The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21 117
(301) 363-3268

Column One

The word 1is, the nine O0SI
sales contest winners who went
to Sweden had a good time.
Good for them and for us.

Speaking of sales contest win-
ners, ISOTRON now has some 120
dealers, with ten more soon to
be approved and more in the
pipeline. There is 1life in
the old company yet.

One of the signs of life is
the appearance of MD Partner,
DDS Partner vertical market
software packages. There will
be more in the future, but for
now ISOTRON wants to see how
these first packages do in the
market place.

When more new vertical market
packages do come out, they
will probably be in the main
stream of business - don't ex-
pect to see a widget distribu-
tor package anytime soon.

Other signs of life:

KeyBase T - a new DBMS for the
300 series machines - no de-
tails released as yet, but we
are told it should be out by
the time you read this;

a new DBMS for the 200 series
machine to follow shortly;

0S-65U is being overhauled to
allow for new "hardware chan-~
ges". Nobody will say what
changes they have in mind...

a national ad campaign to
start with the October issues
of various magazines. We are

really anxious to see the new
ads;

another new machine - the 235
- it fits in a 280 box but
hidden

in there is a new 515
"

.Last month we

'INSIDE

$1.75

SEPTEMBER 1984
VOL.5, NO. 9

6502 ASSEMBLY LANG. PROG. CLASS 2
0S1 ROM ROUTINES 3
BEG| 'S 6
DISK BASIC GARBAGE ! ! 9
KEYBOARD MUS 10
MORE, BIGGER 12
0S65U INPUT TIPS FOR V1.2 DIE-HARDS 12
COMB INED DIR TIL OR 0S- 15
TIME & DATE 0S| 17
SOLVING THE OSI IRQ PROBLEM 17

board, plus a single-board
hard disk controller. The'ma-
chine is either a 2- or 4-
user device and comes with 4
serial I/0O ports, one parallel
port, and one network port. A
2-board, 4-user computer with
an 8" floppy disk and a mini-
winnie, The system will sell
for about the same price as a
238, which amounts to about a
$600 price reduction as we
calculate it.

reviewed The
Data System. We failed to
mention in the review that The
Data System supports 05-DMS
files (type 18), except for
some of the automatic features
of progams like automatic file
calculation, automatic keyfile
update when a record is added.
This will be a great advantage
for people who have systems
with existing O0S-DMS files
they want to preserve, and of
course, the files can still be
converted to the new type 360.

While on the subject of soft-
ware, it 1looks as though the
free listings of software will
probably spill over into the
October issue, as it did last
year. wWhat this means to you
is that you have a few more
days to get the form in the
July issue filled in and on
its way to us. Once again,
don't miss this unique PEEK
opportunity that is, frankly,
free advertising.

A question for business users:
what does it take to entice
you to utilize your magazine
in the same fashion that hack-

ers do? Long ago, they learn-
ed that there is much to be
gained in the sharing of in-

formation. Write us and tell
the community what you have,
what you are doing with it,
what you want to do with it
and your problems.

This month's issue is in my
lap - in its usual prepublica-
tion form, with great holes
where full page ads will ap-~
pear (not to mention the great
hole on the front cover where
Column One will appear if I
ever finish writing itl!).
Looking over this issue, I am
struck once more by the amount
of detailed technical informa-
tion it contains. What other
computer magazine is 25% list-
ings? Where else can you
learn how to solve the IRQ
problem (the State Department
would 1like to see that one, I
betcha)? From Maryland to
Tasmania, OSI users stick to-
gether ‘and help each other!

Which brings me to a painful
subject. During my vacation,
I have been thinking very hard
about PEEK and have come jto
the conclusion that, due to‘my
many other commitments, I.

cannot continue to_edit PEEK. W <}

The owners of PEEK-have assur-
ed me that, other than the
style of this column, PEEK(65)
will continue as usual. "-Eddie
Gieske, who has filled in for
me during my vacation, will be
taking over my post here. It
has been a labor of love and I
have had a ball, and I thank
all of you for your help and
support.

6502 ASSEMBLY LANGUAGE
PROGRAMMING CLASS

Part III

‘By: Richard L. Trethewey
Systems Operator for the
0SI SIG on CompuServe

Let's take another look at the
last program I presented in

lesson 2.

le *w$54800

29;

ie LDY #5900 3 CLEAR Y

49 LDA 4§20 3 LOAD ACC. WITH A <SP>
5@ Pl STA $D66@,Y ; SAVE ACC. AT $D60P + Y
60 INY 1 INCREMENT INDEX

7@ CPY 4§09 3+ IS Y A ZERO YET?

8e BNE Pl 3 IF NOT, GO BACK TO Pl
98 RTS 3 YET IT 1S, QUIT

If we were to add enough STA
$DxPB,Y instructions, we would
have a program that would
clear the entire screen. But
the resulting program would be
larger than it had to be. The
need to keep code compact will
become clearer later.

All right, so we have the es-
sential structure of the pro-
gram we want to write, but how
do we change it? Well, first
of all, we need to change the
memory address in line 58 so
that it starts at the top of
the screen instead of near the
bottom., So we'll change 1line
50 to read:

58 P1 STA $DB@O,Y ; SAVE ACC., AT $D#O9 + Y

Okay, so far so good, but now
we need to make the changes
that will allow the program to
clear the rest of the screen
since what we have now will
only clear the top 8th of it.
Here again it's divide and
congquer as we attack the prob-
lem,

We know that the area of
memory we want to clear is one
contiguous block (i.e. there
are no gaps in the range of
memory addresses involved).
Therefore, our. task will in-
volve repeating the same
process for each page (block
of 256 bytes) of memory in the
screen memory. Ahal Sounds

Copyright £1984by PEEK (65) Inc. All Rights Reserved.
published monthly .

Editor - Al Peabody

Technical Editor - Brian Hartson

Circulation & Advertising Mgr. - Karin Q. Gieske
Production Dept. - A. Fusselbaugh, Ginny Mays

Subscription Rates

US (surface) $15
Canada & Mexico (st class) $23
So. & Cen. America (Air) $15
Europe (Air) $35
Other Foreign (Air) $40

All subscriptions are for 1 year and are payable in advance
in US Dollars.

For back issues, subscriptions, change of address or other
information, write to:

PEEK (65)

P.O. Box 347

Owings Mills, MD 21117

Mention of products by trade name in editorial material or
advertisements contained herein in no way constitutes
endorsements of the product or products by this magazine
or the publisher.

like a job for a loop! Again,
since we'll be dealing with
successively higher addresses
in memory, for each pass
through the 1loop we'll be
clearing the next consecutive-
ly higher page of memory. The
6502 provides an instruction
that will help us here, which
is the "INC" instruction,
"INC" increments the contents
of a memory location, By add-
ing an INC command to bump the
Most Significant Byte (MSB) of
the memory address in line 58,
we can have same code executed
for each page of memory in the
screen.

Of course, as with any loop,
we also have to include a test
to see if the loop needs to be
executed again. We'll be us-
ing the "CMP" instruction for
this. "CMP" stands for "Com-
pare the Accumulator", and
we'll be testing the MSB in
line 50 that we've been
INCrementing to see if we've
cleared all 8 pages of the
screen. The resulting program
is as follows:

18 *=54000

203

e LDY #5e8 CLEAR Y

40 LDA #5208 LOAD ACC. WITH A <8P>

58 Pl STA $DPOO,Y SAVE ACC. AT §DBBO + Y

60 INY INCREMENT INDEX

70 CPY $500 IS Y AT Z2ERO YET?

-1 BNE Pl IF NOT, GO BACK TO Pl

98 INC Pl42 YES!| INCREMENT ADDRESS MSB

180 LDA Pl+2
119 CHMP #$D8
128 BEQ P2
139 LDA #§20
148 JMP P1

LOAD ACC. WITH NEW Pl MSB
18 IT PAST SCREEN END?
IP YBS, GO TO P2 (QUIT)
IP NOT, LOAD A <8P> AGAIN
AND RE-ENTER THE LOOP

1584
168 P2 RTS EXIT POINT

This program has several
inefficiencies., I 1left them
in so we could examine them.
The first is that line 70 is
unnecessary and could be elim-
inated entirely. Why? Because
the previous instruction in
line 66, "INY", conditions the
Z flag that is tested by the
"BNE" instruction in line 889,
automatically when it is ex-
ecuted.

Next, when we loaded the
accumulator with the contents
of "Pl+2" in line 100, we lost
the <SP> character that we had
been saving to the screen.
So, each time the 1loop was
executed, we had to restore
the <SP> in 1line 134. But
even that was inefficient If
we had labeled line 486 as
"P@", we could have eliminated
lines 130 and 140 by changing
line 126 to read "BNE P8",
This change would have the
effect of altering the point
at which we re-enter the 1loop
when a page of screen memory
is completely cleared. of
course, we also get the added
bonus of more compact code
again, So our program could
be improved to look like:

10 *=54008

3e LDY 4§80
40 P8 LDA #520
58 P1 STA $D8E8,Y

CLEAR Y
LOAD ACC. WITH A <6P>
BAVE ACC. AT $DBOO@ + Y

68 INY BUMP INDEX

78 BNE Pl IF ¥ <> 8, ™HEN GO TO Pl
88 INC P1+2 INCREMENT MSB OF Pl ADDR
99 LDA Pl+2 PETCH NBW Pl ADDRESS MSB

1p0 CMP $§D8
119 BNE PO
120 RTS

PAST END OF SCREEN ?
IP NOT, P8 RESTORE <SP>!
IP 50, WE'RE DONE (QUIT)

still has one
fatal flaw. Did you spot it?
The flaw is that -since the
program alters the contents of
memory when it is executed, it
can only be run once. If you
tried to run it a second time,
the address at Pl would start
out at $p8@# and the program
would try to set all memory
locations from $D868 on up,
flopping over after S$FFO0 to
begin again at $00086 and ulti-

This program

mately crashing when it gets
up to $40P0 again.
The solution to this problem

is to reset the address at Pl
to $D@BP when the program is
done clearing the screen, The
following code would accomp-
lish this:

111 LDA #$DP ; LOAD ACC. WITH SCREEN TOP MSB
112 STA P1+2 ; RESTORE ORIGINAL ADDRESS AT Pl

The technique
of altering
program as
executed is
"self-modifying
using the term a
here since we're altering an
address instead of an actual
instruction code, but the
object here is to demonstrate
the effect of the technique.

presented here
code within a
that program is
of ten called
code". I'm
bit 1loosely

In BASIC, if you refer to a
variable in an equation with-
out previously setting the
value of the variable, BASIC
assumes the value to be used
is zero. We enjoy no such
luxury in Assembly language
programming. Each and every
pointer must be initialized
before they can be used.
Sooner or later, you will
violate this principle and
your program will fail. It
happens to everyone. - When
your programs lock-up, look at

your pointers first, 'Nuff
said!
As you can see, the "INC"

instruction is very handy for
dealing with consecutive mem-
ory addresses. The 6582 also
has a complimentary instruc-
tion called "DEC" which rever-
ses the process by decrement-
ing the contents of memory
locations.

You may have thought that the
references in the programs
presented here to "P1+2" was a
bit strange. Ordinarily, we
would think that to find the
most significant byte (MSB) of
the address we would 1look at

the left-most location. The
reason we had to use "Pl+2" is
that the 6582 uses this
reversed order of the MSB and
LSB for instructions in pro-
grams. Thus, when we refer to
specific memory locations in
terms of labels within our
programs, we must take this
situation into account. Don't
forget that labels represent
specific memory addresses for
the assembler, even though
they are looked at as refer-
ence points in text for us.

BRANCHING
In several of the previously
presented programs, I have
used the instructions "BEQ"
and "BNE". The 6502 has sev-
eral such instructions called
"branching instructions”.

Their purpose is much like the
"IF" statement in BASIC. They
test to see if a particular
condition exists and if so,
program control is sent to a
specified destination, If
you'll recall our previous
discussion of the internal
registers in the 6502, one of
the registers is called the
status register or status
byte. The value of each bit
in the status register tells
us something about what has
occurred in a program and it
is the status register that is
tested with the branching in-
structions.

Note that only 7 bits in the
status register are actually
significant. One bit was not
defined in the original 6582s.

Again, each significant bit in
the status register tells a
story, and each story is dif-
ferent. These bits are also
referred to as "flags" and are

further referred to by a
particular name, The status
flags are:

If set (i.e. value = 1), it

means that the result of the
last operation that affected
this flag set bit 7 of the
byte manipulated (whether the
accumulator, X or Y register,
or a memory location makes no
difference) indicating a nega-
tive result.

V_or Overflow flag

If set, it means that the last
math operation that affected
this flag caused an overflow.

B_or Break flag
If set, indicates that a BRK
instruction was executed.

D or Decimal flag

If set, the accumulator will
perform math operations in
Binary Coded Decimal. If

clear, normal math is per-
formed.

1 or Interrupt flag

I1f set, the 6582 will process
sof tware interrupts.

If set, it means that the
result of the 1last operation
that affected this flag was
not zero, If clear, result

was zero.

The value of this flag is used
as a kind of "9th bit" in math
operations so that multiple

precision math can be per-
formed.
The eight branching instruc-

tions test the condition of
only four of these flags. The
two~-to-one ratio of instruc-
tions to flags provides the
ability for a branch to be
taken (i.e. the tested for
condition will exist) for all
possible states of the four
flags. The branching instruc-
tions are:

BCC or Branch on Carry Clear
If the carry flag is zero, the
branch is taken.

BCS or
Branch is taken if Carry = 1.

BEQ or Branch on Equal
Branch is taken if Zero flag
2.

BNE or Branch on Not Egual
Branch is taken of Zero flag
1.

1.

BMI or Branch on MInus
Branch is taken if N flag

BPL_or Branch opn PLus
Branch is taken if N flag 2.

BVYC or Branch on oVerflow

Clear
Branch is taken if Vv flag = 0.

BVS or Branch on oVerflow Set
Branch is taken if Vv flag = 1.

The branching instructions
have a limitation that must be
remembered when they are used
in programs. They can only
branch to a point 127 bytes
ahead of, or 128 bytes behind
the address of the next memory
address after the branch in-
struction itself, This is one
reason why I stressed the need
for keeping your code as com-~
pact as possible.

The status flag is affected by
most of the instructions in
the 65602 instruction set. The
exceptions are ' the instruc-
tions STA, STX, STY, JSR, JMP,
RTS, NOP, PHA, PHP, and TXS.
Then we have the instructions

which are used to directly
control the individual flags
within status register; CLC,
cLp, CLi, CLv, SEC, SED, and
SEI.

instruc-

There are two other

tions available in the 6582
which transfer program con-
trol, which are "JMP" and

"JSR", "JMP" stands for "JuMP"
and causes an unconditional
transfer to the specified add-
ress, Jjust like "GOTO" in
BASIC. "JSR" stands for "Jump
SubRoutine" and executes the
code beginning at the speci-
fied address until an "RTS" or
"ReTurn from Subroutine" in-
struction is encountered, just
like "GOSUB" and "RETURN" 1in
BASIC.

*

OSI ROM ROUTINES
(Part 4)

By: Leroy Erickson
Courtesy of OSMOSUS NEWS
3128 Silver Lake Road
Minneapolis, MD 55418

The ROM routine for this month
is SYNMON page 4, the ROM
BASIC Support routines for 548
video and the polled keyboard.
This routine occupies $FFB0 to
$FFFF in any C4P, C2-4P or C8P
cassette based system. Since
it covers locations $FFFA thru

$FFFF, it contains the NMI,
RESET and IRQ vectors. Look
at those locations in Listing

1l and you'll see that they are
set to $013@¢, SFF@P and $81CH,
respectively. Thus, on re-
ceiving a RESET (BREAK) in a
BASIC-IN-ROM system, control
is passed to SFF80 - the
beginning of this page. Now
look at the code at that
location. The following set
of operations is executed:

1. Clear decimal mode (just in
case).

2. Set the
s@12s,

stack pointer to

3. Initialize the serial port,
using a routine assumed to
exist in the BASIC ROM(s).

4, 1Initialize several
that BASIC will need.,

flags

5. Initialize the video cursor
position.

6. Clear the screen.

7. Display the boot message
'C/W/M?' on the video screen,
using another routine which is
assumed to exist in the BASIC
ROM(s) .

8. Get an input Chatacte[, ; i :::itiilt‘t'i‘t'tttt'ttttt"i!titilt:::
using thg routine in the key- 3 T C4P BOOT ROM PAGE 4 L wwe
board driver ROM. 4 ; owEe ik
- 5 ; *** ROM BASIC Support for 540 Video ***
s REd 2 23
9. Test that character and do § N and Polled Keyboard en
the following:- if 'M', go to 8 ; *** Comments by Leroy Erickson *¥*
the ROM Monitor at SFEGO. ¥ ! . May 1382 ee
11 : LRl RS A2 RS R R a2 222222222
- if 'W', go to the warm start 12 ;
jump assumed to exist at H 0000= . HO000 =$0000 ; BASIC Warm Start Location
H
$0000. ig gggg= cnspos=§ozoo ; Video Cursor Position
= LORDFG=$0203 ; LOAD Flag
- if 'c', go to the cold start - 17 3 Non-zero ==> Serial Input
. ! g . 18 0205= SAVEFG=§0205 ; SAVE Flag
routine in BASIC-IN-ROM, . ég 0206 ADELAY=50205 : ¥°n-ze'§ ==> Serial Output
= ' LAY= ; Time Delay
- if none of the above, go 21 0212= CTLCFG=$0212 ; CTRL/C Flag
back to $FFE8 and start all 2 i Non-zero ==> Disabled
:
over. gg ; * BASIC-IN-ROM Routines *
H
26 A636= HA636 =$A636 ; CTRL/C Handler
The code to handle the above 27 BD11= HBD11 =$BD11 ; Cold start entry
tasks occupies about half of . 28 BFl15= HBF15 =$BF15 ; Serial output
the page. The rest of the 29 BF22= HBF22 =$BF22 ; Init serial port
page contains the following g(l) BF2D= HBF2D =$BF2D ; Video Driver
routines: 32 DO0O= SCREEN=$D000 : Address of video memory
g:{ DFOg= KEYBRD=§DF00 ; Address of keyboard port
: P e 4 FCO00= SERPRT=$FC00 ; Address of serial port
1. $FF67 is a character dis 35 PEOO= HFEOD =SFEO0 ; ROM Monitor start address
play routine which first 36 FEED= HFEED =$FEED ; Address of Jump to
displays to the screen, then ;; i Keyboard Input Routine
tests the 'SAVE' flag If i
3. 39 FFO0 * = $FFO0
set, the character is also 40 ; s
sent to the serial port. 41 FF0O D8 HFF00 CLD i Clear decima} mode
Also, if in 'SAVE' mode and a :g §§8§ 3228 gg)st 1528 i Set stack pointer
carriage return is being dis- 44 FF04 2022BP JSR HBF22 ; Init Serial Port
played, 18 nulls (ASCII '00') :2 ggg; gocggoz LDY zSOgF H Inétia}ézeli‘lags
: : . STY TLCFG ; - CTRL/C Flag
are written to the serial port 47 FFOC BC0302 * STY LOADFG ; - LOAD Flag
as a delay. 48 FFOF 8C0502 STY SAVEFG ; - SAVE Flag
43 FF12 8C0602 STY TDELAY ; - Time Delay
: 50 FF15 ADEOFF LDA HFFEQ ; Initialize Cursor
iéngfesngi 'IEOA;Pe ggg:‘ango 51 FF18 8D0002 STA CRSPOS ; Position
. 52 H
When a 'LOAD' command is giv- 53 ; * Clear the Screen *
en, its flag is set (changed 54 ;
fré SO0 g SFF) ar(ad Ehe 55 FF1B A920 LDA #$20 ; Get a blank
L m , ° 56 FF1D 9900D7 HFFID STA SCREEN+$700,Y ; Clear last 8th
SAVE' flag is cleared (set to 57 FF20 9900D6 STA SCREEN+$600,Y ; Clear next Bth
g
¢). The 'LOAD' flag is clear- 58 FF23 9900D5 STA SCREEN+$500,Y ; ditto
ed later when a ‘'space' is 59 FF26 9900D4 STA SCREEN+$400,Y ; ditto
p 60 FF29 9900D3 STA SCREEN+5300,Y ; ditto
yped on the keyboard. Gome e M Sty dne
A + ' H tto
. 63 FF32 9900D0 STA SCREEN,Y ; Clear top 8th
3. At $FF94 1is the code to !

. 64 FF35 C8 INY 3 Increment index
handle the 'SAVE' command. 65 PF36 DOES BNE HFF1D ; Loop for a whole page
All that happens is that the 66 !

"SAVE' flag is set to 1. & i * Display Boot Meg *
H
69 FF38 BYSFFF HFF38 LDA BOOTMS,Y ; Get a char
4. At SFF99 is the code to 70 FF3B F006 BEQ HFF43 ; Exit i£ 0
test for CTRL/C input from the 73 FEan Zo20BF Thy (HBF2D) Else, display it
H ncrement ndex
keyboard. If not true, con- 73 FF41 DOFS BNE HFF38 i+ Loop until all done
trol is returned to the ;g '
calling routine. If true, e } Get & Test Response
contrel is passed to $A636 in 77 FF43 20B8FF HFF43 JSR HFFB8 1 Get an input char
the BASIC ROM(s). The routine ;g ;::g ggag CMP ;;:‘D 1 M7 .
i BNE : No, skip
ggéﬁeﬁil ggrthea§°”:§:cu§§gg 80 FF4A 4COOFE JMP HFEOO ; Yes, go to ROM Monitor
. 81 3
BASIC program. g§ g;:g cg(s);l HFF4D CMP #'W P W?
D BNE HFF54 3 No, skip
5. At $FFB8 is the character 84 FFS1 4C0000 JMP HOO00 ; Yes, go to Warm Start
. 85 1
input routine. If the 'LOAD' gg FFS: €943 HFF54 CMP #'C ;C?
3 3 FF56 DOAS8 BNE HFF00 : No, start over
flag is clear, control is 88 FP58 A900 LDA $500 : Yes, clear A,X & Y
passgd to the ROM keyboard 89 FF5A AA TAX i
routine, If set, the routine 90 FF5B A8 TAY l
continuously tests the key- gg FF5C 4C11BD JMP HBD11 ; Go to BASIC Cold start
H
board for a space (ASCII '29') 93 FFSF 43 BOOTMS .BYTE 'C/W/M ?',0 ; * Boot Message *
input or the serial port for 53 Fre0 2r
any input. 1If the serial port 93 FF62 2F
wins, that character is re- 93 FF63 4D
turned, otherwise the 'LOAD' 93 FF64 20
flag is cleared and control is o Eres e
passed to the ROM keyboard 94 :
handler. 95 ; * Display a char *
96 ;
. 97 FF67 202DBF MFF67 JSR HBF2D 3 Display to the screen
6. At SFFEB is a set of 5 98 FF6A 48 PHA ; Save the char
jumps to the 5 routines listed 99 FF6B AD0502 LDA SAVEFG ; Test SAVE Flag

above, Presumably, BASIC-IN- Continued on page 6

D&N MICRO PRODUCTS, INC.

3702 N. Wells St.
Fort Wayne, Ind. 46808
(219) 484-6414

TERMS $3.00 shipping, Foreign orders add 15%, indiana reswents ana 5% sales tax.

PRINTERS

| COMPUTER

MICRO-80 COMPUTER
Z-80A CPU with 4Mhz clock and
CP/M 2.2 operating system. 64K
low power static memory. Cen-
tronics parallel printer port. 3 serial
ports. 4" cooling fan. Two 8" single
or double sided floppy disk drives.
IBM single density 3740 format for
243K or storage, double density
format for 604K of storage. Double
sided drives allow 1.2 meg on
each drive. Satin finish extruded
aluminum with vinyl woodgrain
decorative finish. 8 slot backplane,
48 pin buss compatible with OSI
boards.

MODEL 80-1200 $2995
2 8” Single sided drives
MODEL 80-2400 $3495

2 8" Double sided drives

MICRO-65 COMPUTER

6502 CPU with 2Mhz clock and
DOS-65 operating system. 48K of
low power static memory. 2 serial
ports and 1 Centronics parallel
port. 2 8” single or double sided
drives. Satin finish extruded
aluminum with vinyl woodgrain
finish.8 slotbackplane, 48 pinbuss
compatible with OSI. Will run OSI
65D and 65U software.

MODEL 65-1 $2995
2 8" Single sided drives
MODEL 65-2 $3495

2 8" Double sided drives

BP-5808 SlotBackplane. $ 47
OSI 48 pin Buss compatible

MEM-CM98 MEMORY/
FLOPPY CONTROLLER
.24K memory/floppy controller card
uses 2114 memory chips, 1 8K and
1 16K partition. Supports 0S| type
disk interface

2MEM-CM9 ~...$325
16MEMCMS $260
S8MEM-CM9 $180
BAREMEM-CM9........... $ 50
Controller on assembled unit
add...................$ 90
BIO-1600BarelOcard. $ 50

Supports 8K of memory, 2 16 bit
parallel ports, 5 serial ports,
with manual and Molex
connectors.

Okidata
ML82A, 120 cps, 10” .$409
ML83A, 120¢ps, 15" .$895
ML84 Parallel, 200 caps, 15 . $1150
C. loth
8510AP Prowriter, parallel . ..$419
120 cps, correspondence quality
8510APD Prowriter, serial. . . . $585
F10-40PU Starwriter, parallel $1319
Letter quality daisy wheel
F10-40RU Starwriter, serial . .$1319
F10-55PU Printmaster $1610
parallel, Letter quality daisy
wheel
F10-55RU Printmaster, serial $1610

DISK DRIVES AND CABLES
8”ShugartSA801 $385 -
single sided
8” Shugart SA851 $585
double sided
FLC-66ftcablefromD&N ,...$69

or O8I disk controller to 8" drive

5%” MPIB51diskdrive with . . $450
cable, power supply and
cabinet. Specify computer type.

FLC-5' cable forconnection .$75
to 5% drive and D&N or OSI
controller, with data separator
and disk switch. Specify
computer type

HARDWARE

OSI COMPATIBLE
10-CA10X Serlal Printer Port . . $125
Specify Device #3 or #8
10-CA9 Parallel Printer Port . .$150

-CMOS-MEM

64K CMOS static memory board,
uses 6116 chips, 3 16K, 1 8K and 2
4K blocks, Partitionable for multi-
user, OS| type disk controller, 210
mapped serial ports for use with
D&N-80 CPU. Ideal way to upgrade
from cassette to disk.

64KCMOS-MEM $490
48KCMOS-MEM $390
24KCMOSMEM $250
16KCMOSMEM $200
Controller add.$ 90

210 mapped serial ports add. $125
on assembled memory board
Z80-10 210 mapped serial$160
ports for use with D&N-80 CPU

card :
FL470Disk Controller. $155
Specify 5% or 8”drive

STANDARD
CP/M FOR OSI

D&N-80 CPU CARD :
The D&N-80 CPU allows the owner
of an OSI static memory computer
to convert to Industrial Standard
IBM 3740 single density disk for-
mat and CP/M operating system.
Double density disk operation is
also supported for 608K of storage
on an 8” diskette. When used with
a5Y" disk system 200K of storage
is provided. Includes parallel
printer and real time clock. Also
available for polled keyboard and
video systems. Compatible with
C2, C3, C4 and 200 series OSI com-
puters.

7/
D&N-BO- [- I 3349
CP/M2.2 - renene $150
64K CMOS-MEM with D&N-80
CPU card $450
” N
HARD DISK DRIVER $140

Allows D&N-80 CPU board to con-
trol OSI 40 or 80 meg hard disk unit.
Will not destroy OSl files. Will also
allow for a true 56K CP/M system.
Specify 40 or 80 meg drive.

BUSS TRANSFER $135
Allows for D&N-80 and OSI CPU to
be in the computer at the same
time. Toggle switch provides for
alternate CPU operation.

DISK TRANSFER $100
Utility program to transfer OSI

CP/M format disk to IBM 3740 .

single density format. Will also
transfer IBM to OSI format.
SYSTEM HARDWARE
REQUIREMENTS
D&N-80 CPU, D&N FL470 or OS!
470 controller, 48K memory at
0000-BFFF, 4K memory at D0QO--
DFFF, two disk drive cables.
FORMAT TRANSFER $15
You supply software on 8" diskette
D&N will transfer OSI CP/M format
to IBM 3740 CP/M format. Can also
transfer IBM 3740 CP/M format to
OSI| CP/M format. Original diskette
returned.

ROM calls these 5 add[essés s0 100 FF6E F022 BEQ HFF92 Skip is clear

i
. 101 FF70 68 PLA ; Else regain output char
that the above code is not 102 FF71 2015BF JSR HBF15 ; Write to Serial Port
location dependent. 103 FF74 C30D CMP #S0D ; Is it Carriage Return ?
p
- 104 FF76 DO1B BNE HFF93 : No, Go Home
PR : - .105 FF78 48 PHA ; Yes, save it
I'l} finish off with 3 obser 106 FF79 BA TXA : and X
vations. - 107 FF7A 48 PHA :
; 108 FF7B A20A LDX #$0A ; Get a 10 N
. s s ' 109 FF7D A900 LDA $#$00 H and a Nul
1. Nothing in this ROM page 110 PF7F 20158F HFF7F JSR HBF1S ; Write it to serial port
uses any location ‘on page 111 FF82 CA - DEX ; Do that for 10 Nulls
zero! This allows & 'RESET' 112 FF83 DOFA BNE HFF7F
: 113 FF85 68 PLA 3 Then regain X & A
and warm start to successfully 114 FFB6 AA TAX :
work. 115 FF87 68 PLA ' i
116 FF88 60 RTS ; And Go Home
2. There are 7 unused bytes at L2 b,

. c d *
SFFD9 to $FFDF and 1@ unknown e ' Handle LOAD Comman
bytes (BASIC data?) at $FFEl 120 FF89 48 LOADCM PHA ; Save A
to SFFEA. 121 FF8A CE0302 DEC LOADFG ; Set LOAD Plag

122 FF8D A900 LDA #$00 ; Clear SAVE Flag
. 123 FFBF 8D0502 HFF8F STA SAVEFG
3. If the programmer at OSI 124 FF92 68 HFF92 PLA ; Regain A
had only taken the code at 125 FF93 60 HFF93 RTS ; And Go Home
SFF1B to $FF36, moved it be- i?l : + Handle SAVE Command *
hind location $FFD8 and tagged 128 : ;
an 'RTS' onto it, then placed 120 Fros a5y SAVECM MR ser 1 23N sor save Flag
]] 3 3 H et a
a 'JSR' to this routine at 131 FF97 DOF6 BNE HFF8F ; Go share code
$FFlB_1nstead and packed ev- 132 7
erything back together again, 133‘ 3 * CTRL/C Test *
. 1)
the following would be true: 135 FF99 AD1202 CICTST LDA CTLCFG j CTRL/C Enabled ?
136 FF9C D019 BNE HFFB? ; No, Go Home
1. The code would work Jjust 373 FFB(E’: 390% . gg: 'sgllmn 7 Elge, é:':xt. :ow 0
; FFAO 8DOODF KE 7 or ey
the same way as it does now. 139 FFA3 2COODF BIT KEYBRD
140 FFA6 S500F BVC HPPB7 3 Not down, Go Home
"2, There would only be 3 un- }3 FFA8 3933 gg: :S%RD i El:e, Eels(t Row 2
: i FFAA 8DOODP E 1 or ey
L.xsed'bytgsi f‘_7 mtgus,iTg?r the 143 FFAD 2COODP BIT KEYBRD
JSR' an or the). 144 PFBO 5005 BVC HFFB7 ; Not down, Go Home
145 FFB2 A903 LDA $§03 ; Else, get ASCII Value
3. There would be a machine 146 FFB4 4C36A6 JMP HA636 i Go to BASIC ROM CTRL/C
language 'screen clear' rou- W 7 Handler
tine in ROM which could be 149 FFB7 60 HFFB? RTS 1 Go Home
directly called by a 'USR(X)' 150 R R
function from BASIC, thus 15)T Get Char Routine
nullifying several dozen maga- 153 FPBS 2C0302 HFPB8 BIT LOADFG ; Test LOAD Plag '

3 articles and/or letters 154 FFBB 1019 BPL HFFD6 ; Skip if clear
gln:he last fe eérs 155 PFBD A902 HFFBD LDA #3502 t+ Else, test Row 1
in w Y . 156 FFBP 8DOODF STA KEYBRD ; Column 4 of the

157 PPC2 A910 LDA #§10 i Keyboard - a Space
' i 158 FFC4 2COODF BIT KEYBRD
But OSI did'nt dg thlngs thag 159 FFC7 DOOA BNE HFPD3 3 It's there, 8kip ahead
way because nobody ever woul 160 FFCS ADOOFC LDA SERPRT ; Else test serial status
want or need to use a routine ig% ::gg ;erz s(s:g A " ; a1 n
: HFFBD 3 Loop-unt or the
like that, would they? 163 1 Cother happens
164 FFCF ADOLFC LDA SERPRT+1 ; If set get input char
Next month, we'll cover SYNMON igg FFD2 60 RTS ; And Go Home
s M :
pagth, thg Senaltlslistem RO 167 FFD3 EE0302 HPFD3 INC LOADPG ; If ' * clear LOAD Flag
Monitor. ee you n. igg FFD6 4CEDFE HFFD6 JMP HFEED t Go to ROM Keyboard Code
H
170 FFD3 00 .BYTE 0,0,0,0 ; * JUNK FILLER *
: 170 FFDA 00
* 170 FFDB 00
170 FFDC 00
171 FFDD 00 .BYTE 0,0,0 :
171 PFDE 00
BEGINNER’S CORNER 171 FEDF 00
. i
173 FFEC 40 HFPE0 .BYTE $40 ; Initial video cursor 8
By: L. Z. Jankowski 174 . ' po
Otaio R4 1, Timaru 175 FFE1l 3F .BYTE $3F,$01,$00,503 ; * JUNK (?) *
New Zealand 175 FPEZ 01
175 FPE3 00 .
175 FFE4 03 S .
GOT IT! 176 FFES FF : .BYTE $FF,$3F,$00,503
176 FFE6 3F
. 176 FFE7 00
one of the problems with O0SI 176 FFE8 03 .
BASIC has been the lack of an i;; ;‘gg: g: -BYTE §FF,$3F
adequate 'GET-KEY' command, 178 "y
e.g., GET or INKEY as in other i;g :
3 3 FFEB 4CBS8FF HFFEB JMP HFFB8 3+ Character In Routine
?AS%E:?. ,Nevei.man' a haltl::lg 181 FFEE 4C67FF HFFEE JMP HFF67 + Character Out Routine
'GET~key' routine is easy o 182 FFFl 4C99FF HFFFl JMP CTCTST ; CTRL/C Test Routine
implement. For 65D 3.3, see 163 FFF4 4CB9FF HFFF4 JMP LOADCM ; LOAD Command Handler
line 318 in Listing 1. (List- ig; FFF7 4C94FF HFFF7 JMP SAVECM ; SAVE Command Handler
ing 1 is t:}_xe‘thud‘paft of the : 186 FFFA 3001 NMIVCT .WORD $0130 ; NMI VECTOR
'Otaio Mailing List - see 187 FFPC OOFF RESVCT .WORD $FF00 3 RESET VECTOR
June '84 issue). For DOS 3.2 188 FFFE €001 IRQVCT .WORD $01CO ; IRQ & BRK VECTOR
change line 318 to: 89 ;

190 «END

310 DISK!"GO 252B":Y$=CHRS »
(PEEK(9815)) :Y=VAL(YS$)
:A=PEEK (9815) OR32.) ¢ Y

Congratulations Europe - You Now
Have a DBI Distributor

DBI Welcomes P.M.C. ApS

P.M.C. ApS offers domplete Dealer Support:

- Hardware Support (D.B.I. products in stock}
- Software Support (Specialized programs)
- Technical Support (Repair/Installation)

For Replacement and Upgrading O.S.1.* (65U*) 200 Series Computers with D.B.I. products.

P.M.C. ApS
Taarnfalkenvej

DK - 2650 Hvidovre
Copenhagen, Denmark

P.M.C. ApS Professionals are:
Joergen Clausen
Niels Koldborg
Carsten Sillemann

Telefon; 45-1-49 30 66
Telex: 42563 Fulvic DK

*0.S.l. and 65U are Trademarks of ISOTRON Inc.

Wir gratulieren - nun hat auch Europa
eine Vertretung fuer DBI

DBI heisst P.M.C. ApS willkommen

P.M.C. ApS liefert vollstaendige Verkaufsunterstuetzung:

- Geraete Service (D.B.I. Componenten an Lager)
- Software (Spezielle Kundenprogramme)
- Technische Unterstuetzung (Reparaturen-installationen)

Wir ersetzen und ergaenzen O.S.1.* (65U*) 200 Serien Computer mit D.B.|. Componenten.

P.M.C. ApS
Taarnfalkenvej

DK - 2650 Hvidovre
Copenhagen, Denmark

Das zustaendige Personal der P.M.C. ApS sind:
Joergen Clausen ’
Niels Koldborg
Carsten Sillemann

Telefon: 45-1-48 30 66
Telex: 42563 Fulvic DK

*Q.8.1. and 65U sind registrierte Markenzeichen von ISOTRON INC.

Félicitations Europe - Vous avez,
’ maintenant, un distributeur DBI.

DB souhaite la bienvenue @ P.M.C. ApS

P.M.C. ApS offre un soutien concessionnaire total, que ce soit en:
- machines (matériel D.B.I. en stogk) .
- ou en software (program/mes spécialises)
- avec'appui technique (réparations/installations)

pour le remplacement et I'amélioration des ordinateurs 0.S.1.* (65U *) série 200 avec produits D.B.I.

P.M.C. ApS

Les agents professionnels P.M.C. ApS sont:
Joergen Clausen
Niels Koldborg
Carsten Sillemann

Taarnfalkenvej
DK - 2650 Hvidovre
Copenhagen, Denmark

Telefon: 45-1-49 30 66 -
Telex: 42563 Fulvic DK

*0.S.1. et 65U sont des marques déposées de ISOTRON Inc.

p.o. box 7276

1 denver, co 80207
Jinc.

(303) 428-0222

For RCOM BASIC use:

219 POKE 11,8:
X=USR(X)

POKE 12,253:

312 Y$=CHRS(PEEK(531)) :
Y=VAL(YS$): A=PEEK(531)0R32

To see why ¥$, Y and A are
used, run line 318 with 1line
320:

328 PRINT YS$, Y, A: GOTO 319
Notice that the number in
variable 'A' has the same
value, irrespective of whether

lower or upper case is used.

The 'GET-key' routine above is
a halting one; it waits until
a key 1is pressed. A non-
halting 'GET-key' command
would be extremely wuseful in
program loops that must keep
on doing something until a key

is pressed. CTRL-C does the
job but with an undesirable
side effect - it stops the

program alsol Various attempts
have been made to circumvent
this limitation of 0SI BASIC.
The best solution would be to
add the new command 'GET' to
the BASIC Interpreter.
Creating records is done in
the APPEND block, lines 1700-
1888. Looking at 1line 1710,
if 2 Records have been created
then the next Record R must be
number Z+l. Records can con-
tinue being created until
there are 'N' of them, the
maximum allowed, as set in
line 138, Notice how the user
is prompted and helped to make
the correct response.

Line 1778 demonstrates how ar-

rays can be much more useful
than simple variables. The
field names could. have been
stored in 5 variables, N1§,

N2§, N3$, N4$ and N5§. An
INPUT into each of them would
require up to 5 lines of code.
Using array N$(C) and a
FOR...NEXT loop reduces this
requirement to one line only.
As a result the program 1is
shorter, faster and more ele-
gant.

If 'STOP' is typed in response
to INPUT in line 1770 then an
exit is made from the block
via line 1798, At this point
'Q' is one more than is re-
quired for '%2', therefore 'Z°'
is set to 'Q-1'., It would be
silly to have a final invis-
ible Record with 'STOP' in it
so the next FOR...NEXT 1loop,
in line 1796, -erases that
Record. Finally, 'Q' 1is set
to 'N' and 'C' is set to 'P',
Doing this forces the proper
termination of these loops.
If this is not done unwanted
addresses are left on the

LISTING 1

29G REM LISTING i.
300 REM Get a Key

310 DISK!' "GO

200 ON Z GOSUB 1000, 2000, 3000, 4000, 5000z

2336": Y$=CHR$ (FEEK (9059) : Y=VAL (Y$) : A=PEEK

(903%9) OR3I2

315 RETURN
1690 REM
1700 REM AFFFEND RECORDS
1710 R=Z+1: IFR:NTHENPRINT"% No more space left %":G0T0200
1720 REM)
1730 FORG=RTON
1740 PRINT!(28):FRINT"% To return to main menu type:- §STOP

‘ 2" :PRINT
1750 FRINT:FRINT"Record "Q"of"N:PRINT:PRINT
1760 REM
1770 FORC=1TOF:FRINT:FRINT"“X “N&(C)" " ;:INPUTD$(Q,C)
17680 IFD$(Q,C)=H$THENFPRINT: PRINT: FRINT:GOTO1750
1790 IFD$(Q,C)=S$THENZ=Q-1:FDRY=1T0P:D$(Q,V)=“":NEXTY:QEN;
1800 NEXTC,@:60TOL9C

LISTING 2
S REM LISTING 2
- 10 PRINT! (28); : FPOKE S6900,1: SUM=53514+40%96
20 WIDTH=64:SCREEN=SUM-WIDTH: CHOICES=6: L=CHOICES-1
30 FOR COUNT=1 TO CHOICES
40 : NUMBER=COUNT: PRINT TAB(10) "> CHOICE" STR$ (NUMBER)
S50 NEXT COUNT: POKE 56900,5
60 :
70 FOR KEY=1 TO CHOICES
80 = GOSUB 130: DISK! "GO 2336": LOOK = PEEK(9059)
90 IF LOOK=13 THEN NUMBER=KEY: KEY=CHOICES
100 NEXT KEY: IF LOOK=13 THEN 200IF CR, show choice.
110 6GOTO 70go do it again.
120 :
130 FOR COUNT=0 TO 9: NUMBER=COUNT: FOKE SCREEN+NUMBER, O
140 NEXT COUNT
150 SCREEN = SCREEW + WIDTH
160 IF SCREEN > (SUM + L3WIDTH) THEN SCREEN=S5UM
170 FOR COUNT=0 TO 9: NUMBER=COUNT: POKE SCREEN+NUMBER, 1
180 NEXT COUNT: RETURN
190 :
200 FRINT: PRINT “CHOICE " STR$ (NUMBER) " MADE"
210 PRINT:INFUT"% READY ";@%$: RUN
LISTING 3

10 REM LISTING 3.
20 PRINT! (28): X=4: DIM AS%(X)
30 AS(1)="PRIN":A%(2)="PACK":A$ (3)="SORT":A% (4)="FIND"
40 INPUT "% COMMAND ";B$
SO0 FOR Y=1 TO LEN(B$)-3: C$=MID$(B$,Y,4)
60 : FOR Z=1 TO X: IF C$=A%(Z) THEN GOSUB 200: Z=X
70 NEXT Z
80 NEXT Y
90 END

RETURN

800 NEXTY

1000 PRINT"PRINTING" : RETURN
2000 PRINT"PACKING":RETURN
3000 PRINT"SORTING":RETURN
4000 PRINT"FINDING":RETURN

Stack. This could be fatal to
a program where FOR. .. NEXT
loops are mixed with GOSUB
calls. Experiment with the
following program to gain a
deeper understanding of how a
FOR. ..NEXT loop works. Try
different values for A and B,
including negative numbers and
zero. Try A>B as well as A<B,
Note each time the final value
of COUNT.

19 REM LOOP

20 A=...: B=.,.

30 FOR COUNT=A TO B

40 PRINT "HAILI",,

50 PRINT "COUNT= " COUNT
60 NEXT COUNT

7@ PRINT, "FINAL COUNT=
"COUNT, ,,, "DONE"

The commas merely space the
output across the screen. It
is possible to produce a 1loop
which will run forever or
until some condition is met -
this is where a non-halting
GET command would be useful.
Add these lines and RUN:

20 A=l: B=l
55 COUNT=#,

Now add this
LOOP:

51 X=INT(RND(1)*18): IF X=1
THEN 60

line to halt

Jumping Jodhpurs! It works
just like 'LOOP' in MODULA 21!

POINTS ARISING

OSI BASIC Boolean operators
(AND, OR, NOT) closely follow
the rules of Boolean Algebra.
The -inventor of Boolean
Algebra was George Boole
(1815-1864). He was a primary
school teacher and soon found
that he had to learn more
mathematics. He did some
reading and eventually wrote
'The Mathematical Analysis of
Logic'. 1Two years later he
was appointed Professor of
Mathematics at Queens College,
Cork, Ireland. Boole showed
that an algebraic structure
could be abstract. As a
result of his work we know
that propositional logic (AND,
OR, NOT) will always work,
including in computer prog-
rams! So what does the 'OR
32' in line 319 do?

Every character has its asso-
ciated ASCII code number. The
ASCII number for 'A' is 65 -
this is 01000001 in binary (a
'sixty-four' and a 'one'). 1If
this binary number is now

'ORed' with 32 we have:
01000001 is 'A'
00100000 is just 32

011000081 = 97 in base 10.

ASCII
'ORed'

wWhat happens if the
number for 'a' (97) is
with 32?

01100001 is 'a’
6R1000B6G0 is just 32

01100001 = 971

The result is precisely the
same., The statement = 'X=PEEK
(9059) OR 32', will put the
same value into variable X
irrespective of whether the
key pressed was for upper or
for lower case.

WAZZAT!

Making programs easier to use
makes them. much longer.
Listing 2 is a case in point,.
It shows an alternative way of
presenting a Menu and a
suitable version of it could
be substituted for line 288 in
the OML. ClP users make these
changes:

10 SuM= 53514

25 WIDTH= 32

80 GOSUB 130: POKE 11,0: POKE
12,253: X=USR(X): LOOK=PEEK
(531)

139 POKE SCREEN+11,32

140 REM

1706 POKE SCREEN+11,23

188 RETURN

The listing also

how readable a

can be.

no need for REM in
and 118.

illustrates
BASIC program
Notice that there is
lines 1090
Works for GOSUB too!

One needn't stop there. It is
possible to write a Menu
program (see Listing 3) that
will do the following: accept
ANY English sentence, extract
key words representing com-
mands; execute those commands.
In effect a Command file has
been set-up for execution,
Gadzooks, just like CP/M?!

*

GARBAGE!!

By: Earl Morris
3200 washington
Midland, MI 48649

I seem to be
garbage.

attracted by
Not the kind you put

in barrels out at the curb,
but the kind made by using
strings in BASIC. The March
and June 1981 issues of PEEK

explained a bug in the ROM
BASIC garbage collector. This
bug does not exist in DISK
BASIC. However, when the disk
garbage collector runs, it can
introduce long delays in your
program. The delay is propor-
tional to the square of the
number of strings to be
collected. Jim Butterfield is
the quru of PET BASIC and many
of his ideas can be adapted to
OSI BASIC with only a change
of address. In the June and
July (84) issues of COMPUTE,
Jim explains the reason for
long delays in collecting
garbage strings. A number of
ideas are given on ‘how to
avoid creating string garbage
in the first place. Building
up a string character by char-
acter such as:

FOR X=1 TO 64 : AS$=AS$ + "*"
NEXT X

is one of the worst offenders,
creating over 2K of garbage.
Such constructions are often
found in word processors writ-
ten in BASIC.

Butterfield suggests avoiding
making garbage if possible.
Or, if you must make garbage,

do a local clean-up immediate-
ly after. The idea 1is to
force a collection only on the

string you have just created
and not all the strings in
memory. Just before creating

garbage, move the top of BASIC
pointer down to the current
string pointer. All existing
strings are now outside of the
BASIC workspace and are ignor-
ed by the garbage collector.
Then make the necessary gar-
bage in building up the de-
sired string and get rid of
this garbage by forcing a col-
lection with FRE. The collec~
tion will run very quickly
since there is now only one
valid string in string space.
Finally, restore the top of

BASIC pointers to continue
normally.)
This technigque becomes useful

when you have over 180 strings
in memory. With fewer strings
the collection delay is too

short to be a concern. Fol-
lowing is an example program
using the local garbage col-
lection modified for 0SI
BASIC. Normally, this code
would be part of a larger

program, The address pointer KEYBOARD MUSIC

for ROM and DISK BASIC are 1@ PRINT TAB(15);"PLAY MUSIC. G.VAN HORN®
: : 20 GOSUR9Z®
different, so use line 10 or 3@ PRINT"JUST PLAY THE G ROW FOR MAIN NOTES AND THE NUMBER ROW
20 as appropriate. , 4@ PRINT"FOR SHARPS AND FLATS. TO REPEAT YOUR TUNE, HIT SPACE BAR

S@ PRINT"4P PLAYS A TUNE IF YOU HIT SLANT BRR (/)"
6@ POKE 56832, 3:T=57@83

5 REM USE LINE 10 or LINE 28) 7@ DIM F(57),P(255),H(25%)
but not both aa mms(ess),ugssgs f
= . = R = . 9@ REM LOAD TONES (
1¢ BL=84 : BH=85 : SL=80 : SH 100 FORL=1TOS71READF (L) sNEXT
= 81 :REM FOR DISK BASIC 110 X=0
20 BL=85 : BH=86 : SL=8l1 : SH 118 REM PLAY THE NOTES
= . 120 GOSUBEIR
0 82 :REM FOR ROM BASIC 130 IFX=0GOTO120
: , 148 N=F (X)
40 REM MAKE A LOT OF STRINGS 150 I=INT(43152/N)
160 POKE T, 1
50 I:IERE . 170 GOSUR1082
: 180 GOTO1Z0
109 AL=PEEK (BL) :AH=PEEK(BH) : 130 REM FILE OF THE TONES AVAILABLE TO COMPUTER
REM SAVE TOP OF BASIC i e barA ze1e 2%' I agg. g' 233' "§33'3 349, 2, 370. 0, 392, @
_ 7 He . 21@ DATA 261.6,277.2,293.7,311.1, 329. . . .
11@ ZL=PEEK(SL) :ZH=PEEK(SH) : 220 DATA 415. 2, 448. 0, 466. 2, 433. 9, 523. 2, 554, 4, 587, 3, 622. 3
REM SAVE STRING POINTER 230 DATA 659.2, 698, 4, 740. @, 783. 0, 83@. 6, 884. 0, 932. 3, 987. 8
120 POKE BL, ZL:POKE BH,ZH . 240 DATA 1Q4€.5,1108.7,1174.7, 1244.5,1318. S, 1395. 9, 1480.0
5@ DATA 1S6B.0, 1661.2, {760, O, 1864, 6, 1975, 6, 2093, @, 2217.5
REM LOWER TOP OF BASIC 260 DATA 2244. 3, 2489. @, 2637. 0, 2793. 8, 2959, 9, 3135, 9, 3322. 4
130 FOR X=1 TO 64 27¢ DATA 352@. 0, 3729. 3, 3951. 1, 4186. @, 4434. 9, 4698. 6, 49152
T 140 AS=AS+"*" s 2B REM SELECT COMPUTERS TUNE
290 E=INT (3#RND (1) +1) sONEGDTO312, 430, 600
REM MAKE GARBAGE 30@ REM AND PLAY IT
150 NEXT 31@ READA:FORY=1TOR:READX, P:N=F (X}
160 z=FRE(D) o 0 FomLLaTaraRPNEXT "
33 L= SePe
REM FORCE LOCAL GARBAGE 340 FORG=1TO1Q:POKET, 1:NEXT
COLLECTION 35@ NEXTY: POKE2@73, 173:8TOP
200 POKE BL, AL :POKE BH, AH : 33@ E';D ANKEE DODDLE
37@ REM YAN
REM RESTORE TOP OF BASIC 380 DATA 64
392 DATA11,2,11,2,13,2,15,2,11,8,15,8,13,2
* 40@ DATARB, 2, 11,2, 11,2,13,2,15,2,11,4,10,4
410 DATAI1,2,11,2,13,2, 15,2, 16,2, 15,2,13,2
KEYBOARD MUSIC - 428 DATAL1,Z,10,2,6,2,8,2,10,2,11,4,11,4
432 DATAB.3,10,1,8,2,6,2,8,2,10,2,11,4
. 44@ DATAE, 3,8, 1,6, 2, 4,2, 3,4,6,4
By: Gerald M. Van Horn 450 DATAB, 3, 10, 1, 8, 2, 6,2, 8, 2, 10,2, 11, 2
640 S.W. Addison Ave, 460 naTge.E.S,a.ix.ee.12.2,:33.92;51;.4,711.40 " s
1 i 470 DATAS7,4,11,2 1 1 2 57,2,10,2,11
Junction City, OR 97448 450 REM YELLOW RDSE'OF TEXRS o oot
) 432 READBiFORY=1TOB1READG, L1NEXT1GATO310
Some comments on the enclosed 5@ DATASE
; T - £1@ DATA13,1,11,1,10,2,13,8,13,2,13,2,15,2,13,4
program. ALInt now Lt is run Se@ DATALL, 2, 10,2, 13,2, 18, 3,20, 1,22,6
ning on .4y but 1t was 530 DATA13, 2,13, 2, 28, 2, 22, 2, 22, 2,22, 2, 20, 4
revised from ROM BASIC system 543 gg;gig,ﬁ.i'll.’i. ig.g.?g.g.ﬁ,g.fg-g 5.2 13,2 13,3
i ;- 55 2 N 2,15 .
and, therefore, easily 2;e\;15 S6@ DATALL, 1, 10,2, 13,2, 18,3,20, 1,22,6
gd. Just change POKE 73,96 570 DATA13,1,13,1,13,2,23, 2,23, 2, 23, 2, 23,2, 28,2
3h 599 Lo POKE 530, ,2nd, POk %50 REw FOK THE'SAKE' OF AULD LANG SYNE 1o
. X 5
2873,173 in 1'1nes 350 and 1229 600 READC:FORY=1TQC:READM, O:NEXT:60T0432 . .
to 530,”- It's not fancy, but £1@ DATA31
the kids should get a kick out ?eg 32126!31!1113!]11‘1?.11311:5“15732
: ; .3 13,3,11,1,13,3,15,1,13, 1
of it for awhile. You play 64@ DATA1L,2,11,2, 15,2, 18,2,20,3
the upper two rows of the 650 DATAST7, 1,20, 2, 18, 3,15, 1,15, 2
keyboard as a piano keyboard. ?f;g gg?gg.f.llf,g.él.llblz.z,lﬁ'll .
3¢ 2 &, 11
The comPUtgr tsltores_ the notes 68@ REM LObKLUD'K'EV'DéP;iE‘SSéD' ’
as H(S) and they can be played £90 K=570881PDKEZA73, 961 P=P+1: POKEK, 2
back by pressing the space 7@@ IFPEEK(K)=128THENX=1:RETURN
bar. The computer &also has 71@ IFPEEK (K) =2THENX=17 1 RETURN
: = 72@ POKEK, 323 IFPEEK (K) =32 THENX=153: RETURN
its own tunes randomly select 732 POKEK, 161 IFPEEK (K) =1 2BTHENX=3: RETURN
ed by the slant bar. More or 748 IFPEEK (K) =64 THENX=5 3 RETURN .
other tunes can be added. By 750 IFPEEK (K)=32THENX=631RETURN
; s 760 IFPEEK (K)=16THENX=8:RETURN
storing the complicated num 770 1FPEEK (K)=B8THENX=101 RETURN
bers required to calculate the 78@ IFPEEK (K) =4THENX=123 RETURN
tones, I have u 792 IFPEEK (K)=2THENX=131RETURN
£ i to 57 Tg_mbereg th?@ BAR POKEK, 642 IFPEEK (K) =64 THENX=14 1 RETURN
rom o . 1s makes 1 818 IFPEEK (K) S32THENX=16: RETURN
easy to develop a tune. 820 POKEK, 128: IFPEEK (K) =64 THENX=2: RETURN
832 IFPEEK (K)=32THENX=4:RETURN
R B4Q IFPEEK (K) =BTHENX=7:RETURN
Thls.was developed on an 8K RSO IFPEEK (K) =4THENX=9 1 RETURN
machine and should run with 8K 86@ IFPEEK (K)=2THENX=11:RETURN
: B7@® POKEK, 2: IFPEEK (K) =1660T01 160
if the songs are not too long. 882 IFPEEK (K) ~BGOT0290
832 IFX=ATHENRETURN
107@ X=573RETURN : 898 REM S7 IS A REST IN YOUR TUNE
1278 REM SAVE HOME MADE MUSIC 22 X=57:RETURN
1280 IFH(S) O XG0T01100 312 REM PRINT OUT KEYEOARD
1098 RETURN 320 FORI=1TO3Z:PRINT:NEXT
1100 P(S)=P 930 M=S54538:N=161:0=32:R=161
1110 8=6+1 948 FORI=1T04:FORJ=ATOZISTEPS
1120 H(S)=X 95@ POKEM+J, N1 POKEM+J+1, 01 POKEM+&+J, RINEXTJ
1130 pP=t 6@ IFI=2THENN=1361R=32
1142 RETURN 972 IFI=3THENN=209:0=128:1R=128
115@ REM PLAY BACK HOME MADE MUSIC 28Q M=M+64:NEXTI
1162 FORA=1T0S 990 M=M-64#4-13:GOSUB1020 :M=M+9 : GOSUR1 Q20
117@ N=F(H(A)) 1200 M=M+12:GOSUB1020:M=M+3:G0SUB1020
118@ I=INT (43152/N) 1010 M=M+ES: POKEM+64, 1 361 POKEM+64#2, 1 361 RETURN
1190 POKE T, I 1028 POKEM, 321 POKEM+1, 1363 POKEM+64, 321 POKEM+ES, 1361 RETURN
1200 FORL=1TO3S#P (A) :NEXT 1@48 POKEK, &
121@ FORG=1TO1@: POKET, 1 sNEXT 1050 1FPEEK (K)=16G0TO116@ *
1220 NEXTA:POKEZA73, 1731ST0OP e 1060 IFPEEK (K)=BB0TO230

10

TRY US!

WE MEAN BUSINESS

$C5/80-1 Computer System
With 1 Denver Board Multi Processor

S §6990%

Expandable to 14 Users #8

For Each Add’l Multi
Processor User Add ;
$1,000%° !

¢ Includes Super
Utllity Package

Pius our incredible new super system data base
manager. With brand new Disk Tech One, 2 year war-
ranty on internal hard disk components. Beautiful
hand finished oak cabinet over steel frame. Instant
access to all components. Available with casters or
plastic feet

BEAUTIFUL AS WELL AS FUNCTIONAL

CLOSE OUT!
C3-OEM

2 MHz/56K*
With 6502 and Z80 |
Processors ‘

With Centronics Paraile}
Printer Interface

While they Last!

$1499%

*Inciudes BK Exec Memory for CP/IM
or Multi-User

» Buy for a Spare
¢ Add to a Spare H.D.
¢ Develop Programs

Spare 510CPU Board with Z80+ 6502 $169®

NEW CONTROLLER/INTERFACE!

The new 9590 Controller replac-

) es the OSI 590/525 set with 1 sin-

. gle board. Unlike others you've

00 seen, it works perfectly with OS!

$599 or Denver boards, and all ver-

Quantity 1 sions of 65U

It is compatible with old Style 592 Interface

with 3 cable adapter, or attaches with single ribbon

cable to our new 9592 H.D. Interface Board. Unlike

others, our interface completely supports the ready/
fault indicator on the 80 meg. hard disk.

9592 $26900

Quantity 1

MULTI PROCESSOR!

COMPLETE 1 0

MEGABYTE SYSTEM

1$3999%

Boot

From Hard Single user with Centronics par-
or Floppy! allel printer interface expand-
* 8" Hard Disk able to eight users.

* 8" Floppy Disk

Enclosed in table top cabinet as shown or mounted
in deluxe floor cabinet, as above left. Add $400®

12 SLOT BUS

Fits standard OS| mount holes
can be connected in “T” or daisy
chained by cable for expansion.

$7900

10 meg. Subsystem WOW!

$1999°

Add to any existing OSI

floppy based computer.
Just plug in one board and set this little
gem on top or next to your computer and
voila! Welcome to speed and convenience.
Completely self contained with power sup-
ply. 9598 Hard Disk Controller also avail-
able separately at $699%

DEALERS!

If you're still alive, call us and ask about our aggressive new price

structure. We’'ll send you an unbelievable spares price list.

SPACE-COM International

22991 La Cadena Drive, Laguna Hills, CA 92653 (714) 951-4648

"

MORE AND BIGGER DRIVES
FOR OSI }

or
DON'T BUTCHER DRIVE "B"

By: Ron Rose

Courtesy of OSMOSUS NEWS
Box 18801 :
Minneapolis, MN 55418

This simple modification to
the 470 board and the Al2
(paddle board) will allow the
use of four single sided or 2
double sided drives. Also, it
is not necessary to modify the
drives in any way.

This scheme provides four dis-

crete select lines, two of
which can be wused as side
select for double sided
drives. The four 1lines are

provided by decoding the two
outputs (pins 8 & 15) of the

PIA (6821). The drive select
codes are as follows:

PIN 8 PIN 15 SELECT

HI HI A

LO HI B

HI LO C

LO LO D

I selected a 7442 as the de-
coder (1 of 18) and mounted it
in the proto area at U6A,
connected +5V and ground, con-
nected pins 12 and 13 to
ground, then made the follow-
ing trace cuts:

Component side -

CUT 1- at W2 from pin 8 of PIA
(near pin 20 of PIA)

CUT 2- AT W3 (
PIN 17}

.8" LEFT OF PIA

CUT 3- AT W5 from pin 15 of
PIA (3rd trace above pin
11 of U4C)

On solder side -

CUT 4- at W4 between-pin 8 of
U4C and plated thru hole

CUT 5- at pin 11 of PIA
CUT 6- at pin 14 of PIA
If done properly, you will
have plated thru holes in
which to mount wire wrap pins.

Next make the
nections:

following con-

Pin 8 of PIA to pin 15 of 7442

Pin 15 of PIA to pin 14 of
7442

Pins 3 and 11 of UlA to pin 1l
of 7442 (DS4)

Pins 3 and 11 of U2A to pin 2
of 7442 (DS3)

12

Pins 1 and 13 of U4A to pin 3
of 7442 (DS2)

Pins 9 and 5
of 7442

of U2A to pin 4
(DS1)

The next step is to change the
Al2 board to conform to the
following 1list (only a few
wires need be changed, but it
is best to check all):

MOLEX CONNECTOR J2

1 Head load = = | ~=——-eeeeo >
2 Low current = @ —--mem———- >
3psl mmmemeeee- 5
4 DS4 (new) = —=—mem——e- >
5 Step =0 @ mmmmemeee- >
6 Step in = 0% ==meeeeeeo >
7 DS3 (new) = —-—mmeeee- >
8 Write enable - —~——=—ce-- >
9 Write data @ ~ ===-=-meee- >
190 Sep clk = —m=—eeeeee >
11 Sep data @~ = = —=————eeee >
12 Ground = = o ——mmmmeeee >
13 Ground = = 0 0m==—eee—me >
14 N/C
15 -9v
16 N/C
17 Index = ==meccomeea >
18 DS2 mmmecccmeeo >
19 Write Protect =--—=-—-—--- >
2@ Ready drive 2 -—————-——-—- >
21 Sector = o =mmmee——eeo >
22 N/C
23 Track 8 2 = memeeee—eoo S
24 Ready drive 1 —--——=—moeewn S

Note: Both pins 28 and 24 of
J2 connect to pin 22 of the
drive connector., If you wish
discrete ready lines, use the
"radial ready" scheme in your
drive manual. The sector line
is necessary only if you have
"hard sectored" drives.

All of the "strapping" on the
single sided drives should be
the same as on your original
drive A with the exception of
the drive select jumpers, DSl
thru DS4. DSl is drive A etc.

Shugart 850's are jumpered as
shipped except as follows:

HL - open
HLL - open
FS - Jjumper
Z - open
X - open
Y - Jjumper

Move S2 jumper to 83 (allows
use of drive sel as side sel)

Recommended:
Drive A should be jumpered DSl
and 4B

Drive B should be jumpered DS2
and 3B

The above jumpering sets C as
the other side of A and D as
the other side of B. Differ-
ent combinations of DSn and nB
will allow you to configure
any surface as any logical

18
2

26
32
36
34
3e
40
38
50
48

drive A thru D. If you are
using the new OSI CP/M V2.25,
the drives must be configured
as suggested or you will not
be able to use a double sided
drive as 1 logical drive
{570K) .

*

S@ PIN DRIVE CONNECTOR

Head load
Write current
psl

DS4

Step

Dir select
DS3

Write gate
Write data
Sep clk
Sep data

all odd number pins
all odd number pins

(connect only if necessary)

20
28
44
22
24

42
22

Index

DS2

Write protect

Ready (optional)
sector (optional)

track 9
Ready

0S650 INPUT TIPS FOR
VERSION 1.2 DIE-HARDS

By: Julia A. Goodman
412 2nd Street
Radford, VA 24141

Anyone who has attempted to
write a text input program in
0S65U BASIC (v.l.2) knows that
under normal conditions the
statement "INPUT AS$" or "INPUT
$1,AS" fails to assign the ex-
act input value to A$ in the
following cases: (Assuming
the input value is not begun
with the double-quote as a de-
limiter.)
1. string contains
colon.

comma or

2, String contains a leading
double-quote (as a character--
not as a delimiter.)

3. String is null, and user
wants to simply press RETURN
or ENTER. :

4. String contains an under-

line symbol.
"at-

5. String contains an

sign" (@).
6. String has leading spaces.

than 71
LEVEL

7. String has
characters (70
I11).

more
under

A solution to each of the Figure 1: Loader of Alternate Input Machine Language
above problems is given below !

w1th usage warnings and con- 10 REM FILENAME: LDINP 4/7/84
: 99 3
siderations. 100 REM This program loads a machine language routine at 24700-24746
110 REM to be called instead of the 0S45U routine at 1368 (decimal}
. It is assumed that the EDITOR 120 REM for execution of INPUT stringvar. or INPUTYZ channel, stringvar
N 199 3
is enabled when the INPUT 200 FOR 124700 TO 247461 READ X: PUKE 1,X: NEXT I
statement is executed. Pre- 250 END
vious PEEK(65) articles have 499 :)
x 500 DATA 169,44,141,0,96,162,0,32,245,39,201,13,240,21,201,32,144,245
treld this aUthor, to SusPeCt 510 DATA 201,129,176,241,224,121,,176,237,157',1,96,2%2,’32,2%.8,10,209
at not all Version 1.2 sys- 520 DATA 228,149,0,157,1,96,162,0, 140,96, 76,210, 63

tems have the EDITOR routine
located at the same address.

The solutions below have been Figure 2: Hex and Assembly Code for Alternate Input Routine
developed on O0S650 (v.1.2)

: h s 3 ML& (47 BYTES)
with the .EDITOR routine _at : ; LOAD AT 24700=124+254396=$607C
15155 (dec1mal) . Your version 3 3 Replacement input rtn. for 1368
1.2 system i y : BUFF=$5001

: ¥ th ;sllprgbably tt'le A7 2C 1 LDA #$2C s STORE COMMA AT BUFFER-1
same i e ollowing PEEK's D 00 601 STA BUFF-1
hold true: A2 00 : LDX #00 ; BUFFER PTR.
20 F5 27: JSR $27F5 (NEXT) 3 GET INPUT CHAR (1F CRT, GET ALL)
: €9 OD : CMF #%0D ; IF IT’S CR THEN END OF INPUT
PEEK (10243) is 51 Fo 15 : BEQ CR ’
PEEK (10244) is 59 C9 20 1 CMP $#20 s IF IT 1S LESS THAN A SPACE OR . .
PEEK (16268) is 51 90 F5 1 BCC NEXT ; GREATER THAN 127 THEN IGNORE
; C9 B0 1 CMP #$80
PEEK (16269) is 59 BO F1 : BES NEXT
EO 79 : CPX #%79 3 IF X >= 121 THEN FULL; IGNORE
(Note: 51 + 256%*59 = 15155) BQ ED : BCS NEXT
9D 01 603 STA $6001,X 5 STORE CHAR IN BUFFER
EB + INX s INCREMENT BUFFER PTR.
SOLUTIONS 20 EE OA: JSR $OAEE ; SEND CHAR TO CRT
DO E4 : BNE NEXT ; ALWAYS TRUE
1. . A9 00 : LDA #$00 (CR) 3 STORE O AT END OF INPUT STRING'
TO ACCEPT COMMAS AND COLONS: 9D 01 60: STA $6001,X 5
A2 00z LDX #$00 5 RETURN X,Y = BUFF-1
: A0 60 1 LDY #3560
Use POKE 2976,13 for comma, . 4C D2 3F: JMP $3FD2 5 0S6SU EXIT
and POKE 2972,13 for colon.
Restore with POKE 2976,44 and Figure 3: Skeleton Program for Extended Input Applications
POKE 2972,58.
10 REM FILENAME: INP 4/7/84
: R . 20 3
Caution; Restore before using 30 REM Run under DS&5U v.1.2 with EDITOR enabled.
statements such as: 99 :
100 REM Skeleton program for input of any characters into string
REA A 110 REM variables from console or data file. Strings up to 120 chars.
D IB 115 REM The prompting question mark and space for console input is
DATA JUDY, MARY 116 REM suppressed.
119
: : 120 REM Alternate input buffer at 24576.
or A$ v:lll be iss1gned "the 130 REM Alternate input routine at 24700.
value JUDY,MARY", and ?0D 140 REM BASIC program begins at 24832 = 24576 + 256.
ERROR" will probably occur. 141

150 REM Use GOSUB 20000 just before input of strings; and GOSUB 21000
152 REM just after string input (or input loop).
2. TO ACCEPT THE DOUBLE-QUOTE 153 &
AS A LEADING CHARACTER: 155 REM Between those two GOSUB’s, remember to use POKE 204,0 and
156 REM POKE 204,243: if leading spaces are expected in the input
157 REM values. No spaces in program between the two POKES on 204.

i 199 :
Use POKE 2970,8. Restore with 200 GOSUB 30000 $REM INITIALIZATIONS
POKE 2978,7. o
400 REM %%%¥% 1/0 APPLICATION R¥888ssasssssssssasssausskasshssasssy
401 =
Note: This POKE does not af- 849 :
fect the use of quotes around 895 REM #$5¥3% END APPLICATION S6¥KSSSESEXS8E3RRRssssxsasussanssssy
: : 899 :
string constants in other 950 GOSUB 31000 :REM RESTORES
parts of the program--except 995 END
: i 999
;glgAgguzzatgﬁeggigle‘-'gle:lf): e tg 20000 REM ————~-——— SUBRTN. TO CHANGE 0S65U CALL TO INPUT LOOP-—-—
20001 :
be treated as part of the data 20100 POKE 9328,124: POKE 9329,96: POKE 8362,1221 REM CALL OUR RTN.
value--not as a delimiter. 20110 POKE 4926,0: REM GET VAR.LOCATOR TO RECOGNIZE DIFFERENT BUFFER
20120 POKE 15156,1: POKE 15160,96: REM CHANGE BUFF. ADDR. IN EDITOR
20130 POKE 15322,120: POKE 15334,120: POKE 15365,120: POKE 15441,120
3. TO ACCEPT NULIL STRING--BY 20140 POKE 15344,118: REM STRING MAX LEN & BELL RING PDS. IN EDITOR
PRESSING "ENTER" OR "RETURN" gg;zg '}ETU"‘“
FROM KEYBOARD--OR FROM A NULL 21000 REM ———=——=—— SUBRTN. TO RESTORE 0S6SU INPUT LOOP —————————————-
STRING STORED IN A DATA FILE 21001 :
(STORED SIMPLY AS A CARRIAGE- 21100 POKE 9328,88: POKE 9329,5: POKE 8362,98
RETURN, ASCII 13): 21110 POKE 4926,11

21120 POKE 15156,27: POKE 15160,0
21130 POKE 15322,70: POKE 15334,70: POKE 15345,70: POKE 15441,70

FOR INPUT AS or INPUT:1,AS: 21140 POKE 15344, 483 REM STRING MAX LEN & BELL RING PDS. IN EDITOR
Use POKE 2888,08. Restore with S ioag NETURN
POKE 2888,27. 30000 REM —————m—c| SUB FOR INIT’S

30001 :

P ; 30100 POKE 2976,13: POKE 2972,13: POKE 2970,0: REM FIX (, 1)
Caution: Assigns to A when 30110 POKE 15300,0: POKE 15308, 0: REM FIX UNDERLINE & AT-SIGN:
INPUT A is executed. 30190 REM NEXT TWO LINES FOR NO PROMPT ON INPUT (NO *?)

30200 POKE 2898,234: POKE 2899,238: POKE 2900,234
Also prevents exit from prog- 30210 POKE 18166,234:1 POKE 18167,234: POKE 18168,234
ram by null input regardless oo RETURN
of FLAG 21/ FLAG 22 setting. Continued on next page

13

Note: Not needed when #7 below
is used for long strings.

4. ACCEPT UNDERLINE SYMBOL:
Eor INPUT AS:

Use POKE 15300,0.
with POKE 15308,119.

Restore

No problem--underline is
mally accepted.

nor-
5. ACCEPT THE AT-SIGN:

For INPUT AS:
Use POKE 15308,0. Restore with
POKE 15308,189.

For INPUT%1,AS:

Use POKE 1392,0, Restore with
POKE 1392,225, Not needed for
data file input when #7 below
is used for long strings.

6. ACCEPT LEADING SPACES:

For INPUT AS and INPUT$1,AS:
Use POKE 204,08 just before the
INPUT statement or short loop
containing the INPUT state-
ment. Restore immediately af-
ter INPUT statement, or short
loop, with POKE 2064,243.

CAUTION! CAUTIONI CAUTION! In
your program, there must be no
spaces between "PORE 204,0"
AND "POKE204,243" OR YOU WILL
GET A "?SN ERROR", Valid ex-
amples of this "POKE":

100 POKE 204,0:INPUTAS,BS,TS
(I):POKE204,243: PRINT BS

500 POKE204,0:FORI=1TON:INPUT%
1,T$(I) :NEXTI:POKE204,243

5801 PRINT T$(2): REM NOW IT'S
OK TO HAVE SPACES

7. ACCEPT STRINGS UP TO 120
CHARACTERS LONG: (Can be ad-
apted for lengths up to 255.)
This one requires work-—-like
machine language!

The idea is to set up a dif-
ferent buffer for the input
string since the buffer used

by 65U (at address 27,decimal)
cannot be extended without
clobbering part of the operat-
ing system code, All referen-
ces to that buffer address
during execution of a string
INPUT statement must be alter-
ed to access our new buffer,

The procedure is given below.

7a. CREATE a BASIC file called
INP with size of about 5000
bytes. Also CREATE a BASIC
file called LDINP (load INP)
with the same size. LDINP
will be run to set up initial
contents of INP, The file INP
may be used as a starter file
for any program which needs to
input long strings which con-
tain any printable ASCII char-
acters.

14

31000 REM ————==~- S6UB FOR RESTORES OF INIT’S

31001

31100 POKE 2976,44: POKE 2972,58: POKE 2970,7: REM RESTORE (,:1")

31110 POKE 15300,119: POKE 15308,189:

REM RESTORE UNDERLINE & AT-SIGN

31200 POKE 2898,32: PUOKE 2899,233: POKE 2900,10: REM RESTORE 7-SPACE
31210 POKE 18166,32: POKE 181467,234: POKE 18168,10

31995 RETURN
31999 :

Figure 4:

410 DIM T$(200): OPEN"FILE1",1

Sample Application to Insert in INP

420 PRINT"ENTER TEXT LINES (ENTER ## TO EXIT INPUT MODE):

429 =
430 BOSUB 20000:
440 FOR I=1 TO 200

450 POKE 204,0: INPUTTS (1)1 POKE204,243)

4560 IF T (1)="##" THEN 300
470 NEXT I

471 :

S00 GOSUB 210003
501

S10NL =1 - 12

REM ALTERNATE INPUT

REM WATCH! NO SPACES

REM RESTORE NORMAL INPUT

REM NL=NUMBER LINES OF TEXT ENTERED

S20 PRINT:PRINT:PRINT"TEXT ENTERED WAS:
530 FOR I=1 TO NL: PRINT T$(I)s NEXT 1

S31 ¢

540 PRINT:PRINT"NOW STORE TEXT IN DATA FILE *FILE1” . . .

550 PRINTZ1,NL

560 FOR I=1 TO NL3 PRINTZ1,T$(I)3 NEXT I: CLOSE

561 3

S70 PRINT:PRINT"NOW READING AND PRINTING CONTENTS OF ’FILE1” . . .

5B0Q OPEN"FILEL1",1;
590 GOSUB 200003

INPUT%1,NL

REM ALTERNATE INPUT

600 POKE204,0:FDRI=1TONL: INPUT%Z1, AS1PRINTAS: NEXT I POKE204,243

610 CLOSE
620 GOSUB 21000:

7b. Reserve the beginning of
the BASIC workspace for our
longer input buffer and an al-
ternate input loop by enter-
ing:

NEW 256

Then enter the BASIC program
shown in Figqure 1. The NEW
256" causes the BASIC program
to be stored at 24832 (24576+
256) instead of at the usual
24576. We will wuse 24576-
24699 as our input buffer;
24700-24746 to store an alter-
nate input 1loop in machine
language; and leave 24747~
24831 as free space for future
use (should you need it).
Enter: SAVE"LDINP

7c. Now, RUN the program you
have just entered from Figure
1. The program will read the
machine language routine from
the DATA statements at the end
of the program and store the
codes at 24788-24746. (The
Assembly listing of the alter-
nate input routine is shown in
Figure 2,)

7d. If the RUN is successful,
SAVE your program into the INP
file. The 256 bytes reserved
in front of your program are
stored along with the program,

thus saving the machine 1lang-
uage routine,

(In case the INP file gets
messed up, you still have

LDIND which can always be run
again to alter itself in the
first 256 bytes for storage as
a refreshed INP file.)

that the

7e. Now necessary

REM RESTORE NORMAL INPUT

machine language is hidden
away at the beginning of our
INP file, let's get rid of the
BASIC loader program, and
enter the rest of the necess-
ary alterations as the BASIC
portion of the INP file as
follows:

LOAD"INP

NEW 256 <(=~=-—- (Clears out
the BASIC part, but 1leaves
first 256 bytes intactl)

(Now, enter the BASIC program
shown in Figure 3.)

SAVE"INP

INP now contains a skeleton
starter for any program in

Introducing

SCRIBE

WORD PROCESSOR

08-65U 1. Floppy / Hard Disk
U1 42< Level 1 or Level 8

and DENVER BOARDS

% INTERFACED TO OS-DMS FILES
AUTOMATIC WRAP AROUND

#COMPLETE EDITING CAPABILITIES
FULL CURSOR CONTROL
INSERT & DELETE TEXT
SEARCH/SEARCH & REPLACE

% USER FRIENDLY MANUAL

3 AND MUCH MORE

THS COMPUTER SERVICES
Route 1 Box 201B Port Republic, VA 24471
{703) 249-4833

$195.00

which you want to INPUT all
kinds of character strings--no
delimiter quotes required.

Notice the extra POKES in
Subroutine 36008 to remove the
question mark and space that
are usually displayed for an
INPUT. Now the operator can
enter character #1 in position
#1 on the CRT.

SAMPLE APPLICATION OF
SKELETON PROGRAM

CREATE a BASIC file called 1I0
and a DATA file called FILEl.
LOAD"INP, change the filename
in Line 10 to "IO", insert the
lines shown in Figure 4, SAVE"
I0", RUN, and test by entering
l1nes such as:

ABC, DEF,GHI,_ _ _@@@

"LEADING QUOTE

OTHER QUOTES "AROUND THINGS"
OR 8" DISK LEADING SPACES

NEXT LINE IS NULL

LONG LINE.:vuuoeonossnnnnanne
“evescecasssesvscscesces END
LAST LINE

&4

The lines you enter, should be
printed back to you after you
enter ## to exit. Then they
are stored in the data file
FILEl, read back in and print-

ed again. All lines should be
preserved exactly as you en-
tered them!

CAUTIONS

Call Subroutine 21060 as soon
as possible after an input op-

eration. If your program
bombs before 21008 restores
input to the normal buffer,

immediate commands go off into
the wild blue yonder because
the operating sytem doesn't
find them in the right buffer-
-IF THAT HAPPENS, REBOOT AT
ONCE~-YOU HAVE NO CONTROL OVER
THE MACHINE UNTIL YOU DO.

It is important to make your
program as foolproof as pos-
sible when using the alternate
input routine to prevent ab-
normal exits. Lock out CTRL/
C, for example., Check lengths
of filenames which are enter-
ed. Limit length of numeric
values which are entered to
prevent OV errors., There are
ways to do those things, too.
Watch for those methods as
well as how to use INPUT#4 and
PRINT#4 and make the TAB key
work--in later articles.

* * * * * *

After countless hours of plow-
ing through a disassembly of
0S65U, PEEKing, and POKEing,
reading PEEK(65), developing

the solutions listed above and
others, and applying them in
writing a word processor which
works under 0S65U v.l.2 BASIC,

and finally, writing this art-

icle--I looked up, as an after
thought, the word die-hard
(see title) in the i

icti , 1974, and
found:

die hard \'di,hard\ n: one who
resists against hopeless odds.

Tell me about it!

*

COMBINED DIRECTORY UTILITIES
FOR 0S-65D

By: Bruce Spainhower
40615 S.W. Canyon Rd.
Portland, Oregon 97221

I have used 0S-65D ever
expanding my C4P to a disk
system in 1980, I feel the
operating system has a number
of advantages, the main one
being the degree of control
the programmer has over disk
and memory access. One of the
other nice things about 65D is
that it begs to be improved.
It is ideal for the programmer
who enjoys the challenge of
improving software efficiency
like that of a good game of
chess. I have made several
improvements to the operating
system, mostly at the assembly
language level., But to start
with, I attacked the utilities
package that comes with 65D,

since

The result is the BASIC
program "DIRUTL" which com~-
bines the functions of DIR,
CREATE, DELETE, RENAME, &
ZERO. At the same time, I
have added a number of fea-
tures which clean up the

operation of the program and

. speed execution,

First, the directory is print-
ed in true four column format,
i.e. entries are read top
down, not 1left right. The
full directory is displayed on
one screen and is never
scrolled off. After the di-

rectory is printed, the user
is prompted for any changes.
All interchange between user

and program occurs on a 31ngle
line, so that the directory is
always visible, Also, a
single keystroke selects any
menu option. The directory
data is kept on the disk sort-
ed by track: number. The
CREATE function actually does
an insert in the directory
while moving remaining entries
up. A DELETE repacks the
data. The corrected directory
is then re-displayed. Tracks
are initialized and zeroed at
the user's request. I used

the string concatenation trick
(lines 746,750) published in
PEEK some years ago to provide
the 3K of nulls in memory for

this function, The original
use for this is to build a
series of strings containing

blanks (ASCII 32) in the video
memory area as a screen clear.

The time required for any of
these functions is a fraction
(literally) of what the ori-
ginal 65D v3.3 programs take,
even including the insert and
packing features., It func-
tions equally well (excepting
the CLS) under 65D versions
3.2 and 3.3, both serial and
video. And, if typed in with-
out spaces or REM 1lines, the
entire program fits on one
track of an eight-inch disk
(two on a 5-1/4 inch). So
what's the catch? Well, there
is one: the program requires
the directory to be sorted and

packed to begin with (you've
been meaning to do that any-
way, right?). For that pur-

pose, I have included the
short program "DIRFIX", Sim-
ply run DIRFIX on each of your
existing 65D disks and you'll
never need to worry about it
again, I have been using
DIRUTL for nearly two years
now, and it has methodically
kept my disk directori€s in
order. '

Now for some details: In line
68, ESS$ is defined. It is the
65D v3.3 video screen clear.

By defining the CLS as a
string, you avoid the problem
of losing the print extensions
in favor of the arctangent
function in BASIC. The screen
handling is always on line.
It is only the "!(xx)" con-
struct that is disabled. So
use CHRS$(27)CHRS$(xx) instead

DISK DRIVE

RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
{parts & labor included)
Shugart SA4008

Shugart SA1004
Seagate ST412 10meg $350.00

FLOPPY DRIVE FLAT RATES
8" Single Sided Shugart 0.00

8" Double Sided Shugart 5250 00
8" Single Sided Siemens D&E Series $150.00
8" Double Sided Siemens P Series $170.00
Write or call for detailed brochure
- 90 Day warranty on Floppy & Large Winch.
1Yr.Warrantyon 5" & 8" Winchesters.

Phone: (417)485-2501

@ FESSENDEN COMPUTERS
116 M. 3RD STREET
OZARK, MO 65721

23meg $550.00
10meg $450.00

15

for reliability. ES$ is rede-
fined in line 78 for a DEC VT-
52 terminal (the one I have at
work). Change this 1line to
conform to the serial terminal
you may be using.

In line 80, ELS$ (erase line)
is defined. It consists of a
line of blanks preceded and
followed by carriage returns,
The purpose of this is to
allow a line erase without
scrolling. Line 370 inputs a
single character from the
console and returns its ASCII
value in the variable K.
Lines 380-450 input a string
without scrolling the screen,
Line 160 is a compact way of
adding a printer to the out-
put. And the POKES 1in the
disk 1/0 section keep the head
loaded during the entire time
of access to reduce disk drive
clatter. Line 21¢ adds a
blank entry onto the end of
the directory data in memory
for the DELETE function.

Don't forget to change the
track numbers in the disk 1I/0
section if you are using a
5-1/4 inch system. You'll
also need to change the 76
(tracks) in line 650 to 39,
and the ",1=5400/C" statement
in line 778 to ",1=5400/8".

Lines 220-290 print the four
column directory, dropping a
column each time a blank entry
is found. This speeds up the
display of the directory which
is severely limited by BASIC.
The "check for valid entry"
section scans the directory
data in memory and returns
with F% set to zero if the
requested entry is not found,
otherwise F%=l1 and D points to
the found entry.

While the CREATE section may
be a bit hard to follow, its
basic function is to find the
first available space on the
disk large enough to hold the
requested file. Then lines
680 to 708 perform the direc-
tory insert and adjust. Line
560 simply tests to see if the
directory is full and disal-
lows a CREATE. The DELETE
section is essentially the
inverse of the CREATE, except
that no calculation is needed.
RENAME simply checks for valid
entry names, and performs an
overlay.

Each of the directory modifi-
cation sections vectors back
through the print directory
section to update the data on
the screen. You also get a
second chance for another
directory on the way out in
case you are scanning several
disks.

16

1 REM 0S-65D DIRECTORY UTILITIES PROGRAM V1.7
2 REM by Bruce Spainhower

3 REM 4015 S.W. Canyon Rd.

4 REM Portland, Oregon 97221

5 REM (503) 222-2828 x51

6 REM

7 REM =~ Setup

8 REM

10 DEFFNA(X)=10*INT(X/16)+X=16*INT(X/16)

DEFFNB (X) =16%INT(X/10) +X=-10*INT (X/10)
B=20480:L=35:0=10081

40 Q$=CHR${34) :CR$=CHR$ (13} :H$="File Tracks
50 C$(1)="Create":C$(2)="Delete":C$(3)="Rename
60 ES$=CHR$ (27) +CHR$ (28) : DV8=PEEK(10950) : PRINT

IFDV¥=1THENESS$=CHRS$ (27) +CHR$ (72) +CHRS (27) +CHRS (74)
FORX=0TO61:EL$=EL$+" ":NEXT: ELSHCRS*ELSOCRs
REM

85 REM - Initial messages & prompts

REM

90 PRINTESSCRSTAB(17)"08~65D Directory Utilities®:PRINT

710
720

PRINTTAB (21} "Which drive? ("CHRS (PEEK(9820)+64)") *;
GOSUB370:IFPK<650RK>6B8THEN130

DISK!"SE "+CHRS$ (K)

PRINTELSTAB(17) "Printer output also? (No} ";:GOSUB370
IFK<>89THEN190

PRINTEL$STAB(20) "Device Number? ";:GOSUB370

PRINTCHRS (K) ; : POKEB994,DVSOR (2" (K-49)) :GOTO190

REM

REM - Disk I/O

REM

POKEU,96:DISK!"SA 08,1=5000/1

POKEU,169:DISK!"SA 08,2=5100/1%:G0T0220

POKEU,96:DISKI"CA 5000=08,1

POKEU,169:DISKI"CA 5100=08,2
FORP=B+512TOB+517: POKEP,L:NEXT : POKEB+518,0: POKEB+519,0
REM

REM - Print Directory

REM

PRINTESSCRSTAB (20) "05-65D Disk Directory":PRINT

PRINTHS ; : FORX=1TO3 : PRINT" "H$; :NEXT : PRINT
FORX=0TO61:PRINT"-"; :NEXT:PRINT:C=48
FORY=0TO15:FORX=0TOCSTEP16 : PRINTTAB (X)

IFPEEK((X+Y) *8+B) =LTHENC=C-~16 : GOT0290

FORE= (X+Y) *8+BTO(X+Y) *8+B+5:PRINTCHRS (PEEK (E)) ; : NEXT
PRINTTAB (6) FNA (PEEK (E)) *-"FNA (PEEK(E+1)) ;
NEXT:PRINT:NEXT:PRINT:POKE8994,DV8$:GOTO310

REM

REM - Prompt for changes & select

REM

FORT=0T02500 :NEXT

PRINTEL$TAB(14) "Create, Delete, or Rename a file? ";
GOSUB370:C%=K~66:IFK=82THENC%=3

ONABS (C$) GOT0560,780,830

PRINTELSTAB(ZO)"Another Directory? “;: GOSUBS70
IFK=89THENPRINTELS ; :GOTO100

PRINTELS ; :END

REM

REM - Single key input

REM

DISKI®GO 2339":K=sPEEK{9059) : RETURN
REM

REM - String input (enter at line 410)
REM

IFLEN(1$) THENPRINTCHRS (8) CHRS (32)CHRS (8) ;
IFLEN(I$)<2THENI$="":RETURN
I$=LEFTS$(I$,LEN{IS$)-1) :RETURN

1§=""

GOSUB370: IFK=213THENPRINTELS ; : RETURN
IFK<32THEN420

IFK=950RK=127THENGOSUB380:GOT0420
I$=1$+CHRS$ (K) : PRINTCHRS (K) ; :GOT0420

REM

REM - Check for valid entry in directory
REM

PRINTELSTAB(20) "File name to "C$(C%)"?2 ";
GOSUB410:P$=1§

F$=1$:IFI$=""THEN310

IFASC (F$) <650RASC (F$) >90THEN460

IFLEN(F$) <6THENF$=F$+" ":GOTO500

FORD=BTOB+504STEP8

FORE=0TO5: IFPEEK (E+D) <>ASC (MID$ (F$,E+1})) THEN540
NEXT:F$=1:PRINTELS; : RETURN

IFPEEK (D} <>LTHENNEXTD

F$=0:PRINTELS; : RETURN

REM

REM - Create

REM

IFPEEK(20984) <>LTHEN320

GOSUB460: IFF$=0THEN590

PRINTTAB{14)QPQ$" is already in the directory";:GOTO300
PRINTTAB(16) "Number of tracks for "QPQ$"™ ";:GOSUB410
N8=VAL(IS$) s IFNSC1THENPRINTELS ; : GOTO590
FORD=BTOB+504STEPS

TE=FNA (PEEK(D+7)) : TB=FNA (PEEK (D+14))

IFTB-TE>NSTHENG660

IFTBTHENNEXT

IF76-TE<NSTHENPRINTTAB(21) "No room for "QPQ$;:GOTQ300
PRINTTAB(5) "Space available beginning on track"TE+l; -
FORH=B+504TODSTEP-8: IFPEEK (H) =LTHENNEXT
FORM=H+7TODSTEP~1:N=PEEK (M) : POKEM+8 ,N:NEXT

FORI=1TO6 : POKED+7+1,ASC(MIDS (F$,1)) :NEXT
POKED+14,FNB(TE+1) : POKED+15,FNB(TE+N8%)

REM

REM - Initialize

REM
PRINT"- INITIALI2E? "; ’
GOSUB370: IFK<>89THEN170. i

Continued

730
740
750
760
770
774
775
776
780
790
800
810
820
824

PRINTELSTAB(23) "Initializing";

SL=PEEK (128) : SH=PEEK (129) : POKE128,0:POKE129,96:S$=CHR$ (0)
FORC=0T075:5$=aS$+CHRS (0) : NEXT: POKE128,SL: POKE129,SH
FORI=TE+1TOTE+N%:T$=RIGHTS (STR$ (1+100) ,2)

DISK!"IN '*TS:QISKI'SA "+T$+%,1=5400/C" :NEXT:GOTO170

REM

REM - Delete

REM

GOSUB460: IFF$THENS0O

PRINTTAB(16}QPQ$" isn't in the directory";:GOT0300
PRINTTAB(22)"Deleting "QPQS;
FORW=DTOB+511:V=PEEK (W+8) : IFPEEK (W) sLTHENIFW/8=INT (W/8) THEN170
POKEW, V:NEXT:GOTO170

REM

825 REM - Rename

826 REM

830 GOSUB460:J=D-1:IFF8=0THEN790

840 PRINTTAB(20)"New name for "QSPSQ$"? ";:GOSUB410
850 GOSUB480:IFFRTHENPS=1$:GOTO580

860 FORW=1TO6:POKEW+J,ASC (MIDS$ (F$,W)) :NEXT

870 PRINTTAB(18)QSPQ$" is changed to "Q$1Q;:GOTO170

DIRUTL has made life with 65D
much more pleasant for me. I you a disk DIR
hope that you will also f£find place of the original

useful. You may also find sector DIRectory command in
some of the routines and direct byte-for-byte
"tricks" useful in other prog- replacement., It is compatible

it

REM "DIRFIX® Dby Bruce Spainhower 7/8/84
REM :
PRINT"DIRECTORY SORTER & PACKER FOR 0S-65D

PRINT:INPUT"Which drive ";D$:DISK!"SE "+D$:PRINT
REM
PRINT"Loading ...

DIMES$ (63) ,T%(63) : DEFFNA (X) =10*INT (X/16) +X-16*INT (X/16}
B=20480:UL=10081:BS="#4##44"+CHRS (0} +CHRS (0}
POKEUL,96:DISK!"CA 5000=08,1
POKEUL,169:DISKI"CA 5100=08,2
FORX=BTOB+504STEPB: IFPEEK (X) =35THEN160
FORY=0TO7:E$ (C) =sE$ (C) +CHRS (PEEK {X+Y)) :NEXT
TR (C) =FNA (PEEK (X+6)) :C=C+1
REXT:CaC-1:C8aC
REM
PRINT"Sorting ...

REM

C%=C%/2:IFC$=0THEN320
A=0:B=C-C%

D=A

E=D+C%

IFTS (D) <T% (E) THEN290

T$=E$ (D) :E$ (D) =E$ (E) :E$ (E) =T$
T8aT8 (D) : T8 (D) =TS (E) : TR (E) =T%
D=D-C%

IFD>~1THEN230
A=A+1:IFPA>BTHEN200

GOTO0220

REM

PRINT"Saving ...

REM

DISK!"ME 5000,5000
FORX=0TOC:PRINT#5,E$ (X) ; : PRINT#9 :NEXT
FPORX=CTO063 : PRINT#5,B$; : PRINT#9 : NEXT
POKEUL,96:DISKI"SA 08,1=5000/1
POKEUL,169:DISK!"SA 08,2=5100/1
PRINT:INPUT"Another run ";YN$
IFASC(YN$) =8 9THENRUNS50

rams., Next time, 1I'll send with v3.2, v3.3,

along a machine code directory
program which, while not as which don't already
sophisticated as DIRUTL, does sector directory code space.

By

Otario Rd 1, Timaru
New Zealand

x *

TIME & DATE FOR OSI1

has been available for about 3 line 1/0 bus.

years.

year corrections, and a soph- 5832 clock chip.

fit within 0S-65D.

the enhanced versions

isticated Interrupt-provision
capability. Added attraction
and are the CMOS low-power package
and low-cost implementation.
SOLVING THE OSI IRQ) PROBLEM A clock card suitable for
computers could be

: L. 2. Jankowski gether for about
example of one design
Tasker Bus clock-card, .
clock chip receives
The OKI MSM5832RS clock chip via a 6821 PIA and the OSI

It provides a 12/24 shows how one side of the 6821
hour clock, date with leap PIA is interfaced to

It's a good idea to take PIA
pin 34 to the RESET line.
This guarantees that the clock
will keep running when the
<BREAK> key is hit. Other-
wise, hitting <BREAK> may
coincide with HOLD being high,
and the clock will stop. 1f
the clock stops for more than
one second, it loses time.
With RESET, zeros are written
to the PIA registers starting
the clock again.

The software presented in this
article consists of two parts:
a BASIC program to set the
time and date and to test that
the hardware is functioning
correctly; an Interrupt-driven
machine-code program that puts
the time and date on the
screen. Both programs assume
that the hardware is arranged
as shown in the diagram, The
BASIC program is not affected
by the exact nature of the
Interrupt configuration,

The 5832 chip puts out 4
reference signals on - D@-D3
when CS, READ and A@-A3 are
all high and HOLD is low. For
D@, the 1024Hz signal is not
dependent on HOLD input level.
Any one of these four signals
can be sent to the PIA so that
the PIA, in turn, can issue an
Interrupt signal to the CPU.
The obvious choice is the ref-
erence signal from D1, a pulse
every second. This signal is
routed to one of the PIA con-
trol lines.

Deciding which control line to
use will depend on the type of
PIA Output required, if any.
The source code 1listing as-
sumes control line CB2 will be
used. If CBl1 1is required,
then make the following change
in the source code:

line 458 -~ change 'LDA #$0C'
to 'LDA $$085°'.

If CAl or CA2 are to enable
Interrupt output, then change
line 380 to 'LDA #$85' or to
'LDA #8$6C', respectively, Line
450 would now have to be
changed to 'LDA #$04' and line
540 would become 'LDA PIA',

The machine-code program can
be entered either at TOGGLE
(toggles clock on/off) or at
INIT. If you are running
HOOKS, consider adding the
command 'K*' which takes a
jump to TOGGLE. Having such a
command at hand is extremely
useful - saves typing
'DISK!"GO F55A"' or some-such
like! Do not be tempted to
remove line 540; reading the
PIA at this point is essential
to its correct functioning -
the read clears the PIA
Interrupt flag. Also, the

17

jump in line 1048 is essential
if the 5832 is to be read cor-
rectly. The 5832 is a rather
slow CMOS device. CPU speed
does not affect the accuracy
of the clock or the associated
software.

It is advisable to turn the
clock off when accessing disk
- reading is OK, but writing
to disk will freeze about 1
time in 10.

For DOS 3.2, change 1line 608
in the BASIC listing to:

600@ DISK!"GO 252B" :
Y$=CHR$ (PEEK (9815)) :
Y=VAL(Y$) :RETURN

SOLVING THE OSI IRQ PROBLEM

OSI put the IRQ vector in the
stack, at $01cC@.
useful it needs to be moved.
I put mine at $F7FD. To do
this, it is necessary to make
a new Monitor using an EPROM
programmer. In the Monitor,
change two bytes at $FFFE and
SFFFF - from $CP and $01, to
$FD and $F7, or whatever.

But what about all that soft-
ware that wuses $01C#8? No
problem. From BEXEC* (BASIC),
poke up the values for $4C CO
01 to SF7FD, F7FE and F7FF, or
to whatever the new IRQ
address is. For example:

5 REM New IRQ at SF7FD=63485

10 X=63485 :POKE X,76: POKE
X+1,192: POKE X+2,1

Any software that now wants to
use $P1CO will be able to do
so - via the new IRQ vector
address which now contains the
JMP to $01cCd!

A more elegant method of writ-
ing the three bytes is to do
so from the Monitor.

In my Monitor, at $FF40, there
is a JSR to $FFBA, i.e. 20 BA
FF. This is the code which is
waiting for a 'D/E/W/M'. So,
at SFF40 substitute the add-
ress of the following patch.
(In my case the patch 1is at

$FB23, so I write at SFF40 -
20 23 FB). Add to the patch
the JSR to S$FFBA and finish
off with an RTS.

PATCH

$SFB23 LDA #$4C

. STA IRQ

. LDA #SCO

. STA IRQ+1

. LDA #$01

. STA IRQ+2

. JSR SFFBA

. RTS

Continued on next page

18

To be at all.

LISTING 1

PRINT! (28) :REM CLS 0S65D3.3
PRINT :PRINT TAB(16)"===am 12/24 HOUR CLOCK =====" 31PRINT i1PRINT

PIA = 50436 : REM $CS04

DIM CR{12), T(&6), D®(6) :FOR C=0 TO & :READ D$(C) sNEXT
DATA Sunday,Monday, Tuesday, Wednesday, Thursday,Friday, Saturday

FRINT"Do you wish to READ the time ? “;:1605UB&OQ s IF Ys$="Y" THEN 410

110 REM Get time & date

GOSWUB &30 :PRINT! (28) :PRINT"Clase switch on Clock chip Write line.

130 PRINT :INPUT “"Year (eg. 84) ";T(&8)
140 INFUT “Month " TS : INFUT "Day "3 T(4)
150 INPUT "Hour "T(2) s INPUT "Minute “3T(1) sT(3)=0

160 PRINT :PRINT"“24 Hour Clock ? "; :GOSUB&OO :1PRINTYS $PRINT

170 IF Ys$="Y" THEN T(3)=8 :G0T0 190

180 FRINT"PM. ? ";:G0SUB&00 :IF Y$="Y" THEN T(3)=4 :PRINTYS$

190 PRINT :FRINT“Day aof week (Sunday=0) 7?7 *;:60SUB&UO :CR(6)=Y :PRINTY
200 PRINT :PRINT"Leap Year (Y/N) ? *;:GOSUB&OO 3PRINT Y$:LY$=Y$'

210

220 RENM Fill array with time/date data

230 CK(0)=0 :CR(1)=0 :T=1 Y

240 FOR R=2 TO 12 STEP 2 :IF K=& THEN R=7 it /%~
250 3+ CRIR)=T(T)-10#INT(T(T)/10) zCR(R+1I=INT(T(T)/10) ; /
260 3 T=T+l :1F T=3 THEN T=4 /

270 NEXT :CR(S)=CR(S)+T(3) :1F LY$="Y" THEN CR(B)=CR(8)+4 /

290 :

300 REM WRITE the time & date. /

310 POKE PIA,15 :POKE PlA+1,4 :POKE P1A+2,95 1POKE PlA+3,4 j

320 POKE P1A+2,16 1 REM Pull HOLD high /. ,//
330 FOR R=0 TO 12 PR
340 : POKE PIA,R :POKE FIA+2,CR(R)+80 3$REM Pull HOLD & WRITE high ,

350 : POKE PIA+2,CR(R)+16 :REM Write 'data & pull WRITE low (strobe)

360 NEXT :PRINT :;PRINT :FlKINI"Ready tor GO! ? ";sGOSUB&0OO 12

380 POKE P1A,0 :POKE PIA+2,0

410 FRINT! (28) :FRINTTAB(1B) "==== Read the Claock ===r"3:1PRINT:PRINT

REM READ the time & date. o

420 RH=4B :12=0 :1=12 :F=15 :GOSUB 630 ~
430 POKE P1,255 :POKE PI+1,4 :POKE P1+2,240 :POKE FI1+3,4

440 F$="am." :POKEPI+2,RH sREM Pull READ & HOLD high

450 FOR X=Z YO 1 :POKE PI,X 1CR(X)=PEEK(PI+2) AND F sNEXT

460 POKE P1+2,0 :POKE PI,0

470 H=104 (CR(S) AND 3) +CR(4) :M=108CR(3)+CR(2) :15=108CR(1)+CR(0)

480 MO=103CR(10)+CR(F) :DM=10# (CR(B) AND 3) +CR{(7) 3Y=10SCR(12)+CR(11)

490 IF CR{(S) AND 8 THEN P$=""

S00 IF CR(S) AND 4 THEN P$=“pm."

S10

520 REM Write time & date to screen.

530 PRINT :PRINT :PRINT " HR : Ml : 55" TAB(21) "MOD / DM / YR"
S40 PRINT :PRINT H “z" M ":" S; P$ TAB(20) MO /" DM “/" Y :PRINT
S50 DY$=D$ (CR(&6)) :PRINT :FRINT"Today is “DY$ sPRINT

S60 PRINT:PRINT"Again ? "j160SUB&60O :1IFYe="Y" THEN PRINT!(28) 31GOTO 440

S70 PRINT :END

REM Get a hey

400 DISK!"GO 2336" 3Y$=CHRS (PEEK(7059)) 1V=VAL (V$) 3 RETURN

3
620 REM Reset PIA

POKE PIA+1,0 :POKEPIA,0 1POKEPIA+3,0 1POKEPIA+2,0 1RETURN

682! PlA to MSM 5832
+5Sv

AxioK & 2 %

PiINv) PIN
10—PB8 grett—>(0¢ q
11 1= » D2 10
12 2 »|D 2 11
13 3 >»|D3 12
14 4 >| HOLD — 18
16 5 > READ — 3
16 6 b—aN |WRITE — 2
sw

2—PAR— @ >| Ag 73
3 1 »| A2 5
L 2 > R2 6
5 3 >|A 3 7

c$s 8
19 cs2
34 —RESET—tpr

Sv

37 IRQBr——l msm

To=zA Listing 2

PIp |me |5832 i @
] | page

‘LISTING 2

10 s MSM 35832 24 HOUR CLOCK & DATE PROGRAM 620 FSBS AGOB LDY #8 Read Time loop.
20 3 by LZ JANKOWSKI. &30 FSB7 A200 LDX #0

30 ;3 Time & date displayed on screen. &40 FSBY 20FAFS REARD JSR LOOP1L i

40 3 This program assumes pulse &50 F3SBC 99F7D0 STORE STA SCREEN, Y

50 3 to CB2 (PlA) - but see line 4350. 660 FSBF ©8 DEY

&0 H 670 FSCO A9ZA LDA #33A

70 F35A 8 = $FS3A 6HO FSCZ CO0s CPY %6

80 CS04= P1A = $C504 &90 F5C4 FOFS BEQ STORE

Q0 DOF7= SCREEN = SDOF7 700 FSC& COO3 CPY #3

100 F7FD= IRQ = $F7FD . 710 FSC8 FOF2 BEW STORE

110 0041= SLOB = 841 Screen LOw Byte. 720 FSCA EB INX

120 H - 730 FSCB Evls CPX #&

130 FSSA a8 TOGGLE PHA 740 F3CD DOEA BNE READ

140 FS55B ADAEFS LDA SWITCH 750 H

130 FSSE FO10 BEQ KON : 760 FSCF AO41 LDY #5SL.0B Read Date loop.
160 H 770 FSDI A20A . LDX #10

170 FS60 78 KOFF SE1 Disable IRQ. 780 FSD3 €049 READ2 CPY #SL0OB+8

180 FS61 A900 LDA #0 790 FSDS FOLA BEQ OUT

190 FS63 8D07CS STA PIA+3 800 FSD7 20FAFS JSR LOOF1

200 FS66 BDOGLCS STA PIA+2 810 FSDA 99F7DO PUT STA SCREEN, Y
210 FS69 8D&EFS STA SWITCH 820 FSDD Ca INY

220 FS&C &8 PLA . 830 FSDE A92F LDA #$2F
230 FS&6D 60 RTS 840 FSEO COA3 CPY #SLOB+2

240 H 850 FSEL FUF6 BEQ PUT
250 F34E OO SWITCH .BYTE $0,$0 860 FSE4 CO46 CPY #SL.0B+3
230 FS56F 00 870 FSES FOF2 BEG@ PUT
260 H 880 F3E8 CA DEX
270 FS70 EEGEFS KON INC SWITCH 890 FSE9 EOLG6 CPX #&
280 FS73 A94C INIT LDA #$4C Load IRR vector. 200 F3EB DOUV2 BNE GO
290 FS7S BDFDF7 STA IRQ 910 FSED A20C LDX #12
300 FS578 ADIBF& LDA LOHI 920 FSEF DUE2 GO BNE READ2

310 FS7B 8DFEF? STA IRG+1 930 3
320 FS7E ADICF6 LDA LOHI+1 940 FSIF1 2010F6 OUT JSR RUPT

330 FS81 8DFFF7 STA IRGQ+2 950 FSF4 &8 FLA

340 F384 A900 LDA #00 Configure PIA port A. 960 F3FS AQ TAY

350 FS86 BDOSCS ‘STA PIA+1 970 FSF& 68 PLA
360 F3U? AIFF - LDA #$FF 980 FSF7 AA TAX

370 F38B 8DOACS STA PIA 990 F3FB 48 PLA

380 FSBE A904 LDA #4304 1000 F3F9 40 RT1

390 FS90 8DOSCS STA PIA+} 1010 H

400 F3593 A900 LDA #00 Configure PIA part B. 1020 ; Write address to 5832 - read data.
410 F3593 B8DO7CS STA Pl1A+3 1030 FSFA BEOACS LOOPI STX PlA Write address.
420 FS598 A9FO0 LDA #8FO 1040 FOFD 20A7FS JSR RETURN Waste time.

430 F39A BDOGLCS STA PlA+2 1050 F&00 ADO&CS LDA PlA+2 L.oad data.

440 H 1060 F603 293F AND #$3F HOLD/READ/15 only.
450 FS9D A%0C LDA #80C bit 5=0, bit 3=i, bit 2=1. 1070 F&05 EO00S CPX #5 24/pa/aa.

460 1080 F&07 FoO4 BEQ DAN
470 FS9F 8DO7CS STA PIA+3 1090 F&09 EOOB CPX 8 Leap year.
480 F5A2 2010F6 ° JSR RUPT 1100 F&UB DOO2 BNE BACK
490 FSAS 68 PLA) 1110 F&OD 2933 DAN AND #8633 HOLD/READ/3 only.
S500 FSA4 S8 cLI Enable IRQ. 1120 Fo6OF &0 BACK RTS

510 F3A7 60 RETURN RTS 1130 H

G20 3 1140 3 Enable pulse from D& on 5832.

530 FSAB 48 CLOCK PHA 1150 F610 AJ0OF RUPT LDA #15 Pull address lines high.
540 FSA9 ADO&LS LDA PlA+2 Clear PIA Interrupt flag. 1160 F612 8D04ACS STA PIA

550 FSAC 8A TXA 1170 F&15 A920 LDA 432 Full READ high.
560 FSAD 48 PHA 1180 Fal17 8D0O6CS S8TA PIA+2

570 FSAE 98 TYA 1190 F&lA 60 RTS

380 FSAF 48 PHA 1200 F&1B ASFS LOHI -WORD CLOCK

3590 FSBO A930 LDA #%30 Pull HOLD & READ high. *
&00 FOB2 BDO6CS STA PIA+2 -

610 3

OKI MSM5832RS data sheet.

*
LETTERS

ED:

I have been asked by Ian
Mutch, Brisbane, Australia, to

attempt to document for PEEK
readers the modifications and
details of changes to D & N

Micro Products to allow them

to Run at -

2 Mhz operation with option
for WAIT line.

Multi-user High order address
line operation.

2716 EPROM in 1lieu of 2708

(old 3 supply type).

and generally tidy up a few
items that are potential trou-
ble spots.

-controller works as

References:

*

Let me start by saying that
the D & N 1685 CPU and Floppy
specified
without change and so does the
1608 (OSI 555 Jungle Board =).
However, while the 16688 board
will extend an OSI system that
has a 5106 or similar CPU
board, D & N does not have.any
combination of boards to allow
you to build up a Multi-user
system or to upgrade a non 5180

style system. But as sup-
plied, the 1600 board is an
excellent board for the addi-
tion of printers and bit of
RAM. So, too, 1is the 16865

board ideal as an upgrade to a

floppy system. However, a lot
of problems cropped up in
putting together a working

system., Let's tackle the 1685
CPU/Floppy Board.

The 1685 board as supplied has

6502 Assembly Language Programming by L. Leventhal, pages 11-15 etc.

*

provision for a 6502 CPU at 1

Mhz. A Serial Port at S$FCO0
as #1 (RS232 levels). An O0SI
Floppy Disk controller, A 3

supply 2708 EPROM, and a Moto-
rola Baud rate generator 1I.C.
for the Baud rates (switch
selectable) for #1.

The 2708 EPROM just had to go.
Difficult to buy, difficult to
program, and not compatible
with other OSI style monitors
that are available, The cir-
cuit details are shown in Fig.
l. D & N emulated OSI in de-
coding the top three (as
required) pages of memory OR-
ing them to provide the EPROM
CS (Chip Select). This pre-
sented a bit of a timing prob-
lem and in any case because
the #1 port is at $FCOD, you
would only ever want the top
three pages, i.e., $FD, $SFE, $FF.

A 2716 device is 2K of Memory. l TABLE 1

So, consider that address line e () e -

AlP normally on in 21 con- onl banaed do

trols whethgr we Paddress the PALg | comments A ““'lﬁw;fifiﬂaiflﬁiamu

upper or lower 1K out of the 45 | Reser veeros SR . Fere i

device, i.e., if AlP is a 7 warp Disi o i " FEFF +Dp

Logic @, then we will address oo el %ﬁ;)

data in the lowest part of the Fo | 5 | rewr soorsed Sewar Sypsrem TABLE 2

2716. 1If Al@ is a Logic one, $rc 4 Ner useo -

then we address the upper 1K. Fucwire bon PP { ' DELETE
§FF |3 | ReEr vEoew R25 - R33

Logically then (no pun) if we £ Py { Sercer prwens P21 <" R35 - R34

jumper connect pin 19 to eit- (o) R15,16,17

her 8 (ground) or 1 (+5) then || [y scorsrane Voo Syt R22,23,24

N Nor UseD b
we can select one of two dif- bee |9 | o e | R18 ~ 21
ferent programs within the ALL 478 ohms

2716. By ensuring that the
correct pages in the EPROM are
programmed, I was able to have FIG.1
a video based monitor in the *
lower part of the EPROM, and a
flick of a switch to change
pin 19 to Logic 1 allowed me
to have a serial based monitor
in the upper part. A table
appears as Table 1 to show how
the pages of the EPROM are or-
ganized.

4 Pin 41 on

BRCKPLANE

The Motorola Baud rate genera-
.tor I.C. (1411) and 1.832 Mhz
crystal pair cost, back in
late 1982, about $25 if you _
could find a supply. ASs we :‘; OGN SYSTErAS WM 540 ViDEO GoARDS
were using the 555 board on : R nf—
some systems and the D & N e i DifFeRGAT GAcroLaMe \T) PIN NUWER
16060 board, I simply used line

13 o? tgedbzckglang to text:gd OMGINAL BN Rom SEiecT FOR 2708
a selected baud rate onto e
bus from the 1680 board. Fig flw RAM StorihL
2 shows how. Cut a trace to 2 i ——————
disable the generator line on e = B3
the 1685 board and connect the |, i re
#1 Tx and Rx clock to line 13, S

This freed up about 4 square v | ELh 2| g 2
inches of board space where e 2 Erron Lo
the B/R gen' was located. In | " o S ;oo st
Australia that's 5@0x50mm., not | o3 viosd
very big as Australia goes, | L

but” enough room to install a) i P
small piggyback printed cir- —

cuit board that has a WAIT h *
state controller on it. The
circuit for this is Fig 3.
Simply a WAIT circuit as used

uie 2709
E'PRom.

EITRER CUT LIHE Al 0w Hae 540 Boatd of USE A

QEwisEn (Ao FOR. 2776

Continued .
Pisuy Back #0ARr naoUNTED 1t
Pk or U ¢ yi CrvsTAL
M
‘Ulﬂ 4uwsrnu . s
i [BRT AERRSTTINY

PR -

" v
n?é// 5 0

. " q 8P
~ — _5 7o 3¢ pw 37 of CPu.

Cosp . I
e Ly tak (¥) |
pint PREVIONLY woy 99y ok |
g SR T w7473 wIA
[& P /S.c_k‘:\ux
(A8 ' WM L B sounce
| Bowdvire
)
omp
| o_&_“ﬁ, 'ﬂbu‘»« plane
N o provide sustem
. G
CRMIGES To Give 2ru, OferaTod Wik [Mig Sudame | resek
(\Nh\\’ LINE\ \
Ay
FIG.3 ' FI1G.2

20

on this and many other non-081I ribbon cable to the disk couple of gates out of package

system detects a Logic con- drives is terminated with U28 (a 74080). This allowed me
dition (Logic @) on a Bus line 150ohm resistors at the 1last to wire up and generate a new
that is generated by some physical drive. All manufac- signal onto the backplane on
device while it is being se- turers recommend OPEN Collec- Pin 41, This is called R/W~
lected. O0SI allocate line 1. tor drivers from the Con- RAM (i.e., Pead/Write RAM).
When this line is detected as troller (i.e., CPU end) onto This removes reliability tim-
going low, it causes a 74LS30 the lines. This allows typi- ing problems on static memory
to change state, the output is cally up to 10 feet of line at cards. The simplest way to
driven to Logic 1 which in optimum performance. O0SI use use it is to cut the normal
turn causes a 74LS76, which 7417 0O/C bus drivers with R/W line as it goes into -the
before was dividing only by 2, 470ohm pullups on each 1line. static memory cards and con-

(4MHz to 2MHz) to now d1v1de D & N used 74LS367 bus drivers nect the board onto the new
by 4 down to 1MHz for the (they have provision for tri-

duration of the "Wait" 1line stated outputs but not used
being low (Logic @). The cir- here) with 470 ohm resistors, |
cuitry is arranged so that no While the 74LS367 is an ex-
bumps are added during switch- c?llent device it just could- P
ing from 2 to 1 MHz. This al- n't drive the 470ohm and
lows us to use slow devices on 158ohm in parallel reliably, l.epall.s
the system. For example, in a Also, the address buffers use
Multi-user mode we could use 74LS367 with 470ohm resistors. _)
an on Hand memory card that is OSI terminate each bus line on C-2,C-3,4CD Series
normally only reliable at 1MHz their motherboard with 47@ohm ZOOSerles
as a not very busy user. Then too. Again, as the number of b d . .
useda newer but more reliable boards in a system (multi- eboard {evel service on:
Card (probably more expensive) user) increased, we ran into epower suppli
at the full 2 MHz for a busy reliability problems. Partic- p" ppiies
user. Obvious advantage is to ularly on a 17 slot OSI back- *8 floppy drives
save money when upgrading to plane as it has 478 ohms eCpu,memories,etc.
Multi-user, resistors at each end of the
. bus lines that made 3 x 478 in egold molex contacts

The 16065 had (in my opinion) a parallel. A simple fix was ecustom printer cables
couple of design errors which just to leave the 470s of the
caused bus loading problems on D & N board (see table 2). @ week turnaround typical)
some systems. I did discuss Also, the 74LS367 are NOT open Sokol Elect
these with D & N who agreed collector devices so pullup to 474: Po::n::: ;,s tne-
that some pullup resistors may Logic 1 by themselves. H o
cause problems, but (I agree) l agerstown, Md. 2174
only under certain conditions. One added bonus of rearrang- (301)791-2562
Let me explain, - normally the ing the 2708 was to free up a

From Gander Software, Ltd. The Ultimate Personal Planner

TIME & TASK PLANNER

30 DAY FREE TRIAL — IF NOT SATISFIED FULL REFUND UPON RETURN

. e “Daily Appointment Schedule” e Work Sheets for all Aspects 1
' “Future Planning List” - sorted e Year & Month Printed Calendar

“To Do List” - by rank or date e Transfers to Daily Schedule
A SIMPLE BUT POWERFUL TOOL FOR SUCCESS

Put the two most etfecti techniq to work for you — every day of every year. Justfive to ten minutes a day allows your
mind and dreams to take charge of your life.

Set Your Goals: To reach a goal, you have to know where you are going. Just enter your goals or future appointments and let your
computer remind you.

Set Your Priorities: Success depends upon doing first things first. Assign priorities (1-99) to your “To Do"” list, let the computer
keep them ranked by date or priority, and then get to work. When the time comes, the computer will help you transfer items to your
choice of time on the daily Appointment Scheduler.

Technicalities - Appointment Scheduler: 18 time slots per day (you define) for 60 days. To Do List: 60 items ranked by date or
priority. Future Planning: 60 long range items, date sorted; days to event or days overdue. Transfer to Scheduler: just teli it the
date and time. Printed Calendars: Year on a page and one month box planning; any month, any year. System uses both Julian and
Gregorian calendars to handle dates from 1910-2399 and produce day of the week. Screen and menu driven; DMS Keybase com-
patible files. Detailed 38 page manual. Simple installation; FD to Multi HD. Files for 5 users=5.400 appointments. Unlimited Wananty.

HARDWARE: 48K OSlI, 8" floppy or hard disk, serial terminal system, DEALERS: Your inguiries are invited. This program should be on
08-65U v. 1.3 or later.) every 65U machine, including your own. At dealer prices, you could

. . bundle this superior package as a sales incentive.
FEATURES: package allows configuration to ANSI standard and

almost all non-ANSI terminals, AND user specification of printer port.

PRICE: $300.00 (User Manual, $25.00, credited toward TTP pur- ~ GA NDER SOFTWARE, Ltd.

chase). Michigan residents add 4% sales tax. 3223 Bross Road
“The Ponds”
Hastings, M| 49058
(616) 945-2821

rl

“It Flies”

21

line in lieu of the R/W. This
is very beneficial to getting
operational NMOS and CMOS 48K
RAM cards on OSI 17 slot back-
planes. Also, I found by
using a storage Oscilliscope a
_difference in timing for the
510 Dboard and other CPU
boards. The result in prac-
tice was that the 518 board
would work sometimes with CMOS
6l1l6s, never reliably with
NMOS equivalents and hardly
ever on a 17 slot backplane
with either devices. The ad-
dition of a 22 pf capacitor at
pins 13 - 11 of Ul2 will
improve crystal oscillator
starting. I lay no claim to
the R/W RAM signal idea as
both Rockwell and Synertec
take great pains to point out

the special need of such a-
line for static memory de-
vices. I would certainly wel-

come comments (crits) from any
others on this matter, in
particular from any ISOTRON
designers (nee 0QSI).

I anticipate that this letter
" runs off at the mouth a bit
(my style) so I will carry the
description of the 1686 (555
I/0) board over into a second
letter. The second install-
ment will cover a description
of the hardware needs and
operation to implement multi-
user operation, and the meth-
ods to do this with D & N
products. If we all hold
together, I will round off the
story with my own product
description, (unsolicited) of
a CPU I/0 do-all board that I
have available for the 48 line
bus that uses CMOS memory for
4 x 2K of RAM, 6 serial ports,
Centronics Printer, CPU, full
4K of MONITOR ROM with port
masking, 16 Pin I/0 bus, OKI
MSM 5832 CMOS <clock battery
supported, and pagination to
allow on board BASIC-IN-ROM
(in a 2764) or other utilities
to swap with the upper 8K of
48K RAM with software control:
All hardware 160% OSI compat-
ible,

David Tasker
Tasmania, Australia 7383

* % % %k %
ED:

I was glad to see the review
of DOS/65 in the July and
August issues of PEEK. In
general I have no specific
argument with the review,
however, I would like to add a
few comments.

1, DOS/65 has now been adopted
by Rockwell as the standard 0S
for their products. In con-
juction with Rockwell, the
system has been ported to the
Rockwell Design Center and is

22

being ported to the AIM/65 and
System 65 by Rockwell. 1In the
long run I expect that more
LOS/65 compatible software
will now be available!

been used
and provides

2, The system has
with hard disks
exceptional performance and
capability. In my main de-
velopment system (not an OSI
machine), I have two eight-
inch drives, two five-inch
drives and a 19 megabyte Win-
chester organized as two logi-
cal devices.

3, For the most part DOS/65
files are also compatible with
CP/M 2.2. As the reviewer
points out, the problem with
OSI is their very non-standard
disk controller (same with
Apple) that does not allow
diskettes to be interchanged.
If MODEM.ASM is used for file
transfer over a serial line,
the files can be interchanged
with any CP/M system.

4, I have implemented Micro-
soft BASIC for the system. I
have been unable to get
Microsoft to listen to me and
hence cannot yet distribute it
as part of the package or as a
stand alone option, If that
log-jam is broken, I will let
all DOS/65 users know as soon
as possible,

5. The 1K to 16K block length
is a function of the Disk
Control Block (DCB) that is
under user control, For all
distributed systems it is 1K
but can be altered if desired
by the user. This kind of
change is most useful for
those having hard disks.

6. The problems reported by
the reviewer are being invest-
igated. The problem with
FILESTAT is probably a problem
with duplicate array dimen-
sioning in FILESTAT and not a
problem with BASIC~E/65 it-
self. The reason for the “R
not working is not understood
but will be checked. The
compile-time option problem
with BASIC-E/65 has been fix-
ed. EXP will be added to the
BASIC~-E/65 documentation if it
is missing.

7. I agree that two drives is
really a much better system
configuration than one drive,.

Thank you for the review,
Richard A. Leary

Micro Systems Technology
Norristown, PA 19401.

* *k % %k %
ED:

Recently I was reviewing the

baud clock circuits used in
the Challenger series, and
decided to design a better
one. The short cut, I fig-
ured, would be to use a single
dedicated baud-rate generator
IC. One look at their price
tags, however, quickly changed
my mind.

So I fetched my pocket cal-
culator and began dividing
various crystal frequencies,
The results are illustrated by
the enclosed schematic. A
number of mail-order IC deal-
ers sell the 1.,8432 mhz crys-
tal for about $5. This is the
single most expensive part,
but it's about half the price
of most baud-rate generator
chips.

b wisgs b avesar

A e

i I
¥ - J? l_i'
o s :
18922 by i .
9609]] 7 _.l
49 O—rme—ep— | 4 Z .
o |1 ¢
P] B e B | 1
1w B — | = | — |
Joe 1 i
jto O B j
+5 3
BAUD RATE -1 7
GENERATOR L[4 &
. —~- 3
_{d 7
L] ¢
I 15
' — o j
3 [—— - ¢
s s
v - 1
y — T ¢
3
)

0SI/ISOTRON

MICRO COMPUTER SYSTEM SERVICE

*C2 AND C3 SERIES

*200 AND 300 SERIES

*FLOPPY DISK DRIVES

*HARD DISK DRIVES

CD 7/23/36/74

*TERMINALS, PRINTERS, MODEMS

*BOARD SWAPS

*CUSTOM CONFIGURATIONS

*CUSTOM CABLES

*SERVICE CONTRACTS
PHONE (616) 451-3778
COMPUTERLAB, INC.

307 MICHIGAN ST. N.E.
GRAND RAPIDS, MI. 49503

The divider chain uses off-~
the-shelf TTL chips whose
total cost should be less than
the cost of the crystal. As
shown, all of the baud rates
are right on the nose, except
for the 110 which works out to
an acceptable 109,

If any of° your readers have
had any experience with the
Exatron Stringy Floppy tape

storage system, I'd 1like to
correspond with them.

Bruce Showalter
857 Cedar
Abilene, TX 796601

* k X * %
ED:

I recently acquired an OSI
computer and am now a regular
subscriber to PEEK(65). My
problem is I have what must be
an odd model, CD 8 S DF, for
which I haven't seen anything
written., It looks much like a
C8 PDF but, I understand,
the S is for serial, it does
have a serial terminal as
device 1, How do I relate
program listings and adver-
tisements for hardware and
software to my model? Would
games run on a serial termi-
nal? What about PEEK and POKE
locations?

Two specific questions. How
can I get into money mode on a
data field in DMS? I have the
9/79 version of 0S~-DMS
Nucleus, updated by Ron Fial.
If money mode is not possible,
then would I be able to enter
leading spaces in order to
justify a column to the right
when entering dollar amounts
in a data field? I thought of
using a dollar sign and then
spaces, but I thought this
might mess up the statisti-
cal part of the report writer
when totaling the figures.

Another question, 1I've seen
ads for 6502A and 6502B chips
(2 and 3 Mhz) and wonder if it
is possible (or advantageous)
to replace my 1 Mhz unit with
either of these? What would I
need to change besides the
chip and the crystal? I have
two 1Mhz memory boards and one
2 Mhz memory board.

I understand that one way to
"pay" for help is to help
others., I'm so new I haven't
much to offer, however, I have

written a program that calcu-
lates look-angles to syncro-
nous satellites, if anyone

would be interested.

Dwight Finger
Anchorage, AK 99504

Dwight:

Your CD 8 S DF is a new one to
us too, but that doesn't mean
you are not right, "As you
say, it's probably just the
serial version of the C8P DF.
As such, anything written for
the C2-0EM (220) and up,
should be on target, program-
wise. In short, anything writ-
ten for OSI serial machines.
Only those PEEKs and POKEs
addressing video vs serial
terminal systems would change.

We don't know what Ron has
done to DMS, but generally
speaking, money mode is not
available. With customizing,
it could be added to the re-
port writers., Adding leading
spaces won't help - they are
truncated. $_ _10.068 will make
the columns 1look right, but
you are in trouble for totals.
All DMS entries are strings.
For 0S65U see page 14, item 6,
this issue.

2 Mhz will double your CPU
speed, but you must make sure
that your memory will handle 2
Mhz too. Have the 1 Mhz
boards checked. Many of the
chips may pass the 2 Mhz test.

Let's hear more about "look-
angles. "

Peek Staff

C-2 OEM (2 cases), dual 8"
drives, 48K RAM, serial &

parallel ports, printer inter-
face, RS-232 for terminal, 65D
3.3, 65U 1.42, 0OS-DMS Nucleus,
sort, Planner Plotter, A/R,
A/P, G/L, Inventory I, Inven-
tory I1I, Payroll, Purchasing,
Query, Education, 0S - AMCAP
Small Business Accounting Sys-
tem, WP6502 Word Processor, DQ
Mail, Plot Basic, Home Control
- $1800.68. C-2 converted to
C3-81 (2-cases), Dual a"
drives, 56K RAM, 518 3 Pro-
cessor 2 Mh CPU, Centronics
Parallel Port, Diablo Parallel
Port, 5 serial cluster ports,
RS-232 for terminal or con-
figure for multi-user, same
software as above -~ $2100.00.
UCSD PASCAL/FORTRAN system -
$200.00, extra boards and much
software - send S.A.S.E. for
complete list. Thomas Tech-
nical Service, RD #1, Box 135,
Linden, PA., 17744. (717)
398-1893 evenings.

* * k &k %

FOR SALE: C8P complete system,
two 8-inch disk drives (ss),
48K, Zenith green monitor,
Centronics printer #779, all
manuals, 0S-65D v3.2, 0S-65U,
WP6582, DQ-MAIL, SARGON II,

"0SI C2P single disk not

0S5-DMS SOFIWARE, GAMES, DISKS
and other software. $750 firm.
In Maryland (381) 263-1568.

* *k k % %

work-
ing DOS 65D V3.2, $300 or best

offer. D. Starshine, 1025 N.
Rodney, Helena, MT 59601,
(406) 442-5720.

* * k k k

Send for free catalog, Aurora
Software, 37 South Mitchell,
Arlington Heights, IL 6800685,

Phone (312) 259-4871

* & * % &

Good prices on collection of
0SI equipment and accessories.

Send SASE for complete list.
Ricky Peterson, 206 Pine
Valley, Warner Robins, GA
31093.

* k k % *

FOR SALE: 1 - C3A 48K computer

with dual sided 8" disks
(1.2MB). 1 - C20EM 48K con-
puter with dual sided 8"

disks(l.2MB). Various software
and manuals to go with both
systems. Phone 383-384-9030
or 303-384-4221 ask for Danny.
Write Tra-Sta Data Systems,
Box 427, Swink, CO 81877.

* k %k Kk %

FOR SALE: C28P-MF, 48K, 2MHz,
RS Lineprinter 1, 65D3.3,
Planner Plus, OSI WP3-1, $650.
Cc3 w/Hazeltine 1500 w/o
drives, $400. Sanyo 7.5 MHz
RGB Monitor & modified 540,
$400. For details call Craig
Borst (616) 399-3109.

* *k *x k *

OSI 3560 JJ 6 User Computer
with 2 88 Megabyte Hard Disc

Drives. Bought in 1983.
$14,000. Also, 4 visuval 58
green screen CRTs at $450

each, NEC Spinwriter 7739 with
tractor $2,0850, NEC Spinwriter
7716 with tractor $1,888. All
basically new. Also, a C3-OEM
Computer $1,8088. Feel free to
make offers. Call Ron at
1-509-248-7512,

* k %k * *

FOR SALE: OSI C3-B with dual
single sided 8 inch floppy
disks, 74MB hard disk, Cen-
tronics 702 parallel printer
(and interface), (4) 48K user
ports, and (2) Hazeltine 1508
CRTs. Various software pack-
ages included. Make an offer.
We will consider a trade for
IBM PC or PC compatibles., Call
or write: Lee D. Hoffmann,
FEECO International, Inc.,
3913 Algoma Road, Green Bay,
WI 54382, 414-468-10040.

23

The Unofficial 0S| Users Journal
P.O. Box 347

BULK RATE .
U.S. POSTAGE

PAID

Owings Mills, MD
PERMIT NO. 18

Owings Mills, Md. 21117

24

PEEK (65)
P. O. BOX 347
Owings Mills, MD 21117

Subscription rates for 12 issues (one year), effective with the July, 1981
issue. All rates quoted in U.S. dollars. Due to U.S. bank surcharges, all
funds payable to PEEK (65) must be in U,S. Dollars and be drawn on a U.S.
Bank or be an International Money Order.

Please fill out and return with check or money order.

) $15.00 Enclosed. U.S. (Maryland residents add 5% sales tax)
) $23.00 Enclosed. Canada and Mexico. 1st Class Surface.
) $35.00 Enclosed. South and Central America. Air Mail.
) $35.00 Enclosed. Europe. Air Mail.

) $40.00 Enclosed. All other. Air Mail. .

) $27.00 Enclosed. South & Central America, Europe & all other. Surface.

NAME.oeevooosoeesascensssonoaseeSTREE T eusetnveestncecosrsnnanss
CITYesseeonnsaoosoosocecneeessasSTATE tevrrveeesennsceonnannnes

ZIP CODE..evesessessnscsvasaeeesCOUNTRY e iavenacesannceanonnnsnes

Please send the following back issues. 1 enclose:

$2.00 ea. U.S. Surface. (Maryland residents add 5% sales tax.)
$2.50 ea. Canada and Mexico. Surface.

$3.00 ea. South and Central Amefica. Surface.

$3.00 ea. Europe. Surface.

$3.50 ea. All other. Surface.

Yol 2, 198] :
() JAN #1 () FEB #2 () MAR #3 () APR #4 () MAY #5 () JUN #6
() JuL #7 () AUG #8 () SEP #9 () OCT #10 () NOV #11 () DEC #12

e, 10.1_3_._19_8.2 .
() JAN #1 ()"FEB #2 (") MAR #3 () APR #4 () MAY #5 () JUN #6

o~ -~
— et

() JUuL 47 () AUG #8- () SEP #9 () OCT #10 () NOv #11 () DEC #12

() JAN #1 () FEB #2 () MAR #3 () APR #4 () MAY #5 () JUN #6
() JuL #7 () AUG $8 () SEP #9 {) OCT #10 () NOV #11 () DEC #12

' Yol 5, 1984
() JAN #1 () FEB #2 () MAR #3 () APR #4 () MAY #5 () JUN #6
() JUuL #7 () AUG #8 () SEP #9

INDEXES ARE INCLUDED IN THE JAN. & DEC. 1981 AND DEC. 1982/3 ISSUES

