b pa’s T

BRI

JAN/FEB $1.50

ninnsEiEnEhnGES
SMALL SYSTEMS JOURNAL wuc: o

features | page

INDEX TO PREVIOUS JOURNALS

WHAT'S A USR FUNCTION
Finally, that 1long awaited explanation of BASIC's USR

function is here. 3
QUICKIES o

This month's -Quickie 1is an interesting exercise in

mathematics, namely a decimal to binary converter. 4

CONTRIBUTED PROGRAM .
This month's contributed program is a small video BASIC
program called "Chessboard". It permits one to "move" the
chess pieces across the board that appears on the screen. Yy

BUGS"& FIXES
The fixes for two bugs found in 9 digit BASIC as well as a
few notes on the 430 and 500 boards. y

HARD DISC DOS CONTROL

Here's how to modify those 0S-65D Version 2.0 disc’ pfograms
to work on the Hard Disc. 6

TRACK ZERO WRITER

With a few simple modifications the disc copy. utllity found
on all 0S-65D V2.0 diskettes can be modified to permit
changing of track zero. 7

NINE DIGIT BASIC
Heres how to modify 9 digit BASIC into an end user systenm, 8

500/510 UTILITIES .
This program can prove to be invaluable for machine, code

debugging. . 1
510 TRACER
Though similar to the 500/510 utilities, provides some very

powerful additional features. » 14

SPECIAL NEXT ISSUE «» DON'T MISS IT!

The next issue will be a special issue on disk operatlng
‘systems!, comparing the features and applications of 0S-65U,
0S-65D V2.2, 0sS-65D V2.0, 0S-65D V2.0 9-DIGIT, DMS-1, and
05-65D V2.4,

The magazine for 6502 computer enthusiasts!
™~

INDEX TO VOLUME 1, July-December 1977

ARTICLES
Article Sponsorship Program

ASSEMBLER
Understanding and Using the 6502
Assembler

AUTO-LOAD

The Auto Load Cassette System '

BASIC

ASCII Files under 08-65D

Bank Accounts

BASIC in ROMs

Conventional Typewriter

Get the Most out of BASIC
Part 1, PEEK & POKE
Part 2, Files in BASIC

Memory Dump

Nine-Digit Precision BASIC

Resequencing via PEEK & POKE

BIG DISK
New Big Disk from 0SI
T4-Megabyte Disk Hardware Review

BUGS & FIXES

CPU Boards

500

510

510 Trade-In Offer
560Z Expander

DISASSEMBLER
The 6502 Disassembler

END USER SYSTEM

Constructing a Fool-Proof End User

System

GAMES

Bomber

Hamurabi

Shoot the Gluck

Star Wars

Surface-to-Air Missile

MEMORY

Memory Technologies for Small

Computers
Part 1, Mass Storage Devices
Part 2, EPROMs, PROMs, and
ROMs :

Part 3, RAMs

Odds & Ends

1K CORNER :

Cassette Loader and Memory Block
Transfer

Close the Window

Hex Address & Offset Calculator

Mini-Graphics

NIMB :

Prime Number Generator

Page 2

Dec.,b.7

July,p.4

July,p.9

Nov.,p.13
Nov.,p.15
Dec.,p. 14
Oct.,p.8

Aug.,p.4
Sept.,p. U
Sept.,p.12
Nov.,p.T7
Sept.,p.T

Aug.,p.11
-Deec.,p.2

July,p.8
Aug.,p.12
Sept.,p.16

July,p.15
July,p.15
Nov.,p.2
Sept.,p.14

July,p.14

Aug.,p.15

Nov.,p.10
Aug.,p.13
Dec.,p.8
Oct.,p.11
Nov.,p.8

Aug.,p.9

Sept.,p.8
Oct.,p.4

July,p.13
Aug.,p.19
Sept.,p.18

Nov.,p.3
Sept.,p.18
Oct.,p.3
Aug.,p.20
July,p.8
Dec.,p.7

Ohio Scientific's Small Systems Journal

July,p.17
Sept.,p.21

PRICE LISTS

QUESTIONNAIRE Oct.,p.15
TERMINAL/CASSETTE

Terminal/Cassette DOS Input Routine Dec.,p.13
TESTS

Cycle Time Sept.,p.12
Memory Sept.,p.15

USERS GROUP.

Floppy Disk Users Group Dec.;p.11
WORD PROCESSOR
0S-WP1 Nov.,p.4

Introduction

This issue of the journal finds itself with a
new editor. Namely; myself, Rick Whitesel. I
hope to always have something for everyone in
each issue'of this journal, In order to do
this I ask that you, the readers, will drop
me a note on what you did or did not like in
this issue as well as the previous issuses.

This issue contains an index to the previous

journals, a long awaited explanation of 8K
BASIC's USR FUNCTION, and a article showing
how to adapt 08-65D V2.0 disc files to the
TU4-MEGABYTE HARD DISC. 1In the quickies
corner, chessboard, a video BASIC game that
displays a conventional chessboard on the
screen and permits each player to move thier

by entering the from and to
coordinates. Further into this issue 1is a
"how to" article on converting 9-Digit BASIC
into and end-user BASIC. Next is a outline of
the new 05-65U disc operating system. This is
followed by two debugging programs., The first
may be used on 500 or 510 systems while the
second is designed to be used on a 510

pieces

system with the software processor select
switch.
Ohio Scientific's Small Systems

Journal is issued bimonthly by Ohio
Scientific, Inc., P.0O. Box 36,
Hiram, OH 44234, The subscription
rate is six dollars per six issues.
Individual copies are $1.50.
Published in Twinsburg, OH by the
Twinsburg Bulletin.
Vol. 2, No. 1 Jan./Feb., 1977
Editor-in-Chief Rick Whitesel
Production Manager Don Muchow
Contributing Editors Mike Cheiky
Bob Coppedge
Eric Davis
Jim Halverson

Jan./Feb., 1978

What’s a USR Function ?

In the real world of computer
BASIC has proved to be quite adequate.
However, there are applications where it
would be nice to have BASIC'S number
crunching capability with machine code's
speed, That is where 0SI's USR function in
BASIC comes into play. Via the USR function,
one can have a BASIC program which works 1in
conjunction with one or several machine code
‘programs. When BASIC executes the USR
function, it goes to VECTOR and VECTOR +1
(defined in the table below). There BASIC
"picks up" the address of the machine code
‘program and jumps to it. Once in the machine
code program, one may execute two separate
‘routines. These routines allow variable
passing to and from BASIC. To pass a variable
from BASIC, the routine pointed to by the
contents of memory locations 6 and 7 must be
executed. The 15 bit signed number can then
be picked up at FACLO and FACHI. To pass a
variable back to BASIC the low byte is placed
in the Y - register and the high part is

applications,

placed in the accumulator. The routine
pointed to by the contents of memory
locations 8 and 9 must be executed,

Therefore, the following lines in BASIC would -

pass the value of X to the machine code
program and upon returning to BASIC, X would
be equal the value passed back.

10 X=10
20 X=USR(X) .
30 PRINT "X NOW EQUALS"™;X

Below are the steps required to
the USR function,
1) Set BASIC's memory size so
overlap the machine .

code program.

2) Set up VECTOR (low) and VECTOR +1
to point to the

machine code program.

3) In the machine code program,
following code to

allow variable passing:

BEGIN JSR' GETVAR

implement

it does not
(high)

insert the

GETVAR JMP (INVAR)

4) To pass a variable back, execute the
following machine code.

FINISH LDY LOWBYT
LDA HIGHBY
JMP (OUTUAR)

After execution of "FINISH", BASIC will
continue with (in this case) X=the number
passed. in Y and A. Examples:

C2-4P or C2-8P
1) Set memory size=3000
2) Load the following machine code at $0FDO

A*RA

INIZ?N
R
10 0QEB USR SUB
20 0000 FACLO=$AF
390 2000 FACHI=$AE
40 @POO INVAR=%$06
Page 3

Ohio Scientiflc s Small Systems Journal,

50 ooy OUTVYAR=$08

60 @001 LOWBYT=%$01

70 Q0en HIGHBY=$00

88 0980

98 @FDe *=$8FDO

108 OFD®
110 OFDB
120 OFDO 2PE40F BEGIN JSR GETVAR
120 @rFD3 ASAF LDPA FACLOD-
148 QFDS SDE7OF STA TEMPL
150 @QFD8 ASAE LDA FACHI
160 GFDR BDEBOF STA TEMPH
179 @FDD Res1 LDY #LOWBYT
188 @FDF R9B0 LDA #HIGHBY
198 QFE1 6C0800 JHP (QUTVRR?>
209 OFE4 6CB68O GETVAR JMP_C(INVAR)D
210 .OFE7 80 TEMPL . BYTE $00
220 OFES 09 TEMPH . BYTE $80@

3) Load $000B with $DO and
* Load $000C with $OF :)

4) Execute the following BASIC lines:
10 X=10

20 X=zUSR(X)

30 PRINT X i

5) X now equals the value passed and
‘contains the low part

passed from BASIC while the high part_is in
TEMPH. Note the value .)
-of the variable passed ranges from - 32268
to +32268 (Bit 15 is the

sign Bit, 1=znegative).

TEMPL

DISC BASED BASIC

1) Set memory size=15000 ‘
2) Load the following machine code at $3FDO

. GET :)
FROM DRIVE, TRACK: B.71

A

19 oeeo USR SuUB

20 eveo FACLO=$B2

30 0000 FACHI=$B1

48 @000 INVAR=$06

S50 00a0 OUTVYAR=$08

60 0080 LOWBYT=$81

79 0000 HIGHBY=$00

80 0008 !

90 3FDO) *=$3FDO

189 3FDH ' 3
11@ 3FDBd 3

128 3FDB 28E43F BEGIN JSR GETVAR
132 3FD3 ASB2 : LDA FACLO
148 3FDS BDEV3F STA TEMPL
159 3IFD8 ASBl LOA FACHI
160 3FDR SDEB3F STR
170 3FDD ROG1 LDY #LOWBYT
189 3FDF A908 LDA #HIGHBY
192 3FE1 6C0@8A JMP (DUTVARR?
coe 3FE4 600600 GETVAR JMP C(INVAR>
210 ‘3FE? 00 TEMPL BYTE $0@
220 3FES 90 TEMPH BYTE se@o

3) Load VECTOR with $D0 and VECTOR '+1 .with
$3F

4) Same as for C2-4P and C2-8P

5) Same as .for c2- -~4P -and C2-8P

Jan./Feb., 1978

Below are the various memory logations for
the various BASIC's.

6-digit 9-digit ROM BASIC
VECTOR $023E $023E $000B
VECTOR+1 $023F $023F $000C
OUTVAR ($08) ($08) © ($08)
INVAR (306) ($06) ($06)
FACLO $AF $B1 $AF
FACHI $AE $B2 $AE

Vector refers to the pointer to the machine
code routine. OUTVAR is the 1location whose
contents point to the routine which passes a
variable to BASIC. INVAR contains a pointer
to the routine which passes a variable from
BASIC. FACLO and. FACHI are the 1locations
where a machine code can pick up the variable
passed from BASIC. One final note, if you
have any special uses of the USR function,
please send us a letter on how you are using
it.

QUICKIE!

This montns quickie is a decimal to binary

number converter. The program uses some.
rather clever tricks to implement the
connversion routine. Be ‘sure to follow how
the connversion 1is done,

58 PRINT

6@ PRINT

78 PRINT “"DECIMRL TO BINARY®
88 PRINT * CONVERTER"

96 PRINT

93 PRINT

95 PRINT

100 INPUT X

101 IF X<O THEN GOTD 330
192 IF X>32767 THEN GOTO 330
4104 PRINT

185 PRINT "X=";

110 Y=16384

120 A=INT(X/Y)

130 IF R=D THEN GOTO 200
148 PRINT "1,

150 XaxX-v

168 GOTO 300

220 FRINT "8";

3008 y=v/2

310 IF INT(V>=8 THEM GOTO 320
315 GOTO 120

326 GOTO 90

330 END

BugsSiFixes

- If you are having trouble with the 4K on
board RAM on the 500 CPU board, check the
'foil runs above IC-F9 (A 7404). There have
been cases of these runs overlaying each
other causing loss of bit 2 in the memory.

Two bugs have been found in 9 Digit BASIC.
The first causes the SPC function to act like

Page Ui

Ohio Scientific's Small Systems Journal

the TAB function and the second is a bug in
the” string manipulation routines. The
corrections are as follows, respectively:

Locations Old New CSntents .

$0A3E $9F $2C
$0A3F $FO - $18
$0A40 $68 - $FO
$0A41 $c9 $50
$0ALU2 $2c T $49
$0A43 $18 $9F
$0AUS $4C $63
$0AY4T $3B $AU
AND
$0BT70 $CU $98
$0B72 $00 . $99
$0BD6 $uc $98
$0BD7 $0B $99

)

C2-8Pers and C2-4Pers please make note that
Basic's USR function vector. is at decimal
locations 10 and 11 and not as stated in the
BASIC Manual. .

If you are having any trouble with your 430B
cassette interface, try the following. Double
the 555's clock frequency and insert a 7474
in series with 1its output to obtain a
symetrical clock. - One might also try
inserting a RC noise filter to eliminate any
D.C. offset coming from the ‘tape recorder's
output.

Contributed Program
CHESSBOARD

This is, in effect, a computer chess board,
no more, no less. It moves pileces and
displays the new board. In most cases, it
will allow a player to cheat, as will a real

-chess board.

1

The board is a standard 8 x 8 board with
locations given by the values A,1 through H,8
(see diagram).

A-B-C-D-E-F-G-H
#* #* * #*

; * L T * |
3] * L *
TR | » * . ‘
5 * * s *
6 * * * S |
7 B * * *
g * » *

A-B-C-D<-E-F-G-H
Initially, the board is set in the standard
way with white occupying the top two rows.

Moves are achieved through giving the initial
position of the piece and the final position

Jan./Feb., 1978

"

-

of the piece separatea by a dash ("<")., For Suggestions: A routine that could

example, to move

the white king's pawn from standard English chess notation

its initial position to the fourth row in the nice,

same column, (P-K4) would take a command

"D2-D4", Castleing i's achieved by the FC and

QC commands, KC being king side castle and QC _

being queen side castle. The program 10-100 Initialize Board
automatically checks for white or black 1in 140-160 Input Command

these commands.

Page 5

170-179 Options

interpret
would be

180-190 Interpreting of command string

If a pawn achieves the homé ‘row of the - 190-210 Black or white
opponent, the player may change the pawn into 220-230 Move piece
a queen by the Q switch at the end of the 235 Change piece?
command string, for example: E2-E1Q 240 GOTO print section
would cause the black pawn on E2 to move to 250 If black then GOTO 280
‘E1 and become a queen, 260-270 White king side castle
280 Black king side castle.
Unfortunately, the UK capacity of the BASIC 300 - If black, then 330
Challenger II is insufficient to handle an 310-320 White queen side castle
error correction routine or a game record, 330 Black queen side castle.
however, the game record is easily added. A 799-855 Print updated board
return without an input will end the game. 900-912 Change pawn to queen

1000-1040 Initialization data
2000 End

REM*»DRANIEL GLASSER
REM*%CHESS BOARD

DIM B1(8, 8>, B2(8, 8), P$C16)

FOR X=1 TO 2: FOR ¥=1 TO 8: RERD S

B1¢(X, ¥)=S: BA(X+2, ¥)=S: B1(X+4,V¥Y>=8: BL(X+6,Y¥>=S

NEXT ¥: NEXT X:FOR_X=1 TO 2:FOR Y=1 TO 8:RERD S:Ba2(X, Y=
NEXT ¥: NEXTX: FORX=7T08: FOR ¥=1 TO 8:RERD S: BE(X;V)=S NEXT Y
NEXTX: FORX=1T016: READSS$: P$(X>=S$: NEXTX GOTo8@9

IF W=1i THEN 160

NPUT"W>"; M$: GOTO 170

INPUT"B>"; M$

IF M$="END"THEN20GB0

IF M$="KC" THEN 2350

IF M$="QC" THEN 300

IF M$="BOARD" THEN 799

AS=LEFTSCMS. 1): BS=MIDSC(MS, 2, 1): AL$=MIDS(MS, 4, 1): B1$=MIDS(MS, S, 1)
B=VAL (B$): C=VARL(B1$>: IFW=1THEN210

W=1: GOTO220

W=0: Wes(K)=M$

P1=ASCC(A%$)-64: P2=RSC(RLS) -64

U=Ba¢<B, P1): B2¢(B, P1)=0: B2¢C, P2>=U

IFTSIGHTS(H$;1)=“Q“ THEN 900

799
£F1N=1 THEN 280
=
B2¢41, 1)=0: B2<1, 4>=0: B2(1, 2)=7: B2(1, 3)=4: GOTO799

W=0: B2(8, 1)=0:B2(8, 4>=0: B2(8, 2)=14: B2¢(8, 3>=141: GOTO79%
IF2=1THEN330
=

H

(1]
=]

‘B2<1, 8>=0: B2¢1, 4)=0: B2(1, 6>=7: B2(4, 5)=4: GOTO7?99

W=0: B2(8, 8)=@: B2(B, 4)=0: B2{8, 6>=14: B2¢8, 55=11: GOTO 799
FOR MS=1 TO 4:PRINT:NEXT M3
PRINT" ~A===-B===C====D--==f~=~F-===G====H--"

FOR X=4 TO 8: FOR ¥=1 TQ 8

Si=BacX., ¥

IF S1=8 THEN 81=81(XJV)

S$=P$(S1): PRINTSS; "

NEXTY: PRINT" "y X PRINT PRINT: NEXT X
PRINT"-f~---B-==-C====D===—E-ww=Fe===(e-==H~="
GOTO 140

IF C=8 THEN B2<C,P2)=8: GOTO 799

éETg=1 THEN B2¢C.P2>=15

799
DATA 1.2,1.2,1.2,.4, 2.2, 1, 2,1.,2,1.2,1
DATA 4,5.6,7,8,9,5,4,3,3,3.3,3,3,3,3
DATA 10;10;10;10:10;10;1&:10;11:12:13;14;15;16:12'11
DATA Yo oaet, M WPM, " WR", " WN" WB", " WK"," KQ"," WB"
gngn L] BP " " BR Il L} BN ll " BB II " BK Il " BQ 'l " BB n

Ohio Scientific's Small Systems Journal : Jan./Feb., 1978

:

DOs cNTRI

This subroutine in BASIC may be wused to
perform transfers to or from Ohio
Scientific's new hard disk -
transfer are set wup as 'single sector
transfers which are 3584 bytes in length. The
parameters that must be specified are minimal
and are listed below ---

DC -- Disk cylinder (0 through 338)

DT -- Disk track (0-through 11)

DS -- Disk sector (0 through = 4)

DD -- Disk direction (O "=z. read / 1 =
write)

All transfers are done into or’ from $E010 up
for 3584 bytes. If the drive is not powered
up when this sub is executed, the program
will terminate. Please note‘that this "kluge"
method is not required under O0SI's .0S-65U.
This program is merely an example of how to
modify -programs presently running under
0s~65D V2.0

The following is a line by line description
of the subroutine,
Line(s) Function

63000 Bypasses Initialization of the control
port after first pass

63005 Initializes the control port ‘on first
pass only. .

63020 Time delay to allow the disk to get
ready . :
63020 If the disk is not ok by this time
then error

63030 This line waits for the disk ready’

signal

63040 Sets DF=1 if cylinder >255

63050 Pokes flag bit and cylinder vaule
63060 Track is orled with flag bit and poked
63070 Pokes header for disk

63080 These lines define the absolute disk
address of

63090 the sector (start and end)

63100 a requirement of the system is such
that .a read

63110 must offset the start address by three
(3)

63140 " This 1line pokes, the Lsector start
address o

drive. The'.

63150 This line pokes the sector end address

63160 This line pokes the direction flag
63170 This line waits for the drive to get
ready

63180 This line is oring the direction flég

with the GO bit

63190 This 1line waits for the transfer
complete signal :

63200 And of course this line simply returns
from this sub

TELEPHONE DIRECTORY EXAMPLE PROGRAM

This program is..a modified version of the
program found on all version . 2,0 diskettes,
The only modifications required were to
create a new subroutine at line 1000, modify
the "end of file" wvalues, and to set the
memory 1/0 pointers to point at the $Exxx
address of the file. The actual start of file
is at
E010 (57360) and the actual end of file
address is at $EEOF (60943).

The . following lines describe the
modifications to the original program

lines 100,110 changed to point - at the new
start of file address

lines 165, 167 changed to accommodate the
new end of file address

line 200 changed to set the

direction of transfer (DD)

line 400 changed to set the direction
of transfer

lines 410, 420 changed to accommodate the.

new start of file address

lines U460, 470 changed to accommodate the
new end of file address

lines 620, 630 changed to accommodate the
new start of file address

lines 705, 707 changed to accommodate the
new end of file address

line 1000 now sets value of disk
cylinder, disk track, and disk sector

line 1010 now 1is a return from
subroutine

lines 1020-1080 deleted from program

190 PRINT"DISK BASED PHONE DIRECTORY

29 PRINT"COMMAND":
38 INPUT RA$

49 IF A$="NEW" THEN GOTO 1@@
5B IF R$="ADD"THEN GOTC 4008
€0 IF A$="FIND"THEN GOTO £@@
65 IF R$="ERIT" THER GCOTO 3929

78 GOTO 2@

109 POKE 11360, 16
119 POKE 11261, 224
120 PRINT"NAME";
179 INPUT B%

130 PRINT"NUMBER";
15@ INPUT .C$

152 POKE 8709, 16
154 PRINT BS

156 PRINT C$

2ee
QVERFLOW": GOTC 20

158 POKE 87ves. 1

169 IF B$="END" THEN GOTO

165 Z=PEEK{1186@)+(PEEKY 1180l 4236
167 IF Z>6£0980 THEN PRINT"

179’ GOTN 1Z2@

200 0D=1: GOSUB 12¢@

218 GOTO 28

488 DO=0: GOSUR 1000

41 POKE 11379.18

420 ROKE. 11820, 284

Page 6

Ohio Scientific's Small Systems Journal

.Jan./Feb.,. 1978

N e

429 FOKE 37687, 8: POKE 37es, 128
448 INPUT K$

443 POKE 8707, 1:FOKE 878, 1
458 IF K$="END" THEN GOTO 380

460 Q=PEEK{11872)+(PEEK113280>%256)

478 IF G>60%80 THEN PRINT'EDIT OVERRUN":
=PEEK(1188@>

480 GOTO 438

568 R=PEEK(11879):
510 R=R-4

520 IF R<B THEM 8=5-1:R=R+2356
538 POKE 4141869, R: POKE 11861, 8
S40 GOTO 1260

508 FRINT"NAME";

£18 INPUT N$

6ca DD=9: GOSUB 1l1eoe

639 POKE 11879.16

€4 POKE 1188@, 224

£S@ POKE 8707,8: POKE 8708, 128
668 INPUT E$

B INPUT F$

POKE 2707, 1: POKE 8708, 1

GOTO B3@

1200 DC=308: DT=R: DI=0:

1919 RETURM

3999 END .
63080 IF DK=1 THEN GOTO 63929
63003 POKE 49666, 0:
63018 FOR D2Z=41 TO S08: NEXT DZ

IF ¥>603%0@ THEN PRINT"FILE OVER RUN ERROR":

GOTO 2o

v

(=15

9@ IF E$=N$ THEN PRINT "THE NUMBER IS *;F#$: GOTG 20
B IF E$="END" THEN PRINT "MWHO?":GOTO Z@

g; Y=PEEK (1187I)+(PEEK(118388>%256)
10

GOTO 28

GOsSuB &3000

FOKE 49666, 16: POKE 49666, 8: DK=1

63020 IF FEEK{496663 <> 217 THEN PRINT "ERROR": END

63838 LWRIT 49671, 128. 128
63248 DF=:

IF DC>23%5 THEN DC=DC-2356: DF=1

63059 POKE 49664, DF%128: POKE 4966%, DC

63060 DT=C{DT) OR <(DF+128)):

639780 FOR DE=@ TO 14: POKE 57344+DE, B:
63069 IF DS=@ THEN DU=Q@: DV¥=16&:
THEN DU=07: DY=80: DX=14:
D¥=144: D¥=21: DY=385:
83=§28: DX=28: Dvy=289: GOTO 63130

63090 IF DS=1
63160 IF 0S=2 THEN DU=14:
63140 IF DS=3 THEN DU=21:
53120 IF DS=4 THEN DU=29:
63130 IF DD=@ THEN DV=DV+3

POKE 49664, DT

NEXT DE: POKE 57359, 01
DX=@7: Dv=37: GOTO 63130
Dy=101: GOTO 63130
GOTO 63130

Di=36: DYy=37

62140 POKE 49667, DY: POKE 496€8. DU

63150 POKE 49669, DY:
53160 POKE 49671, DD

POKE 49670, DX

64
62170 IF PEEK(49666) <> 217 THEN GOTO 63170

63180 DD=C(DD*64> OR 128)>:
63190 WAIT 49671, 128,128
63202 RETURN

Track Zero Writer

As the tech rep for 0SI, I hear whatever the
programmers in the field are screaming for.,
Some of the loudest screams have been for a
method to modify track zero. So, with my time
being as limited as it is and my personal
need for a quick way to change track zero, 1I
set out to find a solution, I was sitting in
front of my Challenger III when the idea hit
‘me. The disk copy utility found on every
diskette had to be the solution. So, with all
of that out of the way, here is how to do it.
The changes are very minor and the copy
program can still be used normally. The only
operational difference is that "DONE" is no
‘longer printed after a track zero restore. In
order to modify track zero, follow this
procedure. Call the disk copy program in 'to
$0200 as usual. Then, go at $0200. After the
message is printed, type an "E". Track zero
will then be loaded into memory off the
diskette. Now, instead of typing a control P,
hit the space bar. The computer is now in the
system monitor., Track zero is now 1in memory
at $3200., That is to say, what normally would
reside at $2200 is now at $3200, After you
have made whatever modifications you desire,
execute a "GO" at $031B. Track zero (in its
modified form) will now be written to the
diskette. Below is a step by step pateh for

Page 7

W

Ohio Scientific's Small Systems Journal

POKE 49671, DD

the track zero writer.

i

First, call in extended monitor, Then, 'call
in the disk copy program. Next, return to the
extended monitor, then change the memory

locations as listed below. Finally, save the
modified program back on to the diskette., The
track zero re-entry point is at $031B.

A*CP200=01,1 p320/p5 P6
A*RE . £321/pD EA
P322/PA EA
:#p679/7E 89 P323/pA EA
P67A/P6 31 p324/44 EA
: 0325/4F EA
(#P316/00 FP p326/4E EA
$317/0C p3 £327/45 EA
p318/2p 6C p328/2E EA
£319/49 FC p329/pp EA
P31A/ 26 FE p32A/4C 4C
p31B/2p 20 p328/pp 9
p31C/15 49 p32c/25 25
p310/p6 26
p31E/2p 2 :D
p31F/8B 15 A*SP1,1=p2pp/ 5

Jan./Feb., 1§78

9 Digit BASIC

There have been enumerable requests
end-user 9 Digit BASIC. Therefore, this
article's purpose is to present a concise
method for modifying 0SI's 9 Digit BASIC.

for an

Track 5
memory)
video
set up
Jjumps

Normally, the machine code on
(address $34D5 when Track 5 is in
determines if the system is serial or
based. The I/0 distributor is then
accordingly. This code on Track 5 then
to cold start BASIC by jumping to $20E1.

The normal sequence of events then looks like
this:

1) Is this a serial or video system?

2) Set up the I/0 distributor according to
the type of system

that is being used (serial or video),

3) Jump to cold start BASIC (JMP $20E1).

Following the instructions contained within
this article, Track 5 will be modified in the
following manner:

Instead of determining if the system is
serial or video, the I/0 distributor 1is set
up to input from memory without echoing
anything to the screen. :

Next the memory input pointer will be set up

to point at the indirect command file which
was loaded in as part of Track 4 (more on
Track 4 shortly). The code on Track 5 then
cold starts BASIC.
In summary, the modified code on Track 5
follows this sequence of events below:

1) Sets the I1/0 distributor to input from

memory without echo.

2) Sets up the memory input pointer to point
at the indirect command file (which has been
made part of Track 4).

3) Jumps to cold start BASIC (JMP $20E1).

Now when BASIC has cold started and takes
its first command, that command will come
from the indirect command file. The 1indirect
command file (INDCMD file) will "type" a
"LOAD", It will then "type" a "L11". This
will load Track 11 1into. BASIC's workspace.

Track 11 contains the menu program which will

be responsible for loading the user's
selection. After Track 11 1is 1loaded, the
INDCMD file will "type" an "RB" (return to
BASIC) and finally a "GOTO 61000". The menu

program is now running and is in control,

Line 6100 in the menu program switches the
~I/0 distributor to input from the keyboard
and to output to the screen. Line 61000 then

1 REM HNORMAL
2 REM CNTRL - ©
I REM LIST =76/

=7& » CHNTRL -0

NEW =78

YALUES LISTED BELOMW
L =255/ REDO FROM START =55, R

"RUNS" the menu program (that is, it goes to

line number 1). Control C, Control 0, LIST,
NEW, and BASIC's immediate mode are then
disabled by "POKES". The screen 1is then
cleared and the menu is printed. After the

user enters his selection, the corresponding
track number is read from the DATA statement.

Notice that the DATA statement contains an
"L" before the track number. This is required

because the load command is in the form of
"LTT" where TT is the track number. Now at
this point, TRACK$ equals the appropriate

track number. "RB GOTO 61000"
to TRACK$. This 1is so that when the 1/0
distributor is switched to input from the
appropriate program will be loaded and then
BASIC will "GOTO"™ line 61000 in the selected
program.

is then "added"

To this point, then the wuser has selected
his choice and TRACK$ equals the appropriate
track number plus "RB GOTO 61000". All that
remains to be done is to "PRINT" TRACK$ into
memory and to switch the I/0 distributor to
input from memory. This then is the procedure
- first, the memory output pointers are set
up to point just Dbeyond the first command
file (it loaded the menu program). Then the
I/0 distributor is switched to output to
memory. TRACK$ is then printed to memory.
Now, the memory input pointer is set to point
at what was Jjust printed into memory.
Finally, the I/0 distributor is switched to

input from memory without echoing to the
screen.

The indirect command file (which was just
printed into memory) "LOADS" the appropriate

program and "GOES TO" line 61000 in it. Line
61000 in the "game" program swiches the I/0
distributor to input from the keyboard and to
output to the screen. Line 61000 then "RUNS"
the game program (that is to say, it goes to

the start of the program). When the "game"
program is finished and it is time to reload
the "MENU" program, the following steps must
be taken:

First, the "game" program must set the
memory input pointer to point at the first

indirect command file (remember the file that
originally "LOADED" the wmenu program). The
I/0 distributor must then be switched to
input from memory without echoing it to the
screen. Once this is done, the "MENU" program
is reloaded and "RUN". At this point, the
user may enter his next selection. One final
note, the command file that "LOADS" the
"MENU" program is brought into memory with
Track 4, The assembly listings below show how
to modify Track 4 and Track 5.

DISABLE CHNTRL C
REDD FROM START

& CNTRL Q

sC

19 POKE 2073.9&6: POKE 8981.0: REM

20 POKE 2893, 22: POKE 28%4.41: REM -

32 REM DIABLE LIST AND NEW

48 POKE 741,18: POKE 750.10

98 B=39

188 FOR SC=1 TN B: PRINT: MEXT SC

123 IF B=1%9 THEM FOR SC=1 TO 1008: MEXT

116 PRINT "DGI 9-DIGIT END LSER SYSTEM": PRINT
128 REM LIMES 120 - 999 FOR DIRECTORY ENTRIES
136 PRINT "41>DEMQ"

" Page 8

Ohio Scientific's Small Systems Journal

Jan./Feb., 1978

Page 9

1909 é?PgT"ENTER THE NUMBER OF THE DESIRED GAME"; G$
19035 IF VALC(G$>>GT THEN PRINT"IE:ELID SELECTION":

1018 G=VAL

(G$): FOR

X=1 TO

TRACKS: NEXT X

1815 TRACK$=TRACKS$+"RBGOTN61060"
182@ REM LINES 10206 - 1829 FOR DATA STRATEMENTS
REM THIS DATA STATEMENT CDNTHINS TRACK NUMBERS
1100 REM 1100 ~ 1200 PRINT THE INDIRECT COMMAN
1119 POKE 11860, 150: POKE 118641, 33: REM SET NEH INP. PNTR L&H

1938 DATR

1120 POKE-8788»162“5520§NITCH CUTPUT TO OUTPUT TO
REM SWITCH OUTPUT TO NON-EC

1138 PRINT:

1149 POKE 8&708. 128:

v 12"

PRINT

PRINT TRRCKS

B=19: GOTO 109

MEM

HO
1158 POKE 11879.156: PQOKE 11886, 33: REM SET MEM PNTR AT START OF FILE
1160 POKE §7@7,8: REM SWITCH INPUT TO INOPUT FROM MEMORY

$9999 END

61009 POKE 8787, 1: POKE 8788.1: RUN

59999 REM THESE LINES MUST BE ADDED TO THE
€0oAa POKE 8788, 12

END
616006 FPOKE 3707, 1:

61918 END

AxRA
INIZ?N
A .

R#*RA

" GHNE "

PROGRAMS

8: POKE 11879, 128: POKE 11888, 33: POKE 8707.8

L S Y

INSERT

BEGIN

POKE 87©8.4: RUN

POWER UP OVERLAY FOR 0SI 9-

BEFORE ASSEMBLY CALL TRACK
E M COMMARND MiBGQ

ALSO SET TH

EQUATES:

INFLAG=$2203
OTFLAG=$2204
INPNTL=$2E67
INPNTH=$2E68
CSTART=4$2B8E1

*=$34D5
LDR #$80

STRA INPNTL
STA OTFLAG

JMP CSTRART

2-DIGIT INDIRECT FILE OVERLAY

5 SET MEM.

i SET MEM

DIGIT BASIC

o

INTO $4200

INPUT PNTR. RDL.

5 SET OUTPUT TO NON-ECHO
INPUT PNTR. ADH.

; SET INPUT FLRAG TO INPUT FROM MEM

5 GO CLOD START BASIC
5 FILL UP EXTRA

BEFORE ASSEMBLY CALL TRACK
ALSO SET THE M COMMAND Mioga

*=$4180

BYTE $0D. ‘LORD". $6D

BYTE

BYTE
BYTE

“L11”

.'RB/
"GOTO &lBpe”

. $a0

4

INTO $48080

Jan./Feb.,

1978

¢

OS-65U PERFORMS

The New Standard in Micro Computer Operating
Systems

System design goals: Create a simple,
concise crash proof operating System which is
easy for business programmers to utilize and
simple for office workers (and. other
non-computerists) to use. The system must
have the highest performance in the
microcomputer industry and must be able to
support present day floppy and hard disks as
well as tomorrow's CCD and bubble memories
without any user program modifications.

This may sound outlandish but we developed
Just such a system and here's how:

First, we started with a fresh copy of
Microsoft's super fast 9 1/2 digit BASIC for
the 6502. (This BASIC out Dbenchmarks every
other microcomputer BASIC using the 7
Kilobaud benchmarks except for our own ultra
fast 6 digit BASIC.)

We knew that all operating system commands
and features should be an integral part of
this BASIC language so we put them right in
the BASIC itself. This means that all O0S
features can be accessed in the immediate or
command mode and as part of BASIC programs,
All syntax such as file names can be 1literal
strings or BASIC variables.

We started out with some simple but powerful
extensions to BASIC to make the business
system programmer happy like $L, $R, Input
pound sign (D), and print pound sign (D). $L
and $R are PRINT subcommands which
automatically output numeric data in dollars
and whole cents in neat colums Jjust 1like
"PRINT USING" only simpler and quicker.

The optional pound sign specifier 1in LIST,
INPUT and PRINT statements allows the user to
route I/0 directly to the console, 16 RS-232
ports, a cassette port, RS-232 and parallel
printer ports and word processing printers
not to mention video displays and parallel
keybords.

We then added a continuous memory file system
(the real achievement of 0S-65U). This file
system has no tracks or sectors or records.
The user simply allocates storage copacity to
each file when he creates it. (On a CD=-Td
Hard Disk this can be over 72,000,000 bytes
or characters.) The user can then directly
.address every entry in the file with no
awareness of any block, sector or track
structures. Data files can simultaneously
contain strings and pure numeric data files
can be accessed sequentially and randomly.

Data files are handled with standard syntax
including OPEN "File", CLOSE (File), PRINT %
(File) and INPUT % (File) and the very
special INDEX (File). INDEX 1is a special
BASIC variable/function which specifies the
file address of the next entry to be input
or output to that file. If you leave it

alone, it operates sequentially, however, you
can change it at any time to force a random

access. This remarkable function can be on

either side of a BASIC equation and can take
on anny value within the storage range of an
opened file. For example, all of the
following are legal in 0S-65U:

Index (1) = Index (1) + 10 (Causes 10

characters to be skipped)
B = Index (1) (Sets B=zcurrent

index)

Index (3) = Index (8) /2 (Equates two file
positions, useful in sorts and merges.)

Index (5) = A%50 (Sets up a random access
on an array with 50 character elements)

Where (N) 1is a channel number or
shorthand notation for an open file, and is
assigned by the OPEN command.

This may seem exotic but it is really super
simple and incredibly powerful. Besides your |
files always automatically revert to simple
equential operation if you chose to ignore
indexes.

And, finally, for those of you who would
really hate to give up plain old sequential
files, we added a FIND command. FIND
searches for up to a 32 character string with
optional "don't care" —characters and will
automtically scan any file from the
beginning or other specified index. The FIND
command is 1implemented in straight line page
zero 6502 code (the fastest programming
technique on the fastest micro) and searches
files at over 250,000 bits per second.

Only three statements are needed to support a
sequential file in a BASIC program; only
four to supportia random file. A mere seven
statements are required to use an indexed

sequential file system as part of a program! |

A Benchmark: A Challenger III equipped with
a CD-T4 running 0S-65U can access any account

entry in a 500 account one million byte |

randomly ordered ledger file by an alphabetic
key string up to 32 chracters long 1in less
than 40 milliseconds (typically) wusing a
simple two level ISAM file structure
supported by a total program only 10
statements only. That's performance!

0S-65U also hosts multilevel passwords, |
elaborate error checking, programmable error
recovery and end user miceties like warnings
and automatic recovery when an "off" or
non-existent peripherial is accessed,
Programs and files in 0S-65U can be fully
secured such that they cannot be 1listed,
copied or even accessed if desired.

0S-65U is available now for use on any Ohio
Scientific floppy or hard disk based computer
with 32K of RAM or more. At $199, it's quite
possibly the best computer investment you'll

‘ever make.

Page 10

I ¢

Ohio Scientific's Small Systems Journal

Jan./Feb., 1978

-instruction.

.halts the trace and a go resumes the

500/5I0 Breakpoint Utilities

How many times have you been debugging a
program and wished you knew where it was when
it "went away". Well, your troubles are over,
The 500/510 breakpoint utilities allow you to
halt the program wherever you desire. Upon
halting, the program counter plus two |is
printed out, along with the flags and the
contents of the accumulator, X-register,
Y-register and the stack pointer! There are
actually two modes of operation. The first
uses the 6502 BRK instruction. Whenever the
6502 executes a BREAK instruction, several
things happen. The 6502 fetches the new value
of the program counter from $FFFE 1low and
$FFFF high.

$FFFE and $FFFF are set in prom to point to
$01C0, The breakpoint utilities set up a jump
to the interrupt request entry point (IRQENT
line number 1830). The program then decides
if a IRQ or BREAK occured and either sets or
clears the carry flag, respectively. All
registers are saved on the stack and are
available for modification using the
following commands:

A - print the contents of A and opens A for
modification
X - same as for A except deals with the

-X-register

Y - same as above but affects the Y-register
C - print the proccessor status word (PSW)
and open it

(commercial at) - opens the program counter
for modification

R - return to the command mode

G - go from the address set wup wusing the
commercial at command

In actual use one would load the breakpoint
utilities and go at $3E00 using the 65A PROM
monitor. The next step would be to place a
BREAK command over top one of the
instructions in the program being debugged.
One would then "go" to the program under test

and when the 6502 executes the BREAK
instruction, the utilities program will be
entered. The second mode of operation

involves a slight hardware modification. On
510 boards, all the parts are already there
and they can probably be found on a 500 CPU
board.

The 6502 microprocessor chip has a very
special pin called the SYNC pin., This pin
goes high whenever the 6502 1is fetching an
Using the SYNC pin in
conjunction with the interrupt request pin
(IRQ), the utilities program allows one to
trace program flow. Before each instruction
i1s executed, the program counter, the flags,
the registers (A,X,Y) and the stack pointer
are printed on the screen. Typing any Kkey
trace,
The modifications required are extremely
straight forward. All that need be done is to
take the SYNC pin's output, invert it (a
spare NAND gate on the 510 CPU) and feed the
inverter's output to the 6502's interrupt
request pin (IRQ).
Page 11

Ohio Scientific's Small Systems Journal

Don't forget when using the trace function
to clear the interrupt disable flag by
executing a CLI instruction. The following is
a description of the various modules of the
500/510 utilities source. Lines 310 through
420 set up the interrupt request and
non-maskable interrupt request vectors at
$01C0 and $0130 respectively. Lines 460
through 590 are responsible for character
input and output of a standard serial system,
Lines 610 through 750 are responsible for
inputting a character and either converting

it to hex, or jumping to back to input
another character if other than a legal hex
character is entered.

3
Lines 770 through 910 determine which

command has been -entered as well as
initializing the ACIA. Lines 930 through 980
are the go command section, This section
restores the registers and then returns
interrupt. 1010 through 1040 simply output a
carriage return/line feed. 1060 through 1170
perform the "L" or LOAD command as per the
65A monitor. Lines 1180 through 1330 are
responsible for the"P" or PRINT command. 1350
through 1460 input one hex byte and store it
at the address pointed to by PNL, PNH, +X.
1480 through 1530 simply build an address at
PNL, PNH +X. Halfby (1550 through 1610)
converts the LSD in A to ASCII and outputs
it to the screen.

1630 through 1720 PRTBYT prints a hex byte
pointed to by PNL,PNH+Y. 1770 through 1940,
these lines contain the NMI, IRQ and break
entry points. Take special note of lines 1910
- 1940, It 1is here that the "+" or nkn
prompter is determined via the carry flag.
The "+" indicates the trace function and "#»
indicates the .break command. 1960 - 2410
output the prompter, the program counter, the
flags, the registers and the stack pointer.
Lines 2430 - 2500 determine if this is a
break or a trace. A break returns to the
control loop, while a trace cnecks for a key
depression and enters the control loop if a
key is down. If no key 1is down, the trace
then executes the next instruction. Lines
2550 - 2650 output a byte pointed to by
$100+X - OUTSP simply outputs a space.

Lines 2700 - 2770 are used to index to the
proper register and to output the registers.
XCMD2 - EXITO1 make the registers available
for modification and do so if the user
desires.

A couple of final notes, first this program
is aimed at the small system owner and,
therefore, resides in the top two pages of a
16K system. Secondly, this program is
definitely not minimumized and we at OSI will
be glad to see your suggestions and ideas.

Jan./Feb., 1978

RA*RA
INIZ?N . e
A 870 3E69 FO1B BEQ LOAD
‘ 890, JEED Fae BEQ BRINT
19 UPPO 3 J93/°310 BRK PNT 3
20. 9000 ; 998 3E6F £947 CHP
30 2000 3 918 3IE7L1 DBA6 BNE XCMDJ
‘48 3EBO0 *=$3ENO . 920 3E73
S0 3E0 3 938 3E73 68 Go PLA
. 60 3E0D 2=IRQENT /2564256 931 3E74 i RESTORE ¥
70 3600 IRGADL=IRGENT ~2 940 3E74 A8 TRY
80 3E00 IRQADH=IRAENT /256 950 3IE?S 68 PLA
92 3E00 3 . 960 3EVE AR TRAX
180 3E00 J 961 3E?? X
110 3EOB ZZ=NMIENT/256%256 970 IE7? 68 PLA
120 3E00 NMIADL=NMIENT-Z2Z 971 3E7S iR ,
130 3E@P NMIRDH=NMIENT/256 980 IE?E 40 RTI
140 3EGO 5 984 3EV9 ;CC, PC
15@ 3E00 ; _ . 998 3E79 4CBD3F XCMDJ JMP XCMD
168 3E90 IRQYCL=$81C1 1000 3E7C 3
17@ 3EQ0 IRQVCH=$B1C2 1018 3E7C RYOD CRLF LDA #$D
180 3EQ0 NMIVCL=$0131 1020 2E7E 202A3E JSR OUTCH
190 3E09 NMIVCH=$0132 1039 3IEB1 ASGRA LDA #$A
200 3IE0Q - ; - 1p4@ IEBI 4C2R3E JHMP OUTCH
210 3EQ0 STKBAS=$21020 105@ 3EB6 5 -
220 3E09 JUMP=$4C 1960 3ESE 20D43E LOAD JSR BUILD
230 3E08 5 1961 3EBS ; "L" COMMAND
248 3EQ0 : ‘ : 107@ 3EBY BeD4 - BCS CONTR2
2350 3Eee ACIR=$FCRO 10890 3EBB R203 LDX #3
260 3E00 PNL=$FC : 10908 3ESD RGO LDY #@
270 3EQ9P PNH=$FD 1198 3EBF 2@BF3E LOo1 JSR HEXBYT ,
2680 3E00 i 1110 3ES2 BOCB BCS CONTR1 |
290 3E00. 3 ‘ 112@ 3E94 9iFC STR C(PNL), Y
300 3EQV - ; 1130 3E96 C8 INY
310 3E@@ A997 BEGIN LDA #IRGADL 1149 IES7 DOF6 BNE LO1 (
311 3E02 JSET UP THE IR@ VCT _ 1150 3E99 E6FD INC PNH .
32@ 3E02 8DC101 STA IRQVCL 1160 3E9B 9OF2 BCC Lol
330 3E05 R93F LDA #IRQADH iive 3E9D 3
349 3IEO7 8DC201 STA IRQVCH 1180 3E9D 2@0D43E PRINT _JSR BUILD
3%0. 3EOR A901 LDA #NMIADL ‘ 1181 3EAG ; "P" COMMAND |
331 3EeC 3SET UP_THE NMI VCT 1190 3ERP BOBD BCS CONTR1
360 3EOC 803101 STAR. NMIVCL 1200 ZEAZ ARGV LDY #@ _
370 3EOF R93F LDA #NMIADH : 1218 3ER4 RA2@9 _ FPRO LDX #9
380 3E11 8D3201 STA anvcu 1220 3EA6 207C3E JSR CRLF
32 3T e ur PRt 1508 300 Fhee "™ BE eme
3 s upP THE JMP NSTR. -
400 3E16 8DCOAOL STR IRG cf : 1250 3EAC 20EE3E JSR PRTBYT
aze 3Eic q033%% $I8 NATvELsd 1550 300 Dor? BNE PR1
. CONTRO A
430 3E1F s 1280 3EB2 E6FD INC PNH
4408 3IELF 3 1290 3EB4 4CA93E JMP PR1
zsa 3EAF ; %ggg ggg; zgaaFc PR2 tgg gcxﬂ
60 3E1F ADOOFC INCH LDR RCIA ' y
461 3E22 3 INPUT CHHRHCTER ‘ 1320 3EBB BeAz BCS CONTR1
470 3E22 4A LSR R 1330 3EBD 9@ES BCC PRO
480 3E23 SOFA BCC INCH 41340 3EBF 5
499 3E23 ADOLFC LDA ACIA+1 - 1350 3EBF 20373E HEXBYT JSR INHEX
S00 3E28 297F AND #$7F 13%1 3EC2 JGET 4 HEX BYTE
810 3E2R - 1368 3EC2 BOOF BCS HEXX
520 3E2R 48 OUTCH PHA 13706 3EC4 @A ASL. A
821 3Ee8 ; OUTPUT CHARACTER 1380 3ECS OR ASL A
530 3E2B RDOOFC LDA ACIA 1390 3EC6 @A ASL A
849 3E2E 4R LSR A 1490 3EC?7 OR ASL A
2%0 3E2F 4A LSR A 1410 3EC8 95FC STA PNL, X
.56@ 3E30 90F9 BCC OUTCH+1 : 1420 3ECA 28373E JSR INHEX
878 3E32 68 PLA 1430 3ECD BBO4 BCS HEXX
880 3E33 8DO1FC STR ACIA+1 144@ 3ECF 15FC - ORA PNL. X
590 3E36 60 - RTS . 1450 3IED1 95FC STR PNL, X
608 3E3? 3 1460 3ED3 &0* HEXX RTS
€10 3E37 201F3E INHEX JSR INCH 1470 3ED4 ;
611 3E3R ; INPUT HEX DIGIT 1480 3ED4 A2O1 BUILD LD
620 3E3R C952 CMP #°R 1481 3EDE 3 BUILD e BYTE RDDRESS
638 3E3C FR15 BEQ INHEXX 1490 3ED6 20BF3E SR ,
640 3E3E €930 CMP #°0@ 1500 3EDS BOG4 BCS BUILDX
650 3E40 3PFS BMI INHEX 1510 3EDB CR DEX
668 IE42 C93A CMP #*: 1529 3EDC 28BF3E JSR HEXBYT
670 3E44 3008 BMI IN1 1530 3IEDF 60 BUILDX RTS
6ggnzs4s,cg4é MP_#‘R . 13540 3EEQ 5
690 3E48 30E Eﬁ:‘*NHER 1%5@ 3EEQ 18 HALFBY CLC ,
700 3E4A C547 CMP #°G 1881 3EE1 ; PRINT HEX DIGIT
‘740 3E4C 1BE9 : BPL INHEX 136@ 3EE1 29@F AND #$F
720 3E4E E996 SBC #6 : 41570 3EE3 0930 ORA #°0@
730 3ES0 18 cLC _ 1580 3EES C93A CMP #-:
740 3ES1 290F INi AND #$F 1598 3EE? 9802 BCC HA®
750 3ES3I 69 INHEXX RTS 1680 3EE9 6906 ADC #86
760 3ES4 3 _ %g%g gEEE 4C2A3E HAE JMP QUTCH
3
;;2 §E§2 A903 F%ﬁ}?“rhgﬁn3§s3 - 1630 '3EEE BAFC PRTBYT LDA (PNL)D, Y
7680 3IES6 SDOBFC STA ACIA 1631 3EFQ 3 PRINT ARDDR (2 BVYTES)
790 IESS A9B1 LDA #$B1 1649 3EF® 4A LSR A
‘800 3ESB8 BDOOFC STA ACIRA 1650 3EF1 4R LSR A
810 3ESE D8 CLD 1660 3EF2 4A LSR R
820 3ESF 78 CONTR1 SEI 1670 3EF3 4A LSR A
830 3E60 DS CLD , 1680 3EF4 2PED3E JSR HALFBY
. 840 3E61 207C3E JSR CRLF 1698 3EF? BiFC LDA ¢PNL), Y
850 3E64 20iF3E JSR INCH 170@ 3EF9 2BEO3E JSR HALFBY
8%1 3E67 ;CMD. LOOP . 1710 3EFC RS20 LDR #s20
868 3E6Z C94C CMP #-L 1720 3EFE 4C2A3E : JMP OUTCH

,Page‘12 Ohio Scientific's Small Systems Journal . Jan./Feb., 1978

-

-

48 NMIENT PHA . /
i TRACE ENTRY ,
8A TXA
: SAVE A, X
48 PHA
38 SEC
s SET TRACE FLAG
BO10 BCS BRERAK
.
48 IRQGENT PHA
; BREAK, IRQ@ ENTRY
8A TXA
i SAVE A, X
48 PHA
BA TSX
EB IN:
; POINT TO CC
ES INX
E8 INX
18 CLC
s SET BREAK FLAG
Boaaa1 LDA STKBAS, ¥
291 AND #3510
; ISOLATE .8 BIT
Deol BNE_BRERAK
+IT WRS A BREAKPOINT
38 SEC
s SET € AS THE IRG FLG
&
U8 BRERK CLD
98 TYA
; SAVE ¢
48 PHA
o8 PHP
s SAYE ENT FLG IN C
207C3E JSR CRLF
68 PLA
48 PHA
s GET ENT FLG <C>
2901 AND #1
@52R ORA #°# ‘
;% = BRERK. + = TRRCE
202R3E JSR OUTCH
BR TSH
8a TXA
6906 ADC #6
. ;6 + CCFROM OUTCHY = 7
AR TAX
: s NOW X POINTS TO PCH
¢
20783F JSR OTKDX
: ; OUT PCH_& DEX
20783F PCER OTKDX
JOUTPUT COND. CODES <CC)
20883F JSR OUTSP
s SPACE
ARBO7 LDY #7
;8 CC BITS -
BDOPBL LDA STKBRS. %
s GET CC_FROM STRACK
48 PHA
s SAYE ON TOP OF STK
68 BREAK1 PLA
oA ASL A
s SHIFT €C BIT TO C
48 PHA
B96D3F LDA CCTBL. Y
; GET CORREXP. LETTER
BERO2 BCS BREAKE
iCC BIT was SET
. A930 LDA #°0
iCC_ % v RESET
ggaﬂss BREAK2 JSR OUTCH
10F9 BPL BREAK1
€8 PLA
i CLR CC_FROM STK
cA DEX _
iPNT _TO A IN STK
i QUTPUT A, 4
29753F BRERK3 JSR _OSTKDYX
;OUT * ", REG., DEX
C8 INY
ceng CPY #2
DRFS BNE BREAKS
; OUTPUT STK PTR
2p383F JSR ouUTSP
8A TX
; ADJUST BHCK
6905 #5
,cq+c=5> FOR STK CONT
207B3F JSR 0ADX

s OUTPUT STK PNTR
s BRCK TO US OR BRACK PROG.

Ohio Scientific's Small Systems Journal

3FC9
3FCB

‘28

Bo@3
4C3F3E

ADBRFC
4R
BOF7
4C733E

26883F
BDBBO1
a

CA
4CEQ3E
Agz2a;
4C2RA3E
Rga4

BA
E8

D9D43F
Foos
88
485F3e
20883F
58
Dee4d
E8
20783F
20783F
ES
20883F
20373E
BO1F
48

98
697F

&8
ROG4

@R

88
10FC
JEQQ81
7005
ES
3E@B01
CcH
CeFC
DBEE

PLP
s GET ENT_FLG OFF_STK
BCS GOTEST

3 TRACE
CONTRJ JMP CONTR1
3} BREAK
)
GOTEST LDR ACIA
; 8TOP 2
LSR R
BCS CONTRJ
i YES -
- JMP GO
3 .
CCTBL .BYTE “CZIDBRVN”
;" %, BYTE @ STKBARS, X
Ll
0STKDX JSR OUTSP
3 SPACE
OTKDX LDA STKBARS. X
OADX PHA
LSR A
LSR A
LSR A
LSR A
JSR HALFBY
PLA
DEX
JMP HRLFBY
} .
OUTSP LDR #~
JMP QUTCH
s REG. DISP. /CHG. LOGIC
®KCMD LDY #4

iNO. OF REGS - 1
TSX

XECMDL INX
i FIND REG NAME IN
CMP REGTBL, VY
; TRABLE & HDJU T X
BER XCMD2
i ALONG THE HHY
DEY
BPL %XCMD1
JMP CONTR1
;INVRLID COMMAND
XCMDE JSR OQUTSP
} SPACE
TYR
i0 7
BNE XCMD3
I NO - '
INX
i YES -
OTKDX

$ QUTPUT PCH
XCMD3__JSR_OTKDX
;OUT SELECTED REG, DEX
s POINT BHCK TQ THAT REG
ouUTSP
3 SPACE
XCMD4 ISR INHEX
i ANY INPUT 7
BOS ExITel
s BACK TO CONTR1 VIA JMP
s YES - SAVE NEW DIGIT
JTEST v _ZERQ OR NOT
JAND SAWE RESULT IN v BIT
PLA
LDY #4
s SHIFT NEW DIG INTO REG

XCMDS ASL A
;48T LI IT IN A
DEY

BPL XCMDS
STKBRAS, ¥

i SHIFT INTD REG IN STK
BYS XCMDé

i NG -
INX s

i YES - SHIFT INTO PCH
ROL STKBRS, X
DEX

KCMD6& CPY #$FC

;s DONE
BNE XCHMD3J

i NO -

Jan./Feb., 1978

510 Tracer “ ;

The 510 tracer contains all the features of : 3019 3IFCB AB o TARY
the 500/510 breakpoint utilities plus a few gg%% g;gg S@DF 3 v=0 BYC XCMD4
extras. Tracer also prints a disassemble of ‘20821 3FCE iV¥=B & ¥ MATCHES
the next instruction to be executed. 1In 3838 3FCE C8 1 INY,
addition, this program "swaps" out the zero 3835 3FEE oo (Y7 BNE XCMD4
page locations it requires and restores them : 20%@ 3FD1 4CSF3IE EXITB1 JMP CONTR1
upon returning to the main . program. Two gggl 3;82 : BACK TO CONTRL
important points - first, this program uses ‘ 36?3 gFD“ 40 JREGTBL BYTE “@®CRXY”
the software processor select switch found i 3879 3FDS 43 . .

. only on Challenger III's and it resides at *%333 3;3? gé
$5C00. This program can be wused to trace 3973 gFDS 59
another program by running the sync 1line on -
the 6502 through an inverter and then to the . 5@ '

.'6502's. . interrupt request line (IRQ LINE). :

A*RE

:uscao,gprg

5cee A9 AC 8D FE F2 A9 SD 8D FF F2 A9 16 8D FA F2 A9
- 5C10 SO BD FB F2 A9 B4 8D @1 F? A9 EF 8D 88 F? RS @0

SFFO¥ C8 C4 CA 26 48 44 44 A2 CB 24 24 24 24 24 24 24

o

Ple 14 Ohio Scientific's Small Systems Journal Jan./Feb., 1978

Do you have These importanT publications

from OSI ?

Page 15

Full Line Catalog*

This is the '"complete" catalog - every OSI product is described

in full. We even include articles, such as '"An Introduction to
Small Computers" in our Fall 77 issue. Our no nonsense approach
allows you to get the facts. WE WANT YOU TO GET THE FACTS because
we want you to know what yQu're buying. Who knows, when you're
done reading our catalog you might have learned something.

Comprehensive Information Package

Designed for reference and service it contains all the technical
information you need. 64 PAGES including

PARTS LIST
BOARD DESCRIPTIONS
EXTENSIVE SCHEMATICS

You can work your way up from the bare board to the system you
want to configure.- PLUS you get the Full Line Catalog with its
complete product descriptions.

1977 Small Systems Journal Back Issues

DID YOU MISS THE JOURNAL IN 19777 Now you can catch up on all that
good reading you missed. For only $6.00 you can find out about
"The Auto-Load Cassette System'", "Understanding and Using the 6502
Assembler', "Getting the Most Out of BASIC", '"Constructing a
Fool-Proof End User System" plus much more. Start your collection
from the beginning.

1978 Small Systems Journal

In its first six issues the Journal established itself as a publication
dedicated to the serious exploration of microcomputer technology. If

you want to continue the exploration send in now for your 1978 bi-monthly
subscription. If you are not a subscriber now is the time for you to pick
up on what the Small Systems Journal has to offer. Enjoyable reading

that keeps you informed about what's going on in the small computer

world. If you've missed the first six, don't miss number seven.

SUBSCRIBE NOW!

o

Ship To

NAME,

I ADDRESS, PHONE I

| CITY, STATE __ZIP |
CATALOG $1.D 77 JOURNAL $6.01

l INFO PACKAGE $5.0 78 JOURNAL $6.00 l

I MASTERCHARGE (O No. Exp I
BANKAMERICARD ([No. Exp.

I OHIO SCIENTIFIC 1333 S. CHILLICOTHE AURORA OH. 44202 I
S SN SN N SN S SHE

%SPRING EDITION AVAILABLE APRIL 15)

Ohio Scientifie's Small Systems Journal . Jan./Feb.,

1978

IIIIII SEIEIII'I'IFIG

11679 HAYDEN STREET HIRAM, OHIO 44234

small sysTems journal 4
Ohio Scientific 1333 s.Chillicothe Aurora, OH 44202

