
-. ~

HEXDOS

CHALLENGER 1 P SUPERBOARD II

The smart disk operating system · ·
for Ohio Scientific computers

•

INTRODUCTION

This software has been thoroughly tested and is believed to be
reasonably bug-free. In spite of this, somewhere in the many scores
of man-hours and the thousand-odd lines of assembly code in­
volved in this project, there is guaranteed to be at least one bug
lurking.

Other than the real-time clock, the hardware modifications
listed in appendix D are not intended to imply any approval from
OS I. Hardware changes are not essential to use this disk operating
system, but you will find your machine more convenient to use after
making the changes.

At this writing, HEXDOS is in version 4.0. This version is com­
patible with the standard OSI monitor ROM as well as the C1 S and
C1 E ROMs. The editing features provided by these replacement
ROMs take precedence over those provided by HEXDOS, and all
features are available directly from the keyboard. New disks of this
version or future versions are available from The 6502 Program
Exchange to prior purchasers of HEX DOS for $10.

Questions, comments, suggestions, errors, etc. should be ad­
dressed to the author:

Steven P. Hendrix
Route 8, Box 81 E

New Braunfels, TX 78130

© 1980 Steven P. Hendrix

Distributed by The 6502 Program Exchange
2920 West Moana
Reno, NV 89509

.--,.

;

,.
II
·~

~

ll

CONTENTS

Getting started 5'
Key functions 6
Editing ... 6
LOAD ... 7
SAVE : 8
INPUT, PRINT, and LIST 9
Using disk data files 1 0
Random-access data files 11
USR .. 13
Debugging aids 14
Real-time clock 15
Program conversions 16
Copying files 17
Autostart .. 17

Utilities and Demo Programs

FORMAT ... 19
CREATE .. 19
DELETE .. 20
DISASSEMBLER , 20
CHECKBOOK 22
ADDRESSBOOK ~ 22
SURROUND 23
FIFTEEN ... 23
REVERS! ... 23
BACKGAMMON 24
$LIFE : 24
BSR CONTROLLER 25

Appendix

Error codes 29
Diskette format 30
Memory map 31
Hardware modifications 32
Reserved 1/0 devices : 35
Warning for string routines 36
Updating older versions 37

1

j•<

1:

II

I
I

GETTING STARTED

We'll skip the usual congratulations on your purchase and get
right down to business. Turn on your system, press BREAK, insert
the HEXDOS diskette, and press D. HEXDOS will boot up using
parts of the cold start routine, including the MEMORY SIZE and
TERMINAL WIDTH functions, which run n.ormally.

This manual will assume that you are familiar with BASIC-in­
ROM and in particular with the requirement to press RETURN after
typing each line. If not, please read the manuals which came with
your system and become familiar with BASIC-in-ROM before pro-
ceeding. ,

After loading HEXDOS as in the paragraph above, you can
treat the system as if you were using BASIC-in-ROM, because in
fact you are. HEXDOS gets its incredible compactness by using the
power built into the system wherever possible.

Please avoid the USR function until you read the section de­
scribing its special powers, and use LOAD and SAVE only as de­
scribed below until you read the appropriate sections. If you leave
the write-protect tape on the disk, you need not fear damaging it by
tinkering with the new commands at your fingertips. Once you re­
move this protection you are on ·your own.

To get a directory, type LOAD/. This vyi11To~ the disk directory
as a BASIC program which you can LIST. To load a program, for
instance FORMAT, type LOAD "FORMAT". To save a program
after editing, type SAVE. To create a new copy and call it NAME (for
example), type SAVE "NAME".

5

~

SPECIAL KEYS

All normal key functions of BASIC-in-ROM are available under
HEXDOS, along with the following additional features. Any word
enclosed in [] refers to a single key. Where two keys are in brack­
ets, hold the first key while pressing the second key.

[ctrl] Suspend output, wait until the key is released.
[rub out] Move the cursor nondestructively backward.
[esc] Move the cursor nondestructively forward.
[shift return] Allows editing (see below).
[repeat] Break a BASIC program (identical to [ctrl C]).

If change is made as in appendix D, repeats the last
command entered in immediate mode.

[ctrl C] Instant screen clear anytime you can type characters
on the keyboard. Breaks a BASIC program otherwise.
(Note that output is suppressed while you hold the ctrl
key; the screen-clear character will not be issued until
you release the ctrl key.) To clear the screen from a
BASIC program, PRINT CHR$(3);

Any key functions provided by alternate ROMs supercede
those provided by HEXDOS.

EDITING (inactive with C1 S)

HEX DOS adds the capability to edit a line which you are enter­
ing or have already entered without retyping the entire line.

To edit a line such as line 40, simply list the line but hold the
shift key while pressing return (or type ctrl-shift-M if you have the
C1 E ROM). That is, type

LIST 40 [shift return]
Line 40 will list on the screen and be placed in the edit buffer just as
if you had typed the line but had not yet pressed [return]. Now you
may edit the line just as you may when first typing it by using
[rubout] to backspace the cursor and [esc] to move the cursor
forward. Simply type over any part of the line you wish to change.
Note that you must use [esc] to move the cursor to the end of the
line and then press [return] to enter the line when you have finished
editing it.

6

r
I'

,.·

I

1

LOAD

HEXDOS adds the following forms of LOAD. Items enclosed
in [] refer to an item that should appear there (don't type the
brackets).

[aex] Any arithmetic expression valid in BASIC. A number
such as 5, a variable such as I, a subscripted vari­
able such as A(l), or even an expression such as
A(I)+LOG(SIN(Q/2))/43.787 would be valid. The
expression must result in a value in the range
-32768 to 32767.

[filename] Any valid filename. (See SAVE for rules.)

LOAD/ Load the directory. Use LIST to view it after loading.

LOAD [filename]
Load [filename] as a BASIC program. Example: LOAD
"FORMAT". If [filename] starts with $, it refers to a machine
language file containing load address information as noted
in the USA section of this manual. Note that using LOAD
"$name" in a program will clear all variables. RUN
[filename] loads a BASIC program from disk and runs it.

LOAD *[aex],[filename]
Open [filename] as the data file specified by [aex]. Example:
LOAD *5,"MYFILE". Each use of this form allocates a 2K
byte buffer from BASIC's string space. A call to FRE(X)
deallocates all file buffers (see Appendix F).

LOAD #[aex1],[aex2]
Directly loads track number [aex1] into the 2K bytes begin­
ning at [aex2]. Use with caution, preferably with nothing in
memory which is not saved. Example: LOAD #1 ,8192.

LOAD! On a dual drive system, selects the drive which is currently
idle and homes its head to track 0. A program may detect
which drive is active as in this example:
IF (PEEK(49152) AND 64) THEN PRINT "A IS ACTIVE"

This quantity is true if drive A is selected and false if drive B
is selected. Drive B must be initialized with LOAD! before it
is used. Track number 128 is drive B track 0, etc.

7

SAVE

SAVE functions similarly to LOAD with a few exceptions. See
the description of LOAD for general comments. SAVE in its normal
function dealing with cassette tape is unnecessary under HEXDOS.
NULL 1 O:LIST#2 will perform the same function as the old
SAVE:LIST vyithout writing extraneous data on the tape. (See also
LIST.)

SAVE Save the current BASIC program to the same tracks it
came from. Note that the same disk must still be in the same
drive, since SAVE will write over whatever is on the corres­
ponding tracks of another disk.

SAVE [filename]
Check to see that [filename] does not already exist, create a'
new file named [filename] large enough to hold the current
program, and save the program in the new file.

SAVE &[filename]
Save the current program in the existing file [filename]. The
old contents of [filename] are lost. Example: SAVE &"TEST"

SAVE *[aex]
Close output file [aex] and write the last buffer to the disk
(generates F ERROR if used on an input file).

SAVE #[aex1],[aex2]
Save the 2K bytes starting at [aex2] on track number [aex1].
Use with extreme caution, preferably on an empty disk!

Filenames

A filename may be any valid string expression. If you type the
name directly in a line, this means you must enclose it in quotes.
You may also specify a filename with a string variable or a concate­
nation of strings. A filename which starts with $ will be interpreted
as a machine language file with load address information (see USA,
CREATE, and DISK FORMAT).

8

li
~

If
j
I

I

INPUT, PRINT, AND LIST

Input and output are controlled by HEXDOS using the forms
INPUT#n, PRINT#n, and LIST#n, where n selects the appropriate
device from the table below. For instance, to list a program to a
printer, simply LIST#1 . This will list the program but send the listing
to the printer rather than the screen. Note that LIST by itself does
not generate a carriage return after printing the last line of the
program. Most printers do not print a line until they receive a CR, so
you may need to PRINT#1 after a LIST#1 to see the last line.

INPUT can get its data from any device listed below, and
PRI~1 can send its output to any device. If any of these verbs are
used without#, device 0 is assumed. Thus programs dealing only
with the keyboard and screen will run without modification.

Input devices

0 keyboard
1 reserved for expansion
2 6850 ACIA (tape interface, printer, or modem depending on

your hardware)
3 reserved for expansion (modem)
5-25 (odd) disk input files

Output devices

0 video screen
1 parallel printer port at $D900
2 6850 ACIA
3 reserved for ex·pansion (modem)
4-24 .(even) disk output files

OSI made an error in the routine which prints error messages
which causes the second character to be printed as a graphic
character (bit 7 is a 1). HEX DOS prints the correct two-letter error
identifier by masking off bit 7. If you wish to print graphic characters
(decimal 128 thru 255), POKE 227,255 to disable this feature.
POKE 227,127 will restore it.

9

USING DISK DATA FILES

A HEXDOS data file may be visualized as a video screen which
may be written to and read from. A PRINT statement writes the
same characters to a disk file as it would write on the screen. This
includes control characters such as carriage return and line feed,
which are not normally visible on the screen. An INPUT statement
accessing a disk 'file will react exactly as if you typed the characters
on the keyboard.

The following short example should help to clarify disk data file
use for those who are not familiar with the concepts involved. This
example will assume a file named MYDAT A already exists (use the
CREATE utility to make such a file one track long for this example).
First, we must associate a file number with the file MYDATA and
prepare it for writing. This process is commonly referred to as .
"opening" the file. HEXDOS uses the BASIC verb LOAD for this
purpose:

LOAD *4,"MYDATA"
This sets the disk file for output (note the even file number) and
"clears the screen" so that writing will start at the beginning of the
file. Print a line into the file just as you would on the screen:

PRINT #4,"HELLO THERE!!"
You may also print numbers. To print several numbers on one line
so that they may be read properly, you must print commas between
them just as you would if you were typing on the screen:

A=12.5:B=23
PRINT #4,A;",";B

After writing to the file, it must be properly closed to insure that
all data is correctly entered on the disk. HEXDOS uses the BASIC
verb SAVE to close a file:

SAVE *4
Now the data file is actually on the disk, and may be read by any
program.

Since BASIC does not permit using the INPUT statement from
the keyboard, we will have to create a short program to show how to
read from the data file we just created:

10

I
' '

I .J.!

NEW
10 LOAD *5,"MYDATA"
20 INPUT #5,A$
30 PRINT A$
40 INPUT #5,X,Y
50 PRINT X,Y

Line 10 opens the file as before, but uses an odd file number to
designate an input file. Line 20 reads the first line of the file as if you
had typed the line on the keyboard. Line 30 shows the results. Line
40 reads the next line, on which we printed the numbers 12.5 and
23 previowsly. Line 50 shows the results. Since we are not changing
the file, t~ere is no need to close it.

You may output on the same line with several different PRINT
statements by ending them with a semicolon, just as you can on the
screen. For the most compact data files, use NULL 0 to prevent
BASIC from placing nulls after each line (they take up space but do
not appear in the data when it is read back). HEXDOS selects this
setting during boot-up, so it need· not be changed unless you
change the setting elsewhere.

RANDOM-ACCESS DATA FILES

There are two types of data file organization. The file we
worked with in the last section was a "sequential" data file. A se­
quential data file can be visualized as one long string of characters
that are always read from or written to sequentially. In other words,
the third character in a sequential file is always read after the sec­
ond character and before the fourth. BASIC does input and output
on such a file as if those same characters came from the keyboard
or went to the screen.

A "random-access" file, on the other hand, can be seen as a
set of numbered strings of characters. Each of these numbered
strings is called a "record." The data contained in each record is
stored sequentially, as before. The thing that distinguishes a
random-access file is that records do not have to be written or read
in any particular order. A program might store data in record 5,

11

record 2, and record 99, then retrieve data from record 43 and
record 1. If you tried to do this with a sequential data file, the
computer would have to read or write to all intervening records
before operating on the record it wished.

The HEXDOS disk contains a program called RANFILE to
demonstrate random-access data files. The subroutine contained in
RAN FILE sets the file pointer to a specific record whose number is
given by the user in the variable ZP. If your program needs to
access record number 100, for example, you would set ZP=100,
GOSUB the appropiate routine in RANFILE, and then INPUT or
PRINT to the record as desired.

In a sequential data file, individual items are separated by
commas, colons, or carriage returns. The items may be any length,
which adds flexibility but makes it difficult to locate a specific item. lr.~
a random-access file, items within a record may still be of varying
lengths, but records must be a fixed length to allow the computer to
find the beginning of the record. RAN FILE assumes each record is
64 characters long (including control characters). This length may
be changed by changing the value of ZL in line 63080.

Remember that BASIC prints to a sequential or random file just
as it does to the screen; that is, it prints spaces between items
separated by commas, and prints a carriage return, line feed, and
nulls at the end of every print statement that does not end in a
semicolon. During input, BASIC continues to call for characters until
getting a carriage return and then analyzes the line it has received.
A record being read in a random file continues into the next record if
necessary.

For further information, list RANFILE.

12

I JJ

USR

The USR function is automatically defined for a number of uses
by HEXDOS .. The usual way to access it from BASIC is T=USR(X)
or PRINT USR(X), where X selects the function:

Value of X Function

256 and up Tone generator (you need to connect a speaker as
noted in Appendix D). X is 256*1ength+pitch.

0 thru 255 Input a character from device X. This form may not
be used in a PRINT statement or immediate mode.

-1 Return a number identifying the disk error type when
used with a BASIC error handling routine (see Ap­
pendix A).

. -4 thru -2 Return the value of one of the three bytes of the
real-time clock. USR(-4) returns the least significant
byte, while USR'(-2) returns the most significant byte.

-5 Jump to a machine language routine at the location
specified by an arithmetic expression following USR.
That is, T=USR(-5) 0 would jump to location $0000
(warm start), while T=USR(-5) -1024 (i.e., 64512)
would jump to the disk boot routine at $FCOO. Use
with caution. Once you pass control to a machine
language program, you lose the protection provided
by BASIC. It may erase your program, write on the
disk, or just go away and not come back. You may
recover from the latter by doing a warm start with
[break] followed by W.

-6

-7

Jump to the ROM monitor (return to BASIC via ~
warm start, which may also be done by a GO at
$0000).

Jump to the routine last loaded by LOAD$. You may
also set this up for your own USR function just as in
the BASIC manual except that the vector is at $FO
(decimal 240) and a parameter to be passed must
appear after the parentheses: USR(-7) 2*B(I)+J. To
create a machine language file, see CREATE.

13

DEBUGGING AIDS

HEXDOS adds some powerful program analysis features to
BASIC. It retains the simple break on [ctrl C], and will also stop on
[repeat] or [break] (see Appendix 0). This action may be disabled
by POKE 530,1 .

TRACE
To have a full trace of your BASIC program as it executes,

POKE 530,2 before you RUN or CONT it. This will cause BASIC to
print the line number in [] after each statement is executed. Pro­
gram output is intermixed with this trace, allowing you to see the
action of each line as it executes.

SINGLE-STEP
The single-step mode uses tracing as above but pauses and

waits for a keystroke after each statement. POKE 530,3 enters the
single-step mode. After each line, [line feed] will step to the next
statement, while [return] will disable the single-step and trace op­
tions and continue normal execution. To break out of the program to

··print variables, list the program, or correct the problem, hold [re­
peat] or [break] (depending on hardware) and press [line feed]. You
may also activate trace or single-step by placing the appropriate
POKEs in your program. POKE 530, 0 disables any of these options
and returns to normal execution.

14

I
-:

REAL-TIME CLOCK

HEXDOS includes precisely the type of real-time clock support­
ing software that OSI mentions in their literature on the 610 board.
Two jumpers must be added to t'ie 610 board at regular tie points to
activate this option as noted in Appendix D.

With the hardware activated, there is a three byte clock which
counts seconds since the last cold or warm start. The contents of
this clock are available through USR.

Before BASIC tries to execute a line of a prpgram or a line
typed from the keyboard, it will do a GOSUB 0 if the contents of
memory location 236 and 239 (decimal) are both zero. Location 236
is intended to be an enable/disable switch, while 239 is part of the
real-time clock. Location 238 is incremented for each trigger of the
NMI line (pulsed once per second to make this act as a clock).
Location 239 is the overflow. POKE the two's complement of the
desired time delay into 238 (low byte) and 239 and POKE 236,0. If
BASIC is running when the time interval ends, it will do a GOSUB 0.
Your timeout routine must therefore begin at line 0 and end with a
return.

You can also treat this feature as an ON INTERRUPT GOSUB
by connecting your interrupting· device to NMI and POKEing 255
into both 238 and 239 (and 0 into 236).

One caution which may prevent some frustration with erratic
results: the disk motor turnoff routine uses location 238, and every
disk track seek resets it to 252 (4 seconds until turning off). This
may cut up to 252 seconds off of your preset time interval for each
disk access, depending on exactly when the disk accesses occur.

Even though this setup leaves something to be desired in the
way of elegance, it does permit sonie real-time programming. For
instance, in a game you can have something happen if the player
waits too long to react. A GOSUB cannot be safely executed, how­
ever, until the current statement is finished executing. This means
that your routine will not be triggered until after the user presses
RETURN if the clock runs out while an INPUT statement is being
executed, or until he presses a key if you use USR(O).

15

PROGRAM CONVERSIONS

BASIC programs saved on tape will be compatible with HEX­
DOS. Load them just as you normally would, with LOAD.

Programs which use USR sh•uld be changed to use USR(-7)
by moving the start vector to 240 ($FO) and placing the parameter to
be passed immediately after the parentheses rather than within.
Values returned by USR are handled normally.

Programs which deal with tape will run as is, except that the qld
function of SAVE to switch output to tape is replaced by

PRINT #2, [data]
You probably will prefer to change your programs to work with data
on disk rather than tape, now that you paid -all that money for the
disk. See LOAD*, SAVE*, and the section on INPUT and PRINT.

Programs written under another DOS may be loaded most
easily by saving them on tape and then loading the tape under
HEXDOS. To save a program on tape from OS65D, type

NULL 8:DISK!"IO ,03":LIST
(The space between 10 and the comma is essential in this line!)
Programs using disk under OS65D will need some minor changes
to the input and output sections. OPEN must be changed to LOAD
and CLOSE must be changed to SAVE (see LOAD and SAVE).

If you are familiar with the internal format of the other system,
you may also transfer the program by using HEXDOS to save it,
track by track, from its present location in memory to a file on a
HEXDOS disk. HEXDOS automatically corrects the line pointers
when loading a program, which should leave you with at least a
readable program needing a few changes.

16

. -

1
""'

COPYING FILES

To copy a HEXDOS program from one disk to another, LOAD it
from the original disk, put the new disk in the drive, and SAVE
[filename]. If you have dual drives, this operation can be done
without switching disks by using LOAD! between the LOAD and
SAVE commands.

Transferring data files can be a bit trickier. The safest way is to
write a short program to read a data file and then write it to the new
file. If you're sure of what you're doing, LOAD #and SAVE #can be
used to transfer tracks directly.

AUTOSTART

You can have a BASIC program begin executing automatically
when you boot up HEXDOS. If your disk drive is set exactly to specs
(300 RPM) the program can be about 170 bytes long. Allowable
length decreases as disk speed increases. If this seems short, re­
member that it can include a command like RUN "BIGFILE", and
BIG FILE can be as big as your memory allows, which is about 1 OK
bigger than it could under OS65D ..

The size limit is caused by the way the autostart program is
stored. On a standard drive, there are about 170 bytes left over on
track 0, and this is where the program is kept. The track-writer
routi_ne in HEXDOS allows only 2K bytes on all tracks but track 0.
On track 0, however, it writes the operating system and then keeps
going into the program space until it detects the index hole.

To create or change the autostart program on a disk, boot up
HEXDOS and load the program you want to autostart. Please note
that the menu program provided on your original HEXDOS disk
appears only on track 0, so you should probably do your experi­
menting on a copy of HEXDOS other than your master. On a non­
protected disk, with the desired program loaded, type SAVE#O, 768.
Reboot from that disk to confirm that your drive will save a program
as long as you are attempting-to use. If you hold the repeat or break
key during the boot sequence, the program will be loaded but not
executed.

17

Utilities
and

Demo Programs

18

l It

I

FORMAT

This utility program provides a way to format new or used disks
so they will be compatible with HEX DOS. It does so by disabling the
normal error traps in the disk handlers and then writing nulls on
each track. It also names and dates the disk and sets up an empty
directory. Please note that this process erases the entire disk.

The only interaction FORMAT requires from the user is to load
the disk to be erased and provide the name and date for the disk.
HEXDOS is automatically copied to track zero of the new disk so it
will boot up with [break] D. Please note that this feature is provided
as a convenience for your own use and is not a license to produce
copies for others.

CREATE

· This utility program is used to create empty data files. It is not
needed for program files, because they are created automatically
by SAVE [filename].

The only user input required is the name of the file and its
length in tracks (2K bytes per track). Since the length must be
specified in advance and may not· be changed, it should be set up
somewhat longer than you expect to need. Unused space will be
filled out with nulls.

To make a machine language file, first use CREATE to make a
file n tracks long, where n is the number of 2048 byte tracks re­
quired. Then load the machine language routine into memory (not
necessarily at its normal location), and place the proper start ad­
dress in the two bytes immediately preceding its first byte, low-order
byte first. Now use SAVE #to save an image of memory starting at
(start address)-2 on consecutive tracks of the file you have created
for it. LOAD $ will now load the machine language file to its proper
location (with the address in the two bytes immediately before it)
and set up the USR(-7) vector to point to the start address of the
routine.

19

DELETE

This utility program provides a way to delete obsolete files from
a disk (HEXDOS itself does not allow you to delete a file once it has
been created). DELETE will list the files in the directory one at a
time and pause for a command to either retain the file or delete it.
To delete th~ file, press D three times. To retain the file, press any
other character, such as the space bar. Do not interrupt this pro­
gram, since it might leave the directory disagreeing with the actual
contents of the disk.

DISASSEMBLER

This program interactively disassembles the machine code in
an area of memory specified by the user. It first requests the ad­
dress of the desired area. Respond with the address in hex using
any appropriate number of digits.

The disassembler will print one screen full of information and
then pause. Typing a C (for continue) will resume the listing for
another page, while any other character will return to a request for a
new start address.

Instructions are printed in standard 6502 mnemonics, but the
addressing mode is specified by appending a letter from the table
below. The operand is printed in hex. Each byte is also printed in
ASCII to the right of a semicolon after the instruction (the high-order
bit of each byte is ignored).

blank -
#­
A­
z
X­
y
s­
@-

X@­
@Y-

absolute, implied, or relative
immediate
accumulator
zero page
absolute,X
absolute,Y
zero page, indexed*
indirect
indexed indirect ·
indirect indexed

* The 6502 recognizes zero page, indexed as being indexed by
the X register unless X is involved in the instruction, in which case it
uses Y as the index register.

20

1
j

)

;)

DEMONSTRATION PROGRAMS

The programs included in this part of the HEXDOS package
are useful or entertaining in their own right, but they are also in­
tended to demonstrate some techniques for fully using the power of
the HEXDOS system. CHECKBOOK demonstrates the use of serial
disk files, requiring that lim entire data file be read into memory and
then manipulated by the program. ADDRESSBOOK, on the other
hand, makes use of random-access files, bringing in only the de­
sired record at any given time. RANFILE provides the necessary
subroutines and a simple program to demonstrate usage of
random-access files.

SURROUND demonstrates a means for accessing the
keyboard in a real-time program which must continue running
whether or not a key is pressed. BACKGAMMON shows how to use
HEXDOS to reduce requirements for keyboard debouncing, decod­
ing, and status detection in your program. Both SURROUND and
BACKGAMMON use the tone generator (see Appendix D) for
sound effects.

$LIFE is a machine language program which may be loaded by
name. BSR shows another·way of handling machine language by
using a BASIC program to set tJP the machine code and link it to
USA. This also shows how to use the USR(-7) function in HEXDOS.

21

CHECKBOOK

This program uses a serial data file to maintain the ledger for
your personal checking account. It records the check number, date,
amount, and the payee or other notation used on the check. De­
posits, service charges, regular monthly deductions, etc. are best
handled by assigning them a unique series of "check numbers."
The program is menu-driven, which means that you simply select
from a menu of possible actions at any given time. Entering the
checks as you write them may seem somewhat tedious at the time,
but the real benefit comes with the arrival of your monthly state­
ment. Select "balance statement" from the menu and enter the
check and deposit numbers which have cleared the bank during the
month. The program provides the balance which should currently
appear in yow checkbook as well as the balance which should
appear on your bank statement.

ADDRESSBOOK

This program is similarly menu-driven, but it uses random­
access files and accesses the disk only when necessary. Record
lookup is accomplished using the Soundex code, which allows for
slight misspellings in the given last name. Since such a system can
find several similar entries, it produces a query after finding any
record which is close to the desired last name, requiring a yes or no
response. Since there may be several entries with the same last
name, even an exact match requires a response.

22

SURROUND

This is a real-time video game in which two players attempt to
avoid running into barriers on the screen: the border, the oppo­
nent's trail, and their own traiL The player who starts on the left side
of the screen uses the keys A, W, S, and Z to turn his piece; the
player on the right uses L, P, ; (semicolon), and . (period):

tE-A

1' w

z
.J,

s~

t
p

<1£:--L ;~

~
It is not necessary to press the key hard (this may be hard to

remember in the heat of the battle), but you must lead your turns
slightly. A quick stab at a key is not very effective; there is no effect
of holding a key after the turn is made, so the most effective
strategy is to press and hold the key until you see that it has taken
effect.

At some time, it will become apparent that the two players can
arrive at the same point at exactly the same time and not cause a
collision. They may cross trails or even run as one for a time after
such an encounter, which adds some interesting twists to the
strategy of the game.

FIFTEEN

In this game, you and the computer alternate picking without
replacement from the set of numbers 1 through 9. When either
player has collected any three numbers which add to fifteen, he
wins.

REVERSI

This is a board game in which one person plays against the
computer. Instructions are given at the beginning of the game. The
tone generator is used for sound effects and to warn against illegal
moves.

23

BACKGAMMON

This is the standard game of backgammon designed as an
automated board and dice-roller for two players. The inner table is
on the left side of the screen, the bar is in the center, and pieces
removed from the inner table at completion are not visible.

When the dice are rolled they are displayed below the table,
with the player to move indicated at the right. To move a piece, point
to it by pressing the key marked on that point, and then the key on
the destination point. The program will ignore illegal moves. You
may return a piece to the point from which it came with no penalty
until it is placed on another valid point, at which time the move is
permanent. More than five pieces may be placed on a point, but
they are stacked up so that the screen will never appear to have
more than five pieces on a point. This program uses the tone
generator for additional feedback to indicate when a move or cap­
ture has been accepted.

$LIFE

This is a simulation of the birth and death of organisms living in
a square grid simulated on the screen. Each cell has eight total
neighbors, counting the four which share its edges and the four
which share its corners. If a cell is touching only one or no living
neighbors, it dies in the next generation due to isolation. A cell
which has four or more living neighbors dies due to, overcrowding.
Exactly three live cells touching a given cell will produce a living cell
in the next generation.

To run this simulation, first LOAD "$LIFE" to load the machine
language file and link it to BASIC. Then use ?USR(-7) to jump to the
program. To set up your initial pattern, use A, S, W, and Z as in
SURROUND to move the cursor around the screen (it is invisible).
To place a live cell, press M; to kill a cell, press the space bar. You
may see wher.e the cursor is by pressing M and then the space bar.
To start the simulation, press G (go) with either [shift lock] or the left
shift key depressed. The simulation will run continuously while the
shift lock is depressed, or may be stepped through single genera­
tions by releasing the shift lock and pressing a shift key for each
step.

24

BSR CONTROLLER

This program allows control of lights and appliances using the
BSR home control system marketed by Sears and Radio Shack.

For the hardware part of the interface, simply set up the tone
generator as suggested in Appendix D, but substitute a 40KHz
(approx.) ultrasonic transducer for the speaker. (A suitable trans­
ducer is part #MM1 002 available for $6 from The MicroMint Inc.,
917 Midway, Woodmere, NY 11598.) Place the transducer very
close to the front of the control console, just below the LED.

Running the' BSR program sets up a machine language pro­
gram and links it to USR(-7). USR(-7) will access the BSR system
until another machine language program is loaded or the system is
re-booted. You can now load your program which uses these con~
trois.

To test the system, you may enter commands from the
keyboard as T=USR(-7) n where n is a number from 1 to 22 which
selects a key on the console to "press." Numbers 1 through 16 are
the numbered keys, and 17 through 22 are the control keys:

17- ALL OFF
18 - ALL LIGHTS ON
19- ON
20- OFF
21- DIM
22- BRIGHT

Note that the keys are only held for a short time with each call;
thus the DIM and BRIGHT functions require multiple calls. To acti­
vate ALL OFF, as an example, you would type T=USR(-7) 17.
This will work either directly from the keyboard or when executed in
a program. You may also use any valid arithmetic expression to
designate the key, as long as it results in a value from 1 to 22
(out-of-range values are ignored). Thus, if A is 81 and B is 9,
T=USR(-7) A/3-4*(B-3) is a valid way to activate key number 3.
Simply have your program or your inputs on the computer keyboard
generate the same console actions as you would require to do the
job manually.

25

Appendix A
ERROR MESSAGES

Error messages from BASIC or HEXDOS consist of a ? fol­
lowed by a two letter error code and the word ERROR.

Error # Error code Problem

23 DT Disk Track (wrong one read)
234 Fd File doesn't exist
38 OR Out of Room (end of file)
57 EA file Exists Already
37 RO Read Only (disk is write-protected)
42 IN INput file (and you're trying to output to it)
7 OF Directory Format (something wrong in it)

104 PX Program extended (beyond end of file)

Error messages generated during input or output will be printed
to the device being accessed by that operation. During input from a
disk file, this will cause an F ERROR. To see the original error
message, temporarily change the INPUT or PRINT statement to
use device 0 (keyboard or screen) so that the message will be
printed normally.

You can have BASIC jump to a specified line number on any of
the above errors, rather than issuing the error message. Your
error-handling routine must start at a line number that is a multiple
of 256 and less than 32767. POKE the line number divided by 256
into 237 (decimal), and any disk error will cause a GOTO to your
routine. In the first line of your routine only, you may find the number
of the line where the error occurred by

EL=PEEK(135)+256*PEEK(136)
If EL is greater than 65280, the error occurred in a line typed from
the keyboard. To disable your error routine and restore normal error
messages, POKE 237,255. The error handler in HEXDOS does this
each time it is called, to prevent your routine from getting into an
infinite loop in case of an error in your error-handler.

Your routine can determine what type of error triggered it with
USR(-1), which returns the corresponding error number given in the
table above. If USR(-1) returns 0, there was no error - you got to
where you are via standard BASIC branching.

29

AppendixB
DISKETTE FORMAT

Track zero has its own unique format to comply with the re­
quirements of the bootstrap firmware in ROM on the 600 board. The
first byte is the high-order byte of the load address, followed by the
low-order byte1 and the number of pages of data on track zero.

The remaining tracks start with a sync character ($57) and the
track number in binary, followed by 2048 bytes of data. The direc­
tory resides on track one as a BASIC program. The line number of
the name of each file is the starting track number of that file. It
includes all tracks up to but not including the first track of the next
file. The last line of the directory contains a *, indicating the first
available track.

Note that if you attempt to edit the directory (definitely possi­
ble), any BASIC reserved words appearing in filenames will be
stored in their compressed form. This means that the filename will
appear correct in the directory, but will apparently not exist when
you attempt to load it. For instance, CORE would be saved as
ASCII C, the token for OR, and ASCII E. If you wish to edit the
directory without worrying about hidden reserved words, use lower
case. You must then use lower case to load the file, of course.

BASIC programs are stored in core-image form, with the first
byte of the program on the first track being loaded to the beginning
of BASIC's program space. (Under HEXDOS, this is $0B01. See
Appendix C for a complete memory map.)

A machine language file is specified by a filename beginning
with $. The first two bytes in a machine language file are the load
and start address of the program, with the low-order byte first.
These two bytes will be loaded into the two bytes immediately pre­
ceding the address they specify, and also into $FO, linking the
machine language routine to USR(-7). A machine language file may
consist of more than one track just as may a BASIC program, but
only the first track need contain the load address (the following
tracks are assumed to be contiguous). ·

30

Location

00
03
OA
OD
OE
OF

13-5A
79-7A
7B-7C
7D-7E
7F-80
81-82
83-84
85-86
87-88
8B-8C
8F-90

BC
C2
DB

09-DD
DE
OF
EO
E1
E2
E3

E4-E5
E6
E7

E8-EA
EB
EC
ED

Appendix C
MEMORY MAP

Contents

warm start jump
prompt jump
USRjump
NULL
POS
terminal width
text buffer
start of program
start of variables
start of arrays
end of arrays
start of strings
end of strings
end of memory
current line number
start of current stmt
data pointer
GETCHR code
REGETCHR code
current track number
temporaries

Location

EE-EF
FO-F1
F2-F3

0200
0201
0202
0212

0236-02FF
0300-0AFF
OBOO-

start track of program
end track of program - 1
editing flag
head position on inactive drive
1/0 device number
1/0 mask
used by C1 E and C1 S
ignore seek error
temporary
clock
error number

Contents

time until GOSUB 0
vector to USR(-7)
temporaries

cursor
character at cursor
character being output
debug control
data file headers
HEX DOS
BASIC workspace

nonzero disables ON ERROR GOTO
high byte of line # of user error handler

31

Appendix D
HARDWARE MODIFICATIONS

None of the following mods is essential to use HEXDOS, but
each adds a bit of usefulness to the system. If you are not familiar
with procedures for working on integrated circuits, please have
someone who .is make the solder connections. For temporary use of
the mods which just require jumpers between provided tie points,
you can simply place wires (#22 or smaller) in the holes without
soldering, but you may have some difficulty with intermittent opera­
tion using this method.

REAL-TIME CLOCK

This requires that you add jumpers at tie points provided by
OSI to activate the interrupt-driven clock. The two ju.mpers neces­
sary are added to the 61 0 board.

The square pad nearest pin 9 of U11 is the source for a pulse
every second. There is a row of four square pads across the ends of
U10 and U11. These pads connect to the interrupt inputs of U72.
The second pad from the end nearest U1 0 is the interrupt used by
HEXDOS. Connect this pad to the one-second pulse line.

Near pin 40 of U72 are 3 square pads arranged in a triangle.
Connect the one nearest U72 (U72's interrupt output) to the pad
nearest J3 (the NMI line on the bus). The clock will be active the
next time HEXDOS is used.

32

DISK MOTOR CONTROL

On some models, OSI made an error in the polarity of the'
MOTOR-ON signal, which they fixed by permanently tying the line
to ground. There is a spare inverter on the 610 board which will
correct the polarity. First, on the adapter board which connects the
disk cable to the 610 board, remove the jumper between pins 4 and
12. If a land has been cut at pin 4, use the old wire to replace it.

Back on the 610 board, cut the land running from pin 14 of U72.
Connect pin 14 to pin 3 of U5, and the separated land to pin 4 of U5.
You will now have motor control with the real-time clock of HEX­
DOS, which will deselect the drive and turn off the motor if the disk
is not accessed for a short time. The disk is automatically reacti­
vated by any subsequent access.

BREAK KEY

The break key is wired to the hardware reset line of the compu­
ter. It is; alas, in a location where it is often accidentally pressed.
You may alleviate this problem and make this single key do the
work of [ctrl C] as follows.

Disconnect the break key frem the reset line and ground by
cutting those lands. (Be careful in cutting the ground land as it must
still continue past the disconnected key). You will need to add a
normally open pushbutton somewhere out of the way to replace the
function of the break key. I suggest just behind the keyboard where
it is accessible but not hazardously so.

Now connect the break key to RO and C7 (the lines to the
repeat key), and connect the repeat key to R5 and C2, which will
change it to the repeat-last-command function as noted under spe­
cial keyboard features.

33

AUTOMATIC POWER-ON RESET

This mod simply takes advantage of the automatic reset pro­
vided to U72 and routes it to the 600 board via an unused pin in the
ribbon cable.

On the 610 board, tie pin 34 of U72 to pin 11 of J1. Then, on the
600 board, tie.pin 11 of J1 to pin 40 of U8. Now the system will
automatically reset and give the 0/C/W/M prompt any time it is
turned on.

TONE GENERATOR

This uses the RTS line of the 6850 on the 610 board (th~ floppy
ACIA at $C010, not the cassette ACIA at $FOOO), toggled rapidly by
software, to drive an audio amplifier and speaker. Use an LM386 or
equivalent for the amplifier. A convenient place to mount it is bet­
ween U11 and U67 on the 610 board. Connect the input to pin 5 of
U71, and the output to your choice of speaker The BASIC program
below will generate a continuous tone of about 800 Hz for testing
purposes.

10 T=USR(2860)
20 GO TO 10

34

--
Appendix E

RESERVED 1/0 DEVICES

Device selection is done by a skip chain rather than a table of
driver addresses. The only convenient way to implement the addi­
tional devices is by intercepting the existing routine.

The input and output routines are called through vectors at
$0218 and $021A respectively, as the C1 P manual shows. Just
change the vectors to point to your drivers (a warm start restores
the values used by HEXDOS). If you wish the other devices to
remain active, you must test the device number (see memory map)
for the number you wish to assign to your device. If the device
number is not one of yours, the routine should do a JMP to the
address which was originally in the vector. Your routine must pre­
serve all register values and should not tamper with page 0 below
$F2 unless you know what you're doing. It can terminate with an
RTS or simply jump to the normal 1/0 routine. (The normal routine
accepts 0 or 1 for the keyboard and 2 or 3 for the cassette inter­
face.)

Because of the large number of devices (including all the data
files), it was impractical to assign each device a single bit, so there
is no provision for simultaneous output to more than one device.
One possible way to implement this would be to set up device 1 to
set the device pointer to 0, JSR OUTPUT, set the pointer to 2, JSR
OUTPUT, reset the pointer to 1, and RTS. Note that you must
preserve the registers during this sequence.

The character to be output is passed in the A register, and an
input character is expected in the A register. The X register will
sometimes have the current POS. It may always be obtained at
$0E, and the terminal width at $OF.

I suggest removing the disk or using a blank one during all
machine language testing to preclude disasters!

.,

35

j

Appendix F
STRING MANIPULATION WARNING

HEXDOS does not defeat the infamous "garbage collector"
routine and its bugs (see PEEK(65), March 1981 issue). Disk buf­
fers share the string space, so this routine will destroy all file buffers·
which are open when it is .called. The FRE(X) function calls the
routine, and it is also called automatically whenever free memory is
less than 256 bytes.

If your program does extensive string operations, the garbage
collector may interfere with disk operations. There are two ways to
get around this:

a) Input your data, do your string manipulations, call FRE(X),
and then reopen all data files. This does not work if you must
manipulate strings as they are read from the disk.

b) Put the file buffers in a protected memory area. At the begin­
ning of your program, prior to use of any strings, open all data
files. After opening all files, include this statement:

T=PEEK(129):POKE 133,T:T=PEEK(130):POKE 134,T
This decreases the apparent memory size by the amount
used by the buffers, but protects them from BASIC. If you run
the program repeatedly, the end-of-memory pointer will even­
tually work its way down until you have no free memory left.
Either re-boot HEXDOS from disk or POKE the original values
back into 133 and 134.

36

Appendix G
UPDATING OLDER VERSIONS

The major change you will need to make when updating pro-
. grams written with older versions of HEXDOS concerns filenames.
Because filenames are now strings; you will need to go through
your programs which open data files and enclose the names in
quotes. Also, you must of course enclose filenames in quotes when
typing them from the keyboard. Directories created under older
versions of HEXDOS may include some files which become un­
findable with newer versions. See appendix B for tips on resolving
this. Any files created under version 4.0 or later should not have
these incompatiblities. If you get a TM ERROR when attempting to
do a disk operation, check to see if you forgot the quotes. If so,
BASIC thinks it found a numeric variable when it expected a string.

If you used the extra features of GOSUB under version 3.0, you
will find that they no longer work. GOSUB [string] is no longer
necessary for its original purpose since files can now be opened
with strings for filenames. GOSUB (hex valueJ must now be done
with T=USR(-5}[decimal valUe].

If you used the machine- language call of the real-time clock,
HEXDOS now does a GOSUB 0 rather than calling machine code.
See the section on the real-time clock for correct usage.

..
37

en
LU
1

-
0 z

en
LU
1

-
0 z

.
~
~
-
~
~
-
-
-
-
-
~
-
~
-
-
-
-
-
-
-
.
.
_
.
,
.
 _______ _

co
(<

)

C
J)

LLI

b z

The 6502 ProQram Exchange
2920 west Moone
Reno, NV 89509

