
92 COMPUTE! June, 1981 Issue 13.

10 REM CHARLES A STEWART

20REM 3833 MARVIN DR.

36 REM ADRIAN MI 49221
40 REM 517-265-4758

50 REM AUTOLOAD PROGRAM FOR OSI C1P

80 PGKEi33,0:PGK'Ei34,S

90 DIHftfC24isB$(24)sPOKE15,0

188 FORX^0TO40 = PRINT'NEXT = PRINT" AUTO L
OAD OF MACHINE LANG PROG"

110 PRINT" IN PAGE 2 OR" MEMORY LOC ABOU

120 PRINT "PROGRAM REQUIRES 2047 BYTES T

0 OPERATE

156 FORX=1TOI0: PRINT'NEXT
155 INPUT"START,END ADDRESS IN DECIMAL"

;A,B

178 PRINTPRINMNPUT"SOURC£ PROGRAM LI
NF# START & IHC";D,E

175 P0KE15,255 :SAUE

188 PRINTD; "FORX="A"TOHB1" = READY = POKEX/Y
•NEXT"

218 FORI=ATOBSTEP23^FORJ=0TO22
228 A$CJ>=ST^(PEEK(I+J»

238 A*(J>=RIGHT*<A$CJ),LEN< A*<J»-l)--NE
XTJ

240 D=D*£ = PRINTDj "DATA";
258 FOR>0TO11 = IFI+J>BTHEN280

251 PRINTA*(J>;CHR*C44); =NEXT'PRIHTAtfJ
)•■

268 D=D+E = PRINTD;"DATA";
278 FORJ=13T02i: IFI+J>BTHEN288
271

275 NEXTI

288 PRINT:PRINT"P0KE515/1 =
298 POKE517,6

Program Listing

START,END ADDRESS IN DECIMAL? 0,222

SOURCE PROGRAM LINE # START & INC? IMA
0

186 FGRX= 0 TO 222 ■• READY = POKEX, Y-'NEXT
UQ QATA76«116j 162,76,155,ibS,5,174,193

, 1^,76^136,174

128 DAiA6,y,£5p,5fc, 17,0,49,45,48,44
138 DATA49,48/0/0, b"y, Q, 49,55,44,48/32/9

,78

14$ DATA34/0/75/6/53/49,53,44.4?,58

158 DATA82/ 85/ 7S, 34,8,82,73,78,84/ 65,36
,48,74

168 0ATA41,58/32,G,64,34/32/0/ §2,84

176 DATA32,38,32,73,78*67*34,59,68.44,6

4

186 DATA7i,34/0/177,128/128/11,%, 171,3

198 DATA58/0/0/0.6,0,0,6,0,104,101.0.1

DATA249,6/165.143,174,225,141/32/8/

218 DATA247,1,32,25,6,251,1,3,226,5,12,
6/226

226 DffJM/115/?/106,7,0,8,226,0,155
236 OATA0,236/ 4,164/ 237,0,3,25, fe), 74,y, S
.6

248 DATA71.6,255.164.0.83/0,104.0,4
258 DATA76/ 36/188.19,6,227,5,0, @. 6,6,13

6,0

268 OAmti, 175,33,0,0,136.161,0,0,33
278 DAlASt./0,8,0,230,195,208.-2,230,196,

173/255/4

2S6 Df-ili^i,5&,J76,i&,261,32,240,239,56
,233

296 DATA48/ 56,233,208,96,128/ 79,199,82,
47/140/164^171

306 DATA5/22S/231/

P0KE515^1«RUN I
Example 1

Part One Of Two
f\^I f^An Charles L Stanford
%JJ| ^jp Cinnaminson, NJ

Newspaper

Route Listing
Program
This program, like most, started out as a very

simple task to fulfill a stated need. And like too

many, it got very, very complicated. My son, John,

has a paper route. In a big city suburb, newspaper

routes are very volatile; the customer list changes

as the promotions of the various papers attract

readers, and as the residents move on with their

corporations. So the route list is hard to keep

current. Each day off requires a new hand-written

list for the sub (too often Dad). A Paper Route

program seemed like a natural. And the program

was easy to write. It started out in much the same

form as listed here. The data save method is

similar to the one in COMPUTE!, Issue 2, "Home

Accounting" article, with the exception that I

added Strings for the customer's names. All seemed

to be fine. But then the bug showed up. The

program wouldn't save Strings to data statements

when new customers were added! Everybody

ended up with the same name.

A week (and a lot of POKEing around in

RAM) later, I knew one heck of a lot more about

my CIP's method of storing variable arrays, and

the program ran. I think that a quick review of

what I learned, and how the computer can be

"fooled" by some String manipulation tricks, will

be useful to many readers.

Microsoft BASIC Source Code Storage

Much has been written on the method Microsoft

92 COMPUTEI June, 1981. lssue 13.

19 RE/1 CHARLES A STEI~ART
29 REI'! 3833 I1ARU I N DR.
39 RE/1 ADR I AH 11 I 49221
49 REt1 517-265-4798
59 RE/1 AUTOLOAD PROGRAN FOR OSI CIF'
89 POKE133,iHOKE134,8
99 DII'1A$(24),8$(24;': POKE15, 0
198 FOR,I(~0T049 : PRHlT:NE>(TPRmT" AUTO L

OAD OF MACHIHE LANG F'ROG"
118 PRINT" HI PAGE 2 OR 11E1'10R'f LOC AWl!

E $8800
128 PRINT"F'ROGRA/1 REQUIRES 2047 BYTES T

o OPERfiTE
158 FOR>(=1T018 :PRmnJEi(T
155 H/PUT"START,END ADDRESS IN DECH1AL"

; A,a
178 PRINT PRINT : HIPUT"SOURCE PROGRA/1 LI

NE" START 8.: HlC";O,E
175 POKE15,255:SAUE
100 PRINTD; "FOR:>i="A"TO"8" : READY :POKD(, Y

: ~IEXT"
218 FORI=ATOBSTEP23 :FORJ=9T022
228 A$(J)=STR$(P££K(I+J)
238 A$(J)=RI GHT $(A$(J), LEN(A$(J))-1) : NE

XTJ
246 O=D+E : PRINTD; "DATA";
258 FORJ=0T011 : IFI+J)BTHEN28l3
251 PRINTA$(J); CHR$(44); : ND:r: PRHlTA$(J

) :

266 O=D+£ : PRIHTD; "OATA";
278 FORJ=13T021: IFI+J)BTHEN280
271 PRINTM(J); CHR$(44); : ~/EXT: PRHlTA$(J

) !

275 NEXT!
200 PRINT : PRINT"P~(E515, 1 :RUN"
298 POKE517,fj

Program Listing

Part One Of Two

051 C1 P
Charles L. Stanford

Cinnaminson. NJ

Newspaper
Route Listing
Program
T his program, like most, sta rted out as a very
simple tas k to fulfill a stated need. And like too
many, it got ve ry, ver y complicated . My son,J ohn ,
has a paper ro ute . In a big city suburb, newspaper
routes are very volatile; the customer list changes
as the promotions o f the va rious pape rs altract
readers, and as the residents move on with their
corporations. So the route list is hard to keep

START, Ei-ID ADDRESS HI DEC HlAL? €L 222

SOURCE PROGRA11 LINE If START &: HIC? 18e,1
o

100 FOR:'i== ° TO 222 : READY: POKE;'; , Y: NE:>iT
110 DATArE. , 116, 162, 76, 195, 168,5,1 74 , 193

,175,76,136,1 74
1213 OATAO, 0, 255, 56,1?, €i, 49, 48, 4H, 44
13& OfiTA49,48, fJ , O, 69, e,49,55,44,48, 32, e

,78
148 DATA2;4, e, 75, e , 53, 49, 53, 44, 49, 58
J5B O~)TAf;2JB5J 78/34,8,82,73, ?8J~~~L65J 36

,48,74
168 DATA4L 58, 32, e, 84 , 34, 32ie, 82, 84
170 DHTA32,38, 32 , 73, 78,67,34 ,59,b8, 44 , £

9 , 32, 13
189 OATA?1,34 ,O, 177,12B, 128, 11 ,96 ,1?1,3

4
198 DATi'iSE:,H,0,e , 0, e, 0,ti, ti , 104, leL ti , 1
200 DATA249,6, 165, 143, 174, 225, 141, 32,8,

6
218 DATA24? J 1 J 32 , 25, fL 251) 1 J 3/2::~6/ 5 1 12,

6,226
220 DATR6,115, (,le6,7,e,S, 220,O, 155
238 DATA0,236,4 , i64 , 23?, O, 3, 25,O, 74 , 0, 8

)6
248 OATA?L 6,255, 164,0,83,0,104, e, 4
258 DATR?6, 3fj, lSH , 19, 6, 22?, 5, 0, 0, 6, 6, 13

6 , 9
268 DATAf;, 175, 33,0, e , 136, 161, 0, 0, 33
278 OATA56 , u,8, 0, 230, 195,208, 2,230,196,

173/ 2~35 / 4
288 0(,Ti:,;2(11, 510;,1 76, w, 2e1, 3;2, 240, 239, 56

,233
298 [JPtT r~4f-; , 56, 233) 2l)f.:, 96, 1281 791 199,821

47,140.164,171
300 ur~TA5 / 229/23 1 !

POKE-S1S, 1 : RUN ©
Example I
current. Each day off requires a new hand-writte n
list for the sub (too often Dad). A Paper Route
program seemed like a natural. And the program
was easy to write. It sta rted o ut in much the same
fo rm as listed here. T he data save method is
similar to the one in COMPUTE!, Issue 2, "Home
Accounting" article, with the exception that I
added $trings fo r the customer's names. All seemed
to be fine. But then the bug showed up. The
program wouldn 't save $trings to data statements
when new customers were added ! Ever ybody
ended up with the same name.

A week (and a lot o f PO KEing a round in
RA M) later, I knew one heck of a lot more about
my C I P's method of sto ring variable arrays, and
the program ran. I think that a quick review of
what I learned , and how the computer can be
"fooled " by some $tring manipulation tricks, will
be useful to many reade rs.
MIcrosoft BASIC Source Code storage
Much has been wrinen o n the method Microsoft

June, 1981. Issue 13. COMPUTE! 93

BASIC uses to store programs. I think one of the

best explanations if found in Edward H. Carlson's

book "OSI BASIC In ROM". To simplify, the

source code is stored in RAM starting at Hex

address $0300. The first byte is 00. The next two

hold the address of the next line, in the standard

notation of lo byte first, hi byte second. To convert

to decimal, multiply the decimal value of the

second byte by #256 and add the value of the first.

The next two bytes are the line number, in the

same form. For example, line 100 would read 64

00 (the Hex value of Dec 100 followed by 0 * 256).

Now conies the line itself, with the BASIC com

mands in their token form and all other information

represented by its ASCII value. See Table 1 for the

representation of a typical line.

Each successive line is ended by a 00, and each

new line starts as above. The last line is followed by

three bytes of 00. Next comes the variable table,

with the simple variables stored first. The numeric

variables are stored in four-byte floating point

binary. I won't go into that here, except to say that

a decimal number is represented in a manner

similar to a logorithm, with the characteristic

(exponent) first and the mantissa (base value) next.

The String variables are stored in a much different

manner. The second byte of a String variable is the

ASCII value of the second character of the variable

plus $80 (Dec 128). Where the next four bytes of a

numeric variable are the value for the numeric,

they are, for a String, the length of the String; the

address of the location of the actual String else

where in memory; and 00 to end the variable.

This latter characteristic is what brought me to

not inconsiderable grief. The same difference

exists for the storage of numeric and String arrays.

Arrays start a bit differently, but the idea is the

same. The first seven bytes define the array. For a

string array, they are as shown in Table 1. The

array used is dimensioned at two, which will give it

three elements (remember that "0" is a place for a

computer). In addition, you must remember that

non dimensioned variables default to ten. Thus

they have eleven elements, counting the Oth to the

tenth. The third byte of each array is a pointer so

the program can easily find the next array without

searching through every element of each. It repre

sents 7 + (No. of elements) * 4, which is the number

of bytes to the next array. The fourth through

seventh bytes contain $00, $01, $00, and (No. of

elements + 1), respectively.

Next is the elements of the array, with four

bytes each. They are. in order, the length of the

String for that element; the address of the String

elsewhere in memory; and 00 to end the element.

If the String's value is established in the source

code, whether in a DATA statement or as a String

constant, its location slays with the source code. If

the String is etablished during the run of the

program, by keyboard input or through String

manipulation, it is placed in high memory, working

from the top of RAM down. However, you can fool

the program. By concatenating a String with a zero

length string, the BASIC routine thinks a new

String has been established, and puts it at top of

memory as well as in source code. A$ = A$ +

does it. The disadvantage is that the String is now

in two places, with attendant use of extra memory.

But why would you want to do this? One

reason came to light during the creation of the

Paper Route program. When a new customer is

added, the routine at Line 525 of Listing 2 opens a

space, and readdresses all of the Name Strings

from the insertion location up. This means that the

String in source code which used to be N$(X) is

now N$(X+ 1), and so on. Everything works fine,

as the new N$(X) is INPUT and placed at top of

memory. The problem arises when you try to save

all the Strings, old and new, to DATA by the

routines between Lines 800 and 995. I at first tried

to save from N$(l) to N$(75) in all cases. It worked

whenever customers were deleted. But if customers

were added, everyone from the new one to the end

had the new person's name. As it turned out, the

program was trying to pick itself up by its own

bootstraps!

If a customer is added at number 3, then old

customer 3 becomes number 4. But the name is

still stored in the third DATA statement. Now you

start to rePOKE the DATA statements, from 1 to

N. What happens? Old 3 is replaced by new 3. But

now you try to read new 4 (which was old 3), and

you, instead, get new 3. Sounds simple. But it sure

was perplexing until I reached a fairly complete

understanding of the String variable storage

system discussed above.

Several solutions appeared possible, with the

easiest to just concatenate each string. But that

turned out to use up more than my 8K of RAM

with 75 customers. The best answer seemed to be

to reverse the order for acids and deletes. The

disadvantage here is time; it takes about 35 seconds

for the save routine, and it must be done once each

for adds and deletes. On the other hand, more

efficient solutions would involve machine language

routines or complicated String manipulations. Q

MICRO DATA
STREAMWOOD.ILLINOIS

60103
OYES!
WE HAVE IT..

.S.I. FLIGHT SIMULATOR
FULL GRAPHICS/sound C2/C4P • $14.95

□ VOTRAX SPEECH ANSWERING MACHINE TAPES.
(25words,your choice) $14.95

□ UTILITIES nGAMESLlEDUCATIONAL-FROM-$5.95
DVOTRAX PROGRAMS(NO DISK REQUIRED) ■ LET'S TALK

CATALOG with DISCOUNT COUPONS and FREE-.
HARD COPY OfGRAPHICS PROGRAM »$ 1.00
• ALL SOFTWARE COMPLETE WITH HARD COPY....

• 100% GUARANTEED •HIGH QUALITY CASSETTE TAPES.

741 SURREY DRIVE 312/837-7569

June, 1981. Issue 13. COMPUTEl 93

BASIC uses to store programs. I think one of the
best explanations if found in Edward H. Carlson 's
book "OSI BASIC In ROM". To simplify, the
source code is stored in RAM starting at Hex
address $0300. The first byte is 00. The next two
hold the address of the next line, in the standard
notation oflo byte first, hi byte second. To convert
to decimal, multiply the decimal value of the
second byte by #256 and add the value of the first.
The next two bytes are the line number, in the
same form. For example, line 100 would read 64
00 (the Hex value of Dec 100 followed by 0 * 256).
Now comes the line itself, with the BASIC com­
mands in their token for m and all o ther information
represented by its ASCII value. See Table I for the
representation of a typical line.

Each successive line is ended by a 00, a nd each
new line starts as above. The last line is followed by
three bytes of 00. Next comes the variable table,
with the simple variables stored first. T he numeric
variables a re stored in four-byte noating point
binary. I won 't go into that here, except to say that
a decinlal Illllnber is represented in a manne r
similar to a logorithm, with the cha racteristic
(exponent) first and the mantissa (base va lue) nex t.
The String va riables are stored in a much different
manner. The second byte o f a Strin g variable is the
ASCII va lue of the second characte r of the variable
plus SSO (Dec 12S). Where the next four bytes of a
l1ulneric variable are the value for the numeric,
they a re, fo r a String, the length of the String; the
address of the location of the actua l Strin g else­
whe re in memory; and 00 to end the variable.

This latter characteristic is what brought me to
not inconsiderable grief. The same di fference
ex ists for the storage of numeric and tring arrays .
Arrays start a bit differe ntl y, but the idea is the
same. T he first seven bytes d e fine the array . For a
string array, they are as shown in Table I. The
arra y used is dimensioned at twO, wh ich will give it
three ele ments (remember that "0" is a place for a
compute r). In add ition, yo u must remember that
non dimensioned va ri ables defau lt to ten. T hus
they have eleven elements, counting the Oth to the
tenth. The third byte of each array is a pointer so
the program can eas il y find the nex t a rray without
searching through every element of each. It repre­
sents 7 + (No. o f eleme nts) * 4, which is the number
of bytes to the next array. T he fourth through
seventh bytes conta in $00, $0 I, $00, and (No. o f
clements + I), respecti vel y.

Next is the elements of the array, wilh fo ur
bytes each. They are, in o rder, the length of the
$trin g for that element; the address of the String
elsewhere in memory; and 00 to e nd the element.
I f the String's va l ue is established in the source
code, whether in a DATA statement or as a $1.ring
constant, its location stays with the source cod e. If
the String is etabl ishedduring the run of the
program, by ke)'board input or through String

manipulation, it is placed in high memory, working
from the top of RAM down. However, you can fool
the program. By concatenating a String with a zero
length string, the BASIC routine thinks a new
String has been established, and puts it at top o f
memory as well as in source code. A$ = A$ + ""
does it. The disadvantage is that the String is now
in two places, with attendant use of extra memory.

But why would you want to do this? One
reason came to light during the creation of the
Pa per Route program . Whe n a new customer is
added, the routine at Line 525 of Listing 2 opens a
space, and readdresses all of the Name Strings
from the insertion location up. This means that the
String in source code which used to be N$(X) is
noll' N$(X + I), and so on . Everything works fine ,
as the new N$(X) is INPUT and placed at top of
memory. The problem arises when you try to save
all the Strings, old and new, to DATA by the
routines between Lines SOO and 995. I a t first tried
to save from N$(I) to N$(75) in all cases. It worked
whenever customers were d eleted. But if customers
were added, everyone from the new one to the end
had the new person 's name. As it turned out, the
program was trying to pick itself up by its own
bootstraps!

I f a cus tomer is add ed at number 3, then old
customer 3 becomes number 4. But the name is
sti ll stored in the third DATA statement. Now you
start to rePOKE the DATA statements, from I to
N. What happens? O ld 3 is replaced by nell' 3. But
now you try to read new 4 (which was old 3), and
you, instead, get nell' 3. Sounds simple. But it sure
was perplexing until I reached a fairly complete
unde rstand ing of the String va riable storage
sys tem discussed above .

Several solu tions appea red poss ible, with the
easiest to just concatena te each string. But that
turned out to use up more than my SK of RAM
with 75 customers. The best answer seemed to be
to reverse the o rder for adds and deletes. T he
disadvantage here is time; it takes about 35 seconds
for the save ro utine, and it must be done once each
for adds and d eletes . On the other hand, more
efficient solu tions would involve machine language
routines o r com plica ted :tring manipulations. ©

W MICRO DATA IlYES'
F STREAMWOOD, ILLINOIS 'Y •

60103 WE HAVE IT..

G *0.5.1. FLIGHT SIMULATOR
FULL GRAPHICS/SOUND ·C2/C4p · $14.95

o VOTRAX SPEECH ANSWERING MACHINE TAPES.
(25words.yourchoice) $14.95

o UTILITIES OGAMESOEDUCATIONAL'FROM . $5.95
OVOTRAX PROGRAMS(NO DISK REQUIRED) . tET'S TALK
CATALOG WITH DISCOUNT COUPONS AND FREE ..

RD COpy Of~Af>HlCS -f'ROGRAM [>$1.00..A..
e ALt SOFTWARE COMPLETE WITH HARD COPy.... X
.100·'0 GUA1!A'NTEEDeHIGH QUAtlTY CASSETTE TAPES.
741 SURREY DRIVE 3121837· 7569

