The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21117
(301) 363-3268

Column One

The food and prices in
were great, but it is greater
to be back. Aside from those
delicacies that add girth, one
highlight was a wvisit with
David Livesay, of 68000 fame,
at his home near Liege, Bel-
gium. The package that he has
put together (see his ad in
the December '84 issue) is
quite amazing. At this point,
the 68000 is primarily handl-
ing the math functions for the
6502, but even here the speed-
up is dramatic. Anyone who
does a lot of math should have
a second look. David's other
contribution, Search for Line
Number (January issue), is an-
other gem. The speed improve-
ment was dramatic. This
should become a standard where
speed is needed.

Europe

Now that we have given you the
above solutions, a challenge.
Who will write an article on
the best way to manage the
disk head 1ift on the 4P-MF -
better yet, with motor shut-
down? That shouldn't be
difficult as I hear that sev-
eral of you have done it.

Another challenge; to the
WP-6502 hackers (see page 16).
You have documented it, modi-
fied it and fixed it, but can
you make it clean up after
itself? Regrettably, it modi-
fies the operating system
which almost guarantees a
"crash" when running the next
program in a multi-user en-
vironment. Here's a chance
for a Hacker to make a lot of
business users stand up and
notice the Hacker.

INSIDE

MARCH 1985
VOL.6, NO.3

THE INSIDE STORY-0S| MACHINES 2

6502 ASSEM, G. PROG, CLASS 3

MAPPING MACHINE LANG. CODE 6

BEGINNER'S CORNER 11

GENERIC COLOR PLUS REVISITED 13

WAZZAT CORNER! 14

CONVENIENT REGRESSION PROG. 14

WP 6502 V1.2 16

"MAGIC SQUARS" PROG. 20
One last gquestion. On page Morris's follow up on the
23, you will find a piece on Color Plus Board. It is a

cottage industry activities.
To broaden the field a bit, we
are interested in what you are
doing with your machines.
Recently, I have talked with a
number of you and have had my
eyes opened by some of the
things you are up to. Won't
you please take the time to
drop us a line and give us a
profile and/or how your ma-
chine makes money.

In return for "all the ques-
tions, here are some answers.
Well, how about Brian Hart-

son's new series on 0Ss1
hardware - what it is, how it
works and interrelates with
the system, thé shortfalls and
opportunltles for improvement.
It is a complex .subject, but
the object is o . bring the
hardware neophyte up to speed.
In these days, we certainly
can use all the help and
understanding we can get.

Rick Trethewey's final in-
stallment on Machine Language
programming is probably the
best of his nine articles.
Best of all, even though this
is the last, Rick says he has
another trick or two up his
sleeve.

For the "Elf" types and number
crunchers, Puckett's ‘regres-
sion package is the ultimate
of its type. Its size and
scope dwarf anything we know
of for the OSI.

Graphics buffs will find some
proof of the pudding in Earl

shame we don't have color and
motion on the printed page.

In the manufacturers corner,
and I now count three of them,
there is a hype of activity
working feverishly toward to-
tally new or variation ma-
chines (I count at least ES).
New CPUs (yup! 68000), op

systems, languages and util-
ities, but all running most,
if not all, O0S-U programs.

All this bodes well for the
08I world, but for the moment
we will just have to wait ‘un-
til next month for some of the
specifics. There is fever in
the air!

Lastly, recent innovations are
making it almost possible to
add high density MF drives,
hard disks, 0S-U and the like
to the "P" machines. No, it
is not cheap, but certainly a
lot cheaper than it used to
be. The hold up is that manu-
facturers are not convinced
that "P" users will want to
up-grade. Write us! We will
pass the word where it will do
the most good.

P.S. It's tax time. Check
first, as PEEK may be tax

deductible.

&2

THE INSIDE STORY

A new series designed to bring
the hardware beginner up to
speed. The series will examine
the overall system and all
commonly used 6502 based OSI
boards, for C4-P machines
through time-sharing.

By: Brian Hartson
Tech. Editor.

Over the years, PEEK has had
lots of articles and letters

that are concerned with spe-
cific portions of OSI hard-
ware. Those who have read
these articles either already

know the hardware down to the

minute details or have fol-
lowed the instructions care-
fully to get the desired

results. At the completion of
the project, knowledge was
gained, but only in the spe-
cific area.

My aim in this series will be
to try to give you the overall
picture of what goes on in
your box. We will look at the
overall system, the individual
boards and how they inter-
relate. Along the way, we may
even suggest changes or areas
for improvement to make your
machine perform better and/or
faster.

Because this series is to help
you get more from your machine

through better understanding,
I will be watching for your
comments, suggestions and
questions about those areas

that need special attention or
things that are still not
clear to you. Just write to
me at PEEK(65).

During the course of this
series, I will try to cover
the OSI world, but we have to
start somewhere. So, arbi-
trarily I have chosen the C-2
and C-3 systems. Even if this
is not your area, read along.
There is more similarity than
dissimilarity with whatever
you have.

Copyright » 1985 PEEK {65) Inc. All Rights Reserved.
published monthly
Editor - Eddie Gieske

Technicat Editor - Brian Harston

Circulation & Advertising Mgr. - Karin Q. Gieske

Production Dept. - A. Fusselbaugh, Ginny Mays

Subscription Rates Air Surtace
us $19

Canada & Mexico (1st class) $26

So. & Cen. America $38 $30

Europe $38 $30 1

Other Foreign $43 $30
All subscriptions are for 1 year and are payable in advance in
US Dollars.
For back issues, subscriptions, change of address or other
information, write to:

PEEK (65}

P.0. Box 347

Owings Mills, MD 21117 (301) 363-3268
Mention of products by trade name in editorial material or
advertisements contained herein in no way constitutes en-
dorsements of the product or products by this magazine or
the publisher

2 PEEK [65] March, 1985

To begin, I will assume that
you have had the cover off and
with the help of the highly
recommended Sams
have figured out which board
is the CPU, memory, etc. Ser-
iously, if you don't have a
copy of Sams, get one from
PEEK or elsewhere.

So, now you know where things
are, physically. All well and
good, but what we will be
concerned with first is where
things are . the way the machine
sees things. In order for the
system to work, it has to know
where, in the machine's mem-
ory, it can find the various
services it will need. It
also needs to reserve chunks
of memory to perform household
chores. To keep things
ple, let's lump them all to-
gether and call them "hardware
devices". So that we can have
an easy reference, we have the
following "System Map" that
tells us where, in memory,
every hardware device is 1lo-
cated; according to its hexa-
decimal address.

SYSTEM MAP

C-3 SYSTEM

Hex Address device
C000-COFF 470/505 FLOPPY DISK CONTROLLER

gap
C200-C2FF HARD DISK CONTRCLLER

gap

C4A00-CAFF DIABLO PARALLEL PRINTER CONTROLLER
gap '

C700~-C7FF 96 LINE PARALLEL INTERFACE
gap .

CCO0-CCFF LEVEL3 NETWORK CONTROLLER
CDO0-CDFF VOICE 1/0 CONTRQLLER
CE00-CEFF LEVEL 3 LOCAL CONTRCLLER
CFO0-CFFF LEVEL 1 CONTROLLER

DO00-DFFF LEVEL 3 EXBCUTIVE RAM
BOOO-EFFF HARD DISK DUAL PORT RAM BUFFER

gap
P200-F2FF 510 SCRATCHPAD RAM

g9ap
F400~F4FF CENTRONICS PARALLEL PRINTER QONTRALR

gap
F700-F7FF 510 PIA: PROCESSOR SELECT
LEVEL3 BANK SWITCH

gap

PBOO-FBFF 430 I/0 CONTRCLLER
FCOO-FCFP CONSQLE PORT

FDOO FDFF HARD DISK BOOTROM SPACE
FEQO-FEFF 65A MONITOR ROM SPACE
FFOO-FFFF FLOPPY DISK BOOTROM SPACE

C-2 SYSTEM
WHERE DIFFERENT FROM C-3 ABOVE

D@BO-DFFF 540 VIDE@ RAM
E@PQ-E7TFF OCLOR VIDEO RAM

gap

FCOB-FCFF CONSCLE PORT

FD@@-FDFF POLLED KEYBOARD ROM SPACE
FE@O-FEFF 65V MONITOR ROM SPACE
FFO0-FFFF BASIC ROM SUPFORT

It is easy to see that OSI was
wasteful of memory space.
Just look at all the wasted

gaps. Wasted to most people,
but this is where some pro-
grammers put their special

bits of code. OSI could have
put all the controllers in the
FPBO-FCFF space and given us
4K more of user space. The
block from CB@6 through CFFF

Manual, you-

sim-.

is pretty much common to all
0SI machines and addresses

things like the disk control-
lers and boards such as the
558 and 555. D@BO through

FFFF, in C-2s and personal ma-

chines contains support for
polled video systems and ROM
BASIC. 1In the C-3 and larger

machines, as they are serial
systems and no need for video,
this space is used to provide
support for time-sharing, ad-
ditional 1/0 and disk boot.

We now have a general picture
of the OSI computer. Now for a
little detail. Each board in
the system has one or more
functions so that, to make an
OSI computer, many boards are
needed. These boards are then
connected together by a back-
plane or motherboard. The OSI
backplane is a parallel struc-
ture that provides a roadway
for all address, data and
control signals to reach each
board. There is no decoding or
control done on the backplane.
The following is the Pin defi-
nition of the OSI backplane.

0OSI BACKPLANE PINOUT
PIN DEFINITION

LOW TRUE

1 WAIT

g2 NMI LOW TRUE
83 IRQ : LOW TRUE
64 DATA DIRECT. HIGH TRUE
65 DATA 00

86 DATA 1

27 DATA 2

@8 DATA 3

29 DATA 4

16 DATA 5

11 DATA 6

12 DATA 7

13 UNDEFINED

14 UNDEF INED

15 UNDEFINED

16 UNDEFINED

17 RESET LOW TRUE

18 UNDEFINED
19 ADD 19
20 ADD 18
21 ADD 16
22 ADD 17
23 +12 VOLTS

24 -9 VOLTS
25 ° +5 VOLTS
26 +5 VOLTS

27 GROUND
28 GROUND
29 ADD @6
30 ADD @7
31 ADD 05
32 ADD @8
33 ADD @9
34 ADD 01
35 ADD @2
36 ADD 03
37 ADD §4
38 ADD 60
39 PHASE 2
40 R/W

41 VMA

42 VMA AND PHASE 2
43 ADD 10

44 ADD 11 Continued

45 ADD 12
46 ADD 13
47 ADD 14
48 ADD 15

Let's define the above signals
and explain what they do:

The WAIT signal is wused by
controllers, or memory, to
switch the processor speed
when they are addressed. When
WAIT goes 1low it slows the
processor clock to 500 KHtz.

NMI is the nonmaskable inter-
rupt. Unlike IRQ, this inter-
rupt cannot be ignored or
delayed. When this signal goes
low the processor finishes the
current instruction, then loa-
ds its program counter with
the address that is contained
in memory locations FFFA and
FFFB. It then transfers con-
trol to the program that
starts at the 16 bit address
that is contained in these
memory addresses (FFFA and
FFFB). These addresses are
referred to as the NMI VECTOR.

IRQ is interrupt request, that
is, a controller is requesting
processor time. Unlike NMI the
processor can ignore or mask
this interrupt. This signal
like NMI also has a VECTOR and
it is the 16 bit address that
is contained in locations FFFE
and FFFF.

DATA DIRECT: This signal con-
trols the direction of data
flow into or out of the board.
The signal is high for a Write
operation and low for a Read
operation.

RESET is an optional reset
line not connected to the
processor reset signal. This
signal under normal OSI usage
is not used.

PHASE 2 is the system clock,
all data transfers take place
during the phase 2 period.
This signal controls the
bi-directional data receiver/
drivers inside the micro-
processor during read/write
times. This signal along with
the read/write signal make the
signal called Data Direction.

R/W is the Read/Write signal.
When high, a Read operation
will occur, when low, a Write
operation will occur.

VMA or Valid Memory Address is
a signal that only applies
when wusing the 6800 micro-
processor that is on the 5180
board, otherwise this signal
is pulled high.

VMA and PHASE 2: This signal
is the same signal as Phase 2.

The only difference is that it
is used as an enable signal by
the controller boards. When
high a data transfer can take
place.

DATA 00 to DATA 07 are the
data lines. These signal lines
on the backplane are bi-direc-
tional.

ADD 0@ to ADD 15 are the 16
address lines that are normal-
ly used by the system.

ADD 16 to ADD 19 are the ex-
tended address lines used by
the timeshare software to
switch RAM banks. These sig-
nals are generated by a PIA on
the 510 board under control of
the LEVEL3 software.

There are currently five un-
defined 1lines on the back-
plane. In times gone by lines
at pins 13 thru 16 were the
Data Lines 8 thru 11, required
for the 12 bit operation of
the 6100 CPU that was to be
used on the 5602 CPU expander
board. This board used either
or both a %88 and a 6188 pro-
cessor. The 6100 is a 12 bit
microprocessor compatible with
Digital Equipment's PDP-8. I
do not know if this board ever
made it out the OSI door.
Line 18 has always been un-
defined to my knowledge.

Well, that gives you a quick

trip down the backplane. If
it didn't all sink in (I
wouldn't be surprised - there

is a lot in there) go back and
read it again. If it is still
not clear, hang in there. As
we progress through the
boards, things should clear up
for you.

Next month we will attack the
CPU boards.

*

6502 ASSEMBLY LANGUAGE
PROGRAMMING CLASS

PART IX

By: Richard L. Trethewey
Systems Operator of the
0SI SIG on CompuServe

I'm sure you've seen BASIC
programs that perform seeming-
ly magic and when you go to
dope them out - ZAP! You
suddenly run into a slug of
meaningless DATA statements
and the ubiquitous (Gad! 1I've
been waiting months to be able
to use that word!);

X=USR (X)

If you look up the USR func~-

tion in a manual, you'll find
only that it "executes a user-
defined machine language
program". Swell. Actually,
0SI's "The C8P User's Manual"”
and "The C4P User's Manual”
contain a good example of how
to use the USR function to
your advantage, even though
they tried like the devil to
under document it and write
the code to be as confusing as
possible. The idea in the
example was to execute a ma-
chine code program and then
tell BASIC something about
what happened.

This is usually referred to as
"passing parameters”.

Before we go any further, 1I'd
like to clear up a couple of
things that haven't been made
clear about the USR function
under O0S-65D in anything I
have ever read. First of all,
under no circumstances should
you blithely enter "X=USR(X)"
under 0S-65D. 0SI wrote a
disk read/write utility into
0S-65D and USR defaults to it
with a read operation. But if
location $22D4 was changed ac-
cidentally, you could be in
for a rude awakening. Second-
ly, the documentation tells
you to change locations 8955
and- 8956 to point to your
machine code program. What it
doesn't tell you is that if
you use those locations, 0S-
65D is in the DOS context.
That's fine if all you want to
do is a disk access, but if
you aren't aware of it and you
need BASIC to work, you'll go
nuts trying to figure out what
happened. BASIC stores the
real vector to USR at loca-
tions 574 and 575 and you are
much better off always using
those locations to point to
your machine code. If you
need the disk, use the routine
SWAP at $2CF7 like God and the
programmers intended. Okay.
Enough pontificating.

Before the advent of 0S-65D
v3.3, the most common use of
the USR function was to do a
screen clear. We did a screen
clear in one of the -earlier
lessons. Again, the usual
technique was to include the
machine code in DATA state-
ments and put the code in
memory through a series of
READs and POKEs. That done,
the program would POKE in the
address of where the code
resided in memory into 8955/
8956 or 574/575 and USR(X) -
BANG - your screen wvas
clear. Cassette system owners
are especially lucky because
they have just enough unused
space on page 2 ($0200) to
hold such a machine code
program without having to wor-
ry about subsequent programs

PEEK [65] March, 1985 3

overwriting it by accident.
You just have to admire the
folks at Microsoft though, for
having the foresight to make
"USR" a function rather than a
command. My point is that the
way they wrote it, USR can be
used as either a command to
simply execute machine code,
or it can additionally be used
to allow machine code programs
to directly interact with the

language. I bet you were al-
ways intrigued by the syntax
of "X=USR(X)" as I was. After
all, shouldn't X equal
something after the screen
was cleared? This leads us
back to the 1idea of. passing
parameters.

Let's look at what really hap-
pens when BASIC encounters
"X=USR(X)". As soon as BASIC
sees the variable name "X", it
automatically knows it's going
to evaluate an equation and so
it executes the code for the
keyword "LET". LET identifies
the type of variable that will
be assigned the value of the
equation as one of three
types; (1) floating-point, (2)
integer, or (3) string. Then,
after dutifully checking to
make sure you put in an equals
sign, it Jjumps to the code
that untangles the right-hand
side of the equation. This
code is a subroutine located
at $@8CCD and is called the
formula evaluator or "FRMEVL".
In our example, FRMEVL sees
the USR, and does a JSR to
itself to evaluate the expres-
sion contained within the
parenthesis, before jumping to
where locations 574 and 575
tell it the «code for USR
resides. Actually, FRMEVL in
turn calls a routine called
EVAL to decipher each individ-
ual component in the equation

between operators (ie. +, -,
*, /, ", AND, OR, and NOT).
When the code pointed to by
USR does an RTS back to

FRMEVL, FRMEVL in turn does an
RTS back to LET which stores
the result in the variable we

told it to. Keeping track of
all of this is no mean feat.
If you ever want to feel hum-
ble, take a look at a disas-
sembly of BASIC.

Typically, the type of infor-
mation we'll want to give to

BASIC from a machine code pro-
gram is going to be a number
and is further typically a
single byte value from & to
255, There is a routine that
will let you give a signed 16-
bit value from -32768 to 32767
to BASIC at 81218 called
GIVAYF (which I interpret as
GIVe A&Y to the Floating point
accumulator). If you put the
Most Significant Byte of your
value in the 6502's Accumula-

4 PEEK [65] March, 1985

tor and the Least Significant
Byte in the Y register and JMP
to $1218, BASIC will get the
value. I do not advise using
the indirect Jjump vector at
$00088., Some versions of OS-
65D do not install the address
for GIVAYF there properly. If

you're into floating point
math or need to pass a full
16-bit positive value to
BASIC, I can't help you....
yet.

Okay, what could we want to
give BASIC? In the program

STRTRK.BAS that I uploaded to

0SI SIG recently, I used the
USR function to poll the key-
board so that if no keys were
pressed, the program could
continue onn to do something
else ‘as opposed to using an

INPUT statement which would
wait until the wuser pressed
the <RETURN> key before it
could continue. The code I
used there is for 0S-65D V3.3
and one of the main reasons
for that is that the V3.3 key-
board poll can be wused inde-
pendently of BASIC and 65D and
it doesn't disturb page zero.
The Assembly language program
that interfaces to BASIC goes
like this:

1g JSR $3590 ; DO KEYBOARD FOLL

20 TAY ; PUT KEYPRESS IN Y REGISTER
30 LDA #5000 ;

48 JMp $1218 ;

INIZ ACQUMULATOR
JUMP TO GIVAYF

Since this code is independent

of its location in memory, it
can be used on any size sys-
tem. After POKEing 574 with
the LSB and 575 with the MSB
of the address of where the
code is stored in memory,
"X=USR(X)" will cause "X" to
end up holding the result of
the keyboard poll. If no keys
were pressed, X will equal @

- and if a key was pressed, "X"

will hold the ASCII value of
that keypress. From there,
you could use the CHR$ func-
tion to write your own word
processor in BASIC.

As I alluded to in my refer-
ence to cassette based systems
above, an important concern
when adding machine code to
BASIC program is where to put
the code in memory. Another
is how to protect that code
from getting overwritten by
BASIC. 1In earlier lessons, I
provided a memory map of
08-65D v3.3. 1In that map, all
of memory up to $3A79 is re-
served for use by 0S-65D and
the resident language (in. our
case, BASIC). From $3A79 to
the top of your system's con-
tiguous memory is defined as
the workspace. Data file buff-
ers notwithstanding, the work-
space begins by holding your
program. The memory beginning

with the end of your program
to the top of the workspace is
used to hold variables. BASIC
stores non-subscripted vari-
ables first and then subscrip-
ted variables (arrays) in ta-
bles and maintains pointers to
the starting and ending ad-
dresses of these tables. The
wild card in this arrangement
is string storage. The en-
tries in these tables for
string variables do not store
the actual strings, but in-
stead hold pointers to where
the real strings are stored in
memory and the length of the
string. BASIC stores the
strings beginning at the top
of memory, building downward
toward the array storage ta-
ble. Thus it is essential
that we restrict BASIC's use
of memory in order to protect
our machine code.

BASIC maintains the highest
available memory address of
your system in memory 1loca-
tions 132 and 133 in LSB/MSB
format. Altering these loca-
tions to a value less than the
address of where your machine
code will reside will protect
the code from being over-
written by BASIC with string
storage if you choose to put
the machine code at the top of

your system's memory. When
you choose to alter 132/133,
you should do so at the very

start of your program and
immediately follow it with the
CLEAR command. This will in-
sure that BASIC knows its lim-
its and won't lose anything in
midstream. The advantage of
putting machine code at the
top of memory is that the code
will remain untouched and
available as long as you don't
reset your system or re-invoke
BASIC with the "BA" command to
0S-65D.

The alternative to putting the
code at the top of memory is
to store the code at the be-
ginning of the workspace, in
front of your BASIC program.
08-65U users are well indoc-
trinated in this technique.
Under 0S-65D, the BASIC utili-
ty program "CHANGE" will alter
the start of BASIC to a higher
location. Running CHANGE is a
bit scary until you decipher
the meanings of the obscure
prompts, but there are bene-
fits to be reaped from the
technique. Putting your ma-
chine code in front of your
program allows you to store
the machine code on disk in
the same file as your program,
thus making retrieval simple
and also eliminating the need
to add bulky DATA statements
to your program (once the ma-
chine code 1is properly in-
stalled, of course). Be fore-

1, inc.

p.o. box 21146 e denver, co 80221
phone (303) 428-0222

SPECIAL PURCHASE on nara gisk arives
SPECIAL PRICES .» DBI BUSINESS SYSTEMS
RUNS DB—DOS & 0S—65U PROGRAMS-

DBI 420SE

(4) DB-1 MULTI-PROCESSING BOARDS
* TRUE PARALLEL/MULTI-TASKING

% ALL USERS RUN AT 2 MEGAHERTZ
() D1 SCSI HOST ADAPTER ~ LIST $10,490
* W/BATTERY BACKED-UP REAL TIME CLOCK
(1) DP-1 UNIVERSAL PRINTER BOARD ONLY! $6,695

* 4 RS-232 SERIAL INTERFACES SAVE! $3,795

* 2 CENTRONICS COMPATIBLE INTERFACES
(1) FAST 20 MEGABYTE HARD DISK
(1) 318K BYTE FLOPPY DISK
(1) INTELLIGENT SCSI CONTROLLER

* W/ERROR CHECKING AND CORRECTION

DB' 2 2OSE Same as 420SE except Two Users ON LY! 6 ’ 39 5
SAVE! $1,505

LIST $13,100
DB' 4405E Same as 420SE With 40 Megabyte Hard Disk ON I.Y! 8,89 5
SAVE! $4,205

LIST $10,510

LIST §7,900

. DB' 2405E Same as 440SE except Two Users ONLY! 8, 595 '

SAVE! $1,915

* 0S-65u IS A TRADEMARK OF OHIO SCIENTIFIC, INC.

QUANTITIES ARE LIMITED PLEASE DON'T DELAY!

PEEK [65] March,

1985

5

warned however, that you can-
not type in a program and then
later run CHANGE to add space
in front of the program. You
must first run CHANGE and then
enter and store your BASIC
program. With care, you could
actually get around this with
indirect files, but that can
get cumbersome with larger
programs. Do it by the book
and save yourself trouble.

Back to strings, you'll remem-
ber that when I discussed
FRMEVL, I said it does a JSR
to our USR code. However,
when our code RTS's back to
FRMEVL, FRMEVL does a check to
see that the variable being
dealt with is a number and not
a string. This 1is because
Microsoft wrote the code to
only allow the MIDS$, RIGHTS,
and LEFT$ functions to deal
with strings, which is per-
fectly reasonable considering
the other tools in the lan-
guage. But if you're dead set
on using your own code to
manipulate strings, there is a
way around this problem. The
solution is to pull the return
address back to EVAL off the
stack and return instead to
FRMEVL before the string check
is made.

The sample program I am in-
cluding here will take a
string from BASIC and reverse
it. You'll note that in the
assembly source code, I pull
the string from BASIC and
store it in my own buffer,
INBUF. I did this to insure
that the original string is

not disturbed by anything your
applications might need to do.
The assembly source code is
broken down into three sec-
tions. The first section is
the set-up code
the string from memory
saves the information about
the string. The second sec-
tion is the string manipula-
tion code and can be replaced
by your own application. The
last section does the necessa-
ry housekeeping to tell BASIC
where the resultant string is
in memory and does the return
to FRMEVL. The BASIC program
is also a simple affair, but

and

you'll notice that I moved the

pointer at location 133 two

pages in front of the machine
code. This proved to be
necessary in my tests, but I

honestly cannot explain it.

Using DEBUG or the OSI Assem-
bler, enter the assembly
source code and store it in a
file for 1later |use. Next,
assemble the code to memory.
You might also want to save
the code on disk. Next, you
can simply exit the assembler,
invoke BASIC and type in the

6 PEEK [65] March, 1985

which pulls -

10 POKE 133,158: CLEAR: POKE 574,8: POKES575,160

20 INPUT AS

30 BS=USR(AS)

40 PRINT BS

16; BASIC STRING MANIPULATOR

208;

3@; BASIC EXTERNALS

40;

5@ ENDATB =S7E END OF ARRAY TABLE
60 INDEX =$6F TEMP. POINTER TO STRINGS
7@ FACEXP =SAE F.P. ACCUM. EXPONENT
80 FACHI =S$AF F.P. ACCUM. MSB

"99 FACMHI =S$BO F.P. ACCUM. NMSB

100 CHKSTR =$0CBE

CHECK FOR STRING VARIABLE

110 FCERR =$10DP FUNCTION CALL ERROR
129 FREFAC =$1528 GET POINTER TO STRING
1306;
148 INBUF =S$Al00
158;
160 *=$A000
170;
180 PNT1 JSR CHKSTR MAKE SURE IT'S A STRIN
190 JSR FREFAC FIND STRING IN MEMORY
200 STX PNT2+1 SAVE STRING ADDRESS LS
210 STY PNT2+2 AND MSB
220 STA PNT3+1 AND LENGTH
230 TAY CHECK LENGTH OF STRING
240 BEQ ERRJMP ZERO? ==> ERROR!
250 LDY #500 INIZ POINTER
260 PNT2 LDA S$FFFF,Y FETCH CHARACTER OF STR
270 . STA INBUF,Y SAVE IT IN INBUF
280 INY BUMP POINTER
290 PNT3 CPY #$FF AT END OF STRING?
300 BNE PNT2 NO ==> PNT2
310;
ggg; INSERT MANIPULATION CODE HERE

’
340 TYA XFER Y REG. TO ACCUM.
3508 TAX NOW MOVE IT TO X REG.
360 LDA ENDATB FETCH TOP OF FREE RAM
370 STA INDEX GIVE IT TO BASIC
380 LDA ENDATB+1 FETCH TOP OF FREE RAM
390 STA INDEX+1 GIVE IT TO BASIC TOO
400 LDY #5080 INIZ PUT POINTER
410 PNT4 DEX DECREMENT FETCH POINTE
420 LDA INBUF,X FETCH A CHARACTER
430 STA (INDEX),Y SAVE IT IN FREE RAM (B
440 INY. | BUMP PUT POINTER
450 CPX #5090 FETCH PTR = 0?
460 BNE PNT4 NO! LOOP! ==> PNT4
470;
480 PLA
490 PLA CANCEL RTS TO FRMEVL
500 LDA INDEX FETCH PTR. TO NEW STRI
510 STA FACHI GIVE IT TO BASIC
528 LDA INDEX+l FETCH MSB
538 STA FACMHI SEND IT TOO
540 LDY PNT3+1 LOAD Y REG. W/ STRING
550 STY FACEXP AGAIN, GIVE IT TO BASI
560 JMP $159F STORE STRING IN VARIABLE
578; AND QUIT
588 ERRJMP JMP FCERR FUNCTION CALL ERROR!!
590;
600 .END

BASIC program above and run no longer available and that

it.
you with

That program will present

a mirror image of

whatever you enter in response
to the INPUT statement.

I would like to gratefully ac-

knowledge the
Assembly

Source

author
Code

of the
for

Microsoft OSI-BASIC written by
Without that

M.K.
book,
It used to be

Miller.

I would be totally lost.

published by
Aardvark, but I'm afraid it is

is a shame.

*

MAPPING MACHINE LANGUAGE CODE

To thoroughly document
computer's BASIC or operating
system (or any significant
machine language program), you
need to create a commented map
of the routines. 'Resource’
is & collection of BASIC pro-

your

grams which, working together,
help you to produce annotated
disassemblies.

Last month’s PEEK published
explanatory text and the first
program. 'Resource’ now con—
cludes with the rest of the

programs and some example
results. The author used
'Resource’ to aid in generat-

reference
version of

ing annotated cross
lists for the OSI
Microsoft’s BASIC.

RESOURCE PART 2

Courtesy of COMPUTE!
By: T. R. Berger
Coon Rapids, MN

the place where the

code resides. In addition,
many of the addresses have
preceding letters. These let-

ters mean different things in
different tables. 1In a JMP or
JSR table, an M means the
calling code is a JUMP in-
struction.

An S means the calling code is
a JUMP TO SUBROUTINE instruc-
tion. In the MEMORY table,
the letter is always the first
letter of the calling opcode.
For example,

1DF3 STA $0100,Y

is referenced in the table be-

"Resource,”
information

early version of
before the extra
was added.

Editors note:
Resource follow up.

There is more to come!

The preceding article by Mr.
Berger was brought to our
attention by Mr. Dana Skip-

worth (Skip) who has been
working with the programs and
Mr. Tom Berger for quite some
time. The result 1is that
"Skip" has put together a
series of comments and tips
which will appear here in the

side 9100 as SIDF3. The Zpage coming months, along with
; table has no leading 1letters. further notes and utilities
E::setggizi ngéggms agg;gf?:z This table was produced by an from Tom. Stay tuned!
ing "Resource" are selections Table 1. Keyword Action Addresses
from annotated cross reference Ward Token Address
lists for OSI-Microsoft 8K EaD b 082 7 g ™ 8o lerz
disk BASIC from O0S65D V3.2 NEXT 82 acan spC oF PELK m 1688
NMHZ disks. The tables were o ot o82¢ ot N 1E08 as o6 Y
produced by using "Resource: goF @ B R . B OB
an € anno ations _erlve coTo 88 08A6 : :5 18F4 E'[-!?:‘S cl 157A
ron both 3in pouverticidls AP B
Jol y19 85) q ! Coson ae 0ad o no oEss o & EhhoR
Y an my maps of RETURN 8 08D3 > A RG c6 ERROR
0S65D (COMPUTE!, January-March P o e . A uw a Lnkon
1981) . W o ooen o e 1 o cn ERROK
All addresses within the ex- BB a4 % ER @ @ ma
ample tables are in hex and Ei §§ ggg Pos 5 1223 % EE Eﬁﬁ
o ehe Saies sodrens: heres AR TN A B
. " EXP b6 1eCl 5T n2 ERBOR
after, the addresses refer to e o 065 s I ion o o onon
Copyright 1982, Small System Services, Inc. TAB £
Reprinted by permission from COMPUTE! MAGAZINE Cont.
HAS YOUR HARD DISK GONE S-O-F-F-T?
® L3 [3
BTI is your Authorized Service Agent for:
* 3 * L3
Okidata, OSI and DTO 14-inch disk drives.
] []
BTI service includes:
o
¢ Maintenance contracts ¢ Product exchange
L] L] o
¢ On-site service ¢ Depot repair
Over 15 years’ computer systems maintenance experience.
More than 5000 disk drives currently supported in the field.
For information or service, contact:
U.S. and Canada Europe
Greg De Bord Victor Whitehead
Sunnyvale, California Birmingham, England
408-733-1122 021-449-8000
e BT 870 W. Maude Avenue, Box 3428, Sunnyvale, CA 94088-3428 (408) 733-1122
Regional offices in Minneapolis, MN; Ramsey, NJ; Atlanta, GA; Dayton, OH
PEEK [65] March, 1985 7

‘Fable 2. Memory Table

Q0 05AD 05D9 0609 0627 1357

01 1358 170D 173D 1832 1838 1848 184C 184E
1850

. liearch Character

UA 1320 b 18/g 1EE2

OA 090C 0914 0916 0976 0998 0B9S 029D OEC?
0EB2 130D

1Scan between quotes PLAG

0B 130F 1324

0B 0583 0607 060D 0910 0912 0918 091E O0BA2
OE9D OEAS

. iPOINTER: Input Duffer, # of subsCripts

0C OEAD OEBO OER4 1028 1091 10DE 1108 112F
1175 11AD

0C 049C 04F7 050° 05D} O5E9 061A OEBE 0ESS
OE9B OEA?

. iDefault DIM FLAG
OD 0P33 1059 109 1007 1113 116E

0l
n4

. Zpaqe . stack pointer
0001 LITIA 226F S211F
0002 L1733 .
D003 1172 . Table index for OS buffer write routine
0004 L1725 228A S217F
0016 SOSKF LOSF2 50612 .
0017 L0512 N Buffer rcad write data for OS
0018 50621 22C8 L22E2
00A0 BOEEN 22C9 L2206
00A2 D099 22CA L22pC
OOFF SICF6 SID67 S1P70 SI1DB4 SIDBE LIDD) SIE

oF . USR pointer to OS and disk
. 22F2 82209
. Stack 22F3 S5220F
0100 SIDFI SI1E14 .
0101 LOJA6 [,107B 51086 S1DEE . 0§ Input flag
0102 LOIN) CO3C2 LOFCY L1077 S1081 S1E0S 2321 S20FS L2101 S21D
0103 LOJB6 CO3BB S1ED) . 6 52201 12215
0lo4 s1E0A . 0S Output flag
0109 LOG75 S0CBB 5122 S20F6 L2107 53150 s210p L21FE §2200
Q10F 1L,0C90 .
0110 LOCOS . 05 Passed char. (Control €)
0111 LOCOF 2325 LOB19 50823
0112 LOCSA .
01DE LOE79 . 05 Disk sector nul
01DF LOB7E 265E SZZAé mer
. Start of keyword address table : BIT hiding cod
0200 LO7F9 28A9 BOEOF e ¢
0201 LO7FS .

. Start of operator hierarchy and address 08 Default 10 flag

table 2AC6 L20F2
0266 CON20 COD4E LODE4 .
0267 1,0n53 . BIT hiding code
0268 LOD4F 2CA9 BOEI2 .
X Table of BASIC keywords (Start $0284) . " 0S Read buffer pointer
0203 LO6ID 2CE5 52142
0284 SO5i0 L0622 L0736 LO7IE .
. . 0S End of buffer on read
. Error measages 2CED 52113
0364 LO456 .
0365 LO45C . Trangient GET and PUT pointer
. 2ETA L22A6
. BIT hiding code N
07A9 BOSIC . 0S Swapped value (SE},$E2) Start pointer
0BA2 BIOCF for buffer read
0EA2 BOSE3 305A 52116
1410 BL19BE 3058 52119

Constants " .
. . Pointer to SOURCE file header
1821 AlD9L 1178 s2126 L2273
1E22 ALDBA R
1E23 ALDS3 . Number of tracks in 2 Fi
1624 Albre 17p Numbe SOURCE File
X Opecand pointing to 10 flags : BIT hiding cod
21ps 52104 ieao Bongs T CoUe
21D0a 5210A AMA2 BIAC4
. _
‘Table 3. Zpage Table

. iindex for zpage, Jump vectors for BANIC 02 135F 1736 102E 1834 185A 185C 1HSE

172F 182A 1830 1866 1868 1B6A
1728 1R26 182C 1872 (674 1876

. §Typer FEwstring 00enumcric

GCE 0585 0A4D 0B91 OCBF OD10 QD36 ODB4 OE}I
OED3 OP44

Ok 0F63 105£ 1097 1204 121A 1368 1601

3
F 09B2 0BBC OE36 OF46 OF71 1058 109A

;PLAG: DATA scan; LIST quote; memory
0 USAD OS5H9 0600 1372 1396 139F

1Subscript FLAG; FNx PLAG
1 06AB 074A OF6B OFB1 OFBC 1240 126A

:0sInput; $40=GET; $98=READ
2 0DOD OBSE 0DOO 0C12

Tuble -4 JMP and JSR Table

. Jump vector for commands
0003 SO47A

. Jump vector for evaluation
006F MODE4
: Jump vector for functions
00Al SCEB)

. CHRGET subroutine: get BAISC character
00Co 51615 $1C05 §1C12 S1C3I5 S2163 M220B
522

00co SOIBI S06D0 SO07YF SO7EC MOTFD S0960
S09A0 SOAC1 S0BSE

00CO0 SOCB3 SODOO SODB6 MOELB SOE4D SOF4B
50pr53 SOP7B $103D

. Subentry: get previous chsracter

00C6 S1652 S16A3 M2160 521B0 S21gR

00C6 SOCAC SOCE? SOF2B SOP30 SOF37 S108A
512C5 515B5 M1624

00C6 S06CT 50798 50890 S092C S0941 SOAI2
S0B78 50DC1 SOBDL

03A1

03cP
0306

0412
o0r

o44c
044E
044E

Search stack for FOR and GOSUB activity
S074P ::08D9 50C58

Open space in memory
$0504 SOFP1
514A2

Test stack depth
§075D S088B SOCDD

Check available memory
SO03CP S10EC S1142

8end error message then:

n1194

HIA8?

MOB858 MOBE6 MOCCA ﬁOEZO M10D2 M1232
M1352 M14D4 M1821

Warm start BASIC

10 RFM ** RESCURCE 2 **

20 REM ** SQUKCE AND EQUATE FILE BUILDER **
30 REM ** T.R.BERCER 11/80 **

40 REM ** REMOVE COMMA AND SEMICOLON **

50 POKE 2972,13:POKE 2976,13

60 PRINT:PRINT"RESCURCE ** STEP 2-BUILD SCURCE AND EQUATE FILES **"

70 PRINT:PRINT

80 INPUT"SCRATCH FILE";SF$

90 IMNFUT"OBJLCT FILE";OF$

100 PRINT: TNPUT"SYMBOL FTLE";FS$
110 lNPU'l"‘I:QUI\l'b FILE"; EF$

120 sp$="

Copyright 1982, Small System Services, Inc.

8 PEEK [65]

Reprinted by permission from COMPUTE! MAGAZINE

March, 1985

130 REM ** COUNT SYMBOLS **

140 POKE 8998,00:POKE 8999,128

150 POKE 9000,00:POKE 9001,140

160 POKE 9006 ,00: POKE 9007,140

170 POKE 9008,00:POKE 9009,152

180 DISK OPEN,6,FSS$

190 REM * SYMBCL COUNTER *

200 SN=-1

210 INPUT #6,INS

220 IF IN$="XIT" THEN 250

230 SN=SNt1

240 GOTO 210

250 DISK CLOSE,6

260 REM ** LOAD SYMBOLS **

270 DISK OPEN,6,FS$

280 REM * DIMENSION STRING AND MARKER ARRAYS *
290 DIM SS$(SN),SS(SN)

300 FOR I=0 TO SN

310 INPUT #6,5S$(I)

320 NEXT I

330 DISK CLOSE,6

340 REM ** MAIN PROGRAM **

350 REM * LINE NUMBERS AND INCREMENT *
360 CL=10000: IN=10

370 DISK OPEN,6,SF$

380 DISK OPEN,7,0F$

390 REM * LOOP BACK HERE *

400 INPUT #6,INS

410 IF IN$="XIT" THEN 670

420 REM * GET ADDRESS OF LINE *

430 AL$=LEFT$(INS,4)

440 REM ** BINARY SEARCH FOR SYMBQL **
450 REM * SEARCH *

460 L=0:R=SN

470 M=INT{(L+R)/2)

480 REM *EXIT HERE IF NOT' FOUND *

490 IF L>R THEN QU$=SPS+MID$(IN$,5) :GOTO 580
500 REM *EXIT HERE IF FOUND *

510 IF Al$=SS$(M} THEN 560

520 IF AI$>SSS(M) THEN L=M+1:GOTO 470
530 R=M-1:GOTO 470

540 REM * END OF SFARCH *

550 REM * CREATE SYMBOL AND MARK ADDRESS USED *
560 SS(M)=1:0US="HH"+INS

570 REM * CREATE RESCURCE LINE *

580 QUS=STR$(CL)+" "+QUS

590 REM * INCREMENT LINE NUMBER *

600 CL=CL+IN

610 REM * PRINT LINE *

620 PRINT#7,QU$

630 PRINT CUS

640 GOTO 400

650 REM * LOOP BACK FRCM HERE *

660 REM * CLOSE FILES *

670 PRINT#7,IN$

680 PRINT #7,"E"

690 PRINT #7,"E"

700 DISK CLOSE,7

710 DISK CLOSE,6

720 REM *END OF MAIN PROGRAM *

730 REM * WRITE TWO BYTE BQUATES *
740 DISK OPEN,7,EF$

750 REM *FIRST LINE NUMBER *

760 CL=5000

770 REM * TITLE *

780 PRINT#7,STR$ (CL}+" ;EQUATES"

790 CL=CL+IN

800 REM * COUNTER FOR EQUATES *

810 _K=0

820 REM * PRINT EQUATES *

830 FOR I=0 TO SN .

840 REM * SKIP SYMBOLS WHICH ARE LABELS *
850 IF SS{I)=1 THEN 930

860 ALS=STRS(CL)+" HH"+SSS(I)+" = $"+538(1)
870 PRINT¥7,A1$

880 PRINT Al$

890 REM * NEXT LINE NUMBER *

900 CL=CL+IN

910 REM * INCREMENT EQUATES CUUNT *
920 K=K+1

930 NEXT I

940 PRINT#7,"XIT"

950 PRINT#7,"E"

960 PRINT#7,"E"

970 DISK CLOSE,7

980 REM *FINISHED WITH EQUATES *

990 PRINT:PRINT

1000 PRINT"CODE SCURCE FILE REGENERATED": PRINT
1010 PRINTTAB(10) "RESCURCE FILE : "OF$
1020 PRINT TAB(10) "BQUATE FILE: ";EF$
1030 PRINT TAB(10) "SCRATCH FILE:"SF$
1040 PRINT TAB(10) "SYMBOL FILE: "FS$
1050 PRINT TAB(9) SN+1" SYMBOLS"

1060 PRINT TAB(9) K" BQUATLS"

1070 PRINT:PRINT"PASS 2 COMPLET!

1080 PRINT:PRINT:END

10 REM *** RESCURCE 3 - CROSS REFERENCE BUILDER ***

20 REM *** T R.BERGER 11/80 ***

30 REM * DELETE OOMMA AND SEMICOLON *

40 POKE 2972,13:POKE2976,13

50 PRINT:PRINT"** RESCURCE ** STEP 3-CROSS REFERENCE
GENERATOR"

60 PRINT:PRINT

70 PRINT TAB(20)"TYPES OF REFERENCES"

80 POKE 8998,00:POKE 8999,128

90 POKE 9000,00: POKE 9001,140

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
pali]
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
. 510
520
530
540
550
560
570
580
590
600

620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

POKE 9006 ,00: POKE 9007,140
POKE 9008,00: FOKE 9009 ,152
PRINT: PRINT"B"TAB(10) "BRANCH"
PRINT"J"TAB(10) "JSR AND JMP"
PRINT"M"TAB(10) "MEMORY"
PRINT"Z"TAB(10) "% PAGE"

PRINT: PRINT: PRINT

INPUT"YOUR CHOICE (J/B/M/2)";CRS

IF CR$<> "B" AND CRS<>"J" AND CR$<>"M" AND CR$<>"2" THEN 170

PRINT: INPUT"SCRATCH FILE";SF$
INPUT"REFERENCE FILE";RF$

PRINT: INPUT"NUMBER OF REFERENCES";NR
REM * DIMENSION ARRAYS *

DIM SSS$(NR),SAS(NR) ,V(NR)

REM * SET SYMBOL NUMBER AND TYPE *
T=1:SN=-1

IF CR$="M" THEN T=2

IF CR$="Z" THEN T=3

REM * SYMBOL PLUCKER *

S=13:NL=4

IF CR$="Z" THEN S=15:NL=2

REM ** MAIN PROGRAM **

DISK OPEN,6,SF$

DISK OPEN,7 ,RF$

REM * LOOP BACK HERE *

INPUT #6,INS

IF INS="XIT" THEN 800

REM * TOO SHORT, NO SYMBOL *

IF LEN(IN$)<16 THEN 350

REM *CHECK FOR NO SYMBOL *

IF MIDS(INS,11,2) <>"HH" THEN 350

REM *DISPLAY LINE WITH SYMBOL *
PRINT INS

REM * DETERMINE SYMBCL TYPE *

ON T GOSUB 970,1050,1140

REM *CHBCK FOR RELEVANT SYMBCL *

IF FL=0 THEN 350

REM * GET ADDRESS OF LINE *

Al $=M$+LEFTS (INS,4)

REM *GET SYMBOL *

A2$=MIDS(INS, S, NL)

REM * SEARCH SYMBOL TABLE *

REM * BINARY SEARCH *

L=0: R=SN

REM * SYMBOL NOT FOUND, INSERT IT *
IF L>R THEN 620

M=INT((L+R)/2)

REM * SYMBOL IN TABLE *

IF A25=SE$(V(M)) THEN 700

IF A2$>SS$(V(M)) THEN L=M+1:GOTO 550
R=M-1:GOTO 550

REM * ADD A SYMBOL *

SN=SN+1:SS$ (SN) =A2$

REM * POINT 10 ITS PROPER POSITION IN ORDERING *
IF L=SN THEN 680

FOR I= SN-1 TO L STEP -1

V{I+1)=V(I)

NEXT I

V(L) =SN:M=L

REM * ADD A CROSS REFERENCE *
SAS(V(M})=SAS(V(M)}+" "+AL$

REM * CHECK IF CROSS REFERENCE LINE IS TOO LONG *
IF LEN (SA$(V(M))) <50 THEN 350

REM * PRINT CROSS REFERENCE LINE *
PRINT #7,SSS$(V(M))+" “+SAS(V(M))
PRINT SS$(V(M))+" "+SA$(V(M))
SAS(V(M))=""

GOTO 350

REM *LOOP BACK FRCM HERE *

REM * CLOSE SCRATCH FILE *

DISK CLOSE,6

REM * PRINT REMAINING CROSS REFERENCE LINES *
FOR I=0 TO SN

IF SA$(V(I))="" THEN 860

PRINT #7, SS$(V(I))+" "+SAS(V(1))
PRINT SS$(V(1))+" "+SA$(V(I))

NEXT I .
PRINT #7,"XIT"

DISK CLOSE ,7

REM * END OF MAIN PROGRAM *

PRINT: PRINT

PRINT TA(10) CR$" REFERENCES COMPLETED *
PRINT TAB(10)"SYMBOLS FOUND: "SN¢1
PRINT TAB(10)"REFERENCE FILE: "RF$
PRINT: PRINT: END

REM ** SUBROUTINES **

REM * BRANCH AND J (T=l) *

IF MIDS(INS,6,1)<>CR$ THEN FL=0: GOTO 1030
REM * SIFT QUT BIT INSTRUCTIONS *

IF MIDS(IN$,6,3)="BIT" THEN FL=0:GOTO 1030

1000 REM *LABEL FOR TYPE *

1010
1020

M$=MIDS$(INS$,7,1)
FL=1

1030 RETURN

1040

REM * MEMORY (T=2) *

1050 M$=MID${INS,6,1}
1060 A2$=MIDS(INS,13,1)
1070 IF M$="J" OR A2$="2" THEN FL=0:GOTO 1120

1080
1080

REM * SIFT QUT BRANCHES * .
IF M$="B" AND MIDS(INS,6,3)<>"BIT" THEN FL=0:GOTO 1120

1100 REM * LABEL TYPE *

1110 FL=1

1120 RETURN

1130 REM * Z PAGE REFERENCES (T=3) *

1140 IF MIDS(IN$,13,1)<>CR$ THEN FL=0:GOTO 1190
1150 Mg=" "

1160 REM * LABEL FOR INDEXING *

1170 IF LEN(IN$)>16 THEN M$=RIGHTS(INS,1)
1180 FL=1
1190 RETURN

10
20

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550

570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
100

REM *** RESCHRCE 4 7 PAGE PQUATES ***
KM T.R.BERGER 11/80

PRINT; PRINT

PRINT'RESCURCE STEP 4 Z PAGE FLUATE FILE *
PRINT: PRINT: INPUT"Z PAGE CROSS REFERENCE FILE";%F$
INPUT"Z PAGE EQUATE FILE";ZE$

POKE 8998,00: POKE 8999 ,128

POKE 9000,00: FOKE 9001,140

POKE 9006 ,00: PFOKE 007,140

POKE 9008,00: BOKE 9009,152

PRINT: INPUT"NUMBER OF SYMBOLS";NS
REM * LINE NUMBER AND INCREMENT *
FL=1000: IN=10

REM * DIMENSION ARRAYS *

DIM SS$(NS),V(NS)

REM * SYMBOL CCUNTER *

SN=-1

REM * LCAD SYMBOLS *

DISK OPEN,6,2F$

PRINT: PRINT"LOADING SYMBOLS"

REM * LOOP BACK HERE *

INFUT #6,INS

IF IN$="XIT" THEN 470

REM * JUST THE 2 PAGE REFERENCES *
INS=LEFTS { INS,2)

REM * PUT SYMBOLS IN ORDER *

REM * SEARCH FOR SYMBCL *

REM * BINARY SEARCH *

L=0:R=SN

REM * GO ADD NEW SYMBOL *

IF L>R THEN 380

M=INT((L+R)/2)

REM * HAVE THIS ONE ,GET ANOTHER *
IF IN$=SS$(V(M)) THEN 220

IF IN$>SS$(V(M)) THEN L=M+1:GOTO 310
ReM-1:GOTO 310

REM * ADD SYMBCL TO LIST *
SN=SM+1:SSS(SN) =IN$

REM * POINT T0 ITS PROPER POSITION IN ORDERING *
IF L=5N THEN 440

FOR 1=SN-1 TO L STEP -1

V{1+1)=V(I)

NEXT I

V(L)=SN

GOTO 220

REM * LOOP BACK HERE *

DISK CLOSE,6

REM * SYMBOLS ALL LOADED *

REM * PRINT BQUATES *

DISK OPEN,6,2ES

REM *TITLE *

PRINT #6,STRS(FL)+" ;Z PAGE BOUATES"

REM * PRINT EQUATES NOW *

FOR I=0 TO SN

FL=FL+IN

IN$=STRS (FL)+" HHZZ"+SS$(V(I)}+" = $°+5S$(V(I))

PRINT #6,IN$

PRINT IN$

NEXT I

PRINT 6,"XIT"

PRINT #6,"E"

PRINT #6,"E"

REM * BUFFER 6 REQUIRES A PUT *
DISK RUT

DISK CLOSE,6

PRINT: PRINT

REM * QUTPUT DATA *

PRINT TAB(9) SN+1" SYMBOLS"

NEXT ¥

V(L) =SN:M=L

REM * ADD A CROSS REFERENCE *
SAS(V(M))=SAS(V(M})+" "+A1$

REM * CHECK IF CROSS REFERENCE LINE IS TOO LONG *
IF LEN (SAS{V(M)}) <50 THEN 410
REM * PRINT CROSS REFERENCE LINE *
PRINT #7,SSS(V(M))+" "+SAS(V(M))
PRINT SSS(V(M))+" "+SAS{V(M))
SAS(V(M))=""

GOTO 410

REM *LOOP BACK FROM HERE *

REM * CLOSE SCRATCH FILE *

DISK CLOSE,6 .

REM * PRINT REMAINING CROSS REFERENCE LINES *
FOR 1=0 TO SN

IF SA$(V(1))="" THEN 880

PRINT #7, SS$(V(I))+" "+8AS(V(I))

PRINT SS$(V(1})+" "+SA$(V(I))

NEXT I

PRINT #7,"XI1T"

DISK CLOSE ,7

REM * END OF MAIN PROGRAM *

PRINT: PRINT

PRINT TAB(10)CR$" REFERENCES COMPLETED "

PRINT TAB(10)"SYMBOLS FCUND: "Sh+1

PRINT TAB(10)"REFERENCE FILE: "RF$

PRINT: PRINT: END

REM ** SUBRCUTINES **

REM * BRANCH AND J (T=1} *

IF MIDS(INS,6,1)<>CR$ THEN FL=0: GOTO 1050
0 REM * SIFT OUT BIT INSTRUCTIONS *

PEEK [65] March, 1985

Cont. '

1010 IF MIDS{INS$,6,3)="BIT" THEN FL=0:GOTO 1050 830 U(I+1)=0(T)

1020 REM *LABEL FOR TYPE * 840 NEXT I

1030 M$=MID${INS,7,1) 850 U(L}=2ZN:M=L

1040 FL=1 860 REM ** GET ADDRESSING MODE **

1050 RETURN 870 ASS=" "

1060 REM * MEMORY (T=2) * 880 IF A4$<> "" THEN ASS=RIGHTS(INS,1)

iO;g ﬁ;MIDS(INséG,l) 890 REM ** ADD CROSS REFERENCE TO STRING **
0 =MIDS({INS,13,1) M) }=ZAS(U v

1090 IF M$="J" OR A2$="2" THEN FL=0:GOTO 1140 grfg égxsx()ul(o;()) ASIUIN)+ T4HRSSHALS

1100 REM * SIFT QUT BRANCHES * 920 REM ** ADD SYMBQL **

1110 IF M$="B" AND MID$(IN$,6,3)<>"BIT" THEN FL=0:GOTO 1140 930 SN=SN+1:SS$(SN) =A3$

* *
1120 REM * LABEL TYPE 940 REM ** POINT TO EROPER POSITION IN CRDERING **

T 950 IF L=SN THEN 950
1150 REM * 7 PAGE REFERENCES (T=3) * o o s L
1160 IF MIDS(INS$,13,1)<>CR$ THEN FL=0:GOTO 1210 380 NEXT I
1170 Mg=" = 990 V(L)=SN:M=L
1180 REM ¥ LAREL FOR INDEXING * 1000 REM ** FIND CORRECT CROSS REFERENCE TABLE **
1190 IF LEN(IN$)>16 THEN M$=RIGHTS(INS$,1) 1010 A5S=MIDS(A2$,2,1):20=]
1200 FL=1 1020 IF A5$="B" AND MID$(A2$,2,3)<>"BIT" THEN AD=2
1210 RETURN 1030 IF ASS="J" THEN AO=3
1040 REM ** ADD CROSS REFERENCE TO TABLE **
1050 ON AD GOSUB 2250,2270,2290
1060 REM ** GENERATE LINE FOR SCRAICH FILE **
1070 QUS=ALS+A2$+A3S+A4$
10 REM *** RESCURCE & *** 1080 PRINT #7,C0U$: PRINT QUS
20 REM T.R.BERCGER 2/81 1090 GOTO 260
30 PRINT TAB(10)"RESCURCE-SINGLE PASS™ 1100 REM ** LOOP BACK HERE **
40 REM ** REMOVE OCMMA AND SEMICOLON ** 1110 REM ** CLOSE SCURCE AND SCRATCH FILES **
50 POKE 2972,13:POKE 2976,13 1120 PRINT #7,IN$
60 POKE 8998,00: PCKE 8995,128 1130 DISK CLOSE,6
70 POKE 9000,00:PCKE 9001,140 1140 DISK CLOSE,7
80 POKE 9006,00: PFOKE 9007 ,140 1150 REM ** END FIRST PASS **
90 POKE 9008,00:POKE 9009,152 1160 REM ** PASS 2, WRITE CROSS REFERENCE FILES **
100 INPUT"SQURCE FILE";SF$ 1170 DISK OPEN,7,CF$
110 INPUT"RESCURCE FILE";RF$ 1180 PRINT #7,", CROSS REFERENCES"
120 INPUT"BQUATE FILE";EF$ 1190 PRINT #7,"."
130 INPUT"CROSS R ENCE FI1LE"; CPS 1200 PRINT #7,". 2 PAGE"
140 INPUT"SCRATCH FILE";JFS 1210 PRINT #7,"."
150 INPUT"NUMBER OF SYMBOLS";NS 1220 REM ** DO 7 PAGE REFERENCES **
160 INPUT"NUMBER OF Z PAGE SYMBOLS";NZ 1230 FOR I=0 TO 2N
170 REM **DIMENSION SYMBOL AND POINTER ARRAYS ** 1240 AO$=ZAS(U(I)):2A$(U(1))="":A28=25$(U(1))
180 DIM SSS${NS),SB$(NS),SIS(NS),SMS(NS),V(NS) ,SS(NS) 1250 REM ** BREAK UP LONG LINES,PRINT FILE **
190 DIM 28$(Mz) ,ZAS${NZ} ,U(NZ) 1260 GOSUB 2400
200 REM ** SYMBOL COUNTER ** 1270 NEXT I
210 SN=-1:2ZN=-1:5P$=" " 1280 PRINT #7,".":PRINT #7,"."
220 REM ** FIRST PASS ** 1290 PRINT#7,". JMP & JSR"
230 DISK OPEN,6,SF$ 1300 PRINT §7,"."
240 DISK OPEN,7,JF$ 1310 REM ** DO JMP & JSR REFERENCES **’
250 REM ** LOOP BACK HERE ** 1320 FOR I=0 TO SN
260 INPUT #6,INS 1330 ADS=SI$(V(I)):SI$(V(1))="":A2$=58$(V(I}}
270 IF INS$="XIT" THEN 1120 1340 REM ** BREAK UP LONG LINES,PRINT FILE **
280 IF LEN({INS)}<15 THEN 260 1350 GOSUB 2400
290 REM ** ADJUST SCURCE,PICK UP SYMBCLS ** 1360 PRINT #7,".":PRINT §7,"."
300 REM Al$=XXXX ADDRESS 1370 PRINT #7,". MEMORY":PRINT #7,"."
310 REM A2$=0PCODE + 1380 REM ** DO MEMORY REFERENCES **
320 REM A3$=OPERAND (SYMBOL) 1390 FOR I=0 TO SN
330 REM A4$=ADDRESS MODE 1400 AO$=SMS{V(I)):SMS(V(I))="":A2$=8S$(V(I))
340 REM QUS=ALS+A2$+A3S+A4S 1410 REM ** BREAK UP LONG LINES,PRINT FILE **
350 REM IN$=INPUT FROM OSI DISASSEMBLER 1420 GOSUB 2400
360 A3$="":p45="" 1430 NEXT I
370 REM ** GET ADDRESS ** 1440 PRINT #7;",":PRINT 47,"."
380 AlS=LEFTS(INS,4) 1450 PRINT #7,". BRANCH":PRINT #7,"."
390 REM ** DO ERRORS ** 1460 REM ** DO BRANCH REFERENCES **
400 IF MIDS(INS,13,1)="?" THEN A2$=" .BYTE $"+MIDS(INS,6,2) :GOTOL070 1470 FOR I=0 TO SN
410 REM ** DO REFORMAITING ** 1480 AQS=SBS(V(I)):SBS(V(I))="":A2$=8S$(V(1))
420 REM ** ELIMINATE END SPACES ** 1490 REM ** BREAK UP LONG LINES,FRINT FILE **
430 INS=MID$(INS,12) :L=LEN(INS) 1500 GOSUB 2400
440 IF MIDS$(INS,L,1)=" " THEN L=L~1:GOTO440 1510 NEXT I
450 IN$=LEFT$(INS,L) 1520 PRINT $7,"XIT"
460 REM ** DO IMPLIED, ACCUMULATOR, IMMEDIATE ADDRESSING ** 1530 DISK CLOSE,7
470 IF L<7 OR MID$(INS,6,1)="#" THEN A2$=IN$:GOTO 1070 1540 REM ** END REFERENCE FILES **
480 REM ** ADJUST OPERAND POSITION ** 1550 REM ** GENERATE RESQURCE FILE **
490 IF MIDS{INS,6,1)="S" THEN K=7:A2$=LEFT$(IN$,5)+" HH":GOTO 520 1560 DISK OPEN,6,JF$
500 K=8:A2$=LEFTS(INS,6)+"HH" 1570 DISK OPEN,7,RF$
510 REM ** 7 PAGE CHECK ** . 1580 REM ** LINE NUMBER AND INCREMENT *+
520 M=K+2 1590 CL=10000:IN=10
530 REM ** DO Z PACE OPERANDS ** 1600 REM ** LOOP BACK HERE **
540 IF M>L THEN A3$=RIGHTS(INS,2):A2$=A2$+"22":GOTO 690 1610 INFUT #6,INS
550 IF MIDS{INS,M,1)>"/" THEN 580 1620 IF IN$="XIT" THEN 1780
560 A3$=MID$(INS, K,2) :A2$=A25+"22" :Ad$S=MIDS (INS,M) :GOTO 690 1630 REM ** GET ADDRESS LINE **
570 REM ** TWO BYTE OPERAND CHECK ** 1640 A3S=LEFTS(INS,4)
580 M=K+4 1650 REM ** SEARCH FOR SYMBOL **
590 REM ** DO TWO BYTE OPERANDS ** 1660 GOSUB 2310
600 IF M>L TREN A3$=RIGHTS(INS,4):GOTO 630 1670 REM ** SYMBCL FOUND,MARK IT,ENTER LABEL **
610 A3S=MIDS(INS,K,4) :A4S=MIDS (INS, M) : 1680 IF L<=R THEN SS(M)=1:0U$="HH"+IN$:GOTO 1720
620 REM ** SEARCH FOR SYMBOL ** 1690 REM ** SYMBCL NOT FOUND,DELETE ADDRESS **
630 GOSUB 2310 1700 QU$=SP$+MIDS(INS,5)
640 REM ** SYMBQGL NOT FOUND, INSERT IT ** 1710 REM ** ADD LINE NUMBER AND CUTBUT **
650 IF L>R THEN 930 . 1720 QUS=STR$(CL)+" "+QUS
660 REM ** SYMBAL FOUND,ADD CROSS REFERENCE ** 1730 CL=CL+IN
670 GOTO 1010 ' 1740 PRINT #7,QU$:PRINT QUS
680 REM ** SEARCH FOR I PAGE REFERENCE ** 1750 GOTO 1610
690 L~=0:R=ZN 1760 REM ** LOOP BACK FROM HERE **
700 REM ** SYMBOL NOT FQUND, INSERT IT ** 1770 REM ** CLOSE SCRATCH. AND RESCURCE FILES **
710 IF L>R THEN 790 1780 PRINT 47,INS$
720 gA7? 1790 DISK CLOSE,6
730 M=INT({(L+R)/2) 1800 DISK CLOSE,7
740 REM ** SYMBOL FOUND,ADD CROSS REFERENCE ** 1810 REM ** RESCURCE FILE DONE **
750 IF A3$=25$(U(M)) THEN 870 1820 REM ** DO HQUATE FILES **
760 IF A3$>ZS$(U(M)) THEN L=M+1:GOTO 710 1830 DISK OPEN,7,EF$
770 Re=M-1:GOTO 710 . . 1840 REM ** LINE NUMBER **
780 REM ** ALD SYMBOL ** 1850 CL=1000
790 ZN=21:25$(IN)=A3$ 1860 PRINT #7,STRS(CL)+" ;EQUATE FILE"
800 REM ** FQINT 10 PROPER POSITION IN ORDERING ** 1870 CL=CL+IN:PRINT #7,STR$(CL)+" ;"
810 IF L=ZN THEN 850 1880 CL=CL+IN:PRINT #7,STR$(CL)+" ;% PAGE"
820 FOR I=ZN~-1 TO L STEP-1 1890 CL=CL+IN:PRINT $7,STR${CL)+" ;"

Continued

10 PEEK [65] March, 1985 ’

1900 REM ** DO 2 PAGE HQUATES **
1910 FOR I=0 TO.ZN
1920 CL=CL+IN

1930 PRINT #7,STR$(CL)" HHZZ"2SS(U(1))"=$"ZS$(U(1))
1940 PRINT STR$(CL)™ HHZZ"ZS$(U(I))" = $"2S$(U(D))

1950 NEXT I

1960 CL=CL+IN

1970 PRINT 47,STR${CL}+" ;"

1980 CL=CL+IN:PRINT #7,STRS(CL)+" ;"

1990 CL=CL+IN:PRINT $7,STR$(CL)+" ;ITWO BYTE"
2000 CL=CL+IN:PRINT #7,STRS(CL}+" ;"

2010 REM ** DO TWO BYTE EQUATES **

2020 FOR I=0 TO SN

2030 IF SS(I)=l THEN 2070

2040 CL=CL+IN

2050 PRINT #7,STRS(CL}™ HH"SSS$(V{I))}"=$"SS$(V(I))
2060 PRINT STRS${CL}"™ HU"SSS(V(I))" = $"SS${V(I1)}
2070 NEXT I

2080 PRINT #7,"XIT

2090 PRINT #7,"E":PRINT #7,"E"

2100 DISK CLOSE,7

2110 REM ** END OF BQUATES **

2120 REM ** FINAL DATA **

2130 PRINT:PRINT TAB(10)"RESCURCE COMPLETE"
2140 PRINT TAB(7)SN+1" SYMBCLS"

2150 PRINT TAB(7)ZN+1" Z PAGE LOCATIONS"

2160 PRINT TAB(8)"SCURCE FILE: " ;5F$
2170 PRINT TAB(8) "SCRATCH FILE " JF$

*

BEGINNER'S CORNER

By: L. 2. Jankowski
Otaio Rd 1 Timaru
New Zealand

PROBLEM SOLVING
PAIN AND PLEASURE

Writing programs is enjoyable.
The reason no doubt is because
programming is very much about
solving problems. The whole
process is highly creative,
demanding much mental effort.
But if there is too much ef-
fort the task ceases to be
pleasurable and becomes a

chore. And that would never
do!
When writing programs, reduc-

tion of effort is certain if a
few simple techniques of
problem solving are employed.

Applying them to a problem
will provide a much better
description of it. The - more

detailed the description, the
better the problem is under-
stood.

Rather than begin coding im-
mediately, it's a good idea to
first go through a few pre-
liminaries, and then make a
plan. Once the plan is fully
formed, it can be coded. The
text that follows illustrates
a way of doing this.

THE PROBLEM

The problem is: write a
gram that will produce a
of the names of the
Examples of program output
would be: a 1list of names
beginning with January and
ending with December, or a
list beginning with April,
going on through December, and
ending with March. In fact,
the program should be capable

pro-
list
months.

2180 PRINT TAB(8)"EQUATE FILE: ";EFS
2190 PRINT TAB(8) "RESQURCE FILE: ";RF$
2200 PRINT TAB(8)"CROSS REF. FILE .";CF$

2210 PRINT:PRINT:END

2220 REM ** END OF PROGRAM **

2230 REM ** SUBRCUTINES **

2240 REM ** MEMORY CROSS REFERENCES **

2250 SMS(V(M))=8MS(V(M))+" "+ASS+ALS:RETURN

2260 REN ** BRANCH CROSS REFERENCES **

2270 SB$(V(M))=SBS(V(M))+" "+MID$(A2%,3,1) +Al$:RETURN
2280 REM ** JMP & JSR CROSS REFEKRENCES **

2290 SIS(V(M))=SIS(V(M))+" "+MID$(A2$,3,1) +AL$: RETURN
2300 REM ** SEARCH FOR SYMBOL **

2310 L=0:R=5N

2320 REM ** SYMBOL NOT FOUND **
2330 IF L>R THEN RETURN

2340 M=INT((L+R)/2)

2350 REM ** SYMBOL FCUND **
2360 IF A3$=SSS$(V(M)) THEN RETURN
2370 IF A3$>SS$(V(M)) THEN L=M+1:GOTO 2330

2380 R=M-1:GOTO 2330

2390 REM ** BREAK UP LONG LINES,PRINT CROSS REFERENCE FILE **

2400 L=LEN(A0S)

2410 IF =0 THEN RETURN

2420 IF L<49 THEN Al$=A0S:R0$="":GOTO 2440
2430 Al$=LEFTS(A0$,48) :A0$=MIDS (A0S, 49)
2440 PRINT #7,A2$8" “A1$:PRINT A2%" "AlS

2450 GOTO 2400

*

of printing a 1list with any
number of month names in it,
up to a maximum of 12.

Another example of output is:

October
November
December
January
February

Having identified and under-
stood the problem, the ques-
tion that follows is: "Is this
a useful problem to solve?"
Well, yes it dis. The solution
is useful in a budgeting pro-
gram that produces reports
based on financial data. Each
monthly report looks back on
the previous 12 months or a

projection could be made to
look forward to the year
ahead. Examine the example

(fictitious!) at the end of
this text.

THE TOOLBOX

The next step is to assemble a
TOOLBOX of information that
will help solve the problem.

TOOLBOX

1. The 12 names of the month
are and they will be
reduced to three «characters,
e.g., Jan.

2. In BASIC, 1lists are best

stored in arrays.

3. FOR.,.NEXT loops are a good
way to printing lists.

4, Use INPUT to
month numbers.

request the

5. IF...THEN can be useful.

At this point it is tempting
to begin coding at once, but
there are a few more questions

that could be asked.

MORE QUESTIONS

"What type of problem is it,
and can it be solved?" Some
problems cannot be solved on a
computer. For example, -
"Computer! Solve the Balance
of Payments Problem!" Other
problems would take too 1long
to solve. For example, -
produce a list of all possible
16 character names and print

them. Some millions of years
would pass before the task
would be finished. The prob-

lem at hand deals with 1lists
and it can be solved.

"What is the connection be~
tween the problem and the in-
formation in the TOOLBOX?" As
far as one can tell none of
the information is redundant,
but useful information could
be missing.

0SI/ISOTRON

MICRO COMPUTER SYSTEM SERVICE

*C2 AND C3 SERIES
*200 AND 300 SERIES
*FLOPPY DISK DRIVES
*HARD DISK DRIVES

CD 7/23/36/74
*TERMINALS, PRINTERS, MODEMS
*BOARD SWAPS
*CUSTOM CONFIGURATIONS
*CUSTOM CABLES
*SERVICE CONTRACTS

PHONE (616) 451-3778

COMPUTERLAB, INC.
307 MICHIGAN ST. N.E.

GRAND RAPIDS, MI. 49503

PEEK [65] March, 1985 11

The wmonth names are to be
stored in a list (a one-
dimension array). How can
this be done? The names could
be typed in like this:
MS$(1l)="Jan",M$(2)="Feb"....how
tedious. Why not 1let the
computer do the work and read
the names in from DATA
statements? So add: "and held
in DATA statements" to point 1
in the TOOLBOX. It is now
time to make a formal plan.

THE PLAN

The plan need not be
as formal as a diagram. The
structure diagram shown here
is merely one example of a
plan. What is required is
that the programmer be clear
on the sequence of actiéons to
be followed when writing the
program.

anything

The program would naturally
begin by clearing the screen
and printing a title, if any.
Next, the number of months and
the array would be declared:
M=12 and DIM MS$S(M). Month
names are placed in DATA
statements. For reasons of
space this box has been omit-
ted from the diagram.

The rest of the program di-
vides out into four blocks, as
shown by the first row of ' the
structure diagram. Subsequent
rows of the diagram reveal how
the problem can be broken up
into smaller units. (Read the
diagram from left to.jright,
and down from any particular
box in any particular. row).
It is evident that if
procedure is followed correct-

ly then the plan will be
complete. Coding is teducép
to merely ‘'copying' the plan

into BASIC,
THE SOLUTION

Even the simplest of programs
can pose a challenge when it
comes to the idea that will
produce the required output.
Producing a 1list from. any
month to December is easy.
That problem can be solved
using a simple FOR...NEXT
loop.)

But what if the list required
is from October to February?
The answer lies in a statement
made earlier when the problem
was identified - see paragraph
four. The 1list would begin
with 'April' and go through
'December' to ‘'March'. The
list is in fact two lists.
The first is from ‘'April' to
'December' and the second is
from 'January' to 'April'.
What is \more significant is
that the. first 1list . always
ends with month twelve, and

12 PEEK [65] March, 1985

this .

(HUDGET PROGRAM. dated 01/01/83
bApr s sMeys sJduny sJdula sAuge pBepn tOct: aMove sDect 1dany sFeby o Mary

O Life In 50,00 30,00 50,00 30,00 50.00 50.00 30,00 30,00 30,00 50,00 30,00 50,00 # 600,00
02 House | 381,23 . 381,23
03 Car Ins $9.99 . 93,99
04 all Ris 2311 ® 2811
05 Health 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30,00 30.00 3000 30,00 = 340,00
Ot Other } 45.22 . 45,22
o S 90.00 90.00 90.00 90.00 . 340.00
08 Doctor 1,30 12,50
09 Dentist .00 . 95.00
10 Car a'c 9,06 20,21 71 %642 120,23 .75 585.48
{1 Loc Tax 100.00 100.00 100,00 100.00 100,00 (00.00 100,00 100,00 100,00 100.00 100.00 100.00 = 1200,00
12 Phone S6.61 H"au 5.1 120,99 40.22 70,84 . 378.40
13w 40.00 = 60.00
4 Suds ’ 85.00 .5 .9 .90 0 236,33
19 Elactei 122,33 3.9 93.00 76,34 = 319,60
16 Mauspap 58,11 5781 s 11892
17 vat 20.00 . 20.00
10 Alisony 500,00 500.00 500,00 300,00 $00.00 300.00 300,00 500,00 500,00 500,00 300,00 500,00 » 800000
19 A8 . 0.00 .
20 OTHER 69.00 12,00 » 81.00
Exp. of 205,93 938.33 9la.44 BI9.16 1020,32 926.83 936,51 737.81 963,13 735,00 9EL.07 839.49 % 11143.06
ncoas = 2000.00 2000.00 2000.00 2000.00 2000.00 2000,00 2000.00 2000,00 2000.00 2000.00 2000.00 2000.00 = 24000.00
Bal. s¢ 734,05 1041.67 1083.55 11B0,84 979,68 1070.37 1061.49 1282.19 1036.65 1243.00 1040.93 1140.51 = 12036, 14

MONTHS PRODLEM.,

(INFUT ?

(Cerror 7) Couteur) _

REFEAT: [t L 1F
For C=1 First Last F<L
to M manth month OR L<1

ME(C) e
Month
names

REPEAT:
Far C=F
to L

REPEAT:
FOR C=F
to 12

REFEAT:
FOR C=1l
to L

I 1

that the second 1list
begins with month one.

always

The simpler problem stated
initially revealed that a
FOR...NEXT loop could be used
to produce a list. So use two
FOR...NEXT 1loops to produce
the list in the more complex
example - see part two of the
diagram, labeled 'A'.

The structure diagram, the
plan of the solution, - clearly
states what the required code
will be. Can you write the
program? Use a FOR...NEXT
loop when coding a REPEAT' box
and IF....THEN for the CHOICE

box. Solution next month plus
an improved algorithm for
OUTPUT.

*

PRINT FRINT
M$<C) M$(C)

X X X XX XXX XXX XXX
DATA PROCESSING
KEY ENTRY
DATA CONVERSION

KM X KM XXMM RKXXKKHNNNKXMNKNNMNXNKX

9 - Track
PC Data 0S1
Mini/Mainframe

New | Used

&
MORE

OSI - Corona
Nec - Okidata

Accounting & Business

Systems

612-252-5007

X X X X XX XXXXXZXXX

» * FEEEE I A I A A A

COLOR PLUS REVISITED

By: Earl Morris
3280 Washington
Midland, MI 46848

The December 1984 issue of
PEEK (65) included a review of
Generic's Color Plus board
written by Bob Baldassano. I

must agree with Bob that this
board makes a very nice ad-
dition to an 0OSI system. I

wanted to add a few technical
details about this hi-res
graphics board.

Previous versions of the soft-
ware would add graphics com-
mands to 65D 3.2 or 3.3. A
new version is now available
to add these same commands to
08-65U. Thus the Color-Plus
board can be used with any of
these operating systems.

Texas
con-

The Color Plus uses the

Instruments TMS9918A CRT
troller chip. The board comes
in two versions: One using
2118 five volt memory, and the
other using 4116 memory which
requires plus and minus 5
volts and plus 12 volts. The
substantial price difference
for the five volt chip is the
cause of the §$58 difference
between the two versions of
the finished board. Apple
compatible joysticks are re-
quired. For non-Apple owners,
this means joysticks with 150
K ohm pots. One of the sev-
eral brands of Apple compat-
ible bit pads should also work
here.

The object code for the
graphics patches are included
on the demo disk. For the

real hackers, the source code
for the entire graphics pack-
age is available on a second
disk at extra cost. The

source code is reasonably com-
mented, but requires 32 pages

to print out. The new BASIC
graphics commands are well
documented in the instruction

However, the 'MOVIES'
program creates pictures by
calling a data table from
machine code. No instructions
are included on how to create
your own pictures using this
program. If you are a Machine
language programmer, this is
easily figured out from the
'MOVASM' source code on the
DEMO disk.

manual.

My biggest complaint about the
Color Plus is that the address
is set to $C968 and, short of
cutting foils, cannot be al-
tered. I happen to use $C800
to $DOBP to hide an extra 4K
of RAM. ' If you purchased the
source code, the plot routines
can be reassembled for a
different board location by
changing one line of code.

s

After all these .words about
this graphics board, I thought
the readers of PEEK might want

to see what it all looks like.
Thus several photographs are
shown here of the output from

PEEK [65] March, 1985 13

the MOVIES demo program. The
actual output is, of course,
not in B&W but in color. The
output can be displayed on a
B&W monitor in shades of gray.
But after seeing the colors,
you had better be prepared to
dig into your pocket and spend
the additional $$$$ for a
color monitor. It is diffi-
cult to show sprites on a
still photograph, but the two
photo sequence attempts to
demonstrate the solid color
block sliding between the two
shaded blocks. Sprites don't
have to be just blocks, but
any shape describable in an 8
by 8 or 16 by 16 grid.

*

WAZZAT CORNER!

By: L. Z. Jankowski
Otaio Rd. 1 Timaru
New Zealand

Accounting and budgeting pro-

grams provide comprehensive
reports quickly " and easily.
But before that can happen,

some unfortunate soul has to
type in all those money
amounts! It would be great if
that decimal point did not
have to be typed EVERY time
.and if the computer somehow
knew that the number was "in"

and did not wait for the
"Carriage Return", And what
does the program do with

"g23.85", when it should have
been "123.85"? The program
listed here (for DOS 3.3)
solves all these problems.

The program only accepts the
numbers @ to 9, backspace {(for

deletions), and the '-' sign
if it occurs at the start of
the number. As it .stands, the
program has been designed

mainly to demonstrate that the
idea works. It can be adapted
to not only provide extended
input for money amounts, but
to also echo the numbers as
-they are typed in, and provide
full editing of amounts via
back and forward scrolling
through all the entries that
have been made. :

If more than four digits are
required before the decimal
point, change "US$" in line 48.
Merely add more "#"s - the

program takes care of every-
thing else.
Line 120 may be puzzling.: A

program such as this one needs
speed if it is to be useful.
So the Boolean Algebra state-
ments in line 120 are used to
replace three lines of BASIC
IF...THEN statements. They
would be as follows: ’

14 PEEK [65] March, 1985

N

tistic,

1v PRINT ' (28): REM Extended Input for Numbers by LIJ

J0 DIM N(99): M=45: 21=47: Vv=358: B=90: L$=CHR$(B): R$=CHR$(14)
40 R=905%: US="H##88.98": L=LEN(US)
SO L2s=Le+"#"+L.$2 FOR C=1 10 L3 Lis=L1siL %1 NEXT

70 Ds="

90 PRINT

110 DISK !"GO 233&": Y=PEEKI(R):

“: PRINT "Type nuaber
80 FOR C=1 70 L-1: GOSUB 110:

Y US Lis;
NEXT C: N{X)=VAL (D$)/100
PRINT USING(US) TAB(30) N(X): X=X+l: GOTO 70

Y$=CHR$ (Y): IF Y=127 THEN Y=B

120 ON(((Y=M AND C=1) OR (Y>Z AND Y<V))+(¥Y=B AND C>1)%2) %- 16070 150,170

150 GUIO t1v

150 D$=D$4YH: PRINT Y$;: IF C=L-3 THEN PRINT R$;

160 RETUIRN
170 IF €=L-2 VHEN FRINT L$;
180 D$=LEFT3(D$,LEN(D®)- 1)
190 Cc=C -2: IF C<1 1THEN C=0
200 KETURN

120 IF Y=M AND C=1 THEN 150
125 IF Y>Z AND Y<V THEN 150
128 IF Y=B AND C>1 THEN 178

If any statement is evaluated
as true, BASIC "thinks" -1.
This value of -1 |is then
multiplied to provide the
correct value for the "ON"
branch ~ see end of line 124.

The statement in 1line 128
checks for the minus sign and
whether this is the first
character typed. If it is,
then the branch to line 150 is
taken. If the answer is "no"
then the program falls through
to line 13@8. Line 125 checks

*

A CONVENIENT REGRESSION
PROGRAM

By: Richard H. Puckett
786 Clarmar St.
Johnson City, TN 37661

For an Ohio Scientific, ade-
quate statistical software is
hard to find. Unfortunately,
programs for least squares
multiple regression, one of
the most popular and useful
statistical tools, are no ex-
ception.

Some generic programs are
available. (See, for example,
Lon Poole and Mary Borchers,
Some Common BASIC Programs,
3rd ed. Berkeley, CA, Osborne/
McGraw-Hill, 1979; and F. R.
Ruckdeschel, BASIC Scientific
Subroutines, Peterborough, NH,

Byte/McGraw-Hill, 1981. Vol.
2.)
But these and most other pro-

grams have severe limitations.
A few don't compute "t" or "F"
statistics. Almost all don't
calculate a Durbin-Watson sta-
necessary for time
series analysis. Nor do they
perform data transformations
to eliminate serial correla-
tion. Moreover, the

place significant constraints

programs

I¥ C>1 THEN PRINT L2%;

that the character typed is in
the range 1 through 9 to #.
Line 128 1looks for a back-
space and not the first char-
acter. It is not possible to

backspace off the first char-
acter!
Notice that "D$" is initial-

ized to a blank.
works it does not matter if
the leading character is a
blank. If D§$ is at least one
character in length then a
null check of D$ is not re-
quired before line 188. D$
always enters line 180 with a
length of at least two.

The way VAL

Well that's it!

*

on the number of variables and
observations you can use.
Also, data can't be read from
files, so data available in
other programs or files have
to be re-keyed. Data trans-
formation ~- for example, tak-
ing logarithms or first dif-
ference -- may also require
data to be re-entered.

By contrast, the program list-
ed below, designed to run on
an Ohio Scientific (C8-PDF,
0SU), is relatively flexible
and complete. It calculates:

R squared,

R squared adjusted for degrees
of freedom,

the "F" value for the
sion,

regres-

the standard error for the de-
pendent variable, :

the "t" values for the regres-
sion coefficients,

the Durbin-Watson
and

statistic,

rho hat (the estimated regres-
sion coefficient for succes-
sive regression residuals).

~

THE DATA SYSTEM

Stored Report Formats e User Designed Entry/Edit Screens
Stored Jobs, Formats, Caics. Powerful Editor

Multiple Condition Reports Merges - Append, Overlay, Match
Multiple File Reports e Posting - Batch Input

Calc. Rules Massage Data Nested Sorts - 6 Deep

Up to 100 Fields Per Record Abundant Utilities

HARDWARE REQUIREMENTS: 48K OSI, Hard Disk, serial PRICE: $650.00 (User Manual $35.00, credited towards TDS
system, OS-65U 1.42 or Later; Space required: 1.3 megabytes purchase). Michigan residents add 4% sales tax. 30 day free
for programs and data. trial, if not satisfied, full refund upon return.

TIME & TASK PLANNER

30 DAY FREE TRIAL — IF NOT SATISFIED, FULL REFUND UPON RETURN

e “Daily Appointment Schedule” e Work Sheets for all Aspects
e “Future Planning List” - sorted- e Year & Month Printed Calendar

® “To Do List” - by rank or date e Transfers to Daily Schedule
: A SIMPLE BUT POWERFUL TOOL FOR SUCCESS
HARDWARE: 48K OSlI, 8” floppy or hard disk, serial terminal PRICE; $300.00 (User Manual, $25.00, credited toward TTP

system, 0S-65U v. 1.3 or later. purchase). Michigan residents add 4% sales tax.
e Loan/Annuity Analysis e Sinking Fund Analysis
e Annuity ‘Due’ Analysis e Amortization Schedules

e Present/Future Value Analysis e |nterest Conversions

HARDWARE REQUIREMENTS:; 48K OSl, 8" floppy or hard PRICE: $300.00 (User Manual, $25.00, credited toward
disk, serial terminal system, OS-65U v. 1.2 or later. Pianner purchase). Michigan residents add 4% sales tax.

DEALERS: Your Inquiries Most Welcome

GANDER SOFTWARE, Ltd. FROM THE FOLKS WHO BROUGHT YOU:

223 Road All This
3223 Bross floa ‘ THERE IS MORE COMING SOON:
Hastings. MI 49058 Program Generator for TDS)
(616) 945-2821 “It Flies™ Proposal Planner
- Time and Billing A/R

PEEK [65] March, 1985

15

The program will also:

transformations
when creating the file.

may be

made
The

handle any number of obser- data need to be read, observa-
vations up to the 1limit of tion by observation: that is,
your disk file, observation 1 -- variable 1,
variable 2, ..., variable Kk;
take at least 20 explanatory observation 2 -- variable 1,
variables on a 48K machine, variable 2, ..., variable k;
and so on., No other infor-
allow data transformations mation about the program is
without re-keying the data, required. It is self-prompt-
ing.
allow special labeling of var-
iables for output, and With a hard disk, run times
for 160 observations and 10
perform Cochrane-Orcutt trans- explanatory variables are
formations of the regression about 6 minutes. Twenty ex-
to eliminate first order ser- planatory variables and 200
ial correlation. observations take close to 29
minutes; 20 explanatory vari-
The program presupposes data ables and 588 observations

are read as

from

string variables
an input file. Data

take about an hour.

18 REM..'tlﬁ"'...'.'i""ttltlltﬁREG'.l’t"'.'ttli'l'i‘.'l..ii..i'.lt'.

11 REM
12 REM
14 REM
16 REM
17 REM
18 REM
2@ REM
22 REM
24 REM
26 REN
28 REM
30 REM
32 RENM
34 REM
36 REM
38 REM
40 REM
42 REM
44 REM

108 REM

200 GOSUS 10808 :REM
210 GCOSUB 2000:REM
=1:REH
230 GOSUB 300@0:REM
240 GOSUB 6000:REM
250 CR=P:REM
260 GOSUB 3808 :REM
278 GOSUB 7000:REM

220 CR

MULTIPLE REGRESSION PROGRAM
RICHARD H. PUCKETT
12/28/84

THE PROGRAM WILL TAKE AT LEAST 20 EXPLANATORY VARIABLES,
WITH THE NUMBER OF OBSERVATIOHNS LIMITED ONLY BY THE CAPACITY
OF THE DISK FILE USED BY THE PROGRAM AS AN INPUT DEVICE. THE
PROGRAM PRESUPPOSES DATA ARE READ FROM A DISK FILE OBSERVATION
BY OBSERVATION -- OBSERVATION 1, VARIABLE 1, ..., VARIABLE K;
OBSERVATION 2, VARIABLE 1, ..., VARIABLE K; AND SO ON. THE
NAME OF THE FILE MAY BE ANY LEGAL FILE NAME,

OUTPUT INCLUDES R SQUARED, R SQUARED ADJUSTED FOR DEGREES OF
FREEDOM, THE STANDARD ERROR OF ESTIMATE FOR THE REGRESSION, "T*
STATISTICS, THE "P" STATISTIC, THE DURBIN-WATSON STATISTIC,

AND RHO HAT FOR THE REGRESSION RESIDUALS. THE PROGRAM WILL COM-
PUTE A COCHRANE~ORCUTT TRANSFORMATION TO ELIMINATE SERIAL CORRE-
LATION.

MAIN
TO SET UP DATA FILE
TO SET UP REGRESSION
FLAG TO COMPUTE CROSS PRODULCTS
TO INPUT ROUTINE
TO COMPUTE COEFFICIENTS
FLAG TO ACCUMULATE DATA FOR TEST STATISTICS
TO INPUT ROUTINE
TO OUTPUT TEST STATISTICS

288 PRINT : INPUT *COCHRANE-ORCUTT TRANSFORMATION? (Y/N) ®;ANS

290 IF
380 IF
318 IF

ANS < > ®"Y" AND ANS < > "N" THEN 280: REM TO TRY AGAIN
AN$="Y" THEN GOSUB 8808:REM TO INITIALI2E FOR COCHRANE-QRCUTT
ANS="Y" THEN 220:REM TO RESTART FOR COCHRANE-ORCUTT

326 PRINT : INPUT “ANOTHER REGRESSION? (Y/N) ®;ANS$

330 IF
340 IF
350 IF

ANS < > “Y" AND AN$ < > ®N" THEN 320: REM TO TRY AGAIN
ANS="Y® THEN GOSUB B8588:REM TO INITIALIZE FOR ANOTHER REGRESSION
ANS="Y" THEN 218: REM TO SET UP REGRESSION

360 END
999 Rgnttttttttt-tttttttn.tttttt-ttntttt-tttttttﬁtlt-ttttﬁtttttntt'ttiﬁ

1800 REM
1010 PRINT

SET UP DATA FILE
INPUT “"NAME OF DATA FILE";NF$

1020 PRINT ; INPUT "# OF OBSERVATIONS IN DATA FILE";NO

1830 PRINT
1048 ML = 4: REM

INPUT “$# OF VARTABLES IN FILE";NV
MAX § OF OBSERVATIONS STORED IN IMMEDIATE MEMORY

1050 DIM A(NV) ,CX(NV,2*NV} ,CY (NV))

1060 DIM LV(NV) ,SC(NV) ,VNS(NV) ,X (ML,NV),Y (ML)

1070 PRINT : PRINT "NAMES OF VARIABLES IN FILE?":PRINT
1080 FOR I=1 TO NV:INPUT VNS(I):NEXT

1100 RETURN
1909 REMF OIS NS E s hd S h A RN RN NS AN SRR AR RN R R SRR P IR RN TR AR RN N RN RNk

2008 REM

SET UP REGRESSION

2010 PRINT : PRINT : PRINT "¢ OF FIRST OBSERVATION USED IN REGRESSION (E.G., 1 OR"

2820 PRINT ®5.)

(IGNORE OBS USED IN LAGS OR 1ST DIFF.)"

2p30 INPUT NP
2040 PRINT : INPUT ®# OF LAST ODSERVATION USED IN REGRESSION®;NL

2050 NL=NL-NF+l: REM

¢ OF OBS IN REGRESSION

2060 PRINT:PRINT®# OF REGRESSION COEFFICIENTS TO BE ESTIMATED, INCLUDING®
2065 INPUT “CONSTANT®;K

2078 PRINT : INPUT "4 OF DEPENDENT VARIABLE";LV(®)

2080 PRINT : PRINT "4 OF EACH EXPLANATORY VARIABLB IN REGRESSION?® : PRINT
2490 FOR I=2 TO X : INPUT LV(I) : NEXT

2100 RETURN
L LI R R R P a2 22

3000 REM

INPUT ROUTINE

31108 OPEN NF$,1
3200 IF NF=1 THEN 3400: REM TO READ CURRENT DATA

3210 REM

ELSE READ DACK DATA "

3228 FOR I=1 TO NF-1

3230 II=I-(NF-ML)

3240 REM GET ALL DATA FOR OBSERVATION

3250 FOR J=1 TO HV: INPUT%1l, AS: SC(J) = VAL(AS): NEXT
3260 IF II <= O THEN 3320: REM TO END I LOOP

3270 REM ELSE UNSCRAMBLE DATA IN REGRESSION

32808 TP=LV(6): REM LOCATION OF Y

3290 Y(II) = SC(TP)

3306 X(11,1)=1: REM DUMMY FOR CONSTANT

16

PEEK [65] March, 1985

WP 6582 V1.2

By: John Whitehead
17 Frudal Crescent
Knoxfield 3180
Australia

John explains and fixes a
number of shortcomings of WP
6502, cassette version, many
of which are directly or in-
directly applicable to disk
versions.

I have a cassette based Super-
board II with 24 x 24 and 48 x
12 screen, 32K of RAM (mainly
6116LP3) and 28K of EPROM on a
Tasker Bus System.

I have an Australian 2K moni-
tor (DABUG 3J) that contains
the 48 x 12 screen driver,
single key BASIC and correctly
decoded keyboard. I modify
all text type programs to work
in 48 x 12,

I have 3 8K EPROMS
BASIC utilities,

Assembler. These are paged
all at $8000 and run there.
They are not down loaded, with

containing
WP6502 and

the exception of small sec-
tions of self modifying code
between $8222 and $@2FF and
use workspace from $8308 to
the end of RAM.

Over the past year I have

noted alterations I wanted to
make to WP6502. As my EXMON
disassembled listing of WP was
a bit tatty, I decided to make
an Assembler Source Code list-
ing of it. This was per-
formed by using a Symbolic
Disassembler which converts M/

CODE into an Assembler Source
and puts it out on tape. This
tape is then fed into the

The lines contain-
then tidied up

Assembler.
ing data are

and .comments added. The
Disassembler 1is written in
BASIC and was converted to

Symbolic by myself.

Now, after two months, I have
a 32 page Source listing of my
DABUG compatible 48 x 12 EPROM
version of WP 6502 V1.2, It
contains comments on the M/
CODE functions that I have
found, and mods that I have
made. Sub-routines are listed
where the calls come from, if
there are less than six calls.

When I made my EPROM version
of WP, I put the main core in
the same place as it was in
the tape version with just the
individual Bytes changed where
needed. Code that was at
$0222 to SOFEF was relocated
to $8222 to S8FEF which makes
the 1listing compatible with
both versions. Also, when I
modified the code, I did not
re-assemble it; just patched

SUPER
R\ RDISK SUbsSYSECEREDY

TURNS ANY FLOPPY BASED COMPUTER INTO HARD DISK BASED, INSTANTLY.

e PLUGS INTO ANY 0S1 TYPE BUS

¢ ONE RIBBON CABLE CONNECTS
TO DRIVE

e COMPLETELY SELF CONTAINED

¢ 32 BIT ERROR DETECTION AND
CORRECTION

¢ HAS REAL TIME CLOCK
*CALENDAR W/BATTERY ON SCSI

ADAPTER BOARD

e CAN BOOT DIRECTLY FROM 0SI
505/510 CPUs OR DENVER BOARDS
W/SCS!| PROM

 |DEAL BACK-UP FOR ALL 0SI HARD
DISK COMPUTERS

raom $1 ,999

The SPACE-COM SUPER SUBSYSTEM Uses 5% "’ Industry Standard Hard Disk drives interfaced to
the 0S| bus by the DS-1 SCSI Host Adapter Board at the computer end and the state of the art OMTI
5000 series Intelligent Disk/Tape Controllers at the disk end. The Denver DS-1 Board not only pro-
vides the Bus Translation, but gives Real Time of Day, Day/Week, AM/PM, and Day/Mo. With on
board battery, Date and Time are maintained w/o0 power.

The chassis is beautifully engineered with
lighted on/off switch, standard a/c cord, and
insulated spade terminals for easy service. A
Corcom Emi Filter is incorporated in the a/c
jack, and power is provided by an extremely
efficient switching power supply. The case is
also available in dual, side by side configura-
tion and looks like an IBM PC box. It incor-
porates a larger power supply and can support
2 Winchester drives, or 1 drive and tape, or 2
5 floppies in place of one of the above.

Drives can be accessed from any single or
multi-user 081 system by running an overlay
program on that partition, or can be booted
directly by replacing current ROM/PROM with
our SC1 500 PROM, available for $49.00 extra.

Single 20 M/B drive (15.7 formatted) singlecase $1,999.00
Single 26 M/B drive (21 formatted) singlecase $2,199.00
Dual 20 M/B drives (31.4 formatted)dualcase $2,999.00
Dual 26 M/B drives (42 formatted)dualcase $3,299.00
Super Fast 85 M/B drive (70 formatted) single case$3,999.00
Dual 85 M/B drives (140 formatted)dualcase $6,699.00

SPACE-COM International

22991 La Cadena Drive, Laguna Hills, CA 92653 (714) 951-4648

PEEK [65] March, 1985 17

3310
3328
3400
3410
3420
3438
3440
3450
3460
3480
3500
3s1e
3520
3538
3540
3608
3618
3620
3630
3640
3650
3708
3710
3800

4999
5600
5620
5038
5040

5050

5068

51e0

5499
5500

5510

5520

5530

5540

5550

5560

55706
5580
5598
5600

5610

5620

5630

5640
5658

5660
57¢0
5999
6000
6010
6820
6030
6040
6058
6060
6078
6080
6090
6100
6110
6199
6200
6210
6220
6230
6240
6250
6260
6270
6286
6290
6300
6400
6410
6420
6440
6500
6510
6520
6530
6540
6550
6560
6578
6600
6610
6628
6630
6640
6658
6660
6670
6680
6690
6700
6710
6720
6800
6999
7000
7020
7188
7105

18

FOR J= 2 TO K: TP=LV(J): X(II,J)=SC(TP)}: NEXT

NEXT I
REM READ CURRENT DATA
FOR I=NF TO NL

REM GET ALL DATA FOR OBSERVATION

FOR J = 1 TO NV: INPUT®1, A$: SC(J) = VAL(AS): NEXT

REM UNSCRAMBLE DATA IN REGRESSION

TP=LV(B): Y(ML} = SC(TP): X(ML,1) = 1: REM DUMMY FOR COHSTANT
FOR J = 2 TO K: TP = LV(J): X(ML,J) = SC(TP): NEXT

REM COCHRANE~-ORCUTT TRANSFORMATION

IF RH = @ THEN 3538: REM SKIP COCIIRANE-ORCUTT TRANSFORMATION
Y(ML) = Y(ML) - R * Y(ML - 1)

FOR J = 1 TO K: X(ML,J) = X{(ML,J) - RH * X(ML ~ 1,J): NEXT

IF CR <> 0 THEN GOSUB 5000: REM TO FORM CROSS-PRODUCTS

IF CR = @ THEN GOSUB 5588: REM TO COLLECT DATA FOR TEST STATS
REM SHIFT DATA TO REFLECT NEW OBSERVATIGN

FOR J = 1 TO ML - 1

Y(J)} = Y{(J + 1)

FOR I1 =1 TO K

X{(J,II) = X{(J + 1,11}

NEXT II,J

NEXT I: REM END MAIN LOOP

CLOSE

RETURN

R R R e e i e Ty
REM FORM CROSS-PRODUCT MATRICES '
POR II =1 TO K

CY(II) = CY(II) + X(ML,II) * Y(HL)

FOR J= II TO K: REM USE SYMMETRY PROPERTY OF MATRIX

CX(II,J) = CX(II1,J) + X(ML,II) % X(ML,J)

NEXT J,II

RETURN
L R T T T Ty
REM DATA FOR TEST STATISTICS

YH=@0: REM Y HAT
FOR J=1 TO K

YU = YH + A(J) * X(ML,J): NEXT

MY = Y(ML) + MY: REM SUM Y'S

SH = YH * YH + SH: REM SUM Y HAT'S SQUARED

SY = Y(ML) * Y(ML) + SY: REM SUM Y SQUARED

E = Y(ML) - YH: REM RESIDUAL

DD = E * E + DD: REM DENOMINATOR OF DURBIN-WATSON
IF I = NF THEN EF = E: REM SAVE FIRST RESIDUAL

IF I = NF THEN 5668: REM TO SAVE CURRENT RESIDUAL

REM ELSE I > NF & EL <> 0

(E -~ EL} * (E - EL) + ND: REM NUMERATOR OF DURBIN-WATSON
E * EL + NR: REM NUMERATOR OF RHO HAT

EL * EL + DR: REM DENOMINATOR OF RHO HAT

='NL THEN EN o E: REM SAVE NTH RESIDUAL

€: REM SAVE CURRENT RESIDUAL

RETURN :
REMW® R Rt R A S R RN SN A RN AR N NS E A A NN RN SR NS PR AR PR RN R AN NI NN AN
REM COMPUTE COEFFICIENTS

REM MAKE CX{) SYMMETRIC

FOR I=1 TO K-1: FOR J=I + 1 T0 K

CX(J,I) = CX{(I,J)

NEXT J,1

Nl = K: REM PARAMETER FOR MATRIX INVERSION

GOSUB 6200: REM TO MATRIX INVERSICH

REM VECTOR OF COEFFICIENTS

FOR Iel TO K: FOR J=1 TO K

A(I) = A(T) + CX(I,K + J) * CY{J)

o
o
Do=uun

NEXT J,I

RETURN

REM M R R A S A AR AN R AR AR AR RSN NN AN RN NI RS AR RS E R IR AR RR AR NN AN NS
REM MATRIX INVERSION

REM MATRIX TO BE INVERTED IS IN LEFT PART OF CX(Nl, 2*Nl) & IS
REM DESTROYED. INVERSE IS IN RIGUT PART OF CX. N1 NEEDS TO BE
REM DEFINED, & CX(N1,2 * N1) NEEDS TO BE DEFINED.

REM CALLING ROUTINE

FOR Rl= 1 TO Nl: REM INITIALIZE CX

FOR Cl= (N1l + 1) TO (2 * K1)

CX(R1,Cl) = @

IF (C1 - N1l) = R1 THEN CX(R1,Cl) = 1

NEXT Cl,Rl

POR Rl=1 TO Nl: REM ITERATE ON ROWS

FOR Kl= Rl TO Nl

IF CX(K1,Rl) <> @ THEN 6560: REM TO NEXT PROCEDURE

NEXT K1

PRINT "SINGULAR MATRIX": STOP

REM CHECK IF NON-ZERO ELEMENT IS IN ROW R1
IP K1 = Rl THEN 6608: REM TO CREATE A UNIT VECTOR
REM ELSE SWAP ROWS K1 & Rl

FOR L1 = R1 TO (2 * Nl)

SW = CX{Kl,Ll)

CX(K1,Ll) = CX(R1,L1)

CX(R1,L1) = SW

NEXT L1

REM CREATE A UNIT COLUMN VECTOR IN COLUMN Rl
Tl = CX(R1,R1} :
FOR C1 = R1 TC (2 * N1}

CX(R1,C1) = CX{(R1,Cl) / Tl

NEXT C1

FOR L1 = 1 TO Hl

IF L1 = Rl THEN 6710: REM TO END LOOP
T1 = CX(L1,Rl)

FOR Cl = R1 TO (2 * Nl)

cx{(L1,Cl) = CX(L1,Cl) - T1 * CX(R1,Cl)

NEXT C1

NEXT L1

NEXT Rl: REM END OF MAIN LOOP

RETURN

T R T T T T R R E L Y
REM OUTPUT TEST STATISTICS

DEF PN R(2Z)=INT(2*1000060+.5)/186000:REM ROURD TO NEAREST 180080TH
TP = LV(8): REM DEPENDENT VARIABLE LOCATION
REM HEADER

PEEK [65] March, 1985 ’

it in. This way I do not
require another printout of
the whole 1listing, but the
code is not so tidy! In the
following mods, where it re-
fers to $833C for example, use
$033C.

My Source code can be fed into
the Assembler and assembled if
there is 32K of free RAM, An
assembled listing can be fed
into WP 6502 for printing out
a bit at a time if there is
not enough memory for Assem-
bly.

If you would like a copy of my
Source code ready to feed into
the Assembler, or an Assembled
listing for feeding into WP
(state which one), send me one
blank C9¢ tape, money for
return postage, plus $2.080,
and proof that you already
have WP 6502 V1.2 (e.g., WP
recorded in checksum on the
tape you send). This 1listing
could also be helpful to disk
users of V1.2,

The following are the latest
changes I have made to WP with
the aid of the above Source
listing. The changes <can be

patched in as required. I
have put mine in front and
behind the main core. With

the tape version you will need
to go after the existing code
and the "start of text" point-
er at $0241-2 which should be
changed to the end of the add-
ed code. Although, most mods
are small, it took a long time
to find out how to do it.

1) When I first modified WP
for DABUG and 48 x 12, I had
to change some of the special
characters to make it work.
The linefeed marker was CHR
$7F (DABUG screen clear CHR.)
at $8228 and I had to change
it to CHR $5B. DABUG 3 did
not allow CHR §18 to CHR S$1F
to be used. Using $5B some-
times made G/EDIT difficult to
read. With my modified DABUG
33, I can use more characters
and have changed the linefeed
CHR to S1E. This also re-
quired 'lowest CHR' at $8225
to be changed to $18. If vyou
have recorded text that has a
different linefeed character,
it is possible to do a G/EDIT
and change them all as:

Press Break and change $0025
to the linefeed character used
in the text, e.g., $5B. Run
WP at $8FEE. (Normal warm
start at $006060 Jumps to $8F@B
to reset the wvariables. By
entering three bytes later,
resetting is bypassed). Do a
G/EDIT (without pressing
"return to menu") to any un-
used character, e.g., *kk,
Then press Return and do a

7110
7112
7114
7200
7204
7208
7210

7214
- 7220
7230

7240
7242
7244
7248
7250
7268
7264
7270
7288
7284
7298
7300
7310
7320
7337
7348
7344
7350
7360
7364
7378
7380
7384
7390
7394
7400
7410
7414
7428
7430
74480
7450
7454
7460
7999
8000
8010
8620
8630
8040
8058
8499
8560
8518
8520

853p
8540
8599
8600

8610
8620
8630
8640
8650
8660
8670
86 88
8690
8700
8718
8720

PRINT : PRINT : PRINT "DEPENDENT VARIABLE - "VN$(TP): PRINT
PRINT#5,¢ PRINT45,
PRINT#5, “DEPENDENT VARIABLE - “VN$(TP): PRINT#S5,
REM COEFFICIENTS & T'S
PRINT "COEFFICIENT®
PRINT#5, "COEFFICIENT®
PRINT TAB(4) *(T)*:PRINT
PRINT#5, TAB(4)"(T)":PRINT#S,
N = NL: REM # 08S IN REGRESSION
SE = SQR(DD / (N~K)): REM STANDARD ERROR OF EST
FOR I =1 T0 K
PRINT: PRINT#S,
IF I=1 THEN PRINT “"CONSTANT":PRINT TAB(l) FN R(A(1))
IF I=1 THEN PRINT#5, "CONSTANT":PRINT#5, TAB(l) FN R(A(1l))
TP = LV(I)
IF I > 1 THEN PRINT VNS(TP): PRINT TAB(l) FN R(A(I))
IF I >) THEN PRINT#5, VNS(TP): PRINT#S, TAB(1l) FN R(A(I))
TP = SE * SQR(CX(I,K+I))
PRINT ™ (";FN R(A(I)/TP))"
PRINT#5, *(";FN R(A(I)/TP);)"
NEXT
REM OTHER STATS
MY = MY / N: REM MEAN OF Y
R2 = SH / N - MY * MY: REM VARIANCE OF Y HAT
R2 = R2 / (SY / N - MY * MY): REM R SQUARED
PRINT : PRINT *R SQUARED “; FN R(R2)
PRINT#5, : PRINT#5, "R SQUARED *; FN R(R2)
F = R2 * (N-K) / ((1-R2)*(K-1))
PRINT "F WITH ("j(K-1);",%;(N-K);") DF *; FN R(F)
PRINT#5, "F WITH (";(K-1);",%;(N-K);") DF "®; FN R(F)
R2= R2-{K=1)*(1~R2)/ (N-K)
PRINT "R BAR SQUARED "; FN R(R2)
PRINT#5, "R BAR SQUARED "; FN R{R2)
PRINT "STANDARD ERROR OF ESTIMATE ®; FN R(SE)
PRINT$#5, *STANDARD ERROR OF ESTIMATE "; FN R(SE)
DW = ND / DD
PRINT "DURBIN-WATSON STATISTIC *; FN R(DW)
PRINT#5, "DURBIN-WATSON STATISTIC *; FN R(DW)
TP = (N-1)*(N-1)
RH = NR/(N-1) - EF*EL/TP
RH = RH/{(DR/(N-1)}-EL*EL/TP)
PRINT "RHO HAT “; PN R(RH)
PRINT#5, “RHO HAT "; FN R(RH)
RETURN
REMA Rk kA R A AR A R AN R R AN A R Ak kA A kAR RN A R AN R kAR AR AN R AR RN d N
REM RE-INITIALIZE FOR COCHRANE-ORCUTT TRANS
CO = 1: REM SET COCHRANE~ORCUTT FLAG
NF = NF +1: REM RESET 1ST OBS
N =N - 1: REM ADJUST TOTAL OBS
GOSUB B60P: REM TO ZERO OUT VARIABLES
RETURN
REMQt‘t't'ttt'ﬁ"t.‘tt‘tl!..ﬁ'tt‘tttttt!.ﬁtt.tt.t.tt'ttlt.‘!liﬂtt
REM SET UP ANOTHER REGRESSION
CO = @: REM SET COCHRANE-ORCUTT FLAG
RH = §: REM RESET RHO HAT
GOSUB 8600; REM TO ZERO OUT VARIABLES
RETURN '
R R R R st I R Y R I Y S R e R R 2222222223222 22221
REM * ZERO OUT VARIABLES
REM CROSS-PRODUCT MATRICES & COEFFICIENT VECTOR |
FOR Isl TO NV
CY(I) = 0: A(I) = @
FOR J= I TO NV
CX(1,3) = @
NEXT J,1
REM PARAMETERS
MY = B: SH = 8
=@0: DD = @
ND = 0: NR = 0@
DR = @
RETURN

DISK DRIVE
RECONDITIONING

WINCHESTER DRIVES

Board level service on:
¢ OSl / Isotron
e TeleVideo

® IBM pc/xt

Floppy drive alignment:
e Siemens

e Shugart

e Teac

Seagate ST412 10meg $350.00

FLOPPY DRIVE FLAT RATES
8" Single Sided Shugart

8" Double Sided Shugart: _3250 OO

8" Single Sided Siemens D&E Series $150.00

8" Double Sided Siemens P Series $170.00
Write or call for detailed brochure

Terminal repair:
¢ TeleVideo
eMicro-Term

474 N. Potomac St.
. ® Hagerstown, Md. 21740
‘ l (301) 791-2562

" 90 Day warranty on Floppy & Large Winch.
1Yr.Warrantyon 5" & 8" Winchesters.

Phone: (417)485-2501

@ FESSENDEN COMPUTERS
116 M. 3RD STREET
OZARK, MO 65721

(1week turnaround)
Sokol Electronics Inc.

FLAT RATE CLEAN ROOM SERVICE.
(parts & fabor included)
Shugart SA4008 23meg $550.00

Shugart SA1004 10meg '$450.00

second G/EDIT from *** to your
linefeed character.

2) When using CTRL keys (I,
M, X & B) with the shiftlock
up, two characters appear in
place of one. This 1is fixed
by inserting STA $41 after STA
$0217 at $8558. To do this,
replace the STA $0217 with JSR
CTRLFIX and at CTRLFIX put STA
$0217, STA $41 and RTS.

3) When entering the L/EDIT
mode, it allows "FROM" to be
used to start editing anywhere
in the text. I have altered
the "VIEW" and "PRINT" modes
to also use "FROM", I have
also added a "SIMULATE and
HOLD" mode that bypasses turn-
ing the printer on, to show
where a page ends. (I think
this is already in the disk
version). Change the existing
code between $87E9 and S$87FA
to BEQ $87F4, CMP#'S (SIMULATE
and HOLD), BEQ §$87F7, LDA
#$60, STA $6247, JSR teletype
on (INC $0285 for normal
printer), JMP VIEWP, NOP. Add
new code as: VIEWP LDA $3A,
STA $38, LDA $38, STA §$56,
VIEWF LDA $8247, PHA, LDA
#S4C, STA $0247, JSR $82El,
JSR $8784, JSR $84E9, JSR
$8335, JSR $82F4, PLA, STA
$0247, JMPp $87FB. Also,
change the JUMP at $87A1 to
JMP VIEWF.

I use a teletype model 35 as a
printer. This uses paper on a
roll without perforations.
So, I have added code to print
perforations for me consisting
of a line of dashes at the
beginning of the first page
and at the end of every A4
page. Details of this can be
gotten from my listing on the
tape.

5) It may be necessary to
delete a large amount of text
from an existing file to use
for another purpose. I have
added a Block Delete that
works the same as 'DELETE
SENTENCE'. You enclose the
text to be deleted with a CTRL
B and a CTRL X. Use the BLOCK
VIEW to check the text to be
deleted, then go to L/EDIT and
put the cursor under the CTRL
B character and press DB.

The new code for this is:
BLOKX CMP #'B, BEQ DELB, LDA
$47, JMP $8C@6, DELB LDX §$26,
JMP $8C99. <Change at $8C8F to
NOP, NOP, JMP BLOKX.

(6) When the last word in a
line contains a decimal point,
the word can end up being
split in two. When it's time
for WP to do a linefeed, it
looks backwards until it finds
elther a hash "#", a fullstop

".", 1linefeed marker or a

PEEK [65] March, 1985 19

space. If one is found, it
automatically starts a new
line. This code is at $884D.

The detecting for a full stop
is not needed as it will be
followed by a linefeed marker
or a space if a new line is
needed. So at $8856, change
CMP #'. and BNE $8862 to four
NOPS. The same thing happens
if an embedded character is in
the middle of the 1last "word,
e.g., AB#C67DE. To fix, it
needs extra code to look at
the character that comes after
the "#". If it's "C", don't
split the word.

Change code at $8852 to: CMP
$2B, BNE $885A, JMP ENDLX,
.BYT SFF add new <code some-
where: ENDLX INY, LDA ($14),Y,
DEY, and #£01011111, CMP #'C,

BEQ ENDLX1, JMP $8862, ENDLX1
JMP $884D

The "AND" instruction above
allows both upper and lower
case C to be detected. Notice
in a 1line above that "AND
#%$01011111" has been cut in
half. This can now be fixed
by replacing the space with
$#C32.,

(7) My last mod was to alter
the "ZAP" so that the whole
word "ZAP" had to be entered

for ZAP to work. As stated at
the beginning, a warm start is
at $8FPB which sets up
variables and prints the menu,
then waits for a key press at
$8F3F. Below this are all the
compares required for the mod.
New code needed is: GZAP JSR
$83FF, CMP #'A, BNE $8F9D
(this branch has to point to
JMP $8465; it may not be at
8F9D), JSR $83FF, CMP #'P, BNE

$8F9D (as above), JSR $833cC,
JSR $8345, JSR $8332, JMP
$0000. Existing code to

change is at $8F45 as: CPX
#'2, BEQ GZAP, JSR $82El, NOP,
NOP, NOP., And at $8F63 as:
CPX #'V, BNE $8F73, JMP $8795.

(8) There 1is another fault
with WP that I have not been
able to sort out yet and that
is to do with workspace full.
This is what I have found so
far: "ZAP" puts an @ at the
start of workspace. "TYPE"
checks memory and fills it up
with SFB from the first € to
the end of RAM. 1If the top of
REM is $1FFF, workspace top is
set to $1EFF and stored in $10
and $5B. The last 256 bytes
are used for line and global
editing., When text is entered
and the characters get to
$1EFE, "TYPE" shows @ bytes
free and S$1EFF contains @.
When one more character is
entered it shows 65535 bytes
free. More text can be enter-
ed until it reaches S$1FFE.

20 PEEK [65) March, 1985

OM?> shows and this
65280 bytes free.
"bytes free" has passed "0
bytes free", line and global
editing will not work cor-
rectly and may delete all of
your text.

gives
Once the

that use
not too

For those of you
WP6582 V1.2 and are

familiar with M/CODE, have a
go at one of the above Mods.
As long as you Kkeep your

original tape, no harm can be

done even if you make a
mistake. You will need a
mnemonic to hex conversion

chart and the extended monitor
to check the modified code.

The M/CODE above contains la-
bels. These are swapped for
the address where you put the
new code, e.g., GZAP in (6)
above could be $10603.

It is not ©possible to have
EXMON at the top of RAM and
protect it from WP as can be
done with BASIC, as WP fills
all unused RAM with SFB nearly
every time return is pressed.
EXMON can be in write pro-
tected RAM, EPROM or in a
section of RAM that is. not
continuous from WPS workspace.
It can be below WPS workspace
and the start of text pointer
at $8241-2 set to the end of
EXMON.

If you are an expert at
M/CODE, you can have a go at
(7) above.

"MAGIC SQUARS"

By: R. R. Groome
824 W. Main Street
Richmond, 'IN 47374

Remember the Aardvark rag?
The Dec '81 issue had on page
13 a program called "MAGIC
SQUARS" which turned out to be
a nice graphics ditty. MICRO-
COMPUTING/KILOBAUD in the Feb
'81 issue had "MAGIC SQUARS"
by Dr. Marc Lewis.....but it
would not run on C2-4P's.

Here is my revison of that
program that does run on OSI.
For 1P's drop lines 80 & 1478.

In the listing, the CHRS$(29)
CHRS$(31) type lines are print-
er commands.

If anyone wants a cassette
copy, send me a cassette with
a couple programs (anythingl}),
and I will return both on the
other side of cassette (C-68).

My system started in 1976 as
C2-4P and has grown to a 48K
backplane system with PIA, OKI
Microline 80 printer, Zenith
green tube, D&N memory and
disk board, TANDON Disk (5
1/4"), cassette and high speed
baud rate generator.

I've been a reader since your
beginning...please- hang in
there and keep publishing! I
like the simple do-something
programs.

"MAGIC SQUARS" PROGRAM

v GOTOS
2 GOSUBS
3 GOTO42

S A=PEEK (129) : B=PEEK (132) : POKE123, 192 :POKE130, 215:S¢="
10 FOR S=1T0O62:S$=5%+" ":NEXT:POKEL1Z9, 1:POKE]L3Y, B:RETURN
49 1=0:J=0:09=Q:M=0:0=2:MI=0:P=0: T=0:C=V:R=D:S5=B: V=0

6@ PRINT“Number squars"
70 PRINT ————— e — e -
8Y POKESGEA3Z, 9:PRINT

99 PRINT"Welcome to the world of"

128 PRINT “confusion. There are two"

119 PRINT"versions of Squars”
SEQUENTIAL"

& ":PRINT
MAGIC SQUARE™ :PRINT

120 PRINT:PRINT™
138 PRINT:PRINT"
135 PRINT"
138 PRINTTAB(3);

- 143 PRINT"Which 15 ycur pleasure ":PRINT

145 INPUT"1 FOR SEQUENTIAL &

<

1S@ IF T=1 THEN3S®
160 IF T(»2STHEN14®

182 REM
210 FORI=1T04
220 FORJI=1TO4
230 READM(I,.J)
240 B(I, J)=M(1,J)
250 NEXTJ

268 NEXTIL

270 DATA 1,6,15,8,12,11,2,5,

288 I1=4
290 J1=2
302 GOTO44@

SET UR MAGIC SQUARE

FOR MAGIC";T

10,13,4,3,7,16,9, 4

320 REM SET UP SEQUENTIAL SGURRE

350 DIMB(4,4)
360 FOR C=1T04
370 FOR D=1TO4
380 K(C,D)=(C-1)#4+D
390 NEXTD

Continued

40 NEXTC
410 Ii1=4
42Q Ji=4
430

:
435 REM SCRAMBLE BOARD

» 443 PRINT"] am now scrambling the board..."
45@ PRINT“"How difficult do you want it"

468 BRINT:INPUT® 10 to Se@ *iao

480 FOR Q=1T0OQ9
- 490 M=INT(3#RND(1)+1)

SO® ON M GOTO S10, S60, 618, 662
~512 IF 11=1GOT049@: REM M=}

S2@ B(I1,J1)=B(Ii1~1,J1)

S30 B(I11-1,J1)=16

540 Ii=I1-1

S50 GOTO7ee

555

3
~ 56@ [F Ii=4 THEN GOTO 49@: REM M

S70 B(I1,J1)=B(I1+1,J1)
580 B(I1+1,J1)=16
S90 Ii=Ii+1
602 GOTO72@
~610 IF Ji=1 THEN GOTO0493: REM
620 B(I11,J1)=B(I11,J1~-1)
638 B(I1,J1-1)=16
640 Ji=Ji-1
65@ GOTO 7@e
655

=2

m=3

660 1IF Ji=4 THEN GOTO 49@: REM M=o

676 B(11,J1)=B(I1,J1+1)
680 B(J1,J1+1)=16
£9@ Ji1=J1+1 .
~~ 700 NEXTQ
705 =
719 REM PRINT BOARD
720 =
- 743 MI=MI+1
76@ :
765 R=0:S5<=0
779 PRINT”

775 U=@:V=@
780 FOR U=1 TO 4

790 FOR V=1 TO 4

802 PRINT":%;

810 IF B(U,V)=1& THEN PRINT"

820 IF B(U,V) (10 THEN PRINT" ";

830 PRINT B(U,V);
~843 NEXT V
850 PRINT":"

" :REM 26°—*

*3:60TO842

8683 PRINT®
870 NEXT U
a7s :
880 FOR K=1T0100V:NEXTK
89@ REM SOUND POKE S7832,#%
908 REM INPUT MOVE
910 1 .

«r96@ INPUT"Move which piece" ;P
970 11=9:J1=2
975 H=2:G=0
977 =
989 FOR G=1TO4
993 FOR H=1 TO4
1280 IF B(G,H)=PTHEN 11=G:Ji=H
1210 NEXTH
1020 NEXTG
1825 :

1030 IF I1=0 THEN PRINT"I can’t find that #":60T0%63

1048 1&=2:I2=Q

195@ FOR I=I1-1 TO I1+1
1060 1IF 1)4 THEN 1290
1878 IF 1<(1 THEN GOTO1092

10880 IFB(1,J1)=16 THEN 1&=1:J2=J1:60T0O117@

- 1290 NEXT 1 :
1095 :
1108 FOR J=J1-1 TO J1+1
1110 IF JY>4 THEN GOTO 1140
1120 IF J<1 THEN GOTO 1142

1130 IF B(I1,J)=16 THEN I2=11:J2=J:60T01170

—1142 NEXT J
1145

1162 PRINT"Not a valid move'":G0T096@

—117@ B(I2, J&)=P .
1175 1=0:J=0:1R=Q15=0
1180 B(I1,J1)=16
1192 ON T GOTO 1230, 1369
1200
1218 REM SEQUENTIAL SOLUTION
1220

— 1238 C=@
1242 FOR R=1TO4
1252 FOR S=1T04
126@ IF B(R,S) (C THEN GOTO 74@
1278 C= B(R,S)
1280 NEXTS
1298 NEXT R
13@@ PRINT"#% YOU GOT IT we
1305 PRINT"IN “jM9;" MOVES. *
1310 GOTD 1450
1320 3
133@ REM MAGIC SOLUTION
1340

- 1368 FOR R=1 TO4
1378 FOR S=1 TO 4

138@ IF B(R,S) () M(R,S) THEN GOTO 74®: REM NOT SOLVED

1392 NEXT S

1400 NEXT R

1410 :

1428 REM DECLARE WIN

REM NOT SOLVED

1430
1440
<1450
1460
1470
w1502
1900
1910
19ze
1930
1940
2002
203
2004
Zevs
Zvl1e
2215
2022
2030
2035
2040
2045
ze50

PRINT"That is the correct solution'!’
INPUT"Want to play again " ;A$:A=ASC(AS)

IF A 78 THEN GOTO

1500

POKESG6832, 1 :END

CLEAR: RESTORE:GOTO 2

3/30/84

BASED ON IDEA 1IN KILOBAUD 2.81 PARAGE 114

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM

BY DR.

LEAVEY.

0SI VERSION BY R. GROOME V1.9 1983
RELEASED FROM ALL NON-COMMERCIAL USES
C/D,G/H
1/3,R/S
I1/J,R/S FOR/NEXT COUNTERS

T MAGIC OR SECQUENTIARL

M MIX UP BOARD

Q9 HOW MUCH

m9 # MOVES

K TIME DELRAY

P PIECE TO MOVE

c CHECK FOR SOLUTION

As PLAY AGARIN PROMPT

AL B MARKERS FOR SC ROUTINE

LETTERS

ED:

As you may recall, I have been
working with the WP6502 word
processor coding. On page 18
of the WP6582 manual there is
a paragraph: "Pressing Break
Key Accidentally". It gives
instructions to recover, but
with the BAD NEWS that the
disk operations will not workl
Then a note that OSI is aware
of the problem. The other
day, I had the misfortune of
accidentally hitting the break

key while typing. They are
correct, the disk operations
will not work.

If OSI was aware of the prob-
lem, they did not do anything
about it. The problem is not
in WP6562, It 1is in 0S-65D
versions V3.2 and V3.3. If

you boot up the
then hit the break Kkey, then
(M) to go to the ROM Monitor
and (.2547G) to go to DOS.,
the A* prompt comes up on the
screen. However, none of the
disk operations will work.

system and

Since my WP6502 uses V3.2 and
this is the version that I
disassembled, I worked with it
first.

From the ROM disassembled cod-
ing, it was found that the (D)
response directs the operation
to coding which initializes

the disk PIA and ACIA, and the
Dev 1 ACIA. It then reads
track zero into memory and

transfers control to Coldstart
at $2209. In Coldstart for
some reason the disk PIA is
initialized again, different
than in ROM.

The ROM Monitor with (M) does
none of the above done by (D),

so this is part of the prob-

lem.

Because an Assembly language
PEEK [65] March, 1985 21

program, (FIX), to initialize
the disk PIA and ACIA with a
jump to $2547 did not fix the
problem, a more complete study
of ROM was made. It was found
that in the path of (.nnnnG)
there was not a setting of the
Drive selection and that a
"push to the stack” was made
without a balancing "pull from
the stack". The program FIX
was changed to select drive A

and to do a pull from the
stack. GOOD NEWS, the disk
operations worked!

In DOS V3.2 there is almost

one page of open coding called
DOS EXTENSION. It starts at

$3179. O0SI put three commands
in this space, so it 1is open
from $3188. In my system I
have put a subroutine in this
location which moves the open
space to $31A2 which is where
FIX is now located. This part
of DOS is on Track 1.

With FIX in the system, after

a (BREAK), a (M) (.31A2G) will
transfer control to DOS A* and
all commands work including
the disk operations.

With FIX on the WP6582 disk,
after a (BREAK) do (M) then
(.026BG) which brings up the
WP6502 prompt A! then (GO
31A2) will reset the system.
The (.026BG) transfers control

to WP6582 which 1is necessary
because of changes which
WP6582 makes to DOS in order
to return to WP6502 after a
disk operation.

The program FIX has not been

added to V3.3 because all of
DOS EXT. was used on V3.3 and
I do not know at this time
where some open space exists
to put FIX.

Some of your readers may be
interested in this problem fix
for DOS. A listing of FIX is
shown. If anyone knows where
it will fit into V3.3, I would
like to know.

180 +=a31AE
SO0 LA ALY
¥ STH sCo)
4 STA +Lval
SU LDR svul
EY STA sCovd
70 LDA a%FF
B0 STR sCadz
98 LDK #%0a
108 STR sCoBl
11@ STR $COd3
120 LDA #4003 iRESET RCIA'S

138 STA sCOLB iDISK

148 STR $FCOV :DEV #!

15@ STA $FBA@ :TWO SERIAL PORTS ADDED
1E@ STR $FBAZ 70 MY SYSTEM

17@ LDR #$SB SINIVIALIZE DISK ACIR
18Q@ STR sCO10
190 LDA #3111
200 STYA $FCRQ
219 STA $FLY0
220 STR $Fboz2
238 DA #3061 $SET TO SELECT
260 JSR $:9C3 iDRIvVE A

$STHRT AUDRESS
JRESET DISn PIR

VINITIRLIZE PIA

SINITIALIZE SERIAL PORTS

=58 T8X iTO GET STACK IN ORDER
8@ JMP $2547 ;G0OTO DOS
90@ .END

22 PEEK [65] March, 1985

J. Edward Loeffler, Jr.
Huntsville, TX 77340

* %x Kk k &

ED:

I have a C4PMF with 0S-65D
v3.2., I am working on some
applications using the serial
port in a character-by-char-
acter mode. The users manual
indicates FCP® as the port

register and FCPl as the stat-
us register and indicates how

to set the baud rate by
POKEing FC@l. However, some
additional information would

be helpful:

a) I recall reading in PEEK
that there is a register to be
POKEd to inform the system
whether the serial port is
used as a modem or a printer.
In combing over my past
issues, I can't find that in-

formation. Could you please
repeat it?

b) I have gleaned some infor-
mation from articles in PEEK
on the use of FCAl to report
on the state of the port.
What are the possible states

and their meanings?

T. G. Moore
Freehold, NJ 87728

T.G.:

The serial port on the C4P-MF
is a standard 6850 ACIA that
is routed through either a PIA
or a UART (I forget which),
which in turn selects one of
the two DB-25 connectors on
the back of the system. The
address of the PIA (or UART)
is $F7D3. POKEing this loca-
tion with $34 selects the mo-

dem connector and $60 selects
the printer connector. $FCO1
is a data register. PEEKing

that location is only signifi-
cant when there is an incoming
piece of data ready for re-

trieval. §FC@0 is the status
register and PEEKing this
location will tell you if

there is any data waiting, but

little other information nor-
mally available from a 6858
can be gleaned from this port
due to the fact that 0SI hard
wired some of the other pins

to always show ready.

Rick Trethewey
* * *x % %
ED:

For sometime I have wished for

a simple program that would
automatically switch from
drive A to drive B if a
program was not located on
drive A. The 3.3 version of
0S65D has the TRAP statement
and it will, when enabled,

jump to a line number when an
error 1is encountered in a
program. The following short
program will accomplish the
function that I wished for.

When run, the program first
looks at the A directory and
if the file is not found will
issue a #C error and also
print the statement that the
file is not on this drive. It
will then activate drive B and
search its directory and will
load the requested program.
If it doesn't find the file on
drive B, it will then prompt

for another try or load
BEXEC*, as desired.

I have found this simple pro-
gram to be useful and hope
others find it of use also.
When a program is found, sev-

eral error indications will be
output. The first will be SN
and then US, followed by OK.

62000 TRAP 62858 :REM DUAL DRIVE LOADER
PROGRAM

62005 REM M.BERNSTEIN, ASBURY PARK, NJ
19/23/84

62010 DISK! "SE A"

62029 INPUT "FILENAME";AS

62630 DISK! "LOAD "+AS"

62050 PRINT"FILE NOT FOUND ON DRIVE A"

62060 TRAP 62100

62P78 DISK! "SE B"

62088 DISK! "LOAD "+AS"

62108 PRINT "FILE NOT FOUND ON DRIVE B"

62118 INPUT®TRY AGAIN (T) OR RUN BEXEC*
(B)";B$

62128 IF B$S="T"THEN 62000

6213@ RUN “BEXEC*"

NOTE: A SPACE MUST FOLLOW THE WORD
'LOAD'.

M. Bernstein
Asbury Park, NJ 67712

* Kk * % *
ED:

In regard to Gary Florence's
letter in the Dec '84 issue of
PEEK(65), regarding tape to
disk conversions, I have con-

FAA

MEDIA CONVERSION

. 9 TRACK 1600 BPI TAPE

. 8 INCH FLOPPY
(0SI 650)

. 5 1/4 INCH FLOPPY
(DBI FORMAT)

. IOMEGA CARTRIDGE
(DBI FORMAT)

MED-DATA MIDWEST, INC.
246 Grand
St. Louis, MO 63122
314~-965~4160

verted the Minos (Maze) pro-
gram to use on a ClP under
HEXDOS. I can't remember all
the details of conversion, but
it does require altering and
relocating the machine code
portion. Perhaps I'll try to
write it up someday. The Tiny
Compiler is available to
HEXDOS users from the HEXDOS
user's library {(c/o Vern
Heidner, 1440 Co. Rd 118 N.,
Mound, MN 55364).

Jim McConkey
Rockville, MD 28855

Jim:

Don't stop there. You have
just whetted our appetite.
Please do tell us the details

of the conversion process -
hardware and software. I am
sure that there are others in
the same boat, but just don't
know how to go about it.

Eddie
* % % k %
ED:

I have just acquired a Grafix
SEB-3 88 column board for my

C2-8P. Does anyone have any
information about its cap-
abilities, etc.? Please ask
if any current users will
write about their experiences
with this board.

Thanks!

Alen Cohen

Staten Island, NY 16312
Readers:
Please help!

NEWS RELEASE

Sierra Madre, CA., January 9.
-- The "Third Wave" officially
arrived today with the an-
nouncement of new organization
designed to support the grow-
ing number of people who work
in their homes with personal
computers. The newly formed
Association of Electronic Cot-
tagers will bring focus to
this group, foreshadowed by
Alvin Toffler in his best-
selling book "The Third Wave."

"We will provide actual busi-
ness services to both computer
entrepreneurs and telecom-
muters who work at home on a
salary," the group's founders,
husband-and-wife team Paul and
Sarah Edwards, said in an-
nouncing the group's forma-
tion.

Members of AEC can obtain mar-

keting assistance, business
consultation and other ser-
vices. They can also access

up-to-the minute news about
local, state, national and
international developments af-
fecting their interests
through a monthly newsletter,
an online hotline, bulletin
boards, electronic conferences
and private databases avail-
able to AEC members through
CompuServe Information Ser-
vice. Aspiring cottagers can
get help finding work at home
and assistance in setting up a
computer-based business.

Electronic cottage members are

already mobilizing to protect
their rights to work at home
with a computer by opposing

AFL/CIO efforts to ban tele-
commuting and by setting forth
the Electronic Cottage Bill of
Rights.

Those interested in AEC can
write the Association for free
information at 677 Canyon
Crest Drive, Sierra Madre, CA
91024. CompuServe # 76703,242.

*****GIVEAWAY*****
Multi-Strike Printer Ribbons

what do you currently pay for
a multi-strike ribbon cart-
ridge? About §4.08 each 1in
lots of 62

We have found a solution that
may cause you never to use a

fabric ribbon again. 1) Did
you know that most all multi-
strike ribbon cartridges use

the same ribbon bobbin? It is
just pressed on a different
size hub and put in your cart-
ridge type. 2) We have found
a source of recently outdated
(yes, many are dated) Diablo
Hi-Type I cartridges. We took
the oldest one we could find,
put it in our NEC cartridge
and printed this ad. Now,
honestly, do you see any
difference? We can't either.
So we are offering those of
you who use Hi-Type I, or are
willing to pry open whatever
cartridge you are using and
replace the bobbin, a deal you
can't refuse.

Buy one box of 6 cartridges
for $8.8¢ and we will give you
a second box FREE. That's
66.66 cents a piece or 83%
off. At that rate, how can
you lose? Add $3.00 for post-
age and handling. Make check
or money order (in U.S. funds,
drawn on a U.S. bank) payable
to PEEK(65). P.O. Box 347,
Owings Mills, Md. 21117. Or-
der NOW, supply limited!

* k % %k X
MUST SELL. Still in original

wrappings, KEYWORD CP/M Word
Processor, CP/M v 2.25. Cost

was $400.060 each. Will sacri-
fice $250.00 each, or $400.00
for set. Reply PEEK, Box K,
c/o PEEK(65), P.O. Box 347,
Owings Mills, MD 21117.

* *k %k *x %

C3C 56K 2-USER 0SU/OSDMS/HDM
DUAL FLOPPY, AMCAP LEVEL k]

BUSINESS SYSTEM, 2 HAZELTINE
1520's. $4000/0FFER. Paul
Drummond, P. 0. Box 2057,
Woodland, CA 95695, 1-916-661-
6600.

* % % % *

Send for free catalog, Aurora
Software, 37 South Mitchell,
Arlington Heights, IL 60885.

Phone (312) 259-4871.

* * % % *

FOR SALE: OSI UTI_ Board with
Vortrax, CBT Coupler, software
& documentation. $200.00 or

best offer. (Terry) 512-824-
7471.

* % %k % *

CUSTOM BUILT C8P. Profession-—

ally assembled with dual 8"
drives, cassette interface,
RS-232, parallel board, Hi-res
color, ten key pad & Jjoy-
sticks. Works perfectly ... I
need the money. Over 30 disks
including MDMS, 0S65D V3.3,
0S65U, WP-65 Word Processor,

numerous financial programs,
personal accounting & games.
10" green BMC monitor. $758

firm. Phone (918) 333-5643 or
661-7998.

* %k *x % *

FOR SALE: C3-C, 1 MHz, 23
MByte, 3 user computer system
with Dual 8" double sided
floppy drives; includes three
Televideo 925 Terminals and

Qume Sprint 5 printer. Would
consider selling this system
as component pieces. Asking
$250.80 each for the termi-
nals, $300.88 for the Qume,

and $1,100.00 for the C3-C-23.
If purchased together, asking
$1,900.00. Boards already in-
stalled in the system include
47¢, 510, 590/525, CA-9, CM-4,
535, 555-4 for terminals, 555/
2 for serial printers, and 2
CM-20 memory boards. Includes
058-65U Ver 1.42. The system
is fully operational. This is
a great entry system, or could
be used as spare parts for an
existing installation. For
more information, «call (216)
743-3186 between 9:00 A.M. and
5:06 P.M. EST. Ask for
Marilyn.

* *x kx %k *

WANTED: C3-B or C3-C in good
working condition. Also, tape
back-up. Call Richard (201)
666-3250 (NJ).

PEEK [65] March, 1985 23

PEEN (GG)

The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21117

24

DELIVER TO:

GOODIES for (U5l Users)

PEEN (BG)

The Unotficial OS!i Users Journal

P.O. Box 347 ¢ Owings Mills, Md. 21117 « (301) 363-3268

C1P Sams Photo-Facts Manual. Complete schematics, scope waveforms and board photos. All you

BULK RATE
U.S. POSTAGE
PAID
Owings Mills, MD
PERMIT NO. 18

s
$
[
s 370

$

need to be a C1P or Sl Wizard, just $7.95 §
{) CA4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505, 527, 540 and

542 boards. A bargain at $15.00 $
() C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with $30.00 $

useful information, but just
{) OSI's Small Systems Journals. The complete set, July 1977 through Aprii 1978, bound and reproduced

by PEEK (65). Full set only $15.00 $
{) Terminal Extensions Package - lets you program like the mini-users do, with direct cursor positioning,

mnemonics and a number formatting function much more powerful than a mere “print using.” Requires

65U. ‘ ' $50.00 $
{) RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references,

GOSUBs & GOTOs, variables by line number, resequences parts of programs or entire programs,

handles line 50000 trap. Best debug too! |'ve seen. MACHINE LANGUAGE - VERY FAST! Requires 65U. '

Manual & samples only, $5.00 Everything for $50.00 $
() Sanders Machine Language Sort/Merge for 0S-65U. Complete disk sort and merge, documentation

shows you how to call from any BASIC program on any disk and return it or any other BASIC program

on any disk, floppy or hard. Most versatile disk sort yet. Will run under LEVEL |, 11, or 1. it should cost

more but Sanders says, “...sell it for just...” $89.00 $
{ } KYUTIL - The ultimate 0S-DMS keyfile utility package. This implementation of Sander's SORT/MERGE

creates, loads and sorts multipie-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of .

over 15000 ZIP codes in under three hours. Never sort another Master File. $100.00 $
() Assembler Editor & Extended Monitor Reference Manual (C1P, C4P & C8P) $6.95 $
{) 65V Primer. Introduces machine language programming. $495 $
{) C1P, C1P MF, C4P, C4P DF, C4P MF, C8P DF Introductory Manuals ($5.95 each, please specify) $5.95 §
{) Basic Reference Manual — (ROM, 65D and 65U) $5.95 §
() C1P, C4P, C8P Users Manuals — ($7.95 each, please specify) $7.95 §
() How to program Microcomputers. The C-3 Series $7.95 §
() Professional Computers Set Up & Operations Manual — C2-OEM/C2-D/C3-OEM/C3-D/C3-A/C3-B/ $8.95 §

c3-c/C3-C¢ - .

TOTAL

{) Cashenclosed {) Master Charge () VISA
Account No. __ Expiration Date MD Residents add 5% Tax
Signature C.0.D. orders add $1.90
Name Postage & Handling
Street’ TOTAL DUE
City State Zip POSTAGE MAY VARY. FOR.OVERSEAS

PEEK (65] March, 1985 -

