
•

•

•

EE I
fjZ fG 0 IZ 5' I G'f'1.. S - J'f -I, ()..-<;'..A.-("'r e t L

JUNE 1985
VQ.6, NO.6

The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21117
(301) 363-3268

Column One
Now that the dust of COMDEX is
starting to settle, we can re
port some news, but as I said,
the dust is still settling.
From all reports, it was an
excellent show. In spite of
the fact that Isotron's booth
was not exactly in the prime
area, attendance was excellent
as was the interest in the new
7BB series of UNIX machines
which were announced. In fact,
orders were taken at the show
for the 71B model. It is re
ported ~eady to go with deliv
ery scheduled for the middle
to end of June - just as soon
as the final touches are put
on the dealer training pro
gram. That is also about the
same time frame for the re
lease of the Portland Boards.

What you probably have not
heard about Isotron is the
partial buy-out! The ~tory
goes something like this: They
had sufficient funds to get
the new 7BB series developed
(a very large undertaking),
but wanted to insure that
additional funds would be
available to insure a proper
job of marketing. Although we
don't know th~ exact percen
tage of the buy-out, it is
reported to be close to the
5B% mark and made up by the
stock purchases of an unnamed
U.S. private investor and of
AHLSELL, another Swedish in
vestment house that already
had considerable involvement
in the computer world. They
just happened to hold the key

INSIDE
GUIDE TO M/C PROGRAMMING O5-65U 2
05-65 SELECT SEARa-t & PR I NT PROG. 3
BEG I NNER' S <mNER 6
ASM-SHARED PO INTERS 8
WAZZAT <mNER! 11
H()I TO FIND HI BYTE 12
O5-U PROGRAMM I NG AIDS 12
RIGHT HAND JUST. PR(FffiT I OOPL PR. 13
MODIFIED BUBBLE SORTIMERGE 16
KEYBOARD ALGOR I THM 17
PRCB. SQV. VS APPLI C. : S<F1WARE 18

to a version of UNIX that,
unlike most others, would be
compatible with most UNIX
versions including ATT's v 6 &
7, ZENIX's v 7 and soon to be
released v 5 and the proposed
UNIX Users Group ANSI stan
dard. The sale has reportedly
put Isotron in a very healthy
position.

OBI was at COMDEX too, albeit
without a booth, and they re
port that it was a very re
warding experience. What bet
ter way to go to the show than
with a record breaking April
under your belt and May look
ing even better! There. must
be something to the SCSI bus
and all the low cost, high
density, error checking reli
ability that is available on
the OBI boxes. Prices aren't
mentioned in their ad, but
from one who knows, they are
worth checking into. Their 65E
operating system is getting
very close to an official
release. The hold-up is the
implementation of several im
portant suggestions that came
out of the last distributor's
seminar. From what we hear,
the wait will be well worth
it. This operating system will
be packed with far more than
its 16 digit precision. Many
of the proverbial shortcomings
of OS-U have not only been
fixed, but turned into tremen
dous assets.

Though we are not insurance
vendors, we thought you might

be interested in Data Security
Ins. of Bolder, CO. They just
merged with Personal Computer
Ins. and now offer coverage
underwritten by St. Paul that
includes all software and
data. Coverage can start as
low as $5,BBB. Sounds inter
esting, no?

Congratulations to our writ
ers! For months'we have been
harping on formats, techniques
and subjects. Now'; it would
seem that you can scan through
this issue and use it as a
guide. In particular, most
everything here is presented
in a fashion that can be
understood by those new to the
particular field - even though
the subject may be deep and
technical. When writing an
article, it is so easy to as
sume that the reader already
knows the generalities, but
because so many readers are
just now becoming involved
with the inner workings of
what they have, the extra hand
holding explanations are the
key factor in determining whe
ther they will delve into
these new areas. ' With your
help, PEEK readers are gaining
the confidence to explore the
wondrous capabilities of these
machines. On behalf of our
readers, our thanks for jobs
well done.

THE LAYMAN' S GUIDE TO MACHINE
CODE PROGRAMMING FOR OS-65U

By: Rick Trethewey
8 Duran Court
Pacifica, CA 94944

OS-65U is an intimidating op
erating system to try to write
Assembly Language programs
for. To begin, there's no as
sembler that runs under that
operating system. You have to
write your program and assem
ble it under OS-65D and port
it over somehow. You have two
ways of getting the machine
code to 65U. First, you can
use either "LOAD32"or"LOAD48"
which are programs that can
read OS-65D diskettes. Sec
ond, you can assemble your
program and leave it in an
area of memory that doesn't
get overwritten when you re
boot under OS-65U. Clearly,
the first method is the better
of the two. Still, that only
solves part of the problem.
You still have to get the
machine code in the desired
area of memory and get it
safely stored on your OS-65U
diskette. The complexity of
this problem is largely depen
dent on how many bytes of
object code your Assembly
Language program generates and
how big the BASIC application
program is that will be using
it.

There are two common areas of
memory to store machine code
programs that are executed by
BASIC programs. The first is
to store it in front of· your
BASIC program. The second is
at the top of memory. Each
location has advantages and
disadvantages that have to be
considered. To begin, let's
take a look at OS-65U's useage
of memory. All locations be
low (i.e. less than) 24576 are
out of bounds, leaving the
high half of memory (assuming
a system with 48K of memory)
to hold the BASIC program,
variables, and your machine
code. This free region of

Copyright. t 985 PEEK (65) Inc. All Rights Reserved.

·published monthly

Editor· Eddie Gieske

Technical Editor· Brian Harston
Circulation & Advertising Mgr .• Karin Q. Gieske

~~O~s~~~~t~o~e~~ie~ A. Fusselbaugh, Ginny Ma~r Surface

~ ~9
Canada & Mexico (1st class) $26
So. & Cen. America $38 $30
~~ m m
Other Foreign $43 $30

All subscriptions are for 1 year and are payable in advance in
US Dollars.
For back issues, subscriptions. change of address or other
information. write to:

PEEK (65)
P.O. Box 347
Owings Mills. MO 21117 (301) 363·3268

Mention of products by trade name in editorial material or
advertisements contained herein in no way constitutes en
dorsements of the product or products by this magazine or
the publisher.

2 PEEK [65] June, 1985

memory is called the workspace
because its contents change
with the programs as they- are
called into memory and exe
cuted. The low end remains
largely unchanged. When a
BASIC program is loaded into
the workspace, it is stored in
memory beginning at roughly
$6999(24576 decimal). However,
the actual text of the program
need not begin at this loca
tion •. You can reserve space
between location $6999 and the
start of the text to hold your
machine code. When machine

. code is stored in this fash
ion, it is.stored on disk with
the BASIC program and is,
therefore, . automatically call
ed into memory when the BASIC
program is RUN. By the same
token, however, the code van
ishes as· soon as the next
program is loaded. The alter
native is to have your machine
code stored in its own file on
disk and called into memory.
If the machine code is stored
at the very top of the
workspace, you can do a POKE
that will protect it from
BASIC and other programs and
it will remain there until the
protection is removed. As you
can see, code that may be
useful to many programs might
make the· second alternative
attractive. However, protect
ed areas of memory are no
longer available to other
programs that might need the
space. On the other hand, if
you have to store a duplicate
copy of the machine code in
front of each BASIC program
that might need it, you've got
to use extra space on the
disk. I think the old main
frame addage "Disks are cheap,
core is expensive" applies
very well here. Machine code
routines tend to be very
application-dependent, reduc
ing the value and need for
storing code in high memory.

All right, we've decided where
our code will reside in mem
ory, namely at $6999. The
next step is to write and as
semble our machine code pro
gram. As always with OS-65D,
you must begin by creating
files. One file will be re
quired to hold the Assembly
Language program and another
file will be needed to hold
the object code. Be generous
in allocating space here, and
jot down the track numbers of
the object code's file.

If you're using OSI's Assem
bler/Editor, you will need to
become familiar with two com
mands, "H" and "M". The rea
son is that under OS-65D,
$6099 lies almost in the mid
dle of the workspace, rather
than at the low end. Further,

the text of your Assembly
Language program must also
reside in--memory-and may well
extend from its start at $3A7E
(for V3.3) to well beyond
$6999. If you assemble direct
ly to $6999, by the time the
assembler gets to the end of
the program, it will have
overwritten the program text
with machine code. Ergo, you
might have to assemble with
what is called an "offset."
In this context, the offset is
the number of bytes which are
added to the origin address of
the Assembly Language program
at which the object code is
actually stored in memory when
it is assembled. However, you
must also be mindful that the
assembler has memory require
ments of its own. Just like
BASIC, the Assembler has to
save the values of the vari
ables (i.e. labels) within the
workspace, and it does this by
building a list of the labels
and their values, beginning at
the top of memory and building
downward toward the program
text. This leads to another
possible conflict that you
have to be careful to avoid~

If you're fluent in OS-65D and
the Extended Monitor program,
you can find out the exact
memory address where your
Assembly program ends. A
quick alternative is to enter
"5" at the Assembler's ""
prompt. The Assembler will
report the size of your pro
gram in number of tracks.
Multiply the number of tracks
by 3. If the result is less
than 8, you can safely assem
ble your program without an
offset. If it is greater than
8, divide the result by 4 and
use that result for your
offset using the "M" command,
as in "MI999", "M2999",
"M3999" it'll be close
enough, trust me ..

To protect the high end of
memory, you use the "H" com
mand. Fortunately, the Assem
bler has truly modest needs
for storing the symbol table.
If you have a 32K system,
enter "H7899" and if you have
a 48K system, enter "HB899".
Should the Assembler issue an
out of memory error with these
settings, try "H7999" and
"HB999" respectively. The
first setting will allow for
approximately 256 labels and
considering the 051 Assemb
ler's limitations, this should
be sufficient in the vast
majority of cases.

If you're using my assembler,
ASM-Plus, just set the start
of the symbol table to $7899
on 32K system or $B899 on 48K
systems and assemble with a 9
offset.

•

•

•

•

•

•

Once the program has been as
sembled to memory, leave the
Assembler/Editor with the com
mand "EXXX". This will send
you to the "A*" prompt. Now
we want to save the object
code on the disk. For this
example, I will use "TIn,
nT2n, and "T3 a to denote the
first, second, and third
tracks of the object code
file. The actual track num
bers you will use will be the
ones you wrote down when you
created the object code file.
Save the object code to disk
with the commands:

SA Tl,1=611'Hl.I/B
SA T2,1=6BIIII/B
SA T3,1=761111/B

Of course, you may not need to
issue all of these commands if
your machine code program ends
at memory addresses lower than
the second and third commands.
You might not even need the
full n/Bn pages in the first.
Once this is done though,
you're halfway home. .

Re-boot your system under
OS-65U. If you haven't done

. so already, create the file
that will hold the object code
and your BASIC program. Be
generous here in the size of
the file you create. Now run
either nLOAD32" or "LOAD48n as
appropriate for your system.
You will see the familiar nA*"
prompt. Insert your OS-65D
diskette that holds the
machine code file. LOAD32 and
LOAD48 do not respond like the
real OS-65D. They automati
cally insert the nc" and ","
in the appropriate pla.ces.
So, for 'our purpose, enter the
following keystrokes (without
a <RETURN> I).;

C6111111Tll (which will display
aC6111111=Tl,P)

C6BIIIIT21 (which will display
nC6BIIII=T2,P)

C761111T3l (which will display
"C761111=T3,1")

GBE12 (for aLOAD48 n or
nG7E12" for nLOAD32")

You will now see the' "OK"
prompt. Before you do any
thing else, enter nNEW" fol
lowed by the length of the
object code in bytes (with a
hefty fudge factor) all in one
line as:

NEW 811111

This command clears the work
space of the old program and
sets the start of BASIC 811111
bytes higher than normal, pre
serving the machine code we
just called into memory. Now
enter:

III REM

and enter the SAVE command to
save this program in the BASIC
program file you created. You
can now continue to add BASIC
programming to this file. To
point BASIC's nUSR(X)n func
tion to your machine code, you
must include the following
POKEs in your program:

POKE 8778,11: POKE 8779,96

After that, all that is re
quired is an "XcUSR(X)n to
execute the program.

You now have the mechanical
skills needed to get machine
code interfaced to OS-65U.
The next step is learning to
write the Assembly Language
programs. We'll cover that in
the next article.

* 05-650 SELBC'l'IVB SHARCH
AND PRllft' PROGRAM

By: Raymond D. Roberts
P. O. Box 336
Ferndale, WA 98248

(Continued from last month)

ADSlilil & ADS21111 are what I
would call "bOiler-platen or
"template" programs. What I
mean by this, is that both
were constructed from a
standard program form that can
be used over and over for many
different programs. This can
save a lot of typing in of the
same routines that most OS-65U

.programs can and probably will
use. Side by side examination
of ADSlilil and ADS21111 will show
these same routines in each
program while the application
'of the programs are entirely
different.

These commonly used routines
are:

LINE 8 Numerical variable set
ting.

LINE 9 Flag setting.
LINE 35,~6 Hard copy printing

formatting.
LINE 31,6241111-63111111 Julian

calendar routine.
LINE 611 Printer control set

tings.
LINE 61-65 Output device se

lection.
LINE 66 Control 0 and Control

C disabling.
LINES 711-76 Date evaluation

set-up.
LINES 911-94 Data file device

selection.
LINES 1611-3511 File opening &

loading.
LINES 411111111-511511 Error

handling
LINE 51152 Printer form feed

at end of printing ses
sion •.

All of these "routines" (some
of which are subroutines) are
stored on a disk file called

, nprogram file. n Assume that I
want to "write" a program. I
load the "program file" and
save it to a "scratch file"

, for development. I then need
, to program only those features
that I want the program to
perform and some modification

: of the existing "routines."
The extraneous lines can then

. be deleted if deSired, or left
in for future expansion as I
have chosen for these pro
grams.

Because they are not needed
for the program at this time,
the following can be deleted
without effecting the program
if saving a little space is
important. LINES 7,8,P9=1 in
LINE 9, 311-36, TF=l in LINE
31111, last CF=l in LINE 391,
Fl=kl in LINE 339911, Sub
routine in LINES 6241111-63111111.

If this style of structure
does nothing else, it saves a
lot of typing and keeps the
same "routines" in the same
part of the programs for
easier understanding of the
programs, how they work and
what they do. I do not pre
sume to advocate this style,
just share it. If you try
this style, remember to leave
sufficient unused line numbers
between "routines n and/or have
a renumberer program.

POKES & FLAGS

POKES and FLAGS used in ADSlilil
& ADS21111 are quite standard,
but here is what they do.

FLAG 6 Enables program abort
and error message upon pointer
(INDEX) reaching the end of
data file.

FLAG 9 Enables
trol retention
error. (Goes to
error handling.)

program
upon
line

con
disk

511111111

FLAG 11 Enables space suppres
sion in numeric output to
files. Normally, space is re
served for + or - values. If
+ or - signs are not used,
this space is wasted. FLAG 11
will save these spaces.

FLAG 21 Disables input escape
on carriage re~urn. This
allows you to use a carriage
return without causing the
program to abort and go into
immediate mode.

At the end of the program run,
FLAGS 9, 11 & 21 are reset to
the default values, namely III,
12, & 22. See LINES 511311 to
511511 •

PEEK [65] June, 1985 3

1 REM ==== ADS 2 0 e ==Copyri ght 1983 R. ROBERTS
~ REM 1?83 R. D. ROBERTS PIlB 336, FERNDALE, IIA 98248
3 REM --}}) FUlS EXPIRED ADS FOR DELETI~
4 REM - THIS PROSRAI! WILL READ ENTIRE ADS FILE AND
5 RIO" - I'IARK 'P IN FIRST TI() BVTES OF A RECORD IF
6 REM - IT IS EXPIRED, BASED ~ TODAY'S DATE-l
7 RIO" -
8 KfF8:Kl=1 : K2--2:K3=3:K4=4:K5=5:K6=6:K7=7:K8=8:K9=9
9 P9=1 :FLAS6:FLAS9:FLA611 :FlAS21:FORX=IT023:PRINT:IEXT
30 POKE 297£.,44:R9I ALlOW , TE~INATI~
31 GOSUB ~'Ite: REM FILL VARIWS ARRAYS
35 SP$=" ':SP$=SPS+5PhSPS+5PS+5PS+5PS
3(, S(l$:' ':SIlt=SIlS+SIl$+SIl$+SIl$+SIl$+SIl$
39 POJ(£ 297r., 13
40 CLOSE
50 PRINT'ADS2ee - FLAG EXPIRED ADS FOR DELETIIJ'j'
51 ~RINT LEFTS(SPS,r.t)
53 PRINT:PRINT'THIS PRlllRAII WILL FLAG EXPIRED ADS WITH A'
54 PRINT"AP' IN FIRST 00 PIlSITlIJiS OF TI£ AD RECORD, SO 'IIIIT '
55 PRINT"THEY CAN BE DELETED BY THE JlIIIS 1iIlEIJS'
5r. PRINT LEFTS(SPS,r.t)
57 PRINT:PRINT'- YIIJ SIIlIl.D HAVE BAOIEIl-UP YIllR FILE FIRST-'
58 PRINT
r.t T=PEEKCI4387) ,PlJl(EI4IIS7, 1T-6) :PlJl(EI591!8, 1T-6) : RBI. PRNTR CNTRL
£.1 INPUT'PRINT AUDIT IJ'j CIlNSIl.E(C) OR PRINTER(P) OR IllIT (o)';OS
~ IF QS='P' THEN DV=5
r.3 IF QS='C'TffN DV=2
&4 IF QS='O' THEN 511_
65 IF DV=9 THEN PRINT'lHIT' !':OO1or.l
66 POKE llfr.39, 255:PD<EZ873, 7£. _
70 PRINT: INPIIT'ENTER DELETII»I DATE (II!IDDJYYl'IDTS
71 IFlENtDT$) O8TI£NPRINT'Ht ILlER ENTRY Ht':BDT~9
72 IFMlDftDTS,3,1l O'J'Tl£NPRINT'Ht ILlESAL ENTRY Ht',001D78
73 IFMllltDT,6,1l O'J'THENPRINT'Ht ILLESAL ENTRY Ht',OO1D78
75 XU=RISHTt(DTS, 1) itEFU tDTS, 2) +fIIIl$ (DTS, 4, 211 RBI Yl9lDD
76 EX=VALmt):REM VAllI OF EXPlRATl1J'j DATE YIOIIlD
90 INPUT'ENTER DEVICE AD FILE IS ON' jMll$
9: IF ~OS()'A' AND MIl$(}'S' lIEN OO11I9Il
n DVi2)=PEEK(9832): IF DV(21) 127 TI£N OV(2)"OV(2H28+4
94 DEV MIl$
% iNPUT'WHAT FILE HAlE 'jm
110 ~N'=ll$:MN$='PASS'
; 18 ~N$=~$+'e':
; bel OPEN 1M, MPS, 11 RBI OPEN AD FILE
173 !:-IDEXtl)=I: INM ~1,Nt:
190 INDEX(ll=6: INM 111, TYI
m INDEX (1)=9: INM ~1,EIIDF:
220 INDEX (1)=20, INIItIT ~1,BIlIF,
'250 INDEXlI}=311 INIItIT ~I, RLI
260 INIlEXu}::.\2, INPIIT ~I,NR:
280 IF (EDDF (=BDDF)DRNR (tTI£r.ERJIt:o'F1LE EIIPTY"IOO1D48tIIlII
290 DIM At(20),Lt(20),FP(20I,RBI CIJ'lTENTS & POINTERS
389 INDEX (IJ=53:NoIINF"1 :TI=lITF=1
385 INIItIT~I, TS: INIItIT~I, T .
ll9 A'(N)=Tt:FP(N)=TTI REM FIELD LIlBELS AND DESCRIPTllJiS
320 IFINDEX (!)) =BOllFTI£N368
330 N=N+lINF=NF+1IR1OI! NF IS NlJlllER OF FIELDS
340 TT=TT + T: REN RIOCORD LENliTH
350 6DTD305
:l60 TY=0:REI! RECORD ttJIBER
700 Hl$='DElETIIJiS FRIlII AD FILE, EXPIRE DATE BEFORE '+OTt
720 GOSiJBJ8IlIlII:REM GET A REC
721 IF NN=I THEN 0010 951hRBI EOF DI»IE
723 IF DY--2TI£IM
725 IFPEEK(5908) (L+5Tl£N6DSUB735
72r. IFPEEKU591!8) (L+5TI£NFIlRX=ITDPEEK(!S9l!8) :PRINTIOV:IEXT:REllSKIPP6
727 IFPEEK U591!8) ((PEEK U44S71-L +5) TI£N889
728 PRINT'OV,ClfRt(4) ;TABUI) ;Hlt;
732 PRINT.OV, '-I PRINTED ~ 'jDrs
733 60SUB 735:REII HEADING
m 6OTO 800
735 REM
710 RIOTL'RN
8011 RE" -- FORMAT AUDIT
805 ~~lNT.DV
850 FOP. 1=1Tct4F

r

a~5 IF L$(lJ 0" AND Lsm () '9'TI£N PRINT'OV,At(I) ;TAB(29) ;Ltm
ar.e NEXT:
895 PRlt([.OV

4 PEEK (65) June, 1985

928 Svt="
949 GOTD 720
9S0 60SUB 735
990 CLOSEI :0010511_
.. RBI SEARDI ADS FILE
381!1!5 TX=(lYfRL)tBDDF: REM RECORD BE61NNINIi ADDRESS
.10 IF m=EODF lIEN NlPI:OOTD 3399Il:RBlIlL IDE
33109 INDEX(1)=TX:INIItIT~I,pt
33101 IF P$='AP' lHENTY=TY+lIOO1DJ881115
331(18 INDEX (1)=TX+fPTRU 11IINM~I,EXt
33111 IF VAL (EXt)) EXTI£NTY''TV+I:001DJ881115
33209 INDEX (J)=TX
3323(, FOR I=lTDNF
33237 INPUT~I,Lt()):REM GET ill FIELDS OF AD
33241l1EXTl
33389 REI! DETERIIIIE tUBER OF LIlES REIlUlRED THIS AD
333Il5 L=I
33318 Fill I=nlli=
33315 IF Ltm () .. AND Ltm () 'I'TI£N L=l+1
333211 rEXTl
3335Il INDEX m=ll
33351 PRINTtOV, 'INDEX: 'ITX
33360 PRINT~I,' AP',RBI FLAIl IT AS IDE
33379 TYaTY+I:RBI GET READY FDR IElT RECDRIl
33998 F I =1\1 : RETURN
48IIlIl REII- ERROR
.18 PRINTI PRINT ERRtI PRINTI CLOSE 11 0010 511_1 REM CIJIIDI EXIT P
S0ee8 DISK ERROR IMLER
:18818 ER=PEEKUl226h B."PEEK(1774)+PEEKU1775)t256

. 58125 RBI 011 FDR 'DWfEI. Il.READY OPEN ERROR'
5IlIt38 IF ER=I33 TI£N CUISE, OOTD B.
5il848 IF ER=128 TI£N ERJIt:o'INYIlID FILE NAME' I 0010 511158
SIIIIS0 IF ER=I32 TI£N ERJIt:o'OO OF FILE ERROR', OOTD 511l1l8
S0Il6Il IF ER=I38 TI£N ERJIt:o'ACCESS RISHTS YIIl.ATII»I'IOO1D 516
:iI!II78 IF EA=I29 TI£N ERRt='CIINIT ACCESS FILE 'I OOTD 511158
5L!875 REM IJTI£R ERRORS ARE HARD ERRORS
5I!I!8Il ERRt='DISC ERROR CODE '+STAt(ER)+' IN LII£ '+STAt (B.)
S0094 EA=8: Fill 1=4 TD I STEP -11 EII=EAt25Ii+PEEK(9889tlll IEXT I
:l889Ii OV(3)=PEEK(!I832h IF OV(3)) 127 TI£N OV(3)aDV(3l-128+4
5Il8!I8 PRINT'ERROR IllIEVICE '.atAt(OV(3)+65)+' AT DISC ADDRESS'IEA
51. REll-RROR EXIT
51028 CLOSE I
51848 REM ENTRY AT' 5111:!8' DIES 1m CL& TI£ DRIEl.
516 PRINT:PRINTIPRINT'- ERROR _': PRINTI PRINT
511!61l PRINT ERRS
51109 RBlI------- CIIIOI EXIT
51118 DEV DIRt lOV (2) +6511 RBI SELECT DR6IIR. IEVICE
51120 FLAG 61 R9I ENABLE PROORAII AIIIIRT IJ'j EOF HIT ERROR

- 51138 FLAG 22: REM ENABLE BASIC'S 1111. IIIIE
51148 FLAB 12: REM DISABLE SPIU SUPPRESSII»I

- 51159 FLAIl 181 REM ENABLE PAOORIII AIIIIRT 1»1 DISC ERROR
51152 REM FDRI=ITDPEEK U5988l:PRINTIDY,IEXTl
51155 STOP
511r.t RLN'RRCSYS', 'PASS'
~488 REM ~ILL IIiSC IIIRK ARRAYS
62411 DIM III (3),II2U3),""U3)
62428 FOR M=ITDI3:READ .. nll,lIl1M),1I2111l:1EXlII
~438 DATA JINIARY,.,.
62431 DATA FEIIIUlRY,31,31
~432 DATA 1IARCII,~,68
~433 IHITA APRIL, 90, 91
~434 DATA 1lIIY, 129, 121
~435 DATA JIIIE, 151, 152
~43(, DATA Jtl.Y,181,182
~437 DATA 1lBlST,212,213
62438 DATA SEPTEIIIIER, 243, 244
62439 IHITA OCrDER, 273, 274
62448 DATA NDVEIIBER, 384, 385
~441 DATA DECEMBER,334,335
~442 DATA YEAREND, 365, 3r>r.
r.3I!II0 RETURN

POKES

Certain memory locations are reserved for
holding values used by either the programmer
or the computer to accomplish different
tasks. For a fairly comprehensive list of
these reserved locations and their use, see
PEEK(65) March '83, Vol. 4 No.3, page 9.

•

•

•

•

•

•

THE DATA SYSTEM
• Stored Report Formats

• Stored Jobs, Formats, Calcs.

• Multiple Condition Reports

• Multiple File Reports

• Calc. Rules Massage Data

• Up to 100 Fields Per Record

HARDWARE REQUIREMENTS: 48K OSI. Hard Disk. serial
system. OS-65U 1.42 or Later; Space required: 1.3 megabytes
for programs and data.

• User Designed Entry/Edit Screens

• Powerful Editor

• Merges - Append, Overlay, Match

• Posting - Batch Input

• Nested Sorts - 6 Deep

• Abundant Utilities

PRICE: $650.00 (User Manual $35.00. credited towards TDS
purchase). Michigan residents add 4% sales tax. 30 day free
trial. if not satisfied. full refund upon return.

TIME & TASK PLANNER
30 DAY FREE TRIAL - IF NOT SATISFIED. FULL REFUND UPON RETURN

• "Daily Appointment Schedule" • Work Sheets for all Aspects

• "Future Planning list" - sorted • Year & Month Printed Calendar

• "To Do .List" - by rank or date • Transfers to Daily Schedule
A SIMPLE BUT POWERFUL TOOL FOR SUCCESS

HARDWARE: 48K OSI, 8" floppy or hard disk, serial terminal PRICE: $300.00 (User Manual, $25.00, credited toward TTP
system, OS-65U v. 1.3 or later. purchase). Michigan residents add 4% sales tax.

FINANCIAL PLANNER
• Loan/Annuity Analysis
• Annuity 'Due' Analysis
• Present/Future Value Analysis

HARDWARE REQUIREMENTS: 48K OSI, 8" floppy or hard
disk, serial terminal system. OS-65U v. 1.2 or later.

DEALERS: Your Inquiries Most Welcome

GANDER SOFTWARE, Ltd.

• Sinking Fund Analysis
• Amortization Schedules
• I nterest Conversions

PRICE: $300.00 (User Manual, $25.00. credited toward
Planner purchase). Michigan residents add 4% sales tax.

FROM THE FOLKS WHO BROUGHT YOU:
All This
THERE IS MORE COMING SOON: 3223 Bross Road

"The Ponds"
Hastings. MI 49058
(616) 945-2821 "It Flies"

Program Generator lor TOS
Proposal Planner
Time and Billing AIR

PEEK [65) June, 1985 5

The POKEs (loading these lo
cations) and PEEKs (looking at
these locations) that I used
in these programs, are the
following, with explanations
as to their use.

LINE 30 POKE 2976,44 This
causes the computer to stop
its reading or printing when
it encounters a comma (,). As
an example, on a mailing la
bel, Jones, Ralph would be
printed as Jones.

LINE 39 POKE 2976,13 This
allows commas
and, therefore,
would be printed
POKE 2976,44).

(,) on input
Jones, Ralph

(reverse of

LINE 60 T=PEEK(14387) Memory
location 14387 holds a value
(usually 66) of lines per page
(device 5).

POKE l4457,(T) 14457 holds a
value (in this case T (66)) of
lines per page to be printed.
If you wanted to type 60 lines
per page, you could POKE
14457, (T-6) •

POKE 15908,(T) This location
holds a value of lines per
page not yet printed. This
value is initially set with
(T),'which is to say 66, and
is decremented each time a
line is printed and then reset
to 66 at the start of the next
page. You will set this value
equal to the value in location
14457.

LINE 66 POKE 14639,255 & POKE
2073,76 location 14639 holds
either a 0 or 255. A zero (0)
in this location means that if
you should input a (CNTRL) 0,
nothing else can be input
until another (CNTRL) 0 is
input. A 255 in this location
disables the escape.

LINE 92 Location 9832
value of current disk
0=A,1=B,2=C, etc ••

holds
drive,

LINE 50010
holds disk
11774 & 11775
of error, (as
LINE 3010).

Location 10226
error number.

hold line number
in BS e,r ror in

In LINE 725, the computer is
told to look at the value in
memory location 15908 (lines
not yet printed) and if the
value is less than L (total
number of lines in current
record to be printed) (see
LINE 33300) less 5 (for bottom
margin) then go to the sub
routine at LINE 735 which
prints a ===== line across the
page and then returns to LINE
726.

In LINE 726 th. computer is
told to skip to the next page

6 PEEK [65] June, 1985

if less than enough lines
remain to print the record.

In LINE 727 the computer is
told that if the lines not yet
printed is less than 66 minus
the number of lines to be
printed plus the 5 line mar
gin, then format the record to
be printed (see LINE 800) •

Next time, I will go into file
opening, loading, and handling
under OS65-U and explain why
we use one or two Data files,
ADS and Class. For a better
understanding of these pro
grams, and what is possible in
the way of expansion, do not
delete the extraneous lines.

*
BEGINNBR' S CORNBR

By: L. Z. Jankowski
Otaio Rd 1, Timaru
New Zealand

STOP THE DWARVEI
Part 2

Last month's article described
how to create the store data
efficiently, particularly for
programs using graphics. A
single FOR ••• NEXT loop was all
that was required to test that
the graphics printed as ex
pected. Having established
that the data behaves cor
rectly, it is time to develop
the rest of the program.

CHOICE

In the CHOICE block the deci
sion is taken whether or not
to play against the computer.
If the choice is "Yes" three
degrees of difficulty are of
fered in the next block - see
lines 290-320. The program
then reads in the ,appropriate
file of words from disk. How
to create the three files of
words will be described next
month.

GET A KEY

In DOS 3.3 the halting get-key
routine is at $2336. DOS 3.2
users will need to change, in
line 320, "2336" to "252B".
And in line 330 change "9059"
to "9815". CIP users replace
'DISK1"GO 2336"', with "POKE
11,0: POKE 12,253: X=USR(X)",
and in line 330 change "9059"
to "531".

When testing which key has
been pressed, it is worth re
membering that the VAL func
tion sets to zero the value of
all non-numeral key presses
see line 330.

"Z*" in line 340 see last
month's WAZZAT article for a
full description of what "Z*"
does.

READ A FILE

The TRAP command in line 350
transfers program control to
line 1650 when there is a disk
error. Without TRAP the pro
gram would stop, with control
passing to immediate model A
program without disk error
trapping is very unfriendly.

The program will read, from
disk, a file of words and
store them in array W$. The
trick now is to choose these
words at random but not to
choose the same word more than
once. To do this it is neces
sary to understand how the RND
function works.

RND FUNCTION

First of all RND(0) will al
ways return the same number, -
no use at all here. (But see
final paragraph.) RND(l) will
always return a different
number. (Changing the n 1" in
RND(l) does not change any
thing - it is a dummy argument
for RND.) The number produced
by RND is always less than
one.

Assume that NW=99 and V=0. A
quick test reveals that the
largest number returned by
INT(100*(RND(1)) will be 99,
i.e., one less than the 100.
(The largest value that can be
returned by RND(l) is
0.9999999991). It follows
then that the largest value
that can be returned by INT
(N*(RND(l)) will always be
N-l. So in line 430 a random
number, at least one less than
100, is calculated and stored
in "Y", i.e., Y=NW-V+l. If
NW=99 and V=0 then the largest
value that "y" can take is
also 99.

As an example, imagine that
the number. caiculated by
INT(100*(RND(1)) and stored in
Y, is 50. Y-50. The Seth
word in array W$ is now stored
as the chosen word in WD$.
That 50th word in array W$ is
selected by the number stored
in R(50), R(50)=5e. ("R" is
an array.) How come R(5e) has'
a "50" stored in it? Because
it was put there back in line
130 with, FOR C=0 to NW
R(C)=C M: NEXT.

What a crazy way to do thingsl
But waitl The next step is to
remove the "50" stored in
R(50) and substitute for it
the 99 held in R(99). Or more
generally, R(Y)=R(NW-V). In
our example, R(50) <-- 99,

•

•

•

•

•

•

(i.e., the 99 stored in
R(99)). There is no way that
the 5~th word can be selected
againl

But what about the n99 n? It
is now stored in nR{5~)n and
in nR(99)n. Truel It is a
simple matter to ensure that
the nyn can never be 99. Add
1 to nV n and the maximum value
that nyn can now take from
INT{ (NW-V+l)*RND{l)) is 981
Remember that "99 n has been
substituted for n5~ft in R{5~),
and will be found next time
y=5~.

If you are still puzzled, try
this little program,

l~ DIM N(99)
2~ FOR C=~ TO 99: N{C)=C: NEXT
3~ FOR C=~ TO 99
4~ X=INT{{l~~-C)*RND{l»)
5~ PRINT N{X);
6~ N{X)=N{99-C)
7~ NEXT

You will see
numbers from
chosen once
random. Phew I

that
~ to
only

INPUT A WORD

all
99
and

the
are
at

If the word to be guessed is
input from the keyboard then
its maximum length is fixed at
2~ in the FOR ••• NEXT loop in
line 48~. What follows in
line 48~ may be puzzling. I'm
afraid it's thinking caps on
againl

The keyboard-input subroutine
beginning in line 99~ will
reject all non-alphabet char
acters and print an error
message at the bottom of the
screen. This subroutine is
called in line 49~. As each
character is accepted it is
printed on line 13. The trick
here is to remember the cursor
position when an error is
made. The error message is
printed at the bottom of the
screen, but at the next
correct input the cursor must
return to its previous posi
tion on line 13.

This can be done in DOS 3.3
with the PRINTI(5) command,
see line 48~. The cursor's
screen position is input to Y$
with INPUT Y$. Y$ stores two
characters, one for the X
coordinate and one for the Y
coordinate. If nY$=MFn then
X=77-65=12 and Y=7~-65=5.
(ASC{nM ft)=77 and ASC{nFn)=7~.)
A PRINT&{12,5); will return
the cursor to its correct
position. To avoid the cursor
bobbing up and down a cursor
up command is required,
PRINTI(12); - see line 49~.
Have a look at Listing 2 if
you wish to experiment with

220 REM ---------------------CHO ICE----------------------------
230 PRINT Clj&19,4I'Hello S.iler!·~114,ai6$
2401=2: V=13: PRINT &11,VI"Would "IOU like the computer": i=15
250 PRINT &1X,Vl'to choose a word, Yes"Lllj: GOSUB HO: JI=/$: PRltll CI
260 IF J$='n' THEN 470
270 :
2ao REM -------------READ A FILE OF WORDS OFF DISK-------------
290 PRINT !1111!1111" HON difficult Nould you like"~19,6I'the Nords?"
300 PRINT &114,9161&13,131'1) Kids stuff.'&i3,ISI'" Average.'
310 PRINT &13,171'3) I'm writing a dictionary."
320 PRINT &IO,20I'Which ? t'LI;: DISK !'GO 2336'
330 V=VALICHRIIPEEKI9059111: IF y=o OR Y>3 THEN PRINT CI:: GOTO 290
340 PRINT CS;&10,22I'1 Reading file ;'Y"(irol disk I';: 11
350 TRAP 1650: DISK OPEN,6,YSIYl: INPUT 16,T
360 IF nNW THEN PRINT Clj&la,91'File too large.": DISK CLOSE,6: GOTO 1360
370 NW=T: FOR C=O TO T: INPUT t6,WIICI: NEXT : DISK CLOSE,6: 11: PRINT CI
3aO TRAP 1670: GDTo 430
390 :
400 RE" ------------------INPUT A NORD-------------------------
410 IF DNt=' , THEN 1290
420 FOR K=O TO 2b: oIKI=O: NIKI=O: PI~I=O: NEXT: WDI=": IF JS='n' THEN 470
430 Y=INTlINW-V+IIIRNDIIlI: WDS=WIIRIYII: RIYI=RINW-VI: V=V+I: T=LENIWDSI
440 IF V)NN THEN V=O: FOR C=O TO NW: RICI=C: NEXT
450 FOR C=I TO T: WICI=ASCIKIoSIWDS,C,11I DR 32: PIC)=C: NEXT : 6oTO 5bO
4bO :
470 POKE 1302b,241: PRINT &12,lll'What is your Nord please ?'!IIII!tIIIRI
4BO FOR C=I TO 20: PRINT 'lSI: ltIPUT H: F=ASCtnH5: P=ASCIRI6HTS(Y$,IlI-b5
490 PRINT !!121;: GOSUB 990: PRINT &IF,Plj: IF i=B THEN GoSUB lOBO: GOTO 530
500 IF Y=45 AND C<3 THEN 490
510 IF Y=45 THEN C=20: GoTo 530
520 PRINT YI;: T=C: WICI=Y: PICI=C: WDI=WDS+CHRS(y)
530 NEXT C: POKE 1302b,32: IF WDS='EXIT' THEN 1360
540 :
550 REM -----------------PRINT SCAFFOLD-"----------------------
5bO PRINT CI: F=I: L=30: GOSUB 1050: it="': FOR C=I TO T: it=Y$+'-': NElT
570 PRINT &!1,14IYI&123,16ICHRI1222J&10,IIDWUII,4ISTS: F=31: L=35
5BO P=O: A=I: !t=P31: GOSUD 1150: 60SUD 12bO
590 :
bOO REK --------INPUT A CHARACTER & CHECK IT LooP-------------
blO FOR C=I TO R
b20 GOSUD 990: IF Y<97 THEN b20
b30 FOR K=I TO R: IF Y=DIKI THEN K=R: NEXT K: ZS=P$+CHRSIYl+QS: GOSUB 1150: GOTO 620
b40 NElT K
b50 FOR K=I TO T: IF Y=WIKI THEN PRINT lIPIKI,14ICHRSIWIKII: KI=K: P=P+l
bbO IF P=T THEN K=T: NEXT K: C=R: NEXT C: GoSUD 1170: 60SUB 1190: GOSUB 1260: GOTO 410
b70 NEXT K: DIAI=Y: A=A+I: IF V=NIKIl THEN l$=PlS: GoSUB 1150: GoTo 620
bao 1$=P2S: GOSUB 1150: PRINT & 12b, 191 R-C: IF C=R-I THEN PRINT ~ t IB, 6i "Help l'
b90 GOSUB 1050: : L=L+I: F=L: IF C=5 THEN GOSUB 1230: TI=T2
700 IF C}R-5 THEN PRINT ~IM,NIFS: "="+1: N=N-I: PRINT &IK,NI6$
710 NElT C
720 :
730 REK =================WORD NOT GUESSED! =====================
740 PRINT &19,231 'THAT'S IT!"RSj: IF LEN(DWI)(20 THEN OWI=DWHGS
750 :
7bO REK --PRINT DWARVE, THROW PIN, FLASH EYES, DROP TRAP OOORS-
770 GoSUB 12bO: F=45: L=45: GoSUB 1050: GoSUB 1260
780 :
790 1=23: Y=lb: FOR K=I TO 4: FOR C=I TO 4: PRINT &il, YiF$
800 FOR P=I TO 50: NEXT P: 1=1-1: Y=H: PRINT &iX,YICHRI1224-Ci
BIO FOR P=I TO 50: NEXT P,C,K: PRINT.&!X,YIFIW,OICHRIi14:I&t7.IIHI
B20 :
B30 1=25: Y=5: FOR C=4 TO 20 STEP 2: PRINT &(X,IICI1531: FOR K=I TO 99: NEXT V.

B40 PRINT &11,YICI1331: FOR K=20001ICILOSICI) TO I STEP -I: NEll K,C
B50 :
abO F=4b: L=52: GoSUD 1050: GoSUB 1260
B70 :
BBO REM -----------DRoP FIGURE, MAKE DWARVE JUKP---------------
a90 FOR C=3 TO b: PRINT &l25,CICI1291: NEXT : F=31: L=44: FOR C=F TO L
900 PRINT &!XICI,VICI+4ICfICI: NElT : PRINT &125,11lC11541&125,91[1(53)
910 :
920 P=IOO: FOR C=I TO 400: NEXT: FOR C=I TO 5: PRINT &122,16IFS: FOR K=I TO P: !lEXT K
930 PRINT &122,14IHS: FOR K=I TO P: NEXT K: PRINT &m,14IFI: FOR K=I TO P: NEll r:
940 PRINT &122,lbISI: FOR K=I TO P13: NEXT K,C: FOR C=I TO 4000: NEXT
950 GOSUB 1190: 60SUB 1260: GOTO 420
9bO :
970" REM =================SUBRoUlTNES=:=========================
9BO REM c------------------GET A KEY---------------------------
990 DISK !'GO 233b': Y=PEEK190591 DR 32: H=CHRsm: IF Y=D THEN V=D
1000 IF' Y=E THEN RETURN
1010 IF V(B OR Y>G THEN Z$=P3$: SOSUB 1150: GoTD 990
1020 RETURN

PEEK [65) June, 1985 7

1030 :
1040 RE" --------------PRINT A PICTURE-------------------------
1050 FOR Q=F TO l: PRINT L(llQl,Y(QIICS(QI: NElT Q: RETURN
lObO:
1070 REM -------------ElTENDED INPUT B/SPACE-------------------
1080 IF lEN(WD$)(2 THEN MDS=": GOTO 1100
1090 WDS=lEFl$(MDS,lEN(NDS)-1I
1100 T=T-1: IF C)1 THEN PRINT lS" 'lS;
1110 [=C-2: IF CO THEil CoO
1120 RE fURN
1130 :
1140 RE" ---------------PRINT A MESSAGE------------------------
1150 PRINT L(4,231l$RS;: GOSUB 1260: PRINT LIO,231'(15);: RETURN
1160 :
1170 PRINT L(18,6I'Saved!': GOSUB 1260: DNS=lEFTf!DWS,lEN!DNSI-II: RETURN
1180 :
1190 PRINT CS;L(9,2I'The Nord was': Y=lEN(ND$): X=(31-Y112
1200 PRINT L!X,4)NDS: FOR C=1 TO Y: PRINT L(I+C-I,SI "-': NElT C: RETURN
1210 :
1220 m ----------------DWARF PUSHES STEP---------------------
1230 H=30: N=21: FOR M=O TO 16: PRINT L(M,N)SS: FOR K=1 TO HI2.5: NEXT K
1240 PRINT LI",NIF$: FOR K=I TO H: NEXT K,M: PRINT &(M,NIG$+U: RETURN
1250 :
1260 FOR G=I TO TI: NElT Q: RETURN
1270 :
1280 REM - ----------- - ----- ----END-----------------------------
1290 GOSUB 1260: PRINT CS;L(S,71"Congratulations!'
1300 PRINT & ii, 101 'You're vocabulary and spelling'
1310 PRINT LIS, 12)' are rea II y excellent!"
1320 PRINT &12,19)'Play again? ';: GOSUB 990: IF YS='n' THEN 1360
1330 PRINT CS! m,9, 11l"Please wait. ': STf=Sl$+CHRS(42)
1340 FOR C=1 TO 5: DMS=DN$+GS: NElT : Y=FREm: GOTD 420
1350 :
1360 PRltlT CS!i17,9,1I)'Bye for now!': GOSUB 1230: GOSUB 1260: POKE 13026,171
1370 PRINT L(M,NIFSL(M+l,NIHSL(M+I,N-IIULIO,OI;: POKE 2073,173: II: END
1380 :

5 REI'! Listing 2
10 PRINT ! (28)
20 PRINT: PRINT: PRINT: PRINT :. PRINT "Cursor position is ";
30 PRINT! (5): INPUT Y$: F=ASC(Y$)-65: P=ASC(RIGHT$(Y$,1»-65
40 F'RINT ! (12) &(F,P) Y$, F, P

sending the current cursor
address through the keyboard
driver.

The length of the input word
is stored in nT n in line 529,
Array nWn stores the word as
lower case ASC values. Array
npn stores the position of
each character of the word.
Array nD n stores the values of
guessed characters.

GRAPHICS PRINT

Printing of all graphics is
done in line 1959. Just two
values, F and L, need to be
passed to this subroutine and
the work is done. It is a
simple matter to control the
printing of the figure: set F
to L and increment L by one
see line 699. Redrawing the
figure lower down is straight
forward too, merely add 4 to
the nyn coordinate - see line
999. Some graphics are drawn
by their own little routine.
For example, the dwarve jump
ing up and down, done by lines
929-949.

STRUCTURE

Once the preliminary proce
dures have been executed, the

8 PEEK [65) June, 1985

program ~uns in lines 419 to
959 with calls to subroutines
as required. Branching is
always forward unless an un
~voidable loop ih required.
All subroutines and data
follow the main body of the
program, where they can be
quickly identified if need be.

RND REVISITED

Try this program -

19 Y=RND(9)
39 PRINT Y
49 GOTO 19

Now insert this line

29.A=RND(-A) : REM reset seed
value for RND function.

Notice how the
in two streams
zero. Anyone
the results?

values increase.
and go through
care to graph

* ASK-SHARED POIR'.rERS

By: D. G. Johansen
P. O. Box 252
La Honda, CA 94920

Indirect addressing is a very

powerful programming tool. In
this article, a comparative
study will be presented illus
trating the benefits of indi
rect addressing for a common
ASM routine-clearing the video
screen.

Those of you familiar with ASM
(Assembly Language) program
ming already know that indi
rect addressing refers to a
page zero location (called a
pointer) to Und the actual
address used by the associated
opcode. The term ntwo-byte n
instruction is often used to
refer to indirect opcodes.
The first byte contains the
opcode while the second byte
contains the page-zero loca
tion where the actual address
is contained. This is to be
compared with the absolute or
-three-byte- instructions that
contain the actual address in
the second and third bytes.

Listing 1 shows ABSCLR, a
clear routine using absolute
addressing. This routine ap
pears in the C4P Operators
Manual and should be familiar
to many readers. In this
routine, three instructions
use absolute addressing. In
line 99, bytes two and three
contain the video address
where the contents of register
A are stored. Lines 139 and
189 modify the video address
by changing the value of byte
three in line 90.

Although this routine does the
job, there are two major prob
lems, both stemming from use
of absolute addressing. First,
the code will not function if
stored in ROM (Read-Only
Memory). It is desired that
video routines be ·dedicated to
ROM so that they are available

.at power-on. Second, absolute
addressing does· not promote
-" ini'ormationshar ing.·n We are
interested in building a video
window facility and would like
to have several routines
(e.g., CLEAR, SCROLL, DUMP,
etc.) use a common video add
ress base. Such an address
base could be modified to cre
ate windows of arbitrary size
and location on the screen.

Listing 2 shows INDCLR which
uses indirect addressing to
accomplish the same clearing
function. All necessary video
address information is stored
in page zero where it is
accessed via indirect instruc
tions. For example, BEGSCR
(at $68) specifies the upper
left corner of the screen.
Other page-zero locations
point to screen locations
where output is to be printed.
Also, screen size and blank
character are specified at

•

•

•

•

•

•

TURNS ANY FLOPPY BASED COMPUTER INTO HARD DISK BASED, INSTANTLY.

• PLUGS INTO ANY OSI TYPE BUS
• ONE RIBBON CABLE CONNECTS

TO DRIVE
• COMPLETELY SELF CONTAINED
• 32 BIT ERROR DETECTION AND

CORRECTION
• HAS REAL TIME CLOCK

·CALENDAR W/BATTERY ON SCSI
ADAPTER BOARD

• CAN BOOT DIRECTLY FROM OSI
505/510 CPUs OR DENVER BOARDS
W/SCSI PROM

• IDEAL BACK-UP FOR ALL OSI HARD
DISK COMPUTERS

The SPACE-COM SUPER SUBSYSTEM Uses 51f4" Industry Standard Hard Disk drives interfaced to
the OSI bus by the DS-1 SCSI Host Adapter Board at the computer end and the state of the art OMTI
5000 series Intelligent Disk/Tape Controllers at the disk end. The Denver DS-1 Board not only pro
vides the Bus Translation, but gives Real Time of Day, Day/Week, AM/PM, and Day/Mo. With on
board battery, Date and Time are maintained w/o power.

The chassis is beautifully engineered with
lighted on/off switch, standard a/c cord, and
insulated spade terminals for easy service. A
Corcom Emi Filter is incorporated in the alc
jack, and power is provided by an extremely
efficient switching power supply. The case is
also available in dual, side by side configura
tion and looks like an IBM PC box. It incor
porates a larger power supply and can support
2 Winchester drives, or 1 drive and tape, or 2
5" floppies in place of one of the above.

Drives can be accessed from any single or
multi-user OSI system by running an overlay
program on that partition, or can be booted
directly by replacing current ROM/PROM with
our SCI 500 PROM, available for $49.00 extra.

Single 20 M/B drive (15.7 formatted) Single case $1,999.00
Single 26 M/B drive (21 formatted) Single case $2,199.00
Dual 20 M/B drives (31.4 formatted) dual case $2,999.00
Dual 26 M/B drives (42 formatted) dual case $3,299.00
Super Fast 85 M/B drive (70 formatted) Single case' $3,999.00
Dual 85 M/B drives (140 formatted) dual case $6,699.00

SPACE-COM International
14661A Myford Road, Tustin, CA 92680 (714) 731·6502

PEEK [65] June, 1985 9

page-zero locations $6E
$71.

to

In INDCLR, line 250 contains
the indirect instruction which
clears the screen. When this
op~~de is executed, the actual
address is computed by adding
the Y-register value to the
pointer address. This is
called indirect-indexed add
ressing since the pointer
value is offset (indexed) to
compute the actual address.
Notice that a temporary point
er is used for the actual
clearing. This is initialized
to the upper-left screen add
ress which is preserved during
the clear operation.

With indirect addressing,
page-zero pointers must be
loaded with correct address
values. Otherwise, random
areas of memory may be erasedl
Listing 2 contains a short
routine (starting at INIZ)
illustrating page-zero in
itialization for half-screen
c4p operation. Alternate val
ues for CIP are also given.
Notice that the code is un
changed (i.e., portable) with
machines having different
screen addresses. The code is
actually functional in any
6502 machine such as APPLE II,
C64, ATARI, etc., given cor
rect page-zero initialization.

HIGH-LEVEL ACCESS

Page-zero values may also be
initialized using high-level
language. For example, BASIC
would use a series of POKEs to
the page-zero locations used
by INDCLR to define a window
with position and size deter
mined by the user. Subsequent
calls to the clear routIne
would clear only the selected
window area. The window is
modified by changing only
page-zero values.

For the past year, I have used
a programming system, called
BETA/65, which has improved
machine access instructions.
In addition to PEEK and POKE,
DPEEK and DPOKE are available,
allowing pointer modification
with one instruction. In
addition, LINK to ASM code
(such as INDCLR) is provided.
This is a vast improvement
over USER(X), which is used by
BASIC to access machine code.

CONCLUSIONS

Check your ASM routines for
absolute (three-byte) instruc
tions. Recoding these rou
tines to use indirect (two
byte) instructions will im
prove code portability and
permit "information sharing"
of page-zero data. (Note that

IB PEEK [65] June, 1985

10
20
30
40 A000
50 A000 A920
60 A002 A008
70 A004 A200
80
90 A006 9D00D0

100 A009 E8
110 A00A D0FA
120
130 R00C EE08R0
140 R00F 88
150 R010 DF4
160
170 A012 A9D0
180 R014 8D08A0
190 R017 60

10
20
30
40 0068-
50 006A-
60 006C-
70
80 006E=
90 006F-

100 0070-
110
120 0071-
130
140 00AA=
150
160 A000
170 A000 A568
180 A002 85AA
190 A004 A56'3
200 A006 85AB
210
220 A008 R66F
230 A00A A571
240 A00C A46E
250 A00E 91AA
260 A010 88
270 A011 10FB
280
290 A013 18
300 R014 A570
310 A016 65AA
320 A018 85AA
330 A01A 9002
340 R01C E6AB
350
360 A01E CA
370 A01F 10E9
380
390 A021 60
400
410
420 A022 A209
430 1'1024 BD2DA0
440 A027 9568
450 A029 CA
460 A02A 10F8
470 A02C 60
480
490 A02D 00D0
490 R02F 08D5
490 A031 08D5
500 A033 3F
500 R034 14
500 R035 40
500 A036 20
510
520 A037 8BD0
520 A039 DIDI
520 A03B DIDI
530 A03D 2F
530 A03E 05
530 A03F 40
530 A040 20

LISTING 1

ABSCLR-CLEAR VIDEO SCREEN
USING ABSOLUTE ADDRESSING

*='1'1000
lDA •• 20
lDY 118
lDX 110

BLANK STA 'D000,X
INX
BNE BLANK

INC BlANK+2
DEY
BNE BLANK

lDA .. D0
STA BlRNK+2
RTS

LISTING 2

LOAD BLANK CHARACTER
LOAD PAGE COUNT
ZERO COLUMN COUNTER

STORE BLANK TO SCREEN
INCREMENT COLUMN COUNT
LOOP FOR FULL PAGE'

INCREMENT PAGE COUNTER
DECREMENT PAGE COUNT
lOOP FOR FULL'SCREEN

RESET SCREEN ADDRESS
TO INITIAL VALUE
RETURN TO CALLING PROG

, INDClR-ClEAR VIDEO SCREEN
, USING INDIRECT ADDRESSING ,
BEGSCR-.68
RESET -.6A
OUTPUT-.6C ,

UPPER-LEFT SCREEN ADDRESS
OUTPUT RESET ADDREBS
OUTPUT DISPLAY ADDRESS

NCOl -.6E
NROW =.6F
lROW -.70
I

NR OF COLUMNS LESS ONE
NR OF ROWS LESS ONE
ROW-TO-ROW INCREMENT

BLANK =S71 BLANK CHARACTER
;
TEMP =.AA ,

*='1'1000
lOA BEGSCR
STA TEMP
LDA BEGSCR+I
STA TEMP+I

lDX NROW
ROWClR lOA BLANK

lDY NeOl
COlClR BTA CTEMP),Y

DEY

RET ,
I

BPl COlClR

ClC
lDA lROW
ADC TEMP
STA TEMP
BCC *+4
INC TEMP+I

DEX
BPl ROWClR

RTB

lOAD SCREEN ADDRESS
I INTO SCREEN POINTER

DITTO FOR HIGH BYTE

INIZ ROW COUNTER
LOAD BLANK CHARACTER
INDEX TO COLUMN END
STORE BLANK TO SCREEN
DECREMENT COLUMN COUNT
UNTil All COLUMNS CLRD

ADD ROWLENGTH TO SCREEN
ADDRESS TO OBTAIN FIRST
ADDRESS OF NEXT ROW
SAVE AT TEMP
TEST FOR CARRY INTO
NEXT PAGE OF SCREEN

DECREMENT ROW COUNTER
UNTil All ROWS'ClEARED

RETURN TO CAllING PROG

INIZ lOX IIBlANK-BEGSCR
lOOP lDA H32X64,X I USE HI2X48 FOR CIP

STA BEGSCR,X

I

DEX
BPL lOOP
RTS

H32X64 • WORD '0000, '0508, .0508

.BYTE 63,20,64,32

,
HI2X48 .WORD .D08B,.DID1,.D1Dl

.BYTE 47,5,64,32

three-byte opcodes JMP and JSR
do not have two-byte equiva
lents.)

with indirect code as page
zero must be properly initia1-'
ized. However, the benefits
greatly outweigh the minor
overhead penalty. There is additional overhead

* *

•

•

•

•

•

WAZZAT CORIiER I

By: L. Z. Jankowski
Otaio Rd 1, Timaru
New Zealand

This month, how to make a new
character generator for the
Superboard, or indeed for any
OSI computer.

The graphic characters in the
OSI PROM character generator
(CG) are great, but the ASCII
characters can be improved
upon. Their readability, par
ticularly on a ClP, is not as
good as it could be.

The hex dump, listed here,
provides a modified character
set for upper and lower case
letters. The first 8 bytes of
the dump, all zeros, consti
tute the character #32. The
final character is ·z", at
$53DO. The advantages of the
new character set are: an
extra row of blank dots be
tween rows of characters~ 'all
descenders are two (not one)
dots deep~ all lower case
characters are now of an even
height. Lines of text are now
much easier to read since they
are wider apart. The number
of lines that can be seen on
the screen is, of course, not
affected.

Every character is represented
by eight bytes in the charact
er PROM. The 8 hex bytes for
"z" are: B, 3E, lB, B8, B4,
3E, B, B. To see how they are
calculated, examine the dia
gram for nz".

The numbers in the horizontal
row represent powers of two.
From "2 to the power of zero·
(=1), to n2 to the power of
seven n (=1281.' There are no
dots in row B. Therefore, for
"zn, the first byte for the
first row must be B. In row 1
the dots are in columns 1 to
5. This produces the value 62
(=2+4+8+16+32) i and equals $3E
in hex. Row 2 is n2 to the
power of 4n (=16), or $lB in
hex. The next· 'five rows
produce the values of 8, 4, 62
again, then B and B. All 256
characters can be calculated
in the same manner,.

The CG PROM occupies 2K bytes
(=8*256) and so a new CG can
be programmed into a 2716
EPROM. The CG PROM, in older
Super boards at least, is a
2316 chip. The 2316 can be
read as if it was a 2716 if
its pin 18 is connected to 5v
DC. (Bend pin 18 out with
long-nose pliers and hook to
5v) • Any EPROM programmer
should then be able to read a
2316. This can be done on the
OSI programmer with its sup
plied software. If with the

o 2 3 4 5 6 7 8 9 ABC 0 E F
5100 00 00 00 00 00 00 00 00 08 08 08 08 00 08 00 0(,
5110 14 14 14 00 00 00 00 00 14 14 3E 14 3E 14 00 00
5120 08 3C OA 1C 28 IE 08 00 00 26 10 08 04 32 00 00
5130 04 OA 04 2A 12 2C 00 00 08 08 08 (,0 00 00 00 00
5140 10 08 04 04 08 10 00 00 04 08 10 10 08 04 00 00
5150 08 2A lC 08 lC 2A 08 00 00 08 08 3E 08 08 00 00
5160 00 00 00 00 08 08 04 00 00 00 00 3E 00 00 00 00
5170 00 00 00 00 00 08 00 00 00 20 10 08 04 02 00 00
5180 lC 22 32 2A 26 lC 00 00 08 OC 08 08 08 lC 00 00
5190 lC 22 20 lC 02 3E 00 00 3E 20 18 20 20 lE 00 00
51AO 10 18 14 12 3E 10 00 00 3E 02 IE 20 20 lE 00 00
51BO 3C 02 IE 22 22 lC 00 00 3E 20 10 08 04 04 00 00
51CO lC 22 lC J..",- 22 lC 00 00· lC 22 22 3C 20 IE 00 00
5100 00 00 08 00 08 00 00 00 00 00 08 00 08 08 04 00
51EO 00 08 04 02 04 08 00 00 00 00 3E 00 3E 00 00 00
51FO 00 08 10 20 10 08 00 00 lC 22 10 08 00 08 00 00
5200 lC 22 2A 3A 1A 02 3C 00 lC 22 22 3E 22 22 00 00
5210 lE 22 'lE 22 22 IE 00 00 lC 22 02 02 22 IC 00 00
5220 IE 22 22 22 22 lE 00 00 3E 02 lE 02 02 3E 00 00
5230 3E 02 lE 02 02 02 00 00 3C 02 02 32 22 3C 00 00
5240 22 22 3E 22 22 22 00 00 lC 08 08 08 08 lC 00 00
5250 20 20 20 20 221C 00 00 12 OA 06 06 OA 12 00 00
5260 02 02 02 02 02 3E 00 00 22 36 2A 2A 22 22 00 00
5270 22 26 2A 32 22 22 00 00 1C 22 22 22 22 lC 00 00
5280 IE 22 22 IE 02 02 00 00 lC 22 22 22 2A 14 20 00
5290 IE 22 22 IE 12 22 00 00 lC 22 OC 10 22 lC 00 00
52AO 3E 08 08 08 08 08 00 00 22 22 22 22 22 lC, 00 00
52BO 22 22 22 22 14 08 00 00 22 22 2A 2A 36 22 00 00
52CO 22 14 08 08 14 22 00 00 22 22 14 08 08 08 00 00
5200 3E 10 08 04 02 3E 00 00 3E 06 06 06 06 3E 00 00
52EO 00 02 04 08 10 20 00 00 3E 30 30 30 30 3E 00 00
52FO 00 00 08 14 22 00 00 06 00 00 00 00 00 00 3E 00
5300 .00 00 00 00 0000000000 2C 32 22 32 2C 00 00
5310 02 1A 26 22 22 lC 00 00 00 3C 02 02 02 3C 00 00
5320 20 2C 32 22 22 lC 00 00 00 lC 22 IE 02 1C 00 00
5330 10 08 lC 08 08 08 00 00 00 2C 32 22 32 2C 20 1e
5340 02 lE 22 22 22 22 00 00 08 00 OC 08 08 1C 00 00
5350 10 00 10 10 10 10 10 OC 02 12 OA OE OA 12 00 00
5360 OC 08 08 08 08 lC 00 00 00 16 2A 2A 2A 2A 00 00
5370 00 lE 22 22 22 22 00 00 00 lC 22 22 22 lC 00 00
5380 00 lA 26 22 26 lA 02 02 00 2C 32 22 32 2C 20 20
5390 00 lA 06 02 02 02 00 00 00 3C 02 lC 20 lE 00 00
53AO 08 3E 08 08 08 08 00 00 00 22 22 22 22 3C 00 0('
53BO 00 22 22 14 14 08 00 00 00 22 22 22 2A 14 00 (10
53CO '00 22 14 08 14 22 00 00 00 24 24 24 24 38 20 IC
5300 00 3E 10 08 04 3E 00 00

01234567
o
1 •••••

2 •
3 •
4 • 5 •••••
6
7

OSI programmer, memory at
$5BBB is all $FFs, then the
copy was unsuccessful. If
this happens, leave the 2316
in the MASTER socket and
specify copy from the COpy
socket, or vice-versa. Why
this works I don't know. Now
save the memory to disk. Next,
type in the changes as listed
here and save to disk again.
Now program the new CG into a
2716. If possible check that
the new code is in the 2716.

Hardware changes are simple.
Remove the 2316 CG from its 24
pin socket towards the left
middle of the board. Make a
note of pin 1 orientation.
The 2316 has pins 18 and 2B

tied to 5v. On the underside
of the Superboard, cut the
track coming from pin 18 of
the track coming from pin 21!l.
Now use hookup wire to connect
pins 18 and 2B to Ov
(nground n). The zero volts
track is on the keyboard side
of the Superboard. Insert the
new CG 2716 and check pin 1
orientation. Switch on, the
D/C/W/M prompt should be seen
as normal.

Readers may be interested in
designing their own characters
for a CG. The way to do this
is with a program. Such a
program was published in MICRO
in Dec '82. As it stands the
program appears to be incor
rect. I have modified and
expanded it and rewritten it
for the C4P screen. If read
ers have any problems with the
conversion, I would be willing
to help.

*
PEEK [65] June, 1985 11

BITS AND PIECES

How to Find the Hi Byte

By: PEEK(65) Staff

The BASIC progr.ammer will only
rarely encounter the need to
understand or directly use the
Byte, but because one in
comprehensible encounter is
enough to halt the use of a
program, let's examine the
principles and one such use.

As need is what usually brings
things to the front, let's
consider PEEK's sophisticated
line resequencer, editor and
variable lister program called
RESEO. This is not a sales
pitch, but the result of in
quiries from users who have
had difficulty in using the
program on hard disks. The
problem is that the author
pulled a clever trick to ex
pedite RESEO's operation. The
program picks up a program
from the file INFILE, reseq
uences it and puts it out in
OUTFIL. In more normal oper
ation, the programmer would
have just OPENed the file, but
that's slow going' considering
that the operating system must
first OPEN DIR to find out
where the file is located.
So, the trick is to do a
direct disk access. That
means POKEing the address' of
the beginning of the file to
the operating system so that
it will know where to find it.
Unfortunately, the op. sys.
wouldn't know what to do with
that familiar decimal number
and therein lies our problem.

As long as the original floppy
disk is used, there is no
problem as the files a~e. al
ways where the program expects
them to be. But try to mount
RESEO to a hard disk, ob
viously at a new disk address,
and it won't work until the
program code is changed. In
fact, if unchanged, there is a
very good chance that you will
wipe out whatever file resides
on the hard disk at the
location that OUTFIL lives on
the floppy.

The op. sys. reserves loca
tions to hold the disk address
which means that the address
must be expressed in the
machine's language of bytes.
But let's back up for a mo
ment.

If you are a math wizard,
there is not too much to it
and you probably recognized it
as a conversion from base 10
to base 256. For the rest of
us, a little more explanation
is in order.

The rudimentary language that

12 PEEK [65] June, 1985

computers speak is binary or
simple "ones" and "zeros".
One of these characters, the
one or zero, is a "Bit". In
short, something either "is"
or "is not" "true" or
"false". Because our comput
ers are "8 Bit" machines, they
are capable of handling 8 bits
at a time. An 8 bit chunk of
data is a computer word called
a "Byte". Think of it this
way. Each of the 48K memory
cells can hold one 8 bit byte.

If a bit can only be a zero or
one, then, how big can a byte
be? The largest decimal num
ber that can be represented in
8 bIts is 255. Therefore, any
number larger than 255 will
require the use of a second
byte. If the number is equal
to, or larger than, 256 A 2
(256x256) or 65,536, then a
third byte will be required.
It is therefore, not too sur
prising that these three bytes
are referred to as Lo ,Byte,
Mid Byte and Hi Byte.

Now, let's get to the business
of figuring out the byte ad
dress of the new location of
our file. Let's suppose that
the decimal address of the
file from the directory is
64,000. Divide (by the old
long-hand method so that you
will know what the remainder
is) 64,000 by 256. The answer
is exactly 250. T~is number,
being less than 256 can· be
stored directly in the first
or Lo Byte. This procedure is
good to address (255x256) or
65,280. .

If the disk address is higher,
say' 721,152, then, because it
is ~reater than either 256 or
256 2 (65,536), we divide by
the larger number and get an
answer of 11 with a remainder
of 1. Thus, the Mid Byte is
11 and the Lo Byte is 1. This
procedure will cover disk ad
dresses up to 16,711,680.

Those who need to represent
disk addresses in excess of
this will require the use of a
third or Hi Byte to represent
the number. Let's suppose that
the address is 218,109,696.
In this case, we probably will
have to divide the number more
than once: first by 16,777,216
(256 A 3) to get the answer of
13 and a remainder of 23. If
the remainde~ was greater than
255, we would have had a Mid
Byte, but because it is only
23, it must be in the Lo Byte
position. The Mid Byte is a 0
and the Hi Byte is a 13. This
procedure will handle addres
ses up to 4+ Giga Bytes.

Checking your work is easier.
Just add up the products of:

the Hi Byte times 16,777,216,
the Mid Byte times 65,536 and
the Lo Byte times 256. The to
tal should equal the origi
rial decimal address.

Hi Byte * (256"3) or 16,777,216 •
Mid Byte * (256"2) or 65,536 a

Lo Byte * (256"1) or 256 a

Total a deCimal disk address

* OS-O PROGRaMMING AIDS
PART 1

At last the ice, is broken!
For years experienced OS-U
programmers have carefully
guarded those frequently used
'tricks' that stretch the use
and flexibility of OS-U. Now
Roger is sharing those tips
with you in such a way that
rank beginners to the experi
enced programmers can gain by
his experiences. We challenge
the rest of you to continue
this effort to improve the use
and quality of OS~U programming.
This month's episode is only
the beginning. Future articles
will detail such areas as: de
bugging tools. reserved words,
PEEK and POKE lists plus a
whole raft of frequently used
sub~outines: everything from
sorts to printing numbers in
words.

By: Roger Clegg
Data Products Maintenance

Corp.
9468 Telstar
El Monte, CA 91731

OHIO SCIENTIFIC ERROR
MESSAGES

"?REDO FROM START" or"? Not
acceptable"

usually means that the com
puter requires a number to be
input. (With FLAG 21 and FLAG
28 on, you get this message if
you just hit <RETURN>.)

"?EXTRA IGNORED" or "?Extra
ignored"
means you entered more items
than the computer expected.
Usually you inadvertently en
tered a comma, and the com
puter mistook it for the end
of the fiist item.

means that the computer ex
pected more items than you
entered and now wants the
others, together or separate
ly.

"BREAK IN 3210"

means that the program has
continued on page 13

•

•

•

•

•

•

RIGHT BARD JUSTIFY
PROPORTIONAL PRINT

By: Earl Morris
3299 Washington Street

Midland, MI 48649

This BASIC orogram will 'right hand justify proportional
print. Put the text in the low line numbers wit h a
quote sign after the line number. Try to make all lines
about the same length then RUN 50000. The program will
first scan through the text measuring each line length.
The second pass will print the text. If you are not
usino 65D 3.2 then the value of AD in lines 50170 and
50370 must be chanoed. AD is the address of the
pointer to the start ~f EASIC text. I have a parallel
orinter and used PRINT #4. If you have a serial
printer use the correct PRINT device for your svstem.
Line 50050 uses the control code to put my orinter
into orooortional mode. Line 50561 uses the control
code' to'move my printer head (FLl dot spacings.
Modify these lines to suit your orinter.
by Earl Morris

10 "This EASIC orogram will right hand justify proportional
20 "pri.nt. Put the text in the low line numbers with a
30 "quote sign after the line number. Try to make all lines
4(, "about the same length then RUN 50000. The program will
50 "first scan through the text measuring each line length.
60 "The second pass will print the text. If you are not
70 "using 65D 3.2 then the value of AD in lines 5(1170 and
g() "50370 must be changed. AD is the address of the
90 "pointer to the start of EASIC text. I have a parallel
100 "printer and used PRINT #4. If you have a serial
110 "printer use the correct PRINT device for your system.
120 "Line 50050 uses the control code to put my printer
130 "into proportional mode. Line 50561 uses the control
140 "code to move my printer head (FL) dot spatings.
150 "Modify these lines to suit your printer.
160 "by Earll>1orris
50000 REM RUN 50000 TO START PRINT-OUT
50010 DIMX .LL.AD.EP.LN.I.CN.S.PA.A,A(70).C (122)
50020 REM READ CHARACTER WIDTHS
50030 FOR X=32 TO 122:READ C(X):NEXT
50040 LL=10
50045 REM ENABLE PROPORTIONAL PRINT FOR MY PRINTER
50050 PRINT#4:PRINT#4.CHR$(27)CHR$U7)
50150 :
50160 REM SCAN FOR LONGEST LINE STORE,LENGTH IN LL
50165 :,
5(1170 AD=120:REM START OF BASIC POINTER 65D 3.2
50180 AD=PEEK(ADl+256*PEEK(AD+1l:REM ADDRESS NEXT LINE
50190 IF AD=O THEN PRINT"ERROR":END
50200 EP=AD+4
50210 LN=PEEK(AD+2)+256*PEEK(AD+3):REM GET LINE NUl1EER
50220 IF LN)49000 THEN 50370 : REM CHECK IF DONE
50230 IF PEEK(BP)=34 THEN EP=EP+l :REl1 SKIP QUOTE SIGN
50240 CN=O:S=O
50250 A=PEEK(BP):REM GET NEXT CHARACTER
50260 IF A=O THEN 50300 : REM END OF LINE
50270 CN=CN+C(A) :REM ADD UP LINE LENGTH
50280 BP=BP+t:GOTO 50250
50300 PRINTCN:IF CN)LL THEN LL=CN :REM FIND LONGEST LINE
50310 GOTO 50180
50360 :
50370 AD=120:REM SCAN FOR PRINT OUT
50375 :
50380 AD=PEEK(ADl+256*PEEK(AD+l)
50390 IF AD=O THEN 59000
50400 BP=AD+4
50420 LN=PEEK(AD+2)+256*PEEK(AD+3)
50430 IF LN)49000 THEN 59000
50450 IF PEEK<BP)=34 THEN BP=BP+l
50455 I=O:CN=O:S=O:FL=O
50460 A<Il=?EEK(BP)
50470 IF A<Il=O THEN 50540 :REM END OF LINE NOW PRINT IT
50480 IF A(l)=32 THEN S=S+1 :REM COUNT SPACES
50520 CN=CN+C(A(I) :REM COUNT DOTS
50530 BP=BP+ 1:1=1+ 1 :GOT050460 Continued on next page

OS-u Programming Aids cont:

stopped running at that line
number, because of Control-C
or a STOP statement. STOP
statements are used for debug
ging and are sometimes left in
to catch unlikely errors.
LIST 3210 (or whatever line)
and phone your programmer. If
you can't reach him, write
down the line and RUN"MENU"

"DEV A ERROR 17 IN 3210"

The line number here is less
important than the device and
disk error number. Error 1 in
OS-65U always means disk drive
not ready. Errors between 2
and 127 have various meanings
depending on drive type. The
first three entries below are
for floppy disks. See the OS-
65U manual for hard disks.

ERROR 1, ERROR 5

disk not in drive, or sideways
or upside down. Double-sided
disk in single-sided drive.
Drive door not closed. Drive
not powered up.

ERROR 6

Write-protect notch in disk
not covered.

ERRORS 2-4, 7-27

Hardware errors. May be caused
by either disk or drive. If
on a brand-new disk, then try
initializing it once more, and
if you still get the error
then throwaway the disk.

If, on the other hand, this is
your working disk, then pray
that you have an up-to-date
backup. One sood scheme is

Continued on next page

MEDIA CONVERSION

9 TRACK 1600 BPI TAPE

• 8 INCH FLOPPY
(OSI 65U)

5 1/4 INCH FLOPPY
(DBI FORMAT)

IOMEGA CARTRIDGE
(OBI FORMA'l')

MED-DATA MIDWEST, INC.
246 Grand

St. Louis, MO 63122
314-965-4160

PEEK [65] June, 1985 13

5(,535 :
50540 REM START PRINT OUT ADDING SPACE TO RIGHT JUSTIFY
50541 :
5('542 REM MAKE ALL LINES EQUAL TO LONGEST LINE
50543 IF (LL-CN»(!-IiTHEN FL=t:CN=CN+I-l
50545 IF (LL-CN)}<I-1)THEN FL=2:CN=CN+I-l
50541:, PRINT#4,' ";
50548 IF CN<,7*LL THEN S=O:FL=1!REM SHORT LINE
50550 FOR X=O TO I-I
50560 PRINT#4,CHR$(A(X»;
50561 REM CONTROL CODE TO SKIP DOTS BETWEEN LETTERS
50562 IF FDO THEN PRINT#4,CHR$(27)CHR$(FLl;
50565 IF A(X)=32 THEN GOSUB 57000 :REM PAD SPACES
50570 NEXT:PRINT#4
50580 GOT050380
56999 :
57000 REM ADD MORE SPACE BETWEEN WORDS
57001 :
57005 IF S=O THEN RETURN
57010 PAD=INT«LL-CN)/S)
57020 IF PA(O THEN RETURN
57022 IF PA)12 THEN PA=12
57030 CN=CN+PA:S=S-1
57035 IF PA)6THENPRINT#4,CHR$(27)CHR$(6>:!PA=PA-6
57040 PRINT#4.CHR$(27)CHR$(PADl;
57050 RETURN
57900 :
57910 :REM TABLE FOR CHARACTER WIDTHS
57920 l
58000 DATA7.7,10.15.12.16.14,7 :REM SPACE TO'
58001 DATA7.7.12.12.7.12.7.12 :REM (TO I
58002 DATAI2.12.12.12.12,12.12.12 :REM 0 TO 7
58003 DATA12.12.7.7.12.12.12.12 lREM 8 TO ?
58004 DATA14.16.15.14.16.14.14.16 :REM AT TO G
58005 DATA16.10.14.16.14.1B.16.16 :REM H TO 0
58006 DATAI4.14.15.12.14.16.16.18 :REM P TO W
58007 DATAI6.16.10.12.12.12.12.12 :REM X TO UNDERLINE
58008 DATA7.12.12.10.12.12.10.12 tREM GRAVE TO 9
58009 DATA12.8.6.12.8.16.12.12 :REM h to 0
58010 DATAI2.12.1O.12.10.12.12.1b tREM P to w
58011 DATAI2.12.10 tREM x to I

59000 END

* OS-U Pr.ogramming Aids cont:

for each working disk to have
at least two backups, labeled
"Even-numbered days Back-up"
and "Odd-numbered days' Back
up"; using these consistently
should free you from worry.

Normally, the error message
will specify the device.
First, run COPIER and try to.
make a backup; if it won't
copy from A to B (or C to D),
try copying from B to A (or D
to C). If the backup is suc
cessful, make it your new
master disk and throw the old'
disk into your spare disk
pile.

If COPIER won't go past the
error, it reports the disk
address of the error and r~
turns to its menu. Write down
the address, then run DIR and
see what file it was on. Find
a backup (not your most re
cent, you may need that) or
else a large enough temporary
file (such as SCRAT on the
utility disk), and put it in
device B. Insert a utility
disk in A and run COPYFI.
When it asks the first ques
tion ("FROM DEVICE 1") put

14 PEEK [65] June, 1985

* your problem disk in A and try
to copy the problem file to
device B. If ,it stops at the
error, which is likely, switch
the disks and try copying from
B to A (or D to C, as the case
may be).

Occasionally, COPYFI works
when COPIER doesn't, but
whether successful or not, run
COPIER and select "In for
Initialize. It asks whether
it should initialize the whole
disk; answer "N". It then
asks "From address" and "To
address n; answer both with the
address you wrote down. It
then asks whether a 3584-byte
range is OK; answer "yR. It
will initialize one track and
return to its menu. Try again
to make a backup; if success
ful, you have saved the disk
except for one track. If
COPYFI was successful earlier,
or you have some other up-to
date backup, copy the backup
onto the problem disk using
COPYFI, and you should be back
to normal. Otherwise, if the
error was on a BASIC file, you
probably have another copy of
the program somewhere; find
it, LOAD it, switch in your
problem disk, and SAVE. If it

was in a data file, list the
file on the screen by the
usual menu option; it may be
OK, but if the error was early
in the file you have probably
lost 14 records. Chalk it up
to experience, edit the re
cords.as best you can, and
make a backup every day in
future.

If you get errors frequently,
your drive heads need cleaning
or your drives. need alignment
or other maintenance.

ERROR 128

File not found. You misspell
ed the file name, or the wrong
disk is in the drive, or the
computer is looking at the
wrong drive, as commonly hap
pens after an error interrupts
the normal flow. In our
accounting system, typing
DEV"A n : RUNnMENU" will usually
remedy matters.

ERROR 129

File not open. FLAG 1 is
required to keep files open in
the immediate mode or after an
error.

ERROR 139

Wrong password. Note that a
data file can be opened with a
wrong password. The error
comes when restricted' access
is attempted.
ERROR 131

Caused by trying
data file or OPEN
file, when the
password and you
it.

ERROR 132

to LOAD a
a non-data

file has a
didn't give

End of file. Usually caused
by trying to input a record
that's not there. Try running
nFDUMp n and looking at the
file. In iour accounting sys
tem, check the Files Diagram
for number or records. Some
times INPUT statements go
wrong because of a POKE to
2976; it normally contains 44,
but must be 'changed to 13 to
input a string containing a
comma (unless the string is
preceded by"). If it isn't
changed back again several
errors can occur. It is good
practice to print n before
strings containing a comma, to
avoid this problem. If the
problem is that you don't know
the length of the file, you
need FLAG 9 error trapping
(see below).

ERROR 133

Can't open file under that
continued on page 19

•

•

•

•

•

•

.
, Inc.

p.o. box 21146 • denver, co 80221
,phone [303] 428-0222

Wangtek sets the industry's standard for excellence in
1I4-inch streamer technology because its tape drives are
all created with an uncompromising dedication to the
highest possible quality in design, engineering and
manufacturing. These factors combine to give the Wangtek
5000E tape drive a level of performance .and reliability that
is unexcelled in today's marketplace.

The Wangtek 5000E is uniquely suited to meet the
backup demands of today's smaller size, higher capacity
Winchester-based computer systems-it packs up to 60
MBytes of data storage in a compact, half-high form factor
only 1.625 inches tall. For added user convenience, the
drive accepts and automatically adjusts gains for either
standard 45 MByte tape cartridges (450-foot cartridge) or
high-capacity 60 MByte cartridges (600-foot cartridge) .

WHAT'S NEW AT D.B.I. ???

What's the answer? The DMA 360 removable 5114" Winchester. It's exactly the same size as a 5114"
half-height floppy drive-but that's where the similarity stops.

The DMA 360 gives you hard-disk reliability. Floppies don't.
The DMA 360 protects your data in a totally

sealed cartridge. Floppies don't.
The DMA 360 packs 13 megabytes (10

formatted) on a single ANSI-standard
cartridge. It takes up to 30 floppy
disks to achieve an equal
capacity.

The DMA 360 even has a lower cost
per-megabyte than a floppy. But it
gives you so much more.

Like an average access time of ,98
milliseconds. A transfer rate of
625 kilobytes per second. And an
error rate on par with the most
reliable conventional Winchester
disk drives.

DMA Systems half-height
removable 51/4"
Winchester.

FOR PRICING AND DELIVERY CONTACT YOUR NEAREST D.B.I. DEALER!!!

*WANGTEK 5000E is a registered trademark of WANGTEK CORPORATION
*DMA 360 is a registered trademark of DMA SYSTEMS

PEEK (65) June, 1985 15

A MODIFIED BUBBLE SORT/MERGE

By: George Belcher, M.D.
Columbus Clinic, P.A.
Columbus, KN 66725

Your list of article topics in
the April issue prompts this
information. The BUBBLE SORT/
MERGE is a section of a medi
cal billing system which I've
written for a C3B with Vl.2
OSU. The second listing is a
Heap Sort Algorithm written by
my son, Mark, on a C30EM with
OSU 1.2 which he used at
college. I don't propose to
discuss them as the REM's
document them. Both of these
are written such that they are
directly workable by plugging
in the right data file names.

A long list of data records is
sorted by string function.
New records are added and this
sort/merge program is used to
periodically put them in
order. All records are fixed
length with a 6 digit record
number and to help with the
"FIND" they start with "*".
This is checked in Line 1~32-
1~35-1225-123~. Bad data is
printed for operator informa
tion. Deleted records are
marked with 9's for sorting
out in Lines 1~3~ & 122~.

The OSI short memory problem
is handled by frequent sorts
and cycling the merge records.

End index of the last sort is
stored at INDEX = ~ with EOF
at 2~. Records start at index
= 40.

This BUBBLE SORT/MERGE is rel
atively slow, but is easy,
simple, and functions well for
short sorts and this purpose. *.
eoutpHter

• repa.r,
Board level service on :
e OSI / Isotron
eTeleVldeo
e IBM pc/xt
Floppy drive alignment:
eSlemens
e Shugart
eTeac
Terminal repair:
eTeleVideo
eMicro-Term

(1 week lurnaround)
Sokol Eleclronlcs Inc.

~
474 N. Polomac 81.

• Hagerslown, Md. 21740
I. (301) 791'2562

16 PEEK [65] June, 1985

10 REM ••• A MODIFIED BUBBLE SORT I MERGE PROGRAM •••
20 REM USED BV G.BELCHER M.D. IN 'MEDICAL BILING PROGRAM'
40 GOTOI0000
leu I REM MODIFIED BUBBLE SORT
11~ O=0IM-DISW a 0
120 IFSW=0ANDD<MTHEND=M-I' REM JUMP TO END OF SORTED
140 D=D+I'IFD=G THEN RETURN' REM END SORT
1~0 IFA$CDI<-A$CD+IITHENSW=0.GOTOI20
Ib0 IFD>"THENM-D
170 AS-ASCDI' ASCDI-ASCD+II' ASCD+II-AS
180 IFD-IGOTOI48
190 D-D-2.SW-I.GOTOI48'
1000 •
1810 G-8'IFE-SGOTOI208

REH
REH

BUBBLE UP TO FIT
FORH AS(I TABLE

1028 INDEX<I>-S.FORX-IT0280.IFINDEX(II-)ETHENGOSUBlee,GOTOI280
1838 INPUTXI.PI.'IFLEFTSCPIS.71-DLSGOTOI850
1832 IFLEFT.CPIS.II(>·.·GOTOI898' REM NO HARKER
1835 IFLEN(PISI<)RLGOTOI8B8' REH WRONG LEN
1048 G-G+I'AS(GI-PI. '
1058 NEXTX'STOP'REH TABLE FULL
10B8 PRINU~. 'LEN-'LEN(Pit I'
1090 PRINTI5.PIS'GOTOI858
1280 •
1210 X-I'INDEX<I)-40'INDEX(2)-48

REH ERROR REPORT

REH

1215 VI-8'FORY-IT0200'IF INDEX(II->S GOTOIJee
1220 INPUTXI.PI.'IFLEFTS(PI •• 71-DLSGOTOI258
1225 IFLEFT'(PIS.II(>·.·GOTOI298
1230 IFLEN(PI$I<>RLGOTOI2S8
1240 YI-VI+I'BSCYII=PI.
1250 IFVI<100THENNEXTy.GOTOI300
12B0 PRINTI5.·LEN·LEN(PISI
1290 PRINTI5.PIS'NEXTV
1380 •
1305 FORZ-ITOVI
1307 II' X>G GOTOI328

REM MERGE A.CI INTO BSCI

1310 IFAS(XI<BSCZITHEN PRINTX2.A.CXI'X-X+I.GOTOI387
1328 PRINTX2.B.CZI.IF INDEXC21-)IE8 THEN STOP
1330 NEXTZ'IFINDEXCI I(SGOTOI215' REH GET HORE B.CI
1348 IFINDEXCII->SANDX(-GTHEN PRINTX2.ASCXI.X-X+I'GOTOI348
1480 • REH PRT NEW FILE LEAD
1410 INDEX<2>-0
1428 FORX-ITOI3'PRINTX2.· "NEXTX' REM CLEAR LEAD SPC
1438 INDEX(2)-0'PRINTX2.E.INDEX<2>-20.PRINTX2.E'RETURN
3080 • REH CLEAN UP IlEW FILE
3010 OPEN·WORK-I·.2.B0.···
3028 FORX-ITOb9'B0S-B0S+'0"NEXTX
3838 FORX-IT03000.PRINTX2.B0S'IFINDEXC21(IE8THENNEXTX
3040 CLOSE' RETURN
10_ • REH HAIN PROGRAH
10018 DIM ASC5801.B'(1~81'DL'-·.999999"RL-69
18020 GOSUB3880.0PEN·PTFILE·.1
18038 INDEX(t>-0'INPUTXI.S' REM
10040 INDEX(I)-28.INPUTXI.E. REH
100~0 INDEX<I)-40'FINDDLS.I. REM
100b0 IFINDEXCII(IE8GOTOI0080' REM
18070 IFS-ETHENCLOSE'END' REM
1_00PEN·WORK-I·.2'GOSUBI000'CLOSE.END

END PREV.SORT
EOF
LOOK FOR DELETES
DELETE FOUND
NO NEW RECORDS

10 REH
28 REH

FUNCTION. Thia praqr •• i. an application of a
heap sort aJgorythm by HArk A. Belcher.

30 •
280 REHt C ------
210 •

HA I N PROGRAH

220 PRINT 'HEAP SORT ALGORITHM IHPLICATION'
230 PRINT
240 DIH AS0511
2~0 N-0
2b8 OPEN ·DATA4·.I'
278 •
280 PRINTI PRINT
290 PRINT TABCI01'INPUT DATA'

REH SET-UP AND INITIALIZATION

REH OPEN DATA FILE

300 INPUTXI.A.C81' REH INPUT A RECORD FROH THE FILE
JI0 IF ASC01-'EOF' THEN b80' REH IF END OF FILE THEN LEAVE
328 IF ASC01-'EOD' THEN 480. REH IF END OF DATA GROUP THEN SORT
330 N-N+I'ASCNI-A.C01'PRINT ASC81.GOTO 300
340 •
400 FOR 1-INTCN/21 TO I STEP -I'REH
410' A-I'B=N'GOSUB 1000.NEXT I

BUILD THE INITIAL HEAP

420 •
440 FOR
450 •
4b0 I

470 I

480 I

I-N TO 2 STEP -I' HEH SORT THE HEAP
AS(01=A$(I I lAS(I I-A$(I I lAS(I IGAS~01
A~I'Bml-I'GOSUB 1000
NEXT I

485 PRINT TAB(101 'SORTED OUTPUT"
490 FOR 1=1 TO NI REM
580 I PRINT A.(II'NEXT I
510 I
520 N=0IGOTO 280
530 •
b00 REHCC------ END OF PROGRAH
bl0 •

REH

OUTPUT SORTED ARRAV

INITIALIZE AND GO FOR ANOTHER

b20 CLOSEIPRINT 'END OF FILE REACHED -- NO HORE DATA TO SORT."END
b30 •
1800 REHC\------ HEAPIFY SUBROUTINE
1010 I
1015 K-2.AI
1020 IF K > B THEN RETURN'
1030 IF AS(KI > A.CAI THEN 1050

REM
REH

POINT TO LEFT SON
IF SON IS OUT OF BOUND THEN BYE

1035 IF A'(K+II > AS(AI AND K+I <-B THEN K-K+I.GOTO 18b0
1040 RETURN' REH BOTH SONS SHALLER SO BVE
1050 IF A$(K+II > ASCKI AND K+I <- B THEN K=K+I
10b0 AS(01-A.CKIIASCKI-A.CAI'A.(AI-A.C0)IA-KIGOTOI0ee

* *

•

•

•

•

•

•

AHO'l'BBR KEYBOARD ALGORITBII

By: Mark Howell
24 Paul Avenue
Wantirna Soutk, 3152
Victoria, Australia

Sometime ago, I started to
develop an EPROM replacement
for the SYN6BB monitor used in
the Cl and, amon~st other
things, wanted to lmprove on
the keyboard decoding used by
OSlo

The routine I decided upon was
originally written by Rodney
Eisfelder (c/o 65B2 Users
Group, lB Forbes St., Essendon
3B4B, Australia) and has been
slightly modified to separate
ly decode RUBOUT and CONTROL/
RUBOUT. The code, along with
one change to the keyboard
table, is the same length as
the original algorithm and can
be easily incorporated into an
EPROM.

Some of the main advantages of
the new routine are:

1. Shift lock down
computer terminal
without generating
characters using the
keys.

gives a
keyboard
garbage

shift

2. Shift lock up gives a type
writer style keyboard with
special characters (CONTROL/K
to CONTROL/P) available via
the right shift key.

3. Line feed, Return, Rubout
and all Control characters
still,working correctly with
shift lock up or down.

This algorithm uses subrou
tines at $FC9l, $FCBE, $FCC6,
$FCCF, $FDC8 and the keyboard
table at $FDCF to $FDFF for
its operation. The byte at
$FDF3 is changed·from '$FF to
'$DF for rubout key decoding
and gives . a final value of
'$7F or '$lF when used with
the control key.

%DFDSS.FDC7
FD/2"Z' SA TXA
FD ... 1 4S F'HA
FD ... 2 9S TVA
FD ... 3
FDS4
FD ... 6
FD ... 9
FD ... C
FD ... E
PDSP
FD11
FD13
FD14
FD16
FD17'
I=;D19
FD1B
FD1D
FD1F
FD22
FD23
FD26
FD27'
FD2S
FD29
FD2A
FD2D
FD3 ...

4S
A 9121 1
2"'BEFC
2 ... C6FC

... A
DJ2JP=S
FI2f41Zf
4A
9"'1ZI9
2A
E ... 21
D"'F3
A91B
D ... 23
21Z1CSFD
9S
SD131Z12
... A
... A
... A
3a
ED13 ... 2
SD13 ... 2
SA

F'HA
LDA 1
JSR .FCBE
JSR .FCC6
BNE .FD13
ASL A
BNE .FD ... 6
BEG! .FD53
LSR A
BCC .FD1F
ROL A
CF'X ... 21
BNE .FD ... E
LDA ... 1B
BNE .FD42
JSR .FDCS
TVA
STA 213
ASL A
ASL A
ASL A
SEC
SBC 213
STA 213
TXA

FD31 4A LSR A
FD32 2 ... caFD JSR .FDCS
FD35 D"'1C
FD37' 1S
FD3S 9S
FD39
FD3C
FD3D
FD4 ...
FD42
FD45
FD47
FD4A
FD4C
FD4E
FD51
FD53
FD55
FD~e

FD5B
FD5D
FD68
F'D62
FD64
FD67'
FD69
FD6B
FD6E
FD7'1

, FD7'3
FD7'6
FD7'9
FD7'C
FD7'E
FDS ...
FDS2
FDe4
FDS5
FDS7'
FDS9
FDSC
FDSE
FD91Z1
FD91
FD93
FD95
FD9S
FD9A
FD9C
FD9E
FDA ...
FDA2
FDA4
FDA5
FDA7'
FDA9
FDAB
FDAD
FDAE
FDB ...
FDB2
FDB4

"FDB7'
FDBA
FDBD
FDC ...
FDC1
FDC2
FDC3
FDC4

6D131Z12
AS
B9CFFD
297'F
CD15"'2
DIZI11
CE.14S2
F'1ZI16
A21Z14
21Z191FC
F ... B1
A9 ... 1Z1
S01612J2
8D1502
A9 ... 2
SD14"'2
DIZIA2
A296
CD161Z12
DIZI"'2
A214
SE14"'2
SD16 ... 2
A91Z11
21Z1BEFC
2 ... C6FC
AD15 ... 2
C921
9"'29
2941Z1 ,
FIZI29
SA
2940'
D ... 2F
AD151Z12
C95F
F"'25
SA
291Z17'
F1ZI2 ...
AE151Z12
EI2J=S1
BIZI ... D
E ... 4B
91Z11Z19
C9"'2
F E
4A
FIZI1ZI2 ..
BIZI"'9
A91Z1 ...
FIZI ... D
SA
291Z16
F ... F7'
A91'"
2CA921i!J
2CA941Z1
4D151Z12
SD131Z12
6S
AS
6S
AA
AD 131i!J2

FDC7' 6 ...

CLC
TVA

TAV
LDA .FDep.v
AND ... 7F
eMF" _e21~
BNE .FD5S
DEC '1110'2.14
BEG! .FD62
LDX ".0'4
JSR .FC91
BEG! .FD0'4
LDA ".0'0'
STA _0'216-
STA _J2I21~

LDA ".02
STA .0'214
BNE *FDI2J4
LDX ... 96
CMF' .0'216
BNE .FD6B
LDX ... 14
STX "0'214
STA .1ZI216
LDA ".0'1
JSR .FCBE
JSR .FCC6
LDA .0'215
CMF' ... 21
BCC .FDA9
AND ".40'
BEG! .FDAD
TXA
AND ".48
BNE .FDBS
LDA .0'215
CMF' ".5F
BEG! .FDB5
TXA
AND ... IZI7'
BEG! .FDB5
LDX "'0'215
CPX ... 51
Bea _FDA9
CF'X "",4B
BCC .FDA9
CMF' ".1ZI2
BEG! .FDB2
LSR A
BEG! .FDA9
BCS .FDB2
LDA "."'IZI
BEG! .FDBA
TXA
AND ... 1ZI6
BEG! .FDA9
LDA ".10'
SXT _:ZI2JA9
B:J:T .4"'A9
EOR 215
STA .1ZI213
F'LA
TAV
F'LA
TAX
LDA .1ZI213
RTS

RESMON.III

RESMON.III is a variation of
the DABUG III ROM with added
features. The single key en
try command was deleted to
make room for:

(CONTROL)W - RESETS STACK AND
EXITS TO $BBBB

(CONTROL)E - RESETS $B2l8 TO
$B22l AND EXITS IN 24X24
MODE TO $FEBB

(CONTROL)P - RESETS ACIA TO
FULL SPEED AND SETS PRINTER
FLAG TO 1

(CONTROL)T - RESETS ACIA TO
TAPE SPEED AND SETS PRINTER
FLAG TO B

(CONTROL)V - TAPE VIEW ROUTINE
WITH (SPACE BAR) TO EXIT

The existing DABUG III com
mands are:

(CONTROL)Q - ACTIVATES EDITOR
CURSOR ETC.

(CONTROL)U - MOVES EDIT CURSOR
UP

(CONTROL)D - MOVES EDIT CURSOR
DOWN

(CONTROL)L - MOVES EDIT CURSOR
BACKWARDS

(CONTROL)R - MOVES EDIT CURSOR
FORWARDS

(CONTROL)A - FORWARD ENTRY KEY
(CONTROL)B - SWITCHES BETWEEN

24X24 AND 48Xl2 SCREEN
FORMATS

(SHIFT)O - DESTRUCTIVE BACK-
SPACE

(SHIFT)P - CANCEL LINE ENTRY
(RUBOUT) - CLEAR SCREEN
THE SCREEN FREEZE ROUTINE HAS
ALSO BEEN RETAINED.

Other Features of RESMON.III
are:

A new error code correction
routine has been added. This
corrects in 24X24 and 48Xl2
screen formats.

The complete character set can
be printed in 48Xl2 mode.

The restart sequence at $FFBB
prints a new menu- D/C/W/M/l/2
? It also loads O$BB into
$B2l7(PRINTER FLAG).

The output routine at $FF69
does a printer flag check. If
this flag is set a JSR to
$B2BF is executed. A user
supplied JMP is now required
at $B2BF or a RTS instruction.

Two other user supplied JMP's
are possible. On restart:
Typing 1 does a JMP to $B12A
Typing 2 does a JMP to $B12D

The OSI 65V monitor was al
tered to fix a small bug. You
can no longer write to non
existent memory or to ROMI

Continued on next page.

DISK DRIVE
RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
(parts & labor included)
Shugart SA4oo8 23meg $550,00
Shugart SA1004 10meg 5450.00

Seagate ST412 10meg $350.00

FLOPPY DRIVE FLAT RATES
8" Single Sided Shugart $190,00
8" Double Sided Shugart 5250,00
8" Single Sided Siemens D&E Series S 150,00
8" Double Sided Siemens P Series $170,00

Write or cali for detailed brochure
90 Day warranty on Floppy & Large Winch,
1 Yr, Warranty on 5" & 8" Winchesters,

Phone: (417) 485-2501

rEJ FESSENDEN COMPUTERS
1161'1. 3RD STREET
OZARK, MO 65721

PEEK [65) June, 1985 17

A new keyboard algorithm at
$FD00 has been included.

References: DABUG III Manual
by David Anear, A New Key
board Algorithm by Rodney
Eisfelder, KAOS Newsletter,
Volume 3, Nos. 8 and 9. On
Error GOTO by Earl Morris and
Kerry Lourash, MICRO No. 51,
also DABUG III J by John
Whitehead, KAOS Newsletter,
Volume 4 No.1.

* PROBLEM-SOLVING VS
APPLICATION SOFTWARE

TWO DIFFERENT APPROACHES
TO COMPUTER EDUCATION

·There is no longer a
of whether to teach
use. The question is
how to teach the use.
computer as a tool for
day personal and
use. If

By: ROy Agee

question
computer
what and

of the
every

business

tinctly. different approaches
have emerged for computer stu
dies classes.

Application: This direction
states that a knowledge of how
to use \~pecific application
software is all that is re-'
qui red to master the use of
the computer. This approach is
generally advanced for busi
ness and/or computer literacy
students and it is flawed.
One glaring flaw is that such
an approach severely limits
the students' use of the com
puter. Many of the specific
software applications current
ly used in schools (i.e.,
spreadsheet and data base) are·
management tools, not used by
entry level employees.

In the case of word process
ing, the issue is more com~
plex. A recent study reported
that underutilization of com
puters is a common problem in
offices where secretaries (the
primary users of word process
ing software) have been inad-

Microcomputers are gaining equately trained in computer
widespread acceptance in the use. As a result, they are us-
workplace, home and school. ing e'xpensive 'computer equip-
Computers will change the way ment merely as typewriters
instructors. teach and think with a screen. Word proces-
according to a recent univer- sing, filing, mail label soft-
sity study. The development ware. relieve the secretary of
of the microcomputer, which many time consumfng repetitive
has brought computer power to tasks and allow for taking on
nearly everyone, is changing additional· responsibilities.
the nature of everyday life. They are, however, severely
The computer has also provided limited without professional
the means for meeting this training in the use of the
challenge of change. Strong computer as a nproblem-solving
demands have been placed on tool." Of course, word pioces-
the educational establishment sors,· without basic secretar-
to prepare the youth of today ial skills, is of little val-
to master the challenge and ue to an employer.
technology of tomorrow. There
is no longer a question of Those who follow this "appli-
whether to teach computer use. cation" direction argue that
The question is what and how not all of their students will
to teach- the use of the. com- seek computer-related employ-
puter as a tool for everyday ment. This short-sighted vi-
personal and business use. . sion misses the point, which

. is that the computer is a tool
There is a growing belief and worthy of being taught as
among educators that the frag- a problem-solving tool. Few
mented approach to computer ~ students of driver education
studies must be brought under .will become professional driv-
control. Obstacles to that in- ers. Most will use an auto-
clude inadequate teacher pre- mobile for personal use. Does
paration/training, a lack of that mean they are only taught
direction, and availability of to use the power windows and
materials. One teacher uses a air-conditioning, or do they
software package that seems actually learn to drive the
appropriate, another uses a car? For the same reason,
different package and ap- education must not limit com-
proach. Students find the only puter studies to limited ap-
similarity in computer classes plication software. Instead a
is the computers. What is program which provides a mas-
taught in one class does not tery of the thinking and prob-
relate to another class. This lem solving skills required to
lack of continuity leads more use the computer must be of-
to confusion than clarifica- fered.
tion.

TWO DIRECTIONS

In recent months, two dis-

18 PEEK (65) June, 1985

Problem Solving: The second
direction to computer studies
offers many benefits to edu
cators and to the persons they

teach. A major advantage is
that such an approach teaches
and enhances thinking and pro- .
blem solving skills, both for
use with the computer and in
other aspects of life. With a
properly developed and sequen
ced curriculum, students gain
the skills and knowledge to
use the computer as a problem
solving tooll The capabili
ties acquired from this method
will be used throughout their
life. This is.in sharp con
trast with specific applica
tions training which is limit
ing and soon becomes obsolete.

.. Using the problem-solving ap
·proach in.a logical step-by
step manner, students compile
a catalog of gerieric .skills.
This structure and methodology
would feature such fundamental
concepts as sequential and
random access files, online
and batch processing, ARRAYS
(for spreadsheet) and data
bases, program/systems design
and analysis. Task problems
for learning these skills
should include such practical,
real-life applications as ac
counts receivable, inventory,'
billing, personnel records,
etc •• This will demonstrate
entry level job functions, as
well as prepare for further
studies in computer science.
In essence~ students should be

.able to solve virtually any
problem, on nearly any type of
computer.

Cons'ervative employment pro
jections indicate that within
15 years, over' 80% of the
workforce will be involved in
the information industry.
There are still. a few nbuggy
whip" makers around (some in
education) . who believe "the
computer fad" will pass. It

OSI/ISOTRON
MICRO COMPUTER SYSTEM SERVICE

"C2 AND C3 SERIES

"200 AND 300 SERIES

"FLOPPY DISK DRIVES

"HARD DISK DRIVES

CD 7/23/36/74

"TERMINALS, PRINTERS, MODEMS

·BOARD SWAPS

·CUSTOM CONFIGURATIONS

·CUSTOM CABLES

·SERVICE CONTRACTS

PHONE (616) 451-3778

COMPUTERLAB. INC.
307 MICHIGAN ST. N.E.

GRAND RAPIDS, MI. 49503

•

•

•

•

•

•

won'tl The Industrial Age is
being replaced with a new era
referred to as the Information
Age. This new era will re
quire individuals who possess
innovative creative thinking
and problem-solving skills.
The microcomputer is a dynamic
tool for teaching these sk
ills, and its mastery as a
problem-solving tool is a re
quirement. The computer is
too valuable to be used as a
typewriter with a screenl

Roy Agee is a Computer Edu
cation Consultant for Car~er

Publishing. Inc .• Orange. CA.
Hr. Agee is an author. lec
turer. educator. who has been
involved with the development
of computer education since
1959.

* OS-U Programming Aids contI

channel number (1-8) because
the channel is already in use.

BS ERROR

Bad subscript: index of array
outside DIM range. Also
caused (twice) by INDEX<9>=-1.
Sometimes caused by a file
being empty, causing DIM A(9) ,
then trying to start at record
iI.

CN ERROR

Can't continue (in response to
CONT) because program was
changed, or the Editor was
used, or an error occurred •
You can still continue by
GOTO, but except in the last
case, you have lost your
variable values.

DD ERROR

Double dimension: array dimen
sioned twice. Usually caused
by referring to an array
(causing a default dimension
of 19) before the DIM state
ment.

FC ERROR

Function call. A number is
outside the range the function
or operator can handle. The
following ranges are permis
sible:

The error is also caused by
AA B, where A is negative and B
is not an integer, by calling
USR(X) before the correct add
ress has been POKEd in, by
RSEQ NLN,OLN,INC if OLN > NLN
or if the last new line number
would be > 63999, and by WAIT
CLEAR X when the semaphore X
is not set. If necessary one
can define DEF FNSM(X)
-«PEEK(55333+X/8) AND 2A(X
AND 7»=9) AND THEN CHECK
FIRST: IF FNS~!(X) THEN WAIT
CLEAR X

FS ERROR

Full stack. The stack will
hold 26 GOSUBs or 11 FOR
NEXT loops. The error may
occur during evaluation of a
complicated formula as that
also uses the stack, but the
usual cause is repeatedly
failing to return from a
subroutine. If you are using

1 to 8
9 to 219
9 to 254
9 to 255

: OPEN, CLOOE, INPU'l'%, PRINl'%, INDEX, FIND
: WAIT FOR, WArr a.EAR
: INPl1l'[J
: CHR$, LEFl'$, MID$ (3rd arg), RIGHT$, TAB, SPC,
: PRINl'i, PRIN1'[J, PRIN1'&, NJLL, PEEK (2nd arg),
: POKE (2nd arg), WArr (2nd & 3rd args), FlJIG, (lI1

1 to 255 : MID$ (2nd arg), RSm (3rd arg)
9 to 32767 : DIM, A()
-32768 'to 32767: AND, 00, NJI', A%=
9 to 63999 : NEW, RSFXl (let & 2nd args)
9 to 65535 : PEEK, POKE, WArr (all 1st arg), ooro, OOSUB, RJN
>9 lUX;
>=9 : SQR
nAn to aHn : DEV (nAn to nZn in Level 3)

HAS YOUR HARD DISK GONE S-O-F-F-T?
. BTl is your Authorized Service Agent for:

Olddata, OSI and DTO 14-inch disk drives.

BTl service includes:
• Maintenance contracts • PToductexchange
• On-site service • Depot repair

Over 15 years' computer systems maintenance experience.
More than 5000 disk drives currently supported in the field.

For information or service, contact:
U.S. and Canada
Greg De Bord
Sunnyvale, California
408-733-1122

COMPUTER SYSTEMS

Europe
Victor Whitehead
Birmingham, England
021-449-8000

-BTl 870 W. Maude Avenue. Box 3428. Sunnyvale. CA 94088-3428 (408) 733-1122
Regional offices in Minneapolis. MN; Ramsey. NJ; Atlanta. GA; Dayton. OH

PEEK (65) June, 1985 19

a subroutine that calls itself
(Quicksort is the best known),
your only recourse is to re
place GOSUB by GOTO and keep
the count yourself.

LS ERROR

Long string. Usually, the file
name had more than 6 letters.
Also caused by trying to as
semble a string longer than
255 bytes. With INP$ enabled,
PRINT [LN,nR n) A$ and PRINT
[LN,nL") A$ give LS ERROR if
A$ is longer than the length
LN.

NF ERROR

Next without FOR. May be pro
gramming error, usually caused
by having more than one NEXT
in a loop; all but the last
NEXT~must be followed on the
same line by a GOTO (out of
loop) to prevent this error.
Is also caused by, for exam
ple, jumping out of an I-loop,
starting a J-loop, and then
starting another I-loop. BASIC
assumes you're re~tarting the
I-loop, and throws out the
J-loop too, causing an error
with the NEXT J. This can be
prevented by cleaning the
first loop off the stack by
FOR I=~ to ~: NEXT. Note that
returning from a subroutine
cleans out all the loops
started by the subroutine. If
you interrrupt a program, list
some lines, and wish to
CONTinue, don't interrupt the
listing with a Control-C, as
it can cause a late.r NF ERROR.

NR ERROR

Printer not ready. The mes
sage appears only in response
to Control-C; any other key
forces a retry.

00 ERROR

Out of Data. More .·READs than
DATA items.' Check that
PEEK(2976)=44. Also note that
a DATA statement must be first
on a line. This error some
times results from having two
or more lists of DATA and
changing the length of one of
them. You can avoid this
problem by searching for the
data you need: RESTORE: FOR
I=l TO 10~~: READ X$: IF
x$<>nJanuaryn THEN NEXT.

OM ERROR

Out of memory. This is some
times a hardware problem; if
you think you really shouldn't
be out of memory, save your
program if you've been working
on it, and type NEW, then
PRINT FRE(X). The standard
OS-65U system should give
24572, or 23547 with COMKIL

28 PEEK (65) June, 1985

enabled. If the answer is
correct, then your program has
to be cut. First save it into
INFILE on a D.P.M. utility
disk, then run RESEQ and de
lete comments and/or spaces.
If caused by large arrays, you
may be able to make them
integer arrays, taking 60%
less room. With multi-dimen
sional arrays, using the ~th
elements saves a surprising
amount: DIM A(1,3,7) uses less
than half as much space as DIM
A(2,4,8) • There are often
hundreds of unnecessary semi
colons in PRINT statements.
Combining lines saves four
bytes per line (regardless of
line number). The final solu
tion is to split the program
in two, using COMKIL if neces
sary.

OS-65U uses OM ERROR in
response to a SAVE command if
the disk file is too small for
the program. You should al
ways have a large scratch file
available for such emergen
cies.

DV ERROR

Number >= 17~,141,183,46~,0~~,
~~~,~~~,~0~,~~0,~~0,~~~,~8~, 
~~~. '(Approximately 1.7E38). 
Enter ing lE99 in response:· to
an input request is often use
ful for breaking into pro
grams. The EXP (or ANTILOG)
function gives OV ERROR over
88.~296919. FLAG 3~ gives OV
ERROR over 4,294,967,295, the
largest number storable
without loss 'of accuracy.
There is ·no underflow error in
BASIC: a number smaller than
2.9387358754E-39 is stored as
zero. The RSEQ command uses
0'1 ERROR to mean that there is
not enough room to make its
line number tables.

RG ERROR

RETURN without GOSUB. Usually
caused by "falling through"
into an unintended subroutine;
check the preceding lines for
a missing END or GOTO, or run
again under FLAG 7.

SN ERROR,

Syntax error. This covers a
wide variety of errors:

Unmatched number of parenthes
es (brackets).

An illegal variable name con
taining a reserved word, par
ticularly ON, OR and TO.

Misspelled res~rved word.

Incorrect punctuation.

Line number > 63999, or a
number directly following line

number.

READing a number when the next
DATA item is a string.

Integer or subscripted
able in a loop, e.g. FOR
TO l~ INPUT or DEF in
direct mode, without a
number.

NEW followed by anything
cept a carriage return.

SQR, LOG, EXP,
COS, TAN or
enabled.

,
ATN

RND,
with

vari
I%=l
the

line

ex-

SIN,
INP$

DEF or FN with COMKIL enabled.

I without the Editor enabled.

KILL, RSEQ, SWAP or PNTR with
out COMKIL, RSEQ, etc.
enabled.

NULL if
enabled.
instead.)

any replacement is
(Use POKE 21,x

LIST if access is restricted
and you didn't give the pass
word.

A POKE into the reserved word
. list, (e.g. POKE 9057,1 for

LIST) •.

The more puzzling syntax er
rors are generally caused by
BASIC's simple minded routine
for recognizing reserved
words. For example, X=T AND
127 will give a syntax error
because BASIC sees the word
TAN there (ignoring spaces as
always). A way to check for
this kind of thing is to re
enter the line with a space
'after every character, then
list it; BASIC will remove
spaces from the words it rec
ognizes. A little rearrange
ment or insertion of paren
theses should then fix the
problem.

SS ERROR

Semaphore stack overflow. In
level 3 time-sharing, a maxi
mum of 16 files or other
resources can be locked by
each user.

'ST ERROR

There are 3 string temporaries
used to point .at. temporary
strings and literals. It is
barely possible to overload
them, as in 75 SS$=nS.S.#n+("
n+X$·t("_n+Y$+(n_"+Z$))) • The
error can also be caused by
uncompleted comparisons, as in
75 IF nAn THEN 7.5, which gives
ST ERROR after three loops.

TM ERROR

Type mismatch. Number found

•

•

•

•

•

•

where string required, or vice
versa.

UF ERROR

Undefined function. In OS-65U
this is misprinted as NF
ERROR.

US ERROR

Undefined statement -- no such
line number. List the pro
gram; sometimes a disk error
loses part of it. If caused
by a statement in PGMl, 5919
RUN npGM2n,63999 and there is
no line 63999 in PGM2, you
will get the message n?US
ERROR IN 59l9 n, but the
program in memory will be
PGM2, not containing line
5919, which may be puzzling.
This error also appears when a
different error occurs under
FLAG 9 or FLAG 23 and there is
no line 59999 in the program.
A very fast check for bad line
numbers is made by the RSEQ
command.

/9 ERROR _

Division by zero. You need an
extra line to catch zeros and
bypass the calculation. Also
caused by TAN(PI/2) if you
specify PI to ten digits.

No Error Given

A POKE statement cannot con
tain a PEEK from a different
location. The POKE is not
made, but no message is given
and the program continues.

OS-65U ERROR TRAPPING

Trapping of disk (numeric) er
rors is enabled by FLAG 9,
which send the errors to line
59999 until disabled by FLAG
19. (If line 59999 is miss
ing, a US ERROR results.)

If the error trapping is con
fined to one place in the
program, the routine at 59999
can be very simple. For ex-
ample:

49 INPUTnpASSWORDn;R$

The only disk errors commonly
worth trapping are 1 (drive
not ready), 128 (file not
found), 139 (wrong password),
and 132 (end of file).

BASIC language errors (two
letter codes) can be similarly
trapped by FLAG 23, which is
turned off by FLAG 24. If
your application can give OV
ERROR (number too large), that
is probably worth trapping.
The other BASIC errors should
normally be fixed by changing
the program. The error code
can be obtained as follows:

59999 X=PEEK(18l76): if X=23
GOTO 59199: REM Numeric error
code

59919 ERR$=CHR$(PEEK(X+867)
AND l27)+CHR$(PEEK(X+868) AND
127)

It is important to turn off
error-trapping as soon as pos
sible, and in any event by the
end of the program or before
entering the direct mode,
otherwise subsequent programs
will give nUS ERROR n instead
of the correct error code.

There is nothing to stop 'you
making up your own error codes
for bad data etc., as in the
larger versions of BASIC:

8339 IF NAMES$=nn THEN ERR=
291: LN=8339: GOSUB 59999
The error-handing routine
could print an error message,
or store the bad record in an
error file for printing after
. the good da ta.

MORE NEXT MONTHI

*
59 FLAG 9: OPENniPRn,R$,l: INPUT %l,X$: FLAG 19

59999 FLAG 19: RUNnMENU n : REM Exit on wrong password

A more complicated example is a read-write test which needs
to check for end-of-file (ERROR 132) on both operations:

199 DEV DV$: FLAG 9: INDEX<1>=9:PRINT nWRITING n
119 FOR 1=1 TO lE4: PRINT%l,TEST$: NEXT
129 INDEX<1>=9: PRINTnREADING ••• n
139 FOR 1=1 TO lE4: INPUT%l,X$: IF X$=TEST$ THEN NEXT

59999 ERR=PEEK(19226): LN=PEEK(11774)+256*PEEK(11775)
59919 IF ERR=132 AND LN=119 GOTO 129
59929 IF ERR=132 THEN PRINTnTEST COMPLETE n: GOTO 179
59939 PRINTnDISK ERRORnERRnAT INDEXnINDEX(l): GOTO 169

LETTERS
ED:

1. I 'have a Super board II Rev
D 1989 and a 610 board. The
Sams Servicing Data which I
have is dated 1979. The pic
torials in this manual do not
agree with my Super board. Is
there a later issue of the
Sams Manual which agrees with
the hardware?

2. Basically, what is covered
in the OSI Small Systems Jour
nals? I'm trying to determine
if they would be of value to
me.

3. The last dealer where I
bought my 619 board was
Cleveland Consumer Computer
Components, Cleveland, OH. My
letter recently to them was
returned. Do you know an OSI
dealer that is near this area?

4. Do you know a source for
the connectors that fit J-3 on
the 619 board and J-2 on the
Superboard?

5. I am in the process of
adapting a TEAC 55B disk drive
to operate with my computer.
The article by Joe Ennis in
the April PEEK is quite help
ful. This is the first time I
have ever attempted any of the
modifications which have been
published in PEEK. But if I
am to make the disk drive
work, I am going to have to.

6. I would like to make one
comment that I have observed.
Some of the diagrams printed
in PEEK are not too clear (le
gible), i.e., the Lines and'
IDs are rather dim. Other
wise, I enjoy reading the art
icles.

Robert L. Dingle
Dayton, 08 45429

Robert:

1. Regrettably, Sams is what
it is, even so, much is still
of value. If you are in a
bind, call OSI Tech Support
(216) 562-2929.

2. The SSJ is some 95 pages
summarlzlng SSJ issues from
July 77 through April 78.(when
it appeared in Kilobaud Micro
computing). The index con
tains 119 references to art
icles, notes, bugs, fixes,
games, ASM, mem tests, theory,
track 9 writer, etc. They are
available only from PEEK(65)
for $15.99.

3. CCCC is no more, but as it
was a part of OSI, functions
returned to Isotron, Aurora.

PEEK [65] June, 1985 21

Again, call Tech Support and
ask for Bill Thompson, or call
Isotron (293) 255-7443 for the
dealer nearest you.

4. Connectors: not specifical
ly, but ther'e are a number of
mail order houses like Jameco,
and certainly Dayton must have
a radio/electric parts house
somewhere. '

5. Good luck with the TEAC.
Let us know how you fare.
Others will be interested in
your experience.

6. Re printing text is one
thing and redrawing'schematics
is another. We have redrawn
too many (you know the hours
it takes). So this is a good
time to implore those of you
submitting drawings to mak'e
them clear, black on white and
no smaller than a publishable
size (blow - ups get fuzzy),
taking into account that it
will be reduced 39% during the
process of printing PEEK.

Eddie

* * * * *

BD:

Thank you for the, personal
Rcall for papers. a I hope to
be able to get time to write
several hardware related art
icles in the coming months.
It is actually your writers
guidelines ~hich spurred me to
write. Your guidelines say to
be sure to use a fresh ribbon
when generating a listing of a
program, but I think that more
should be done if a dot matrix
printer is being used.

Even with a fresh ribbon, most
listings from a DMP look very
·spotty· and hard to read
after the photocopy process
and this gets worse if the
copy is reduced. Since most
DMP's have a boldface mode of
some type, this is an easy
problem to correct. If you'll
look at the two sample list
ings, you'll see just how
readable a listing - can be.
While I didn't use a new ,rib
bon on either listing, I think
that you'll agree that the
boldface version will stand up
to photocopying better than
most of the listings that you
receive.

Of course, the sample listings
are of the routine which I
used with my EPSON MX-89 to
generate the boldface print.
I kept the routine as simple
as possible (no print format
ting, allowances for null in
put, etc.) to allow for as
wide a range of 051 machines
as possible. If someone has a

22 PEEK [65] June, 1985

A listinn ill standard Inode.

t(,(l DV=t:REM Chanqe [IV to whalt-'v,::·", d~'vicQ 'the printer is ,,"\ssiqnecl.
110 j":·r\HII:I:'-I{[NTIA[j<l:.2) "Boldtact<.· ~lI"int'swltCh for, EPSON prlnters.":PRlNT
l'~\U II\jPUT"l)1:i vr.ll.! ~1r.:1rlt t.o Cn.i.\bl(~ elF" nl~:iable the boldface modes";{1$
130 IF LEFT'!;(A$.l):::."E" THEN GOlD :20(1

, 140 II" LCr"r'i.(A'lo.l)="D" TIIEt~ GO"'L1 :;:5(1
1=,1.1 IICnU 1(1(1
17')
180
:190 REM Tr'an:;mi t appropr i att? enab t e c,:Ictes t(suppress <Cf,>.
2(H) r"·f~jNr#DV.CHI;;$(:::'/).CH~\<f>(?l);:t-\lM enable the cJouble E>tl"'ike mod,,-.
211.1 F'f~:lNTitDV.CHR$(27);CHR1i(69)::REM enable the emphaslzt!'l1 lIIode.
220 GDTO 999
230 :
240 REM Transmi t the appropri ate di sabl e codes 8(sLlppress (CR).
250 PRINT#DV~CHR$(27);CHR$(72);:REM disable the double strike mode.
~,",(l PRIN'Ttt:DV.CHRfd27) ;CHf~$(70); :REM disable the emphasi::.n.d III1J(jC"'!.

999 END

And now a listlnq in boldface· mode.

100 DY-l:RE" Chang. DY to ""at.v ... d.vic. the p,.int ... i. a •• ignsd.
110 PRINT:PRINTTABCI21·801dfac. p,.int SNitch for EPBON p,.int ·:PRINT
120 INPUT"Do you want to Enabl. or Disabl. the boldfac • .ad •• ·IAS
130 IF LEFTSCAS,II.·E· THEN aoTO 200
140 IF LEFTSCAS,II.·D· THEN aoTO 250
ISO aoTO 100
170 :
180 :
190 ~ T,.an ... it app,.op,.iat. lInabl. cod ••• supp,._. (CR).
200 PRINT.Dy,CHRSC271ICHRSC7111:~ lInabl. the daubl •• t,.ik • .ad ••
210 PRINT.DY,CHRSC27"CHRSC691J:~ lInabl. the _ha.1zsd _ ••
220 aoTO, 999 '
230: '
240 RE" T,.ansmit the app,.op,.iata di.abl. codas. aupp,..aa (CR).
250 PRINT.DY,CHRSC271ICHRSC7211:RE" disable the daubl •• t,.ik • .ad ••
260 PRINT.DY,CHRSC271ICHRSC7011:~ disable the _haaizsd .ad ••
999 END '

This was reduced 9.75 before printing.

different printer, they should
consult their printer manual
to determine the appropriate
control codes required to
accomplish similar modes of
operation and adapt this rou
tine to use them. I hope that
the contributors to PEEK will
utilize the boldface modes of
their printers ,in ~heir future

articles.

Ray Hackney
Dallas, TX 75253

Readers:

Yes, please!

Eddie

* *'

ED:

My expanded system (BBII, 32k,
dual floppies) is up and run
ning (V3.2 and V3.3). I have
mainly PEEK(65) arid its read
ers to thank for that. Also,
Daryl Blair of MPI was very
helpful in getting my B drive
going - I recommend contacting
him if your MPI drives are
acting up.

I am now thinking of modem
usage and note that Compu
Serve, at least relative to
the Radio Shack Model 199,
will only accept one stop bit
at 399 baud. Yet, via tele
phone, 051 has told me that my
sigs contain 2 stop bits. How
are 051 users addressing
CompuServe? Where can I find
a detailed discussion of 051
word structure?

Lastly, my 699 board has 2
wires (of a few CM length
each) on the underside of the
board. I suggest placing tape
under those wires to prevent
shorting out of nearby compon-

ents.

Paul Harris
Morristown, NJ 97969

Paul:

The answer is 051 systems can
alter the word length and stop
bi t settings via software con"'"
trol. In most 'cases, the 8th
bit is masked, off anyway so
the problem sorta goes away.
If you want the real nitty
gritty of this, I recommend
the data sheet on the M68859
available from Motorola.

Rick Tre'thewey, Sys Operator
051 SIG on CompuServe

* * * * *
BD:

Below are two tips I have for
users of The Data System.

Printing Labels: Instead of
building a key of zip codes
and accessing the name/address
master file by means of a key
file, rebuild your key file to

•

•

•

•

•

•

include all the fields you
wish to put on a J.abel. You
then sort the key on zip, and
print labels directly from the
key file.

Search for duplicates before
entry: build a key file on the
field of interest. If you go
into a field, key in ESC 7 to
search in a particular field.
TDS will search any key con
taining this field, which is
faster than searching the mas
ter file. Even faster is this
•.••• instead of doing a reg
ular search nSn, key in Sn,
where n is the number of the
key file containing the field
of interest. TDS searches that
file instead of the master
file, -- again, much quicker.

Tom McGourin
Ft. Wayne, IN 46818

* * * * *

ED:

Here's a real good one for all
of your hacker type readers:
I recently found a ngood deal n
on two double sided disk
drives, and for $85.00 a pair
(count that two drives), I
just couldn't pass it up.
Well, a few weeks later a
parcel arrived via UPS, and
inside were two brand new,
unused CANNON double-sided 2/3
height (yes, 2/3) single or
double density drives. By
this time I was quite anxious
to quadruple my on-line stor
age capacity. I hooked both
of the new drives up to my
disk controller, hit the power
switch on the external power
strip, and booted up OS-65D.
That part completed, I moved
on to the rest of my testing
by successfully switching from
drive A to drive D. The next
step involved using OSI's copy
routine to make copies of some
of my disks, and here is where
the problem started. Yes,
there is a fly in the oint
ment! The copy routine would
hang up after the first track
was copied, and then return an
Error #9 for the source disk.
Further inspection revealed
that the source track had
indeed been scrambled, and was
no longer readable. Luckily,
my source disk was itself a
copy, so no real damage was
done, but the strange part is
that it was a write-protected
disk! Several phone calls and
a visit to the local floppy
repair shop later I am still
at a loss as to why I am
having this problem. I can
say that if I use my original
Tandon 100-1 as drive A, and
one of the Cannons as drive B
and D, I can make as many
copies of a disk as I have
blanks with no problems.

One thing that I did discover
about the Cannon drives is
that side one of each drive
has a double stepmode. This
means that the drive head
steps twice for each step
pulse that the controller
sends out, thereby reducing
the disk space from 40 to 20
tracks. I found this out by
trying to find out why the
green activity LED would not
light up when alternate sides
of the drive were selected.
It seems that Cannon has manu
factured these drives to con
form to a particular com
puter's disk controller, while
also maintaining some form of
compatibility with a nstan
dard n interface scheme. Oh,
what a tangled web we weave .. !

So there you have it. My
Tandon drive is still my work
horse, one new drive is ~er
ving as drives Band D, while
its companion sits in its box
on my workbench, waiting for
me to solve this puzzle.

C. J. Hipsher
Virginia Beach, VA 23456

Names or
East Meets West

David Tasker (L) on recent
visit from Australia with Earl
Morris at a well known loca
tion in Ohio.

AD$
WANTED: Documentation for the
Intelligent Terminal Program
written by Rodney Trugman.
Please contact J. W. Taylor,
3992 No. Juniper Lane, Eden,
UT 84310.

* * * * *

FOR SALE:
software.
642-0818.

* * * * *

C28P, light
Make offer.

use,
(703)

Send for free catalog, Aurora
Software, 37 South Mitchell,
Arlington Heights, IL 60005.
Phone (312) 259-4071.

* * * OS-65D V3.2 * * *
DISASSEMBLY MANUAL

Published by Software Consult-

ants, now available through
PEEK(65) for $25.95 including
postage. Overseas add extra
postage (weight 160z). Make
check or money order (in U.s.
funds, drawn on a U.S. bank)
payable to PEEK(65), P.O. Box
347, Owings Mills, MD 21117.

* * * * *
MUST SELL. Still in original
wrappings, KEYWORD CP/M Word
Processor, CP/M v 2.25. Cost
was $400.00 each. Will sacri
fice $250.00 each, or $400.00
for set. Reply PEEK, Box K,
c/o PEEK(65), P.O. Box 347,
Owings Mills, MD 21117.

* * * * *
48K C4P Dual Floppy for sale.
The system includes the fol
lowing software: WP6502 word
processor with disk operating
system. enhancements, Planner
Plus spread sheet with graph
ics, Term+ and several other
terminal editors, full data
base management system, home
device control software, music
generator software, Plot BASIC
and more. Best offer! Carl M.
Good, 560 Longley Rd., Groton,
MA 01450, (617) 448-2563.

* * * * * GIVE AWAY * * * * *
Multi-Strike Printer Ribbons

What do you currently pay for
a multi-strike ribbon cart
ridge? About $4.00 each in
lots of 6?

We have found a solution that
may cause you never to use a
fabric ribbon again. 1) Did
you know that most all multi
strike ribbon cartri6ges use
the same ribbon bobbin? It is
just pressed on a different
size hub and put in your cart
ridge type. 2) We have found
a source of recently outdated
(yes, many are dated) Diablo
Hi-Type I cartridges. We took
the oldest one we could find,
put it in our NEC cartridge
and printed this ad. Now,
honestly, do you see any
difference? We can't either.
So we are offering those of
you who use Hi-Type I, or are
willing to pry open whatever
cartridge you are using and
replace the bobbin, a deal you
can't refuse.

Buy one box of. 6 cartridges
for $8.00 and we will give you
a second box FREE. That's
66.66cents a piece or 83%
off. At that rate, how can
you lose? Add $3.00 for post
age and handling. Make check
or money order (in U.S. funds,
drawn on a U.S. bank) payable
toPEEK(65). P.O. Box 347,
Owings Mills, Md. 21117. Or
der NOW, supply limited!

PEEK [65] June, 1985 23

.1111111
The Unofficial OSI Users Journal

P.O. Box 347
Owings Mills, Md. 21117

DELIVER TO:

'i,/I'

--"!' .. -

'J ... '.

BULK RATE
U.S. POSTAGE

PAID
Owings Mills, MD
PERMIT NO. 18

GOODIES for D~I
111111111

LJSE!rs~

The Unofficial OSI User. Journal

P.O. Box 347 • Owings Mills, Md. 21117 • (301) 363-3268

C1 P Sams Photo· Facts Manual. Complete schematics, scope waveforms.and board photos. All you
need to be a C1 P or SII Wizard, just

C4P Sams Photo· Facts Manual, Includes pinouts, photos, schematics for the 502, 505, 527, 540 and
542 boards. A bargain at .

C2/C3 Sams Photo· Facts Manual. The facts you need to repair the larger OSI computers. Fat with
useful information, but just

OSl's Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced
by PEEK (65). Full set only

Terminal Extensions Package - lets you program like the mini-users do, with direct cursor positioning,
mnemonics and a number formatting function much more powerful than a mere "print using." Requires
65U.

RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references.
GOSUB'a & GOTOs, variables by line number. resequences parts of programs or entire programs,
handles line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FASTI Requires 65U.
Manual & samples only. $5.00 Everything for

Sanders Machine Language Sort/Merge for OS-65U. Complete disk sort and merge. documentation
shows you how to call from any BASIC program on any disk and return itorany other BASIC program
on any disk. floppy or hard. Most versatile disk sort yet. Will run under LEVEL I, II, or III. It should cost
more but Sanders says, " ... sell it for just ... "

KYUTIL - The ultimate OS-OMS keyfile utility package. This implementation of Sander's SORT IMERGE
creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of
over 15000 ZIP codes in under three hours. Never sort another Master File.

Assembler Editor & Extended Monitor Reference Manual (Cl P, C4P & C8P)
65V Primer. Introduces machine language programming.

C1P, C1P MF. C4P, C4P OF, C4P MF, CBP OF Inlroductory Manuals ($5.95 each, please specify)

Basic Reference Manual - (ROM, 65D and 65U)

C1P, C4P, cap Users Manuals - ($7.95 each, please specify)

How to program Microcomputers. The C-3 Series

Professional Computers Sel Up & Operations Manual - C2-0EM/C2-D/C3-0EM/C3-D/C3-A/C3-BI
C3-C/C3-C'

Master Charge) VISA
TOTAL

$7.95 $ _____ _

$15.00 $ _____ _

$30.00 $ _____ _

$15.00 $ _____ _

$50.00 $ _____ _

$50.00 $ _____ _

$89.00 $ _____ _

$100.00 $ ____ _
$6.95 $ _____ _

$4.95 $ _____ _

$5.95 $ _____ _

5.95 _____ _

$7.95 $ _____ _

$7.95 $ _____ _

$8.95 $ _____ _

$
Cash enclosed

Account No. ___________ Expiration Date _______ _ MO Residents add 5% Tax $

Signature ________________________ _ C.O.D. orders add $1.90 $

Name Postage & Handling $ 3.70

Street' ___________________________ _
TOTAL DUE $

City __________ _ State ______ _ Zip POSTAGE MAY VARY FOR OVERSEAS

24 PEEK (65) June, 1985

•

•

•

