
128 COMPUTE! NovemDer/December. 198O issue 7

Interfacing

KIM/SYM/AIM/OSI

with Basic

Jim Butterfield, Toronto

Basic is a convenient and flexible language; but it

isn't too fast. Machine language is fast, but rigorous

to write. You can get the best of both worlds if you

can make the two languages work together.

A hybrid program of this type invariably starts

its run in Basic. Basic prints out the program title,

and prompts the user for the detail of the job to be

done. When it reaches a part where time is impor

tant, it will zip into machine language.

Getting there

Basic enters machine language by means of the USR

function. The machine language coding will be writ

ten as a subroutine whose final command is RTS,

signaling a return to Basic.

USR is a function: it's similar to SQR for

square roots, RND for random numbers, etc. This

means you can't start a Basic statement with USR: it

must be part of an expression such as X = USR(O),

or PRINT USR(99).

USR takes an argument: USR(6) passes a value

of 6 to the machine language program. It returns a

value: USR (6) might give back a value of say 12 to

Basic. You don't need to use either of these. The

machine language program can ignore the argument,

and the Basic program can decide not to use the

returned value. They are there if you need them.

Single routine

If you want one machine language subroutine and no

more, it's quite easy. Poke the USR vector with the

address of the subroutine. After that, the USR func

tion will zip to that address every time it's used. The

USR vector may be found at the following locations:

KIM: 0004 and 0005

SYM: 000B and 000C

AIM: 0004 and 0005

OSI: 000B and 000C

Check your Basic manual, if possible, to confirm

that these are the locations that apply to your Basic

package.

The address goes in low order first, as usual.

Don't forget that Basic uses decimal numbers rather

than hexadecimal. An example: to set up the address

of the subroutine at OF22 on the KIM or AIM, you

would code in Basic: POKE 4,34 : POKE 5,15. This

needs to be done only once. After that, any USR

reference takes you to OF22. For SYM or OSI,

you'd code: POKE 11,34 : POKE 12,15.

Multiple machine language routines

There are several ways you can handle this.

You could repeat the pokes to the USR vector

before each call. This is easy to code, but not

lightning fast - POKEs from Basic are much slower

than machine language.

If your routines come up in a certain order, you

could have each machine language subroutine set up

the next. A POKE in Basic is roughly equivalent to a

STA machine language instruction. Each routine

could set up the vector for the appropriate next USR

entry.

Finally, you could keep a single entry point and

have your machine language program decide which

way to go on the basis of information supplied by

Basic. This is discussed in the next section.

Single Entry Fanout

There are several ways that Basic could signal the

type of job it wants done. It could POKE a location

with a value that machine language could read and

act upon.

A more complex method is to pass the informa

tion in the USR argument. USR{1) would mean, do

job 1; USR(2), do job 2; and so on. This is a little

trickier, since the argument is held in floating point.

The next section will give more details on how to in

terpret it.

Passing parameters via the argument

When the function USR)6) is given, the argument-

in this case, 6 - is placed in the floating-point ac

cumulator. Later, when you return from machine

language, the value in the floating-point accumulator

is accepted by Basic as the value of the USR func

tion. If you leave the floating-point accumulator

alone, the value that went in comes back out. It's

handy to keep in mind that you can use an expres

sion as the argument: USR (X + Y*3 -2) is quite ac

ceptable.

The floating point accumulator is at the follow

ing locations:

KIM - 00AE to 00B3

SYM - 00B1 to 00B6

AIM - 00A9 to 00AE

OSI - 00AC to 00B0

Note that the OSI floating point accumulator is

one byte shorter than that of the other machines.

The first location is both zero flag and exponent.

If it's zero, the whole number is zero and you don't

need to look any further. If it's non-zero, it holds a

binary exponent offset by $80. That means if it con

tains hex 80 or less, the number is a fraction less

than 1. If it contains hex 81 or more, the number is

greater or equal to 1. Don't worry about the details

unless you have a mathematical leaning. It's useful

to know, however, that you can double a number by

adding one to the exponent, and halve it by subtrac

ting one.

The next four locations are called the mantissa

and hold the number itself. The number is always

normally arranged so that its first 1-bit is in the high-

order bit position of the mantissa. So numbers like 3,

binary 11, and 6, binary 110 will have exactly the

_ ----'12:c8 _ _ _____________________ C~O=M'_P~UT:c''_! _ _ _ ______ _ ~N"'O"ve::'m ... b:":e:':'/~De=Cember. 1980 Issue 7

Interfacing
KIM/SYM/ AIM/OSI
with Basic
Jim Butterfie ld , Toronto
Basic is a conve nie nt and fl ex ibl e language; bur II

isn 't too fas e M achine language is fast, but rigo rous
to write. You ca n get the best of both wo rlds if you
can m ake the two languages work together.

A hybrid program of this type invariably starts
it s run in Bas ic . Basic prin ts o ut the program titl e,
and prompts the user for the deta il of the job to be
done. Whe n it reaches a part whe re li me is im por­
tant, it will z ip inlO machine language .

GeHlng there
Basic enters machine language by means of the US R
fun ction . T he machin e language codin g will be writ­
tcn as a subroutin e whose final com mand is RTS,
signalin g a return to Bas ic.

USR is a function : it 's similar to SQR fo r
square roots, RND fo r random num bers, etc. Thi s
means you ca n 't start a Basic state me nt with USR : it
must be part of an expression such as X ~ USR(O),
or PRINT USR(99).

USR takes an argument: USR(6) passes a value
of 6 to the machine language program. It re turn s a
value: U SR (6) might give back a value of say 12 to
Basic. You don ' t need to use either of these. T he
machin e language program can igno re the argument ,
and the Basic program can decide not to use the
returned value. They are there if you need them .

Single routine
If you want one machine language subroutine and no
more, it 's quite easy. Poke the USR vector with the
address of the subroutine. After that, the US R fun c­
tion will zip to tha t address every ti me it 's used. The
USR vector may be found a t the following locations:

K IM: 0004 and 0005
SYM: OOOB and oooe
AI M: 0004 and 0005
OSI : OOOB and oooe

Check your Basic manu al, if possible, to confirm
that these are the locations that apply to you r Bas ic
package.

The address goes in low order first , as usual.
Don 't forget that Basic uses decimal nu mbe rs rather
than hexadecimal. An example: to set up the add ress
of the subroutine at O F22 on the KIM or AIM , you
would code in Basic: PO KE 4,34 : PO KE 5, 15. T his
needs to be done onl y once. After th at , a ny US R
reference takes yo u to OF22. For SYM or OSI ,
you 'd code: PO KE 11,34 : PO KE 12, 15.

Multiple machine language routines
There are several ways you can handle th is.

You could repeat the pokes to the USR vector

before each call . T his is casy to code , but not
li ghtn ing fas t - PO KEs from Bas ic are much slower
than machin e language .

If your routi nes co m e up in a certain o rde r, you
could have each machine language subro ut ine se t up
the nex l. A PO K E in Basic is roughl y equ ivale nt to a
STA machine language instru ction . Each rout ine
could set up the vector for the app ro priat e nex t US R
entry.

Finall y, you could keep a single entry poi nt and
have your machine language program decide which
way to go on the basis of information suppl ied by
Basic. T his is d iscussed in the next section.

Single Entry Fanout
There are several ways th at Bas ic could signal the
type of job it wants do ne. It could POKE a loca tion
with a value th at mach ine language cou ld read a nd
act upon.

A mo re complex m ethod is to pass the info rma­
tion in the USR argument. US R(I) would mean , do
job I ; US R(2), do job 2; and so on . This is a litt le
trickier, since th e argument is held in floa tin g po int.
The next sect ion w ill g ive more detai ls on how to in­
terpret it.

PaSSing parameters via the argument
When the fun ction USR)6) is given , th e a rgum ent­
in this case , 6 - is placed in the floatin g-point ac­
cumulator. Later, when you return from m achine
lan guage, the value in the fl oating-po int accumu lator
is accepted by Bas ic as the value of the US R fun c­
tion . If you leave th e fl oat ing-point accu mulator
alone, the value that went in com es back out . It 's
handy to keep in mind that you can use an expres­
sion as the argument : USR (X + y0 3 -2) is quit e ac­
ceptable .

The fl oatin g point accumulator is at the foll ow-
ing locations:

K IM - OOAE to 00B3
SYM - OOB I to 00B6
AIM - 00A9 to OOAE
OSI - OOAC to OOBO

Note that the O SI float ing point accumula tor is
one byte shorter than th at of the other machines.

The first locat ion is both zero fl ag a nd exponent.
If it's zero , the whole nu mber is zero and you don 't
need to look a ny further . If it 's non-zero, it holds a
binary exponen t offset by S80. That means if it con­
tai ns hex 80 or less , the number is a fract ion less
than 1. If it contain s hex 8 1 or more, the numbe r is
greater o r equal to 1. Do n 't worry about the deta ils
unless you have a mathem at ical lean ing. It's useful
to know, however, th at yo u can double a number by
adding one to the exponent , and hal ve it by subt rac­
ting one.

T he nex t fo ur locations are called the mantissa
and hold th e number itself. The number is always
normall y arranged so that its fi rs t I-bit is in the high­
order bit position of th e mant issa . So numbers li ke 3,
binary 11, and 6, binary 11 0 will have exactly th e

November/December. 198O Issue 7 COMPUTE! '29

microsystems

P.O. Box 687

224 S.E. 16th Street

Ames, Iowa 50010

TWX 910-520-1166

Dflim

DAIM is a complete disk operating system for the ROCKWELL INTERNATIONAL

AIM 65. The DAIM system includes a controller board (with 4K operating system in

EPROM) which plugs into the ROCKWELL expansion motherboard, packaged power

supply capable of driving two 5 1 /4 inch floppy drives and one or two disk drives mounted

in a unique, smoked plastic enclosure. DAIM is completely compatible in both disk format

and operating system functions with the SYSTEM 65. Commands are provided to

load/save source and object files, initialize a disk, list a file, list a disk directory, rename

files, delete and recover files and compress a disk to recover unused space. Everything is

complete — plug it in and you're ready to gol DAIM provides the ideal way to turn your

AIM 65 into a complete 6500 development system. Also available are CSB 20

(EPROM/RAM) and CSB 10 (EPROM programmer) which may be used in conjunction

with the DAIM to provide enhanced functional capability. Base price of $850 includes

controller board with all software in EPROM, power supply and one disk drive. Now you

know why we say —

There is nothing like a

Phone 515-232-8187

November IDecemoel. 1980 Issue 7 COMPUTE!

e@mpa~
microsystems

DAlm

P.O. Box 687
224 S .E. 16th Street
Ames, Iowa 50010
TWX 910-520-1166

DAIM is a complete disk operating system for the ROCKWELL INTERNATIONAL
AIM 65. The DAIM system includes a controller board (with 4K operating system in
EPROM) which plugs into the ROCKWELL expansion motherboard, packaged power
supply capable of driving two 5 1/ 4 inch floppy drives and one or two disk drives mounted
in a unique, smoked plastic enclosure. DAIM is completely compatible in both disk format
and operating system functions with the SYSTEM 65. Commands are provided to
load / save source and object files, initialize a disk, list a file, list a disk directory, rename
files, delete and recover fi les and compress a disk to recover unused space. Everything is
complete - plug it in and you're ready to gol DAIM provides the ideal way to turn your
AIM 65 into a complete 6500 development system. Also available are CSB 20
(EPROM / RAM) and CSB 10 (EPROM programmer) which may be used in conjunction
with the DAIM to provide enhanced functional capability. Base price of $850 includes
controller board with all software in EPROM, power supply and one disk drive_ Now you
know why we say -

There lS nothing like a

DAlm Phone 515-232-8187

129

13O COMPUTE! NovemDer/DecemDer. 198O Issue 7

same mantissa; 11000000 ... How do we tell them

apart? By using the exponent byte - the first location,

remember?

The final byte contains the sign of the number.

Only the first bit counts. If the first bit is zero, the

number is positive; if it's one, the number is

negative.

Floating point numbers are nice in Basic, but

they can be difficult to handle in machine language.

You'll probably want to use the built-in subroutines

to covert them to and from the more familiar fixed-

point numbers. See the Basic manual for this.

You can do the job yourself, if you prefer.

Here's the general method. Assuming that your

number is not zero (check the first byte) you can re

arrange it along the following lines. If you add one to

the exponent, you will have multiplied the number

by two; and if you shift the mantissa right, you will

have divided it by two. If you do both, the number

will have the same value. It will no longer be a nor

mal floating-point number, since the high-order bit of

the mantissa will now be zero, but the value will be

the same. If you repeat this procedure until the expo

nent reaches a value of hexadecimal 90, the integer

part of your number will be found in the first two

bytes of the mantissa. It works: try it out with pencil

and paper.

To go the other way (fixed to floating) you must

"normalize" the number so that the high-order bit of

the mantissa is 1; this takes left-shifting of the man

tissa and decrementing the exponent.

Parameters: easier ways

Floating point is messy, and you may want to pass

more than one value to or from machine language.

There are other ways of doing the job.

The most obvious way is to have Basic POKE

the values it wants to give into memory, and have

the machine language program pick them up there.

In the other direction, Basic can PEEK the results. If

your values go above 255, you'll need to use more

than one memory location for each value. Use the

standard multiply or divide by 256 techniques to

separate or recombine the parts.

A better way - but not quite so easy - is to have

your machine language program go after the Basic

variables in the locations they are stored in memory.

Variables: Ground Rules

Machine language can of course go after any data

anywhere in memory. There are a few things you

can do, however, to make it much easier to inter

change data.

First rule: wherever possible, use Basic integer

variables. These are the ones with the percent sign

tacked on: J% orD%, for example.

The advantage of integer variables is that they

are not stored in floating point notation. Machine

language can use them, or change them, in a

straightforward manner.

Second rule: arrange for Basic to use these

variables at the very beginning of your program. If

you want to pass six values (called A%, B%, X%,

Tl %, T2%, and S%) to machine language, have

the first line of your Basic program define them with

a line of code like:

100 N = 0 : W = 0 : X/ = 0: & = 0: TV = 0 :

T21 =0

This will place the values early in the variable table,

where they are easy to access.

Variables: how they are stored

KIM, SYM, and AIM use seven locations for each

variable; OSI uses six. The first two locations are the

variable name, in ASCII. Fixed-point variables will

have the high-order bit set over each byte of the

name.

The next two locations of a fixed-point variable

contain the binary value - high order first. The re

maining two or three locations are not used.

Floating-point variables are also stored in seven

(or six for OSI) locations. The format is slightly dif

ferent from that of the floating-point buffer; a little

experimentation should unlock secrets. You will find

it generally simpler to use fixed-point format, except

on the OSI Basic, which doesn't appear to have this

option.

A couple of examples should make fixed-point

formats easy to understand. If variable B5% has a

value of 22, you'll see it stored as: C2 B5 00 16 00

00 00. C2 is an Ascii letter B with the high bit set;

B5 is the Ascii character 5 with the high bit set -

together they give the variable name. 00 16 is the

value 22 in hexadecimal; and the remaining three

locations are not used. If variable C% has a value of

300, you'll sec: C3 80 01 2C 00 00 00. Can you

figure it out?

Where to find the variables

The variables are normally stored above your Basic-

program. Since your program could be any size, the

variables might start almost anywhere. You'll find

out where by looking at your start-of-variables

pointer. This is stored - low order first - at the

following locations:

KIM - 007A and 007B

SYM - 007D and 007E

AIM - 0075 and 0076

OSI - 007B and 007C

So if your AIM contains the values B3 and 07 in

0075 and 0076, you'll know that your first variable is

contained in location 07B3 to 07B9 inclusive. If it's a

fixed-point variable, the value will be contained in

07B5 (high-order) and 07B6 (low-order).

You can look through the variable table, jump

ing seven locations at a time, to find the variable

with the name you want. It's easier, as suggested

before, to force the variables into the start of the

table - that way they will be fast to find.

Here's a handy coding hint. The start-of-

130

same mantissa : 11 000000 ... How do we tell th em
apa rt ? By using the exponent byte - the first location ,
remember?

The final byte contains the sign of the number.
Only the first bit counts. If the first bit is zero, the
number is positive ; if it' s one, the number is
negative.

Floatin g po int numbers are nice in Bas ic, but
they ca n be difficult to handle in machine la nguage.
You ' ll probably want to use the built-in subroutines
to covert them to and from the mo rc familiar fixcd­
point num bers. Sec the Basic manu al for this.

You ca n do the job yourself, if you prefer .
Here's th e general method. Assuming that yo ur
number is not zero (check the first byte) you can re­
arrange it along the following lines. If you add one to
the ex ponent , you will have multiplied the num ber
by twO; and if you shift the mantissa right, you will
have d ivided it by two . If you do both , the number
will have th e same valu e. It will no lo nger be a nor­
mal Ooatin g- poi nl nu mber, sin ce th e high-o rder bit of
the manr issa will now be zero, but the value will be
the sa me. If you repeat this procedure until th e expo­
nent reaches a value o f hexadecim al 90, the integer
part of your num ber will be found in th e first two
bytes of the manti ssa . It works: try it out with pencil
and papcr.

T o go the other way (fixed to floatin g) you must
" norm alize" the numbe r so that the high-order bit o f
the ma ntissa is I ; this takes left- shiftin g of the man­
Lissa and decrementi ng the exponent .

Parameters: easier ways
Float ing poi nt is messy, and you may want to pass
more than one value to or from machine la nguage.
T here a re other ways of doing the job.

T he most obvious way is to have Basic PO K E
the values it want s to g ive in to memory, and have
the machin e la nguage program pick them up there .
In the other direct ion , Basic can PEEK the results. If
your values go above 255, you ' ll need to usc more
th an o ne memory location for each value . Use the
standard multiply or divide by 256 techniq ues to
separate or recombine the parts.

A bette r way - but not quite so easy - is 10 have
your machin e la nguage progra m go aft er the Basic
variables in the locations they are stored in me mo ry.

VarIables: Ground Rules
M achine language can of cou rse go a fter any data
anywhere in me mory. There are a few things you
can do, howeve r, to make it much easie r to int er­
change data.

Fi rst rul e: wherever possible, use Basic integer
variables. T hese are the ones with the percent sign
tacked on: j % or D %, for exam ple.

T he advantage of integer variables is that they
are not stored in float in g po int notation. M achi ne
language can use them, or change them , in a
straightforward manner.

COMPUTE! November /December. lQ80.lssue 7

Second rule: arrange for Basic 10 use these
variables a t the very beginning of your program. If
you want to pass six values (called A %, B% , X % ,
TI %, T2 %, a nd S%) to machine language, have
the first li ne of your Bas ic program defi ne them with
a line of code like:

100 N ~ 0: B' ~ 0: Xi = 0: S' - 0 : T V ~ 0 :
T2' ~ 0

This will place th e values early in the variable table,
where they are easy 10 access.

Variables: how they are stored
KIM , SYM, a nd AIM use seven loca tions for each
variable ; OSI uses six. The first two locations are the
variable name, in ASC I!. Fixed-point variables will
have th e high-order bit set over each byte of the
name.

T he next twO locations o f a fi xed-point vari able
contain the bina ry value - high order first. The re­
maining two or three locations are not used.

Floating- po int variables are also stored in seven
(or six fo r OSI) locations. The format is sl ightly dif­
fe rent from that of the fl oating-point buffer; a little
experimentation should unlock secrets. You will find
it generally simpl er to use fi xed-po in t formal, except
on the OSI Bas ic, which doesn ' t a ppear to have this
option .

A couple of examples should ma ke fixed-point
form ats easy to understand . If variable B5 % has a
value of 22, you ' ll see it stored as: C2 B5 00 1600
0000. C2 is a n Ascii letter B with the high bit set ;
B5 is the Ascii character 5 with the high bit set -
together they give the variable name . 00 16 is the
val ue 22 in hexadecimal; and the remaining three
locations are not used. If variable C % has a value of
300, you' ll see: C3 80 0 1 2C 00 00 00. Can you
fi gure it o ut ?

Where to find the variable.
The variables are norm all y stored above your Basic
program . Sin ce your program co uld be any s ize, the
variables might start a lmost anywhere . You' ll find
out where by looking at your start-of-variables
pointe r. Thi s is stored - low order first - at th e
fo llowing locatio ns:

KIM - 007 A and 007B
SYM - 007D and 007E
AIM - 0075 and 0076
OSI - 007B and 007e

So if your AIM contains the values B3 and 07 In

0075 and 0076 , you ' ll know th at your firs t va riable is
contai ned in location 07 B3 to 07 B9 inclusive. If it' s a
fi xed-poi nt va riable, the valu e will be conta in ed in
07 B5 (high-orde r) a nd 07 B6 (low-order) .

You can look through the variable table, j ump­
ing seven locations at a tim e, to fin d the va riable
with the name you wa nt. It 's easier, as suggested
before, to force the va ri ables in to the stan of lh e
table - tha t way th ey will be fas t 10 fi nd .

H ere's a handy coding hint. The start-of-

November/December. 198O. Issue 7 COMPUTE! 131

variables pointer can be used as an indirect address -

after all, it's in zero page. So: if you wanted to get

the low-order byte of the x first SYM variable, you

could code: LDY #3; LDA ($7D),Y and you've got

it. Count carefully; be sure that the variable is

defined first in your Basic program; and the job

becomes almost routine. You can reach over thirty

variables this way, which is plenty for most applica

tions.

If you want to pass values through an array,

that's not hard to do. The format is similar to that of

variables. Look around and you'll get the idea. One

important caution: arrays can move during program

execution. Always reference them through the start-of-

arrays pointer, which is located directly after the

start-of-variables pointer.

Conclusion

Your single-board machine is equipped with very

powerful monitor facilities that allow you to look

around and see how Basic does things. Use them:

you'll find out a lot about how to get Basic and

machine language to work harmoniously.

Basic and machine language can be married to

give powerful and flexible programs. This brief arti

cle won't give you all the marriage counseling you

need, but will at least perform the introductions. (§

SOFT WARE

FOLIO

FOLIO PROGRAMS: =

FILE CABINET * wlt.-w.wm oat* s

:ioice cc HBo«t(fsiiuts . use fob imilikO list, mn

■ BUDGET IW K3uSfJ0LD e.JC0Ei PL*>«iHa . «*■«

CHECKBOOK

OTHER 6502 PROGRAMS:

TEA n

DISASSEMBLER
1*91.6 SiMwreO 5* TEA UBOVE)

ROBOT

MUSIC

\ ::ueosiTto>is • with

SEAWELL PROMMER II -

There's Nothing Like It!

* Two independent blocks of 4 EPROM sockets

KIM, SYM or AIM programming firmware

* Programs I, 2 or 4K S-Volt EPROMS: TMS2508, 2516, 2532 and

2758, 2716, 2732

' Read-Only/Deselected/Read-Program for each socket

* Program-protect toggle switch tor whole board

* Provision for remoting 4 sockets

' On-board generation of programming voltage.

The Seawell PROMMER II is a general purpose EPROM tool

designed for use in a development/production environment. Con

nects to a KIM, SYM or AIM with a Seawell LITTLE BUFFERED

MOTHER motherboard, or to a SEA-l single-board computer.

The PROMMER II is all you need to read, program and execute

I, 2or4K 5-Volt EPROMs.

The PROMMER II allows you to put as little as IK or as much

as 32K oi EPROM on the bus. You never have to give up address

space to empty sockets. Each socket can be enabled to READ on

ly, READ and PROGRAM, or can be DESELECTED entirely.

Simply moving a shunt sets one block of 4 sockets to I, 2, or 4K.

The other block can be set independently.

Addresses are selected by piano-type switches on the top

edge of the board. The whole board can be program-protected

by a toggle switch on the top right corner of the board. A

separate one-page ROM containing relocatable firmware lor KIM,

SYM or AIM is provided which can be set to any page in memory

in either of two banks or deselected entirely. A satellite board

with four sockets and program-protect switch will be available

soon.

PROMMER II EPBOM PROGRAMMER -- S299

OTHEH SEAWELL PRODUCTS:

SEA-l . SINGLE BOARD DEVELOPMENT SYSTEM JS95

SEA-16 16K RAM BOARD $280

SEA-FDC8 DOUBLE DENSITY 2-SIDED DISK CONTROLLER. .

. $425

SEADEBUG HARDWARE BREAKPOINTS AND TRIGGERS. . .

S310

SEA PROMMER 11 EPROM PROGRAMMER $299

SEA-PHOTO COMPLETELY DECODED PROTOTYPING BOARD

$ 99

SEA-CMOS8K CMOS HAM. I6K EPROM, DAY DATE CLOCK

$395

SEAPIOB 4 FULLY-BUFFERED 6522S S260

SEA ISDC 8 SERIAL PORTS WITH FOCAL PROCESSOR &

DUAL POHT BAM $595

SEA LBM LITTLE BUFFERED MOTHER FOR KIM, SYM, AIM,

SEA-l ... S199

SEA MOTHERS 4-SLOT MOTHERBOARD $70.00

10-SLOT MOTHERBOARD S135

ALL PRODUCTS ASSEMBLED.

NO KITS MASTERCHARGEVISA ACCEPTED

c

SEAWELL

P.O. Box 30505,

Seattle, Washington 98103, U.S.A.,

(206) 782-9480

November /Decemoer. 1980. Issue 7

variables po inter can be used as an indirect address
after all, it's in zero page. So: if you wanted to get
the low-order byte of the x first SYM variable, you
could code: LDY #3; LDA ($7D) , Y and you 've got
it. Count carefully; be sure that the variable is
defined first in your Basic program ; and the j ob
becomes a lmost routine. You can reach over thirt y
variables this way, which is plent y for most applica­
tions.

If you want (0 pass values through an a rray ,
th at's nO[hard to do. The form at is s imilar (0 tha t of
variables. Look around and yo u ' ll get the idea. One
important cau tion : a rrays can move durin g program
execution. Always reference them through the start-of­
arrays pointer, which is located directl y afte r the
start-o r-variables point er .

Conclusion
Vour single-board machine is equipped with very
powerfu l monitor facilities that allow yo u to look
a rou nd an d see how Basic does thin gs, Use them:
you' ll find out a lot about how (0 get Basic and
machine language (0 work harmo niousl y,

Basic and machine language can be m arried to
give powerful and flex ible progra ms . This brief arti­
cle won ' t give yo u a ll the marriage co un seling yo u
need , but will a t least perform th e introduction s. ©

SEAWELL PROMMER II
There's Nothing Like It!

Two independent blocks of 4 EPROM sockets
KIM , SYM or AIM programming firmware
Prog rams 1, 2 or 4K 5-Vo!! EPRO MS: TMS2508, 2516, 2532 and
2758. 271 6.2732
Read-Only/Dese lectedlRead·Program lor each socket
Program -protect toggle switch lor whole board
Provision for remoting 4 sockets

. On-board generat ion of programming voltage .

The Seawe ll PRO MMER II is a general purpose EPRO M too l
ceslgned lor use in a deve lopment/p roductIOn e nvIronment. C on­
nects 10 a KIM , SYM or AIM with a Seawell LITTLE BUFFERED
MOTHER motherboard, or to a SEA -I single-board computer.
The PRO MMER !l is all you need to read, program a nd execute
1. 2 or 4K 5·Volt EPROMs.

COMPUTE!

6502
SOFTWARE

• FOL IO • " Il l' ::o\I .M.J VNell.e • • • ' HYI)I) -(O~E I ~ ~'~~".H~ • S " .oQ ~fS 11
' U~ (f lC ~ S '''~I C~ S ' ~ 'l l F " OH. ~'~D l ' N e · I~~ QCI' n < lUI , T ~ ~. TO ~S' Q E~=·~ S
. ,,~ UC' :0 l~' """,S " IT~ u' TO 90 C ~.~. C I!~S • <th~ SI £ IS v ," ,.9l£ " C~ ~ ~ [

~ :; ~;o . :~ ~C~~~. : ;e~:~1l' =C~ ~; ~~;,.: :~c : !~ ~ ~ , :~ .. :~ .~" ~Q ': E : ; ~ E~C~~~ I ~:o~ ~; :
h l,C . CQN ' , ~$'I I e · . • 8 < 0_ !" HS ' . , .~ ~no' s "'NUH, ""C:.'!' ~ ·' E a.r..'<\I" ,
eC ""(~IfO SO CE <l sr l NG H , .OO

131

FO LI O PROGRAMS, =========<
• FI L E CABI NET ''''':' ''-'~OeSEO' ''IHI'l. e, . ~~.;:,. " ... c ~ ::;.> . ·.

C ~l " 'UES no BvHS • "",\I "" ' V£ .~ • Hue : .tC .:ll ~1 <HlC 9v !' In, • SJ"' •
C ~ Ol CE C' .['<:A'IT '", TS ' til! ' 01' MA ". ' ~C lll' . Ih;[N'OOO Y, '~'lJ"H J"'. t -c .

• BUDGE T ' '''' ~~~i"O .. ~ '\lOGE! ' .. N ~ . O. ' ~f l " ~ "J ~ - - 'C~:U ~"N~ . 1 ' .
IP '0 1~ (" I NSI 01' I ~O" ' ' '' ~ S . " ... o~!." 101 ' H . hO e ' a • " Iw:l" ;£ H .
(A Sy 10 c .. ,~ ~(' ' '" ShU 011 ' .. W HIi ' "(OUI~EI I>< 01> "c~.~.(a~ ~". (I ;: . w"., ,,

• CH ECKBOOK ,"nO (H £e(S ' S V ~\I ..ou .. , I~ ~e <.fl C ~.~ < ~(~ 'S"~ 'uS '
COOt N\lwBl"" " '" u~ TO ,S~ c. l[GQI'II H S~C H '1 - '~O~ · .- ~ [O 'CA ~ ", nco • "",, ' S ., [
s r. " ~,,' .. , r~ ~ "H'NG a'l'Ne! 'OiI SH EC lE e P'lE I n~ IN s"w <~ ' '' ~ (;!>:E~ . O"':S
'"0 TOU~S c~;::'s .. ,,~ ~HHHO COOl' • - .~ Sh [C ;[O OArr s • " ' ~ 'S coo, : , a u

:::=== OTHE R 6502 PROGRAMS' ===-:::
• TEA " ' V o, 'CJI /'SsrwgUR • c ~ el[. (lI>1(~ fEO 011 011 • ~I N~l.[O' I~ OSH~I~("

• H'O If USO H o . q"U'" fO ' C' SE"'. " W • , ~ < , : ~ , . n(;H~ y ~SH " OS .. ,l wO,".S
• C ,~ES . 11 .. \l S,~'S "".c '~D CO" .. (~ lEO SQ<.fIct '-'Sro.~ G I l : . CO

• DISASSEMBLE R OIVLJ>~ S IY""O"~ , UHS . ~-:> O~f"~:>S <. 0 " \VdOl
" it.(e(~p . TO 5~ n. CUOY[) • 011 OIS '$ 'D!I'IEH ... • .. ~E • ;,.tI , ,- '(10 ~[aA~T~'
"' C H I ~((GOl ... tI~ \111'.'\ ~,.. .. • h O (O .. w l~ '(O S~""'C("lSlI N ~ _ __ Ito.x

• ROBOT , N1("C: IV £ '.OGII '''" ' ~ G l .~C~' G(10 co".o'- OOto., p,OllH 1;10 co ,
C SOll • uSE" OE < IM J ,,"". ~OS I CO "w'~O ~U8. 0\l 1 'IS • (0" £5 . 1: " e lIT ' O\lll ~H
.. ,," uH" S ,""U'" .~~ C O . ~ E~H~ SO<.flC!: \. I S I ' ~ ~ C' .~ < l I ' .JO

• M US I C , .. n "'cr ' '''E O~O!O""'~ I~' ""'U.~l ."~ '~E c~ ... ' c" cr "'TH~'I J<
S OU~O · . ~>,c· • • cC~~C~ ' l!ON '00,- . ~O T " OlE I'BCE cc" Olln Cq ·~1" 0 , on · '
t:n.~,"< ~,<> . ~CH I H JF tlSE .~ O€<'NC' < U'C I IQ ~$ • ~-~ I NG S OF U\l I I C4l ' OEN TS • • ~ I~~
('~ 8(C.' l O , In ~\III~QV:OM ; . A\.lO J I HI ~. Q!O" ' ~. ' ~ ':. C' ~"'~~ 'SI ~Gl Y 1 ~ '~ 'CAf ,

CC .OQ Sll1 0~ ! • ·. ' l ~ uu.·s "' .~. ~ & CC ... (~HO ~~ n "'STI .~G S' O.OO

• ~~i o p~:~:~ ~ J ~~Q <" : ~~ .. ~~ o !:\!.~; ; "~~ ~U:"~~~~~' : ~ I;;~!~~~ I ~ ~~ ~~~ .. ~~~~!;~!:~~
• , . H ifU ,,~£ (C' '' _ ' -"V'EAlA" ") I Loa

• 0"0.0 ""G." . ' CltAo" '"l~ : $O ~' . , .. a"' : C~' C . :;O . ' U ' 'oO I ~ ~o.l1

The PROMMER II allows you to put as li ttle as lK or a.s much
as 32K of EPROM on the bus. You never have to give up address
space to empty sockets. Each socket ca.n be enabled to READ on­
ly , READ and PROGRAM, or can be DESELECTED entirely,
Simply movi ng a shunt sets one block 01 4 sockets to l. 2, or 4K.
The other block can be set independe ntly .

Addresses are selected by piano-type switches on the top
edge of the board. The whole boa rd can be program-protected
by a toggle swi tch on the top righ t corner of the board. A
separa te one-page ROM contd ining relocatable firmwa re for KIM ,
SYM or AIM !S provided which can be set to a ny page in memory
in either of two banks or deselected ent irely . A satellite board
with four sockets and p rog ram-protect switch will be ava ilable
ooon .

PROMMER II EPROM PROGRAMMER .• S299

OTHER SEAWELL PRODUCTS:
SEA · j SINGLE BOARD DEVELOPMENT SYSTEM $595
SEA·16 .. . l6K RAM BOARD . . .$280
SEA·FOC8 DOUBLE DENSITY 2·SIDED DISK CONTROLLER .

. $425
SEA· DEBUG HARDWARE BREAKPOINTS AND TRIGGERS •.

....• S31 0
SEA· PROM MER II .EPROM PROGRAMMER .. $299
SEA·PROTO COMPLETELY DECODED PROTOTYPING BOARD

...... S 99
SEA·CMOS 8K CMOS RAM, 16K EPROM, DAY/DATE CLOCK .

. 5395
SEA·PIOB .4 FULLY· BUFFERED 6522S 5260
SEA·ISDC ... 8 SERIAL PO RTS WITH FOCAL PROCESSOR &

DUAL PORT RAM . . S595
SEA·LBM LITTLE BU FFERED MOTHER FOR KIM, SYM, AIM.

SEA .} . SI 99
SEA ·MOTHERS 4·SLOT MOTHERBOARD S70.00

IO·SLOT MOTHERBO ARD $135
ALL PRODUCTS ASSEMBLED .
NO KITS MASTERCHARGEIVISA ACCEPTED

(I~
I)~
SEAWELL~

P.O. Box 30505,
Seattle , Washington 98103. U.S.A. ,
(206) 782·9480

