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ABSTRACT 

The shareholders of E&P companies evaluate the future performance of these companies in terms of 
multiple performance attributes. Hence, E&P decision makers have the task of allocating limited 
resources to available project proposals to deliver the best performance on these various attributes. 
Additionally, the performance of these proposals on these attributes is uncertain and the attributes of 
the various proposals are usually correlated. As a result of the above, the E&P portfolio optimisation 
decision setting is characterised by multiple attributes with uncertain future performance.  

Most recent contributions in the E&P portfolio optimisation arena seek to adapt modern financial 
portfolio theory concepts to the E&P project portfolio selection problem. These contributions generally 
focus on understanding the tradeoffs between risk and return for the attribute NPV while acknowledging 
the presence of correlation among the assets of the portfolio. The result is usually an efficient frontier 
where one objective is set over the expected value of the NPV and the other is set over a risk metric 
calculated from the same attribute where, typically, the risk metric has a closed form solution (e.g., 
variance, standard deviation, semi-standard deviation). However, this methodology fails to acknowledge 
the presence of multiple attributes in the E&P decision setting.  

To fill this gap, this thesis proposes a decision support model to optimise risk and return objectives 
extracted from the NPV attribute and from other financial and/or operational attributes simultaneously. 
The result of this approach is an approximate Pareto front that explicitly shows the tradeoffs among 
these objectives whilst honouring intra-project and inter-project correlations. Intra-project correlations 
are incorporated into the optimisation by integrating the single project models to the portfolio model to 
be optimised. Inter-project correlation is included by modelling of the oil price a global variable. 
Additionally, the model uses a multi-objective simulation-optimisation approach and hence it overcomes 
the need of using risk metrics with closed form solutions. 

The model is applied to a set of realistic hypothetical offshore E&P projects. The results show the 
presence of complex relationships among the objectives in the approximate Pareto set. The ability of the 
method to unveil these relationships hopes to bring more insight to the decision makers and hence 
promote better investment decisions in the E&P industry. 
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1 INTRODUCTION 

1.1 Background 

Upstream oil and gas companies continuously face the crucial decision of allocating resources to project 
portfolios. This decision involves multiple objectives over various economic and operational 
performance attributes. Individual project proposals are usually characterised in terms of these various 
attributes and the portfolio performance is an aggregate of the performance of the individual projects. 
Additionally, the future performance of project proposals in these various attributes is highly uncertain. 
Typically, only a subset of the project proposals can be funded with the available resources, and no 
feasible portfolio optimises all the relevant attributes simultaneously. This decision setting is here 
referred to as multiple objective portfolio optimisation under uncertainty. 

However, common practice in the upstream oil and gas industry to select project portfolios fails to 
address the presence of multiple objectives and uncertainty in such a decision setting. Hence, this 
decision setting is most commonly solved with tools that optimise a single objective under the 
assumption of a future certain performance.  Most of the upstream oil and gas portfolio optimisation 
literature (Orman and Duggan (1998); Ball and Savage (1999a); Ball and Savage (1999b); Brashear et 
al. (2000); Bratvold et al. (2003)) pinpoint the inability of conventional capital-allocation methods to 
adequately address the uncertain quality of this decision setting. The work of these authors mostly 
promotes the application of financial portfolio theory to real E&P assets. These authors suggest that the 
main purpose of portfolio optimisation is not to provide an individual “best” solution to the decision 
maker (DM) but to provide insight about the future performance of various investment strategies before 
the actual decision is made. Financial portfolio theory delivers this insight through the generation of a 
set of non-dominated1 solutions that unveils the tradeoffs between risk and return for one performance 
attribute (NPV) of a financial assets portfolio. 

From a seminal paper by Hightower and David (1991), many advances have been made to adapt 
modern portfolio theory to the E&P business. Most of these works promote the value of understanding 
the tradeoffs between risk and return for the NPV attribute in a project portfolio optimisation context. 
They propose that corporate DMs should explicitly generate an efficient set of non-dominated portfolios 
in terms of the expected value of the NPV and some form of risk measurement of this attribute. DMs 
should then use this efficient set of “optimal trade-off” to gain insight about the potential of their current 
project proposals. Once the DMs have studied this efficient set, they may decide to invest in one of the 
non-dominated portfolios in this set or look for new opportunities to include in the optimisation exercise 

 
1 The concept of dominance is defined in section 4.4.1.2 
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and then repeat the whole process until a portfolio that suits the corporate system of preferences is 
found. 

In contrast, the upstream oil and gas literature has paid less attention to the multi-objective quality of the 
project portfolio selection decision setting. Walls (1995); DuBois and Howell (2000); Howell and Tyler 
(2001) and Simpson (2002) not only address the fact that the future performance of E&P project 
portfolios is uncertain but also highlight the fact that portfolio optimisation methods should account for 
the performance of investment portfolios in terms of other operational (e.g., production, reserves) and 
economical (e.g., ROCE, cash flow) attributes. However, most of  these works account for these 
attributes either with the use of constraints (DuBois and Howell (2000); Howell and Tyler (2001)) or with 
the use of a multi attribute utility function (Walls (1995)) and hence do not explicitly show the tradeoffs 
among these attributes for the potential investment portfolios. Moreover, these works overlook the fact 
that, as the NPV metric, the performance of these attributes is also uncertain and hence, corporate DMs 
might also desire to optimise the performance of a portfolio in terms of various statistics (i.e., expected 
values, standard deviation, and percentiles) of other performance attributes. 

To promote transparency and hence deliver more insight to corporate DMs it is instructive to extend the 
idea of generating a non-dominated set of portfolios in terms of risk and return statistics from one to 
multiple performance attributes. With this approach, both the uncertain and multi-objective qualities of 
the oil and gas portfolio selection problem would be honoured. In this manner E&P DMs would be able 
to explicitly understand the tradeoffs among risk and return statistics for various operational and 
economical performance attributes simultaneously and, hopefully, make better investment decisions. 

1.2 Objectives and scope 

In this thesis, a multi-objective E&P project portfolio selection under uncertainty problem is considered. 
In this decision setting, the DM or group of DMs chooses the optimal working interest for a set of project 
proposals subject to a budgetary constraint. The problem includes inter-project and intra-project 
correlations. It is assumed that the DM(s) prefers to articulate her preferences once a set of non-
dominated solutions has been generated in terms of various statistics from several performance 
attributes. Hence no single “overall” value attribute is considered. 

The objectives of this thesis are: 

• To develop a decision support model able to generate a non-dominated solution set of portfolios 
in terms of various statistics for multiple performance attributes whilst accounting for inter and 
intra-project dependencies. 

• To implement the model to a set of hypothetical yet realistic E&P projects and analyse the 
outputs and discuss the advantages and disadvantages of the decision support. 
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The contribution of this research attempts to be incremental to the knowledge that already exists in the 
literature. The main feature of the model presented in this research is that it explicitly shows the 
tradeoffs among different objectives to the DM. As a consequence, the preferences of the DM are 
needed after the optimisation problem has been solved. This contrasts with current state of the art in the 
literature that requires an a priori statement of the DM preferences either with the use of target levels 
(Howell and Tyler (2001)) or with the use of an elicited multi-attribute utility function (Walls (1995))2.

1.3 Assumptions and limitations 

In order to limit the scope of the research, it is necessary to make several assumptions. The 
assumptions made for this research can be classified as flexible assumptions and rigid assumptions. 
Flexible assumptions are related to the projects being considered for the portfolio. These assumptions 
can be manipulated and are made to show a practical application of the model. Rigid assumptions 
cannot be changed and actually show the limitations of the portfolio optimisation model presented in this 
work.  

1.3.1.1 Flexible assumptions 

• Price dependency. The only source of correlation between projects will be the oil price. This will 
be done treating the price variable as a global variable that is shared by all the projects 
involved. 

• Development projects. For simplicity, the projects considered for optimisation will be projects 
“approved for development”. Hence the “dry hole” risk is considered to be equal to zero. 

• Three statistics. The model uses 3 possible types of objectives per attribute: 

o Expected value.  
o Percentiles. 
o Probability of achieving a certain target level. 

• Simple reservoirs. The production of the projects will be modelled with simple “tank models”. All 
the projects will be offshore oil producers. 

• Small portfolios. This research will consider portfolios with five project proposals. This not only 
helps to reduce computing time but also facilitates tracing the impact of each one of the projects 
in the resulting portfolio. 

 
2 Ehrgott, M., K. Klamroth and C. Schwehm (2004). "A MCDM approach to portfolio optimization." European Journal of 

operational research 25(2): 752-770. proposes a very similar approach for stock portfolios. 
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• Concessionary regime. All the performance attributes used to characterise a project (e.g., NPV, 
cash flow, production) will be calculated assuming that projects are developed in countries with 
simple concessionary3 fiscal terms.  

1.3.1.2 Rigid assumptions 

• Optimise working interest. This research will define a portfolio in terms of a participation vector. 
The working interest must be a continuous variable4. The model does not account for “time to 
invest” as a decision variable.  

• Linearly constrained optimisation. The constraints are limited to be linear, that is, a linear 
combination of the decision variables. 

1.4 Outline of the thesis 

Chapter 2 describes the main features of the general oil and gas portfolio optimisation problem. Chapter 
3 describes the basics of stochastic modelling and valuation of upstream petroleum projects using 
Monte Carlo simulation. The calculation of typical operational and economical attributes is briefly 
described. The relevance of correlations in Monte Carlo simulation is highlighted and basic concepts of 
utility theory are reviewed. 

Chapter 4 draws on the operations research literature to provide a review of single and multi-objective 

optimisation concepts. The ε-constraint and value function methods are described to set a theoretical 

ground for discussions on chapter 5. The simulation-optimisation concept is described and the multi-
objective genetic algorithm with linear constraints (MOGOL) (Medaglia (2003)) is presented and its 
advantages and limitations are discussed. 

Chapter 5 draws on the oil and gas decision and risk analysis literature to highlight the gaps on current 
methods for upstream petroleum portfolio optimisation. The classic capital rationing approach, the 
mean-variance approach and more novel approaches as the methods proposed by Walls (1995); Howell 
and Tyler (2001) and Rodriguez and Galvao (2005) are discussed using the theoretical ground set in 
chapter 4. 

Chapter 6 describes the multi-objective portfolio optimisation model proposed in this research. It 
explains why was the MOGOL algorithm selected to perform as a search engine. The proposed model 
is presented making emphasis on how to make it account for inter and intra-project dependencies 
through its integration with project characterisation and a mean-reverting oil price model.  

 
3 In most countries the government owns all mineral resources. Under concessionary regimes, the government transfers the 
title of the minerals to company if they are produced. The company is then subject to payment of royalties and taxes. 
4 In practice, it is rare that oil companies have complete freedom to choose the level of the working interest they would prefer 
to have. Hence, the working interest variable might not be continuous..  
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In Chapter 7 the proposed multi-objective portfolio model is applied to a set of representative projects 
and the results of the application are analysed. 

The last chapter, Chapter 8, shows the conclusions that can be drawn from the research. The 
advantages and disadvantages of the proposed model are discussed and its applicability is addressed. 
The chapter ends stating possible areas of future research within and without the limits of the proposed 
model. 

2 OVERVIEW OF THE GENERAL UPSTREAM OIL AND GAS PORTFOLIO 
OPTIMISATION PROBLEM  

2.1 Introduction 

The purpose of this chapter is to describe the main characteristics of the upstream oil and gas portfolio 
selection problem. The multi-objective and uncertain qualities of the problem are described and the 
impact of these characteristics on the selection of an optimisation algorithm is discussed. 

2.2 The source of the problem: the budgetary constraint 

Typically downstream oil & gas companies have several proposed competing projects with different 
scale, benefits and resources requirements. According to finance theory, in order to maximize 
shareholder value, the corporation should fund every available project with positive NPV (Brealey and 
Myers (2000)). This premise is supported by the assumption that it is possible for the corporation to 
borrow unlimited funds at a given interest rate.  

However, in practice the assumption that an unlimited supply of capital is available for the corporation 
does not hold (Luenberger (1998)). Banks may impose limited credit lines or, in large organizations, 
investment decisions may be decentralized and limited budgets may be assigned to individual 
organizational units.  

Moreover, other non-capital constraints may prevent E&P companies to invest in every single project 
with a positive NPV. Some of these scarce non-capital resources may be, for example, human 
resources with the necessary expertise or the availability of drilling rigs in a given development area. 

In summary, it is not uncommon that even if all available projects offer attractive benefits, it may not be 
possible to fund them all as a result of some capital and/or non-capital resource restriction. The 
presence of this constraint is the origin of the capital budgeting problem, most known in the oil and gas 
literature as project portfolio optimisation.
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In a broad sense, the portfolio optimisation problem consists in finding an optimal combination of 
working interest and a time to invest for each one of the project proposals that maximises 
shareholder value for a given planning horizon whilst accounting for a resource constraint.

2.3 Shareholder value maximisation: a single objective? 

The optimisation problem previously defined is based on the fact that most E&P public companies have 
shareholder value maximization as their ultimate objective (DuBois and Howell (2000))5. As stated in the 
previous section, finance theory states that to maximise shareholder value it is only necessary to 
maximise the NPV of the investment portfolio of the company.  

However, Pande (2003) shows that shareholder perception of the value of E&P firms is not only driven 
by NPV but also by other performance attributes like cash flow, reserves, production, ROCE and Opex. 
As a result, Walls (1995); DuBois and Howell (2000); Howell and Tyler (2001) indicate that oil and gas 
portfolio optimisation tools should account for the performance of several economical and operational 
attributes.  

A clear empirical evidence of the relevance of the previous statement occurred in January of 2004 when 
giant oil group Royal Dutch Shell share price drop at least 7% in the stock markets of London and 
Amsterdam after announcing that 20% of their proved reserves were reclassified. The following quotes 
appeared in BBCNews (2004)6:

“Giant oil group Royal Dutch Shell has said it is trimming its figures for proved oil and gas reserves by 

20%.”  

“Shell said it does not expect the reassessment to have any impact on its financial results, as 90% of 

the reserves involved remain undeveloped.”  

“Stunned investors promptly began a sell-off that knocked more than 7% off the Anglo-Dutch firm's 

share price in both London and Amsterdam.” 

It is possible to infer from the previous case that in order to maximise shareholder value, corporate DMs 
must choose a portfolio of projects that they consider delivers the best possible performance in a set of 
multiple economic and operational attributes. Figure 1-1 shows how the ultimate corporate objective 
“maximise shareholder value” has to be accomplished through the sub-objective “select optimal 

 
5 National oil companies pursue the objective of maximizing the value of the people of the country, which is an equivalent 
problem. 
6 http://news.bbc.co.uk/1/hi/business/3382045.stm



 
 
 
 
portfolio” and that this sub-objective depends on multiple mean-objectives traced on 

various performance attributes (i.e., maximise reserves, maximise NPV). 

 

 
NOTE:  This figure is included on page 7 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 2-1 Relationship between corporate objectives and shareholder value. Modified from 
Walls (1995). 
 
2.4 Objectives under uncertain conditions 
 
The future performance E&P projects is a function of various “states of nature” (e.g., 

OOIP, reservoir structure) and “states of the world” (e.g., hydrocarbon prices, 

available technology, political risk). 

However, the behaviour of these “states of nature” and “states of the world” is highly 

uncertain to the eyes of the DM. Hence, the future performance of an investment 

portfolio formed by E&P projects will be uncertain as well. 

This uncertainty implies the existence of a range of possible outcomes in the various 

performance attributes of the portfolio. If a subset of these outcomes implies a 

possible monetary loss or unachieved goal, then the portfolio is said to be risky. 

If the performance of a given attribute is uncertain but there is a reasonably good 

understanding of the probability distribution of it outcomes (Bratvold et al. (2002)) 

then this attribute can be modelled as a probability density function (PDF). 

Consequently, it is possible to summarise the future performance of an asset or a 

portfolio in terms of a set of distributions where each distribution corresponds to a 

particular performance attribute. Newendorp and Schuyler (2000) state that according 

to utility theory, if the company is risk neutral it is possible to summarize the 

performance of the NPV attribute with its expected value (EV). However, 

Walls and Dyer (1996) have shown that many oil and gas firms are risk averse. If the 

corporation is risk averse, then the expected value is not enough information to 

summarise the performance of the NPV attribute and hence the expected value 

statistic must be accompanied with a risk or uncertainty metric 

7 
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(e.g., semi-standard deviation, standard deviation, probability of achieving a certain target) (Newendorp 
and Schuyler (2000)). 

Similarly, DuBois (2001) shows that risk averse DMs desire to maximise the expected value of the NPV 
attribute whilst maximising their probabilities of achieving certain goals of other performance attributes 
(e.g., production, reserves, costs). Additionally the 2000 SPE definition of reserves SPE (2000) defines, 
in the context of probabilistic methods,  proved, possible and probable reserves in terms of percentiles 
and hence DMs are not only interested in the expected value of this operational attribute. 

From all of the above it is possible to state that, under uncertainty, the objectives of a portfolio 
optimisation problem should not only be set over central tendency statistics (e.g., most likely, expected 
value) but also over dispersion statistics and probabilities (e.g., semi-standard deviation, standard 
deviation, percentiles, probability of achieving a certain target). Figure 2-2 shows an example of the 
hypothetical objectives of a risk averse oil company according to the previous statement. This company 
is interested in maximising the expected value of the NPV (E(NPV)), minimising the standard deviation 
of the NPV (SD(NPV)), maximising the expected value of the reserves and maximising the 90th 
percentile of the reserves7.

Figure 2-2 Hypothetical mean objectives for a risk averse company. 

 
7 APPENDIX A shows that the P90 of the reserves is part of the probabilistic version of the SPE definition of proved 
reserves. Although strictly speaking, these values are not equivalent, the P90 of the reserves attribute could be interpreted 
as an approximation of the proved reserves value. 
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2.5 Accounting for correlation 

Murtha (2000) states that the correlation between two variables X and Y can be originated in at least 
three ways. One possibility is that there might be a cause effect association linking the two variables 
and hence changes in variable X lead to changes in the values of Y. The second possibility is that both 
X and Y may depend on a third variable, Z. Thirdly, there may be simply a “chance” association 
between X and Y.  

In this thesis, the first two types of correlation will be classified as “structural correlation”. This term will 
be used because the correlation is originated from the structure of the equations of the model. The third 
type of correlation will be classified as “stochastic correlation”. While structural correlation is implicit in 
the equations of a given model, stochastic correlation has to be explicitly stated. 

On the other hand, the decision setting presented here allows classifying correlation using an alternative 
criteria depending if the correlations occur at the project or at the portfolio level. If the correlation occurs 
among variables from a single asset, then the correlation is called intra-project correlation. If the 
correlation occurs among variables from different projects (portfolio level) then the correlation is called 
inter-project correlation.  

2.5.1 Intra-project correlation 

The correct characterisation of a portfolio in terms of various performance attributes obviously depends 
on the correct characterisation of the projects that form the portfolio in terms of those attributes. 
However, each E&P project is a highly complex system, hence, determining the level of complexity to 
model these projects is a challenging process itself since changing the complexity of the model impacts 
the risk and return parameters of the relevant attributes under study (Campbell et al. (2003)).  

One issue that clearly affects the complexity of these models is the inclusion of correlation (structural or 
stochastic) among variables. At an individual project level there are many sources of correlation among 
the variables that represent the various “states of the world” and “states of nature”. Murtha (2000); 
Campbell et al. (2003) have shown that the inclusion of these correlations have a higher impact on the 
volatility metrics of the attributes under study  (e.g., standard deviation, percentiles) than on the central 
tendency “return” metrics (e.g., expected value). Therefore, the “tails” of the performance attributes 
PDFs could be under/over estimated if the correlations are not properly addressed. Since risk is usually 
associated with the chance of achieving a certain value, then failing to properly characterise the “tails” of 
these PDFs will clearly impact the assessment of the risk level on a given project. 

Correlation can be found at all levels of the E&P system (Begg et al. (2001)). Typical examples of these 
correlations are the relationship between water saturation and porosity when calculating OOIP at the 
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exploration stage, the relationship between the Capex and the amount of recoverable volumes or the 
relationship between initial production and the amount of recoverable volumes at the development 
planning stage. 

It is important to note that the performance attributes (i.e., reserves, NPV, cash flow, production) of each 
project proposal are correlated as well through structural correlation. For example, since the gross 
revenue is the product of the hydrocarbon price times the production, the performance attribute “gross 
revenue” will be obviously correlated to the attribute “production” on a given project.  

2.5.2 Inter-project correlation 

Just as the presence of correlation among variables at the project level may impact the assessment of 
the volatility of the performance attributes of a project, the correlation among the performance attributes 
of potential assets has an impact on the volatility of the resulting portfolio. This observation is the root of 
modern portfolio theory, initially envisaged by Nobel laureate Harry Markowitz.  

Markowitz (1952) demonstrated how investors of financial securities could minimize the risk (or standard 
deviation of historical returns) of their portfolio returns by understanding the correlation among different 
stocks. This effect, called diversification, is reduced if multiple investments are positively correlated but 
amplified if the investments are negatively correlated. Moreover, Markowitz (1952) states that there is a 
combination of securities that maximizes the return for each level of risk. This set called “efficient 
frontier” is what operation research practitioners call non-dominated solutions or Pareto set8.

Several authors (Hightower and David (1991); Orman and Duggan (1998); Ball and Savage (1999a); 
Ball and Savage (1999b); Brashear et al. (2000); Simpson (2002); Bratvold et al. (2003)) have adapted 
the ideas of Markowitz to the oil and gas project selection arena. However, one of the main hurdles of 
applying portfolio theory to “real” assets as E&P projects is the multiple sources of inter-project 
correlation present in the E&P system. Particularly, Ball and Savage (1999a) summarize the main 
sources of inter-project correlation in five types as follows. 

Prices: Oil and gas projects produce these hydrocarbons in various proportions. Oil prices are set in 
terms of worldwide supply and demand and, as a result, the economic outputs of oil projects are 
positively correlated relative to fluctuations in crude price. On the other hand, gas prices are mostly set 
in terms of local supply and demand. As a consequence, gas prices in many parts of the world do not 
track either world crude oil or each other very well.  

 
8 These concepts will be extensively discussed in chapter 4. 
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Places: The operational and financial outcomes of assets in close geographical proximity may be 
positively correlated through geological similarities or fiscal regimes. Therefore, a portfolio consisting of 
projects in the same geological site or country would not constitute a highly diversified portfolio. 

Profiles: The valuation of oil and gas assets involves the generation of profiles of the relevant 
operational and financial attributes for each one of the available projects. Often, the more constant 
these profiles are the better. This observation is particularly important for the cash flow profile, as 
owning several projects requiring large cash outlays in the same year can be very risky.  To deal with 
this issue, companies may need to delay the starting times for some of their investments, and as a 
result may need to optimise not only the working interest for each one of the projects, but also their 
timing. 

Politics: Politics can be a source of uncertainty for oil & gas investments. Therefore, projects under the 
same political regime may be disrupted because of the same political events. The obvious way to 
diversify this source of risk is to maintain a multi-national portfolio. 

Procedures: Technical and managerial procedures may also be a source of statistical dependence. 
Thus, a firm equipped with specific know-how to explore and produce a particular kind of project will 
have a positive correlated portfolio by definition. 

2.6 Implications of correlation in multi-objective optimisation over several 

attributes 

When the method proposed by Markowitz is used to optimise E&P projects, the objectives are usually 
set to be the expected value and a dispersion metric (i.e., standard deviation, semi-standard deviation, 
variance) of the attribute NPV. Therefore, it is only necessary to account for the correlation among the 
NPVs of the project proposals.  

However, when dispersion/risk statistics (standard deviation, percentiles, probabilities of achieving a 
certain target) are set as objectives in multiple attributes simultaneously (e.g., P90(Reserves), 
P(NPV>0)) it becomes necessary to account for all the possible inter and intra-project correlations 
among all the attributes involved. On one hand, as stated at the end of the previous section, the 
performance attributes of each project proposal are correlated among themselves. On the other hand, 
the multiple performance attributes of one project proposal may be correlated to the multiple 
performance attributes of another project proposal. For example, if both projects are oil producers, the 
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“reserves” attribute in one project may be correlated to the “cash flow” attribute in the other project. The 
reason for this is that both attributes depend on the oil price9.

2.7 Defining a portfolio: the decision variables  

The decision variables are the variables that can be directly modified at the will of the DM. In an oil and 
gas project portfolio optimisation context, DMs usually need to decide upon the following three issues 
(Simpson (2002)): 

• What are the best projects in which to invest? 

• What is the desired working interest for each of the chosen projects? 

• When is it best to invest? 

Theoretically, DMs may choose any percentage of participation for the project proposals. However, in 
practice, participation levels must be chosen from the contractual constraints established by the 
government or the contractor group managing the asset.  

Additionally, it is not uncommon that the feasibility of one project might depend on other projects. A 
typical example of this case in the oil and gas industry can be a small tie back off-shore project that may 
depend on the processing facility availability of the nearest production hub.  

2.8 Performance goals  

Another characteristic of the general oil and gas portfolio optimisation problem is that corporations 
usually manage the multi-objective quality of the problem by setting goals on multiple performance 
metrics. These goals can be set on a “total” cumulative basis (i.e., cumulative production over the entire 
life of the asset) or on the yearly performance during a number of years into the future (e.g., cash flow in 
the years 2012, 2013 and 2014). It is important to note that since goals are either achieved or not, they 
must be included in the constraints of the portfolio optimisation statement, not in the objective function10.

These goals can broadly be classified in two types (Simpson (2002)). The first type is of strategic nature 
and represents the aspirations of the DMs of the corporation. These goals can be set as minimum 
production requirements in certain years, the total amount of reserves added in a certain period and/or 
the focus on a given geographical area or technology. However, although modelled as constraints, 
these goals are not real commercial or physical constraints. The purpose of these goals is to achieve 
long-run profitability and stability Levy and Sarnat (1994). The second type of goals represents real 

 
9 The “reserves” attribute depends indirectly on the oil price since the production is a function of the economic limit of the 
project, and the economic limit is a function of the oil price. The economic limit concept will be discussed in chapter 6. 
10 The structure of an optimisation problem (or mathematical program) will be explained in chapter 4. 
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constraints, they are based on contractual obligations, or the availability of a certain type of resource 
(e.g., rigs, capital). 

In other words, the first set of constraints represents the world “how DMs want it to be” while the second 
type of constraints represents the world “how it is”. In regard to the first type of goals it is relevant to 
note that there is not a clear procedure in the literature to assure that the aspirations of corporate 
planners are in line with the reality of their investment portfolios. Hence, the optimisation may not be 
able to find a feasible solution. Typically, this is explained by conflicting goals, an inappropriate set of 
projects or a combination of the two. In these cases, corporate DMs may decide to restate the goals of 
the company and/or promote the search for new opportunities to be valuated and incorporated to the 
portfolio optimisation process in an iterative basis until a feasible solution is found. 

The previous point is of special relevance for this thesis. It will be shown in chapter 7, that the tradeoffs 
among performance attributes can be complex, even for a small simple set of project proposals. Hence, 
setting these goals without a clear understating of these tradeoffs can prevent DMs from discovering the 
real potential of the portfolio. In other words, the fact that a feasible solution satisfies the preferences of 
the DMs is found do not mean that is the solution that will deliver the highest level of perceived utility. 

2.9 Summing up 

This chapter described the main features of an oil and gas project portfolio decision setting. These 
characteristics are: 

• Limited resources (money, people, equipment) to pursue every available project. 

• Uncertain performance of attributes. 

• Oil and gas companies are generally risk averse. 

• Presence of intra-project and inter-project correlation. 

• Two decision variables: working interest and time to invest. 

• Projects that depend on the presence of other projects. 

• DMs typically address the multi-objective quality of the portfolio optimisation problem through 
goals. 

The model presented in this thesis addresses all the previous characteristics of the general upstream oil 
and gas optimisation problem with the exception of using “time to invest” as a decision variable and the 
fact that a project may depend on the presence of another project. The reason for this is that the 
optimisation algorithm used in this thesis assumes that the decision variables are continuous and 
linearly constrained. Consequently, adding the “time to invest” decision variable would imply the use of 
an integer variable because the timing of these projects is usually modelled in a yearly basis. 
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Additionally, the dependency on the presence of other projects would also imply the need for integer 
variables and/or “if” statements that would break the assumption of linear constraints. 
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3 OIL & GAS PROJECT VALUATION: A MULTI-ATTRIBUTE PERSPECTIVE 

3.1 Introduction 

The purpose of this chapter is to present a theoretical background to characterise and valuate E&P 
investments from a multi-attribute perspective whilst accounting for uncertainty and risk. The first part of 
the chapter introduces the stochastic characterisation of E&P projects in terms of multiple operational 
and economical performance attributes. The second part introduces concepts from single attribute and 
multi-attribute utility theory to explain the need to include the preferences of the DM in the presence of 
multiple attributes and risk aversion. Lastly the chapter introduces the need for risk measures as a result 
of the difficulties to implement utility theory in practice.  

3.2 Project valuation 

To maximise the shareholder value of oil & gas upstream companies DMs require various yardsticks for 
measuring the value of their investment portfolio. Since individual project proposals are the building 
blocks of an investment portfolio, in order to measure the value of a given portfolio it is necessary to 
firstly characterise the individual project proposals in terms of these various yardsticks.   

The number of project performance attributes (yardsticks) shown in the literature is vast (Remer and 
Nieto (1995a); Remer and Nieto (1995b)). However, Pande (2003) states that the attributes that have 
more impact on the value perceived by shareholders of upstream petroleum companies are cash flow, 
reserves and production.

The performance of a given E&P project on these attributes is highly uncertain on its initial stages. This 
uncertainty reduces as the project evolves in time. Hence, it is only possible to know the performance of 
a given project with certainty at the end of its life, many years after the investment decision was made.  

The major consequence of exposing large investment capital to this initial uncertainty is that projects 
may perform poorly on relevant attributes. This implies a potential for losing the invested resources. For 
this reason upstream oil and gas projects are said to be risky. In order to address the uncertain and 
risky qualities of these projects, DMs rely on mathematical models to characterise the future 
performance of E&P projects in terms of a relevant set of performance attributes. 

3.3 Mathematical modelling 

Mathematical models allow DMs to analyse various decision alternatives before having to choose a 
specific plan for implementation. Bender (1991) defines a mathematical model as “an abstract, 
simplified, mathematical construct related to a part of reality and created for a particular purpose”.  
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Although it is obvious that the main objective of a model is to obtain an adequate representation of the 
underlying problem, when working with complex systems as E&P projects, it is necessary to also 
account for additional objectives as solution time and model size (Lund (1997)).  In other words, the 
models should be solvable within a reasonable time frame and a reasonable amount of computer 
power. 

The inputs of these mathematical models of E&P projects are the various “states-of-nature” and “states 
of the world” previously mentioned. The “states of nature” are variables mostly related to the geological 
and physical characteristics of the projects considered. The “states of the world” are variables mostly 
related to the available technology, market conditions and the future prices of the hydrocarbons 
contained in the assets. The actual model is a set of equations that relate all these variables. This set of 
equations describes the behaviour of the upstream oil and gas system.  

3.4 Deterministic and probabilistic approaches to modelling and valuation 

Once the set of equations describing the project is defined, there are two possible approaches to 
calculate the performance attributes, deterministic or probabilistic. The deterministic approach uses 
single “best” estimates of the input variables of the set of equations. Consequently, this approach also 
results in a single “best” estimate of the future performance of one or several performance attributes. 
While useful, the approach neglects the uncertainty in the performance attributes and, therefore, 
provides no indication of the associated risks of the investment.  

It is important to note that it is a common practice to use the expected value of the input variables of the 
system as a “best” estimate of the performance of that variable. However, if the system of equations is 
not linear, inserting the expected values of the input variables on the system of equations will not deliver 
the “true” expected value of the attribute (Begg et al. (2004)). 

In contrast, in the probabilistic approach the key input variables are defined as probability-density 
functions (PDF) instead of using single “best” estimates. These PDFs are set in a Monte Carlo simulator 
to calculate probability distributions for the relevant performance attributes. Monte Carlo simulation is a 
technique that repeatedly generates scenarios driven by randomly sampling the input probability 
distributions. Each of these repetitive calculations of the output distributions (performance attributes) is 
called a trial. If a large number of trials are performed, the shape of the inputs distributions is preserved 
and it is possible to generate an approximation of the output distributions. 

Performing probabilistic analysis of projects with Monte Carlo simulation is clearly a superior approach 
to project valuation than the deterministic one. The main reasons to state this is that it not only provides 
a complete distribution of the possible outcomes of the project and hence it accounts for the possible 
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risks of the project, but also provides a robust way to calculate the expected value of an output 
distribution regardless of the non-linearities of the system. 

However, the output distributions of a Monte Carlo simulation strongly depend on the shape of the input 
distributions, and hence it is necessary to rely on expert opinion and/or historical data to define the 
shape of these distributions. This issue could sometimes become a problem since historical data may 
not exist or experts may not be trained to think probabilistically. Another problematic area of Monte 
Carlo simulation is that there might be correlation among the input variables and finding the appropriate 
correlation factor to model these dependencies is not necessarily straightforward.  

3.5 A general framework to model and characterise upstream projects 
stochastically 

A detailed explanation of the upstream oil and gas system goes far beyond the scope of this research. It 
is thus necessary to make simplifying assumptions to allow attention to be focussed on the areas of the 
system that have more relevance to this research. As a result, this thesis will divide the system in three 
major stages: resources estimation, production prediction and economic valuation. This section 
describes, for each one of these stages, the main variables that must be addressed to build a 
mathematical model of an oil producer upstream project from a high level perspective. 

3.5.1 Resources estimation 

The purpose of this stage is to estimate the amount of petroleum that it is possible to extract from the 
ground. The uncertainty associated with the estimation of these volumes has led the oil and gas industry 
to develop a jargon to classify resources and reserves that is both vast and ambiguous. However, two 
concepts of particular relevance to estimate the amount of recoverable volumes are the discovered 
petroleum-initially-in-place and the estimated ultimate recovery 11.

The discovered petroleum-initially-in-place accounts for the total volume of oil that is expected to be 
contained in a given reservoir. For the purposes of this research this concept will be assumed to be 
equal to the original oil in place (OOIP) that can be calculated with the following equation12:

0/)7758 BSAhOOIP w−(1= φ

Each one of the variables in this equation is uncertain and hence can be modelled as a probability 
distribution. Then, a Monte Carlo simulation can be performed to estimate a resulting distribution for the 
OOIP. According to the central limit theorem, a stochastic variable that is equal to the product of other 

 
11 The SPE definitions and terminology used for these terms are described in the appendix 1. 
12 See appendix 2 for a description of the variables and units of this equation. 
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stochastic variables tends to exhibit a log-normal behaviour (Murtha (2000)). As a consequence, the 
OOIP is usually modelled as a lognormal distribution. 

The estimated ultimate recovery (EUR) is a subset of the “discovered petroleum-initially-in-place” that 
is technically feasible to produce. Equation 3-1 shows that this volume can be calculated multiplying 
the OOIP by a recovery factor (RF). The RF is another uncertain variable that represents the fraction of 
the OOIP that is possible to recover from the reservoir of interest. However, this amount of hydrocarbon 
that is technically feasible to recover is considered to be part of the resources of the company and is 
not part of the reserves of the company. The reason for this is that the term “reserves” is used for the 
amount of resources that are economically feasible to produce. 

OOIPxRFEUR = Equation 3-1 

 

3.5.2 Production estimation 

This stage mainly involves the derivation of a yearly hydrocarbon production profile. This profile intends 
to show the timing in which the EUR is supposed to be depleted from the reservoir. As a consequence 
of the uncertain quality of the EUR, it is convenient to model this production profile stochastically using 
Monte Carlo simulation (Murtha (2000)). In other words, the production in each time period (i.e., days, 
months, years) will be a probability distribution as well.   

In addition to the production profile, this stage also defines the capital expenses (Capex) and operating 
expenses (Opex) of the project under evaluation. These metrics are also uncertain because they 
partially depend on information that is revealed while the field is being produced (i.e., more wells may be 
needed and hence a larger capital would be necessary). As a result, these costs can also be modelled 
as probability density functions. However, once a clear development plan has been set for the project, 
most of the uncertainty in the Capex is reduced and hence modelling the Capex as a deterministic 
variable could be reasonable under the assumption that potential expansions of the current project (i.e., 
drill more wells) needing a non-marginal incremental capital could be considered new project proposals.  

3.5.3 Economics 

The main purpose of this stage is to produce a yearly after tax net cash flow profile. Most of the 
complexity of this stage derives from the fact that although geological, engineering and financial 
concepts are universal, most of the fiscal terms that rule the exploitation of oil and gas reservoirs are set 
locally (Johnston (1994)). As a consequence, the after tax cash flows of two hypothetic geologically 
identical projects located in different countries may differ vastly. 
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For the illustrative purposes of this section a simple “generic” concessionary regime will be assumed. 
Hence, the after tax net cash flow (ATNCF) for a given year is calculated multiplying the yearly 
production times the forecasted price of the hydrocarbons for that year and subtracting the costs derived 
from the previous stage and the royalties and income taxes. The uncertain quality of hydrocarbon prices 
may also be modelled as a stochastic process where in each time period the oil price is a probability 
distribution. The resulting after tax net cash flow would be as follows: 

( ) EconLimittttt
oil

tt ABEXTaxOPEXCAPEXPQATNCF −−−−⋅= Equation 3-2 

Where for a given year t, tQ is the oil production, t
oilP is the oil price13 and Taxt is the total income tax 

plus royalties. The AbexEconLimit term represents the abandonment expenditures associated with the 
investment at its economic limit. Since most of these parameters are uncertain, the resulting ATNCF 
profile could also be modelled as a stochastic process and hence its yearly performance would be a 
PDF. Then, the cash flow profile can be discounted by a given rate to obtain a PDF of net present value 
(NPV) attribute. This rate used to discount the cash flow profile accounts for the opportunity cost of 
putting the capital in alternative investments (i.e., other projects, financial assets) (Brealey and Myers 
(2000)). 

The after tax cash flow profile stage has a strong interaction with the production profile stage. The main 
reason for this is that although it is possible to make a forecast of the production from a technical point 
of view, the production of the field is terminated at its economic limit (tEconLimit) which is the point in time 
where the project becomes uneconomical (i.e., the operating cash flow of the project becomes 
negative).  

The reserves of the project are defined as a subset of the “discovered petroleum-initially-in-place” that is 
considered to be technically feasible and economically viable to produce. Therefore, it is only possible to 
calculate the reserves of the project once the economic limit of the project is calculated. Hence, once 
the economical criterion to close the field has been defined it is possible to calculate the reserves (R) of 
the project as follows: 

∑
=

==
EconLimitt

t
tEconLimit qQR

0

Since the addition of several stochastic variables will be another stochastic variable, the attribute 
reserves will be a probability distribution. When this probability distribution is plotted in its cumulative 
form is commonly called “expectation curve” (Behrenbruch (2004)). The SPE classification of reserves 

 
13 The next section describes one of the possible methods to model the stochastic behavior of oil prices. 



20

includes, among other technical and economical factors, the following probabilities when stochastic 
methods are used14:

• Proved: better than 90% chance of being recovered. 

• Proved plus probable: better than 50% chance of being recovered. 

• Proved plus probable plus possible: better than 10% chance of being recovered. 
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Figure 3-1 Distribution of Reserves. 

3.5.4 Stochastic oil price modelling 

Equation 3-2 shows that the income is generated through the sale of oil. Consequently, the overall 
economy of the field strongly depends on the price of the oil. Therefore, an assessment of possible 
future oil price paths is inevitable to get a realistic forecast of the performance a given project. Since the 
future behaviour of oil prices is uncertain it is reasonable to think of oil prices as stochastic processes. 
The objective of a stochastic oil price model is not to predict the actual price at a particular time in the 
future. Rather, a stochastic oil price model attempts to capture the characteristics of the way it fluctuates 
with time. 

Lund (1997) shows that the two more common approaches to do so are the Brownian motion and the 
mean-reverting models. However, Dixit and Pindyck (1994) argue that the mean reverting stochastic 
model is the one that best resembles the historic behaviour of the oil price. The basic idea behind this 
model is that if the oil price is too high above or to low below a certain long run equilibrium level, the 
market forces will act to respectively reduce or increase the supply of oil. This creates a mean-reverting 
 
14 The SPE definitions and terminology used to classify reserves are described in the appendix 1. It is relevant to note that, in 
a strict sense, the P10, P50 and P90 values do not correspond to the Proved, Proved plus Probable and Proved plus 
Probable plus Possible SPE definitions, but could be used as rough approximations of these.  
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process that acts like an elastic band, the further the price is from this long term mean, the stronger its 
tendency to revert to its long term equilibrium level. 

The oil price model used in this thesis is a standard mean-reverting stochastic process (Dixit and 
Pindyck (1994)) that is defined by the following equation: 

ttpMpp tttt ∆⋅⋅+⋅∆⋅−+= −− εση)( 11

Where: 

t = time period, years 

pt = oil price at time t, $ 

M= long term mean oil price, $ 

∆t= tt-tt-1= time increment, years 

η=speed of oil price reversion to long term mean 

σ=standard deviation of oil price annual increments 

ετ= standard normal random variable with mean equal to 0 and SD equal to 1 

In this manner, the price is a Markov process as the price at any time is calculated from the previous 
price. Additionally, the price at any time t is added to a factor that depends on the reversion property, 
plus a random increment. An absolute minimum value of the oil price is also specified on the basis that 
market forces would prevent the price going below this minimum. Figure 3-2 shows how the curve 
starting at P0 represents the expected value of Pt which decreases as time evolves if P0 > M and the 
curve converges towards the equilibrium level M. In the same figure, note that the variance increases 
until a certain time and then remains constant. This is a result of the mean-reversion force effect that, 
even in a distant future, prevents the values of P from being too far from M. 
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Figure 3-2 Mean-reverting price forecast model. Modified from Dias (2004) 

3.6 Valuation 

Once a project or a portfolio of projects has been characterised15 in terms of the various performance 
attributes described in section 3.5, corporate DMs need to assign an overall value to it. This process is 
called valuation, and usually involves assigning a monetary value to the investment under study. 

Classical finance theory (Brealey and Myers (2000)) states that the expected value of the net present 
value of the investment (E(NPV)) should be the only decision criteria needed to value an investment. 
Hence, in order to maximise shareholder value, it is necessary to maximise the expected value of the 
net present value of its investment portfolio. However, this statement assumes that: 

• The corporation has access to unlimited funds. 

• The corporation attitude towards risk is neutral. 

• Shareholders perception of the value of the company is not a function of other performance 
attributes than NPV. 

When the first assumption does not hold, finance theory (Brealey and Myers (2000)) suggest that DM 
must base their decisions on a capital efficiency measure as the expected net present value over 
investment ratio (E(NPV)/Inv)). This ratio adjusts the expected value of the NPV for the size of the 
discounted investment over the life of the project (Inv). 

However, finance theory does not prescribe clear paths of action when the statements in the 
assumptions 2 and 3 do not hold. The vast field of utility theory and multi-attribute utility theory provides 

 
15 The process to characterise an E&P portfolio from the calculated performance attributes of individual projects is in chapter 
5. 
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a logical and consistent way to articulate investment decision problems where decision makers are non-
risk neutral and NPV is not the only appropriate attribute. 

3.6.1 Utility theory: one attribute with uncertain performance 

Utility theory was formalized by von Neumann and Morgenstern (1944) and provides a systematic way 
to rank alternatives while accounting for the risk aversion of the DM(s). Walls (1995) states that, 
according to this theory, when an oil and gas corporation is not risk neutral but is interested in the 
performance of a single attribute (i.e., NPV) the value of a given investment opportunity should depend 
on: 

• The likelihood of the possible outcomes of the attribute under study if the investment is taken. 

• The preferences of the DM towards those possible outcomes.  

However, it is important to note that including the risk preferences of the DM in the valuation process 
radically changes the meaning of the term “value”. From a utility theory point of view the term “value” no 
longer means value in monetary terms but rather a level of satisfaction in accordance to the preferences 
of the DM(s). Hence, the term “utility” is preferred to the term “value” in this context. Since a utility 
function is used to provide a ranking among investment alternatives its absolute cardinal value (utility) 
has no meaning (Luenberger (1998)) and all that matters is how it ranks mutually excusive alternatives 
when their expected utilities are calculated. 

In this manner, the relationship between the corporate risk preferences and the consequences of an 
investment decision can be described through a function called “utility function” (Schuyler (2001)). This 
function relates the performance of a given decision alternative (i.e., investment) on a given attribute 
(i.e., NPV) to the utility perceived by the DM. 

The specific shape of a utility function varies among individuals and corporations. The utility function 
u(x) is a monotonically increasing curve where the vertical axis (utility) increases in numerical value as 
the performance on the attribute (x) under study increases. At least theoretically it is possible to draw 
just such a curve for any individual or organization. 
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Figure 3-3 Single attribute utility function. 

The likelihood of occurrence of the possible consequences of each alternative is included in the analysis 
with the use of the expected perceived utility E(u(x)) as follows:  
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Where x is the attribute under study, pj is the probability of outcome j so that 1
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the value added by the investment for its performance on the attribute x would be equal to the expected 
utility of the attribute. Hence, according to this theory, in order to maximise value corporate DM must 
chose the investments with higher expected utility.  

The risk attitude of the corporation is included in the utility curve through its shape (see Figure 3-3). If 
the function is convex, the corporation is said to be risk averse. If the function is concave, the 
corporation is said to be risk seeker. If the function is linear the corporation is said to be risk neutral.  

When the corporation is risk neutral it is possible to base corporate decisions solely on the expected 
value of the attribute under study. If u(x) is a linear function of positive slope then: 

cbxxu ii +=)( and, 

cxbEcbxExuE iii +=+= )()())((
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Where b is a positive constant. From this equation it is possible to infer that if corporate DMs want to 
maximise the expected utility of a risk neutral corporation, they only need to maximise the expected 
value of the attribute under study. Hence, it is not necessary to elicit a utility function from the DMs to 
convert the forecasted performance of the attribute into utility units and then calculated the expected 
utility. This demonstrates why finance theory states that risk neutral DMs should solely base their 
decisions on the expected value of the NPV. 

However, Walls and Dyer (1996); Schuyler (2001) show that very few oil corporations and individuals 
are impartial to the potential profit and losses encountered in the upstream oil business. Moreover, 
these authors emphasize that most upstream petroleum companies show risk averse behaviour. As a 
result, in most upstream petroleum oil companies, the expected value of the attribute under study does 
not provide sufficient information to make an investment decision. Consequently, according to utility 
theory, most oil and gas companies should explicitly articulate their utility functions in order to 
systematically account for their risk preferences in their investment decisions. 

3.6.2 Multi-attribute utility theory 

The previous section described a systematic approach to compare among investment alternatives whilst 
accounting for the risk attitudes of DMs but accounting for a single attribute. Multi-attribute utility theory 
is the extension of this approach to decision situations where the future performance of a decision is 
measured in terms of several attributes. A thorough description of multi-attribute utility theory can be 
found in (Keeney and Raiffa (1993)).  

Multi-attribute utility theory states that if the condition of utility independence holds among all the 
relevant attributes (Clemen and Reilly (2001)), it is possible to generate individual utility functions for 
each of the attributes and then aggregate these individual functions into one function. In this manner, 
the overall expected utility of a decision becomes a function of the individual expected utility of each one 
of the relevant attributes. However, the theory states that individual utility functions must be “normalised” 
before being used as an input to the aggregate function. Hence, each utility function must be 
recalculated to assign values of 0 and 1 to the worst and best levels on that particular attribute. This can 
be represented mathematically for a two attribute (x1,x2) problem as: 

))](()),(([))(( 22112,1 xuExuEfxxuE =

Where E(u(x1,x2)) is the overall expected utility and E(u(x1)) and E(u(x1))  are the expected utilities of 
attributes x1 and x2 respectively.  However, as stated before, doing this is only possible if the condition 
of utility independence holds. This condition essentially states that the shape of the individual utility 
functions of each of the attributes under study must be independent of the actual outcomes of the 
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decision in the other attributes. In other words, the risk preferences of the DM towards the attribute x1

should not be influenced by the future value of attribute x2.

The simplest way to aggregate individual utility functions is by using an additive utility function (Clemen 
and Reilly (2001)). Using a two attribute decision setting as an example, the additive utility function can 
be represented mathematically as:  

))(())(())(( 2221112,1 xuEkxuEkxxuE +=

Where k1 and k2 are the weights that the DM must assign to each attribute in accordance to their relative 
importance to the decision so that k1 and k2 add up to 1. However, it requires an even stronger condition 
than utility dependence called additive independence (Clemen and Reilly (2001)). Fundamentally, the 
additive independence assumption states that to use an additive utility function it is necessary that the 
individual utility functions of the attributes under study are mutually independent. Although similar, this 
assumption differs from the utility independence assumption in that changes in the utility function of one 
attribute affects the shapes of the utility functions of the other attributes while the utility independence 
assumption state that actual outcomes (sure levels) in one attribute affects the shape of utility function 
of the other attributes. 

It is possible to note that although this approach is very straightforward to implement if the additive 
assumption holds, the assessment of the DM preferences to check for this assumption could become a 
very complex exercise. Additionally, this approach misses the fact that the utility that a DM assigns to 
the overall performance of the investment may be also influenced by the interactions among the 
expected utilities of attributes under consideration. Clemen and Reilly (2001) also states that the 
additive independence assumption rarely holds, hence the use of the additive is mostly recommended 
for decision situations where there is little or nil uncertainty.   

As a result, multi-attribute utility theory proposes the use of a multiplicative utility function to account for 
interactions among attributes whilst overcoming the need for the additive independence assumption 
(Clemen and Reilly (2001)). Using a two attribute decision setting as an example, the multiplicative utility 
function can be represented mathematically as: 

))(())(()1())(())(())(( 2211212221112,1 xuExuEkkxuEkxuEkxxuE −−++=

Where the term: ))(())(()1( 221121 xuExuEkk −− , accounts for the interaction among the attributes.  

It is possible to generalize the previous equation to for n different attributes. However, Clemen and 
Reilly (2001) states that when there are three or more attributes modelling preferences is more difficult 
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and, therefore,  building a utility function that will permit interactions across many attributes can become 
complex. Additionally, when the utility independence assumption does not hold it is not possible to 
aggregate the individual utility functions of the attributes under study and therefore the assessment of 
the multi-attribute utility function becomes an even more complex exercise. 

3.6.2.1 Risk measures 

Last section showed that utility theory provides a systematic way to rank alternatives while accounting 
for the risk aversion of the DM(s) and multiple attributes. However, its actual application to solve real life 
problems has been heavily criticized by many finance authors (Roy (1952); Nawrocki (1999)). The major 
source of criticism is the practical difficulty to build a utility function that truly represents the preferences 
of a DM.  

In the upstream petroleum business, Newendorp and Schuyler (2000) states that the use of utility theory 
for risk policy is scarce. Similarly, these authors also state that one of the possible explanations for this 
is that decision analysts continue to struggle with accurately describing a decision maker’s risk 
preferences.  

In the seminal paper of portfolio theory Markowitz (1952) shows that an alternative approach to utility 
theory is to explicitly include a risk metric in addition to the expected value of the attribute of interest. 
This approach suggests that instead of having to elicit a utility function, a DM may rather make a direct 
judgement about the value of the investment by trading-off his risk-return preferences. In this manner 
the DM can express her preferences without the need to articulate them explicitly.  

In this approach, the return and the risk of the investment are defined as its expected value and its 
standard deviation (or variance) respectively. Both statistics are calculated from the distribution of 
possible results of the attribute of interest. However, to the knowledge of the author of this thesis, the 
literature proposing the extension of the risk-return concept from one to several attributes in the project 
selection context is scarce, being Graves and Ringuest (2003) and Medaglia (2003) among the few. 

On the other hand, although the concept of characterising an investment in terms of its expected value 
and a risk metric is widely accepted in the finance and upstream oil and gas literature, up to date many 
questions are still open at this point regarding which is the correct risk metric to use.  

The critics of the use of standard deviation (or variance) as a risk measure argue that risk averse 
individuals (or corporations) usually avoid outcomes below a certain target level, not the overall 
uncertainty in the outcomes.  Roy (1952) named this fact as the “safety first principle”. This author states 
that in the economic world, disasters may occur if an individual makes a net loss as a result of some 
investment activity. Hence the safety first principle asserts that in practice, it is reasonable that a DM will 
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seek to reduce as far as is possible the chance of a disaster. However, for an investment with non-
symmetrical return distributions, which is the case of most upstream projects, the minimisation of the 
standard deviation penalizes projects with upside as well as downside potential. In other words it may 
reduce the chance of a disaster but also reduces the chances of a high positive performance. 

The family of the so called “downside” risk measures has been proposed in the literature to account for 
this issue. Nawrocki (1999) provides a thorough review of the evolution of these measures and 
summarizes the main factors affecting the choice of the risk measure as follows: 

1. Investors perceive risk in terms of below-target returns.  
2. Investors’ risk aversion increases with the magnitude of the probability of ruinous losses.  
3. Investors are not static. As the investor's expectations, total wealth, and investment horizon 

change, the investor's below-target return risk aversion changes. Investors have to be 
constantly monitored for changes in their level of risk aversion. 

It is possible to infer from factors 1 and 2 that DMs not only want to maximise the probability of 
achieving a certain target (e.g., P(NPV>0) ) but are also concerned with minimising the magnitude of 
potential losses. In other words, given two possible investments with the same expected value and the 
same probability of achieving a certain target, a risk averse DM will chose the investment with the 
lowest chance of a ruinous loss.  

On the other hand, the 3rd factor mentioned by Nawrocki (1999) makes it possible to infer that if a DM 
wants to use a utility function to rank investments according to their expected utility this utility function 
should be continuously revised to reflect changes in his level of risk aversion. 

McVean (2000) reviews the impact of using different risk measures in the construction of efficient 
portfolios16 of upstream projects. In this paper the author uses the risk measures most used in the 
upstream petroleum decision analysis literature. These measures are: 

• Standard deviation 

• Semi-standard deviation 

• Fixed percentiles 

• Probability of achieving a given target value. 

McVean (2000) shows that the usage of different risk measures drastically affects the results of an oil 
and gas project portfolio optimisation problem. The author concludes that the use of multiple risk 
measures can help the DM to gain insight about the potential of an investment portfolio. 

 
16 The efficiency concept will be discussed in the next chapter. 
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3.7 Summing up and discussion 

The first part of this chapter showed that it is possible to characterise the full life cycle E&P project 
proposals in terms of multiple operational and economical attributes whilst accounting for uncertainty 
with the use of Monte Carlo simulation. It is important to note that Simpson et al. (2000) shows that this 
type of methodology is not widely applied in the day-to-day practice of the oil industry. However, the 
same authors show evidence that the use of this type of methodology seems to be correlated to the 
business success of oil companies. 

The second part of this chapter showed that financial theory does not prescribe clear paths of action to 
valuate investments in the presence of multiple attributes and/or risk averse DMs. Utility theory was 
briefly introduced to show that when DMs are not risk neutral and care about the performance of an 
investment in terms of multiple attributes, the value (utility) of that investment may differ among different 
DMs with different preferences. Hence, it is necessary to somehow include these preferences in a 
valuation methodology with these characteristics. 

The second part also showed that the derivation of single and multiple attributes utility functions, 
although theoretically strong, can become a cumbersome exercise. It was also shown that an alternative 
approach to the use of utility functions is to calculate a set of non-dominated solutions for the DM and 
then let her express her risk-return preferences without the need to assess a utility function. It also 
addressed the fact that this latter methodology has two main flaws, the first being the lack of agreement 
in the literature to which is the proper risk measure to use and the second the lack of theoretical 
background to use this type of technique when the decision setting requires multiple attributes. 

Taking in account the contributions of Nawrocki (1999) and McVean (2000) seems reasonable to state 
that to adequately address the risk of an investment it would be necessary to break it down into 
components. In other words, it should be possible to characterise the risk of an investment with several 
“risk metrics”. If DMs not only want to minimise “below target” probabilities but also want to minimise the 
magnitude of disastrous events whilst maximising the “upside” potential of an investment, it would be 
necessary to define “risk” as a multi-objective problem itself. This statement will be considered in 
chapter 7.  
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4 OPTIMISATION 

4.1 Introduction 

The purpose of this chapter is to present a review of the main mathematical programming concepts. 
Firstly, a general single objective optimisation problem is described. Then, a general optimisation 
problem with multiple objectives is defined and the main differences between this problem and the 
single objective one are highlighted. The necessity to include the DM preferences in a multi-objective 
problem before or after the optimisation is also addressed. Finally, the multi-objective genetic algorithm 
with linear constraints (MOGOL) selected to act as a search engine in the E&P project selection model 
presented in this thesis is described. 

4.2 Optimisation definition  

Optimisation is a field of management science also called mathematical programming that deals with 
finding one or more feasible solutions that correspond to extreme values of one or more objectives (Deb 
(2001)).  In business decision-making, optimisation methods are of great importance as they help DMs 
to find investment strategies that provide the “best” performance on one or several corporate objectives 
given a limited amount of capital and non-capital resources. Generally, optimisation problems (i.e., 
mathematical programs) are stated in terms of an objective function, a set of decision variables and a 
set of constraints.  

The objective function is a function that the DM wants to optimise (minimise or maximise). The set of 
decision variables are the variables that affect the value of the objective function. These set of 
variables represent a decision to be made and, hence, are the quantities that the optimisation method 
has to determine. The set of constraints allows the decision variables to take on certain values but 
exclude others. Additionally, many optimisation problems have a special set of constraints that require 
the decision variables to be nonnegative.  

4.3 Single objective optimisation 

The general single-objective mathematical program with the objective function Z(x) with n decision 
variables, xn, and m constraints, em(x), may be defined mathematically as: 

 Optimise: )x,,x,Z(x n21 …

Subject to: 0;)x,,x,(xe n21m ≤… M;1,2,...,m =∀

0xn ≥ ; N;1,2,...,n =∀
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Or in vector notation: 

 Optimise: Z(x)

Subject to:    0e(x) ≤

0x ≥

4.4 Multiple objective optimisation  

The task of finding one or more optimum solutions when an optimisation problem involves more than 
one objective function is called multi-objective optimisation. Within a multiple objective context, a DM 
considers a set A of alternatives and seeks to choose an “optimal” alternative considering all the 
attributes that are relevant to the analysis. Formally, an attribute17 gi is a non-decreasing real-valued 
function that describes an aspect of the global performance of the alternatives. On the other hand, an 
objective defines a direction in which the DM strives to perform better on a given attribute. If a DM has 
the objective of maximising the performance of attribute gi (i.e., prefers more of attribute gi than less of 
attribute gi), the alternatives are compared to each other as follows: 

kj aa f⇔> kiji gg (aj is preferred to ak)

kj aa ~⇔= kiji gg (aj is indifferent to ak)

Where gji denotes the performance of alternative aj on criterion gi. Since the performance of the 
alternatives on the various attributes will usually lead to conflicting results and conclusions, the “optimal” 
alternative is not optimal in the traditional single objective optimisation sense. Instead, it is a satisfactory 
non-dominated18 alternative (i.e., an alternative that is in accordance with the value system of the DM 
and is not dominated by other possible alternatives) (Zopounidis and Doumpos (2002)). 

After Markowitz (1952), a bi-objective form of this approach became widely known among financial 
markets specialists for the two objective situation where it is possible to generate an efficient frontier of 
non-dominated alternatives in order to trade-off risk against return before choosing a final solution19. As 
a consequence of this, Steuer (1985) states that “what is not well known is how to address investment 
problems where three or more criteria exist”. The main obstacle encountered to transit from two to more 
than two criteria is that the efficient frontier is no longer a frontier but becomes a surface. This then 

 
17 The concepts of criteria and attribute will be used indistinctively in this thesis. 
18 If there is an alternative “A” that is at least as preferred as “B” for each one of the attributes that are being considered, and 
if “A” is strictly preferred to “B” for at least one of the attributes, then alternative “B” is said to be dominated by “A”. This 
concept will be formally defined later in this chapter. 
19 This approach will be explained in the next chapter. 
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leads to the methods and techniques of multi-objective optimisation, that attempt to explore the efficient 
set that may exist in up to k dimensions (where k is the number of criteria).  

4.4.1 Multi-objective optimisation problem 

A general multi-objective optimisation problem includes a set of n decision variables, a set of k objective 
functions, and a set of m constraints, where objective functions and constraints are functions of the 
decision variables. Using the notation used in Zitzler (1999) the decision vector is denoted by x and X
denotes the decision space. Similarly, the objective vector is denoted by y and Y denotes the objective 
space (see Figure 4-1). The constraints 0xe ≤)( determine the set of feasible solutions. Then, the 

optimisation goal is to: 

Maximise: )](,),(),([)( 21 xxxxfy kfff K==

Subject to: 0xxxxe ≤= )](,),(),([)( 21 meee K

Where: Xx ∈= ],,,[ 21 nxxx K

and        Yy ∈= ],,,[ 21 kyyy K

4.4.1.1 Feasible set 

The feasible set Xf is defined as the set of decision vectors x that satisfy the constraints e(x) as 

})({ 0xeXxX ≤∈=f and the feasible region in the objective space, is denoted as )( ff f XY = .

4.4.1.2 Pareto Dominance: 

In single objective optimisation, the feasible set is ordered according to the objective function f(x). For 

example, for solutions fXba ∈, either )()( ba ff ≥ or )()( ab ff ≥ . Therefore, as stated in the 

previous section, the optimal solution (or solutions) is the one that provides the maximum value of the 
objective function. 

The situation is very different when several objectives are involved. In this case, it is necessary to define 
the concept of dominance. Dominance implies that if there is an alternative A that is at least as preferred 
as B for each one of the attributes that are being considered, and if A is strictly preferred to B for at least 
one of the attributes, then alternative B is said to be dominated by A.  

An example of dominance is shown in Figure 4-2 as in Zitzler (1999). This figure represents a solution 
space with two objectives. The solution represented by point B is better than the solution represented by 

points C and D as it provides better performance for both objectives )(11 xy f= and )(22 xy f= . On 
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the other hand the solution represented by point A dominates point B in the same manner. In other 
words, the light grey rectangle contains the region in the objective space that is dominated by the 
decision vector represented by B. The dark grey rectangle contains the objective vectors whose 
corresponding decision vectors dominate the solution represented by B. 

Figure 4-1: Illustration of a general multi-objective optimisation problem. Modified from Zitzler et al. (2004). 

 

4.4.1.3 Pareto Optimality 

Having defined the concept of dominance it is possible to introduce the concept of optimality for multiple 
objective optimisation problems. Referring again to Figure 4-2, the corresponding decision vector a of 
solution A is not dominated by any other decision vector. That means that a is optimal because it cannot 
be improved in any objective without causing a degradation in at least one other objective. Such 
solutions are denoted as Pareto optimal (Zitzler (1999); Graves and Ringuest (2003)). 

The red alternatives in Figure 4-2 represent the Pareto-optimal set of solutions. The fact that any of the 
alternatives in this set is dominated by any other solution makes the DM indifferent to them without any 
further information about her preferences. Each DM has her own system of preferences that depends 
on complex behavioural considerations. The value that a DM assigns to an alternative depends on the 
absolute and relative performance of this alternative on the different relevant attributes. However, the 
value that a DM gives to any of the non-dominated solutions will always be higher than the value 
assigned to any of the dominated solutions. Hence, the main idea behind multi-objective optimisation is 
that regardless of her utility function, a rational DM will not be interested in choosing an alternative that 
does not belong to the Pareto set.  



 

 
 
 
 
 
    
Figure 4-2: Illustration of Pareto optimality in the objective space. Modified from Zitzler (1999). 
 
4.4.2 Classes of techniques for solving multi-objective optimisation 
problems 
 
From a practical standpoint a DM needs to choose only one solution from the Pareto 

set that fits his own system of preferences. As a result, the analysis of a multi-

objective problem can be subdivided in two distinct parts, search and preference 

articulation. The fundamental differences among the different techniques to solve 

multi-objective optimisation problems come from the ordering in which these two 

steps are performed. 

 
4.4.2.1 Methods with a priori articulation of preferences 
 
These methods usually avoid the complexities involved in a true multi-objective 

optimisation problem through the transformation of a multiple objective problem into 

a single objective one. Hence, these methods do not handle multi-objective 

optimisation any differently than single objective (Deb (2001)). 

Among many others, the most common methods of this type are: 

•  ε-Constraint method 

• Value function method 

• Weighted sum method 

• Goal Programming methods 

In order to set a common ground for discussion in the next chapter, the first two 

methods from the above list will be briefly explained. 

 
4.4.2.1.1 ε-Constraint method 
 
This method reformulates the multi-objective problem by keeping only one objective 

and restating the other objectives as goals. Although the concepts of objective and 

goal are usually used interchangeably, in the multi-objective optimisation jargon an 

objective indicates a direction in which the 
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NOTE:  This figure is included on page 34 of the print copy of the 
thesis held in the University of Adelaide Library. 
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DM must strive to do better.  On the other hand, a goal identifies specific levels of achievement. Goals 
are different from an objective in that is either achieved or not (Keeney and Raiffa (1993)). 
Consequently, in an optimisation problem, objectives belong to the objective function while goals belong 
to the set of constraints. As a result, the modified problem is as follows: 

Maximise: ),(xµf

Subject to: ,)( kkf ε≥x Kk ,,2,1 K= and ;≠ µk

0)( ≤xme ;,,2,1 Mm K=

Where: x∈nx ;,,2,1 Nn K=

In this formulation, the parameter mε represents a lower bound20 for the value of mf . Let say that in a 

bi-objective problem the DM decides to keep 1f as an objective and treat 2f as a constraint 11 )( ε≥xf

(Figure 4-3). The constraint represented by the red line divides the objective space in two. All the 
solutions to the left of the red line now become unfeasible and hence, the solution “E” becomes the 
optimal solution. 

Figure 4-3: The ε− constraint method. 

According to Deb (2001), the main advantages and disadvantages of the ε− constraint method are as 

follows: 

 

20 For a minimisation problem, this parameter represents an upper bound instead. 
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Advantages: 

• This method guarantees that if an optimal solution is found whilst accounting for a given set of 
constraints, this solution is Pareto optimal. 

• Different optimal solutions can be found using different mε values. 

 
Disadvantages: 

• The solution of a ε− constraint mathematical program strongly depends on the chosen 

ε− vector of constraints. Hence, finding a feasible solution can become a difficult task as the 

number of objectives increase. 

4.4.2.1.2 Utility Function Method 

To approach an optimisation problem with M objectives, the Utility function method requires the DM to 
provide a multi-attribute utility function that relates all M objectives Rosenthal (1985). Deb (2001) states 
that assuming such a function exists for the entire feasible search space the multiple objective 
optimisation problem can be reduced to a single objective optimisation problem as follows: 

Maximise: ))(U( xf

Subject to: 0)( ≤xme ;,,2,1 Mm K=

Where: X∈nx ;,,2,1 Nn K=

Figure 4-4 depicts the contours of a value function in a bi-objective space. According to the figure it is 
possible to note that although solutions C and B are Pareto optimal, U(f(C))> U(f(B)) and hence solution 
C is preferred to solution B. Therefore, with this method it is not necessary to identify the complete set of 
Pareto optimal solutions. When a multi-attribute utility function is available this procedure will find the 
solution that is optimal in terms of the preferences of the DMs in a single step. 
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Figure 4-4 Contours of the multi-attribute utility function (Modified from Deb (2001)) 

Rosenthal (1985) argues that this method is rarely used for problems with a large set of feasible 
solutions, and that its application has been mostly restricted to problems where the feasible region is 
small enough to enumerate totally. 

Advantages:  

• If a utility function is available, this method is the ideal one as it finds in one step the solution 
that is optimal in accordance to the DMs preferences. 

 
Disadvantages: 

• As it was shown in the previous chapter, finding a multi-attribute utility function that truly 
represents the preference system of the DM and the tradeoffs the she is willing to make is not 
an easy task at all.  Keeney and Raiffa (1993) present a vast compendium of techniques to 
assess preferences from DMs in order to construct a multi-attribute utility function. However, 
Deb (2001) argues that this approach there is always danger of using an oversimplified multi-
attribute function. 

4.4.2.2 Methods with a posteriori articulation of preferences 

Methods with posterior articulation of preferences begin by generating a representative set of non-
dominated solutions. Once this representative set is calculated it is necessary to solicit trade-off 
information from the DM that is used to select a preferred solution from this set (Graves and Ringuest 
(2003)). The quality of a multi-objective optimisation method with posterior articulation of preferences 
mostly depends on two issues (Deb (2001)), (Zitzler et al. (2004)): 

• Finding a set of solutions as close as possible to the Pareto optimal front. 
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• Finding a set of solutions that are sparsely spaced across the range of the Pareto-optimal 
region. 

There are two main approaches to generate a set of Pareto-optimal solutions. The first approach 
consists in performing several runs of methods with “a priori” articulation of preferences where in each 

run the “preferences” (i.e., weights in the multi-attribute utility function, goals in the ε -constraint method) 

of the DM are systematically altered. These methods are also called “exact” multi-objective methods 
(Zitzler et al. (2004)) since the solutions provided by these methods belong to the Pareto optimal set as 
each one of the single optimisation provides the actual optimum value. The main disadvantage of these 
methods is that they are not guaranteed to provide solutions that are sparsely spaced in situations 
where the shape of the Pareto surface is discontinuous or concave (Coello (2001)). The main reason for 
this is that systematic changes in the preferences of the DMs, for example via a multi-attribute utility 
function, do not necessarily provide a uniform spread of samples in the objective space. On the other 

hand, finding feasible solutions through systematic changes in constraints set using the ε -constraint 

method may be a difficult task as a result of the trade-offs among the attributes under study. 

The second approach is also called “search” approach. This approach consists in generating solutions, 
testing them in the objective set of functions and keeping the ones that are non-dominated by previous 
solutions. According to Zitzler et al. (2004), search methods algorithms usually consist of three parts, 
solution generator, a working memory that contains the currently generated solution and a selection 
module that compares new solutions with old ones and discard dominated ones while keeping the non-
dominated ones. Figure 4-5 shows that as new solutions are generated it is possible to generate an 
approximate Pareto set that eventually will converge towards the real Pareto set. 

Figure 4-5: Approximation of the Pareto set through iterative evaluation and search. Source Zitzler et al. (2004). 
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The simplest approach to a “search” based method is to use a random solution generator. The larger 
the number of solutions generated the closer the approximate set will be to the true Pareto set. 
However, the computational cost of doing this is extremely high and hence a number of meta-heuristic 
methods (e.g., evolutionary algorithms, tabu search, simulated annealing) have been developed to 
generate solutions in such a way that it is possible to calculate a good approximation of the true Pareto 
with affordable computing power. Evolutionary algorithms are particularly suitable to solve multi-
objective optimisation problems because they deal simultaneously with a set of possible solutions and 
this allows finding several potential members of the Pareto optimal set in a single run of the algorithm 
(Coello (2001)). Moreover, the evolutionary approach is less susceptible to the shape or continuity of the 
Pareto set than the “exact” approaches. 

However, as it was shown in Figure 4-5 the main disadvantage of these methods is that, although they 
are superior to the “exact” methods regarding the preservation of the efficient set, they do not always 
provide an “exact” solution but rather an approximation of the “true” Pareto set. 

4.4.3 Stochastic optimisation 

In the multi-objective methods problem previously shown the objective function coefficients is a set of 
scalar valued functions (Rosenthal (1985)). This means that these methods assume that it is possible to 
know with certainty the future performance of a given solution in the objective space. However, in many 
cases the DM not only wishes to optimise several objectives at the same time, but moreover, there is 
uncertainty in the future performance of potential solutions. When the objective function coefficients are 
random, the resulting problem is denominated stochastic multi-objective optimisation (Caballero et al. 
(2001)). This kind of programs can be defined as follows: 

Maximise: )],(,),,(,),,([ 1 ωωω xxx Kk zzz KK

Subject to: Mmbe mm ,,1,)( K=≤x

1x0 ≤≤

Where x is a vector of decision variables of dimension nx1. For k=1,…,K, zk(x, ω ) is the kth objective 

and ω represents the stochastic effect in the objectives. For i=1,…,M, em(x) denotes a linear constraint 
in the decision vector x, and bm is the right hand side scalar for the mth constraint. 

4.4.3.1 Multi-objective stochastic optimisation 

As in the multiple objective problem previously defined, it is often the case that the objectives of the 
stochastic multi-objective optimisation conflict with each other. Therefore, the problem is not to find a 
unique “optimal” solution x, but to identify a set of solutions that are not dominated in a stochastic 
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sense. In other words, because each one of the objectives for a given solution is a probability density 
distribution, it is necessary to compare different statistics of these distributions. 

Caballero et al. (2001) state that different concepts of stochastic dominance can be found in the 
literature. However, most of the cases seek to optimise either a central tendency measure (e.g., 
expected value) and a dispersion metric (e.g., standard deviation) or a central tendency measure and a 
given percentile (e.g., P10, P90)21. In this manner, under uncertainty, the objectives of the optimisation 
problem are not set over the performance attributes themselves but over statistics extracted from their  
PDFs. 

To illustrate the concept of dominance using of statistics extracted from PDFs, the stochastic dominance 
criteria used in Medaglia (2003) will be described. This approach defines the concept of stochastic 
dominance in terms of expected value and the probability of achieving a target value specified by the 
DM as follows. 

Let x and x’ be two feasible decision variable vectors in a stochastic multi-objective problem 

(maximisation). Solution x dominates solution x’ if and only if for all k, )]'([)]([ xx kk zEzE ≥ and 

})'({})({ kkkk TzPTzP ≥≥≥ xx , and there exists at least one k, such that )]'([)]([ xx kk zEzE > or  

})'({})({ kkkk TzPTzP ≥>≥ xx .

Where )]([ xkzE is the expected value of the kth objective ( )(xkz ) and })({ kk TzP ≥x is the 

probability that )(xkz is greater than or equal to a target value Tk specified by the DM. 

Medaglia (2003) also states that if the DM is not concerned with the probability of achieving certain 
target but rather prefers to maximise a given percentile of the PDFs of the attributes it is convenient to 

rewrite the stochastic dominance statement in the following manner. If kkk FTzP =≥ })({ x and 

kkk FTzP =≥ }')'({ x , with Fk specified by the DM, then solution x dominates solution x’ if and only if 

the following two conditions hold: 

For all k, )]'([)]([ xx kk zEzE ≥ and 'kk TT ≥ , and there exists at least one k, such that 

)]'([)]([ xx kk zEzE > or  'kk TT > .

However, since it is not possible to parameterise the probabilities of achieving a certain target value or 
the percentiles of a distribution through an equation, Medaglia (2003) proposes the use of a simulation-
optimisation approach to solve this problem. The simulation-optimisation approach is not exclusive for 

 
21 This notation is commonly used in the oil & gas literature to denote the 10th percentile and the 90th percentile respectively. 
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multi-objective problems, and it generally uses a combination of Monte Carlo simulation with meta-
heuristics search methods. The main advantages of this methodology are: 

• It respects the dependencies among the system random variables. 

• It allows optimising any statistic from an attribute modelled as a random variable (stochastic 
objectives). 

• It allows setting constraints over any statistic from any random variable. 
A multi-objective simulation-optimisation approach with posterior articulation of preferences has the 
previous advantages plus the capability to produce approximate Pareto sets in terms of objectives set 
over certain statistics of the attributes under study. 

4.4.3.1.1 Parameter Space Investigation Method (PSI) 

The parameter space investigation method was originally described by Sobol (1992). This method was 
originally conceived to solve for deterministic multi-objective nonlinear problems.  However, Graves and 
Ringuest (2003) propose a modified version of this approach for problems with stochastic objectives and 
a deterministic set of constraints. 

These authors state that a stochastic PSI method would proceed as follows: 

• A preset number of trial points are randomly generated based on the bounds of the decision 
variables. 

• If a trial point is not feasible it is discarded. 

• If the trial point is feasible, the relevant statistics over the set of performance attributes is 
estimated through Monte Carlo simulation. 

• If the solution of a trial set is dominated by any previous solution it is discarded. Any remaining 
solutions are presented to the DM. 

This simple methodology generates a sample of non-dominated solutions for a stochastic multi-objective 
problem. However, it is important to note that the set of solutions is non-dominated for the particular 
sample produced by the trial points and, therefore, it is not guaranteed to be a good approximation of 
the Pareto set. 

4.5 Multi-objective genetic optimizer with linear constraints (MOGOL). 

Medaglia (2003), presents an evolutionary algorithm to solve for multi-objective linearly constrained 
problems under uncertainty (MOGOL). This algorithm considerably improves the solution time and the 
quality of the solutions, in terms of being more evenly spaced and closer to the “true” Pareto optimal set, 
if compared to the stochastic PSI method proposed by Graves and Ringuest (2003). Note that unless 
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another author is mentioned all the information presented in this section is extracted from Medaglia 
(2003). 

MOGOL was initially developed to help DMs in the selection of generic research and development 
projects under uncertain conditions and multiple objectives. Since research and development projects 
are usually linearly constrained by a budgetary constraint, MOGOL is designed to take advantage of this 
characteristic to increase the solution speed and the accuracy of the approximate Pareto set. Hence, its 
application is narrowed to problems with linear deterministic constraints (i.e. the feasible region needs to 
be convex). The reason for this is that, as opposed to the PSI method, the MOGOL directly searches 
the feasible region.  

Figure 4-6 shows a hypothetical linearly constrained feasible region marked by the yellow area, where 
the decision space has two decision variables (x1, x2). To generate new individuals MOGOL firstly 
calculates extreme points of the feasible region, denoted in Figure 4-6 by the black dots.  

Medaglia (2003), states that the calculation of these extreme points is fundamental for the MOGOL 
algorithm. This statement is based in the fact that, as shown in Figure 4-6, feasible solutions xa and xb

can be generated as convex combinations of the extreme points x1 and x4, and x2 and x5 respectively. 

Where 4a xxx )1(1 aa αα −+= with 10 ≤≤ aα and 52 )1( xxx bbb αα −+= with 10 ≤≤ bα .

Similarly, it is possible to generate any other point (e.g., xc ) by successive convex combinations of 
previous solutions that can be traced back to the extreme points.  

Figure 4-6 Feasible region. Modified from Medaglia (2003) 
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A detailed explanation of the MOGOL algorithm described in Medaglia 2003 goes beyond the scope of 
this thesis. However, since a posterior version of the MOGOL algorithm to the one here presented is 
used as the search engine for the E&P project portfolio model proposed in this thesis, it is convenient to 
describe how the algorithm produces an approximate efficient frontier, at least from a high level 
perspective.  

Firstly, the user must enter the set of inputs that define the characteristics of the projects and the 
constraints of the problem. In this manner the user must enter the set of constraints of the problem 
(required to be linear), the PDFs of the performance attributes (defined as triangular distributions) for 
each of the project proposals and the objective functions to be optimised.  

Secondly, the user must also define a series of parameters that will impact the quality of the solution 
and the solution time of the algorithm. These inputs are the number of Monte Carlo independent 
replications desired for each simulation, the number of generations of solutions to be calculated (Nmax), 
the size of the population (P(t)), a crossover probability (Pc) and a mutation probability (Pm).  

Once this set of inputs and parameters is set it is possible to run the algorithm. Initially the algorithm 
calculates the extreme points of the feasible solution as explained above and produces an initial 
population (P(1)) of solutions where each solution is defined by a participation vector. Each participation 
vector represents a feasible portfolio. Then a built-in Monte Carlo simulator calculates full PDFs of the 
objective functions and extracts the statistics of interest in a batch basis for each one of the portfolios of 
the population. 

Then the algorithm recombines the solutions obtained in P(1) by crossover. This procedure seeks to 
combine the “genetic” material of two “parent” portfolios to obtain a “child” solution that resembles them. 
Every solution from P(1) has a probability pc (defined by the user) of being selected. The selected 
solutions are then paired to produce a child in the following manner. If xa and xb are parent solutions 

selected for the crossover, the “child” xc will be defined as bac xxx )1( αα −+= , where α is a 

random number selected from a uniform distribution over the range [0,1]. The new child xc forms part of 
Cc(1), a population of new solutions generated from the crossover of the selected solutions from P(1). 

In addition to the new children generated by crossover, the algorithm also injects a percentage pm

(defined by the user) of new individuals. These new solutions form Cm(1), a population of new solutions 
generated from this mutation process. 

After Cc(1) and Cm(1) are calculated these two populations are combined to form the total children 
population C(1). The solutions contained in C(1) are then evaluated using Monte Carlo to extract the 
statistics of relevance according to second stochastic dominance criteria proposed in section 4.4.3.1. 
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Figure 4-7 is a flow chart that shows how the MOGOL evaluates a given solution, the chart assumes 
that the DM is interested in optimising the expected value and the P90 of the attributes under study. 

More replications?Portfolio Model Stats 
Collector

NoSimulation
Participation 

Vector

{E(z1(x)),…, E(zk(x)),…, E(zK(x))}

Yes
{P90(z1(x)),…, P90(zk(x)),…, P90(zK(x))}

More replications?Portfolio Model Stats 
Collector

NoSimulation
Participation 

Vector

{E(z1(x)),…, E(zk(x)),…, E(zK(x))}

Yes
{P90(z1(x)),…, P90(zk(x)),…, P90(zK(x))}

Figure 4-7 Flow chart describing the evaluation of possible solutions by MOGOL 

Once C(1) has been evaluated, this population is combined with P(1) and the resulting population (E(1)) 
sorts the individuals according to various layers of non-domination based on the relevant statistics 
extracted from the PDFs of the objective functions. This procedure firstly calculates the non-dominated 
solutions of E(1), then the algorithm sets this first layer of non-dominated solutions (F1) aside and 
calculates a new set of non-dominated solutions (F2) with the remaining solutions. Similarly, it puts F2

aside and calculates F3 and this process continues until all the solutions contained in E(1) are classified 
into one frontier.  

Once all the solutions that form the initial population (P(1)) and the children population C(1) have been 
classified into one frontier, the algorithm selects new individuals for the next generation. The algorithm 
does this by ranking the solutions starting with the solutions belonging to the best non-dominated 
frontiers until the maximum number of individuals is reached. In other words, all the individuals from F1

are selected, then all the individuals from F2 selected and so on until the maximum number of individuals 
for the next generation (P(2)) is reached. Since it may not be possible to select all the solutions in the 
last frontier when P(2) is reached, the algorithm uses the crowding distance sorting method proposed by 
Deb (2002). The crowding distance method seeks to select the solutions that are as sparsely spaced as 
possible across the Pareto front by literally avoiding solutions clustered around a specific point in the 
non-dominated front (Coello (2001)). The main reason to do this is that these points are quasi-
redundant in terms of information to the DM. 

The fact that the best individuals from the best fronts are always selected, they always produce more 
children solutions than the rest of the population. This feature of the MOGOL algorithm and the 
crowding distance concept are elements borrowed from the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) described in Deb (2002). 

The MOGOL then starts the whole procedure again using the new population (P(2)) and so on until the 
maximum number of generations specified by the user is reached. The whole procedure of the algorithm 

can be summarised then in the following manner, where L∪∪∪= 321 FFFF and Nmax is the 

number of generations defined by the user: 
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1←t

Initialize population P(1) 

Evaluate population P(1) 

While t<=Nmax 

 Recombine P(t) to generate Cc(t) 

 Alter P(t) to generate Cm(t) 

 )()()( tCtCtC mc ∪=

Evaluate children population )(tC

)()()( tCtPtE ∪=

Sort E(t) by stochastic non-domination to generate F 

 Select P(t) from F 

Where at the end the approximate Pareto set will be equal to P(Nmax). 

4.5.1 Discussion of the MOGOL algorithm 

The MOGOL algorithm proposed in Medaglia (2003) provides a robust way to produce Pareto sets of 
generic research and development projects with multiple objectives under uncertain conditions. 
However, the first version of the algorithm Medaglia et al. (2004) described in the previous section 
lacked the ability to account for the inter-project and intra-project correlations that are present in E&P 
projects. This thesis led to the development a second version of the MOGOL algorithm that does 
account for these correlations as explained in the following chapters. 

4.6 Summing up 

This chapter described the main characteristics of a multi-objective optimisation problem. The fact that it 
is not possible to obtain an optimal solution in a multi-objective sense without the preferences of the DM 
was addressed. Additionally, the chapter highlighted the fact that multi-objective problems can be 
broadly classified depending on whether the preferences of the DM are articulated before or after the 
optimisation is performed.  
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The chapter also showed that most of the classic multi-objective methods with posterior articulation of 
preferences are usually based on several runs of methods with a priori articulation of preferences. This 
practice produces solutions that are Pareto optimal on an individual basis but that are not necessarily 
evenly spaced across the full range of the Pareto optimal surface. Additionally, it was shown that these 
methods fail to handle goals and/or objectives over statistics that cannot be described through an 
equation (i.e., percentiles, probabilities of achieving a certain target).  

On the other hand, evolutionary algorithms provide solutions that are more evenly spaced over the 
Pareto optimal surface. Additionally, it was described how these algorithms can be used to set goals 
and objectives over any statistic when combined with Monte Carlo simulation through the simulation-
optimisation approach. 

It is important to highlight that this chapter presented the main difference between goal and objective 
where, in this context, an objective indicates a direction in which the DM must strive to do better 
whereas a goal identifies specific levels of achievement. 

Lastly, the chapter described the multi-objective optimisation algorithm with linear constraints (MOGOL) 
proposed in Medaglia (2003). 
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5 OIL AND GAS PORTFOLIO OPTIMISATION 

5.1 Introduction 

Firstly, this chapter defines how to aggregate the variables of individual projects in order to measure the 
performance of a potential portfolio of E&P projects. Secondly, this chapter draws in the oil and gas 
decision and risk analysis literature to review the classical and state of the art methodologies to optimise 
the selection of E&P projects. Lastly, the advantages and disadvantages of these methodologies are 
discussed. 

5.2 Aggregating projects: deterministic and stochastic approaches 

After the asset valuation stage has been completed and the relevant attributes and correlations have 
been quantified, the DMs need to search for the optimal investment alternative accounting for the 
current objectives and/or goals and available resources of the company. However, the optimisation 
problem has to be set over a model that aggregates the performance attributes of the project proposals 
so that the performance of the portfolio in those attributes can be quantified.  

The working interest22 represents the percentage owned by the company in a specific project. Most23 of 
the performance attribute of a portfolio (ZPort) can be expressed as a linear combination of the same 
attribute for each asset (zi) proportioned by its working interest (xi). In this manner the performance of a 
portfolio in the performance attribute Z can be expressed as: 

( ) ∑
=

=
N

i
ii zx

1
PortZ x

Thus, in a deterministic E&P portfolio optimisation problem with N assets, where Z is a performance 
attribute to be optimised, the objective function set over that attribute can be defined as follows:  

Maximise: ( ) ∑
=

=
N

i
ii zx

1
PortZ x

Alternatively, if ZPort is required to reach a goal T it can be expressed in the set of constraints as: 

( ) Tzx
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ii∑
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PortZ x

22 Working interest and participation level are used indistinctively. 

23 Efficiency measurements as the net present value over investment (NPV/Inv) ratio cannot be calculated as a linear 
combination of the performance of each of the projects in the portfolio for this attribute times its working interest. To calculate 
an efficiency measure of a portfolio it is necessary to firstly calculate the NPV and the total investment (Inv) of the portfolio 
and then calculate the ratio of these two attributes. 
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If projects are characterised stochastically and DMs are interested in optimising statistics of the PDFs of 
the performance attributes, then it is necessary to restate the objective function(s) related to each 
attribute. If for example the corporate DMs are interested in maximising the expected value and the 10th 
percentile of attribute Z1 and maximising the expected value of attribute Z2 while minimising the standard 
deviation of attribute Z2 then the objective functions of the multi-objective optimisation would be as 
follows: 
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Similarly, if the DMs are interested in investing in a portfolio with at least 90% probability of achieving a 
positive value for attribute Z1, then the following statement should appear in the constraints of the 
optimisation statement: 
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It is possible to note that in both the stochastic and the deterministic cases the portfolio attributes are a 
function of the set of decision variables that conform x. Each solution of x is a portfolio that describes a 
unique investment strategy for the available opportunities. Corporate DMs may define a given 
investment strategy in terms of two different types of decision variables: working interest and timing. If 
the DMs are just concerned about finding the optimal working interest, they may model a decision vector 
as follows: 

[ ]Nxxx ...,, ,21=Tx

10 ≤≤ ix
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Where X is a participation vector and xi represents the participation level on the ith project. Usually, xi is 
modelled as a continuous variable that can take any value between zero and one24.

Yet, most companies will try to avoid strong fluctuations in the yearly future profiles of their performance 
attributes. For these reason, corporate DMs might not only be interested in optimising the working 
interest but also the timing to start the projects. To do so, it is necessary to restate the decision vector 
as a 2xN matrix.  


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Where the first row is similar to the participation vector described previously and the second row of the 
matrix specifies the timing of the ith project. The variable ti is discrete and can vary from zero (start the 
project now) to a given number of years into the future (ki). Fichter (2000) states that in practice, a 
project may have a typical starting time span between one and five years (ki~5 years). 

5.3 E&P portfolio optimisation methods most commonly found in the 
literature 

In this section the capital rationing approach and the mean-variance approach will be described. To aid 
with the illustration of these methods, a hypothetical simple portfolio optimisation problem will be used. 
The problem assumes that a company wishes to optimise an eight project portfolio with a budget of 
US$400 million. This company has access to a set of eight projects and is mainly concerned about the 
future performance of their asset portfolio in terms of two metrics: net present value (NPV) and total 
reserves added (i.e., total cumulative production). The projects have been evaluated stochastically in 
terms of both attributes using Monte Carlo simulation.  

The possible NPV and cumulative production outcomes are chosen to be triangular distributions with 
minimums, modes and maximums as represented in table 5-1. This table also shows the cost of the 

 
24 However, the participation level in a particular project may be constrained because other company has already taken a 
portion of it. Another possible constraints of the decision variables is the fact that contractual agreements of the country 
and/or the corporation promoting the project might require a minimum level of working interest to participate in the venture. 
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projects (assumed to be deterministic). Note that the eight projects require a capital of US$725 millions 
to fund fully. 

Cost ($MM) Min Mode Max Mean SD Min Mode Max Mean SD
P 1 100 -10 25 60 25 14.29 5 12 25 14 4.14
P 2 70 -30 20 85 25 23.54 2 5 15 7.33 2.78
P 3 80 -40 10 90 20 26.77 2 10 20 10.67 3.68
P 4 105 -20 15 40 11.67 12.3 5 15 25 15 4.08
P 5 85 -5 20 45 20 10.21 5 10 20 11.67 3.12
P 6 60 -15 5 20 3.33 7.17 1 3 10 4.67 1.93
P 7 65 -5 10 25 10 6.12 1 3 10 4.67 1.93
P 8 160 -25 -5 60 10 18.14 15 25 35 25 4.08

NPV ($MM) Cumulative Production (MMBOE)

Table 5-1 Costs and distribution parameters of the NPV and cumulative production metrics 

With a capital budget of US$400 million, the DMs of the company need to choose a portfolio that 
delivers the best risk and return combination for both metrics in accordance to their system of 
preferences. The following assumptions will be made: 

• The company can participate in a project at any level. As a result, working interest can take any 
value between 0 and 1. 

• Transaction costs are assumed to be included in the overall investment for each project. 

• DMs are just concerned about optimising working interest. Consequently, timing is ignored.  

• All projects are independent. All inter-project correlations are set equal to zero. 

5.3.1 Capital rationing approach 

Several authors (Orman and Duggan (1998); Ball and Savage (1999a); Ball and Savage (1999b); 
Brashear et al. (2000); Bratvold et al. (2003); Campbell et al. (2003)) have highlighted the fact that even 
at the present time the most common approach to project selection and capital allocation is the capital 
rationing approach, most commonly named as the “rank and cut” method.  

As stated before, DMs do not have the required capital to fully develop all the available projects. The 
“rank and cut method” addresses this budgeting constraint by evaluating projects on individual merits. In 
this method, projects are ranked on a profitability index such as net present value to investment 
(NPV/Inv), and funded until the budget is committed. As a consequence of the above, all projects 
receive a 100% working interest with the possible exception of the last project selected, which may 
receive partial funding.  
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5.3.1.1 Capital rationing optimisation problem 
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This procedure maximises the return on invested capital, but if and only if the future project outcomes 
are as predicted in the analysis that guided the ranking or, if the project outcomes are not as predicted 
but their relative ranking remains constant. Consequently, the “rank and cut” method overlooks the fact 
that the future performance of oil and gas assets is uncertain and, as a result, there are risks associated 
to each investment. Additionally, this method overlooks the existence of correlations between projects 
and the fact that E&P firms may also be measuring their performance against more than one metric for 
several years into the future. 

Note that the companies performing the rank and cut method usually do not derive the expected values 
of the NPV from Monte Carlo simulation on stochastic valuation models. In contrast, they valuate their 
projects with deterministic methods that use single estimates of the expected values for each of the 
parameters used in the valuation process and as a result, the output is a “best estimate” of the expected 
value of the NPV.  

However, if projects are evaluated stochastically and ranked according to the expected value of their 
NPV/Inv ratio (E(NPV/Inv)), then this method maximises the utility of a risk neutral investor if projects 
are assumed to be independent. 

5.3.1.2 Example 

In order to solve the hypothetical portfolio optimisation problem presented at the beginning of this 
section with the capital rationing approach it is necessary to state the problem as follows: 
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Table 5-2 states that using the set of projects described above it is possible to note that when the 
projects are ranked according to their level of capital efficiency, the resulting portfolio is Xrank&cut = [1, 1, 
1, 0, 1, 0, 1,0]. This vector means that according to this method, projects 1, 2, 3, 5 and 7 should receive 
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full funding while projects 4, 8 and 6 should not receive any funding at all. Since the total cost of the 
projects selected equals the total available budget any of the selected projects receives partial funding. 
This portfolio is supposed to deliver a NPV of US$ 100MM. Additionally, as a by-product of the 
maximisation of the NPV the portfolio delivers 48.4MM bbls of reserves. 

Project NPV NPV/Inv Reserves Cost
$MM MMbbl $MM

P2 25.0 0.4 7.3 70.0
P1 25.0 0.3 14.0 100.0
P3 20.0 0.3 10.7 80.0
P5 20.0 0.2 11.7 85.0
P7 10.0 0.2 4.7 65.0
P4 11.7 0.1 15.0 105.0
P8 10.0 0.1 25.0 160.0
P6 3.3 0.1 4.7 60.0

Table 5-2 Results of the capital rationing method 

Advantages: 

• Maximises the return on invested capital, but if and only if the future project outcomes are as 
predicted, or if the projects do not perform as predicted by their relative ranking remains 
constant.  

• If the projects are evaluated stochastically and the expected value of the NPV/Inv is used in the 
ranking, it maximises the utility of a risk neutral investor.  

• It is an appropriate tool for a first screening of the project proposals. 

• Its calculation is strait forward does not require any optimisation software. 
 
Disadvantages: 

• It ignores uncertainties and associated risks in the attributes of the project proposals. 

• It ignores the inter-project correlations. 

• It is not suitable for risk-averse investors or investors with a multi-attribute utility function. 

• It does not account for the “time to invest” decision variable. 

5.3.2 Mean-variance approach 

Nobel laureate Harry Markowitz published this method in 1952 (Markowitz (1952)). This article and 
subsequent publications demonstrated how investors of financial securities could minimize the risk while 
maximising the returns of their investment portfolio. Markowitz stated that exposure to risk could be 
minimized by understanding the relationship among different stocks. He pointed out that the risk 
reducing effects of diversification are reduced if multiple investments are positively correlated but 
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amplified if the investments are negatively correlated. Moreover, Markowitz stated that there is a 
combination of securities that maximizes the return for each level of risk. 

The mean-variance method replaced the single-objective approach to investment, focusing solely on an 
expected measure of return or capital efficiency, by a two-objective approach. The two-dimensional 
approach characterizes a portfolio in terms of expected return and a measure of dispersion.  

Several oil and gas authors (Hightower and David (1991); Orman and Duggan (1998); Ball and Savage 
(1999a); Brashear et al. (2000); Simpson (2002); Bratvold et al. (2003)) show the benefits of adapting 
the mean-variance method to the E&P resource allocation problem. These authors state that the main 
difference between financial stock portfolios and E&P portfolios is that stock portfolios are concerned 
only with the proportions of various assets held, regardless of the size of the budget. As a consequence, 
the return of stock portfolios is measured as an annualised average percentage return that is 
independent of the budget of the investor. In contrast, E&P portfolios usually consist of projects where 
the company takes a significant portion, and arbitrary fractional investments are not available. For these 
reasons the return of E&P capital projects is usually measured directly in terms of the NPV and is 
constrained by the capital available. Note that the set of equations presented next are based on 
Bratvold et al. (2003). 

If NPVij denotes the jth possible outcome for the NPV attribute on the ith project and Pij the probability of 
the jth return on the ith  project, then the expected NPV of the ith project is given by: 

∑
=

=
M

j
ijij NPVPE(NPVi)

1

The expected net present value (E(NPV)) of a portfolio of E&P projects is simply a weighted average of 
the expected NPV of the individual project proposals proportioned by the working interest in that project. 
In this manner, the expected return of a portfolio of N projects can be expressed in the following form: 
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Where the weight ( ix ) is the participation level on the ith project is the vector previously defined in 

equation 4 and the vector of project returns is denoted by: 
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On the other hand, the variance of a portfolio (σPort
2) is a function of the variances of the individual 

projects and the covariance between the projects and can be expressed as: 
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Where S is the variance-covariance matrix defined as: 
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And σi
2 is the variance of the NPV of the ith project defined as: 

[ ]∑
=

−=
M

j
iijiji NPVENPVP

1

22 )((σ

The standard deviation is defined as the squared root of the variance. 
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The covariance between two projects can be expressed as a function of the variance of each project 
and its correlation coefficient as follows: 

ijjiij ρσσσ =

And hence the standard deviation of the portfolio can be re-expressed as: 
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With the definition of these parameters it is possible to represent graphically all conceivable 
combinations of projects in an E(NPV) vs. standard deviation of the NPV (SD(NPV)) space. Since 
investors prefer to maximise returns whilst minimising risk, it is important to identify a set of portfolios 
that offer a bigger return for the same risk, or offer a lower risk for the same return. This set of portfolios 
is bi-objective Pareto set commonly called efficient frontier in the finance jargon. 

5.3.2.1 Mean Variance Optimisation 

As stated before, the mean-variance framework to optimise a portfolio of investments has two objectives 
(maximise return and minimise risk25). Since it was shown that it is possible to parameterise the 
standard deviation statistic with an equation, it is not necessary to the simulation-optimisation approach 
described in the previous chapter. Additionally, since it is known that the standard deviation is a 

concave function, it is possible to use the ε-constraint method to derive the Pareto set. 

In this manner, the problem can be solved with multiple runs of a single objective mathematical program 
if one objective is held fixed while the other is optimised as follows: 

Minimise:          
2/1
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Where the objective function Z(X) denotes the standard deviation of the portfolio.  

Subject to:             ∑
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 10 ≤≤ X Equation 5-3 

Where Costport is the investment cost of the portfolio, Costi is the investment cost of the ith-project, 
Budgetport is the overall capital constraint and TNPV is a target value for the return. The first restriction 
(equation 5-1) is the total cost of the portfolio that has to be equal to the capital constraint.  The second 
restriction (equation 5-2) is the expected return of the portfolio, which is stated to be equal to a target 
value TNPV. This restriction is crucial because it allows defining the problem as single objective. The third 
restriction (equation 5-3) states that the working interest or participation levels must be a real number 
equal or greater than zero and less or equal than one. 

 
25 Under the assumption that the standard deviation or the variance of the returns is a risk measure. Alternatively, the 
problem can be re-stated to minimize the semi-standard deviation of the attribute under study.  
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5.3.2.2 Example  

In order to solve the hypothetical portfolio optimisation problem presented at the beginning of this 
section with the Markowitz approach it is necessary to state the problem as follows: 

For r =0 to r =N-1: 

Minimise: 
2/1
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Where the Min(E(NPV)) and Max(E(NPV)) are respectively the minimum and the maximum expected 
values of the NPV for the given level of budget and set of project proposals and “r” is an increment 
defined by [Max(E(NPV)) - Min(E(NPV))]/N where N is the number of efficient solutions that will be 
calculated for the efficient set. The presence of the “For” statement at the beginning of the optimisation 

shows the need for several runs of the optimisation problem when the ε-constraint method is used. 

Figure 5-1 shows the calculated efficient frontier with N=20 for the set of projects and the given budget 
constraint of US$400 million. The leftmost portfolio in Figure 5.1 represents the least risky portfolio with 
an E(NPV) of US$60 million and SD(NPV) of US$18.78 million. The rightmost portfolio is the one with 
highest E(NPV) (US$100 million) and SD(NPV) (US$40.21).  

Figure 5-2 shows the composition of the portfolios shown in the efficient frontier. It is possible to note 
that the rightmost portfolio is the same portfolio suggested by the capital rationing method since it 
maximises the E(NPV) metric for the same budgetary constraint.  
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Figure 5-1 Efficient frontier calculated for the eight project proposals and a budget of US$400 million. 
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Figure 5-2: Working interest composition of the portfolios shown in the efficient frontier 

 

The main advantages and disadvantages of the mean-variance method can be summarised as follows: 

Advantages: 

• Incorporates uncertainty and/or risk to the portfolio selection process and hence it is suitable to 
risk-averse companies. 
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• Incorporates correlations between projects and hence takes advantages of the risk reduction 
properties of diversification. 

• Posterior articulation of preferences, hence DMs can explicitly trade-off the perceived utility of 
each potential investment strategy. 

• Calculations can be solved using simple optimisation tools as Solver™ 26, which is an 
optimisation algorithm that is embedded in Excel™ 27.

Disadvantages: 

• Although this method accounts for two objectives, these objectives are set over a single 
attribute. Hence, the performance in other attributes is a by-product of the risk-return of the NPV 
attribute.  

• It is only possible to use this method with closed-form “risk/uncertainty” statistics such as the 
standard deviation, the semi-standard deviation or the variance.  

• It does not account for the “time to invest” decision variable. 

5.4 Review of the state of the art multi-attribute E&P portfolio optimisation 

methods  

This section reviews three alternative approaches to the capital rationing and the mean-variance 
methods to optimise E&P portfolios whilst accounting for multiple performance attributes and 
uncertainty. These approaches use multi-attribute utility theory, goals over expected values and 
simulation optimisation respectively.  

5.4.1 Multi-attribute utility theory (MAUT) approach 

This method is described in Walls (1995) and draws on the multi-attribute utility theory literature to 
develop a decision model to select portfolios that explicitly maximises the expected utility of the 
corporation. The method proposes a full probabilistic characterisation of the project proposals in terms 
of the relevant attributes using Monte Carlo simulation. 

After the individual projects have been evaluated, the method proposes the generation of 2500 possible 
portfolios based on different combinations of working interest that must be also characterised 
stochastically using Monte Carlo simulation. Then single attribute utility functions relating the utility 
perceived by the DM to each one of the performance attributes must be first elicited from the DM. A 
critical part of the elicitation is to provide the DM with the overall minimum and maximum performance 
values of each one of the attributes for the 2500 portfolios generated. Once these single attribute utility 

 
26 Solver™ is a trademark of Frontline Systems. 
27 Excel™ is a trademark of Microsoft. 
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functions have been elicited they are normalized so that the minimum utility for each attribute is zero 
and the maximum utility is one. In this manner, it is possible to calculate the expected utility of each one 
of the portfolios generated for each one of the attributes under study. This can be expressed 
mathematically as follows: 

∑
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1
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Where zi is the attribute of interest and pj is the probability of outcome j for each attribute zi.

In order to aggregate the expected utilities for each of the attributes the method proposes the use of an 
additive multi-attribute utility function similar to the one presented in chapter 3 for the two attribute case. 
Hence, for an “n” number of attributes, this function can be represented mathematically as: 
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Where ki is the elicited relative importance given by the DM to attribute zi and ∑
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the utility of each one of the 2500 portfolios is calculated and the one with the highest utility is the one 
that should be selected. 

Advantages of the MAUT approach: 

• The process of eliciting the single attribute and multi-attribute utility functions from the DMs 
forces them to think about their preferences which can be a source of insight to make a better 
decision. 

• The process is mathematically simple and its application does not need a complex optimisation 
algorithm. 

 
Disadvantages of the MAUT approach: 

• The approach assumes the additive independence condition holds. However, according to 
Clemen and Reilly (2001) the additive independence condition rarely holds. 

• The approach provides the optimum portfolio from the 2500 portfolios generated but fails to 
address if these 2500 portfolios are Pareto optimal, and moreover fails to address if these 2500 
solutions are sparsely spaced over the range of the Pareto optimal set. In other words the DM 
may be assigning maximum or minimum utility to values that do not represent the actual 
maximum or minimum performance of the set of projects in a given attribute. 
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• The approach neglects the presence of inter-project correlations. 

• The approach uses prior articulation of preferences and hence prevents the DM from explicitly 
understanding the tradeoffs among the attributes. 

5.4.2 Multiple goals approach 

This approach is presented in DuBois and Howell (2000); DuBois (2001); Howell and Tyler (2001) and 
Allan (2003). A very similar method is used by the software Capital Planning™28 (Schlumberger (2002)). 
The main objective of this approach is to meet performance targets set by the DM over multiple 
attributes for several years into the future. The optimisation algorithm seeks for portfolios capable of 
meeting these targets on an expected value basis while minimising the risk of the portfolio. In this 
method the portfolios are defined in terms of working interest and time to invest. 

This approach starts by characterising the project proposals using a semi-stochastic approach. Hence, 
instead of producing full probability distribution profiles of the performance attributes using Monte Carlo 
simulation, projects are characterised using a reduced number of scenarios of production and cost 
profiles. More specifically, Allan (2003) states that these scenarios usually correspond to the production 
of the P10, P50 and P90 volumes of the EUR, where each scenario is associated to a cost profile 
representing the capital disbursements required to produce those volumes. Once these profiles are built 
it is possible to calculate an approximate mean profile using the Swanson’s rule29. Then these “mean” 
profiles of the production and the costs can be combined with the oil price to produce other financial 
profiles as income or profit.  

Although unfortunately the literature describing this method is not clear about how the optimisation is 
actually performed, it is clear that the main interest of the method is to find portfolios meeting all the 
targets set by the DM. In this manner, the optimisation algorithm used by the method uses combinations 
of working interest and time that respectively “strech” and “shift” the mean profiles calculated with the 
use of the Swanson’s rule to meet the performance targets.  

DuBois (2001) states that this methodology cannot directly influence the probabilities of achieving the 
stated targets. The author explains that after a portfolio that meets the targets (modelled as constraints 
in the optimisation algorithm) is found, it is possible to perform a Monte Carlo simulation of the optimal 
solution and hence study the probabilities of meeting the targets. As a result, these probabilities are by-
products of the optimisation approach since it is not possible to use them as part of the objective 
function or the set of constraints. 

 
28 Capital Planning is a trademark of Schlumberger information solutions. 
29 Swanson’s rule consists in assigning a 30% probability to the P10 profile, a 40% probability to the P50 profile and a 30% 
probability to the P90 profile. The weighted average of these factors is commonly used as a rough estimate of the mean. 
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As a consequence, it is possible to infer that this approach is based in the ε-constraint method 

described in the previous chapter. What is not fully clear about it in the literature is if the algorithm 
performs the optimisation in one step for every solution in the efficient frontier. In other words, the 
algorithm may either: 

• Firstly find a set of feasible solutions on an expected value basis without the use of an 
objective function, secondly perform a Monte Carlo simulation of the feasible portfolios 
found and thirdly sort these solutions according to a risk-return dominance criteria. 

• Firstly find a set of feasible solutions with an objective defined over the expected value 
of the NPV attribute and then perform steps two and three as in the previous item. 

• Firstly find a single feasible solution with an objective defined over a risk metric (e.g., 
standard deviation) including an additional constraint for the NPV and secondly perform 
a Monte Carlo simulation of each of the solutions found. 

However the 3rd strategy seems to be the less probable given the fact that DuBois (2001) states that the 
approach uses a risk metric called “mean loss” that is calculated while a Monte Carlo simulation is being 
performed. However, since this method is not capable of directly influencing probabilities, the use of a 
simulation-optimisation approach is discarded and hence the third strategy described, to the knowledge 
of the author of this thesis, is improbable. 

The ε-constraint method is guaranteed to find a Pareto optimal solution if an objective function is set 

over one of the attributes and constraints are applied to the rest of attributes into consideration. 
However, if the method described in this section uses one of the two strategies described above the 
solutions found are not necessarily Pareto optimal in terms of risk and return since the risk metric used 
may not included as part of the set of constraints or the objective function.  

Allan (2003) states that the model allows the use of a stochastic oil price as a global variable when the 
Monte Carlo simulation is performed. In this manner, the method accounts for stochastic inter-project 
correlation. 

Advantages of the multiple goals method: 

• Optimises both working interest and time. 

• Accounts for intra-project and inter-project correlation. 

• Accounts for multiple attributes. 

• Accounts for the uncertainty in the performance of the attributes. 

• Includes the time-dimension to the optimisation procedure. 
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Disadvantages of the multiple goals method: 

• The multiple performance attributes are included through the set of constraints. Consequently 
even if the solutions found are Pareto optimal, it is not possible to explicitly study the trade-offs 
among the attributes. 

• The existence of tradeoffs among the attributes may prevent the DM from finding a feasible 
solution for a given set of goals. This may then force the DM to change the goals of the portfolio 
on an iterative basis or bring new potential projects to the optimisation until a feasible solution is 
found. However, this approach concentrates more on feasibility than on optimality. Hence it 
finds solutions that satisfy the DM goals but not necessarily delivers the maximum potential of 
the set of projects in terms of the preferences of the DM.  

• Although it is not possible to assure this with the literature available, it is probable that the 
solutions found by this approach are not Pareto Optimal. 

5.4.3 Single objective simulation-optimisation approach 

As discussed in chapter 3, the simulation optimisation approach combines Monte Carlo simulation with 
meta-heuristic optimisation methods. The main advantage of this approach is possibility of including 
statistics, percentiles and/or probabilities of achieving a certain target as part of the objective function or 
the set of constraint. According to Campbell et al. (2001) there are at least two commercially available 
softwares that use this methodology named Optquest™30 and RiskOptimizer™31.April et al. (2003); 
Rodriguez and Galvao (2005) show how the simulation optimisation software Opquest™ can be used to 
solve E&P portfolios.  

April et al. (2003) show two simple example cases where it is possible two set various statistics as part 
of the objective function and the set of constraints. In the first example the authors set a E&P portfolio 
optimisation problem where the DMs wish to construct a mean-standard deviation efficient frontier. The 
problem is set so that the objective function is the E(NPV) of the portfolio, and there is a constraint set 
over the SD(NPV). In this case the authors just consider the working interest vector as the set of 

decision variables. The efficient frontier can be constructed using the ε-constraint method varying the 

level of the constraint set over the standard deviation. 

The second case presented in April et al. (2003) shows a more unusual case for the E&P portfolio 
optimisation literature. In this example the DMs are interested in maximising the chance of getting a 
NPV larger or equal than a given target while keeping the P10(NPV) to be larger than another target. 

 
30 Opquest™ is a trademark of Decisioneering. 
 
31 Riskoptimizer™ is a trademark of Palisade 
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Additionally, the decision variables are set to be the working interest of each project and the starting 
year of each project.  

Rodriguez and Galvao (2005) show a more detailed E&P portfolio optimisation problem with 8 projects 
of different levels of maturity and multiple performance attributes. The performance attributes used by 
the authors for this case include NPV, cash flow and production rates. In this manner, every project is 
stochastically characterised from reserves to economics. Additionally, the oil price is set as a stochastic 
global variable creating correlation through the project proposals.  

It is important to note that in this method the performance of the portfolio is characterised not only with 
summary attributes (e.g., NPV, reserves) but with yearly production and after tax net cash flow profiles. 
Once the projects are characterised the authors set the E(NPV) of the portfolio as the objective to be 
maximised while setting constraints over the expected values of the yearly production and cash flow 
profiles. Additionally, the decision variables are set to be the working interest of each project and the 
starting year of each project. Consequently, this approach is very similar to the multiple goals approach 
previously described but with the capability of optimising statistics, percentiles and probabilities of 
achieving targets. 

However, the fact that this method allows us to work with uncertainty and risk measures adds another 
level of complexity to the problem since then it is necessary to somehow account for intra-project 
correlations. Rodriguez and Galvao (2005) sort out this issue by integrating the project characterisation 
with the portfolio optimisation. In this manner since the set of equations that describe the relationships 
among the various attributes of interest for each project are embedded in the model it not necessary to 
model these correlations explicitly32.

The approaches of April et al. (2003); Rodriguez and Galvao (2005) show how the simulation-
optimisation approach can help overcome some of the disadvantages showed by the multiple-goals 
approach described in the previous section. The main advantage over the multiple-goals approach is 
that since all the objectives set in the form of statistics are included in the optimisation problem via the 
objective function or through a set of constraints, if a feasible solution is found this solution is Pareto 
optimal. However, this methodology still lacks the capability of producing Pareto efficient sets for 
multiple (>2) objectives and hence prevent the DM to explicitly understand the tradeoffs about their 
multiple objectives. The relevance of this statement is recognised in Rodriguez and Galvao (2005) in the 
following way: 

“Sometimes the requirements (constraints over attributes) may conflict with each other or lead to 

inefficient portfolio management, destroying value and elevating the risk.” 
 
32 This issue will be discussed in more detail in the next chapter. 
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It is possible to infer from this statement that even if an efficient feasible solution is found, it may not 
maximise the utility of the DM (and hence perceived utility of the shareholders). Consequently, a 
methodology capable of producing a Pareto set would help DMs to make better decisions. 

Advantages of the single objective simulation-optimisation approach: 

• Capable of accounting for working interest and time as decision variables. 

• Accounts for intra-project and inter-project correlation with the use of Monte Carlo simulation. 

• Accounts for multiple attributes. 

• Accounts for the uncertainty in the performance of the attributes. 

• Capable of setting targets and constraints over statistics, percentiles or probabilities over the 
performance attributes. 

• Includes the time-dimension to the optimisation procedure with the use of yearly profiles of the 
portfolio performance attributes. 

 
Disadvantages of the single objective simulation-optimisation approach: 

• The multiple performance attributes are included through the set of constraints. Consequently 
even if the solutions found are Pareto optimal, it is not possible to explicitly study the trade-offs 
among the attributes. 

• Similarly to the multiple goals approach this approach concentrates more on feasibility than on 
optimality. Hence it finds solutions that satisfy the DM goals but not necessarily delivers the 
maximum potential of the set of projects in terms of the preferences of the DM.  

• A major disadvantage of the simulation optimisation approach not explicitly mentioned in the 
literature is that it is considerably slower than the other approaches since it has to perform a 
simulation of each of the solutions proposed by the meta-heuristic search method used. 

5.5 Summing up 

Firstly, this chapter described how to aggregate the individual performance attributes deterministically 
and stochastically to assemble a portfolio of project proposals. Secondly, it described the capital 
rationing method and mean-variance method to optimise E&P portfolios. It was shown that the main 
advantages of the mean-variance approach over the capital rationing approach is the inclusion of risk or 
uncertainty metrics into the optimisation and the capability to explicitly show the tradeoffs between risk 
and return. It was also shown that the major flaw of the mean-variance approach is its inability to 
account for multiple attributes and its inability to account for risk metrics that cannot be expressed in a 
closed form. 
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Lastly, three alternative methods found in the literature to account for multiple attributes and risk were 
described. These methods are the MAUT approach, the multiple goals approach and the simulation-
optimisation approach. It was shown that the simulation optimisation approach can be seen as an 
extension of the multiple goals approach but with the possibility of optimising multiple statistics 
percentiles and probabilities from the PDFs that characterise a project investment portfolio. However, 
these methods account for several performance attributes they are unable to produce a Pareto surface 
explicitly showing the tradeoffs among the multiple attributes. 
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6 A MULTI-OBJECTIVE SIMULATION-OPTIMISATION APPROACH FOR E&P 
PORTFOLIO OPTIMISATION 

6.1 Introduction 

The previous chapter showed that the state of the art methods found in the E&P portfolio selection 
literature are not capable of producing a set of Pareto optimal portfolios in terms of multiple objectives 
set over statistics, percentiles and probabilities calculated from multiple attributes. This chapter 
proposes an E&P portfolio optimisation model to solve problems with the following characteristics: 

• Multiple attributes with uncertain performance. 

• Multiple stochastic objectives per attribute (in the form of statistics, percentiles and probabilities 
of achieving certain targets). 

• Posterior articulation of preferences. 

• Partial funding. 

• Intra-asset dependencies among performance attributes. 

• Inter-asset dependencies among performance attributes. 

• Linear budget constraint. 

The proposed model uses a simulation-optimisation approach where the valuation of individual potential 
assets is integrated into the portfolio optimisation problem to assure the preservation of intra-asset and 
inter-asset dependencies. The model uses a new version of the multi-objective genetic optimisation with 
linear constraints (MOGOL) algorithm presented in chapter 3 as search engine. The output of the model 
is an approximate set of Pareto optimal projects in terms of all the objectives under consideration, where 
each performance attribute has one or more stochastic objectives. 

Since the portfolio selection approach proposed here uses the model to characterise each asset as part 
of the portfolio optimisation problem, the first part of the chapter describes how the individual projects 
are modelled. The second part of this chapter explains how the individual projects are assembled into a 
portfolio model and how the search engine MOGOL was linked to the portfolio model. 

6.2 Single project model 

The ultimate objective of the single-project model here presented is to produce distributions of the 
attributes reserves and NPV for each of the project proposals that will be used in the optimisation.  

6.2.1 Production profile model 

The portfolio optimisation model presented in this chapter requires a stochastic production profile for 
each of the projects under study. This stochastic production profile is generated running a Monte Carlo 
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simulation over a model that replicates the behaviour of an oil reservoir. It is assumed that the each 
project is designed to produce the oil of geologically independent reservoirs.  

Lund (1997) states that there are relatively few models that address the complete development project 
under uncertainty as a consequence of the massive amount of computer power needed to do this. 
Therefore, including uncertainty in such a model will clearly enhance this problem. However, the same 
author states that given the high degree of uncertainty in the early stages of development it is doubtful 
that a detailed asset description will provide better insight about its future performance than a coarser 
model. This issue is particularly relevant for the model proposed in order to get reasonable solution 
times. Since the proposed model is based in a simulation-optimisation approach and the objectives are 
statistics read from the distributions calculated after each simulation, it is necessary to keep the model 
simple to get a good approximation of the true value of these statistics with the minimum number of 
iterations per simulation.   

As a consequence of the above, each one of these reservoirs is assumed to be perfectly homogeneous. 
According to Lund (1997) this type of reservoir model is commonly termed a tank model. Since this type 
of model assumes a reservoir without spatial variations, the locations of the wells are of no 
consequence to the production and hence, it would be possible to deplete the reservoir from a single 
well. This “zero dimensional” reservoir model, commonly called “tank model”  and widely applied in 
analysis of field developments (Lund (2000)) is used here. This model rests on the following 
assumptions (Lund (2000)): 
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Where: 

Pw,0: initial well (reservoir) pressure. 

Pw,t: well (reservoir) pressure at time t. 

Pmin: abandonment pressure. 

R0: initial reservoir volume. 
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Rt: remaining reservoir volumes at time t. 

qr,t: maximum reservoir depletion rate at time t (productivity of the reservoir at time t) 

qw,0: initial well rate. 

Nt: number of producing wells at time t. 

Equation 6-1 states that the pressure of the reservoir drops linearly with accumulated production. 
Equation 6-2 gives the proportional relationship between the number of producing wells, the well rates 
and the relative well pressure above minimum. Combining equations 6-1 and 6-2 it is possible to restate 
the maximum reservoir depletion rate as follows: 
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Assuming that the wells can produce at their maximum initial production rate without damaging the 
reservoir, the production of the field at time t (qt) can be described as follows:     

}MaxCap,min{ ,trt qq =

Since the reservoirs have not been produced before the existence of these developments it is possible 
to state that the initial reservoir volume (R0) will be equal to the expected ultimate recovery (EUR). 
Hence, qt can be described as: 

}MaxCap,min{ 0, EUR
RqNq t

wtt =

Note from the previous equation that, the maximum depletion rate of the reservoir will be determined by 

the production capacity of the production hub (MaxCap) and the productivity of the reservoir ( trq , ). The 

maximum capacity (MaxCap) is a deterministic variable since the development plan of the project has 
been approved. On the other hand, the reservoir production ultimately depends on the initial rate per 
well (qw,0), and the expected ultimate recovery (EUR) and these two variables are stochastic.  It is 
assumed that all the wells start production at the same time and that all the wells have the same initial 
rate. 
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It is important to note that usually a larger reservoir will have a higher initial rate and hence there is a 
positive stochastic correlation between these two variables. Since these two variables are inputs of the 
model, it is necessary to model this dependency explicitly with the use of the Spearman rank order 
correlation coefficient (Murtha (2000)). In this way, the Monte Carlo simulation engine will relate the 
sampling of high values of the variable EUR to high values of (qw,0) and the sampling of low values of 
EUR to low values of (qw,0). A coefficient of 50% is used for all the project proposals modelled. 

The total cumulative production at time t (Qt) is defined as follows: 

 

6.2.2 Oil price model 

The model assumes a mean-reverting behaviour in the oil prices. Hence the mean-reverting model 
explained in chapter 3 is used. For simplicity, all calculations are done in real terms and hence oil prices 
are not escalated to account for inflation. 

6.2.3 Costs 

The model includes capital expenditures (Capex), operating expenditures (Opex) and abandonment 
expenditures (Abex). As mentioned above, for simplicity, all calculations are in real terms and hence 
costs are not inflated33.

6.2.3.1 Capex 

Since all the projects are assumed to be in the “under development” or “approved for development”34 
stages, the Capex is modelled as a deterministic value35. For simplicity, it is also assumed that all the 
Capex is spent in the year before the project starts production.  

For tax purposes the total Capex is subdivided in intangible Capex (IntanCapex) and tangible Capex 
(TanCapex). The fiscal regime assumed for the model states that the intangible Capex are expensed 
and that the tangible costs are capitalised using four-year straight line depreciation. 

6.2.3.2 Opex 

The Opex of each project proposal is defined as follows: 

33 Ignoring inflation is obviously a simplification. In an non academic context, inflation must be acknowledged in order to 
produce accurate valuations.  
34 Further research in this area including a mix of projects at various development stages should provide a more realistic 
illustration of the upstream oil and gas portfolio optimisation decision setting.   
35 The fact that there is a commitment to develop a project does not imply that there is no uncertainty associated with the 
Capex variable. However, at this development stage, the uncertainty regarding the Capex is by definition significantly lower 
than in an exploration/appraisal project.  
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tttt q VarOpExFixOpExOpEx ⋅+=

Where FixOpExt is the fixed Opex and is modelled as a deterministic variable and VarOpExt is the 
variable Opex and is modelled as a uniform distribution. The fiscal regime used assumes that the Opex 
are expensed. 

6.2.3.3 Abex 

The abandonment cost of the project proposals is modelled as a triangular distribution. The main reason 
for this is that since it is an expenditure that will occur many years ahead the starting of the project, its 
total amount is uncertain. Additionally, its date of occurrence is also uncertain since it depends on the 
economic limit36 of each of the projects. Its date of occurrence is modelled as follows: 

If qt,econ=0 and 0
1

0
, >∑

−t

econtq then Abext=Abex 

Otherwise: Abext=0 

Where qt,econ is the production profile that is economically feasible to produce37, Abex is the magnitude 
of the abandonment costs defined as a stochastic variable and Abext is the abandonment costs incurred 
in year t. The abandonment costs are assumed to be incurred in a single year.  

6.2.4 Tax calculation 

For simplicity, the model assumes that all projects are implemented in countries with simple 
concessionary regimes. The main reason for this assumption is to save computing power since the 
modelling of production sharing contracts (PSC) usually requires the use of lookup tables and more 
complex calculations than a concessionary regime and consequently the model would become slower. 
Although the value of the parameters of the concessionary fiscal regime used may change from project 
to project, the structure of the fiscal regime is kept equal for all the projects. The structure of the fiscal 
regime is as follows: 

ttt PqueGrossReven ⋅=

ttt eRoyaltyRatueGrossRevenRoyalty ⋅=

ttt eRoyaltyRatueGrossRevenNetRevenue −=

36 This term will be discussed in more detail later in this chapter. 
37 This term will be discussed in more detail later as part of the economic limit concept. 
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If ttttt NetRevenueTaxLossCFDD&AOpexIntanCapex ≥+++ ,

then tt NetRevenuensedDeductioTotalAppli =

Otherwise: 

ttttt TaxLossDD&AOpexIntanCapexnsedDeductioTotalAppli +++=

It is possible to note that in the previous equation, the abandonment costs are not entering the 
calculation for the reasons explained in the previous section. 

Additionally, if: 01 <−tomeTaxableInc  then, tt omeTaxableIncTaxLossCF −=

Where: 

tttttt TaxLossCFDD&AOpexIntanCapexNetRevenueomeTaxableInc −−−−=

Additionally, if:  

0>tomeTaxableInc  then TaxRateomeTaxableIncIncomeTax tt ⋅=

Otherwise: 

0=tIncomeTax  

Finally: 

ttttopert OpexTanCapexIntanCapexNetRevenueBTNCF −−−=,

topertopert IncomeTaxBTNCFATNCF −= ,,

Where DD&At is the depletion, depreciation and amortization in time t and TaxLossCFt is the tax loss 
carried forward in year t, and  BTNCFt,oper and ATNCFt,oper are, respectively, the before tax net cash flow 
and after tax net cash flow in time t that is operationally feasible. The term “operationally feasible” 
means that it is physically possible to produce these cash flows. However, these cash flows do not 
account for the economic criteria to terminate the operations of the field when the operating cash flow of 
the field becomes negative on a steady basis. 
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6.2.5 Reserves and NPV calculation 

The reserves of the field will be equal to the total cumulative production of the field from its beginning 
until its abandonment. The abandonment date is defined by the time in which the field production 
becomes unfeasible economically. This date is commonly called “economic limit”.  

In this model the economic limit of the project is defined as follows: 

If 0, <opertBTNCF , and 0
1

0
, >∑

−t

opertBTNCF  then t=tEconLimit 

Consequently, EconLimitecont ttq >∀= 0, , otherwise tecont qq =, .

Where qt,econ is the economically feasible stream of production in time t. In other words, if the field has 
been producing a positive operating cash flow and this cash flow declines until becoming negative, then 
the field must be closed and hence there is not any more production from that point forward. 

Given that the reserves of a project are those resources that are operationally and economically 
viable to produce, the reserves of the field R are defined as follows: 

∑==
EconLimitt

opertoperEconLimit qQR
0

,,

Hence, 0, =econtBTNCF  EconLimittt >∀ and topertecont AbexBTNCFBTNCF += ,, EconLimittt ≤∀ .

Additionally, tecontecont IncomeTaxBTNCFATNCF −= ,,

Consequently, the net present value of a project is calculated as follows: 
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Where r is the discount rate used by the company. 

Summarising, this section described how to calculate the attributes “’reserves” and “NPV” for each one 
of the projects to be considered in the portfolio optimisation. Since the inputs to calculate these 
attributes are modelled as distributions, it is possible to run a Monte Carlo simulation of the model and, 
hence, obtain probability density functions of these two attributes. 
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6.3 Stating the objectives of the portfolio 

As it was explained in chapter 5, with the exception of capital efficiency attributes, the performance of a 
portfolio of N assets on the performance attribute (ZPort) can be expressed as linear combinations of the 
same attribute for each of the project proposals (zi) proportioned by the working interest of the company 
on each project (xi). Although the methodology here proposed is able to optimise any statistic, percentile 
or probability of any attribute expressed as a PDF, for illustrative purposes it will be assumed that the 
DMs are interested in optimising statistics of the reserves (Rport) and net present value (NPVport) portfolio 
attributes. These attributes are represented mathematically as follows: 
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Where ω represents the stochastic nature of the variables. In the same manner, the capital investment 

necessary to fund the portfolio is defined as: 
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Where CapExport is a deterministic variable.  

6.4 Integrated portfolio multi-objective optimisation model 

The Markowitz approach reviewed in the last chapter clearly recognises the need to account for the 
stochastic dependencies among the net present values of the various projects included in the 
optimisation. However, in the same order of ideas it is necessary to recognise that the inclusion of the 
attribute “reserves” would necessarily require including not only the correlations among the attributes of 
the various project proposals but also the correlation among various attributes belonging to a single 
project.  

Since it is assumed that the DMs are interested in optimising certain statistics of the attributes NPV and 
Reserves then it would be necessary to recognise that, for each one of the projects under study, the 
NPV attribute and the Reserves attribute would be structurally correlated as a consequence of the set of 
equations presented in the item 6.2. In other words, scenarios of high values in the NPV attribute will 
tend to show high values in the Reserves attribute and vice versa. This intra-asset correlation is 
represented in Figure 6.1 by the blue arrows.  
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Additionally, the model presented here assumes that the only source of correlation among projects is 
the oil price. Consequently, the oil price is modelled as a global variable in which the PDF that 
represents the forecast of prices for a given year is multiplied by the production in the same year of 
each one of the project proposals.  

However, this feature will not only correlate the NPVs of the various projects involved, the attribute 
Reserves in each one of the projects is also influenced by the oil price via the economic limit (a higher 
oil price will push the economic life of the project into the future and hence more hydrocarbons may be 
produced). Hence, it is possible to infer that not only there are correlations among the different attributes 
of a single project (blue arrows in Figure 6.1) and among the net present values of the various projects 
under consideration as the Markowitz approach suggests (black arrow in Figure 6.1) but that there might 
also exist correlations among all the attributes of all projects (red arrows in Figure 6.1).  
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Figure 6-1 Intra and inter-asset correlations 

6.4.1 Integrating the search engine with the portfolio model 

The multi-objective genetic optimizer with linear constraints (MOGOL) algorithm described in chapter 4 
was selected as the optimisation engine that best suited the characteristics of the E&P portfolio problem 
proposed in this thesis. However, the initial version of MOGOL does not allow the inclusion of inter-
project or intra-project correlations. Figure 6.2 shows that the initial version of MOGOL needed two 
steps. In the first step, the project proposals are characterised stochastically and PDFs are generated 
for each one of the attributes of interest. Then, in a second step, these PDFs are used as an input to the 
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multi-objective simulation-optimisation approach where, as explained in chapter 4, an approximate 
Pareto surface is produced.  
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Figure 6-2 Separation of the project characterisation and portfolio optimisation stages 

Note that this process does not honour the intra and inter-project correlations previously explained 
represented in Figure 6.2 by the blue ovals. Consequently, in order to account for these correlations the 
first version of the MOGOL was modified to work in an integrated manner with the portfolio model 
described in this chapter. Figure 6.3 shows how the PDFs used as an input to the optimisation model 
remain linked to their respective single project valuation models. In this manner each simulation 
performed for a solution proposed by MOGOL accounts for all the intra-project and inter-project 
correlations embedded in the portfolio model. 
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Figure 6-3 Integration of the project characterisation and portfolio optimisation stages 

The project valuation models and the resulting portfolio model previously described in this chapter were 
modelled using Excel™ and Crystal Ball™. On the other hand, the initial version of MOGOL is an 
application coded in JAVA™38. Additionally, as it was described in chapter 4, the initial version of 
MOGOL has its own built-in Monte Carlo simulator. Hence, in order to integrate the Excel™ based 
portfolio model with the MOGOL it was necessary to adapt the MOGOL to interact with Excel™ and 
Crystal Ball™. In this manner the JAVA™ code was modified so that MOGOL proposes the solutions as 
explained in chapter 4 but instead of running the Monte Carlo simulation internally, loads a proposed 
solution in the Excel™ workbook with the portfolio model and calls Crystal Ball™ to run a simulation. 
Once the simulation is complete, MOGOL reads the relevant objectives from the worksheet and saves 
the results to be compared according to the dominance criteria explained in chapter 4. Each one of the 
solutions is treated in the same way until the number of generations set by the user is completed.  

The new version of MOGOL is called MOGOL-XL and was co-developed with Professor Andres 
Medaglia39 who is also the author of the initial algorithm. The main conceptual differences between the 
original version of MOGOL and MOGOL-XL were proposed by the author of this thesis. Coding of the 
MOGOL-XL was made by Professor Medaglia in JAVA™ with the exception of a Visual Basic for 
Applications™40 routine coded by the author of this thesis to link MOGOL XL with Excel™ and Crystal 
Ball™. 

 
38 JAVA is a trademark of Sun microsystems 
39 Andres Medaglia is an associate professor of the department of industrial engineering at the Universidad de los Andes, 
Bogota, Colombia. Email: amedagli@uniandes.edu.co 
40 Visual basic for applications is a trademark of Microsoft. 
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Note that the current version of MOGOL-XL is designed to deal with four stochastic objectives and only 
has maximising capabilities. Hence, with the current version it is not possible to minimise objectives 
(e.g., standard deviation).  

6.5 Summing up 

This chapter described the multi-objective portfolio selection model proposed in this thesis. The first part 
of the chapter described the modelling of the individual projects used as an input for the portfolio model. 
The main characteristics of these projects are: 

• The production of these projects is forecasted using a “tank model” that assumes a zero 
dimensional reservoir where the pressure of the reservoir drops linearly with accumulated 
production. 

• The oil price forecast is modelled with a mean reverting stochastic process. 

• The projects are under development or approved for development and hence it is reasonable to 
model the initial capital outlay deterministically. 

• The projects are located in countries with a simple concessionary fiscal regime. 

The second part of this chapter described how the individual projects are aggregated to build the 
portfolio objectives. The importance of keeping the intra and inter-project dependencies was addressed 
as well as the consequent need to integrate the valuation model with the optimisation algorithm. Finally, 
the necessary changes made to the MOGOL algorithm to account for the portfolio optimisation problem 
proposed in this thesis were described.  
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7 APPLICATION OF THE MODEL TO A SET OF DEVELOPMENT PROJECTS 

7.1 Introduction 

This chapter applies the model presented in chapter 6 to a case of five offshore projects. The values 
used to build projects are hypothetical yet realistic. Two experiments are performed with these projects. 
The first experiment optimises 4 objectives set over two attributes. The second experiment optimises 4 
objectives over one attribute. The results of both experiments are presented and discussed. 

7.2 The projects 

The example shown in this chapter uses five “approved for development” projects. There were two main 
reasons to keep the number of projects small: 

• With a small number of projects it is easier to track the impact of a particular project in the 
various objectives of the portfolio. 

• A small number of projects reduce the necessary computing time to perform the optimisation.  

7.3 Experimental settings hardware and software 

7.3.1 Hardware 

All the experiments were run using a 2.0 GHz Pentium™ 4 laptop with 256MB of RAM under Microsoft 
Windows XP.  

7.3.2 Software 

MOGOL-XL was used as a multi-objective search engine. The stochastic single project models and the 
resulting portfolio were modelled using Excel™ 2003 and Crystal Ball™ 7.2.  

7.3.3 Projects Inputs 

The five projects were built using the “single project model” presented in the previous chapter. This 
model requires the following variables as inputs for each project. 

7.3.3.1 Stochastic inputs 

• Initial production: modelled as a triangular41 distribution and hence requiring minimum, most 
likely and maximum values as inputs. 

• Estimated ultimate recovery: modelled as a lognormal distribution and hence requiring the 
mean, the standard deviation and minimum and maximum values (optional) as inputs. 

 
41 Triangular distributions are rarely representations of the real world but are analytically convenient when the decision maker 
only have access to approximate low, high and most likely values describing the uncertainty of a variable. 
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• Variable Opex: modelled as uniform distribution and hence requiring minimum and maximum 
values as inputs. 

• Abex: modelled as a triangular distribution. 

7.3.3.2 Deterministic inputs 

• Total Capex 

• Fixed Opex 

• Maximum capacity of the facility of the field 

• Discount Rate 

• Number of wells 

• % Intangible CAPEX (% of total Capex that is intangible) 

• Tax Rate 

• Royalty rate 

Table 7.1 and 7.2 summarise the input values used for each one of the stochastic variables for each of 
the five projects considered. 

Min ML Max Mean Std Dev Min Max
Project 1 4.5 5.0 6.0 330.0 150.0 100.0 700.0
Project 2 4.4 5.0 5.1 400.0 160.0 120.0 800.0
Project 3 4.0 4.5 5.0 100.0 40.0 25.0 200.0
Project 4 7.0 8.0 9.0 120.0 30.0 10.0 210.0
Project 5 4.0 4.5 5.0 200.0 50.0 80.0 360.0

EUR (MMbbls)Initial Production (Mbbls/d)

Table 7-1 Summary of stochastic project inputs: initial production and EUR 

 

Min Max Min ML Max
Project 1 1.0 1.5 135.0 150.0 165.0
Project 2 1.0 2.0 135.0 150.0 165.0
Project 3 1.0 2.0 67.5 75.0 82.5
Project 4 1.0 2.0 29.3 32.5 35.8
Project 5 1.0 2.0 121.5 135.0 148.5

Variable Opex (MM$) Abex (MM$)

Table 7-2 Summary of stochastic project inputs: variable Opex and Abex 

Similarly, Table 7.2 and 7.3 summarises the input values for each of the deterministic variables for each 
of the five projects considered. 
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Number of wells CAPEX (MM$) Fixed OPEX (MM$/y) MaxCap (Mbbls/d)
Project 1 20.00 1500.00 100.00 80.00
Project 2 15.00 1500.00 80.00 40.00
Project 3 10.00 500.00 20.00 40.00
Project 4 10.00 650.00 20.00 50.00
Project 5 15.00 900.00 20.00 20.00

Table 7-3 Summary of deterministic project inputs number of wells, Capex, fixed Opex and maximum capacity 

 
Tax Rate (%) Royalty Rate (%) Discount rate (%) % INTANGIBLE CAPEX

Project 1 40.00% 15.00% 10.0% 10.0%
Project 2 40.00% 12.50% 10.0% 10.0%
Project 3 30.00% 10.00% 10.0% 10.0%
Project 4 35.00% 12.50% 10.0% 10.0%
Project 5 35.00% 12.50% 10.0% 10.0%

Table 7-4 Summary of deterministic project inputs tax rate, royalty rate, discount rate and percentage of total Capex 

that is intangible  

7.3.4 Mean reverting oil price model base parameters 

The parameter values used for the mean reverting model described in chapter 3 are: 

Pt=0 = 50$/bbl 

M= 20$/bbl 

∆t= 1 year 

η=5years 

Price floor=8$/bbl 

σ=3$/bbl 

Figure 7.1 shows the behaviour of the mean reverting oil price model for the inputs specified above. 

Since the stochastic quality of the model comes from the parameter ε, that is a normal distribution, the 

price for each year will also be normally distributed. Consequently, the P50 (median) of the distribution 
will be equal to the mean of the distribution.   

For this reason it is possible to note how the P50 series in Figure 7.1 reverts to a long term mean of 
20$/bbl as expected. This graph shows that for each year there is an 80% chance that the oil price will 
be between the P10 and the P90 series. Additionally, the green sample path shows one possible 
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realisation of the model. This green sample path corresponds to a single iteration of a Monte Carlo 
simulation. 
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Figure 7-1 Behavior of the mean-reverting oil price model with the inputs specified above 

7.3.5 Single project output 

This section shows the performance of the five projects under study using the inputs shown in tables 7-
1, 7-2, 7-3 and 7-4 and the oil price model shown in Figure 7-2. It is assumed that corporate DMs are 
interested in the attributes NPV and reserves.  

Table 7-4 and table 7-5 summarise the performance of the 5 project proposals in terms of relevant 
statistics, probabilities and percentiles extracted from their NPV and reserves PDFs. These statistics, 
probabilities and percentiles are used as optimisation objectives at the portfolio level in the experiments 
performed later in this chapter. The full PDFs of the NPV and the reserves attributes and the P10, P50 
and P90 net cash flow and production profiles of each project are shown in appendix C. 

E(NPV) P(NPV>0) P10(NPV) P90(NPV)
US$MM % US$MM US$MM

Project1 223.5 68.1 -359.3 800.6
Project2 49.8 56.4 -257.8 371.7
Project3 223.5 86.2 -30.4 495.7
Project4 283.7 95.4 50.4 526.3
Project5 65.2 68.6 -94.1 229.5

Table 7-5 Summary of the performance of the projects on relevant statistics, probabilities and percentiles of the 

attribute NPV 
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E(Reserves) P10(Reserves)
MMbbls MMbbls

Project1 105.2 59.6
Project2 121.9 74.2
Project3 34.1 20.3
Project4 42.9 30.8
Project5 70.0 50.2

Table 7-6 Summary of the performance of the projects on relevant statistics, probabilities and percentiles of the 

attribute reserves 

7.4 Convergence of the objectives  

Since the simulation optimisation approach strongly depends on the accuracy of each one of the Monte 
Carlo simulations performed during the optimisation, it is worthwhile to analyse the convergence of the 
simulations over each one of the objectives of interest. Crystal Ball™ 7.2 has a function called 
“bootstrap”, this function estimates distributions of the statistics and percentiles of interests if a 
simulation is performed multiple times. Hence, these distributions give an indication of how accurate a 
simulation is. Since the experiments are set to use 2500 iterations per simulation, the bootstrap function 
will calculate the range of possible outcomes based on a simulation of 2500 iterations.  

7.4.1 Convergence of the E(NPV), P10(NPV) and P90(NPV)   

Table 7-7 shows that the expected value of the objective E(NPV) has a standard deviation of 13.9 
millions and an expected value of US$ 865.7 millions. This means that around 67% of the time, the 
E(NPV) of the simulations will be inside a range of plus or minus 13.9 millions from the “true” E(NPV). 
Similarly, the P10(NPV) and P90(NPV) objectives have standard deviations of 23.8 millions and 27.5 
millions respectively. 

Statistic/Percentile E(NPV) P10(NPV) P90(NPV)
Trials 200 200 200
Mean 865.7 -52 1,794.30
Median 864.6 -48 1,796.20
Mode 835.1 -34 1,801.90
Standard Deviation 13.9 23.8 27.5
Variance 193.9 568.5 757.2
Skewness 0.29546 -0.44494 -0.03001
Kurtosis 2.71 3.45 2.86
Coeff. of Variability 0.01609 -0.45838 0.01534
Minimum 835.1 -122.2 1,727.30
Maximum 900.9 5.6 1,864.00
Mean Std. Error 1 1.7 1.9

NPV (MM$)

Table 7-7 Summary of the convergence of relevant statistics extracted from the NPV attribute 
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7.4.2 Convergence of the E(R) and P10(R)   

Table 7-8 shows that the expected value of the reserves has a standard deviation of 1.2MMbbls and an 
expected value of 373.8 MMbbls. On the other hand the P10(R) objective has a standard deviation of 
1.7 MMbbls. 

Statistic/Percentile E(R) P10(R)
Trials 200 200
Mean 373.8 298.3
Median 373.7 298.6
Mode 371.2 298.6
Standard Deviation 1.2 1.7
Variance 1.5 2.9
Skewness 0.22529 -0.23631
Kurtosis 2.88 4.51
Coeff. of Variability 0.00324 0.00573
Minimum 370.9 292.6
Maximum 377.2 303.7
Mean Std. Error 0.1 0.1

Reserves (MMbbl)

Table 7-8 Summary of the convergence of relevant statistics extracted from the Reserves attribute  

It is important to note that although the objectives set over the reserves attribute have a reasonable 
convergence, the variability of the statistics extracted from the NPV attributes is considerably larger. It is 
possible to infer that all the uncertainties affecting the NPV of the portfolio model presented here 
prevent the objectives set over this attribute from converging with a reasonable number of iterations per 
simulation. Unfortunately, it is not practical to run the optimisation model presented here with a higher 
number of iterations since the running time can grow significantly. Hence it is important to keep in mind 
that the results of the objectives set over the NPV attribute shown in the next two sections will have a 
considerable range of error. 

7.5 Experiment 1: Multiple objectives over multiple attributes 

In this section the proposed portfolio optimisation model is applied to the five projects previously 
described. Since it is assumed that any transaction cost is already included in the Capex of each 
project, a company interested in pursuing all the available projects would need to expend a total amount 
of US$5.05 billion. However, it is assumed that the company has a capital constraint of US$2.5 billion 
and is interested in maximising the expected value of the net present value (E(NPV)), the probability of 
achieving a positive NPV (P(NPV>0)), the expected value of the reserves (E(R)) and the 10th percentile 
of the reserves42, P10(R).This statement can be summarised mathematically as follows:  

Maximise: ))],((10)),,((),0),(()),,(([ ωωωω XXXX PortPortPortPort RPRENPVPNPVE >

42 The 10th percentile of the attribute reserves represents a value that has 90% chance of being larger than the value 
obtained. Although the SPE definition of proved reserves accounts for several economical and technical factors, the 10th 
percentile of the attribute reserves could be interpreted as approximation of the proved reserves of the portfolio and/or asset. 
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Where [ ]54321 ,,,, xxxxx=X and xi is the working interest on project i and Ri(ω) and NPVi(ω) are the 

reserves and NPV of project i calculated stochastically according to the single project set of equations 
described in the previous chapter and using the inputs described at the beginning of this chapter. 

7.5.1 Settings 

MOGOL-XL was set to run over 150 generations. The number of replications per simulation was set to 
2500. The mutation rate was set to 0.3 and the crossover rate was set to 0.4. The population size was 
set to 15. 

7.5.2 Results 

This section shows the results of the experiment 1. The running time of the algorithm was 16 hours and 
47 minutes. 

7.5.2.1 Assessment of the new “borders” of the decision space 

Once an approximate Pareto set has been produced it is relevant to study if the optimisation has 
narrowed the decision space. Before the optimisation, the decision space was defined by the fact that 
the DMs may choose any working interest between 0 and 100% for any of the projects. After the 
optimisation the decision space may become narrower since the resulting set does not include 
suboptimal portfolios. 

Table 7-9 shows the working interest combination that defines each of the 20 portfolios of the calculated 
approximate Pareto set. The bottom of the table shows the minimum and maximum values of the 
working interest for each of the projects. These results show that the decision space has been barely 
narrowed down as Project 1 do not take more than 90% working interest in any of the proposed 
portfolios.  
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The rest of the projects maintain their full range of decision alternatives with participation levels that vary 
from 0% to 100%. Hence, the decision space remains identical for these 4 projects after the 
optimisation. These results indicate that according to the set of objectives set for this optimisation there 
is not a project (or projects) that must be taken regardless of the portfolio chosen. This situation arises 
when a project shows 100% working interest for all of the portfolios generated in the Pareto set. 

x1 x2 x3 x4 x5
% % % % %

Port 1 14.24% 4.58% 95.38% 95.48% 51.94%
Port 2 24.98% 3.87% 96.10% 96.18% 45.63%
Port 3 28.85% 3.51% 96.91% 97.21% 56.66%
Port 4 62.30% 1.39% 98.60% 98.60% 23.70%
Port 5 79.29% 0.65% 99.35% 99.36% 7.34%
Port 6 76.67% 3.93% 99.37% 96.08% 8.94%
Port 7 90.00% 0.00% 100.00% 100.00% 0.00%
Port 8 44.42% 0.00% 100.00% 100.00% 75.97%
Port 9 30.00% 0.00% 100.00% 100.00% 100.00%
Port 10 27.29% 12.59% 94.59% 98.33% 87.60%
Port 11 18.34% 38.87% 61.13% 100.00% 76.24%
Port 12 4.47% 87.62% 73.56% 99.77% 8.06%
Port 13 10.21% 57.10% 59.09% 67.90% 83.28%
Port 14 0.00% 100.00% 70.00% 100.00% 0.00%
Port 15 0.00% 100.00% 0.00% 100.00% 38.89%
Port 16 0.00% 73.33% 100.00% 0.00% 100.00%
Port 17 0.00% 100.00% 100.00% 0.00% 55.56%
Port 18 7.47% 86.99% 26.94% 16.07% 93.21%
Port 19 0.00% 100.00% 20.00% 0.00% 100.00%
Port 20 6.67% 100.00% 0.00% 0.00% 100.00%
Min 0.00% 0.00% 0.00% 0.00% 0.00%
Max 90.00% 100.00% 100.00% 100.00% 100.00%

Table 7-9 Composition of the approximate Pareto optimal portfolios   

7.5.2.2 Assessment of the new “borders” of the objective space 

After the multi-objective optimisation has been completed it is possible to assess what are the maximum 
and minimum values that the efficient portfolios may deliver in each one of the objectives under study. 
The main issue to keep in mind is that if there are trade-offs among the objectives, the portfolio that 
delivers the maximum in a given performance objective, is not necessarily the same portfolio that will 
deliver the maximum performance on another objective.  

Table 7-10 shows that the calculated approximate Pareto set has a maximum E(NPV) potential of 
US$695.72 million and a minimum potential of US$117.92. In the same manner, the maximum 
probability of achieving a positive NPV is 97.50% and the minimum probability of achieving a positive 
NPV is 65.19%. 
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The same table shows that the maximum expected reserves is 198.93 million of barrels while the 
minimum potential expected reserves is 130.37 million barrels. Additionally the highest potential value 
for the 10th percentile of the reserves is 155.15 MMbbls and the minimum reserves P10 is 108.03 
MMbbls. 

Although the Capex is not an objective of the optimisation problem, it is relevant to verify that the 
resulting portfolio performance meets the relevant budget constraint of US$ 2.5 billion. Table 7-10 
shows that the maximum possible Capex for the approximate Pareto set is the maximum allowed 
budget of US$ 2.5 billion and the minimum is US$ 1.85 billion. 

E(NPV) P(NPV>0) E(Reserves) P10(Reserves) CAPEX
US$MM % MMbbls MMbbls US$MM

Port 1 541.52 97.50 130.37 108.03 1847.36
Port 2 564.29 96.91 136.93 114.58 1949.08
Port 3 583.91 96.70 148.99 124.77 2111.77
Port 4 643.41 94.78 159.72 125.88 2302.53
Port 5 673.93 92.88 165.83 124.98 2407.76
Port 6 661.44 92.85 166.79 126.75 2410.81
Port 7 695.72 91.49 171.67 126.73 2500.00
Port 8 642.61 95.90 176.84 145.89 2500.00
Port 9 625.81 95.94 178.47 148.32 2500.00
Port 10 601.20 95.48 179.74 152.46 2498.64
Port 11 517.17 94.49 183.75 155.15 2500.00
Port 12 493.16 91.65 185.12 140.95 2470.21
Port 13 417.17 90.85 187.90 153.48 2495.89
Port 14 476.67 89.69 188.76 139.54 2500.00
Port 15 346.34 83.16 192.06 140.54 2500.00
Port 16 311.89 81.63 193.52 150.72 2500.00
Port 17 296.33 78.82 194.98 144.37 2500.00
Port 18 214.19 76.42 195.23 150.41 2494.83
Port 19 147.39 68.34 198.75 147.95 2500.00
Port 20 117.92 65.19 198.93 148.03 2500.00
Min 117.92 65.19 130.37 108.03 1847.36
Max 695.72 97.50 198.93 155.15 2500.00

Table 7-10 Performance of the approximate Pareto set in the 4 objectives under study and the Capex 

7.5.2.3 Pareto set 

The basic premise to perform a multi-objective optimisation is the presence of tradeoffs between the 
objectives to be optimised. This section aims to assess the presence of such trade-offs in the calculated 
approximate Pareto set.  

It is relevant to state that the presence or absence of tradeoffs among the objectives under study is 
inherent to this particular work and these results cannot be generalized to any exploration and 
production portfolio. However, the idea is to establish a methodology to unveil these tradeoffs to the DM. 
Figure 7-2 shows the resulting approximate Pareto set showing the performance of each one of the 20 
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portfolios calculated for each one of the objectives set plus their total costs. The left vertical axis shows 
the performance of the two objectives calculated over the attribute reserves and the probability of 
achieving a positive NPV. The right vertical axis shows the performance of the E(NPV). The lower 
horizontal axis shows the name of the portfolio and the upper horizontal axis shows the total cost 
(Capex) of the portfolios. 

 The portfolios where sorted and named based in the expected reserves attribute. In this manner 
portfolio 1 and portfolio 20 have the minimum and maximum performance over the objective 
E(Reserves) respectively. Note that none of the portfolios is dominated by any other of the portfolios 
present in the graph. Figure 7-3 shows the composition of each one of the portfolios in terms of working 
interest. In this figure the height of the stacked bars represent the working interest proposed for each 
project. Analysing both figures jointly may assist the DM in tracing the impact of the presence of a 
project in the overall performance of a given portfolio. 
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Figure 7-3 Composition of the approximate Pareto set of portfolios 

7.5.3 Result analysis 

7.5.3.1 Trade-off screening  

Although it is known that the convergence of the objectives set over the NPV attribute has a 
considerable range of variability, it is definitely possible to detect trends in the Figure 7-2. A visual 
screening of figure 7-2 allows inferring the following tradeoffs: 

• The expected reserves appear to be negatively correlated to the probability of achieving a 
positive NPV. 

• The 10th percentile of the reserves tends to increase as the expected reserves increase. 

• The expected NPV increases with the expected reserves from portfolio 1 to portfolio 7. Then the 
expected NPV decreases with increasing expected reserves from portfolio 8 to portfolio 20. 

• The probability of achieving a positive NPV decreases as the expected NPV increases from 
portfolio 1 to portfolio 7 and then both objectives decrease together from portfolio 8 to portfolio 
20. 

The visual screening of Figure 7-2 allows separating the Pareto set into two regions, one region going 
from portfolio 1 to portfolio 7 and a second region going from portfolio 8 to portfolio 20. Note that the first 
region shows an increasing portfolio cost until the maximum feasible cost is reached. Hence, the 



89

inflexion point seems to be related with reaching the maximum capital available since the capital 
remains close to its maximum from that point onwards.  Additionally, it is possible to note from Figure 7-
3 that this area shows an increasing presence of project 1, a decreasing presence of project 5 and a 
steady presence of projects 2, 3 and 4 where the participation in project 2 is marginal (close to zero) 
and projects 3 and 4 are almost fully funded for all portfolios in this area.  

From all of the above it is possible to conclude that the capital constraint is the source of the negative 
correlation observed from portfolio 8 to portfolio 20 between the E(NPV) and the objectives based on 
the reserves attribute. Additionally, the capital constraint also seem to be the source of positive 
correlation between the E(NPV) and the P(NPV>0) from portfolio 8 to portfolio 20.   

The presence of project 1 decreases from portfolio 7 onwards and becomes marginal (<10%) from 
portfolio 14 onwards. Hence, it is possible to infer that the presence of project 1 is related to the best 
performing portfolios in terms of the E(NPV) objective. On the contrary, the presence of project 2 seems 
to be related with the portfolios that best perform in terms of the expected value of the reserves but also 
with the ones that perform worst in terms of E(NPV) and the probability of achieving a positive NPV.  

It is also possible to infer that the presence of projects 1 and 2 negatively impacts the chances of 
achieving a positive NPV since the portfolio that performs best in the P(NPV>0) has low participation of 
both projects and is also the cheapest one. On the other hand it is possible to note that the portfolios 
with higher expected reserves and P10 of the reserves are the ones with least probabilities of achieving 
a positive NPV, this area of the Pareto set has a stronger presence of projects 2 and 5. Particularly, it is 
possible to note that the only portfolio with a slightly better performance on the E(NPV) area is portfolio 
14, the only one that lacks the presence of project 5. 

Figure 7-3 also shows that projects 3 and 4 have high participation levels for most of the Pareto optimal 
portfolios and tend to disappear in the portfolios with higher reserves and lower probabilities of 
achieving a positive NPV. 

7.5.3.2 Preference articulation 

The previous discussion showed that it is possible to quickly gain insight about the trade-offs among the 
objectives of a portfolio and about the impact of specific projects on these objectives by plotting the 
results of the calculated approximate Pareto set. However, let us assume that with the same set of 
projects a DM decides to use single objective optimisation and sets a simple portfolio problem in which 
the DM wishes to maximise the E(NPV) of the portfolio whilst keeping the E(R) higher than 180MMbbls.  

In this case, only the portfolios from portfolio 11 to portfolio 20 would be in the feasible region and 
according to the maximisation criteria, portfolio 11 would be selected as it has the highest E(NPV). Yet, 
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it is possible to note that portfolio 10 has a similar performance than portfolio 11 in the objectives 
P(NPV>0) and P10(R) but it barely misses the constraint of 180MMbbls (see table 7-10) with a 
performance in this objective of 179.74MMbbls. However, portfolio 10 delivers $84 million more than 
portfolio 11 on the E(NPV) objective.  

Would the DM be willing to trade 0.26 MMbbls in the E(R) objective in order to gain $84 million more on 
the E(NPV) objective? The answer would definitely depend on the preferences of the DM. However, 
regardless of the choice, the decision would have more insight if the DM is aware of the portfolio 10 
alternative. However, the DM would probably have failed to detect the presence of this sort of trade-off 
with the use of single objective methods. 

7.6 Experiment 2: Multiple objectives over a single attribute 

In this section the proposed portfolio optimisation model is again applied here to the five projects shown 
in the previous section. The same capital constraint of US$2.5 million will be used. However, it is 
assumed that in this case the DMs are just interested in the NPV attribute. Moreover, the DMs are not 
only interested in maximising the expected value of the NPV and the probability of achieving a positive 
value for this attribute. In this case, the DMs also want to maximise the 10th percentile of the NPV 
attribute in other to minimise the chances of a negative outcome of large magnitude. Additionally, the 
DM wants to maximise the 90th percentile of the NPV and therefore enhance the chances of an upside 
outcome of large magnitude. This statement can be summarised mathematically as follows:  

Maximise: 
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Where [ ]54321 ,,,, xxxxx=X and xi is the working interest on project i. 
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7.6.1 Settings 

MOGOL-XL was set to produce 100 generations of frontiers. The number of iterations per simulation 
was set to 2500. The mutation rate was set to 0.3 and the crossover rate was set to 0.4. The population 
size was set to 15. 

7.6.2 Results 

This section shows the results of the experiment 1. The running time of the algorithm was approximately 
12 hours and 23 minutes. 

7.6.2.1 Assessment of the new “borders” of the decision space 

Table 7-11 shows the working interest combination that defines each of the 20 portfolios of the 
calculated approximate Pareto set. The bottom of the table shows the minimum and maximum values 
presented in the working interest of each of the projects. These results show that the decision space 
has been considerably narrowed down.  

The participation of project 3 barely varies with a minimum of 98.28% percent and a maximum of 100%. 
Hence, it is possible to consider that fully funding this project is a must regardless of what other projects 
are selected. On the contrary, the maximum participation level found for project 2 is less than 1% and 
hence it is possible to conclude that this project should not enter the portfolio at all. 

Project 4 shows a minimum 76.92% and a maximum of 100%. Similarly, although the range of 
alternatives is higher it is possible to conclude that a high participation on this project is also necessary. 
Additionally, Project 1 has a minimum of 8.48% and a maximum of 100%. The participation of project 5 
is not affected by the optimisation and hence varies from 0% to 100%. 
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x1 x2 x3 x4 x5
% % % % %

Port 1 100.00 0.00 100.00 76.92 0.00
Port 2 90.00 0.00 100.00 100.00 0.00
Port 3 83.24 0.04 99.34 99.94 11.02
Port 4 80.98 0.03 99.02 99.91 14.89
Port 5 83.62 0.03 99.36 99.41 10.77
Port 6 72.17 0.17 99.29 99.98 28.45
Port 7 71.20 0.16 99.09 99.97 30.55
Port 8 64.54 0.06 98.28 97.76 44.42
Port 9 57.32 0.09 99.24 99.95 42.55
Port 10 48.13 0.01 99.78 99.98 69.70
Port 11 46.23 0.06 99.51 99.97 65.23
Port 12 58.87 0.05 99.31 99.94 38.91
Port 13 33.48 0.00 99.96 100.00 94.19
Port 14 53.68 0.10 99.23 99.96 46.98
Port 15 30.00 0.00 100.00 100.00 100.00
Port 16 29.70 0.03 99.68 99.98 60.33
Port 17 8.48 0.03 99.95 100.00 75.91
Port 18 13.67 0.51 98.94 99.88 46.68
Port 19 18.96 0.56 98.77 99.86 38.96
Port 20 9.10 0.65 98.73 99.85 42.79
Min 8.48 0.00 98.28 76.92 0.00
Max 100.00 0.65 100.00 100.00 100.00

Table 7-11 Composition of the approximate Pareto optimal portfolios   

7.6.2.2 Assessment of the new “borders” of the objective space 

Table 7-12 shows that the calculated approximate Pareto set has a maximum E(NPV) potential of 
US$715.22 million and a minimum potential of US$555.57 million. As expected, the maximum 
probability of achieving a positive NPV is 97.87% and the minimum probability of achieving a positive 
NPV is 89.30%. 

The same table shows that the minimum P10(NPV) achieved is -US$21.12 million and a maximum 
P10(NPV) of US$ 188.58 million. On the other hand the results show a minimum P90(NPV) of -US$ 
21.12 and maximum P90(NPV) of US$188.58 million . 

The maximum Capex meets the budget constraint of US$ 2.5 billion and the minimum CAPEX shown is 
US$ 1.673 billion.  
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E(NPV) P(NPV>0) P10(NPV) P90(NPV) CAPEX
US$MM % MMbbls MMbbls US$MM

Port 1 679.58 89.30 -21.12 1395.85 2500.00
Port 2 710.04 91.88 50.85 1378.56 2500.00
Port 3 703.20 92.57 70.16 1369.36 2494.58
Port 4 714.11 93.23 95.94 1354.54 2493.66
Port 5 715.22 93.34 84.77 1368.69 2494.70
Port 6 691.71 93.90 101.85 1316.54 2487.51
Port 7 682.40 94.10 119.98 1286.01 2490.59
Port 8 674.03 94.21 110.66 1264.75 2495.54
Port 9 664.96 94.52 125.97 1225.72 2389.99
Port 10 669.89 95.03 143.96 1225.31 2498.15
Port 11 660.65 95.28 153.31 1215.27 2428.74
Port 12 667.96 95.33 134.74 1223.95 2380.11
Port 13 645.44 95.45 158.51 1168.35 2499.65
Port 14 665.74 96.02 150.14 1211.31 2375.29
Port 15 651.86 96.25 182.18 1149.20 2500.00
Port 16 629.72 97.22 188.58 1086.34 2137.19
Port 17 580.08 97.27 184.41 1007.42 1960.54
Port 18 567.26 97.37 172.65 973.96 1776.83
Port 19 575.54 97.38 162.57 988.46 1786.38
Port 20 555.57 97.87 168.04 971.82 1673.99
Min 555.57 89.30 -21.12 971.82 1673.99
Max 715.22 97.87 188.58 1395.85 2500.00

Table 7-12 Performance of the approximate Pareto set in the 4 objectives under study and the Capex 

7.6.2.3 Pareto set 

Figure 7-4 shows the performance of the Pareto set in terms of the optimised objectives. In this figure 
the left vertical axis shows the performance of the objectives E(NPV), P10(NPV), P90(NPV) and the 
right vertical axis show the performance of the P(NPV>0) objective. The upper horizontal axis shows the 
total Capex required to fund the proposed portfolios while the lower horizontal axis shows the name of 
the portfolios. The portfolios have been sorted and named based in the probability of achieving a 
positive NPV objective. Hence, portfolio 1 has the minimum probability of achieving a positive NPV while 
portfolio 20 has the maximum probability of achieving a positive NPV. Additionally, Figure 7-5 shows the 
composition of the portfolios of the Pareto set. In this figure, the height of the stacked bars represents 
the working interest proposed for each project. 
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Figure 7-4 Performance of the approximate Pareto set over the objectives E(NPV), P10(NPV),P(NPV>0) and P90(NPV) 
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Figure 7-5 Composition of the approximate Pareto set of portfolios 



95

7.6.3 Result analysis 

7.6.3.1 Trade-off screening  

In a similar manner to the previous experiment, although it is known that the convergence of the 
objectives set over the NPV attribute has a considerable variability it is possible to detect trends in the 
Figure 7-4. This figure allows inferring the following tradeoffs: 

• The P10(NPV) tends to increase as the P90(NPV) tends to decrease. 

• The probability of achieving a positive NPV increases as the expected NPV decreases. 

• The expected NPV tends to decrease as the P10 increases and the P90 decreases. 

The previous observations suggest that the volatility of the NPV attribute decreases as the probabilities 
of achieving a positive NPV increases. This observation is perfectly aligned with mean-variance 
optimisation approach since this method predicts that the higher the E(NPV) the higher the volatility of 
the of the NPV. It is also possible to note that the absolute distance of the P10(NPV) and P90(NPV) 
objectives to the E(NPV) is quite similar in each one of the portfolios. This allows inferring that the 
shapes of the NPV PDFs tend to be symmetrical. And hence it is not necessary to set the P10(NPV) 
and the P90(NPV) as additional objectives since the idea behind this is that the distributions may be log-
normally distributed. 

Figure 7-5 shows that projects 3 and 4 have high participation levels for all the proposed portfolios. This 
figure also shows that the main source of variability in the composition of the portfolios is the presence 
of project 1 and project 5. It is possible to note as well that the presence of project one increases the 
volatility of the portfolios whilst the presence of project 5 diminishes it.  

7.6.3.2 Preference articulation 

The results in Figure 7-4 seem to be equivalent to the results generated by a mean-variance portfolio 
optimisation. It is possible to infer that these results are a consequence of the small asymmetry shown 
in the distributions of the PDFs of the NPVs of the project proposals. 

However, it is possible to state that the use of the variance or the standard deviation as a 
risk/uncertainty metric requires more statistical training from the DMs to be interpreted than the 
probabilities and percentiles shown in Figure 7-4. In chapter 3 it was shown that most investors are not 
only concerned with the probabilities of achieving a desired target but also concerned about the 
magnitude of a disastrous outcome. In this manner, the method proposed here not only directly 
optimises the objectives of interest but also provides an easier way to communicate the results to DMs 
with little statistical training. 
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7.7 Summing up 

This chapter described the implementation of the proposed portfolio optimisation model to a group of 
five projects. The inputs and outputs of each project proposal were presented. A brief study of the 
convergence of the stochastic objectives used in the experiments was shown and concluded that the 
objectives set over the NPV show a considerable variability for simulations of 2500 iterations. The need 
to keep the number of iterations low to avoid unpractical solution times was discussed. 

The results shown in experiment 1 described the presence of complex tradeoffs among objectives set 
over multiple attributes of an E&P project portfolio. It was also shown that being aware of these tradeoffs 
may assist DMs to make better decisions.  

The results shown in experiment 2 described how stochastic multi-objective optimisation can be used to 
optimise several objectives over a single attribute. The potential use of this methodology to better 
characterise and communicate the risks associated with the efficient portfolios was addressed. 

By comparing the results of both experiments it is possible to note that the composition of the Pareto 
sets produced by the two experiments varies considerably.  
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8 CONCLUSION AND DISCUSSION 

8.1 Introduction 
This thesis has described the development of a framework for the selection of E&P project portfolios 
with multiple objectives set over multiple attributes under uncertain conditions whilst accounting for inter-
project and intra-project correlations. In this final chapter the main results are recapitulated and the 
possible extensions of this research are discussed.  

8.2 Results 

8.2.1 Multi-objective E&P project portfolio optimisation model 
The proposed model is a decision support aimed to aid E&P DMs to select project portfolios in situations 
where there are multiple decision attributes and the future performance of these attributes is uncertain. 
The model is based on ideas extracted from the fields of multi-objective optimisation, stochastic 
optimisation and decision and risk analysis.   

The model differs from those presented in the E&P literature by producing a Pareto set involving more 
than two objectives and hence requiring DMs to make a decision after they have been exposed to a 
representative set of the tradeoffs among these objectives. In other words, the model extends the risk-
return method proposed by Markowitz (1952) to multiple attributes. Additionally, it was shown that the 
method here proposed allows setting multiple objectives over each one of the attributes under 
consideration. Moreover, the objectives set over these attributes do not need to be defined by an 
equation since the method is based on a simulation-optimisation approach.  

The method is mostly based in the assumption that if a DM has been exposed to the full range of 
possible tradeoffs present among the objectives under consideration she will gain more insight about 
the problem and hence would make more informed and better decisions. Additionally, the fact that the 
method uses posterior articulation of preferences guarantees that feasible solutions will be found.  

The model is designed to honour the presence of inter and intra-project correlations through the 
integration of the stochastic characterisation of each project in terms of the various attributes of interest 
with the optimisation process. In addition, this integrated approach promotes consistency in the 
characterisation of each one of the project proposals under study. On the other hand, the model 
provides the analyst the flexibility to add changes to the model(s) that characterises each one of the 
projects under study since projects are fully modelled in Excel™ and Crystal Ball™. 

The main flaw of the model proposed is its inability to handle non-linear constraints. This limitation does 
not allow modelling the inclusion or exclusion of projects based on the presence of other projects. In the 
same manner it is not possible to model mutually exclusive projects. This is a main limitation to include 
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the time to start projects as an additional decision variable. Without the linear constraint limitation it 
would be possible to model the same project starting at different times and then set it as mutually 
exclusive from itself starting at different times.  

Other main limitation is the running time of the Monte Carlo simulations. With shorter simulation times it 
would be possible to run more iterations per simulation and hence get better convergence of the 
objectives as well as the possibility to include a larger set of project proposals. A final limitation of the 
model is the visualisation of the Pareto set with an increasing number of objectives.  

8.2.2 Application of the portfolio optimisation model 
The Pareto sets calculated in experiments 1 and 2 demonstrated the presence of complex trade-offs 
among the objectives to be optimised. Particularly, the level of complexity observed among two key 
objectives as the E(R) and the E(NPV) is such that it is highly improbable that DMs would have an 
adequate intuitive feel for this trade-off when setting goals over these objectives without any other 
source of information. Consequently, this fact would difficult the calculation of feasible solutions.  

Hence, the use of multi-objective optimisation with posterior articulation of preferences seems to be a 
promising way to help DMs to gain insight about the maximum potential of their portfolios without having 
to rely in their intuition. However, the method here proposed does not necessarily have to be seen as a 
substitute to the use of goals since it is widely known that goals are a good way to monitor performance. 
Instead the method here proposed can be seen as a complement to the use of goals. In this manner 
goals could be set with more insight and without the risk of setting combinations of goals that are 
unfeasible to achieve as a result of tradeoffs among them. 

8.3 Further research and model development 

This thesis raises several interesting topics of future research. An obvious topic to improve the research 
here presented would be to shorten the solution time of the Monte Carlo simulations so that more 
iterations could be used per simulation in order to obtain more accurate solutions. This could be 
achieved by coding the equations that describe the single project models, the portfolio model and the 
Monte Carlo simulation capability in the same language used by MOGOL (JAVA™). In this manner 
some flexibility to model the projects would be lost but the results would definitely be obtained faster 
since it would not be necessary to transfer data among applications. This would allow testing the 
algorithm with a larger number of projects that would better resemble the decision situation faced by 
E&P DMs in the real world where it could be necessary to screen hundreds of project proposals.  

Another line of research would be to expand the model here presented to include the time dimension 
into the portfolio by developing an algorithm capable of not only optimising the working interest of the 
projects but also their starting times. As stated before, this research should probably concentrate in 
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sorting out a way to include non-linear constraints in the problem. In this manner the same project could 
be included as a different proposal starting in a different year and then this project could be defined as 
mutually exclusive from itself starting at different times. 

Another possible topic of research would be to generate Pareto optimal sets of the more common 
objectives found in the literature for as many and as diverse as possible combinations of E&P projects in 
order to try to identify “typical” tradeoffs for the objectives of interest. For example, just as it is widely 
known in the literature the nature of the shape that describes the trade-off between the mean and the 
variance of the NPV, it would be a good source of insight for DMs to know the typical trade-off between 
the E(R) and the E(NPV). However, it would be necessary to test first if there is such a thing as a 
“typical” trade-off for these two objectives. 

Other topic of research would be to test the value of characterising the risk of an investment using 
multiple objectives as shown in experiment 2. In this manner the results of this approach could be 
compared with the results obtained for similar set of assets using more advanced risk measures than 
the ones discussed in this thesis (i.e., coherent risk metrics, value at risk). 

Another topic of research that would strongly validate the value of the approach presented in this thesis 
would be to investigate the difference in the quality of decisions made with prior articulation of 
preferences and decisions made with posterior articulation of preferences. In this manner a group of 
DMs should be asked to make an investment decision seeing all the possible alternatives (portfolios) 
and their forecasted performance on multiple objectives first. Secondly the same group should be asked 
to firstly express their preferences via a multi-attribute utility function or via the setting of goals on the 
relevant objectives and then find a solution that meets their expectations (if such a solution exists). Then 
the answers from the two cases could be analysed to conclude which method promotes better 
decisions.  

Another topic of research regarding the application of the multi-objective optimisation techniques to the 
E&P industry could be the application of these techniques to the design of petroleum fiscal regimes, 
especially production sharing contracts (PSC). It is widely known that these contracts are usually highly 
complex systems were governments seek to maximise their profit while assuring attractive benefits to 
the oil companies wishing to invest in the country. This obvious trade-off is a function of the various 
variables that characterise the PSC (i.e., bonuses, profit share splits, cost recovery limits). Hence, these 
variables could be set as the decision variables and the government profits and the contractor profits 
could be set as objectives. In this manner a Pareto set of potential “contracts” could be screened to 
select the type of contract that best suits the preferences of both parties. 
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9 APPENDIX A: SPE RESERVES AND RESOURCES DEFINITIONS SPE (2000) 

 
DISCOVERED PETROLEUM-INITIALLY-IN-PLACE: “Discovered Petroleum-initially-in-
place is that quantity of petroleum that is estimated, on a given date, to be contained in known 
accumulations, plus those quantities already produced. Discovered Petroleum-initially-in-place may be 
subdivided into Commercial and Sub-commercial categories, with the estimated potentially recoverable 
portion being classified as Reserves and Contingent Resources respectively, as defined below.” 

ESTIMATED ULTIMATE RECOVERY: “Estimated Ultimate Recovery (EUR) is not a resource 
category as such, but a term that may be applied to an individual accumulation of any status/maturity 
(discovered or undiscovered). Estimated Ultimate Recovery is defined as those quantities of petroleum 
which are estimated, on a given date, to be potentially recoverable from an accumulation, plus those 
quantities already produced from there.” 

RESERVES: “Reserves are defined as those quantities of petroleum that are anticipated to be 
commercially recovered from known accumulations from a given date forward.” 

PROBABILISTIC MODEL: A method to estimate reserves is called probabilistic when “the known 
geological, engineering, and economic data are used to generate a range of estimates and their 
associated probabilities. Identifying reserves as proved, probable, and possible has been the most 
frequent classification method and gives an indication of the probability of recovery.” 

Proved Reserves 

Proved reserves are those quantities of petroleum which, by analysis of geological and engineering 
data, can be estimated with reasonable certainty to be commercially recoverable, from a given date 
forward, from known reservoirs and under current economic conditions, operating methods, and 
government regulations. Proved reserves can be categorized as developed or undeveloped. 

If deterministic methods are used, the term reasonable certainty is intended to express a high degree of 
confidence that the quantities will be recovered. If probabilistic methods are used, there should be at 
least a 90% probability that the quantities actually recovered will equal or exceed the estimate. 

Probable Reserves 

Probable reserves are those unproved reserves which analysis of geological and engineering data 
suggests are more likely than not to be recoverable. In this context, when probabilistic methods are 
used, there should be at least a 50% probability that the quantities actually recovered will equal or 
exceed the sum of estimated proved plus probable reserves. 
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Possible Reserves 

Possible reserves are those unproved reserves which analysis of geological and engineering data 
suggests are less likely to be recoverable than probable reserves. In this context, when probabilistic 
methods are used, there should be at least a 10% probability that the quantities actually recovered will 
equal or exceed the sum of estimated proved plus probable plus possible reserves. 
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10 APPENDIX B: VOLUMETRIC EQUATION (ORIGINAL OIL IN PLACE) 

The volumetric equation to calculate the OOIP is: 

0/)7758 BSAhN w−(1= φ

Where:  

bbl
Ac

/ft614.5
/ft560,437758 3

2
=

N = OOIP, STB 

A= area, Ac 

H= average thickness, ft (oil interval) 

φ= average porosity, fraction  

Sw= average water saturation, fraction 

B0= average oil formation volume factor, RB/STB  
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11 APPENDIX C: PRODUCTION PROFILES, CASH FLOW PROFILES, NPV 
DISTRIBUTIONS AND RESERVES DISTRIBUTIONS OF PROJECTS 2, 3, 4 

AND 5 

 
This appendix shows the full PDFs of the attributes reserves and NPV and the P10, P50 and P90 cash 
flow and production profiles for each one of the project proposals.  

It is important to note that it is common practice in the industry to call P10, P50 and P90 net cash flow 
and production profiles to profiles that correspond to the production of the P10, P50 and P90 of the 
EUR. This is not the case shown here where what is meant is that the P10, P50 and P90 profiles show 
that the attribute being plotted has 10% chance, 50% chance and 90% chance of being less than the 
value of the profile for that year. 

It is possible to note from the NPV distributions showed below that for that most of these distributions 
are symmetrical or sightly skewed to the right. On the other hand, the PDFs of the reserves attribute 
show a log-normal behaviour.  

11.1 Project 1 

Production profile: 

Project 1 Production Profile
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Figure 11-1 P10, P50 and P90 production of project 1 

After tax cash flow profile: 
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Project 1 NCF Profile
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Figure 11-2 P10, P50 and P90 NCF of project 1 

 

NPV distribution: 

Figure 11-3 NPV distribution of project 1 

 

Reserves distribution: 
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Figure 11-4 Reserves distribution of project 1 

 

11.2 Project 2 

Production profile: 

Project 2 Production Profile
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Figure 11-5 P10, P50 and P90 production of project 2 

 

After tax cash flow profile: 
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Project 2 NCF Profile
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Figure 11-6 P10, P50 and P90 NCF of project 2 

 

NPV distribution: 

Figure 11-7 NPV distribution of project 2  

 

Reserves distribution: 
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Figure 11-8 Reserves distribution of project 2 

 

11.3 Project 3 

Production profile: 

Project 3 Production Profile
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Figure 11-9 P10, P50 and P90 production of project 3 

 

After tax cash flow profile: 
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Project 3 NCF Profile
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Figure 11-10 P10, P50 and P90 NCF of project 3 

 

NPV distribution: 

Figure 11-11 NPV distribution of project 3 

 

Reserves distribution: 
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Figure 11-12 Reserves distribution of project 3 

 

11.4 Project 4 

Production profile: 

Project 4 Production Profile
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Figure 11-13 P10, P50 and P90 production profile of project 4 

 

After tax cash flow profile: 
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Project 4 NCF Profile
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Figure 11-14 P10, P50 and P90 NCF of project 4 

 

NPV distribution: 

Figure 11-15 NPV distribution of project 4 

 

Reserves distribution: 
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Figure 11-16 Reserves distribution of project 4 

 

11.5 Project 5 

Production profile: 

Project 5 Production Profile
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Figure 11-17 P10, P50 and P90 production of project 5 

 

After tax cash flow profile: 
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Project 5 NCF Profile
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Figure 11-18 P10, P50 and P90 NCF of project 5 

NPV distribution: 

Figure 11-19 NPV distribution of project 5 

Reserves distribution: 
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Figure 11-20 Reserves distribution of project 5 
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