdmod::which("stdmod")

"/usr/local/mupad/linux/modules/stdmod.mdm"

Background:

A The kernel functions external, loadmod, and unloadmod provide basic
tools for accessing modules. Extended facilities are available with the
module library.

A When calling a module function after its machine code was unloaded
or displaced, the corresponding machine code is reloaded automatically.
Here, in contrast to reloading the module using the function loadmod, the
module domain is not affected.

A Some operating systems do not support unloading machine code at runtime.
This, however, does not affect the usability of dynamic modules in any
way.

unprotect – remove protection of identifiers

unprotect(x) removes any write protection of the identifier x.

Call(s):

A unprotect(x)

Parameters:

x — an identifier

Return Value: the previous protection level of x: either ProtectLevelError
or ProtectLevelWarning or ProtectLevelNone (see protect).

Related Functions: protect

1043

Details:

A unprotect(x) is equivalent to protect(x, ProtectLevelNone).

A unprotect does not evaluate its argument. Cf. example 2.

Example 1. unprotect allows to assign values to system functions:

>> unprotect(sign): sign(x) := 1

1

However, we strongly advise not to change identifiers protected by the system.
We undo the previous assignment:

>> delete sign(x): protect(sign, ProtectLevelError):

Example 2. unprotect does not evaluate its argument. Here the identifier x
is unprotected and not its value y:

>> x := y: protect(y): unprotect(x): y := 1

Warning: protected variable y overwritten

1

>> unprotect(y): delete x, y:

Changes:

A The options None , Warning and Error of protect and thus the re-
turn values of unprotect were renamed to ProtectLevelNone , Protect-
LevelWarning and ProtectLevelError .

userinfo – print progress information

userinfo(n, message) prints a message if an information level larger or equal
to n is set via setuserinfo.

userinfo(n1..n2, message) prints a message if the information level set by
setuserinfo is between n1 and n2.

1044

Call(s):

A userinfo(<Text ,> <NoNL ,> n, message1, message2, ...)

A userinfo(<Text ,> <NoNL ,> n1..n2, message1, message2, ...)

Parameters:
n, n1, n2 — the information levels: positive integers
message1, message2, ... — arbitrary MuPAD objects. Typically,

character strings.

Options:

Text — do not separate the arguments by commas in the output
NoNL — do not separate the arguments by commas in the output, do

not start a new line after the output, and do not precede the
output by the string "Info: ".

Return Value: the void object of type DOM_NULL.

Side Effects: The formatting of the output of userinfo is sensitive to the
environment variable TEXTWIDTH.

Related Functions: print, setuserinfo, warning

Details:

A userinfo must not be used on the interactive level. It should be built into
the body of a procedure or of a domain method to print status information
such as the chosen algorithm, intermediate results etc. If a userinfo
command is built into a procedure by the name f, say, then it is activated
by setting an appropriate information level via setuserinfo(f, n). The
information is printed during subsequent calls to f.

A The print output consists of the evaluation of the message arguments, pos-
sibly followed by the name of the procedure (see the function setuserinfo).
Strings are printed without quotes. The pretty printer is not used. Un-
less one of the options Text or NoNL is given, the message arguments are
separated by commas in the output. Unless the option NoNL is given, the
print output is preceded by the string "Info: " and a new line is started
after the output.

A The information level of a single procedure, of all procedures of a domain,
or, of all procedures in general can be specified using setuserinfo. All
three levels may apply to a procedure simultaneously.

A Most of the functions in the MuPAD library provide status information
via userinfo. See example 3.

A userinfo is a function of the system kernel.

1045

Example 1. The function expr2text is useful for incorporating MuPAD ob-
jects in a text message:

>> f := proc(x)
begin
userinfo(2, "the argument is " . expr2text(x));
x^2

end_proc:

>> setuserinfo(f, 2, Name): f(12)

Info: the argument is 12 [f]

144

>> setuserinfo(f, 0): delete f:

Example 2. A call of the form userinfo(n, message) causes message to be
displayed if the information level is at least as high as n. If you want message
to be displayed only if the information level equals n, use a range that consists
of one point only:

>> f := proc()
begin
userinfo(2..2, "Infolevel = 2");
userinfo(2, "Infolevel >= 2");

end_proc:

>> setuserinfo(f, 2): f():

Info: Infolevel = 2
Info: Infolevel >= 2

>> setuserinfo(f, 3): f():

Info: Infolevel >= 2

>> setuserinfo(f, 0): delete f:

Example 3. By setting the information level of faclib to 5, we get informa-
tion on the algorithms used for factorization:

>> setuserinfo(faclib, 5): factor(x^2 + 2*x + 1)

1046

Info: faclib::monomial called with poly(x^2 + 2*x + 1, [x])
Info: Squarefree factorization (Yun’s algorithm) called

2
(x + 1)

>> setuserinfo(faclib, 0):

Background:

A userinfo does not evaluate the messages unless they are printed.

A The global table of information levels for all procedures can be obtained
by the call setuserinfo().

Changes:

A The option NoNL was added.

val – the value of an object

val(object) replaces every identifier in object by its value.

Call(s):

A val(object)

Parameters:

object — any MuPAD object

Return Value: the “evaluated” object.

Related Functions: eval, hold, level, LEVEL, MAXLEVEL

Details:

A val does not perform any simplification of the result.

A If the result of val is a set, duplicate elements are removed from that set.

A val does not work recursively, i.e., if the value of an identifier in turn
contains identifiers, then these are not replaced by their values. See ex-
ample 3.

1047

A val does not flatten its argument. Hence, an expression sequence is ac-
cepted as argument. Cf. example 2.

A val is a function of the system kernel.

Example 1. val replaces identifiers by their values, but does not call arith-
metical functions such as _plus:

>> a := 0: val(a*b + 4 + 0)

0 b + 4 + 0

Duplicate elements in sets are removed:

>> a := b: val({a, b, a*0})

{b, 0 b}

>> delete a:

Example 2. val does not flatten its argument, nor does it remove void objects
of type DOM_NULL:

>> a := null(): val((a, null()))

null(), null()

However, it is not legal to pass several arguments:

>> val(a, null())

Error: Wrong number of arguments [val]

>> delete a:

Example 3. val does not recursively substitute values for the identifiers:

>> delete a, b: a := b: b := c: val(a)

b

version – the version number of the MuPAD library

version() returns the version number of the installed MuPAD library.

1048

Call(s):

A version()

Return Value: the version number: a list of three nonnegative integers.

Related Functions: patchlevel, Pref::kernel

Details:

A The call Pref::kernel() returns the version number of the installed
MuPAD kernel.

A The version numbers of the kernel and the library may differ: version
refers to the library, whereas the call Pref::kernel() returns the version
number of the kernel.

Example 1. The version of this MuPAD library is:

>> version()

[2, 5, 0]

warning – print a warning message

warning(message) prints the warning message.

Call(s):

A warning(message)

Parameters:

message — a character string

Return Value: the void object of type DOM_NULL.

Side Effects: The formatting of the output of warning is sensitive to the
environment variable TEXTWIDTH.

Related Functions: error, print, userinfo

1049

Details:

A warning(message) prints the message with the prefix “Warning: ”.

A warning may be used to print information about potential problems in
an algorithm. E.g., it is used in limit to provide hints. Cf. example 3.

A warning is a function of the system kernel.

Example 1. A warning:

>> warning("You should not do this!"):

Warning: You should not do this!

Example 2. This example shows a simple procedure which divides two num-
bers. If the second argument is omitted, a warning is printed and the compu-
tation continues:

>> mydivide := proc(x, y)
begin
if args(0) < 2 then
warning("Denominator not given, using 1.");
y := 1;

end_if:
x/y

end_proc:
mydivide(10)

Warning: Denominator not given, using 1. [mydivide]

10

Example 3. The following integral cannot be written in closed form for general
values of a and b:

>> int(1/x, x=a..b)

Warning: Found potential discontinuities of the antiderivative.
Try option ’Continuous’ or use properties (?assume). [intlib::\
antiderivative]

/ 1 \
int| -, x = a..b |

\ x /

1050

The user can react to the warning by assuming some properties for a and b:

>> assume(1<a<b):
int(1/x, x=a..b)

ln(b) - ln(a)

>> assume(a<0<b): int(1/x, x=a..b)

undefined

>> unassume({a, b}):

write – write the values of variables into a file

write(filename) stores all assigned identifiers of the MuPAD session with their
current values in a file specified by filename.

write(filename, x1, x2, ...) stores the current values of the identifiers x1,
x2 etc.

write(n) and write(n, x1, x2, ...) store the data in the file associated
with the file descriptor n.

Call(s):

A write(<format>, filename)

A write(<format>, filename, x1, x2, ...)

A write(n)

A write(n, x1, x2, ...)

Parameters:
filename — the name of a file: a character string
x1, x2, ... — identifiers
n — a file descriptor provided by fopen: a nonnegative

integer

Options:

format — the write format: either Bin or Text . With Bin , the data
are stored in MuPAD’s binary format. With Text , standard
ASCII format is used. The default is Bin .

Return Value: the void object of type DOM_NULL.

1051

Side Effects: The function is sensitive to the environment variable WRITEPATH.
If this variable has a value, the file is created in the corresponding directory.
Otherwise, the file is created in the “working directory”.

Related Functions: fclose, fileIO, finput, fname, fopen, fprint,
fread, ftextinput, pathname, print, protocol, read, READPATH, WRITEPATH

Details:

A write serves for storing information from the current MuPAD session in
a file. The file contains the values of identifiers of the current session.
These identifiers are assigned the stored values when this file is read into
another MuPAD session via the function read.

A The file may be specified directly by its name. In this case, write creates
a new file or overwrites an existing file; write opens and closes the file
automatically.

If WRITEPATH does not have a value, write interprets the file name as a
pathname relative to the “working directory”.

Note that the meaning of “working directory” depends on the operating
system. On Windows systems, the “working directory” is the folder where
MuPAD is installed. On UNIX or Linux systems, it is the current working
directory in which MuPAD was started.

On the Macintosh, an empty file name may be given. In this case, a
dialogue box is opened in which the user can choose a file. Further, on
the interactive level, MacMuPAD warns the user, if an existing file is
about to be overwritten.

Also absolute path names are processed by write.

A Instead of a file name, also a file descriptor of a file opened via fopen
can be used. Cf. example 2. In this case, the data written by write are
appended to the corresponding file. The file is not closed automatically
by write and must be closed by a subsequent call to fclose.

Note that fopen(filename) opens the file in read-only mode. A sub-
sequent write command to this file causes an error. Use the Write or
Append option of fopen to open the file for writing.

The file descriptor 0 represents the screen.

A write stores the values of the given identifiers, not their full eval-
uation! Cf. example 3. !
A For an overview of all file related MuPAD functions, also try ?fileIO.

A write is a function of the system kernel.

1052

Option <Text>:

A In ASCII format, assignments of the form

sysassign(identifier, hold(value)):

are written into the file. Cf. example 1.

Example 1. The variable a and its value b + 1 are stored in a file named
test:

>> a := b + 1: write(Text, "test", a):

The content of this file is displayed via ftextinput:

>> ftextinput("test")

"sysassign(a, hold(b + 1)):"

We delete the value of a. Reading the file test restores the previous value:

>> delete a: read("test"): a

b + 1

>> delete a:

Example 2. The file test is opened for writing using MuPAD’s binary format:

>> n := fopen("test", Write)

17

This number is the descriptor of the file and can be used in a write command:

>> a := b + 1: write(n, a):

>> delete a: read("test"): a

b + 1

We close the file and clean up:

>> fclose(n): delete n, a:

1053

Example 3. The value b + 1 is assigned to the identifier a. After assigning
the value 2 to b, complete evaluation of a yields 3:

>> a := b + 1: b := 2: a

3

Note, however, that the value of a is the expression b + 1. This value is stored
by a write command:

>> write(Text, "test", a): ftextinput("test")

"sysassign(a, hold(b + 1)):"

Consequently, this value is restored after reading the file into a MuPAD session:

>> delete a, b: read("test"): a

b + 1

>> delete a:

zeta – the Riemann zeta function

zeta(z) represents the Riemann zeta function ζ(z) =
∑∞

k=1 k
−z.

Call(s):

A zeta(z)

Parameters:

z — an arithmetical expression

Return Value: an arithmetical expression.

Overloadable by: z

Side Effects: When called with a floating point argument, the function is
sensitive to the environment variable DIGITS which determines the numerical
working precision.

Related Functions: bernoulli

1054

Details:

A The zeta function is defined for all complex arguments except for the
simple pole z = 1.

A A floating point result is returned for floating point arguments.

A The following special values are implemented: ζ(z) = 0 for even integers
z < 0, ζ(z) = −bernoulli(z)/(1−z) for odd integers z < 0, ζ(0) = −1/2,
ζ(z) = (2π)z|bernoulli(z)|/2/z! for even integers z > 0.

zeta returns an unevaluated function call, if the argument does not eval-
uate to one of the above numbers.

A The float attribute of zeta is a kernel function, i.e., float-
ing point evaluation is fast. Use zeta(float(z)) rather than
float(zeta(z)), because the evaluation of the intermediate ex-
act result zeta(z) may be costly for integers z of large absolute
value.

!

Example 1. We demonstrate some calls with exact and symbolic input data:

>> zeta(-6), zeta(-5), zeta(-4), zeta(-3), zeta(-2), zeta(-1)

0, -1/252, 0, 1/120, 0, -1/12

>> zeta(0), zeta(2), zeta(3), zeta(4), zeta(5), zeta(6), zeta(7)

2 4 6
PI PI PI

-1/2, ---, zeta(3), ---, zeta(5), ---, zeta(7)
6 90 945

>> zeta(1/2), zeta(1 + I), zeta(z^2 -I)

2
zeta(1/2), zeta(1 + I), zeta(z - I)

Floating point values are computed for floating point arguments:

>> zeta(-1001.0), zeta(12.3), zeta(0.5 + 14.13472514*I)

-1.348590824e1771, 1.000199699,

0.0000000002163160213 - 0.000000001358779595 I

zeta has a pole at the point z = 1:

>> zeta(1)

Error: singularity [zeta]

1055

Example 2. Looking for roots of the Zeta function, we plot the function
f(z) = |ζ(z)| along the “critical line” of complex numbers with real part 1/2:

>> plotfunc2d(Labels = ["", ""], Title = "", Grid = 500,
abs(zeta(1/2 + y*I)), y = 0..30)

The following procedure is a simple implementation of the usual Newton method
for finding numerical roots of ζ. Note that numeric differentiation is used within
the Newton step, because MuPAD does not provide a symbolic derivative of
zeta:

>> NewtonStep := proc(z)
local h, f, f2, fprime;
begin
z := float(z);
h := 10^(-DIGITS/2.0)*(1 + abs(z));
f := zeta(z);
f2 := zeta(z + h);
fprime := (f2 - f)/h;
return(z - f/fprime)

end_proc:

The sequence z:=NewtonStep(z) converges to a root, if the initial value is a
sufficiently good approximation of the root:

>> z:= 1/2 + 21*I: z := NewtonStep(z): z, abs(zeta(z))

1056

0.5002926366 + 21.0220145 I, 0.0003338475592

>> z := NewtonStep(z): z, abs(zeta(z))

0.4999999108 + 21.02203966 I, 0.0000001039451698

>> z := NewtonStep(z): z, abs(zeta(z))

0.5 + 21.02203964 I, 1.387291733e-11

>> delete NewtonStep, z:

zip – combine lists

zip(list1, list2, f) combines two lists via a function f. It returns a list
whose i-th entry is f(list1[i], list2[i]). Its length is the minimum of the
lengths of the two input lists.

zip(list1, list2, f, default) returns a list whose length is the maximum
of the lengths of the two input lists. The shorter list is padded with the default
value.

Call(s):

A zip(list1, list2, f)

A zip(list1, list2, f, default)

Parameters:
list1, list2 — lists of arbitrary MuPAD objects
f — any MuPAD object. Typically, a function of two

arguments.
default — any MuPAD object

Return Value: a list.

Overloadable by: list1, list2

Related Functions: map, op, select, split

Details:

A If f produces the void object of type DOM_NULL, then this element is re-
moved from the resulting list.

A zip is recommended for fast manipulation of lists. It is a function of the
system kernel.

1057

Example 1. The fastest way of adding the entries of two lists is to ’zip’ them
via the function _plus:

>> zip([a, b, c, d], [1, 2, 3, 4], _plus)

[a + 1, b + 2, c + 3, d + 4]

If the input lists have different lengths, then the shorter list determines the
length of the returned list:

>> zip([a, b, c, d], [1, 2], _plus)

[a + 1, b + 2]

The longer list determines the length of the returned list if a value for padding
the shorter list is provided:

>> zip([a, b, c, d], [1, 2], _plus, 17)

[a + 1, b + 2, c + 17, d + 17]

1058

	Preface

