&Y

A ARDVARK JOURNAL

VOL.3

senurn O

%%k INDEX ¥XX

ARTICLE FAGE #
0865D V3.3 by M.Heidt 12
COMMENTS ON V3.3 by R. Biendbach 2-3
WP-4502 RELOCATING by J. Roecker 3-4
MACH. LANGUAGE MONITOR 4-5
WPII 6502 by E. Rivera S
SCREEN DISPLAYS by D. Tajkowski =1
HINTS ON "VIDEO SWAF" Sy
FAST SCREEN CLEAR by R. Soderbeck é&-7
BAUD RATE SELECTOR by W.Zaydak d

9

MUSIC FOR C1iP by G. Artman 8-

ClE INSTALLATION by E. Coohoon 10
RECOVERING PROGRAMS 10
DISK SWITCH HINTS by J. Scherr 10
Cis ROM TIPS by T. Warfel 11
INTERFACING THE 502 EBD by J.Coyle 11
RE~-LINE DELETE by A.Jansen 11
SAVING SPACE USING VARIABLES 11-12
CLUTTER FOR 08I by K. Lourash 12-13
TEXT EDITOR FOR ClE 1415
CORRECTION TO ALIEN RAIN 15
"BUNNY" PROGRAM 115
CORRECTION FOR "YACHT RACE" 16
"EXPLOSION" PROGRAM 16
NOTE FROM C.DAVIES N.ZEALAND 16
CHANGES IN "BREAKTHRU" 16-17
CORRECTION TO ANTI AIRCRAFT 17
CLASSIFIED ADS 18

NO.2 JUNE 1982

0865D V3.3, A QUICK LOOK by M. Heidt

For almost a vear now we have been
hearing rumors of an improved 65D disk
operating system (DOS) from 08I. Well,
it has finally arrived. It is
officially called 0868D ViI.3. Many of
the shortcomings of version 3.2 have
been fixed, at a cost of 2K bytes of
memory.

It is & bit misleading to say that
only the DOk has been improved. Most of
the changes are in the 08I version of
Microsoft disk BASIC. Although the DOS
is a totally separate entity from BABIC,
they are so well integrated that many
people think of them as one operating
system. However, if you run some other
language or program, such as Forth or
the assembler, you still use the same
DOS.

The familiar 65D hkernel commands
remain the same. The main change in the
DO8 is that the polled keyboard now
emulates a Hazeltine 1420 terminal.
This means that the strange shift key
operation of V3.2 is gone. The DOS no
longer calls the ROM at FDOO. The
keyboard now works more like a
typewriter. Control functions are
those of the Hazeltine. This should
make programs from the big machines
(e.g. WF3) work on polled hkeyboard
machines. The rubout key replaces the
shift-0 as the. way to erase a character
from the input line. The auto repeat
feature is gone. You must now press the
repeat key along with the key you wish

to repeat. This can be awkward for
control keys when three keys must be
held down. This can occur relatively

frequently because the control keys are
used to move the cursor when editing.
The most visible change is that the
cursor is now a flashing square which
appears at the upper left ¢Drner or
"home" position. The cursor moves dawn’
the screen and scrolling bedins when the
cursor reaches the bottom.

The most obvious enhancement to BASIC
is the editor. This allows you to call
up any line and completely edit it by
moving the cursor to the appropriate
place. There are shorthand commands to
edit a line, recall the same line and to
call the next line. This editor is
always resident. There is also an
editor program on one of the disks which
will overlay the editor onto V3.2
BASIC. ’

The next big change is in the 081
BEXECK progtam. This now includes most
of the utilities that used to be
individual programs under V3.2, The
utilities now work the way they should.
For example, they create function finds
space in the directory for you. You
still tell it how many tracks to
reserve, but it will find the space on
the disk for you. All of the utilities
are presented as a menu when vyou boot
the system. You can get & disk
directory, create files, create data
disks, (an initialized disk with an
empty directory), copy disks, run
programs, etc.

The copy program is worth special
mention. This is the best copier I have
ever seen for 081 disk systems. It
allows copying with single or dual
dishks. It checks to see how much memary
vyou have, and then reads as much as it
can from the souwce disk before writing
to the destination. In a 48K system
with one drive it only takes three
changes of the disk for a complete copy.

The copier also initializes the tracks
to be written. The only drawback I
have found is that the copier always
starts with track zero. It will stop
anywhere you tell it, but you must start
with zero. The old copier is still
available if you wish to copy a few
tracks in the middle of a disk. All of
the wtilities, including the copier,
return you to the BEXECX menu when
finished.

"The new diskettes also include some

usefull utilities that are not in the
BREXECX. These are ones that you don’t
use quite so often. These include a very
nice machine language re-numberer for
basic programs, a repacker which removes
extraneous spaces and remarks from basic
programs, and a utility to add/delete or
check for disk buffers on existing
programs. All of the old V3.2 utilities
are still there as well as one or two
new ones. The new utilities are
actually usefull where the old ones were
more of an advertising feature.

When you get through playing with the
utilities and sit down to write a
program, you will find a wealth of new
features in the V3.3 BASIC. You now
have complete control of the cursor by
use of special print statements. This
gives the equivalent of the commands
available in the Hazeltine 1420, such as
HOME, CLEAR LINE, CLEAR TO END OF
SCREEN, etc. You can define a print
window anywhere on the screen. This
window can be defined as any number of
lines of any length, as long as it is
smaller than the default screen size.
It remains in effect until changed by
another screen define operation or by a
keyboard command from the command mode.

The new PRINT commands also permit .
control of color, screen size, and
reading of the character under the
CUr sor . You will also Ffind the long
awaited PRINT USING command. This lets
vyou format numeric output so that
decimals line up and columns are easy

»

to define. No more converting numbers
to strings Just to line up & decimal.
All in all, a powerful set of commands.

One of the most impressive things
about the new DOS is the documentation.
This is by far the best ever put out by
08I and as good as many in the industry.

Although it is not as "slick" as that
of the Apple or Radio Shack, I believe
it is considerably more complete. For
the JFirst time DUOS user, the manual
starts at square one and guides vyou
through the system step by step. The
instructions are clear and there are
adequate examples. The documentation
does assume that the reader is sitting
at the computer. The instructions take
the FoRM of "DO THIS", "YOU SHOULD SEE
THIS", "IT MEANS THIS...".

For the more sophisticated user, the
introduction refers you immediately to
the section on V3.3, This section
assumes that the reader is familiar with
VX.2 and proceeds to explain the
changes and enhancements of V3.3, At
the back of the large binder is a set of
appendices which summarize everything.
This section can be pulled out and kept
by the computer as a handy reference.
Also included in the documentation are a
complete memory map showing all versions
of 0868D (old, new, 8-inch, and S-inch)
plus a disk map showing which is on each
track of the disk.

While most of the information in the
V3.3 documentation has been available in
one form or another, this is the first

time I have seen it all in one place and

organized in a reasonable manner. It is
also the best "first time users guide"
that I have ever seen for the 08I
system.

This should be enough to give you an
overview of - -0865D V3.3. It costs about
$80 from most wail order places. I felt
that the ed;tor. ~Eopier and
documentation were wortq\the price. - The
rest is gravy. I ha?&»ﬁnt found =ny
major bugs. Everything worus if you

take the time to read the manual and

follow the examples. I am pleased with
it and can only hope that 0SI will see
fit to make this software standard with
all new systems. No 08I disk owner
should be without it.

MORE COMMENTS ON V3.3 by R. BRiedenbach

Im not a subscriber to the Aardvark
Journal, but a friend showed me the

letters regarding 08I 65D V3.3. What I -

want to say is BALDERDASH!! AND MORE
BALDERDASH! Just kidding guys, want to
keep this light. But get out the fly
paper and the raid for 08I 65D V3.3 is
full of bugs.

I also believe it is the best

software and documentation 08I has done

to date. V3.3 has some very powerful
features, such as print at, print using,
windows, and the Find command which is
my favorite.

*

.

When it comes to bugs even an
Aardvark is not beyond reprove. I
recently purchased Tiny Compiler on 8"
disk and the program had missing lines
and mis-numbered lines which resulted in
the POKE and the LOOP functions from not
operating. Even I, who recently wrote
and published "08I &5D V3.3 GUIDE"
suffer from this human condition.

Here is a list of the bugs in 08I 65D
VX, 3:

1. CONTROL X DOES CRASBH THE SYTEM

2. PRINTER -DUMP DOESN’T WORWK

3. ERRORS IN V3.3 BEXECX

4. DISK COPIER WILL CRASH SYSTEM AFTER
USE

5. V3.2 NOT UPWARD COMPATABLE TO 3.3
DATA FILES

6. V3.3 HAS LIMITED DOWNWARD
COMPATIBILITY TO 3.2

7. 0SI LEFT OUT ALOT OF VALUABLE DATA IN
IT’S MANUALS.

Now comes the plug, my manual covers
the above and more. So for all the
answers, buy, read and tell your friends
about "08I 65D V3.3 GUIDE".

I will share this, to fix the control
X ®o that it doesn’t crash your system,
(if you have less than 48K) add the
following pokes to BEXECX:
POKE9593,234: POKE?S94,234. This
disables the keyboard routine from
seeing a control X.

To enable the control X,

T POKE9S9X, 2011 POKESS94, 24.

P.8. 08I 65D V3.3 is available +from
Buffalo Informational Tech. for $14.95.
209 Richmond Ave., Buffalo, NY 14222

RELOCATING WP-4502 by J. Roecker

WP-6502 is a very nice word processor
for O0SI machines. Unfortunatley WP-6502
uses memory locations $0222 through
$0235 which are also used by many of the
nonstandard monitor ROMs available
today. I own a CiP which I have
modified by adding an Aardvark C18
monitor ROM and an expanded screen. I
recently wanted to write an article for
the local OSI user’s group and was asked
to use WP-4502. The Aardvark Ci18
monitor ROM uses memory locations $0222
through $022F for cursor positioning and
subroutines disabling WP-6502. The
choices I had to enable me to use
WP-6502 were: Put my standard 0SI
monitor ROM in, Relocate WP-6502, or
Write the article by hand.

I have many routines which utilize
the C18 monitor features so the first
choice was eliminated. I did not want
to write the article by hand so I chose
to attempt to relocate WP-4502. A phone
call to Aardvark T.S8. reinforced my
decision because Rodger Olsen laughed at
my plans,

The items need to relocate WP-6502
ares (1) Some program to perform the

relocation (0SI Extended Monitor), (2) A
listing of WP-6502 (convenient but not
necessary).

I used the following steps to
relocate WP-6502 (all address locations
mentioned are nonrelocated addresses):

1. Relocate WP-6502 to the desired
locations. In my case I relocated it
from locations $0222 through $0F98 to
locations $0235 through $0FAB.

2. Replace the data which the
nonstandard monitor ROM destroyed. In my
case memory locations %0222 through
$022F had to be replaced with the
following data: .

$0222=52 $0223=02

#0224=01 #0225=20
HO226=80 $0227=40
$0228=7F £0229=7C

H022A=5C $022B=5D
$022C=5E $0220=0R
HO22E=23 SO022F=5E

If vyou have an Aardvark ClE/C2E
monitor ROM, locations #$0230-%0234 will
also have to be corrected.

$0230=0A HO231=42
$0232=3C $0233=0A
$0234=00

Z. Instructions which reference data
outside of the limits of the relocation
will not be modified by the relocation
routine. In this case one such
instruction existsy the instruction
located at $024F. It will have to be

" modified by adding the amount of -~the

relocation.
$024F BDO3I02 LDA $0203,X

4., Data tables can cause relocation
routines to misinterpret data for
instructions. In the case of WP-6502
there are two cases of thisy the
instructions at locations %0671 and
%0784, The address fields of these
instructions will have to be modified by
adding the amount of the relocationg 13
in this case. The non—modified
instructions are:

$0671 201503 JBR %0315

$0784 207106 JSR $0671

S. BIT instructions are sometimes used
to provide multiple entry points into
subroutines. The relocation routine
might possibly modify the address field
of the BIT instruction, which is really

another instruction. In the case of .
WP-6502 there are seven occupences of .
this. Instructions located at 40307,

$0317, #%03D0O, $03DD, $03EB should all be
2CA204 RBIT %024A. The instruction
located at %0323 should be 20CA202 BIT
$02A2. The instruction located at $03C3
should be 2CA206 BIT $06A2.

- 6. The warm start code will have to be

modified if you have a C1S because the
CiS will mask out the ’Line Feed’
character making it very difficult to
edit data using ’Line Feed’s. I modified
the warm start code so it will use the
old video drivers for all commands

ercept for the W/ Tape command.
use the new video routines. The
following code has worked for me; insert
it at the memory locations indicated.

It must

OF3A AR00 LDA #$00

OFZC 8D29046 BTA #0629

OFCF 8D3906 8TA %0639

QF42 A92D LLDA #$2D

OF44 8D1ANZ STA $021A

OF47 A9EF L.DA #$BF

OF49 8D1ROZ2 STA $0Z1R

OF8F A929 LDA #4229

OF91 8D290&6 BTA %0629

OF 24 A980 LDA #$80

OF 96 8D3906 STA $0639

QF 99 A%49 LDA #4469

OF9R 8D1A02 8TA %0214

OFQE A9FF LDA #&FF

OFAQ 8DIRO2 STA $0R1IE

QFAZ A920 LDA #4220

OFATS BD2A02 STA %0226

7. The cold start code will have to be
madified to use the proper data/text

starting address. This address is $0F9R
in the non-relocated WF-6502. This
address will have to be modified by
adding the amount of the relocation.

OF AR A99F LDA #$9F

OFR8 A99B LDA #$9R
The warm start jump will have to be
modified also. The -amount of the
relocation will have to be added to the
immediate data below:

QFA7 A0B LDA #40R

This should completé the modification

needed to allow WF-6502 to be relocated.
I hope with these corrections you will
be able to enjoy WP-6502.

The Hand Assembly of Programs for 08I°s
Machine Language Monitor

In this article I will discuss the
implementation of assembly language
programs on the CiF by the use of the

All numbers
and a knowledge
monitor and its capabilities is
assumed. If you aren’t familiar with
it, I suggest you read page D-5 of the
Users manual.

Although BASIC

machine language monitor.
will be in hexadecimal,
of the

is great, machine

language offers a tremendous challenge;
and it is far faster and slightly more
flexible than BASIC. A knowledge of

machine language is useful to everyone
since it can be used to increase the
speed and power of BASIC. The monitor
provides a rudimentary, though adequate,
tool with which to explore and learn
about machine. language.

Since almost any 6502 book deals
exclusively with assembly language, and,
ultimately, any machine language program
starts out in assembly language, it is
the user’s problem to convert from
assembly mnemonics to hexadecimal
opcodes that can be used by the monitor.

If you will look at a conversion chart,
such as the one on the back of the Users

manual, you’ll find that under any
given mnemonic, several opcodes are
vyouwrs to choose from. This is very

confusing and it merits some

explaining.

Each mnemonic converts directly into
one opcode, but most require one or more
additional bytes which determine the
informtion that the microprocessor is

going to process in the manner that the
opcode dictates. For instance "JMP
AR74" tells the microprocessor to start

executing instructions at location AZ274.
The opcodes that you would put in with
the monitor to get it to do this are
(the critter doesn’t understand JMF
unless you have an assembler program)
Whern the microprocessor finds a 4C, it
automatically knows that it needs to get
the next two numbers, which will be the
address.
Similarly, when it executes the
instruction "LDA, FF" which translates
to "A® FF" it knows that the instruction
"A9" needs only one number to operate on
and the next number after FF will be the

next instruction On the other hand, the
instruction "LDA (DFOO)", which
translates to "AD Q0O DF" tells the

microprocessor to load into the
accumulator the number that is stored in
location DFOOQ. In the first instance,
we loaded a literal number into the
accumulator, the one immediately after
the instruction. This mode of
addressing requires two bytes,

one for

instruction, one for "argument".
Consulting the last page of the Users
manual, you will find that the opcode at
the intersection of the "immediate"
column and the "LDA" row is "A9". In
the second example, since we wanted to

load in
location, we used the opcode
tell the microprocessor that
going to use the "absolute" form of

addressing. S8Since there are thirteen
forms of addressing, youw should read the
chaptetr in your 6502 book, that explains
about addressing. This is pretty deep

naAD " o
we weire

stuff, so you might want to read it over
several times. In addition you should
become familiar with the way each form
is represented in an assembly language
program.

Now, assuming that youw understood all
that, try vyour hand at converting and
loading this simple assembly language
programs
STA D210 jistore the value of the
accumulator in the center of the scr
JE8R FDOO 3get a character from the
keyboard which will be left in the
accumulator
CMP 4D ssee if the character is an
MMII .

BNE F9 setart over if it isn’t

JMF FEOO jreturn program control to the
monitor

If you +translated that program properly
it will look like this:

8D 10 D2

20 00 FD

C9 4D

DO Fé&

4C 00 FE

the value of a specific memory

-

All of which brings uws to another
point. When you come to the end of a
machine language program, you still have
to have the machine doing something. If
the program is & USR routine, you must
end it with the opcode RTS8 (&0) to get
back into BASIC. If the program is
independent of BASIC, like this one or
any of the examples that you will enter
from a book, you probably want to return
to the monitor as I did here. Unlike
BASIC, your machine language programs
can be put anywhere in RAM, even in the
screen memory, except OOFB-FF, which are
used by the monitor. '

If vyou don’t have a tutorial boaok,
get one! I also highly recommend
Aardvark’s FIRST BOOK OF 0SI, which
tells where all of BASIC’s useful
subroutines are, and how to use them (it
also has some great stuff about how to
use BASIC). A disassembler program,
which, as the name suggests, converts
opcode to mnemonics would also be very
helpful since it would enable you to
learn by example by looking ,over other
peoples’ programs and the BASIC machine
code.

EFRAIM RIVERA, AURORA, COLORADO

I purchased WP-6502 a word processor
program from DWO QUONG FOK LOK SOW and
was totally satisfied with it, except

_for one minor _problem. Data was
transferred to the printer at 300 baud.
I would print 3 pages of information and
it would take quite a long time. After

some investigation I found that the word

processor program used the ROM routine
to initialize the ACIA. Even though it
is possible to use basic to poke the
necessary values to the ACIA to set it
up for 4800 baud, as soon as I ran my
word processor program it would
re—initialize for 300 baud. After
looking at the CiP/Suparboard schematics
I found an easy way of modifying the
buad rate in hardware. The modification
includes installing a switch so that the
operator can switch between 300 and 4800
baud, the 300 baud is still needed for
the cassette.

To install the modification follow these
steps: (SEE FIGURE #1)

1. Cut the trace going to US7 pin 2.

2. Solder a wire to US7 pin 2, solder
the other end of the wire to the common
terminal of the SPDT switch.

3. Solder a wire from the trace that
was cut to one pole on the switch.

4. Solder a wire from U30 pin 14 to the
other pole of the switch.

Se Mount switch on front panel at any
convenient location.

NOTEXx: the above modifiction should be
installed on the COMPONENT SIDE of
board.

us%

06660

uro ues *Tar eoooe |U30

DAVID A. TAJKOWSKI

For those owners of Series II CiP’s
that like watching mindless displays on
their screens, might I suggest one of
these two, the second of which makes my
eyes hurt.

A) 10 FORA=0TO25S5:FORB=53314T056999:
POKEB,A:NEXTB,A: GOTO10

B) 10 FORB=53314T0O56999:A=INT

{RND (B) x25%5) : POKEB, A: NEXT: GOTO10

I am not certain if they work the same
way on the old CiP.

HINTS ON
" v IADEO; SNAP "

I have a Superboard II series II and
am very impressed with the improvements.

The digital to analog converter is a
real potential superport. The 12 X 48
display is a fantastic improvement in
readability. I use it almost
exclusively for programming now that I
have converted =ome of my utilities to
this format.

I have been watching the Journal and
other publications for program or hints
on these features but to no avail. So
maybe I can get the ball rolling by
sharing some of my thoughts on the 12 X
48 display.

The 12 X 48 display is enabled by a
"Video Swap" program which 0SI supplies
with the CiP. The Series Il Superboard
is identical so I got a copy from my
dealer to use with the Superboard. It
comes as a BASIC program that loads in
the highest available memory a .
replacement for the video driver routine
in ROM. It’s hooked to BASIC via the
output vector at 538-539.

I soon discovered some difficulty
with this program, Firet of all it is
very volatile. Using the Break Key
returns to the normal 24 X 24 format and
seemingly looses the program. I soon

. discovered it writes over the output

vector and resetting this recovers it.
In an 8K machine you use

POKES38, 73: POKES39, 31. These must be
one one line because you can send your

CPU on a wild goosé chase if you have
only set one of the two values. If you
have other than 8K vyou can PEEK these
locations while in the 12 X 48 mode to
find the proper values.

My next dilemma concerned using this
with other machine code routines. 0sI
has made this a relocatable routine but
the BASIC program sets it by the highest
memory in youwr machine. QGuite a few of
my machine code routines were set here
also and I had to make & choice about
which to use. I Ffirst used a little
trick to get these programs both in. I
first checked with the machine routines
to see where they started. Next I used
the memory limit (BREAK C) to set high
memory before loading the "VIDEQO SWAR"
then loaded my second program. Kind of
a long process, but it worked.

L.O the next problem. It seems as if
a number of my routines also used the
same output vector. This is normally
set to $FF&69 and I found that these
programs were jumping to that address.
Since I had replaced the output vector
for the video swap I had to set these to

the Video Swap also. An indirect jump
via the output vector would be the best
way.

I still had the difficulty of loading
the swap after I had a program in. It
had to be in first. This I solved by

re-numntering the video swap with higher —

line numbers and removing the new
command. (In line 900 in the 08I
version.)

Now I could load it with & BASIC
program already in memory. However, it

used up quite & bit of free RAM this -

wWay. Then I converted it to machine
code load with the extended monitor (see
Journal Vol. 1 No. 5, page 8). I also
added the Following bit of code so it
comes up in the 12 X 48 format. With
this addition I can go to $0222 and
reset the pointers after a BREAK.

10 38SET POINTERS FOR VIDEQ SWAP

20 ;VALUES FOR TOP OF BK ($1F47)

30 x= 40222

40 Q222 A9 47 LDA #73 s LOW RYTE
S0 0224 8% 81 8TA 129 $STRING TOP
60 0226 85 85 8TA 133 tRAM LIMIT
70 0228 8D 1A 02 8TA 538 s QUTPUT

80 0228 A9 IF LDA #31 sHIGH RYTE
0 022D 85 82 8TA 130 1 STRING
100 022F 83 86 STA 134 s RAM

110 0231 8D 1B 02 8TA 539 s VECTOR

120 0234 A9 0OF LDA #1 1 8ET TO
130 0236 85 FE STA 201 ;12X48
SCREEN

140 0238 4C 47 1F JMP $1F47 ;VIDEQ SWAP

NOW. . ANYONE WITH SOME PROGRAMS FOR THE D
TO A CONVERTER? LET"S HEAR IT

R. SODERRECK, JACKSON MICHIGAN

Some time ago I found a VERY FAST
SCREEN CLEAR for the CiF, as follows:

10 A=PEEK (129) s B=PEEK (130)

FOKE129,0: POKE130, 212: 8$=" "3 FORS=1T07
20 SH=0$+8$+" "INEXT:FOKEL129,A:
FOKE130,B

I tried it on my CBF and it only cleared
part of the screen. I experimented with
the program and came up with the
following to clear the entire screen on
the C8P.

=1 REM: VERY FAST SCREEN CLEAR FOR THE
car

é REM:RY R. SODERBECK 3-25-82

10 A=PEEK (129) : B=FEEK (130) 1 X=0:2

Y=21b6: Z=21: 66=" "3 Te="

20 FOKEL129, X:POKE130,Y:FORK=1TOZ:
St=8%+TH+TE+TE NEXT

30 POKEL29,A:POKEL30, B

There are other combinations, but this
one works very good.

I was interested in Ffinding out how
this program worked and after some
experimenting, I came up with some
interesting results.

The screen memory, {for the C8F, is at
DOOO through D7FF and the color memory

~is at-EQO0-through-EZFF—Ifound— that —

the required POKE location in the screen
clear programg FPOKEL129,0:POKEL130,216
(HEX D800); is one address beyond the
last screen memory address of D7FF. The
equation of line 20 builds a series of
strings using the values of 8% and T$
(in this case, blank spaces) starting at
the "POKED address minus 1, and working
backwards.

To see how this works, use S$="X" and
TE="0" (for example) and very the value
of Z from 1 up. You may even change the
number of T$’s in the equation, however,
if any one loop through the for-next
loop creates a string longer than 286
characters, vyou get a "long string”
error. By changing the FOKE address,
the equation, and the values of 5% and
T$, vyou can put most anything, anywhere
on the screen.

This also works for the color memory.

However, I found that it works only for
color values of 0-9. After trying
various ideas, I found that the color
values can be represented by letters;
i=A, 2=B, 3=C,etc.

The following creates color patterns
demonstrating some of the possibilities
using this program. The variables used
are: Cé=colory X and Y=starting
locationy Z=number of FOR-NEXT loops;
L=number of lines; N=address increment
for start of next line; B=equationg
C=line length change; G=number of times
through delay loop between lines.

10 REM:COLOR DEMO BY R. SODERRBECK
3-25-82

100 POKES6832,5

105 X=0:Y=216:272=21;:8%=" "i1Té= "

" GOSUBSO000 .

110 Y=232:8%="R": Te="R" 1 GOSUERSO00

140 Cé="A"s X=212:Y=227:Z=8: L =12 N=-43:

B=13 C=0: B6=500

142 GOSUBRSOO

145 Ce="J": X=32:¥=2251Z=11l.=16:N=464:

B=23 C=1106=30

147 GOSUBRSOO :

150 CH="N": X=229:Y¥=229:Z=1:L=12:N=~632

B=2:C=186=300

152 GOSURS00

155 Ch="D":1 X=126:1Y=226:1Z=12: =6t N=—64:

B=13C=0316=700

157 GOSURSIO0O

160 Ch="H": X=182:Y¥=226:7=1:L=20:N=64642

B=2:C=1:6=10

162 BGOSURSOO

165 Ce="F":X=94:Y=231:7=7:1L=8:N=~&4:

B=13:C=036=200

167 GOSURSOO

170 Ce="L "1 X=142:Y=1281Z=4:L=12:N=44:

B=1:1C=03:6=100

172 GOSURSOO

190 GOTOL10S

500 FORA=1TOL

505 S¢=Ce: T$=Cé: Re=Cs

510 ONBBOSUBR10Q00, 2000

520 X1=X+N3Z=2+C

30 IFX1<OTHENGOTOS70

540 IFX1>2S55THENGOTOS60

550 X=X1:60T0S580

8560 X=X1-286:1Y=Y+1:60TOS580

570 X=X1+256:1Y=Y-1:60TOS80

580 FORF=1TOG:NEXTF,A

590 Se=" "jRe=" "gTe=" " L
T899 RETURN T

1000 POKEL29, X:POKEL130, Y:FORK=1TF0OZ: S#=

R&+T$INEXT: RETURN

2000 POKEL129,X:POKEL130,Y:FORK=1TOZ: 5=

S$+DE:NEXT s RETURN

5000 POKELI29,X:POKEL130,Y:FORK=1TOZ: S#=

SE+T+Th+TH: NEXT

5010 RETURN

WILLIAM ZAYDAK, ROCHESTER NEW YORK

Similar to Dave Broyhill’s idea about
a baud rate selector, vyou will see a
schematic for a circuit addition that I
made about a year ago on my SBII Series
II. It has been in use with the baud
mod on U3 that most people know about.
The addition came out of the sheer
frustration that came from debugging &K
programs. The idea was that in the SAVE
mode if I tapped off the different clock
rates available then I could scan
through the program LISTing or RUNs at
different speeds. It also allows me to
stmp LISTing and RUNs without having to
re-enter line numbers, or commands to
continue.

The output of the 74151 is selcted by
& bit pattern that is present at the
"151's select (ARC) inputs. To hold the
bit pattern present a 7475 latch was
used. It will latch when the latch
enable goes from H to L to H. The input
to the 78 can come from an encoder like
the one on the schematic or a set of
switches. The encoder only has to go up
to 73 notice the *151° pin 4 has no
connection on it. This is so that when

[-

the O (latch) key is pressed, the
multiplexer will switch to a null inputy
no clock pulses present-the display will
stop. The latch (0) key setup was opted
for over detecting a key closure (a 7430
connected onto the key lines with the
other 1/2 or the 7420 on its ocutput as
an invert and creating a latch pulse
with a 74123, This way accidently
pressing a key will not change the baud
rate. You must press the baud rate key
you want then press and let go of the
latch (0) key. As for the clock lines,
just trace from the chip pins listed to
a through hole. In my Ffinal version I
must admit to soldering onto the US9 and
Us0 pins from below with a 27W iron and
tinned wire. I mounted the 1517 on
perfboard, on the 600 board. The baud
rate keyboard and encoder connect to the

*181° with & S conductor cable. You
could wuse a DIN plug and make up a
header for when it is disconnected like
I did.

There is a CIP-MF in the lab where I
teach and I recently had the experience
of finding a data track eaten away. I

made the mod suggested by Ed Keating, it
is so simple and it works: why doesn™t
08I set it up that way? The option
should be to modify it so that the head
is always loaded, not the other way
around.

A statement that I have found useful
withthe CiP-MF is:
POKE?800,254; 7: ?: 7: FOKES800,64. It came
from taking Dave Sugar’s suggestion to
play round with those pokes he listed.
This statement will give vyou rather

~effective —screen Tlear and will space

simultaneous
linefeeds.

g 1426

ouput to a printer with 3

Keybonro

) .
Canpuctor
, AJQ»——— CABIE
[v
— '%7
;5€ A
\\k\\\\ [L‘ﬁfcﬂ """ (‘_Dlyﬂ‘l}:or‘l (‘.ﬁﬂ\oOE'
_[_T LEOD display)
= 8,:06“091“'0“’) Diﬁp‘hy
NO FOIL CUTS!
ON 600 BOARD: INPUTS:
—fc »] g NC
= & 1 U59 Pini2
N 2 U39 Piniy
| cm— < U Pin1l
grem— Ig\::——< L yb0o Pinis
SEEN T 5 U60 Pinl3
s 6 Ub0 Pin12
7 U60 Pin11
Output:

Q goes to J3; the Molex where the power

wires.go into the board. Disconnect what-
ever is on P8 Connect in Q from the 151,

MUSIC FOR THE CLF ET. AL.

by Gerald Artman

After trying to make more than the
sliding whistle sound listed in the CILF
manual (SBeries II), I have written the
following program to write and play
music through the noise port. For those
with Series CiFP's, you can buy
instructions on how to add the noise
port from Aardvark. Those with other
micros can refer to the May 81 edition
af "MICRO" for instructions on adding a
noise port. Basically, any mic with a
parallel port can use the routines.

The program produces a square wave
output. For those who are confused
already, square means that the sound
starts and stops abruptly rather than
rise and/or fall slowly. To produce
this sound you only have to toggle a
line on and off. A noise port produces
a very high pitch sound. This pitch can
not be altered. On the CIP it can be
played loud or soft, depending on what
value is sent to the port. To make a
range of notes, the computer must turn
off and on the sound at different
lengths of time. The result-a lower
note. Recause BASIC operates through an

interpreter it is usually too slow to
change the output significantly.
To make simple music you must use

machine language routines to divide up
the time and play the notes. Most 6502's
operate at a clock rate of 1000000
cycles per second. To produce a tone,
the frequency will be the result of the

time spent in a machine language each note will be requested. Each
routine dividad into the.clock ratey Fl—— —— grtvewTe numbered From 1-95, S8 Figare
= 10(6)/LOOFP TIME. The length of time #1. For rests use octave 3 note name O.

the note will be plavyed will be
dependent on the number of times the
loop is executed; N X LOOP/10(&).

Table #1 is a list of the frequencies
from middle C to B. To produc other
octaves of higher or lower notes just.
divide or multiply by two for each
octave. The following equation is used
to produce & note arguement FQ in the
range 0-25%5:

FQm (lgb/DESIggD FREQ.) - 45

The 45 accounts for the time used in the
operation of the loop. The loop is

expanded from the smallest possible, S
cycles, to 70, in order to produce low

notes. Figure #1
can be produced by this equation.

To alter the duration of
additional parameter
Music
each value.

note having a beat

tempos are 100 beats/minute for 4/4 time
The actual time

and 80 for JI/4 time.
duration for a note would be:

(BEAT VALUE) X 60
TEMPO

The number of times

can be reduced to the equation:
TIME ARGUEMENT = DU X FREQUENCY
This music program calculates

INSERT py =

arguements for each note and stores them
on tape.
storage or

each value is poked into memory

in memory

Rather that
strings,

directly
hex). The
located at #0230 to $02R2.
is not available on yow machine,
can be relocated.
change the
program.

program puts a
prints the peek
location wntil

input the program reads each value
pokes it directly intoc memory.
Provisions are made for
sections and adding them together.

for play or saving
use array

starting in the upper 4K

Do
To save a song on tape

value

When using the program,
appear. To input a series of notes,
first the tempo will be requested.

the beat value,

To exit the input section enter END
note name.

the note number to be changed. The edit
function will recalculate and replace
the information. As written the program

will handle about 1000 notes.
typed in that large a song,

entered five songs in a row.
relocating the storage area,
be added to other basic
provided there is enough
note uses three bytes.
needed
language routines
Look out Atari.

room.
All

LISTING 1

NOTE ARGUEMENT PASSING PROGRAM

STaART AT30274
NTON

0274
027

0274
0280
0282
0284
0286
0288
0284
0238C
0282
02930
0292
0293
0295

LDA #00
STa 3o
LDa #310
STA §°1

LDA #GFF
STA 3F2

LDY #00

LDa (3FO),Y
STa LF3

INY
LD4 (3FO),Y
$F4

STA
70),Y

(1o00p)

INY
LDA

(%
SNE 02

ZERO PAGE LOCATIONS: !FO0,%F1,53F2,4F3,uF4

; set zero page for indirect at $1000

store loudness in $F2

we

set y to zero for indirect address
get duration low arguement

store at {E3

increment for dumation high

get duration high and store

we we we we wo

increment for note arguement
get note
if not O then skip next step

we we we

shows the notes that

play,
must be computed.
is played according to tempo with

to execute a loop

machine language routines are
If this space

not forget to
calling address in the basic

header on the tape then
of each memory
the end of the table.

recording

a menu will

octave and note name for

To correct a mistake count to

I haven't
but I have

music can
programs

that
to play the music is the machine
and the note table.

B

$F2

#01 .
(out)

$0230

0297 ST4
0299 CMP
0293 BEy
029D JSR
0240 INY
0241 TYa
0242 CLC
0243 ADC
0245 STA
0247 BCC
0249 INC
0243 LDX
024D DEX
02AE BNE
0230 JMP
0233 RTS

NCTE:

we we wo we weo

$FO
$FO
02
§F2
#$FF

FD

(loop)(out)

“e we

CAN BE RELOCATED ANYWHERE

else turn off loudness for rest
see if end of song
if so return to program(basic)
else play the note
bump y and add to table base

waste some time to seperate notes

get next note
return to basic program

. MUST CHANGE ADDRESS AT Q29D

N}

TO HEW SUBROUTINE LOCATICN AND BASIC PROGR&M CALLING RCUTINSZ
(X=JSR(X)) BY POKEING NEW LO@4TION IN 11 and 12.

LISTING 1 con't.
FLAY SUBRGUTINE sSTaRD a7 0230

0230 1DX $F2 (start) ; get loudness. 00=rest ##= note
0232 S3TX $DFOC ; send to port
2235 TaX ; move frequency arguement to counter
0236 DEX (1oop) ; count down to zero
0237 OP LICP NCP KOF NCP ; add 30 states to loop. total time
0232 40P GOF HCE NCP NOF ; is 35 cycles
0241 0P NGCP NCP LCP NCP
0246 uNE (loop) ; if not O do over
n248 EQ 00 ; waste time to equal duraticn update
024A TEy CO
024¢ BEY CO
0244 BBy CO
0250 BEJ GO
0252 LDX #5306 ; turn off port
0254 STX $DFCO ,
0257 TAX ; move frequency arguement to counter
T 7T 0258 - PEBRE - - (loop2) - - j-ceunt equal time with port off
0259 NOP NCP NOP NOP NCP
0255 NCP NOP NOP NCP NOP
0263 0P NCP CP NOP 0P
0268 3NE (loop2) ; 1f not 0 do over
026A DEC 3§73 ; count down duration low arguement
0264 BHE (wait) ; if not O waste same amount of time for
026C ; high countdown
026+ DEC 3P4 ; count down duration high arguement
0279 MNE (st~rt) ; if not zero stmrt over
0272 TS ; else return
0273 By O (wait) ; waste time equal to duration high check
0275 Eq CO
0277 NE (start) ; low not zero, keep going
TASLE 1
iiiddle C 261,62 SN 1—
C#,Dflat 277.18 Fievae
D 293.66
D#, 2flat 311.13
. F|G|A|B|C
B 329.63 C|ID|E|F G»A,B C|D|E|F|G|A|B|C D,E FIG|A|B|C|D|E ‘]
RN 11] |
T 349.23 EEEEEEEEREEER NEEEE NER
L REAE
#,6flat 369.99 EREEEE % ; LI LI nlelo/el=
. BERRRRR.:E Shoter™e; et
G 391.99 | =.| | : : : :i‘ﬁ‘ﬂtﬂiﬂ lc%D eiF G:A BCDEFGABC
 G#,aflat 415.30 lalol el el G[AB
’ O L elnieiei=iS S
440 O 1 +—+—T—TT
— oe 40) 4) 1 1 1 1 31 1
A#,Bflat 466.16 sT® oL
Cc
493,88 9

INSTALLATION OF C1E by E. Cohoon
There must be at least three (3)
versions of the monitor rom from 0SI.
In my Superboard I had an EPROM labeled

B2758 which is an Intel % volt 8K

device. I chased around in circles for a
short time until I verified that fact.
After that it was a very short hop to

changing W8 from ground to
splices, cuts, etc.
as diagramed below:

AlO. No
needed. Just change

024

LDWVl

c o
, "

ui3
Men. to

A hint when working with the pads. I
placed the point of my solder iron under
the Jjumper loop. After the solder
melted I just lifted up. Came out with
no problems. I then cleaned the holes
with solder wick. I took the pins out
of an Augat IC socket I had and
soldered them into the pads.

No.

22

wire worked just find in them for
readily changeable jumpers.g The pins
look as Ffollows 4X: & A little
scrounging around should® turn up

suitable substitutes.

The cursor functions are great in the
CilE. Almost as good as the HP-85.
Unforutnately, that is all I have been
able to use so far.

NOTEX*% In reference to the FARALLEL
PRINTER Interface article in the Dec.
1981 Journal, we didn’t realize that

Australian dollars are worth a bit more
than yours, so we are now updating you
with current prices in Aus. and U.S.
currency, also it is now avail.
assembled and tested, either with a wire
wrap plug (straight in the ACIA socket)
or using a ribbon cable.

PARALLEL PRINTER INTERFACE PRICES
UNDRILLED PCB.vus...$4~50 $5.95 U.S.
DRILLED PCBuveuwewss . $5-60 %7.16

ASSBLD AND TESTED...$39-95
(WIRE WRAP PLUG)

ASSBLD AND TESTED...$37-95
24 WAY CABLE W/DIL

$44,95

$42.50

PLUGES (8 INCH)......%11-95 $12.95

ADD %2 TO ALL PRICES FOR FDST. AND
PACKING.

WRITE: GEQOFF COHEN, 72 SFOFFORTH ST.,

HOLT, A.C.T. 2615,

AUBSTRALIA

JOHN C.

SCHERR, VIRGINIA

I have just installed the Disk Switch
which I purchased from Aardvark. The
switch works as advertised by turning
off the drive motor when not needed.
The kit took me about 2 hours to wire
and I had no trouble with the assembly.

I did have trouble when using your

Fantastic Copy. The motor would never
come on. To fix this I added a DPST
switch which reconnect the foil cuts at
E and I.

RON BATTLE, BOZEMAN, MT

In the October 1981 Aardvark Jouwrnal,

Thomas Owen of Miami Florida offers a
fix for disk when a ClP has been
modified to operate at 2 Mhz. His
circuit will work but is not needed
because a 125 Khz signal is already
available on the &10 board. Pin 11
(eleven) of chip U122 outputs 125 Khz
when the input clock is 2 Mhz (0(2)).
081 even provides a jumper pad for this
fix. Just cut the original jumper and

install a new jumper wire as per diagram
#1. Diagram #2 illustrates the actual
frequencies coming from chip U12 when
the C1P is running at 2 Mhz. I wge CIF
owners to purchase the Sams service
manual, my source of information.

(IN)

o

o _wm.d_(talg ’D) ,_W,wgg_g,ﬁhmiw,f L Lo
Pva—fo "y i};; Coonter. 12 1—- | Mz
Counter N3 mycqa 9 f———e500kiz
41592 2 8 250 kuz

10

Dingaam L (Glo Ba)

A. MOSSBERG, FLORIDA
If you’ve messed up & program,

particularly one that POKEs alot to low
memory, you can recover the program by
hitting BREAK (M), .A274, and list the
program. Or if there is garbage after a
few lines, notice what line number was
last listed, re-enter BASIC again by
jumping to A274 through the monitor.
Type the line number to erase it,
the screen
through A274.
appears

if

Type list, if the program
correct save to tape and cold
start. If the program still has garbage
repeat steps to remove it. Mix yourself
a drink and be glad you didn"t lose all

that worlk,

Lg 3 It f——— |25 Kh2
ouT lo 5
(b '

+5Y

qoes crazy go back to BASIC

BAUD 110

A FEW TIPS FOR €18 ROM DWNERS
by Tom Warfel, Ohio

If you have the new Aardvark ROMs and
want to add the bell, but don’t have a
7417, take heart, vyou don’t need it.
Connect the speaker and resistor to
where pins 13 and 14 of Ué8 would be. I
would suggest adding a switch as
somtimes you may not want the bell. I
mounted the speaker behind the keyboard
with epoxy.

Puo 14 UG8 UG8 Keybonro
gooooog
FrElee

Pwi3 V6B ﬁElD iﬁﬁ

o

If vyou have the Bemi-intelligent
Terminal program and would like to use
the new screen drivers, add:

25 POKESG32, 238: POKESLIZ, 255

Also if vyou're considering adding the
Video Mod 11, fig. 3, U29 should be
marked U44. (74L5143)

INTERFACING THE 502 BD (C4P) TO THE MX-80
by J. Coyle, Pennsylvania

Instead of populating vyour Challenger
for RB232 and investing in the Epson
R8232 Interface I suggest tieing the
existing TTL Serial Input of the Epson
to the 502 board.

m ER
i — e, "’”' '1 “—3N
g 21———41?7 —~« 5 ¢
w z‘ 3bm?e& ¢ ¢ Eq
MX80 Inside TB m}g‘(
SERIAL INPUT "

Also jumper MXB0 TB Pins 5, 15, and 21
to Pin 24 for 300 baud. Pin 21 is to
enable Serial Input. Pins 3, 5, 17 and
18 vary baud rate. Pin 24 is ground.

PIN
17

\n

75

134.5
150
200
300

~_600
1200

] e) e e

o [l (o [[(ol [l
i) e e e
))) e e e

1"

RE-LINE DELETE FOR 0865D
by A. Jansen, 5. Australia

We have discovered that by printing
line numbers to memory and then using
the indirect file to bring them back
into the workspace an intelligent LINE
DELETE results. For example:

POKE?S54, 120: POKE9?368, 120: REM SET
INDIRECT FILE (80 FOR 24K)
POKE9105, 01 POKE?106, 120:REM SET MEM
OUTPUT TO SAME PLACE
FORL=2001TO32018TEP10: PRINTH#S, L:
NEXT: 7#5, "OK" '

Print line #°s 2001 to 3201 in steps of
10 to mem. The "0K" is a dummy to cause
a ’SN ERROR' otherwise garbage will be
printed to the workspace. The (CTRL X)
to read these #°s back to the workspace
and they are deleted from your program!
You must then (SHIFT M) as usual to
reset the indirect file. VYou must also
reset the memory pointers if you want to
repeat. Using this, any block of lines
vyou can specify can be deleted at will.
We normally write programs with line
#'e ending in 10, then make corrections
on even lines, reserving odd lines for
diagnostic prints etc. This delete then
allows us to remove the prints and any
other gargabe without affecting the
program.

SAVING SPACE USING INTEGER VARIABLES
by P.E. McQueen, Indiana

Ever wonder why some variables in some
of the 08I utility programs use a "%4"
sign at the end? Although the 081
documentation doesn’t mention it (among
many other exceptions) it is part of the
0sI BASIC.

The "%4" s=ign indicates that the
variable is an integer variable and as
such requires less space to store each
separate occurrance such as in an array.

While a standard numeric variable
requires five (s) bytes to store each
separately defined occurrance, the
numeric integer variable can be stored
in two bytes. I was going to provide a
copy of a short program to illustrate
this but half the fun of workin with
micros is to try things out for vourself
and not having to be led down the
primrose path every time. A few hints
for those who may just be discovering.
what variables are. The use of the DIM
statement and the FRE(X) command will
help in illustrating the problem.

The numberic variables (such as
Ha¥Ysisso0tc.) use five bytes to store
any value (including floating point) up
to a maximum of nine significant
figures. The values are actually stored
in BCD and it would appear that 10
digits could be stored in the five
available bytes but the other half byte
is used to store the sign (+ or =) of
the value. The storage of the numeric
integers is in binary format and is

limited to a maximum value of 32K
bytes). Since there are 16 bite in the
two byte storage area it would appear
that values to 64K could be stored but
again one of the bits is used for the
sign so only 15 bits are available to
store the value. Also, by definition,
integer wvariables are not floating

point and wvalues in excess of 32K will
cause & data error. One limitation.

These variables will not work in a FOR
NEXT loop. For three bytes gain, it
probably does not seem to be worth the
effort to use the integer variables but
in large arrays the bytes add up in a
hurry.

The article above concerns the use of

integer variables to reduce program size
where applicable. Considerable space
can be saved if arrays can be
constructed with integer data instead of
decimal data. The following listing is &
short program that displays a figure of
a man that is very important in the
historical development of our country.
To achieve the desired effect, the
display must be done in B & W. It also
is the basic technique to display any
figure that can be defined in varying
shades of grey.

2 FORI=1TO32:PRINT:NEXT
S FOKES6832,4:REM TURN COLOR ON 32
_CHARALTERS.
7 L=64=DIMX(19) Z(19)
10 INPUT"INFUT BACVGRDUND (99=END) "3 J
14 IFJ=99THENPOKES&832, 1: END
15 8T=07344
30 FORI=STTOST+2048
40 FOKEI,J
S0 NEXTI
60 INPUT"SATISFIED"; Y#: IFLEFTE(Y®H, 1) <> -
"Y"THEN1O
65 FORI=1TO32:PRINT:NEXT
70 D=8T+&+6%L
80 FORJ=1TO19:READX (J) , Z (J) e NEXTJ
90 FORJ=1TO019
100 D=D+64
110 GOSUBRSQOO
120 NEXTJ
3500 I=PEEK(37100): IFI=PEEK (37100)
THEN3S00
4000 RESTORE:GOTO10
S000 FORI=D+X (J)TAD+Z(J)
5010 READB:POKEI,S
S020 NEXTI
S030 RETURN

10050 DATARL,8,4,9,3, 10,2, 10.&.11 2,11, 1.'

11,1,11,1, 11 2 10 2,10

10060 DATAi 10 1 10 1,10, 1 10,1,10,1, 12.,,

1,12,1,12

10100 DATALS,2,3

10200 DATA3,14,14,14,14,14

10300 DATALS,14,15,3,14,14,14,14
10400 DATA1S,14,2,7,7,3,15,14,14
10500 DATA14,14,15,3,3,3,3,15,15,2
10600 DATA14,14,2,15,3,3,3,3,3,14
10700 DATALS,14,14,2,15,2,14,15,15,14,
14 .

(32768

12°

‘calculations and making

Cout this

10800 DATALS,3,2,2,3,15,14,3,2,14,15.
10900 DATA3,15,%,2,3,3,3,7,3,15,3

11000 DATA15,3,2,15,3,3,15,15,2

11100 DATAS,2,2,2,15,15,3,14,2

11200 DATA3,3,15,2,14,2,2,15,14,2

11300 DATA3, 3,15,2,14,2,2,15,14,2

11400 DATA3,3,2,3,14,14,14,14,14,15
11500 DATAZ,2,2,2,7,15,2,15,15,15

11600 DATA14,14,14,14,14,14,14,2,15,14
:1700 DATA14,14,14,14,14,14,14,14,14,14,
4,14 -

11800 DATA14,14,14,14,14,15,15,14,14,14,
14,14

11900 DATA14,14,14,14,14,14,7,7,7,14,14,
14 o

CLUTTER for OSI

immediate mode
a few mistakes,

After doing some

I was faced with an . all-too-familiar
problem: the screen was cluttered with
"k s", error messages, and blank lines.

I had one key screen clear available,
but there was valuable information on
the screen that I didn’t want erased.

The "CLUTTER" program solves this
CiP-C4P dilemma. It erases blank line,
OK’s, and error messages, and transfers
the remaining lines to the bottom of the
screen. It can be set up as a USR

routine with POKELl1l, 34:PU¥EL¢.L. Call

T T T rTatter by tYping XY o put

X~USR(X) in line zero and call the
Clutter program with & RUN command.

higher line numbers will not be executed

because Clutter exits to the immediate
mode.

Clutter has two pnantersz atart-8T,
and poke - pnznt—PP. The start point is
moved up the screen, line by line. The
start of each line is examined to see if
the line should be arased or not., If the
line contains character strings
identical to those stored in Clutter’s
data table (TBL), the line is erased.
If the line is to be saved, it is stored
in the location pointed to by FF. When
Clutter is done, it prints an %A4
graphics character (white block) and
jumps to the immediate mode.

By adding to the tihle at the end of
the program, you can expand Clutter’s
repertoire of lines to be erased. There
‘must be a null (0) after every entry and
a double null at the end of the table.
By changing BNE DECST (near the start of
the program) to NOP NOP and LDA #%62 (in
the DONE routine) to RTS, it’s possible
to selectively erase and/or pack screen
lines in a running BASIC program.

For users with non—-standard screen
formats, LEN should be set to the number
of characters per line that your screen
displays. One last word: before trying
program, make sure you have it
copied correctly! I had many a systems
crash when incorrectly designed versions
of Clutter ran amok in RAM.

10

20

30

40

30

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360

0000
0000
0000
0000
0000
0222
0222
0222
0224
0226
0228
0224
022C
022E
0230
0230
0232
0234
0235
0236
0239
023K
0230
023F
0240
0243
0245
0248
0244
024A
024C
024E
024F
0251
0253
0254

370 0256

380
390
400
410
420
430
440
450
460
470
480
490
500
320
530
540
350
560
570
580
590
600
610
620
630
640
650
660
670
680
680

0257
0259
0259
025A
025C
025E
0260
0262
0264
0264
0265
0267
0269
026K
o260
0260
026F
0271
0273
0275
0278
0278
0274
027C
027E
027F
0281
0283
0283
0283
0284

A945
8545
8547
AYD3
8546
8348
0034

AZFF
AOFF
E8

c8
BLB302
FO3n
[145
FOFS
ES8
BRIB302
BOFA
ROB402
DoES

A018
B145
AA
A920
9145
8n

9147
88 .

10F3

38

AS47
E920
8547
E0OZ2
C648

38

AS4S5
E920
8545

Cé46

AS46
cono
BORI
A962
4C78A2

A018
A920
9145
88

10F K
30E1

20

20

sCLUTTER FOR 0SI

LINE=%$20 i$40 IF C2/4
LEN=%18 i$40 IF C2/4
8T=%43
FP=%47
X=$0222

¥
LIA #4665 i¥640 IF C2/4
874 ST $SET STARTs FPOKE FOINT
STA FF
LA #$03 P¥sL7 IF C2/4
8TA ST+l
5TA FP+1
BNE DECST FBRANCH ALUWAYS

¥

CKLIN LIX #%FF

co LIY #$FF

Ci INX
INY
LIA TBL#X
HKEQ ERASE FIF NULLs ERASE LINE
CMF (ST)sY iCOMFARE CHAR., T0O SCREEN
BEG Ci sLOOF IF A MATCH

cz2 INX
LOA TEBLsX $GET NEXT Tkl CHAR.
BNE C2 sLOOF IF <= 0
LA TBRL+1sX SOOUBLE NULLT?
ENE CO FNOs NEXT TERL ENTRY

y .

FRLIN LIY #LEN sLINE LENGTH OF SCREEN
LDA (ST)sY sGET CHAR TO BE MOVED
TAX $SAVE CHARACTER
LI #$20 FERASE OLD CHARACTER
STA (STisY
TXA FRESTORE CHARACTER
STA (FF)sY FFRINT AT NEW LOCATION
LEY . e :
BFL PRLIN+Z2

1

LDECFF SEC FFOKE FOINT UF 1 LINE
Loa PP
SRC #LINE
STA FF
RCS DECST
DEC PR+l

y

LECST SEC FSTART UF 1 LINE
LoA 8T
SEC #LINE
5TA ST

X LEC ST+1

y

LIONE LIA 8T+L 38T <$0000 IF DONE
CMF #$00
BCS CKLIN
LIA #$62 sFOINT MESS. AT $Al162
JMF $AZ78 iTO WARM START

¥

ERASE LDY #LEN FERASE A LINE
LOA #$20
STA (STisY
DEY
BFL ERASE+4 SLOOF IF NOT DLONE
EMI DECST ;G0 TO DECST 1IF DONE

s

TERL

+BYTE $205$205%$205%$2050

+BYTE “2/50s/0K »0y’ LIST’ 5050

COQLOLIMOD UM GTOD
N OMOGT O TTININCO
NONTGIP RO S O~
OO OWWOE W O~
CICd CI IO IO N O NN
SOOCOCOOOO OO OOO
COOOOCOOCOOOOOO0
DOV
VY VCOVIVVWOV VOV VOL

THOMAS W. KELLAR, OHIO

This program is written for those
rare systems with the English ROM and
27K or more memory and an MX~-80 printer.
It is & screen editor that puts about
three pages—single spaced-into memory
and allows you to edit it. It also does
underlining, but that is just an added
gimic. The program follows none of your
rules for REMs, indeed it has none of
those things. However, it is free, and
my rules suit me.

The conventions for it are:

All keys initiated by holding down CTRL
simultaneocusly.

i wait until second keystroke and put
that up on the screen-used to
implement control keys as data

=] output the RAM buffers to the

printer

2z delete character on screen and fill
right hand side with non printing
nulls

¢ don't use this as this is the
standard CTRL/C to stop the program

n display the previous page of memory
and update the current one

p display the previous page

d move cursor nondestructively down
the screen

U same as d but up

1 same as w but left

r same as 1 but right-1 and r wrap the
cursor around the screen

(RURBOUT is the same as the CTRL/]

secuence)

¥ non working function that is
supposed to insert a line of text

b starting and ending marker for
underlining of text

v display the non printing nulls on
the screen—-as opposed to printable
blanks

(CTRL/v will annihilate the underline

characters.)

I thought about implementing the real
time clock to give the thing a blinking
cursor, but then decided nah. The non
printing nulls are binary two’s and are
put on the screen as 96&6 as opposed to
blanks which are 2.The program stores
about 13 screens worth of data in memor
and could easily be modified to use all
of 32K memory. A RETURN is necessary to
terminate print lines, but typing
auvtomatically wraps around the screen so
there is not really any "word wrap". So
about every three screen lines I hit the
RETURN-the print logic generates the
Line Feeds so only the RETURN is
necessary. The underlines are generated
by counting characters and doing a
RETURN then printing blanks then
printing underscores to generate the
underlines. Oh, yes the CTRL/V is turned
off by typing & second character.

1 A=0:R=033:M=0: B=6000: Q=03 I=0: J=0sM=0: F=5761 N=0: 0=1: FRINTCHR® (2&) 3
2 FORI=RTOB+8200: FOFEI , 26:FRINTI;CHR$ (173) 3 s NEXTI : V=243 8=53412s T=132

I U=20:E=0:BATOLO:REM . TWE EDITOR VE.8 7 -Septembaer 1981 — o o

7 FORJ=ETOU: FORI=ETOU: A=8+I+TXJ: FOKEA, &: NEXTI:NEXTJ: RETURN

10 FRINT"O
11 A=8:ZI=AQ

Fage"sCHR$ (13) 53

BOSUERT FORELL, 0:POKELR, 2873

2 I=FEEF (AY : FOKEA, 60: M=USR (M) : M=FEEK (R) : IFM=260RM=920RM=VTHEN&OO
1% IFM=40RM=210RM=180RM=120RM=95THENZ0

14 IFM=140RM=1350RM=16THEN4O
15 IFM=22THENFOEEA, I: GOSURBOO:

16 POEEA,M: IFM= 1ZTHENZ=Z+T: A=Z: GOTO12

17 A=A+0: IFAFZHUTHENZ=Z+T: A=Z: GOTO12

18 BOTOlE
20 IFM 4THENZE

21 FDFEH.I A=A+Ts Z=Z+T: IFA*M4179THENA A-T: Z=Z-T: GOTO12

22 60TOo12
23 IFM 21 THENZS

24 FOEEA, I:A=A-T: Z =7-Ts IFACSTHENA=A+T: Z=Z+T: GOTOL12

25 GOTO1Z
26 IFM<»18THENZ?

27 FOEEA, It A=A+0: IFAXZ+2ITHENA=Z; GOTO12

28 6OTOL1Z

29
30
40
41
42
47

44

45
46
47
48
4%

FOEEA, I A=A-0: IFACZTHENA=Z+: GOTO12

GOTO1Z

IFM< = 14THEN4S

FOREA, 13 Z=T:Q=0+0: IFQ>1ZTHENG=(-0: GOTO11

FORJ=ETOU: FORI=ETOU: A=S+1+ZXJ: N=FEEK (A) : M=FEEFK (B+QXF+I+J%\V)
FOEEBR+ (Q—0) ¥F+I+I%V, N: FOREA, M: NEXTI: NEXTJ: A=6: Z=A
FRINTG; CHR® (173) 3 : G0TOL2

IFM 2L 6THENSOO

Z=T: FOREA, I:0=0-0: IFQ<ETHENR=0+0: GOTO11

FORJ=ETOU: FORI=ETOU: A=8+I+Z%J: N=PEEK (A) : M=FPEEK (B+QXF+I+VxI)
FOREN, M: POEER+ (Q+0) ¥F+I+JI%V, N NEXTI s NEXTJ: A=81 Z=A

FRINTG; CHR$ (173) 3 : 6B0TOL2

HOO G0 H=0: FOKEA, 1:M=0: PRINTCHRS (26)
501 DR=0: INPFUT"Line apacing" s I: IFIF20RICITHENSOL
a1

O PRINTYESC TO START": IFI=2THENDR=-1

; IFFFLF(A7088) < FR222THENDIO

s FRINT: FRINT: FRINT: PRINT: FRINT;

FORI=0TOLZ: FORI=0TO23: FORK=0TOZ3

CER (B TRFHEATRV) TFL=STHENFORES L7, 0 FRINTCHRS (26) 3 1 GOTOL10

14

»

580 IFL< *96THENGOSUBS10: C=C+1

8581 IFL=13THENFRINTCHR® (1€) 5 : NL&=NL+1: C=0: IFNL=56THENGOSUR7 QO
58% IFDB=—1THENIFL=13THENFRINTCHRS$ (10) ; : NL=NL+1: IFNL >*S6THENGOSUR700

584 IFL=2ANDG< *1THENG=1:G60TOS20

585 IFG=1ANDL< >2ANDL< »9&6THENH=H+1: GOTOS?0

586 IFG=1ANDL=2THENGOSURFOO: G=0:H=0

520 NEXTE:NEXTI:NEXTI:PRINTCHR® (140) :FOKES17, 0: PRINTCHRS (26) 3 : GOTO10

&OO IFML 226 THENSGSO

605 FORN=ATOZ+U: J=PEEK (N+0) : FOEEN, J: NEXT: FOKEZ+U, 26: GOTO12

&50 IFMC9THEN7SO
651 M=USR (M) : M=FEEK (R) : GOTO16

700 NL=0:FPRINTCHR$ (140) 3 : FRINT: PRINT: FRINT: PRINT: PRINT; : RETURN
750 POKEA, I:FORJ=B+14X576-UTO(Q+0) ¥F+RSTEP-V: FORI=ETOV: P=PEEK (J+1)
752 FOHEJ+I+V,F:NEXTI:PRINTJI;CHR® (13) 3 :NEXTJ

753 FORJ=54148T054148+U: P=FPEEK (J) : FOEE (Q+0) XF+R,F:NEXTJ

7596 PRINTQ" Y3;CHR$(13)3;:607T012

800 FORJ=ETOU: FORI=ETOU: M=8+1+T%J: IFFEEF (M) =926 THENFOKEM, 3

802 NEXTI:NEXTJ: I=USR(I)

804 FORJ=ETOU: FORI=ETOU: M=8+I+TxJ: IFFEEK (M) =2THENFOKEM, 96

806 NEXTI:NEXTJ:RETURN

P00 C=C-2:PRINTCHRS (13) 3 : FORA=1TOC~H: PRINTCHR® (32) 3 : NEXTA

P02 FORA=1TOH: FRINTCHR® (95) 5 : NEXTA: RETURN
210 A=L:M=FEEK (6£1440) : IF (MAND1) =0THEN?10

215 FOKE&1441, A:RETURN
Ok

CORRECTION TO ALIEN RAIN
by Nelson Van Elderen, Michigan

The following is a list of lines to add
or change in Billy D. Smith’s ALIEN RAIN
program to add sound to it. (Aardvark
Journal Vol. 2, No. 5, Page 15.) I
encountered one problem while working on
this. Every time I tried to Add or
Change a line, line 170 would scramble
itself. Separating line 170 into two
separate lines seemed to fix the
problem. I say seemed to because I have

absolutely. no idea . why the. problem

would occur in the first place, nor why
gplitting the line into two lines would
fix it. I also wonder if this would be
a problem unique to my system (C2/4F
w/8K), a bad memory chip somewhere, or
if it is @& problem other have run
aCCross. .

Also, I don"t know if this the best
or most efficient way of adding sound to
a program, but with limited resources I
had (08I's Manuals) it was the best I
could come up with.

TO ADD ARCADE TYPE SOUND TO "ALIEN RAIN"
cap

ADD -~ CHANGE FOLLOWING LINES:

& Q=57089: POKEQ, 11 POKES6832, 21 I=1

45 POKEMP, Ui MP=MP-Vi IFPEEK (MP) =UTHEN
POKEMP, F1 POKE®, 1501 POKE®, 1: 60T04%

56 FORX=100T0150: POKER, X: POKEQ, 1

95 IFPM=TGTHENSC=8C+40:DB(CY)=~1}
FORX=75T01501 POKER, X: NEXT1 POKE®, I

96 GOTO120

136 FORX=0TOS0:1 POKER, X1 POKER, X+503
NEXT:POKEQ, I

172 FORX=1T08:FORY=150TO2008TEPS:
POKER, YsNEXTY1 POKER, I3 NEXTX1POKER, I
191 FORX=1S0TD200: POKER, X1 NEXT: POKER, I
206 FORX=1TO8:FORY=150TO2008TEPS:
POKER, Ys NEXTY1 POKEQ, I s NEXTX: POKER, I
342 IFPP<128THENV=64;BA=535731L=5; R=3
351 FORX=1TO3:1FORY=150T02101 POKER, Y:
POKE®, Y=201 NEXTY 1 NEXTX

352 POKEQ, I

445 FORX=S50T0200:POKER, Xs NEXT

446 FORX=1T020:FORY=10TO2008TEP10:
POKER, Y1 NEXTY1NEXTX: POKEQ, I

447 PRINT:PRINT:PRINTIPRINT"TOTAL -«
SCORE ="8C

ROBERT VAN SINGEL, 3 RIVERS, MICHIGAN

10 INPUT"WHAT DO YOU WANT THE BUNNY TO
SAY"; A%

20 A=LEN(A$)1IFA>10THENDIMR (A~1)

30 FORI=OTOA-11B$=MIDS (A%, 1+I,1):
B(I)=ASC (B%) s NEXT

40 INPUT"OUTPUT ON PRINTER OR TERMINAL
(P/T)"3A%

50 IFA®<>"P"THENZ=10:B0OTO70
60 DISK!"I0 ,01"3Zm1s

70 GOSUB140

80 PRINT. = .. - -__ -

?0 READX: IFX<OTHENBO

100 IFX>128THEN130

110 PRINTTAB(X+Z) 31 READY1FORI=XTOY}
J=T~-AKINT (I/A)

120 PRINTCHR$ (B(J))31 NEXT1B0TOF0

130 GOSUE140:G0TO290

140 FORI=1TO&:PRINTCHR®(10) 3 sNEXTs
RETURN

150 DATA1,2,-1,0,2,45,%0,~1,0,5,43,
52,-1,0,7,41,52,~1

160 DATAL1,9,37,50,-1,2,11,346,50,~1,
3,13,34,49,~1,4,14,32,48,~1

170 DATAS,15,31,47,-1,6,16,30,45,~1,
7,17,29,44,-1,8,19,28,43,~1

180 DATA9,20,27,41,-1,10,21,26,40,~1,
11,22,25,38,-1,12,22,24,36,~1

190 DATA13,34,-1,14,33,-1,15,31,~1,17,
29,~1,18,27,~1

200 DATA19,26,-1,16,28,-1,13,30,~1,11,
31,-1,10,32,~1

210 DATAB,33,-1,7,34,-1,6,13,16,34,~1,
5,12,16,35,~1 '

220 DATA4,12,16,35,~1,3,12,15,35,~1,2,
35,-1,1,35,~1 .
230 DATA2,34,-1,3,34,-1,4,33,-1,6,33,
-1,10,32,34,34,~1

240 DATA14,17,19,25,28,31,3%,35,~-1,15,
19,23,30, 36,36, ~1

250 DATA14,18,21,21,24,30,37,37,-1,13,
18,23,29,33,38,~1

260 DATAIZ, 29’ 31933’ "1_. 11] 13, 17, 17, 19,
19,22,22,24,31,~1

2:0 DATA10,11,17,18,22,22,24,24,29,29,
280 DATAZ2,23,26,29,-1,27,29,~1,28,29,
-1,4096

290 IFA$="T"THENEND

300 PRINTCHR$(27):CHR$(70)1 DISK!"IO
L, 02" 3 END

CORRECTION FOR YACHT RACE

by John Sakamoto, California
The following corrections were made to
the "Yacht Race" program that was
published in the February 1982 (Vol. 2,
No. &) issue of the Aardvark Journal.

101 FOKEMA-1,645: POKEMB+32, 661
POMEMC+1, 67 POKEMD-32, 68

537 IFAM&="N"THENAM=~MN (3)
607 IFBM$="N"THENBM=~MN (%)
704 IFCM$="N"THENCM=-MN (3)

WARD HORNER, MARYLAND

I own a CIP modified to run at 2 Mhz
and have a passion for programming
realtime games. I program both in BASIC
and machine code and enjoy designing
interesting graphics routines.

I am amazed at the number of
unrealistic explosion routines I have
seen. Most of these routines bear only
a vague resemblance to an explosion and
they don’t even begin to explore the
vast possibilities of 0SI graphics.

With this in mind, I have written an
explosion routine from my latest game
(which is called HITMAN). I modified it
to run on C2/4 machines and added a
control loop. It was designed to run on
a 2 Mhz machine, but it still looks
pretty good at 1 Mhz. To start
explosion, press shift.

The graphics in this routine may be
easily changed by modifying line 1000
and changing SE (size of explosion) in
line 20, to the number of characters in
your modified explosion. Also, try
incrementing TE (type of explosion) in
line 20 for some interesting effects.

In HITMAN, I set TE=2. This setting
leaves a few dots behind, as you will

see, but if you use dots for background.

stars or make the last two characters in
the explosion blanks it won't matter.

10 FORI=1TO3Q:PRINT:NEXT

20 SE=14: TE=0: T2=32: DIME(SE) :
FORI=1TOSE: READE (I) : NEXT

40 CT=53775:A=31:R=32:C=331 NL=254

60 IFPEEK (57088) »128THEN100

80 CT=54238:A=63:1B=64:C=65: NL=1

100 RW=INT(9%RND(8)~4):CL=INT (9XRND (8)
=4) : M=CT+RW+CLXE: POKEM, 241

120 IFPEEK (57100)=NLTHEN120

199 REM explosion routine

200 FORI=1TOS:FORJ=16TO32: POKEM, J1
FORK=1TO3:NEXTK,J, I

220 FORI=1TOSE

240 POKEM+AXILE(I):POKEM-AXI,ECI):
POKEM+CXI,E(I) : POKEM~CXI,E(I)

260 POKEM~I,E(I):POKEM+I, E(I):
POKEM+BXI,E(I) t FOKEM=~BXI,E(I): J=1~TE
280 POKEM+AXJ, T2: POKEM-AXJ, T2: POKE
M+C%J, T2: POKEM~CxJ, T2

300 POKEM-J, T2: POKEM+J, T2: POKE

M+BXJ, T2: POKEM~BXJ, T2: NEXT

SO0 GOTOLO0

1000 DATAL1B2,13,214,4,60,43,199,
198,127,47,44,44,44,46

NOTE: If vyou set TE=Z and don’t want to
leave dots behind, add *to the end of
line 1000 ",32,32" and make SE in line
20 equal to 1é.

16

A LITTLE NOTE FROM CHRIS DAVIES

You would think that 1living in New
Zealand would put us right out of the
computer scene, this is NOT true.

Although a Superboard here costs over NZ
$600 there are quite &a few people with
08I machines and we even have our own
08I users group here in Christchurch.
(Note: how do we get official
recagnition?)

I have an 8K Superboard II and am
very pleased with it. Incidentally my
board was bought in the States for U.S8.
$279.00., (A considerable saving).
Upgrading to a C4PMF is a distinc
possiblity because the 8K of the
Superboard just is not suwfficient! Well
that’s about all I have to say.

I Just thought I°d right and let youw

know that even we Kiwis have computers
and also that New Zealand is not an
Aussie state (as some people seem to

think. Have & good look at a world map
sometime you might even find us!)
Having encountered tips in your journal

and from our group has made programming
a relative breeze after working on a
Digital machine for four years. I
follow your Journal with much interest.

CORRECTION by Alan Falkenstein

I have finally solved the Death Ship
adventure game. (After about 30 hours of
work). 1 enjoyed it throughly. It
certainly was a well written game. I
find-it-truly amazing-that yvou were ahle

to do it within 8K of memory. I have
made a few changes that you may wish to
use.

1) B8TRING BUG FIX: change DIM (line 11Q)
of D% from 18 to 20. In line 120, insert
Q9=FRE(X) in front of the prints.
(reference: page 28 of Ed Carlson’s "All
About 08I Microsoft Rasic In ROM)

2) DOOR IN CAFPTAINS CABRIN: After
entering the Cabin, there are no exits
and no door. I chose to change the 2nd
12 in line 740 to a 14.

3) ROPE TIED TO RAIL?: After you get the
water in the bucket, you’ll observe that
the rope is tied to "BU" if you go to
the MIDSHIP DECK. I can’t explain why,
but I changed lines 1400~-143Q0:

1400 PRINT"TO WHAT":GOSURL1690:B0TO1420
1410 0% (8)="ROPE TIED TO RAIL":L(2)=l:

GOTO120 '
1420 IF (A$="8T"ORA%H="RA") ANDL=6ANDL. (2) =0
THENF2=1:160T01410

1430 FRINT"NOT THERE, STURID":G60T0120

A FEW CHANGES IN *BREAKTHRU’
by Jay Friedman, Ohio

The following program changes in
Aardvark’s BREAKTHRU allow for
additional walls to be played after the
first wall has been broken down. 8ince
it is fairly difficult to eliminate each
and every block for a score of 420, line
340 can be modified to build a new wall
at a a@maller score. For example, IF
CH<400 then 350. This way four of five
blocks can be left then a new wall is
poked onto the screen.

v

165 FORX=SD-3TOSD+3: POKEX, 32: NEXT

166 REM CLEARS OLD SCORE ~ .
195

FORX=GC+0F TOGC+OF+2040: POKEX, 13: NEXT:
GOsSUB200: GOTO230

196 REM 200 I8 THEN WALL RUILDING
ROUTINE

220 POKEGC+X+3XLC, 161: POKEGC+X+&6XLC, 187
NEXT: CH=0: RETURN

221 REM CH KEEPS S8CORE OF CURRENT
SCREEN

290 D#=8TR% (8) : D=8D-3

300 FORY=2TOLEN(D%) 1 POKED+Y,ASC (MID%
(D$,Y, 1)) s NEXT

310 POKESD+12,BALLS+48

311 REM 290-300 POKES NEW SCORE ONTO
SCREEN. 310 POKES BALL NUMBER

J40 P=PEEK (57088) 3 IFCHC »420THEN3S0:

345 IFB<GC+3XLC+20RB>GC+7%LC+W-1THEN
BOSUB200

346 REM 420 IS THE SCORE FOR ONE SCREEN
347 REM 345 WAITS UNTIL BALL IS OUT OF
WALL AREA BEFORE GOING TO 200

870 IFP=187THENS=S+21 CH=CH+2

880 IFP=1&61THENS=8+1:CH=CH+1

890 IFP=232THENS=S+41CH=CH+4

00 IFP=2IITHENS=8S+6&61 CH=CH+6
- 901 REM 870~900 ADD POINTS TO CH

RUSES TERRELL, ROSEMOUNT, MINNESOTA
CORRECTIONS

These program patches will let you use
Joysticks with the game "ANTI-AIRCRAFT
ARTILLERY" Vol. 2, No. 2.

120 CO=53284:LC=321W=25:1P1=191:1P2=1271
FORX=0QTO&63 READK (X) : NEXT: TA=1

900 DATA4,8,2,64,128,32,2, 1”7,247.
223,127, 247,223 253

After 10 hours of work, here are the
program patches to get monitor ROM. Due
to conflicting addresses in ROM and the
program, BASIC crashed. The program has
been relocated to $0232 (562).

S POKE&621,0:FORK=627T0641: POKEK, 32
NEXTK : FOKEK, 255

10 DATAS62, 620

20 DATA174,59,211,24,173,51,2,105,32,
141,71,2,173,52,2,105,0

30 DATA141,72,2,142,19%,208,24,173,51,
2,201,195,208,8,173,82,2

40 DATAZ201,208,208,1,96,56,173,51,2,
233,1,141,51,2,173,52,2

S0 DATAR33,0,141,52,2,76,50,2

60 xxthis line has been deleted.

70 PRINTCHR®(26)3" Potato Chips"

120 POKEL11,0:POKEL2, 2531 X=USR (X) : K=427
124 X=PEEK (K) 1 POKES3413+K-627, X1 K=KK+12
G0TO123

1920 POKEP, 127:FORZ=1T010: IFPEEK (P) < »
127THEN2S50

109% PRINTIPRINT:PRINT"The
is"y PEEK(621)sPRINT

1097 IFS>PEEK (621) THEN1150
1150 PRINT"You have beaten
it. "t PRINT:PRINT: POKE&21,S: INFUT" Your
name"

1170 FORK=627T0627+LEN (8%) ~1: POKEK, ASC
(MID® (S5%,kK—626,1)) s NEXTK

1530 DATA141, 114 2,169,2,133,12,1469,50,
133,11,169, 59 141 51 2

1540 DATA169 211‘141 52,2,96

high score

17

JACK VAUGHN, TEXAS

Here is a short program called “TEST
YOUR REFLEXES". I have no way to test
it except on my Superboard, but I
believe it will work on others.

2 REM JACK VAUGHN
4 REM 3695 BRYAN DRIVE

6 REM BEAUMONT, TEXAS 77707

8 REM LINES 10-18 SET UP FAST SCREEN CL
EAR CALLED BY °X=USR(X)"

10 FORX=576TOS981 READY: POKEX, Y1 NEXT

12 DATA169,208, 160,0, 133,255, 132, 254

14 DATA162,4,169,32, 145,254, 200,208, 251
16 DATA230,255,202,208,246,96

18 POKE11,641POKEL2,2

22 C$="SWHSOIUN PDGEERRRAMWNAODNMMFAAAN
SSO0PTUESDEYKDORY "

23 VIDEO=6001 IFPEEK (57088) < 129THENVIDED
=5401 GOTO26

24 P1=247:KP=18%91P0=530: GOTO281 KP=VALUE
IF D&K ARE PRESSED TOGETHER.

26 P1=81KP=bb1PO=2073

28 X=USR(X):REM SCREEN CLEAR

29 PRINT" TEST YOUR REFLEXES":1PRINT:PR
INT1PRINTIPRINTSPC (10) "OR

30 PRINT1PRINT:PRINT:PRINTSPC(4) "ARE YO
U SOBER?"

31 PRINT:PRINT:PRINT:FORX=1TO30001 NEXT
36 PRINT:1PRINT" AS SOON AS YOU SEE":1PR
INTsPRINT" X% GO Xk, "

38 PRINT:PRINT" PRESS D AND K

40 PRINTI1PRINT" AT THE SAME TIME.":PR

42 INPUT"
46 X=USR(X) o
48 FORX=1TO4S00%XRND (XY iNEXT ™
50 FORX=1TO12:PRINTiNEXT:PRINTSPC (8) "XK
GO *x

52 FORX=0T010000: POKEPO, 11 POKES7088, P11
PE=PEEK (57088)

54 IFPE=KPGOTOSE

56 NEXT

58 POKEPO,0:PRINT:PRINTSPC (10)X

60 PRINTIPRINT: IFX>360T066

62 PRINTSPC(5)"YOU CHEATED":PRINT1PRINT
SPC(S)"DO IT AGAIN

64 GOTD48

66 IFX<B8GOTO100

68 IFX<11GOTO110

70 IFX<1360TO120

72 IFX<15GOT0140

74 IFX<17GOTO130

76 PRINT3PRINT ' »

78 PRINT" SOBER UP AND TRY AGAIN!

80 PRINT:PRINT:PRINT:PRINT

82 PRINT" TRY AGAIN"j3: INPUTAS

84 X=USR(X) 1FORX=1TO&1PRINT1NEXT1B0T04&
86 PRINTSPC(3)"TEST YOUR REFLEXES :
100 PRINTSPC(8);:FORY=4TO25STEP31 PRINTM
ID$(C%,Y, 1) 3 1NEXT

102 GOTO80

110 PRINTSPC(7); s FORY=2TO328TEP3:1 PRINTM
ID$(C$,Y, 1) j 1NEXT

112 GOTOBO

120 PRINTSPC(10) ;1 FORY=28TO37STEP31 PRIN
TMID$(C$,Y, 1) ; sNEXT

122 GOTOB0

130 PRINTSPC(7) 3 1 FORY=3TO30STEPZ:1 PRINTM
ID$(C$,Y, 1) ; sNEXT

132 GOTOBO

140 PRINTSPC(9) ;3 FORY=33TO48STEPZ: PRINT
MID$(C%,Y, 1) 3 sNEXT

142 GOTOBO

200 REM JACK VAUGHN

202 REM 3695 BRYAN DRIVE

204 REM BEAUMONT. TEXAS 77707

READY" 3 A%

KK PERSONAL ADS kX

FOR SaLE: 081 CIF, 32K DISK DRIVE, CILE
ROM, FROG. SOUND GENERATOR, JOYSTICKS,
VIDEQ MONITOR, VIDEQ MODD II FOR 32
CHAR. DISPLAY, RBRIZ, 0865D VI.E AND
HEXDOS OF SYSTEMS, COMPLETE
DOCUMENTATION, CO8T 41300+, BEST OFFER
OVER 4800, R, WHITAKER, 3713 RIDGECREST
DR., SALT LAKE CITY, UT 84118

FOR - BALE: C2/8F 8K, H540 VIDEOD,
5808 SLOT BACKFLANE, AARDVAREK
JOYSTICKES, 12" B/W MONITOR, SOFTWARE AND
DOCUMENTATION., $6850. CALL (&16) 299-X109
CRATE

508 CEU,

FOR BALE:
EXFANSTON
24k MEMORY RBD
SERIAL IMFACT

48K C4P-MF, 2 DISK DRIVES, D&N
INTERFACE, 8 CARD BACKPLANE,

(ALL NEC CHIFS), MICROTER
FRINTER. SOFTWARE INCLUDES

081 PLANNER+, 081 MDME, DWO QUONG
WRLEE0Z, 08 WP2, AARDVARE SUFERDISK,
OB6ED VELE, SAME MANUAL. $2400, D,

BROUDY (60Z) 729-8489 EVENINGS.

FOR SALE: 081 C2/74F BASIC-IN-ROM (&R
RAM) 2 YRS OLD, USED ONLY SEVERAL MTHS.
COMPLETE W/ALL MANUALS AND DOC., CABLES,
DEMO-FROGRAM TARE. SHIFFED VIA UPS.
$360. CONTACT: AL ADAME, 4512 N
SAGINAW RD, APT #221C, MIDLAND,MI 486&40

FOR SALE: 08I C3C 36 MR, RBEST OFFER.
CALL (212)835~-4456

FOR SALE: 08I C3R 74M H.D. 3 MICRO-TERM
CRT. T.I. 820 FRINTER SFEED .7 MIFS 1 YR
OLD. 16,500, (3173) 342-1020 /7 ROX G517,

ROYAL Oak, MI 480468

AARDVARK

2352 SOUTH COMMERCE
WALLED LAKE,MI 48088

PRINTED MATTER

p. CHADDOCK

BNS BAY
QUESTS JANTT

THOMESORaN 1ui

18

YR. COLLECTION OF Q81 EQUIF.
INCLUD. (2) CLF'8, A BROKEN &10 BD AND
() DISE DRIVES. THERE ARE MANY MORE

ITEMS AND MANY ORIGINAL FROGRAMES EBOTH ON
DISK AND TAPE. FLEASBE SEND 8ASE FOR A
LISTING AND FRICE TO E.H. BROWN, F.0.
BOX 2211, WARNER RORINSG, GA 31099,

FOR 8ALE: 3

FOR SALE: SUPERBOARD PRE-CUT CABINET KIT
$27.95 FPD. COMP. W/HARDWARE & EXCEL
INST SET, RS2Z2 KIT $9.93 FFD. WRITE FOR
CAT OF KIT8, HARDWARE AND ACCES 70 DEE
FRODUCTS, 180A RIRCHWOOD, Lk MARION,
Il 60110,

FOR SALE: (0SI SUPEREDARD 2 I8BK. GRAFIX
SUFER EXPANGION BD, HI-RES DISFLAY,
FARALLEL FORT 2 EXFANSION RAM. CABE %

MUCH SOFTWARE. ASKING $4350. S8TUART HAAS,
(914) 3JH7-3447
WANTED: AMATEUR ASTRONOMER LOOKING FOR

ASTRONOMY FROGRAMS THAT RUN ON A CiF. IF
ANYONE I8 USING THE C1F FOR TELESCOFE
CONTROL, ANY IDEAS WOULD BE HELFFUL.

ANYONE THAT CAN HELFP WRITE: DON GRENDA,
TIBIZ OSTH AVE, UNIT 6D, S. MILWUAKEE, WI

GELTE

FOR SALE: 081 C4F-MF, 48k, 4 DUAL-SIDED
MF DRIVES, &4 X 32, 9" R/W MONITOR,
HI~CAFACITY SWITCHING FOWER SUPFLY, ON
SCREEN CLOCK ~CALENDAR, W/BATTERY, BSR
INTERFACE, (2) JOYSTICKS, VOTRAX VOICE
SYN. , OTHER
ACCES. 4 QF SOFTWARE,
$3000. 7993679

TTY MODEL 40 LINE PRINTER,
COMF. DOC.
BOE ARONSON,

LOTS
(G16)

O0BA

