1192

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

The Parallel Enumeration Sorting Scheme for
VLSI

HIROTO YASUURA, MEMBER, IEEE, NAOFUMI TAKAGI, STUDENT MEMBER, IEEE, AND
SHUZO YAJIMA, SENIOR MEMBER, IEEE

Abstract—We propose a new parallel sorting scheme, called the
parallel enumeration sorting scheme, which is suitable for VLSI im-
plementation. This scheme can be introduced to conventional computer
systems without changing their architecture. In this scheme, sorting
is divided into two stages, the ordering process and the rearranging one.
The latter can be efficiently performed by central processing units or
intelligent memory devices. For implementations of the ordering
process by VLSI technology, we design a new hardware algorithm of
parallel enumeration sorting circuits whose processing time is linearly
proportional to the number of data for sorting. Data are serially
transmitted between the sorting circuit and memory devices and the
total communication between them is minimized. The basic structure
used in the algorithm is called a bus connected cellular array structure
with pipeline and parallel processing. The circuit consists of a linear
array of one type of simple cell and two buses connecting all cells for
efficient global communications in the circuit. The sorting circuit is
simple, regular and small enough for realization by today’s VLSI
technology. We discuss several applications of the sorting circuit and
evaluate its performance.

Index Terms—Bus connected cellular array, database machine,
merging, multikey sort, parallel enumeration sort, parallel sorting
algorithm, pipeline, sorting, VLSI.

I. INTRODUCTION

ORTING is one of the most important operations in data
processing. Many sequential and parallel sorting algo-
rithms have been developed and practically used [1]-[12]. We
propose here a new parallel sorting scheme called the parallel
enumeration sort which is suitable for VLSI implementation
[9]-[16]. In this scheme, sorting is divided into two parts, the
ordering process and the rearranging one. We have developed
a hardware algorithm for the ordering process and designed
a parallel enumeration sorting circuit for VLSI implementa-
tion.

Many parallel sorting schemes have been proposed and
implemented in parallel processing systems and database
machines. Many studies have been carried out on sorting
networks consisting of comparator modules which compare
and exchange two inputs [1], [3]. Sorting by parallel counter
proposed by Muller and Preparata [4] and parallel sort algo-
rithms on multiprocessor systems [5]-[8] are also developed.
However, most of them assume that a number of data for
sorting can be accessed at a time in parallel. It is difficult to

Manuscript received September 15, 1981; revised January 14, 1982 and
April 15, 1982. This work was supported in part by a Grant in Aid for Science
Research of the Ministry of Education, Science and Culture of Japan.

The authors are with the Department of Information Science, Faculty of
Engineering, Kyoto University, Kyoto, Japan.

0018-9340/82/1200-1192800.75

accept them in conventional computer systems where data
access is restricted to one at a time. Several sorting schemes,
in which data are assumed to be transmitted one by one be-
tween a sorting circuit and memory devices, have been pro-
posed such as the pipeline sorting modules by Tanaka et al. [9]
and the rebound sorter by Chen et al. [10].

In this paper, we adopt the same assumptions: 1) a sorting
circuit is separated from memory devices and 2) data trans-
mission between the circuit and memory devices is serial.
Under these assumptions, processing for sorting cannot be
faster than data transmission. Since the time required for
sorting in our algorithm is linearly proportional to the number
of keys, our algorithm achieves optimum order on time. In
order to perform efficient sorting, it is important to minimize
the amount of communication between the sorting circuit and
memory devices. Our scheme can be considered as an optimum
solution for this minimization problem.

In the parallel enumeration sort, sorting is divided into the
ordering process and the rearranging process. This idea is
known as the enumeration sort [2] (or sorting by counting [1])
and adopted in some sorting programs and the sorting circuit
by Muller and Preparata [4]. In this paper, we will be mainly
concerned with a hardware algorithm for the ordering process
and its VLSI implementation. A sequence of keys for sorting
is transmitted from a memory device to the sorting circuit
serially and the sorting circuit outputs a sequence of numbers
c1, €2, *, ¢, Which represents that the ith key is the (¢; + 1)th
smallest in the input key sequence. We can easily perform
rearrangement using the sequence of the orders in a central
processing unit or memory devices. Since the sorting circuit
processes keys, not whole records for sorting, the communi-
cation between the sorting circuit and memory devices are
minimized. The amount of hardware of the sorting circuit also
becomes small.

We propose a hardware algorithm of the sorting circuit on
a structure called the bus connected cellular array. The bus
connected cellular array is an array of cells which are sharing
buses. Using these buses, global communication in the array
is available [16]. The sorting circuit proposed here has the
following properties suitable for VLSI implementation
[13]-[15].

1) The circuit has a linear array structure of one type of
simple cell and each cell contains two registers, a comparator,
a counter, and a simple control circuit. Thus design and veri-
fication of the circuit will be easy.

2) The circuit performs pipeline and parallel processing

© 1982 IEEE

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

YASUURA et al.: SORTING SCHEME FOR VLSI

efficiently. Especially, the sorting time is completely over-
lapped with the input/output time.

3) The communication structure of the circuit is very simple
and regular. Local communication between neighbor cells and
global ones using two buses is efficiently performed and con-
trolled by the simple control circuit in each cell.

4) Since a linear array structure is adopted, the circuit can
be easily expanded and the number of pins of a VLSI chip is
independent of the number of cells on the chip.

5) The number of keys for sorting and the length of each
key are bounded by the total number of cells and the length of
registers in each cell, respectively. But for key sequences longer
than the upper bound of the circuit or consisting of keys longer
than the register length, we show efficient algorithms using
the sorting circuit twice or more.

6) The sorting time is linearly proportional to the number
of input keys, because global communication is used effec-
tively. Hence, the processing time including data transmission
is independent of the size of the circuit.

Kung and his group proposed the systolic algorithm for
parallel processing on VLSI [13]-[15]. Our algorithm is
similar to the systolic one except for permitting global com-
munication by buses. Using the bus connected array structure,
we can realize hardware algorithms whose processing time is
essentially depending on the size of problems, and not the size
of circuits.

In Section II, the parallel enumeration sort scheme is pro-
posed. A parallel enumeration sorting circuit for the ordering
process is designed and possibility of a VLSI implementation
is considered in Section III. In Section IV applications of the
sorting circuit, especially methods for relaxing restrictions of
hardware size are discussed.

II. THE PARALLEL ENUMERATION SORT SCHEME

For a given set of records R = {ry, ry,* - -, rn} and a set of
corresponding keys X = {xy, x,* - -, X,}, sorting aims to pro-
duce an arrangement of records whose corresponding keys
obey a specified linear order. In this paper, we assume that all
keys are integers represented by the standard binary repre-
sentations and the relation “<" on integers is used for the linear
order. We divide sorting into two parts, the ordering process
and the rearranging one. The ordering process is the process
to decide the order of each key in the set of keys X. When x;
is the kth smallest key in X, the ordering process returns the
order ¢; equal to k — 1 corresponding to x;. The order ¢; is
easily calculated by counting results of comparisons between
x; and all keys in X. The rearranging process can be easily and
effectively performed by software on a central processing unit
or a memory device with special mechanisms, because the
order ¢; represents the desired location of x;.

Fig. 1 shows an example of sorting by the parallel enum-
eration sort scheme. For given records (names) and corre-
sponding keys (ages), records are sorted according to orders
of keys. First we obtain orders of keys, the increasing order of
ages, in the ordering process. Next, in the rearranging process,
we store each record to the location indexed by the order of the
corresponding key.

A basic algorithm to compute the order ; is as follows.

1193

NAME AGE ORDER NAME (Sorted)
YAMADA 27 4 KATO
TANAKA 30 5 NAKAJIMA
KATO 18 0 WATANABE
SUZUK1 25| 3 SUZUKI
HAYASHI 30 6 \ YAMADA
WATANABE | 22 2 TANAKA
NAKAJIMA | 20 1 HAYASHI
MATSUMOTO| 35 7 MATSUMOTO

ORDERING REARRANGING

Fig. 1. Parallel enumeration sorting scheme.

Algorithm 1:
begin
¢ :=0
for j := 1 step 1 until n do
if x; > x; then ¢; =ct+1
end

Since Tanaka and Hayashi in Fig. 1 have the same age, their
orders must be the same by Algorithm 1. It is not desired for
the rearranging process because two or more records would
be stored to the same location. In order to avoid these collisions,
we use Algorithm 2.

Algorithm 2:

begin
¢:=0
for j:=1step 1 untili — 1 do
if x; z xjthenc; :=c¢; + 1
for j := i step 1 until n do
if x; > xjthenc; :=¢; + 1
end

Algorithm 2 guarantees that all keys have different orders and
if x; = xjand i <j, then¢; <c;.

In the parallel enumeration, n processor elements each of
which executes Algorithm 2 are provided and compute orders
efficiently in parallel. Keys and orders are transmitted serially
between a memory device and a sorting circuit which performs
the ordering process. Our algorithm precisely discussed in the
next section makes it possible that the processing time is
completely overlapped with input/output time. Thus, the
sorting time including the ordering and the rearranging process
is proportional to the number of records. Since keys are the
minimum information required for computing orders, data
transmission between the sorting circuit and a memory device
are clearly minimized. Thus amount of hardware of the sorting
circuit and the communication lines between the circuit and
a memory device also become small. Considering the size of
the circuit and the number of input/output ports, we conclude
that the sorting circuit proposed in this paper is fit for VLSI
implementation.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

1194

III. A PARALLEL ENUMERATION SORTING CIRCUIT

In this section, we propose a hardware algorithm for the
ordering process and design a sorting circuit. OQur sorting cir-
cuit, the parallel enumeration sorting circuit, is fed a sequence
of keys x1, X2, * +, x,, serially, and outputs a sequence of orders
¢y, €2, **, €y, Where ¢; corresponds to x;.

A. A Parallel Enumeration Algorithm

First, we are concerned with a hardware algorithm of the
parallel enumeration for VLSI implementation. The algorithm
is based on the bus connected cellular array structure.

We prepare m cells each of which performs Algorithm 2.
These cells are connected in linear array. Fig. 2(a) shows a flow
of the parallel enumeration algorithm for an input key se-
quence X1, X2, ", Xp, Where n = m. The input sequence is
provided consecutively from ¢; to ¢, and the output sequence
is returned from 2,4+, to t,,. Attime ¢;, x; arrives at the input
terminal and is transported to the first cell and to the ith cell.
After receiving x;, the ith cell begins to perform Algorithm 2.
x;’s in Algorithm 2 are shifted from the left cell (the i — 1st
cell) consecutively. At time z,,4;, the ith cell completes Algo-
rithm 2 and transmits the counting result ¢; (the order of x;)
to the output terminal. :

In this algorithm, two kinds of data transmissions are used:
1) local transmissions from the ith cell to the i + 1st cell and
2) global ones between each cell and the input/output termi-
nals. For the latter we can use a bus structure in order to
minimize the area of the communication lines on a VLSI chip.
An input bus and an output bus are provided for transmission
of keys from the input terminal to each cell and from each cell
to the output one, respectively.

We introduce several control signals to control execution
in cells. The control scheme is embedded into the linear array
of cells and distributed to each cell.

1) Input Start Signal s: This signal is used for triggering
operation of each cell. s is applied to the first cell at time #p and
shifted from the ith cell to the i + Ist cell at time ¢; fori =1,
2,- -+, n. After a cell receives s, the cell begins the execution
of Algorithm 2. At time ¢;_, the ith cell receives s. Then, at
t;, c; is reset, x; which is just on the input bus is taken into the
cell and x; and x; which is shifted from the i — 1st cell are
compared.

2) Input Completion Signal f: This signal is used for ter-
minating operation of each cell. fis applied to the first cell at
time ¢, and also shifted from left to right on the array for each
time. Each cell receives f when the execution of Algorithm 2
is completed. The ith cell receives f at #,4+;— and then outputs
¢; through the output bus at #,,4;.

3) Counting Control Signals d and e: In Algorithm 2, the
condition for increasing ¢; changes after the i — 1st compari-
son. d and e are used to control this condition. Both 4 and e are
applied to the first cell at time #¢. d is shifted from left to right
for each time as same as the input start signal s. d sets a
counting control flag which indicates the condition of counting
in Algorithm 2. When the counting control flag is set up, the
counting condition includes the equal case. On the other hand,
e is shifted on the array from left to right at ¢, 24, 26, * - - , £2n—2.
At time #5;—» and 75,1, e exists in the ith cell. Since the ith cell

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

executes the ith comparison at time #5;_1, e is used to reset the
counting control flag. In applications of the sorting circuit, we
control the behavior of the cell used d and e effectively (see
Sections IV-B and IV-C).

4) Reset Signal fy: fo is applied to all the cells in the array
simultaneously. When fj is applied, the completion signal in
any cell is deleted. The usage of f; is mentioned later.

Fig. 2(a) shows a flow of the algorithm for a key sequence
3,6,3,2.5,d,and e are applied to the first cell at #. e stays at
each cell for two clock periods. When x; is shifted to the ith
cell, e just stays at the cell and changes the counting condition.
Since the counting condition of the third cell changes at ¢5,
counting at ¢3 and ¢5 are different.

B. Logic Design

A parallel enumeration sorting circuit is shown in Fig. 3. m
cells form a linear array and the inpout and output buses are
further connecting all cells. Input of the circuit is a sequence
of keys and control signals (s, e, d, f, and fo). Output is a se-
quence of orders. Keys are transmitted to each cell through the
input bus on the one hand and shifted from left to right through
the array of cells on the other. Orders are transmitted through
the output bus. Control signals are shifted on the array from
left to right except fo which is sent to all cells simultaneously
through a line connected with all cells. The circuit can process
any key sequences not longer than m.

Fig. 4 shows a block diagram of a cell. The cell contains a
bus data register (abbreviated BDR), a shift data register
(SDR), a comparator, a counter, and a control circuit. The
BDR is connected with the input bus and stores a key x; during
the execution of Algorithm 2 in the cell. The SDR temporally
stores keys x1, X2, * -, X, which are shifted consecutively from
the SDR of the left neighbor cell. Keys in the BDR and SDR
are compared by the comparator for each time. By the result
of the comparison, the counter increases ¢;. The output of the
counter is connected with the output bus. The control circuit
controls when to get a key on the input bus into the BDR, to
output the order ¢; to the output bus, to reset the counter and
to change the condition of counting. These controls are
triggered by control signals s, d, e, and f.

Suppose that we use the nMOS technology for implemen-
tation [14]. Let the length of the BDR and SDR be p bits and
the length of the counter be g bits. Fig. 5 shows a detailed logic
design of each part of the cell. We use two-phase clocking il-
lustrated in Fig. 5(a). Setting of the data into BDR is con-
trolled by the input start signal s [see Fig. 5(b)]. The SDR is
realized by a simple shift register using inverters and transfer
gates as shown in Fig. 5(c). Combinational circuits in the
comparator and the counter are implemented by triangular
PLA’s [see Fig. 5(d) and (e)]. The output of the counter is
controlled by the input completion signal f [see Fig. 5(e)]. The
control circuit illustrated in Fig. 5(f) and (g) consists of shift
registers for control signals, a counting control flip-flop, and
combinational circuits. Since the counting control signal e
stays at a cell for two clock periods, a two-bit shift register is
provided. The counting control circuit [Fig. 5(g)] generates
an internal signal GT + EQ - u, which directly controls the
counter. The control flip-flop is set when 4 = 1 and reset when

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

YASUURA et al.: SORTING SCHEME FOR VLSI 1195

Time Cell 1 Cell 2 Cell 3 --- Celli--- Celln--- Cellm Time Cell 1 Cell 2 Cell 3 "*° Celli "°° Celln "*° Cellm
... - — Xz__‘ x3—> — xi.—v — xn
%0 s,d,e s, d,e t *a *a-1 o[*o-wr2 *2
. n+l c — £ c c ¢ c
1 2 3 i n
0 o=
x.
1 X X X
X — 3t i — n
t 1 ¢ x x X
1 cle L s ,d n+2 N fnc . n~cl+3 - 3c
2 3 i g1}
-]
X €2
X X,
t x by x x
2 . e s ,d € x I 1.0
1 2 n+i-1 S - N 1
e c
X1 L €i-1
x X, x
1 | 2 | 3 X
x x i3 [-~
i1 it i-2 i3 _ls,d i D T
1 2 3 cy [
|
*g 1 1
x X x X,
1, "2 4| T3 s o i
ty *i *i-1 fi-2 [e | s o %
! €2 3 €1 Son-i ~{fn
»€q
n
*n-r L €n-1
x X, x X,
1 — 2 — 3 > i |
t *n-1 *n-2 *n-3 *n-1i - t
n-1 c c o A —»is,d 2n c
1 2 3 n
x |
oy 1 n
I x X, X X X
T %2 Lo *3 1 o file o n
t %n *a-1 *n-2 cor Fa-it] --- M1 -
n f —f o c c c e
1 2 3 i n
(a)
time Cell 1 Cell 2 Cell 3 Cell 4
o
s,d,e—sfs ,d,e
!T—. flag
3
¢ NG
1 € f—as,d
0
6,

ofe

i
|

s,d

K
ty L33©——-66@-—-32®
It

Q 1 0+l
2
I
3 6 3 2
t, 2 ©F 3 (O] e O 3 [©)
f £ | — e
0£1 1:1 1 0
6 3 2
tg — 2 @ 3 @ s @
— f e
1 2xl 1 0
|
3 Z
t —: O3 ©
— " €
3 1:1 0
3 T
2
t, —= 2 ®
— e
2 0
2 1
tg
Q
0 |

(b
Fig. 2. Algorithm of parallel enumeration. (a) Flow of parallel
enumeration. (b) An example.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: University of Western Australia. Downloaded on August 25,2021 at 01:22:20 UTC from IEEE Xplore. Restrictions apply.

