the

AARDVARK JOURNAL

april 1980 vol.1, no.1

WHAT ARE WE GONNA DO0??277

Basically, we are going to use this Journal to share information. While the
information included will assist the "serious programmer, we are not going to
emphasize only practical and utilitarian programs as I firmly believe that it is
a mistake to allow yourself to be bullied into stating or believing that your
hobby must be "practical". While I now make my living exclusively with computers,
I still view them as fascinating and fun things. When the fun leaves, so will I.

I must admit that the "Utilitarian Fixation" among computerists confuses me..
Most people seem to have a set of golf clubs and a TV or two around the house.
They frequently cost more than a modern computer and strangely, no one asks "What
are they good for?" Personally, I can't picture anything with less intrinsic
value than a set of sticks that let me hit a ball a long way away so that I can
chase it and hit it a long way away and chase it and......

We are not going to ignore the fact that computers are a little better than
abacus for some things. We are even setting up computerized inventory control
and bookkeeping here at AARDVARK. However, when we do publish utility programs,
we will insist that they actually be handier to use than your TI calculator and
not just a way of telling everyone that your computer has some "practical" use.

We will publish at least one program per issue and probably more. As of this
writing, we have planned to publish a Mastermind game in the first issue primarily
to demonstrate the uses of string functions in doing digital manipulation. 1In
the second issue we will publish the first checkbook balancing program that I have
ever seen that really is handier than using your TI calculator. We picked it
mainly to demonstrate a method of storing DATA on tape. We will not often publish
complete programs for running your bookstore or gas station. The Basic idea of
this Journal is to show you how to program, not program for you. We will, of
course, make exceptions to publish any fun programs that come along.

This also seems like an appropriate place to clear up the connection between
AARDVARK as a software house and AARDVARK as a Journal publisher. One of my pet
peeves over the past few years has been semi-anonymous persons who publish OSI
journals and then turn out to be software houses. When I subscribe to one, I get
the damnedest feeling that I just got took by someone looking for a mailing list
or a sneaky way to publicize their products.

It may not be a perfect solution, but we are going to try to handle that by
announcing up front that we are a software house. We make money publishing pro-
grams and data sheets for OSI machines. We will announce new products in the
Journal and keep you up to date on what we are doing, but we will not pretend to
be neutral bystanders.

Now anyone with half a brain or more has got to be asking himself why a
professional software house wants to cooperate in giving away its secrets. I
admit that it doesn't seem rational at first glance. However, I have a firm
belief that whatever improves the general quality of OSI programs will increase
computer sales and eventually benefit my business. I want to see the quality of
programs for OSI systems be as good as the best on the market (probably APPLE at
this point). I also don't like TRS-80 software houses and do not want to see
their attitude become common among 0SI software houses.

= 2 =

I recently bought a TRS-80 to see what the competition was doing. I ordered
about $100 worth of software recommended by various magazines. With one exception,
it was dismal. It was undocumented, often ran poorly and was gimmicked so that it
could not be read, changed, copied or corrected.

Anyone who knew anything went to great lengths to keep it secret. One
graphics keyboard program ($19.95 - turn your TRS-80 into a PET-like graphics
keyboard) was the equivalent of a three line BASIC program to take apart strings,
increase the value of each character and put the strings back together again.

The music and sound effects tapes were rigged so that they couldn't be read -
so you wouldn't find out the magic secret that POKEing letters to the cassette
port caused sound output.

I can't help but think that such an attitude hurts everyone in the hobby.

It probably accounts for the generally poor quality of available TRS-80 software.
We have learned techniques at AARDVARK that will prevent the honest hobbyist from
copying or listing a program in any normal manner (no, we won't tell you howl)
What we found is that you can't stop thieves., Anyone crooked enough to steal,
can find two tape recorders and do tape-to-tape stealing (as they do with TRS-80)
so you can't stop them. You do stop the honest hobbyist from learning from and
improving on the programs.

If we are right, we will continue to offer state-of-the-art programs for 0SI,
share all the information we can get and make a substantial amount of money. If
we are wrong, we will continue to offer state-of-the-art programs for 0SI, share
all the information we get, and go out of business and stop offering any programs.

AARDVARK TUTORIAL #1
- STRINGS -

I would guess from the programs that are submitted to AARDVARK for publica-
tion, that the average computerist rarely uses strings to do anything but ask the
questions: INPUT" DO YOU WANT INSTRUCTIONS (Y/N)";A$. Strings, however, have
many uses in data transfer and storage and, properly used, are one of the major
secrets to writing compact and efficient BASIC programs.

Before we go on to discuss the uses of strings, we are going to review what
the commands are. If you are already comfortable with A=ASC(MID§(A$.LEN(A$)-1.2)).
I would suggest that you skip to the next section.

Let's start with the simple ones.

‘ ASC(A$) - A=ASC(A$) makes A equal to the ASCII value of the first letter in
A3 or the first letter in any group of characters you have specified with any of
the other string functions. It is important to remember that no matter how man
characters are in the string, ASC tests only the leftmost character. Whether A
is "ABCD" or "AXXXY", the ASC of that string is 65, the ASCII value of the left-
most character.

RIGHT$(A$,X) - peels off X characters starting from the right side. If A=
"ABCD"THEnﬂIGHT$%A$.2)="CD".

LEFT$(A$,X) - is the same but works from the other side. If A$="ABCD", LEFT$
(A$,3)="ABC". .

MID$ (A$,X,Y) - is the first one that may take a little concentration. As the
neumonic suggests, it is a way to separate out a string from the middle of another
string. In order to do that, the system needs to know three things - Which string
do I separate, where do I start taking letters and how many do I take? The first
element in the parenthesis tells the system which string, the second (X in the
example) tells it which character (counting from theleft) to start with, and the
third element in the parenthesis tells the system how many characters to take.
Thus, if we go back to our famous "ABCD".MID%(A$.2,1)="B".

The most common error in using any of these functions is the FC error you get
if you try to specify a string that does not exist, such as the rightmost six
characters in a 5 character string.

The AARDVARK JOURNAL is published six times a year by Rodger Olsen, AARDVARK
TECHNICAL SERVICES, 1690 Bolton, Walled Lake, MI_ 48088. Subscription rate:
$9.00 a year. CoEyright 1980 by Rodger Olsen. First class postage paid at

Walled Lake, MI 8088.

-3 -

A=LEN(A$) makes A equal to the length of A$. The principal uses of this
function are to make sure there is an A (IFLEN(A$):> 0), and to write code that
will manipulate several strings during a program whére the strings may vary in
length. For instance, if you are going to drop the last digit off of several
strings of varying lengths (i.e. scores or names of players), you would write a
subroutine like thiss 100A$=LEFT$(A$,LEN(A$)-1) and it would automatically ad-
just for the length of the strings. It also saves you from the most common error
that we mentioned in the last section. If you have written the code in terms of
LEN(A$), you won't often try to treat digits that don't exist.

STR$(A) turns a number into a string. It is a particularly valuable function
that all BASIC programmers should be comfortable with as it allows individual
digit manipulation of numerical values. (We'll explain that later). The function
does have one peculiarity that you have to get used to. It figures that the sign
of a number is the first character of the string even if it is not printed.
Therefore, if A=12 then STR$(A)=" 12", a three character string with the unprinted
"+" as the first character.

v goes the other way. It turns a string into a variable type value.

If A$="1324" then VAL(A$)=1324. This one is simple and uncomplicated.

CHR$ (A) is another function that everyone needs to know. It allows you to
print characters that you cannot access with the keyboard such as control codes
and graphics. CHR$(A) is whatever character would be printed if you could print
the value in parenthesis. For instance, CHR$(65) is "A". CHR$(254) is a tank.
CHR$(13) is a tree on an 0SI system and will give you a carriage return if you
print it to a printer.

(Before you go on, be certain that you understand the difference between
CHR$(A) and VAL (A). VAL returns a numeric value while CHR$ returns a character.)

Most new computerists who discover the CHR$ function tend to use it to print
gaming characters during instructions, but the real value of it lies in it's
ability to build and store strings that never existed and possibly could not even
be printed. That allows us to build strings out of PEEKed values and store data
in string format. Until we cover that, I suppose that it is suffiecient to
remember that if you execute PRINTCHR$(17), you will send to the printer or screen
the ASCII symbol 17, which you can't access with a keystroke.

As a minor note, it is also the only easy way to get the system to print ".
You know that if you try to include quotation marks in the middle of a print
statement, the system will figure that is the end of the print and quit. However,
if you execute PRINTCHR$(34) the system will print the *".

- MATH FUNCTIONS -

I have always felt that the 0SI BASIC manual was a little flip in their bland
assurance that strings could be compared, added, concentrated and so on...
Actually, you have only three math functions that can be used directly.

You can use "+" to add strings together. They will appear in the final
string in the same order they appear in text.

You can use = and < > to compare two strings to see if they are identical.

There are several things that you cannot do. You cannot directly subtract
one string from another. A$=B$=C$ gives an error. You cannot assign a value to
a character directly. MID$(A$,3,1)=65 returns an error.

To subtract part of a string, you have to define the string that is to be
left and extract that instead. For instance, if you want to eliminate the last
two characters of a string, you have to execute A$=LEFT$(A$,LEN(A$)-2)

To insert or change a character in the middle of a string, you have to break
the string into pieces and reassemble a new string. If, for instance, we have
the string "ABZDE" and want to change it to "ABCDE", we have to execute A$=LEFT$
(A$,2)+"C"+RIGHT$ (A$,2).

The difficulty in doing direct manipulations is what makes writing word
processors so much fun and sells so much Anacin.

- § =

GETTING DOWN TO WORK
INPUT"DO YOU WANT INSTRUCTIONS (Y?N)":A$; IF A3="Y"THEN (go to instructions)

I have always wondered why computerists have this desire to tell everyone
how to answer questions. How often does any English speaking user answer a yes
or no question with "Si, Senor"? Most common negatives in English begin with "N"
and most common affirmatives begin with "Y". I really think that the most we
need to do is ask the question and then check for a "Y" or "N" in the answer.

As it is trivially simple to strip out the first letter in a string, there is
also no reason to specify that the user must limit himself to a one letter answer.
We can check the first character of the answer and if it is a "Y", assume that
the user said Yes, Ya, Yep, Yessiree or YOU bet. So we get: 100INPUT"DO YOU
WANT INSTRUCTIONS";A$:IFLEFT$(A$,1)="Y"THEN (go to instructions).

As ASC(A3) automatically strips out the first character, we can even save
a few bytes with IFASC(A$)=89THEN (go to instructions). The single character
tests and the avoided explanations %Y/N) save a lot of typing and make the system
seem a lot friendlier to use.

If you do any extensive programming, particularly business and utility
programming, you will hit the situation where you do not want to choose between a
numerical and string input statement. For instance, if the user is inputing a
series of check amounts, you want to know when the last check has been entered
without asking the user to count them all ahead of time and tell you how many he
is going to do. (USERs who have bought computers do not appreciate doing things
like counting for the computer!!). I have seen several ledger and check book
programs done by asking "DO YOU WISH TO INPUT ANOTHER (Y/N)";A$:; If the system
gets a "Y", it then executes INPUT"CHECK AMOUNT";CH. If it gets a "N" after the
first input, it goes on to process the check.

I suppose that works, but asking a user to press several more keys and wait
for his answer to be processed before every entry is made, is very time consuming
and damned irritating if you are doing several dozen entries.

The VAL function is the way to simplify the inputs. In the instructions
specify a keyword such as "END" to signify no more checks and then input strings,
check for the keyword, and, assuming the keyword is not found, assume that the
user input an amount and convert it to a number with VAL(A$) - like this:

100 INPUT"CHECK AMOUNT"; A$;

110 IFA$="END"THEN(go to next section of program)
120 A=VAL(A$)

130.....enter amount in record and jump back to 100

Now you don't have to choose between inputing A and inputing A$, the user
doesn't have to answer a bunch of questions and the program is easier to use.

The CHR$ function and a few tricks of 0SI BASIC allow you to input strings
and stuff without carriage returns and to input strings that BASIC cannot normally
handle.

Anyone who has read our catalog in the last year has probably seen the section
entitled "INPUTS WITHOUT CARRIAGE: RETURNS". However, for those of you who may
have missed it, we'll go over it here. Every BASIC has a machine code section
that handles the actual detection and decoding of keypresses. In 0SI ROM BASIC,
that routine is at FD@@. 1In 0S65D, the routine sits at $252B. The ROM routine
stores the ASCII of the input character in location 532 (decimal), while)0S65D
stores the character in location 9815 (9804 for C1P). Using it looks like this:

100 POKE11,0:POKE12,253 set up USR function for $FDEP
110 X=USR(X) get character

120 P=PEEK(531) get ASCII

130 P$=P$+CHR$ (P) build a string

Disk BASIC is similar except for the location used. We use that setup for
BLACKJACK and AWARI both because it does not disturb the displays and because it
is relatively machine independent.

It is also handy for stuff like work processors because the input is not
limited to BASICs 72 character input buffer and you can input stuff like commas

- 5 -

and periods without jumping out of the line. You can input a 128 character line
complete with commas and even quotation marks.
Now we are going to cover complex choice input to a dimensioned array
(impressed yet)? This is actually a fairly common situation dressed up with
fancy polysylabolic terminology. This is the situation where the users next
input is a choice between a fairly large number of alternatives. For instance,
if you are doing a bookkeeping program, you might display 15 choices where the
next check could be posted, such as "CAR", "rent" or "sales receipts”. If you
are sharp at all, you will number the choices and have the user input a number
to call a catagory. That's not bad, but it requires about 3 keystrokes per entry
(2 digits and a carraige return) and the keystrokes are up on the numbers row
where they are irritating to make anyway.
The solution for neat programming is to letter the choices rather than
number them, and input one character. Subtract 64 from the ASCII code that you
get to get the number of the choices. If the user puts in an A and you subtract
4 from the ASCII, you get choice #1, B gives you two and so on. The nice thing is
that one key can make any choice up to 30. There are no keys designated 22, 23
and 24, but X,Y,Z and + are on the keyboard and accessible with a single keystroke.
If you feel fancy, use the input without scrolls we discussed earlier, but
we are going to assume a normal input routine. Take the ASC of the input character
and subtract 65 to get a numbered choice that you can use for an ON __ GOTO or
subscripted array manipulation. It looks like this: 100 INPUT"CHOICE" ;CH$:CH=
ASC(CH$§—65. We used a similar routine in BACKGAMMON to allow one letter choices
of all the 26 points that a player might want to move to or from.

CONVERTING STRINGS TO POKE VALUES

As OSI BASIC does not have a PRINT AT statement, it is necessary to POKE up
names and scores and things that you want to appear anywhere but scrolled off the
print line. Thank God, the string functions make that simple. We've covered
how to do a PRINT at statement in most of our catalogs, but we'll review it here
for those few demented souls who don't read our catalogs. Add this subroutine
to your programs S5@@FFFORY=1TOLEN(D$) : POKED+Y,ASC (MID$(D$,Y,1)) : NEXT : RETURN

To POKE up any name, work or even sentence on the screen, simply set the
name equal to D and make D=equal the starting address on the screen. i.e.
3¢@D$="WINNER IS":D=54@4g :GOSUB5FH

Scores should be done just a little differently. You start at the second
digit because the BASIC thinks the sign is the first digit in the string and
can set you over one space from where you planned. You may also want to blank
the digit after the string to allow for the possibility that the score may
decrease (say from three to two digits). To use it you set the score equal to
D$ and the final product looks like this:

3?/1D$=STR$ (SCORE) :D=54@4@ : GOSUBS5ZZH

5 ﬂFORY=2TOLEN(D$)sPOKED+Y.ASC(MID$(D$,Y.1)):NEXT

59 1@ POKED+Y, 32 : RETURN

I might point out for the adventurous of you that a similar technique is used
by some TRS-80 users to get low speed animation in pictures. They set up two or
more character strings that overlayed provide cartoon action and then use print
ats to alternate the strings (remember strings can be non-alphabetic characters).
One of the most popular TRS-80 games, ANDROID NIM was done that way. It is a
little slow, but does allow complex animation with a small memory.

STRINGS FOR DIGITAL MANIPULATION

Setting a number up as a string can make certain kinds of digital manipulations
much simpler. For instance, we included the Mastermind game in this issue mainly
to demonstrate how much simpler strings can make programming. The usual thing
. you do when you try to break down a number into its digits is to do a lot of fancy
divisions and integers to get the individual digits. For you lucky computerists
who are too new to remember this one, it went like this. Assuming you wanted
to break down a 4 digit number into separate digits, you divide the number by 1000
and take the integer of the result.

b -

To get the hundreds digits, you multiply the first result by 1000, subtract it
from the original number, divide the result of that operation by 100 and took the
integer of that number and so on for four digits. It is a lot of figuring.

Most computerists chicken out and input the digits separately by asking the user
to insert commas between the digits - a rather unnatural and unhandy process -

who feels right inputing 1234 by entering 1,2,3,4 return. Using strings, the
problem becomes trivial. If the number has four digits, the first digit is
VAL(MID$(A$,1,1)). The second digit is VAL(MID$(A$,2,1)) and so on for all the
digits. Of course, pairs of digits can be picked off the same way, which is handy
for inputing dates without requiring a lot of special formatting. If the user
inputs the date in a fairly standard 6 digit format (month, day, year), VAL(RIGHT$
(2)) will give you the year, the same thing with LEFT$ will give you the month

and a MID$ will pick out the day without the user having to put in commas, slashes
or any other special character.

DIMENSIONED STRINGS AND DATA STORAGE
((**BOREDOM WARNING**)) THIS GETS A LITTLE THICK

‘To really understand where the advantages of string data storage are, you
have to take a fresh look at what a string really is. It is not a collection of
alphabetic characters. That is merely what you see when you print out the data
from most strings. What a string really is is a set of integers from @ to 255
which have a common name and which can be added to or examined individually with
the use of string functions. Thought of that way, it has some things in common
with subscripted arrays (individually addressable data bits, callable with a
common name, each data bit can be changed without effecting the others.) It also
has a few advantages over a subscripted array. Those nasty arrays have to be set
up ahead of time with DIM statements and memory is partitioned off for every
possible element whether you need it or not. This is even more wasteful in two
dimensional arrais (editors note: Despite what OSI tells you in the manual,
you do have 2,3,4 ... N dimensional arrays in your BASIC). You have to dimension
out the same number of columns for every row even if some rows are going to be
shorter than others.

The first time the problem really hit me was when I did my first Variable
Table Maker program. The program searches the host program and lists each variable
and each line the variable appears in. The program is mainly useful for docu-
menting and sorting out large programs. The usual way to do one is to set up a
2 dimensional array. You set up an (X,Y) matric with X being the variable desig-
nation and Y storing the line numbers the variable appears in. Unfortunately, it
requires that you make the same provision for storage space for each and every
variable in the matrix. Therefore, the variable WH which appears once, gets as
much space reserved for it as "X" the temporary counter that appears in every
second line., Darned wastefull! On the other hand, if you set up a dimensional
string, you need dimension only on one axis and the system sets aside only about
5 bytes for each string until the string gets longer. If one of the strings is
rarely used, little space is allocated for it and if one gets very long, space is
automatically allocated for that.

Here's how it worked in practice. To make the VTM, we set up a dimensioned
string A(X) that was dimensioned for the maximum number of variables that we were
going to handle. Notice that we only have to have a one dimensional array -
length takes care of itself. When a variable name is encountered in the program,
a string is initialized with the first three letters of the string being the
variable name and a blank or a $ depending on what kind of variable it is. From
then on when the variable name is encountered in text, it is matched up with the
original string by searching all the variable names then on file. (i.e. FORX=1TO
(number of variables on file) s IFLEFT$(A$,3)=(Variable name) THEN... If a match
is made, the line number is turned into a string and added to the string naming
the variable. i.e. A$(X)=AP3(X)+STR$(LINE NUMBER)+" ". (" " spaces the numbers
out so they may be more easily read). When we have finished scanning the program,

we simply grint out all the strings, The first three letters are the variable
name and the rest of the string contains the numbers of the line in which it

appears. The nice thing is that if we only ran into a variable name once, we only
set aside enough memory to store the one line number,

_7-
It doesn't work quite as well in practice as it does in theory as there are some
bugs in the OSI BASIC, but it does work fairly well.

A second set of characteristics for strings and variable arrays can some-
times be important. Everytime you set up an element in an array (or even the
space for a potential element) the system reserves space to store a six digit
number, a decimal point and a pointer for that element. That's very wasteful if
you are storing small integer numbers one byte long.

We ran into a problem recently doing an anagram program for a psychology
experiment. (An anagram is a puzzle where a work has been scrambled and you have
to unscramble it). For the purpose of the experiment, all words are five letters
long and had to be scrambled in a sequence randomly chosen from 15 preset sequences.
What you actually store for a pattern is five digits representing the order the
letters will appear in. For instance, if you were going to reverse the last two
letters and leave the first three alone, you store 1,2,3,5,4. The original
FORTRAN program used a 15x5 array to store the numbers. We couldn't afford that
on a mini computer. At 6 bytes an element, we were blowing about 450 bytes for
the one array. What we did was to store the array as one long string. The first
five characters in the string were the first pattern, the second five the second
pattern and so on. To pick out a pattern, we used the MID$ function to pick five
characters out of the center. We then broke the characters down in a manner
similar to that used with the Mastermind game in this issue and used the individual
values to build the anagram string. The nice thing was that we didn't have to
store decimal points, headers and all the other stuff that goes into an array so
we ended up using just about 100 bytes.

In a similar manner, we are using string to store the objects in an adventure
game that we are currently developing. There are about 40 objects in the game
that can be picked up and carried from place to place. We needed to know which
objects were in which room and which one the hero was carrying. That entails
having about 21 places where you can store up to 40 integer numbers from one to
40 without wasting a lot of space. We did it by setting up 21 strings. One for
each room and one for the hero. When the hero picks up an object, we add its
number to the Hero string and when he drops it, we take it off his string and add
it to the string for that room. For instance, if the hero picks up a sword
(object 15) we execute HERO$=HERE$+CHR$(15). To find out if he has the sword, we
execute the codes 100FORX=1TOLEN(HERE$) s IFASC(MID$ (HERO$,X,1)=15THEN HE HAS THE
SWORD. If he drops it, we subtract the sword from his string and add it to the
room that he drops it in.

If we did the garbage collection routine, we can store all the possible
combinations of places and objects and still only be out the 5 bytes per string
overhead and the 40 bytes it takes to store the current locations of the objects.

It's a long way from the question "DO YOU WANT INSTRUCTIONS (Y/N)".

USING THE $219 PRINTER

Before we discuss the printer, we should talk about what most hobbyists,
particularly C1-P users need a printer for. Despite all of our dreams of work
processing, very few of us will use our systems for writing many letters. Most
of us don't even write many letters to begin with. The lowest cost typewriter
print quality printers are still in the $2,300 - $3,000 range. (I don't include
used Selectrics - a good choice for a hardware handy masochist). What most of
us need a printer for 90% of the time is to list and troubleshoot programs. We
need to be able to look at SUBROUTINE2000 while we look at the line 200 that calls
it without continually scrolling 4 or 5 lines across the screen.

We need to be able to look over a whole program at one time for errors,
wasted space and documentation.

We use a printer at AARDVARK that we purchased for $219.00 brand new. It has
recently been advertised for $179.00. It has one moving part and has never given
us a minute's trouble - except for the six weeks of figuring out how to use it
caused by its faulty design - and we can save you that six weeks.

We use the RADIO SHACK QUIKPRINTER II for program listings. It you have
purchased a program from AARDVARK, you probably received a listing made on this

-8 -

printer. It has some limitations as it prints on aluminized paper about 3 inches
wide, but it gets 32 characters per line, (which is 7 better than the C1 display)
and has an option for double width characters.

Installation requires that you populate the RS-232 port. That involves
about $2.00 worth of parts and a helf hour with SAMS, your dealer, or the data
sheet from AARDVARK. You also need to wire in the 600 BAUD conversion. That is
supersimple on the C1, It requires a switch and some wire and another trip to
your dealer or an order for a data sheet. The C2/4 is a little more complex. It
took me about 2 hours on my C2 and I never did write up the instructions. Any
handy type should be able to figure it out as OSI has pads for installation of
other baud rates already on the board.

You only need to wire in the transmit and ground connections to the printer -
that's where that six weeks of problem comes in., RADIO SHACK tells one little fib.
The RS-232 does not work on the printer. It receives and prints data properly,
but the CTS signal latches high or low at random. We received calls from the
local computer center, the regional computer center and two people who purported
to be from engineering centers in Houston. We got evasions, excuses, nonsense
words (i.e. "It's just a software problem"”), and promises. However, at last
count, the CTS line still did not work.

To use the printer, you have to sync in without handshake. The wrap around
buffer they advertise is one character long and simply adds to the confusion
rather than helping.

You have to avoid carriage return (POKE 15,31), space out the characters with
the baud rate simulater (POKE 518,190) and add some extra nulls at the end of each
line (POKE 13,9). We have used three different C1 and C2's with the printer
and all seem to use almost identical values to work properly. On one system we
had to space the characters out a little more to avoid the loss of the first
character on every line. We used POKE 518,200 on that one,

With all the delays, the printer ends up running at a little less than 300
BAUD effective rate, but that's a lot faster than I can type a program. You may
have to fiddle the POKE values up and down a little for your system.

POKE 13,9 (add nine nulls)

POKE 15,31 (set width to 31 characters)

POKE 518,190 (delay set between each character)

CAUTION : BEFORE MAKING TAPES, YOU MUST RETURN TO THE NORMAL VALUES
POKE 13.0

POKE 15,72

POKE 518,0

WANT TO WRITE FOR THE JOURNAL??

We do want programs and informative paragraphs for this JOURNAL. We do not,
however, feel that anyone should work for free. Any article worth publishing
is going to save others countless hours or many frustrations with their systems.
The good feeling of offering to help other computerists is nice and should be
appreciated, and the minor fame of publishing a little piece is nice, but there
should also be some reimbursement.

For paragraphs and short equipment and software review, we offer gift
certificates for AARDVARK software; A $15.00 certificate for a paragraph sized
tip (and we put your name in the JOURNAL) or a short product review. We will
publish software reviews from other sources, but don't plan to do any ourselves
as we want everyone to be able to trust the reviews., We also sell software and
we don't want to get into conflict of interest problems.

Programs and articles will be offered gift certificates from $25.00 (short
programs) to $100.00 for "how to do it" articles. We will also pay cash for
exceptional "how to do it" articles.

If you send us a data sheet or article, put your name on the back of each
sheet and your phone number or address. If you send a program tape, include
your name, address and phone as program lines 1,2 and 3 in BASIC programs. Be

sure to specify if the information is for the JOURNAL or for publication by
AARDVARK software house. The requirements for the two are very different.

-9 -
HOW ABOUT THIS FOR A LETTER COLUMN???

Send in questions., I'll answer all I can, and my staff will tackle the rest.
We'll publish the answers in the next issues column. If you fool us and your
question has public merit, we'll publish the question and scream for help. We
can't promise to answer everything in one JOURNAL, but at least it will give us
an idea of what you need or want to know.

TID-BYTES

This is a simple one, but the problems it causes if you don't know the trick
are maddening. 1In order to LIST out a segment of program, type in LIST (1lst line
number you want to look at) - (minus sign signifies "to") (last line number you
want to look at). (i.e. LIST 230-260 will cause all lines between 230 and 260 to
be printed on the screen).

There are an unknown number of C1-P's out there with a hardware problem
built into the cassette interface. (I know I spent several hours tracing down
why our original C1 wouldn't load tapes as well as it should - in fact, it loaded
better through the output port). If your C1 has these symptoms, the problem may
be a bad foil run between diodes 9 and 10 and pin 2 of U66. Use a VOM set for
resistance to check out the trace. If the trace is broken, a small jumper wire
tacked inbetween the two points on the bottom of the board will solve the problem
and have your cassette interface back in working condition.

Sometimes when you use a POKE statement as a direct command, as we do in
order to run the QUICKPRINT II - the system will come up with an OM (out of memory)
ERROR the first time you execute the POKE. Ignore itl Just repeat the POKE. The
system will usually accept it the second time, if not keep POKEing.

If you have purchased our C1 CURSOR CONTROL, have we got a surprise for you.
It is possible to do mid-line insertion with the CURSOR. Just CONTROL from the
beginning of the line to the space where the insert should go. CONTROL the
number of spaces needed for the insert. Then type in whatever you want to add
(it will seem to wipe out part of the line as you type it in, so don't panic).
At the end of the insert CONTROL to the end of the line, hit RETURN and list your
line, complete with inserted material. (It may take a little practice to get
the spacing just right).

Good Newsl! OSI fibbed to you. For some reason 0SI still publishes manuals
that claim that 0SI BASIC is limited to one dimentional arrays. In actual fact,
OSI BASIC handles N dimentional arrays. (i.e. You can dimention A for DIMA
(5,5,5). Thus, your dimentions are limited only by the size of the machines
memory.

BEGINNER'S CORNER

WE BELIEVE YOU!! At least once a week, we receive the following information
from customers. For those of you who may have missed it:

(1) In ROM BASIC, POKEing a @ into location 15 will make the system double space.
(2) It is not necessary to do a cold start everytime you hit the break key. That
W that comes up in D/D/W/M means warm start and will restart your system

without killing your program.

(3) On C2 and Ck machines, it is not necessary to POKE an exact @ or 1 into
location 569¢@ to change the type size. The system checks only the last
bit, and therefore, any even or any odd number will work.

- 10 -

NEW FROM AARDVARK

SUPERDISK for C2/4/8 Contains a complete BASIC text editor and allows
midline insertion, deletion and correction of BASIC lines. Also has BEXEC*,
RENUMBERER, SEARCH and VARIABLE TABLE MAKER.

53" disk $24.95 8" disk $26.95

THE FIRST BOOK OF OSI It finally got herel! Written by Jim Williams and
George Dorner, it is a 65 page expansion on the ROM BASIC DATA SHEET. While it is
definately not for beginners (it presupposes a working knowledge of BASIC), it goes
a long way toward telling you everything you wanted to know about O0SI BASIC and
couldn't pry out of the manuals. §15.95

TIME TREK A real time STARTREK - runs in 8K. $9.95

C1 TAPE CONTROL Puts your tape recorder under software control. Includes
instructions for hardware modifications. Data Sheet. $3.00

.THE C1 BEEPER Add a software controlled Beeper to your C1-P. Data Sheet $3

ADAPTING THE BASE 2 PRINTER FOR THE 0OSI 7 pgs. $4.00

ADVERTISING??

Yep, we will accept ads for the JOURNAL, but there are some restrictions on
what we will advertise. We will accept ads for hardware, software and information
sheets on OSI equipment. However, as we are a software house, we cannot afford to
be associated in any way with second class software or impractical data sheets.
Therefore, software ads and data sheet ads must be accompanied with a sample for
evaluation.

Ads for hardware are $5.00 for up to 50 words. Ads for software and data
sheets are $12.00 for 50 words and are subject to the rules above.

MASTERMIND

5 REM THIS IS A MORE LIFFICULT VERSION OF MASTERMING
7 REM IT DOES NOT REFEAT NUMBERSs BUT USES MORE DIGITS (0-9)
10 PRINTIPRINTIFRINTIFRINT

20 FRINT"MASTERMIND COFYRIGHT 1978sROUGER OLSEN"

30 PRINT"HIT SHIFT TO START"

35 IFPEEK(57088)=2540RFEER(57088)=1 THENR=RND{ 8)1 G0TO35
40 FOKES6900s1

50 FORS=1TO34iPRINTINEXT

60 FRINT"MASTERMIND FOR THE CHALLENGER®

70 PRINTIFRINTIFRINTIPRINT

80 INFUT"DO YOU WANT INSTRUCTIONZ" ;A%

90 IFASCCA$)I=B9THENS40

120 FORO=1TOMIRF=RNIK 1)INEXTO

130 W=INTC1O0%XRNI(1))

140 X=INT{ LOKRNDC(1))

150 Y=INTC1OXRNO(1))

160 Z=INT{ 1OKRRNDC(L)

170 FOKES6%0050

180 IFW=XTHENGOTOL140

190 IFW=YTHENL140

200 IFY=XTHENGOTO1%59

210 IFW=ZTHENGOTOL60

220 IFX=ZTHENGOTCO140

230 IFY=ZTHENGOTOL60

240 PRINTIFRINTIFRINTIFRINTIFRINT

F N S

250
260
270
280
290
300
305
307
308
309
310
320
330
340
350
360
370
380
390
400
410
420
430
440
4350
4460
470
480
490
300
310
520
330
340
530
560
3570
280
390
4600
610
620
630
4640
650
660
670
480
670
700
710
715
720
730
OR

- 11 -

PRINT"A MYSTERY NUMBER IS5 REALY"

T=0

PRINT SFRINTSFRINT SFRINT (FRINT

PRINT® CORRECT EXACT

T=T+13R=0E=0

INPUTGS dFORX=1T043A0X)=VALMIDS G s Xo 1))INEXT

REM DO NOT ENTER LINES 310-340-THEY JUST DEMONSTRATE THE WAY YOU

REM HAVE TO D0 IT WITHOUT STHINGS
GOTO350

REM 310-340 I5 MENTIONED IN TE
ACL)=INT(G/1000)
AC2)=INT(G/L00)~Al L)%lo
AC3)=INT(G/10)-A0 10%100~-aC 2 0%i10
A 4)=6-1000KAC 1)-100%A{ 2)~ 10%kaL 3
IFACL)=WTHENR=R+1

IFAC 2)=XTHENR=R+1
IFAC3)=YTHENR=R+1

IFAC 4)=ZTHENR=R+1

FORL=1T0O4

IFACL)=WTHENE=E+1

IFACL 3=XTHENE=E+L

IFACL)=YTHENE=E+L

IFACL)=ZTHENE=E+L

NEXTL)

PRINT" ===~ =" Ey |
IFT:30ANDRC4THENGOTOS00
IFR=4ANDT=15THENGOTO280
IFR<4THENGOTOZ90 !
PRINT" CONGRATULATIONS" JFRINT"YOU GOT IT IW"T"TRIES"IGOTOS10
FRINT"GOTCHA®

A=1000%UW+L100RX+10XTV+Z

PRINT"THE NUMBER WaA5"Q
PRINTIPRINTIFRINTIFRINT"CARE TO TRY AGAIN" ;GOTUL30
PRINT"I WILL THINK OF &

FRINT"FOUR DIGIT NUMBER

FRINT"NO TWO DIGITS WILL BE THE SAME
PRINT"BUT THE FIRST ONE CAN BE & ©
PRINT"YOU GUESS THE NUMEER

PRINT"I WILL TELL YOU HOW MANY OF
PRINT"THE DIGITS IN YOUR NUMBER I USED
PRINT"AND HOW MANY I USEL IN THE BaKE FLACES
FRINT"FOR INSTANCE-IF MY NUMBER WAS 1234
FRINT"AND YOU GUESSED 1478

FRINT*I WOULL SAY THAT YOU HAL 2 UIGLTS
FRINT"CORRECT (1 AND 4)

FRINT"AND ONE EXACT (1"

FRINT

INFUT"READY FOR MORE" §A%

FRINT"TO GIVE UF-TYFE

FRINT"A RETURN WITH NO GUESS

FRINT" AND TYFE GOTO 500
FRINTIPRINTIFRINT

INFUT"REALY TO START" ;4%

GOTO1300K

-

AT AS OLD WAY OF SEFARATING DIGLTS

~

RACE COURSE 600

u RER THIS rr(ﬂbfhﬂ UENGNSTRATES JUST ABDUT
7 RER CORTROL A GRAMLCS CHARACTER
10 FRINTIFRINTIPRINTPRINT"RACE COURSE 400
15 FRINTSPRINT _
<0 IHPUT"O0 YOU WANT INSTRUCI’I%';M IFLET‘(&‘!IF'Y'TW
30 PRINT:PRINT™C 1KEYROARD (2)FULL FADDLE (3)STEERABLE P
$0 WPUT*PICK A GAME BY NﬂBER' it
90 FORK=1 TOBIREADR(X)2 TCXDINEXT
ol xNPU.'BEERE.. o JIF[' ICATY* s DITI=30%(10-1)
40 L=0:CR=, 791 1P=54024
80 IFGiL WU?\EJ&OQI POKES7(38,128
i FORX= LTUS0 FRINT INEAT
9.: REN UATA
97 REA Mﬁ GRAPRICS CHARACTER USED IN THAT DIKECTION
100 Dﬁlﬁ‘ﬂu&&“olldnli 5 .
IQSREHTHISPRINS%RA g{i{"" FUN 70 D0 TGUR O8N
107 Ren BUT UNTIL 50U DOy U
110 FORR=1T02 FRINT X ARXEXXKXRKXAKAXKAXKAXA® ENEXT
ig %&-H&. VERINT XA 5 SPRINT TAB 20 0" XXX

140 FORK=1TOSIFRINT*AXA OO AOKX (* INEXT
150 FORA'ITGE’F’AINT XXX XAXKARLAX XXA' SHEXT
160 FORK=1TUPRINT AAEXC XOOO0000C XXX DNEXT

170 FORK-LTDS
180 PRIAT*OG X0COCEKO. XX SHEXT

190 PRINT™AX XCOGARO0NX e

200 FORK=LTO4 SPRIAT" XXX* 5 ¢ PRINT TAB(20)" XXX I NEXT
Al wyr*xxxmxxxxxxxmmxx

230 BRINT“CRASHES LAPS

240 FOR=1TOTLINELT

250 PORESH0 s LIFGETPS TLD) . ‘
255 RER 270 15 A KEYBOARD ROUTINE/ 390=FULL JOYSITCK
25/ RER 500 5 FADDLE TYPE USE OF JOYSTICK

280 ONBEOTOZ/ 05 390,500

270 FIKES7088, 2541 P=235-PEEK(57088

280 IFP=129THENPOKES30) 02STOP

290 1FP=3THENT=1+, 1 1F [=9THENI=1

30 IFP=OTHERTI=TI+30

510 FP=SHENL=T-LLTF [-0THeN T

t1'=f"EEM TPHA I)) IFP=88THENGUSUBIA0
340 FORETPy S2LTP=TPHIC 1)iPOKETP,T(1)

EVERY WAY 70U CAN

330 IFTP;S3609MMDTP 3361 ITHENL=LE1 IPORES4 103, L#481 IFLS9, JTHEN 40

370 FORX=LTOTINEXT
380 010280

390 POKES70881 127:P=255-PEEK(57088)
00 IFP=64THENI=1

410 IFP=96THENI=2

§20 1FP=12THENI=]

§30 IFP=4BTHENI=4

440 [FP=14THENI=5

450 1FP=2ATHENT=S

480 TFP=ATHENI=/

470 TFP=72THENI=8

f80 LEF=128 HEFNES 30, 035T0P

500 POKES7088 1272 P=255-FEEK(57088)
510 1FP=12THENI=1-1! [F I=0THENI=8
520 IFP=1ATHENTI=TIFS0

530 IFP=GTHENI=141: IF [=9THENT=1

540 1FP=128THENSO
550 070330

560 FOR=1T0100:P() :

i TF=3399.3! 1=3} 4 {POKETP, J2:NEXT

CR=€RH PNESW‘?B:LRHS‘ IFCRY STHENT 0
610 PRIHT'

il A

830 ?RM’ (I)IS TRIBGER (2P (JRIGHT (4)D0WN (5LEFT
540 PRINT"FULL PABDLE GIVES THE ?g}&gﬁﬁh LIRECT [ONS

630 FRINT"STEERABLE HEANS OMLY LEFT WORK AND
660 PRINT™YOU MUST STEER TAMK WITH 2 iREADb
570 PRINT: INPUT'READY FOR AORE” jA3IPRINT:PKINT

480 FRINT"TO PLAY STANDARD KEYBUARD

8% PRINT'USE {R.SHIFY) AND {L.SHIFT) FOR DIRECTION
700 PRINT"{REFT ; tHND CANE EARLY

710 PRIRT*UN PADDLE GAMESy THE TRIGGER ENDS GAHE EARLY

12 -

720 PRINT" {0U GET 10 CRASHES PER GAME

730 PRINT®YOUR RATING DEPENDS ON THE LAPS YOU MAKE

;% Z{R%@TBHIGPER DIFFICULTY RATING WEANS HIUER SPEEDS
[B

;7% LP%EM PRIATIPRINT® RATING *1008(L/CR)IPRINT:PRINT
’oJl

780 GOT0SC
RACE COURSE 540

9 RE rh.: I5 % 340 (U274 3 WERSION OF THE 500 RACE Cwk RRGBRW'; 4
»*’br fEG TUU UART IRSTRUCTLONS® 343 IFASCOAS j=3Y THERLLOU :

per
iy

1§ ﬁﬂb‘iﬁﬁm FACTOR (HOW FAR TO MEXT SOUARE IN THAT DIRECTION
5J3t’§15.§2u§‘|3i72535 -1 1254 -335255

5 WU NARE OF URIVER" A%

17 FRIND: "“AR} LREVBURRD | 2FULL ¢ HERS \..t).ihidnﬁu. FABLLL
? b‘ lLu!\ -1 uhﬂ" kt N‘.‘hbth fc

. .‘L-UQHH.HM*: ”i\nhfin

'_‘ s Ui ES ‘\tL : ‘lq ‘LJL‘I"/U.H:;\)A}\)‘EJJ

9 U"L’:LF- b I bt

O Hﬁnﬂ' OhESSGs L AF’ULw 038512
_IL‘MHI'HII“ ﬂr./ i
“RELPRIALG Eim

e \...; !Jf\{n.:\

HiTAE . e) “LAFST J’ﬁlﬂnﬂhms%‘)“H\“uﬁ{b}

i éé&a‘hf‘\lh} SHEX

'o fer JRAW A HACE fRALk'“I: 5 MUKE FUR 1O DRéw 5OUR Qo
RER oin {00 RE LL"HEU i} \.:‘JE fiHE

lhﬂ er J.JUPdIUJJuU sPOREAs 1AL INEXT

h’.l T wn}ilUwJJu Uf\r.:\ilblfl&f

1 .ﬁiﬁ.a LTRGIPURESST Ut LA PORES4 094X LSL TNEAT

;'W FORAZLTULSIPOKESS) 1545844, 141

L..N Fmtdul Nl\?ﬁ 151’%/1

Lu ks 3y auslel

.LuU PR =LTGAG FORNESa 208+ s 161 FORES3YS 2-Xs Lol INEXT

i/ i T'JFJ 1(&;.0"&.‘@10"’“54:1\'1“1 “ﬁl\

QJ iFp= .J#.t:h i 1'1{.& *GiHENI =g

533 LH' AR {FTE-30

20 FEEERC TP LS IF e Lo THENGOS B0

S UAE.'FN:“ (F=iEHi LIPURETP 7015

o0 IF] SSL/ARDIE ALY THERL=U 4L FUNES4 300, L1480 11 7 THEN200D -
@ J iy TEIHTIIS

'“A"y H

o\F;
By (T
ald It
um‘ i

JLV R
YL
J-lll
Th D
Jea
? Ly Wiy
u‘lb - i
ol =

545

W :xbiu.ﬂv
i3 YOKES, ku_m FPELKT 57035)
/1\) L}f 232 r!U\’l ' lrxl F&“Lk "
/A.V .i}' J.b“LJ\IL ll?i‘\

{80 TF=gTHEN = m VAP [F9THERD=E

%a iFi= 1...”fiEA 3

hA';sbI" FORCF l%A:Fl}f\ElFlu‘yﬂE}’
.U.Ia.\. e J“}'ﬂ” iz uvllﬁE T ¢ \1\}“”)
=LK L U'\Ed‘}“asiu"}?\:u!’u‘ 7 {HER2000
Jik
Aivl KEM IRGIRUCT 1M ARETHE SAME A5 1AE 500 YRSIMN

by .H.“JI.J ‘
RATiG "1008CL/CRIIPRINGPRINT

"iﬁ g iA rJ’(L ddVenkds ! J

..v.)u
UJJ *r.’l IU“ HUV; .Lf'l tfiﬂi ul?

006G 081 A-ate Jals -85 289, 11250035025 s 00 2521 8352539~ 15 356 1~ 48 55

HL“I“JH‘}LLam H Llﬂl'Lﬂl CHARALTES
i

