
January. 1981. Issue 8 COMPUTE!

TABLE 2

INPUT/OUTPUT

BIT NUMBER INPUT FLAG

SERIAL INPUT (ACIA)

1 POLLED KEYBOARD

2 CASSETTE INPUT ON 430 BOARD

3 NULL (0) INPUT

4 MEMORY INPUT

5 DISK BUFFER #1 INPUT

6 DISK BUFFER #2 INPUT

7 SERIAL INPUTS FROM 550 HOARD

BIT NUMBER OUTPUT FLAG

f) SERIAL OUTPUT (ACIA)

2 VIDEO MONITOR

3 LINE PRINTER

4 MEMORY OUTPUT

5 DISK BUFFER #1 OUTPUT

6 DISK BUFFER ff'2 OUTPUT

7 -SERIAL OUTPUTS FROM 551) BOARD

Next time: Subroutine descriptions...

COMPUTE!

Is Looking For

Good Articles For

Your Gazette

Send Program Listings, Articles, Hints, Odds and
Ends, etc. to

The Editor

COMPUTE!

P.O, Box 54O6

Greensboro, NC 274O3 USA

OSIC1P Fast

Screen Clears

Revisited

Charles L, Stanford

Since writing the article on Screen Clear Routines

for the OSI C1P for Compute II, Issue 1, I've been

particularly sensitive to variations on machine

language programming methods which could be used

to improve the use of the computer. Several publica

tions have been of considerable help, especially Com

pute and Compute II, Micro, the Aardvark and Pro

gressive Computing Catalogs, and of course Edward

Carlson's fine book on OSI BASIC. Mr. Carlson

recently published an article which has led, indirect

ly, to a way of tapping into the Monitor and BASIC

routines which input from the keyboard and write to

the screen, ACIA, etc. Certainly, these techniques

are well known to the more advanced C1P owners.

Unfortunately, these people, with few exceptions,

aren't writing for publication. So most information is

being passed (slowly) by word of mouth or by club

newsletters.

There are at least four points at which you can

"break into" routines which are actively treating in

puts or outputs. These are the Subroutines at $00BC

and $0207, and the Jump vectors at $0218 and

$021A. I'm sure there are more there for the finding.

For this article, the Input vector at $0218 will be

used.

Normally, this location holds a Jump Indirect to

the routines starting at JFFBA in the monitor ROM

which input a character from the keyboard or

cassette. But it's no trick to poke a new address into

this location, then do a little modifying of the

routine. In this case, as shown in the listings, we are

changing the vector from $FFBA to $00D8. This is

near the end of zero page, which is not used by

BASIC. Note, however, that it is used by the

Monitor, so a Break to the Monitor followed by a

Warm Start will require that the vector be reset and

that the program be reentered.

The program is short and simple in operation.

Essentially, it Goes sub to FFBA, which inputs a

character. Next, the character is tested, and if it is a

$7F, the RUBOUT key code, one of the more effi

cient machine language screen clear routines is

effected. If it is any other character, this is skipped,

and the program goes on about its business.

Note also that line 2010 in Listing II also

POKEs the vector into location $0B, the USR vec

tor. Thus, you will have both a single key screen

clear by pressing the rubout and a programmable

one by calling X = USR(X).

LIST 1

00D8

OODB

OODE

00DF

00E0

00E2

00E4

00E7

OOEA

OOED

00F0

00F1

00F3

00F4

20

CS

BAFF

I 7¥

I DO 15

48

AO

A9

99

99

99

99

C8

DO

(>H

60

00

20

00 D3

00 D2

00 Dl

00 DO

Fl

JSR $FFBA

CMP #$7F

BNE $00F4

PHP

LDY #$00

LDA #20

STAY

STAY

STA-Y

STA-Y

INY

BNE S00E4

PLA

RTS

GET A CHARACTER

IS IT A RUBOUT?

IF NO SKIP TO END

SAVE THE CHAR

BLANK CHAR

STORE BLANK AT 256

LOCATIONS IN FOUR

PAGES OF VIDEO RAM

NEXT ADDRESS

PAGE DONE?

RETRIEVE CHAR

EXIT SUBROUTINE

List 2

47000 REM-ONE KEY SCREEN CLEAR

47010 POKE 11, 223:POKE 12, 0:POKE 536, 216:POKE

537, 0

47020 FOR M = 216 TO 244:READ D:POKE M, D:NEXT

47030 DATA 32, 186, 255, 201, 127, 208, 21, 72, 160, 0

47040 DATA 169, 32, 153, 0, 211, 153, 0, 210, 153, 0, 209

47050 DATA 153, 0, 208, 200, 208, 241, 104, 96 <f

Jonuory. 1981. Issue 8

TABLE 2

INPUT/OUTPUT

BIT NUMBER INPUT FLAG

o SERIA L INPUT (AC IA)
I PO LLED KEYBOARD
2 C ASSE'ITE INPUT ON 430 BOA RD
3 NULL (0) INPUT
4 MEMO RY INPUT
5 DI SK BU FFER #1 INPUT
6 DISK BUFFER #2 INPUT
7 SERIAL INPUT S FR OM 550 BOA RD

BIT NUMBER OUTPUT FLAG

o SE RI AL OUTPUT (AC IA)
2 VIDEO MON ITOR
3 LI NE PRI NTER
'I MEMOR Y OUTPUT
5 DISK BUFFE R #1 OUTPUT
6 DISK BU FFER #2 OUTP UT
7 SE RI AL OUTPUT S FRO M 550 BOA RD ©

Ntxt timt: Suhroulint descript ions . .

COMPUTE!
Is Lookin~ For
Good Articles For
Your Gazette
Send Program Listings, Articles, Hints, Odds and
Ends, etc, to
The Editor
COMPUTE!
P.O. Box 5406
Greensboro, NC 27403 USA

051 C1P Fast
Screen Clears
Revisited

Charles L. Sta nford
Since writing the article on Screen Clear Routines
for the OSI CIP for Compute II, Issue I, I've been
particularly sensitive to variations on machine
language programming methods which could be used
to improve the use of the computer. Several publica­
tions have been of considerable help, especially Com­
pute and Compute II, Micro, the Aardvark and Pro­
gressive Computing Catalogs , and of course Edward
Carlson's fine book on OSI BASIC . Mr. Carlson
recently published an article which has led, indirect­
ly, to a way of tapping into the Monitor and BASIC
routines which input from the keyboard and write to
the screen , ACIA, etc. Certainly , these techniques

COMPUTE! 91

are well known to the more advanced CIP owners .
Unfortunately, these people, with few exceptions,
aren't writing for publication. So most information is
being passed (slowly) by word of mouth or by club
newsletters .

There are at least four points at which you can
" break into" routines which are actively treating in­
puts or outputs, These are the Subroutines at $OOBC
and $0207, and the Jump vectors at $0218 and
$02IA. I'm sure there are more there for the finding.
For this article, the Input vector at $0218 will be
used.

Normally, this location holds a Jump Indirect to
the routines starting at SFFBA in the monitor ROM
which input a character from the keyboard or
cassette . But it's no trick to poke a new address into
this location, then do a little modifying of the
routine. In this case , as shown in the listings , we are
changing the vector from SFFBA to SOOD8, This is
near the end of zero page, which is not used by
BASIC. Note, however, that it is used by the
Monitor, so a Break to the Monitor followed by a
Warm Start will require that the vector be reset and
that the program be reentered,

The program is short and simple in operation.
Essentially, it Goes sub to FFBA, which inputs a
character. Next, the character is tested, and if it is a
$7F, the RUBOUT key code, one of the more effi­
cient machine language screen clear routines is
effected. If it is any other character, this is skipped,
and the program goes on about its business,

Note also that line 2010 in Listing II also
POKEs the vector into location SOB, the USR vec­
tor. Thus, you will have both a single key screen
clear by pressing the rubout and a programmable
one by calling X ~ USR(X) .

LIST 1
00D8 20 BA FF
OODB C9 7F
OODD DO 15
OODF 48
OOEO AO 00
00E2 A9 20
00E4 99 00 03
00E7 99 00 02
OOEA 99 00 DI
OOED 99 00 DO
OOFO C8
OOFI DO FI
oon 68
OOH 60

List 2

jSR $FFBA
CMP U7F
BNE $00F4
PHP
LDY #$00
LDA #20
STA-Y
STA-Y
STA-Y
STA-Y
INY
BNE $00E4
PLA
RTS

GET A CHARACTER
IS IT A RUBOUT?
IF NO SKIP TO END
SA VE THE CHAR

BLANK CHAR
STORE BLANK AT 256
LOCATIONS IN FOUR
PAGES OF VIDEO RAM

NEXT ADDRESS
PAGE DONE?
RETRIEVE CHAR
EXIT SUBROUTINE

47000 REM-ONE KEY SCREEN CLEAR
47010 POKE II , 223:POKE 12, O:POKE 536, 216:POKE

537,0
47020 FOR M = 216 TO 244:READ D:POKE M, D:NEXT
47030 DATA 32, 186,255,201, 127,208,21,72, 160, 0
47040 DATA 169 , 32, 153,0, 211, 153,0,210,153,0, 209
47050 DATA 153 , 0,208,200,208 , 241, 104 , 96 ©

