PEEK[65] December, 1986 Volume 7, No. 12 The Unofficial OSI Journal

For the two or three of you out there who haven't figured it out yet, I produce PEEK[65] on an Apple Macintosh computer. The reasons are many. This issue brings with it the culmination of my first year as owner/editor/chief cook and bottle-washer. My plan all along has been to bring the best tools to bear on this job. About 90% of them have now come into fruition.

Every issue prior to this one required that I make hard-copies of every article on a dot-matrix printer, and armed with all of that paper, I would literally cut and paste the articles onto a huge guide sheet that held two pages of PEEK. But in order to do this, I first had to measure each article, diagram, and advertisement and draw mock-ups of each page before I went to the light table to make the real masters. Printing out miles of articles and pasting snippets of paper onto these big guide sheets was extremely time consuming. It was the best method for producing the magazine I had until now.

This month my printer got an Apple LaserWriter Plus. That accounts for the improvements in the lettering you see here. In addition, I got a copy of some page-composition software for the Mac. Combined, these two tools reduced the time it took to produce this issue by at least 40%. Next month, it will surely be even more helpful since I've now worked with these things long enough to know what works and what doesn't.

OK, so why then did it take 2 months to get this issue out again? Mostly it was my fault. I just got out and out swamped by end of the year details. But since it was my fault, I made this issue larger (and intend to continue to do so) and didn't make it another of my imfamous "double issues". I hope you'll accept my apologies. You will see another issue of PEEK within 30 days. That issue will be a double issue - January and February, but you should never see another now that the production headaches have been so largely reduced.

Inside This Month:

Input Control and the 6850	page 2
Remote <break> and Boot</break>	page 4
Product Description: Becterm	page 7
Mortgages and Annuities	page 9
Using High-Density 5-1/4" Drives	page 12
Color+ Additions	page 14
Letters to the Editor	page 15
OS-65U Disk File Editor (part 1)	page 17

Of course, I still desparately need your help. PEEK[65] is a users' journal. I depend on you to continue to supply me with articles and programs to publish. If you check out the 1986 Index in this issue, you'll see that only a handful of people have really been consistent contributors. I have yet to see an OSI owner who hasn't written at least one program on his own. If every one of you would send in a program with just a short description of it, PEEK[65] would double in length overnight. It doesn't need to be a new program. It doesn't need to be a super-spectacular program. Chances are that you have solved a problem that has been stumping someone else for ages, even if the original intent of your program doesn't match that of the reader's, it can still be a Godsend. So send 'em in boys and girls. We all depend on each other here.

In other news, Paul Chidley and David Livesay are both **very** close to being able to announce their 65816 CPU boards. As soon as the details and prices are fixed, I'll be announcing them here. I am confident that will happen next month. DBI is producing their board now for the higher-end users and I hear that their doing well. DBI has been hard at work on the software side for their implimentation. Only time will tell if their efforts will benefit video system owners as well, but I am hopeful.

I had a nice conversation with the Canadian firm of Becterm. They have been associated with the OSI world for a

very long time, although I suspect most U.S. users and dealers aren't aware of them. The article on page seven of this issue discusses some of their systems and what they've been doing with them. You dealers out there who need a multiuser system with more capacity should certainly check out Becterm.

On the home front, we have a lot of great stuff this month. Former editor Eddie Gieske shows some of the pitfalls of using serial devices to enter data into your OSI. George Jennings graciously donated a technique that solve a problem that I know a lot of dealers have been struggling with - how to get a client's system to reboot via modem. Hardware fanatics will enjoy Dave Livesay's article on adding high-density drives to your OSI system. Dale King discusses the nuts and bolts of mortgages and annuities, providing some very helpful software along the way. John Horemans of TOSIE demonstrates how he improved the BASIC additions that come with Generic Computer Products' Color+ board. Finally, I begin a two-part article on a fullscreen disk file editor for OS-65U.

Finally, don't forget that we are still alive and well on CompuServe. CompuServe gives you instant access to the OSI community around the world. If you got lost in the shuffle, you'll find us by entering "GO CLUB" at any "!" prompt. We populate section 8 of the Computer Club Forum.

Input Control and the 6850

by Eddie Gieske

One upon a time, "need" became the mother of, well, maybe not "invention", but some thinking and help along the way made the darned thing work.

Not too long ago, an outfit called simply "MSI" from somewhere in Georgia came up with this neat little hand-held computer that looks more like a walkie-talkie. You may have seen one in the store in the hands of the clerk taking inventory. He takes the wand and rubs it over the bar code on the shelf label to pick up the item number and then keys in the number of items on the shelf of that type. If programmed well, as he wanders the aisles, he can punch in some commands to give him all kinds of totals, values, or just step through his entries.

When the job is completer, he goes to the back room where he "dumps" the MSI into the store's computer. After a good dump, wipe the memory clean and it is ready for another trip to the shelves.

In my situation, up to 15 or 20K of data would be dumped at a time and the MSI doesn't support XON/XOFF flow control. So much for storing a track at a time. SO here sat an OSI 230E ready and willing, but would it be able?

The say that an OSI can be made to work with almost anything. Now I believe, but at the time, I wasn't too sure at all. I yanked out the CA-10 to rig up a port for 4800 baud while contemplating how I would get all those 15K of data into memory, if not on disk. Past efforts at dumping WP print-out from one OSI into another via modem had all failed, apparently due to the length of time for the receiving machine to execute the carriage return - line feed (it always lost the first character or two from the next line).

To test the new port, I hooked up a

printer to it, just to see if I could send to it. I POKEd 11686,129 to set the output to the CA-10 and the serial console simultaneously, and POKEd 19798 with 6 to get port 4 on the CA-10 board (0, 2, 4, 6). It worked as expected, but that didn't solve my problem.

If I can POKE the output where I want it, I wonder if the same thing can be done with input? PEEK[65] to the rescue! Back to Roger Clegg's OS-U PEEK and POKE list. Yup! There is a location 11668 that handles input much like 11686 does for output. So, after the 19798 port selection, 1 POKEd 11668 with 128 (Editor's Note: the INFLAG at 11668 is checked by the operating system for the lowest bit number set. Once a bit has been found for this function, higher bit numbers that may also be set are ignored. The upshot of this is that you can only choose one port for input at a time). Tickle the input leads and.... nothing.

What on earth could be wrong? It is just like the book said. A quick call to Mike Sokol. "No wonder. You have to initialize the ACIA and establish the protocol."

One of these days, someone will hopefully do the 6850 ACIA a good turn and let us all in on its bag of tricks, but for the moment, let's approach this from the layhardwareman's point of view.

If you don't have the data sheet on the 6850, you had better get a copy from Motorola. A documentation sheet came with every CA-10-X board I ever saw. After wading through all the technicalities, one comes to the last two pages that tells you how to set it up.

Before trying to tell it what you want it to do, you must first initialize the 6850. It talks binary and has an eight bit word, so get out your calculator and be prepared to convert base 2 into base 10 or 16 and back again, or dig back in PEEK[65] to find the program that will do it for you.

OK, initialize! First, where does it live? Well, that depends upon your

machine and where it thinks the CA-10 is located in memory. In most cases it will be at \$CF00 or \$CE00. Since two locations are used for each port (the first being the Control Register where we tell it what to do, and the second is the Data Register that actually passes the data in and out) the first port might be at \$CF00 and \$CF01, the second at \$CF02 and \$CF03, etc. So, pick your port and then convert these hexadecimal values of the memory addresses to decimal so that we can POKE it. In my case, the Control Register for port 4 converts to 52998.

Initialize at last! The 6850 manual says to put ones in CR0 and CR1 (Editor's Note: that's bit zero and one to us mere mortals) of the Control Register to reset the chip. Some quick calculations will tell you that this value is 3, so I POKE 52998 with 3.

How to behave? In the manual, there are several tables listing various values for CR0 through CR7 (the eight bits of the byte you store in the Control Register to configure the 6850). After consulting the manual for the MSI, modem, or whatever you will hang on the port, compare it's requirements for baud rate, word length (or number of data bits), parity, and number of stop bits with those in the 6850 manual to determine the value to POKE to the Control Register after you have reset it. Remember that each of the eight bits has a meaning and must be set properly.

In addition to controlling the reset function, bits CR0 and CR1 also set what the 6850 calls the "divide rate". This divide rate determines the baud rate, or the speed at which you want to communicate. You see, the speed at which the 6850 operates is determined by two factors: (1) the speed of the clock signal coming into it from your computer, and (2) the divide rate. The clock signal is divided by the divide rate in actual operation. The 6850 has three possible settings for this divide rate -1, 16, and 64. Let's assume the clock signal coming into the 6850 is 19,200 cycles per second. If the divide rate on the 6850 is set to 1.

the effective baud rate you will communicate at will be 19,200 baud. If the divide rate is set for 16, you will be set for 1200 baud. And if the divide rate is 64, You you'll get 300 baud. see? 19,200/16=1200. 19,200/1=19,200. 19,200/64=300. All of the settings are shown in Table 1.

A setting of 7 data bits, even parity, and 1 stop bit is the most common setting and suited my needs. After selecting the rest of the settings I wanted, my configuration byte ended up as "10010001". In decimal, that's 145. Since the 6850 was already initialized, I then POKEd 52998 with 145. Shift the input from the keyboard to the CA-10 with POKE 11668,128 and select the port with POKE 19798,6. Hitch up the MSI and tell it to dump. Violla! the dump appears on the screen!

So you write a simple little program that then says to INPUT A, or INPUT A\$, and go get the next one. The operating system takes care of putting it on the screen and into memory.

But let's get a little more practical. The shorter the program, the more room in memory will be left for variables. I just DIMed A\$(500) and made a little loop.

10 INPUT A\$(X): X=X+1: GOTO 10

That was just great, but the darned thing just died on me when it finished. I noticed that the MSI sent "/END" as the last characters, so I installed;

IF A\$(X) = "/END" THEN POKE 11668,1

to restore input control to the console. Then I, or the program can save the stuff to a file.

That's it. Sweet and simple, and very useful. Now that you can handle the ACIA and control INPUT sources, just let your mind ramble.

How's this for starters? Dealers have gone to all sorts of expensive ends to have a modem on a customer's machine so they can access it from their office. Some have even installed extra memory partitions - just for the modem. Now and extra menu selection can do the POKEs to turn the console over to the modem and it can be POKEd back to the console when finished.

<u>CR1</u> 0 1 1	0 1 0 1		Effect Divide Rate = 1 Divide Rate = 16 Divide Rate = 64 Master Reset
CR4 0 0 1 1 1 1	CR3 0 1 1 0 0 1 1	CR2 0 1 0 1 0 1 0 1	Effect 7 data + Even Parity + 2 Stop 7 data + Odd Parity + 2 Stop 7 data + Even Parity + 1 Stop 7 data + Odd Parity + 1 Stop 8 data + No Parity + 2 Stop 8 data + No Parity + 1 Stop 8 data + Even Parity + 1 Stop 8 data + Odd Parity + 1 Stop
CR6 0 1 1	CR5 0 1 0 1		Effect RTS = low, Interrupt Disabled RTS = low, Interrupt Enabled RTS = hi, Interrupt Disabled RTS = hi, Interrupt Enabled and Transmits a <break> level on the Transmit Data Output</break>

Table 1

ATTENTION: DEALERS!

PEEK[65] needs new subscribers and you need new together make and we can it happen customers. with our own Co-op advertising program. This dealers for signing new program pays up with subscribers free ad space PEEK[65]. Just in 1/9th five paid subscriptions will earn а page advertising credit in PEEK[65].

Most dealers sell their own software with the they install. By advertising in PEEK. systems you vastly expand the potential market for your products. And how many sales have lost you find the because you couldn't application your wanted? Dealer ads customer can be our own Yellow Pages. Readers and customers win too by increasing the number of uses for their equipment.

Call or write today for details and free your promotional materials. Making PEEK[65] a subscription a part of every sale is painless and profitable. This time, "Co-op" pays you.

Remote <BREAK> and Boot

by George Jennings Capitol City Stationers 3649 Market Street Camp Hill, PA 17011

The purpose of this article is to demonstrate a technique to allow ISOTRON dealers to provide remote programming support for clients who are located several miles from the dealership.

Essentially, it is a matter of going on-line via modem with the customer's system, saving travel time and expense for software fixes that would otherwise require a trip to the client site.

One of the first problems encountered is the fact that when a programmer is trying out a software fix and it doesn't work properly, the machine often hangs going off into the woodwork, requiring a reboot of the system. It can be a nuisance having to place a second phone call to the customer (assuming he has a second phone line) to get him to push the reset button. Figure 1 is a simple little 4-component circuit which allows a remote programmer - working through the supervisory (console #0) port to reboot the system by remote control.

Copyright 1986 PEEK[65]
All rights reserved
Published monthly
Editor: Richard L. Trethewey

Subscription Rates	Air S	urface
US		\$22
Canada & Mexico (1:	st class)	
		\$30
Europe	\$42	\$40
Other Foreign	\$47	\$40
All subscriptions are fo	r one yea	r
and are payable in adv	ance in U	S

dollars. For back issues, subscriptions, or other information, write to:

PEEK[65]

P.O. Box 586 Pacifica, CA 94044 (415)-359-5708

It is a simple comparator and timer which monitors the RS-232 voltage at the console input to the computer. This voltage (regardless of whether it originates at a local terminal or a modem) sits normally at somewhere between minus 3 and minus 12 volts. When a character is received, the voltage momentarily switches to plus 3 to plus 12 volts at the baud rate employed. The comparator looks for a plus voltage excursion lasting more than a few seconds and when it detects one, it pulls pin 7 on the NE-555 low. This pulls the main reset line on the processor low and provides the familiar "H/D/M?" boot message.

OK, how do we put a plus voltage on that input pin? Many CRT terminals have a <BREAK> key which does just this. The problem is that a lot of them only produce a short positive break pulse which isn't long enough to activate the timer. The timer has to have a fairly long time constant so as not to respond to the baud rate pulses normally used for modem work (300 to 1200 baud or so). Figure 2 is a simple button and battery circuit which can be built into a little box at the dealer end to provide a <BREAK> signal for those terminals that don't provide a sustained <BREAK> signal. The programmer pushes the little button, counts slowly to 10, and lets go. The terminal responds with "H/D/M?" from the remote computer, and he proceeds from there.

If only an occasional "on-line" session is needed, it's more convenient to plug and unplug modems, etc. at each end and get the operators to switch baud rates each time. If frequent on-line sessions are required, it's worth the trouble to gear up a little more conveniently.

Prior to delivery of the customer system, the break timer (Figure 1) and a small 3pole double-throw toggle switch can be installed in the client's machine. The break circuit can be mounted directly on the 510 boards using the NE-555 foil pads provided for the optional 110 baud clock timer - see schematic. The 515 board has an uncommitted 16-pin pad layout which can be used on this processor board for the same modification. The toggle switch is installed on the back panel, near the console input DB-25s connector. In one position, normally down, the switch connects the console input cable to the CPU board directly to the console terminal jack. This requires 2 of the 3 switch contacts.

The third switch section is tied into the baud rate selector pads and sets the console baud rate to whatever is desired (usually 4800 or 9600). In the other position, the switch ties the CPU input and output to a long pig-tailed DB-25 connector and ties to the external modem. The third section selects the modem baud rate (usually 300 or 1200). This provides a no-hassle way for the client to switch over. He just flips the switch, drops the phone in the modem cuff, and is ready to go. At the end of the on-line session, he hangs up the phone, flips the toggle switch the other way, and is back in business normally (assuming the software "fix" worked). CAUTION!! The baud rate clock signals on both the 510 and 515 boards are at 16 times the actual baud rates listed! It is imperative that the baud rate clock circuits to and from the toggle switch be run with shielded leads with the shields grounded!! The rise times on the clocks are sufficiently fast as to interact if you don't shield them. This will cause the CPU boards to try to clock at some unpredictable baud rate - and it won't work!

Meanwhile, back at the dealer's site, Figures 3A and 3B (with a little help from Figure 2 as noted above) provide 4 convenient modes of operation.

(A) is the normal setup at the shop. Terminal talking to local computer.

(B) ties the local dealer terminal into the modem. You have to switch terminal baud rates on the terminal to agree with the what the client and modems are set up to handle. In this mode, the programmer can go on-line with the remote client machine.

(C) with some software diddling to make character transmission the rate compatible with BASIC's somewhat slow internal housekeeping, can be used to download files and programs directly from the dealer's computer to the remote client machine. The remote machine will echo what its getting back to the dealer terminal. This takes some attention to things like eliminating automatic linefeeds and other stuff which could be troublesome, and I won't get into all that. This, however, will supply a hardware means to do it, with the software details left up to programmers more clever than I am.

Figure 1

R = 100K 1/4W (sets time to reboot) D = 1N914, etc. C = 10 mfd, 15VDC, tantalum

(D) is useful in cases where the dealer or his programmer may want to access his shop computer from a client location (for look-up or demonstration purposes or whatever). The local dealer terminal monitors whatever is being sent out of the shop, so if somebody starts rooting around in proprietary files, the dealer operator can flip the switch and terminate the session. If's a security watchdog feature. Also handy to monitor the usage of dealer computer when leased or rented remotely to an outside user.

The stuff at the client end costs roughly \$15.00 plus the cost of whatever modem is used. The dealer end stuff might run \$50.00 or so, plus modem. This sort of setup can pay for itself in travel time, and extra "please reboot the system" phone calls in a fairly short time, depending on how busy the shop is and how far away the clients are located.

Another useful idea for multi-user systems at the client end; if ge is in timeshare while the programmer is on-line through the console port, a little interterminal communications program can be used to POKE messages from the programmer to specific time-share user terminals for instructions, etc. In essence, the program inputs a message character string and then POKEs it one character at a time to the ACIA port for the particular user. Still another way to get the client's attention is to dump a message to his line printer: "Please insert the OS-65U System Disk. Thankyou." "Please pick up the telephone.", etc.

Add to Figure 3 if terminal used only provides momentary "break".

Figure 2

Product Description: Becterm Multi-Micro(R) Systems

We all know that Denver Boards, Inc. makes OSI-compatible boards and systems, but did you know there was another company making boards that will run OS-65U? Neither did I until the company, Becterm of Quebec, Canada phoned to ask some questions. I recognized the name from the PEEK subscription list, but had always assumed they were a dealer or some other computer-related business.

I was astounded to hear of what they had been doing. They have a line of multiuser computers that use a proprietary operating system they call "BMOS". The BMOS environment allows several different operating systems to run on the system simultaneously. OK, I've heard of that sort of thing before, but this was the first time I'd heard of one that also supported differring microprocessors. attatched processors, and coprocessors to run on a single system.

As you might expect from the above specifications, the Becterm systems give each user exclusive access to at least one processor. Their lowest entry level system, the model AZ-400, supports up to 20 users. At the high end, their model AZ-1400 supports up to a mix of 256 users, user processors, and peripheral processors.

Becterm supports a variety of operating systems, including OS-65U, UCSD, and IDRIS. On the hardware front, they support the 6502 and the 68000, and will apparently soon support the 8086 family.

In my conversation with Mr. Andre' Gareau, it was clear that Becterm had gone far beyond the traditional OSI multiuser and networked systems, with many features a lot of people have been begging for. How does 32 gigabytes of mass storage sound to you? Not impressed? How about 670 megabytes of RAM-disk storage? For more information, contact:

Becterm

12, Trans-Canada Ouest Levis, Quebec Canada G6V 4Z2 (418)-835-1551

Figure 3b

Software Spectacular!

C1P/Superboard Cassettes

OSI Invaders Biorhythm Space War Basic Math Hectic Cryptography

Hangman Zulu 9 Add Game High Noon Annuity I Sampler

Star Trek Racer Advertisement Tiger Tank Math Intro.

Assortment of 10 for just \$20.00!

Specify your preferences, but due to limited quantities, some substitutions will be made.

C4P/C8P Cassettes

Statistics I Annuity II Bomber Stock Market Metric Tutor Electronics Equ. Star Wars Prgmble. Calc.

Frustration Mastermind Loan Finance Annuity I A.C. Control Checking Acct.

Space War Battleship Trig. Tutor Powers Star Trek Zulu 9 Math Intro Mathink High Noon Blackjack Math Blitz Calendar

Sargon II Chess Software

Disk version for C8, C4, or C1 (specify) Regular \$34.95 Sale Price \$15.00

Cassette version for C8, C4, or C1 (specify) Regular \$29.95 Sale Price \$10.00

Extended Monitor

Cassette version for all systems Regular \$50.00

Sale Price \$15.00

Mortgages, Discounted Mortgages, and the Annuity Equation

by Dale King Box 419 Leonard, TX 75452

Did you ever wonder how the monthly payment is determined on a fixed-rate mortgage? Have you noticed the growing classified ads under "Mortgages For Sale"? How would we know how much to offer for these investment instruments in order to make them profitable to us? Can I use my OSI to analyze these instruments? Yes, of course.

Some terminology: A note is merely a promise to pay a sequence of payments in the future (possibly just one payment). In the case of real estate, a mortgage is a legal agreement that secures the note. In some states this is called a deed of trust. By an abuse of language we use these terms interchangably.

An annuity is merely a sequence of equal payments. They could be monthly, yearly, or daily, but they are equal. It is not hard to see that a payment to be received in the future is not worth as much in the present. For one could set aside the present value and let it earn interest until it has grown enough to be received at the future date.

Thus, every payment in an annuity has its own present value. Add all these present values up to get the present value, or **PV**, or the entire annuity. For example, the PV of a mortgage at day one is the original amount of the loan. It takes a little algebra, but one can show that the equation in Figure 1 relates N, the number of payments; R, the amount of each payment; i, the interest rate per conversion period; an PV, the present value of the annuity.

The program ANUITP, shown in Listing 1, allows you to solve this equation given any three out of four of its variables. In the case of i, this is harder than you think. The equation is transcendental in i.

Your banker looks un the N, PV, R, and i in "Mortgage Interest Tables". These tables are widely available, but usually do not have the range that we seek. My father has an old CRC Math Tables. They handle i up to about 5%. Modern tables go up to roughly 20%. Why would anybody need tables higher than 20%? This question leads us to the subject of discounted Mortgages.

Suppose I am receiving monthly payments from a mortgage (I carried back a second when I sold my house). I might rather have the cash.

The value of my mortgage may be \$10,000.00, but I might be willing to sell my mortgage to somebody else for say \$5,000.00. You can be sure that such a buyer of my mortgage is going to earn a lot more interest than I am. How much more? 50% is not unheard of.

It happens every day. From the buyer's perspective, he is buying an annuity of N payments of R dollars (or pounds Sterling or francs) and he is paying a PV of \$5,000.00. By selecting option 4 in ANUITP, he can determine his percentage of yield.

Figure 1

If you find any of this interesting, then let Rick Trethewey know (send a note to PEEK[65]) and we can continue this discussion and provide other programs and examples. I haven't mentioned the **AMOUNT** of an annuity, which is another powerful concept. Send me a SASE and I will send you a brief bibliography on the subject at no charge.


```
2 REM
 3 REM
            SOLVES THE ANNUITY EQUATION
 4 REM i.e. SOLVES FOR ANY ONE OF N, PV, R, AND I GIVEN ANY THREE
 5 REM WHERE N = NUMBER OF PERIODS
       R = PAYMENT PER PERIOD (e.g. monthly payment)
 6 REM
          PV = PRESENT VALUE OF THIS INCOME STREAM.
 7 REM
           I = INTEREST RATE PER CONVERSION PERIOD
 8 REM
              by Dale King, PO BOX 419, LEONARD TX, 75452
 9 REM
 10 REM**********
                             ******
 100 CL$ = CHR$(10): FOR I = 1 TO 5: CL$ = CL$+CL$: NEXT I
 110 PRINT CL$
 130 PRINT "
             SOLVE THE ANNUITY EQUATION"
 140 PRINT
 150 PRINT "(1) FOR PV GIVEN N, R, AND i"
 160 PRINT "(2) FOR N GIVEN PV, R, AND i"
 170 PRINT "(3) FOR R GIVEN N, PV, AND i"
 180 PRINT "(4) FOR i GIVEN N, PV, R"
 190 PRINT
 200 INPUT "YOUR SELECTION"; Q$: Q = VAL(Q$)
 205 IF Q$ = "X" THEN STOP
 210 IF Q<1 OR Q>4 OR Q<>INT(Q) THEN 200
 215 INPUT "ENTER CR FOR MONTHLY CONVERSION AN ANNUAL i"; DE$
 216 DE = LEN(DE\$)
 220 ON Q GOTO 300, 400, 500, 600
 297 REM
 298 REM
 300 REM SOLVE FOR PV
 301 REM
 302 REM
 310 GOSUB 700: GOSUB 745: GOSUB 760: REM GET N, R, i
 320 PV = R * ((1 - (1+1) ^ (-N))) / I
 330 GOSUB 785: REM PRINT SOLUTION
 350 GOTO 120
 397 REM
 398 REM
 400 REM SOLVE FOR N
 401 REM
 410 GOSUB 720: GOSUB 745: GOSUB 760: REM GET PV, R, i
 420 N = -(LOG(1 - I * PV/R)) / LOG(1+I)
 430 GOSUB 785
 450 GOTO 120
                                        na
ha teri teri
 497 REM
 498 REM
 500 REM SOLVE FOR R
                  -11
 501 REM
 505 GOSUB 700: GOSUB 725: GOSUB 760: REM GET N, PV, i
 510 R = PV / ((1 - (1+I)^{-1}N) / I)
 520 GOSUB 785
 530 GOTO 120
597 REM
598 REM
```

PEEK [65] December Page 10

ويعقدهم والالترارية الحقورة البواد فكالع

.....

31

```
599 REM*************
600 REM SOLVE FOR i (note we must use a numerical method here)
601 REM
605 GOSUB 700: GOSUB 725: GOSUB 745: REM GET N, PV, R
610 DEF FNA(X) = PV - R * ((1 - (1+X)^{-N})/X)
620 GOSUB 1000: REM FIND THE ZERO OF THE FUNCTION A(X)
625 PRINT
630 I=X: GOSUB 785
650 GOTO 120
697 REM
698 REM
700 REM N
701 REM
705 INPUT "N - the number of periods"; N
710 RETURN
720 REM PV
725 INPUT "PV - the present value of the annuity"; PV
730 RETURN
740 REM R
745 INPUT "R - the amount of the periodic payment"; R
750 RETURN
760 REM i
765 IF DE THEN 775
770 INPUT "i - the annual %interest rate"; I: I = I/1200: RETURN
775 INPUT "i - the %interest per conversion period"; I: I=I/100:RETURN
785 PRINT CL$
786 PRINT " N", " PV", " R", " %IPP", " %ANNU"
790 PRINT N, PV, R, I*100, I*1200
792 PRINT: PRINT: PRINT
795 RETURN
997 REM
998 REM
1000 REM THIS SUBROUTINE SOLVES A(X)=0 FOR X
         USING THE BISECTION METHOD
1005 REM
1006 REM
1007 REM
1010 A = .0001: B = 1: REM WE ASSUME THAT A < X < B IN THIS METHOD
1020 IF SGN(FNA(A) * FNA(B)) > 0 THEN PRINT "ERROR": RETURN
1022 IF ABS(A-B) < 10^{-4} THEN X = (A+B)/2 : RETURN
1023 PRINT ". ";
1025 \text{ MIDPT} = (A+B)/2
1030 CHECK = FNA (MIDPT) * FNA (A)
1040 IF SGN(CHECK) < 0 THEN B = MIDPT: GOTO 1020
1050 A = MIDPT: GOTO 1020
```

Listing 1

Write for PEEK[65]!

Using High Density 5.25" Disk Drives to Replace 8" Drives

by David Livesay ave de la Resistance 6 B4920 Emourg, Belgium

How many of you have wished that you could silence your 8" drives? If not, how many of you have family that wish that you would turn off your computer to silence the 8" drives? Okay, so you like the noise. How would you like to increase your storage capacity?

If anything in the above paragraph strikes a chord, then read on. I will explain how you can replace your noisy 8" (most likely single-sided) drives with quiet high-density double-sided 5.25" drives. Today, two 5.25" double-sided drives with power supply and cabinet will cost less than one single-sided 8" drive with cabinet and power supply cost 6 years ago.

This article is a continuation of the article which appeared in the September issue of PEEK[65] and you will need to refer to that article for some of the information required to install the high-density drives.

For several years now, high-density 1.2 megabyte (when formatted in doubledensity format, but only about 500K in standard OSI format) 5.25" disk drives have been on the market which can be used to replace the 8" drives. Although the drive connector is different that the 8" drives, the signals are compatible. Table 1 shows the pin-out of the highdensity drives. These drives spin at the same speed and have the same data transfer rate as the 8" drives. The only differences are that all of these drives are double-sided, have 80 tracks per side, and don't have built-in data separators. If you make an adaptor to connect these to your computer and provide a data separator, the computer won't know the difference between these drives and the 8" units.

Data Separator and Motor Cantrol

You will need to either build or buy the data separator/motor control circuit described in the September issue of PEEK[65]. There are a couple of changes that you will need to make to the data separator described in that article. In place of the 470*pf* capacitor connected to U2, you should connect a 220*pf* capacitor. The 10K trim pot should be adjusted for a 2.75 to 3.0 microsecond positive pulse at pin 6 of

U2. Most of the high-density drives also have a ready signal at pin 34, so this line can be connected to the OSI controller pins 20 and 24.

The high-density drives usually have provision for speed select. This allows you to use the high-density drive to read and write normal 80 track 5.25 formats. For high-density mode, the drive turns at 360 RPM (just like the 8" drives) and to read and write normal 5.25 disks. the drive turns at 300 RPM. If you have more than one OSI system and one is a minifloopy, you could build two data separators, install a connector on the back of each computer for the disk drives, and then install a switch on the disk drive for selecting the speed. The switch should be connected between pin 2 and ground. Normally, grounding this pin will switch the drive to low speed mode. You should consult the disk drive manual. You can have automatic speed selection by connecting pin 2 of the drive cable connector to ground on the data separator used with the mini-floppy system. The data separator used with the 8" system should have pin 2 left open. Now when you plug the drives into the mini-floppy system, they will spin at 300 RPM and when plugged into the 8" system they will spin at 360 RPM.

Modification of OSI Controllers for use with Double-Sided Drives

You will need to modify your OSI drive controller for use with double-sided drives. The required modifications and described in the September PEEK[65] article. For those who have a different OSI controller than the one I described and can't figure out what to do to make the changes, write to me and I will give you instructions.

Replacing 8" Drives with High-Density 5.25 Drives

After you have the data separator built, you will need to make an adaptor to be able to connect one 8" and one 5.25" drive at the same time.

Figure 4 shows the connections required to connect an 8" drive to the high-density 5.25" drive cable while transferring data from the 8" disks to the 5.25" disks. You should set up the 8" drive as drive number one and the 5.25" drive as number two. The easiest way to connect the two drives is to connect a small prototype board with a 34 conductor edge connector into one of the drive connectors on the 5.25" drive cable. Find a prototype board with an edge connector with 2X17 connections on it

spaced at .100" between conductors. Radio Shack sells some cards with 2X20 connections. You can modify this by cutting part of the edge with a hacksaw. Another choice would be a prototype board for an Apple. The Apple-2X25 compatible boards have connections on it and will also have to be modified. To this board you will need to add a 50-pin female header for a ribbon cable to the 8" disk drive. You will then need to make the connections shown in Figure 4 between the 34-pin connector and the 50-pin connector. If there is enough interest, I will make a small adaptor board with the connector on it. You will then need to make up the cable for your 5.25" disk drives with connectors for the two drives, even if you only have one 5.25" drive, and a new cable to the 8" drives.

In order to control the head loading on the 8" drive, you will need to either run a wire from pin 1 on the OSI controller to pin 18 of the 50-pin cable going to the 8" drives, or you can use pin 4 of the 34-pin cable for controlling the head load. If you use pin 4 of the 34-pin cable, run a wire from pin 1 of the OSI controller connector on the data separator board to pin 4 of the connector for the disk drive cable. You will then need to make the connector to pin 18 of the 34-pin connector on your adaptor for the 8" drives.

Now that you have all of the required hardware, install the data separator, connect the 5.25" disk drive cable to the disk drive - set up as drive number two connect your adaptor board to the 5.25" drive cable, and connect your new 50 conductor cable to the 8" drive - set up as drive number one. Remember that some manufacturers of 5.25" drives number their drive select lines as 0-3 and others as 1-4. In either case, when I refer to drive number one, I mean set the drive so that it is selected by pin 10, and so that drive two is selected by pin 12.

Now with all of the connections made, you can boot your system with the 8" drive. Note that you are now using the data separator connected to the OSI controller and not the data separator built into your 8" drive.

At this point it should be mentioned that the disks that you use for the highdensity 5.25" disk drives should be identified as being suitable for use with the IBM PC-AT. Don't try to use normal double-density disks. If you also use these drives as normal 80-track drives (in low speed mode) for a mini-floppy system, you should use normal doubledensity disks when using the drive with the mini-floppy system.

You should now POKE in the changes required for OS-65D to use 80-track drives (see section below), select drive "B" and try to initialize the disk by entering;

DISK!"INIT"

If all went well, the disk drive will initialize side one of the disk. You can now try reading and writing to the disk to make sure that everything is working properly. Don't forget that for the second drive, side one is device "B" and side two is device "D". You should now copy all of your 8" disks to the 5.25" disks. You can then disconnect the 8" drive and set up your 5.25" drive as drive number one. You should now be able to boot from the 5.25" drive.

Changing OS-65D for 80-Track Drives

In order to use 80-track drives in place of the 77-track 8" drives, you will need to make some changes to OS-65D and some of the utility programs.

There are three memory locations in OS-65D which need to be changed. There are two ways that we can do this. The first one is to POKE the correct values into memory by adding appropriate commands to your BEXEC* programs on all of your disks. The second way is to make permanent changes to the operating system on your disks.

The following memory locations are the ones to change. Values within parenthesis are the decimal equivilents of the hexadecimal values preceding them.

ADDRESS	OLD VALUE	NEW VALUE
\$26CA	\$77(119)	\$80(128)
\$2769	\$76(118)	\$79(121)
\$2779	\$76(118)	\$79(121)

To make the changes to OS-65D, enter "EXIT" at the "OK" prompt in BASIC and load the Track Zero Read/Write Utility from track one, sector 2 into memory at \$0200. You execute this program by entering "GO 0200". Follow the instructions to read track zero into memory at \$6200. Load the Extended Monitor and change the three memory locations shown above. Remember to add \$4000 to the memory addresses to reflect where we put the track zero

PIN #	<u>SIGNAL TYPE</u>	FUNCTION
2	INPUT	SPEED SELECT
4	INPUT	IN USE or HEAD LOAD
6	INPUT	DRIVE 4 SELECT
8	OUTPUT	INDEX
10	INPUT	DRIVE SELECT 1
12	INPUT	DRIVE SELECT 2
14	INPUT	DRIVE SELECT 3
16	INPUT	MOTOR
18	INPUT	DIRECTION SELECT
20	INPUT	STÉP
22	INPUT	WRITE DATA
24	INPUT	WRITE GATE
26	OUTPUT	TRACK 00
28	OUTPUT	READ DATA
30	INPUT	SIDE SELECT
32	OUTPUT	READY

- NOTE - ALL ODD PINS ARE GROUND

Table 1

contents (ie. instead of \$26CA, you would enter \$66CA). Run the Track Zero Read/Write Utility again and save the new version to disk. Remember that we will read and write 12 pages of data each time. At this point you will have a disk that will boot and be able to use all 80 tracks.

You will also need to change the program CREATE to be able to use 80 tracks. The instructions for doing so are in the September article. In this case, changing line 20090 as stated will allow the use of tracks 0-7 as well as 8-80.

Using 8" and 5.25" Drives at the Same Time

For those who wish to have the possibility of quickly using the 8" drives, you might wish to make up the 5.25" drive cables with three disk drive connectors on it. Two of these connectors would be used for your 5.25" drives and the third would be used to connect to your adaptor for the 8" drive. Although they may be a little bit difficult to find these days, you should be able to locate a cabinet suitable for a single 8" drive. You will then need to install a switch on the case which connects to the drive select jumper on the drive. You will also need to connect a switch to the drive select jumpers on one of the 5.25" drives. Both of the drives should be set up as drive number two. You should mark the position of each switch to indicate which is selected. If you accidentally leave both selected, they will not work.

Conclusion

At this time, you can purchase the highdensity drives for about \$150.00 each. These will most likely drop to about \$125.00 each in the next 6 months. Remember these drives are usually identified as 1.2 megabyte drives for the IBM PC-AT. <u>DO NOT</u> get confused and purchase a 360K drive for the IBM PC-AT. Now you can enjoy the quietness and increased capacity of your new drives.

50 PIN 8" TO 34-PIN INTERFACE CONNECTIONS

8"	DISK CONNECTOR	5.25" DISK CONNECTOR
14		SIDE SELECT 32
18		HEAD LOAD 4*
20		INDEX 8
22	••••	READY 34*
26		DS0 10
28		DS1 12
30		DS2 14
32		DS3 6
34		DIRECTION 18
36		STEP 20
38		WRITE DATA 22
40		WRITE GATE 35
42		TRACK 0 26
44		WRITE PROTECT 28
46		READ DATA 30

* Optional on some 5.25" drives

COLOR+ Additions

by John Horemans TOSIE Box 29 Streetsville, Ontario Canada

Finally I have played with the Color+ board long enough that I feel confident enough to write a few words. Changes to the keywords, new words, and relocating the Color+ above BASIC are my main achievements. This has been aided greatly by Bob Ankeney of Generic Computer Products passing on to TOSIE the source code, and allowing distribution as long as we retained the header "Not to be used for profit".

My first efforts were to install words to operate the Commodore SID chip. This, as most will recognize, is the sound chip installed in the Commodore 64. Data is easy to get. For the circuit diagram, borrow a copy of the 64 programmer's guide. The circuit is at the back of the book. My 6581 SID is connected as shown in that diagram. I added a decoder for \$C4xx and a DD line. Note that the original Commodore 64 location was \$D400. This is a possibility for Supperboard owners. I chose \$C4xx as this area was free. When I started and was programming it with code copied from magazines, all I had to do was subtract 4096 from the decimal addresses. Now with the new code, I don't even need to remember where the chip is in memory. The commands added to the Color+ are as shown in Table 1 (PS you could add them to BASIC+).

So far, that's it for new commands, but the syntax of several others was changed. I did not enjoy typing SPRITEPATTERN and other 12 character keywords. They were shortened to save typing and space. The parameters have not changed; use them as before.

OLD		NEW
SPRITEMOVE	-	- SMOV
HCOL	-	HCOL
COLOR	-	COL
SPRITESELECT	-	SSEL
SPRITECOLOR	-	SCOL
SPRITEPATTERN	-	SPAT
SPRITEINIT	-	SPINIT
SPRITESIZE	-	SSIZ
TCOLOR	-	TCOL
SCREEN	-	SCR

All this saves typing, decoding at run time, memory space, space in the table, and has been easier to remember. Note for example that now none of the COLOR commands need an "=". I could never remember which ones needed it.

Of course, all this took space. The code has been expanded to just over 2 tracks on my 5-1/4" system. To leave room for more, I went to three tracks. The standard Color+ method of storing itself along with the program was never really satisfactory. It filled a disk with just 3 or 4 programs. My additions would only have made things worse.

The method used by BASIC+ was easy to impliment. Just search the directory for a file called "BASIC+" and load the tracks into the top of memory. Once again, the source code was needed. It was reassembled to \$A800, and the hooks changed. See the partial listing of the BEXEC* for the details. If you use the original code, you could easily get away with only \$B000 and up, and reserve only two tracks. Now a BASIC+ disk fills like any other. The trade-off is that a separate version is needed for systems with different amounts of memory. However, with the C4/C8, 48K seems standard. With the C1, there are many with 32K, and some with 40K, which would require two versions. This is probably why Bob Ankeney used the method of moving up BASIC to allow for Color+. He did not have to be concerned with memory sizes.

Sample programs called ART1 and HAPPY are included with this article. ART1 demonstrates some of the capabilities and the math routines. Note that ART1 is really a compilation of 15 separate routines. Each menu item is a separate program. Add GRINIT:HGR and each will run on its own. HAPPY Birthday demonstrates the ease of using the SID sound chip, and the use of sprites. Note too that the SID chip works will at 3 MHz (connected directly to the 48-pin bus), unlike the General Instruments AY3-8910/12 which is usually run through a 6821 PIA to allow for its slow access times.

Color+ (and in my installation TOSIE II) has opened another area of exploration. I don't own a color monitor and don't intend to get one. The high resolution graphics, sprites, and character sets have opened up another area of programming fun.

SCLR	- SID clear, clears all the registers to zero.
VOLnn	- Volume set (all 3 voices) with $nn = 0$ to 15.
WAVE r,n	- Waveform where r is the register number with r =
	1 to 3 and n is the type of wave. n=1 gives sine
	waves, n=2 gives triangle waves, n=3 gives pulsed
	waves, and n=4 gives the noise.
PLAY r,nnnn	- Play the sound where r is the register, $r = 1$ to
	3, and nnnn is the frequency value POKEd to the
	chip. This will be integerized and split into
	HI/LO values as needed.
OFFn	- OFF0 starts the release cycle for all 3 voices.
	OFF1, OFF2, or OFF3 starts the release cycle for
	that voice.
ATK r,n	- Sets the attack duration, where r is the
	register and $n = 0$ to 15.

Letters to the Editor

Dear Sir;

I have an offer which I believe would be of interest to your readers and expand the use of the OSI computers. As I wrote you previously, I have been working at converting an IBM BASIC program to OSI BASIC. I am pleased to report that the conversion is complete and the program runs on my C4P exactly like it runs on the IBM.

I would like to share what I have learned with any other PEEKers who are interested in conversions. I have access to an IBM PC-AT at work where I make my own hard copies and run the IBM programs and I would be happy to make copies for anyone who doesn't have access to an IBM. I also have access to an expert IBM programmer, and we have success making listings of programs protected while being saved. I'm sure that you will agree that the purchaser of a program is entitled to a listing of the program.

Anyway, I've always read PEEK[65] with great interest and learned a great deal from it, but I haven't been able to contribute much. Maybe in the area of conversions I can.

Sincerely, (Name Withheld)

Dear Sir,

Thank-you for your kind offer to help folks move their IBM software to the OSI. In most cases, the OSI will run rings around IBM PC's BASIC. I've heard of people pitting the OSI against PC-AT's too, and the OSI held its own.

However, I am concerned about your proposal to share software. Commercial programs are copyrighted material. You cannot freely distribute copies of such programs. You may sell the original program as you please, although you would be obligated to destroy any additional copies of the software should you do so. I won't draw any crazy analogies between a book and a program. The bottom fine is that its wrong to distribute copies of commercial software. The authors of such software deserve to be paid by everyone who benefits from it.

I also disagree that you have a right to the listing of any program that you purchase. I'm sure that you were never told the program came with a listing, or that it would be unprotected when you bought it. Chances are that the software came with a license agreement. Whether or not that license is totally binding is hard to say. Its a matter of some debate in the industry and in the courts. However, I'm sure that any license you old receive spelled out exactly what your rights were. If the program doesn't do what its supposed to do, then you have many routes of redress. Whether or not you have the right to de-crypt a program is even more nebulous. Under the concept of "fair use", you probably do have that right. However, I could envision arguments against this applying to licensed software.

I'm a software author, so naturally I'm sympathetic to the rights of other authors. However, I buy software too, so I'm not totally biased. Given the state of affairs we find ourselves in these days technologically (both and legally) restraints on copying software boil down to a matter of ethics. When you buy or use a commercial program, you know what the vendor considers his rights to be. lf those conditions aren't satisfactory to you, find another vendor. The world is up to its armpits in 'em. But don't assume that anv such unsatisfactory conditions confer upon you the right to violate that vendor's rights. If you don't like the deal, walk away from it.

Rick

Dear Sir;

I have owned an OSI C4P-MF with 48K and two disk drives since 1980. Right now, it is sitting, unused, near my Macintosh. In terms of operating speed, software availability, data storage, and general usability, there is really no comparison. The Macintosh is the winner. However, I still have a soft spot for the OSI and I am very interested in the project to upgrade to the 65C816 microprocessor. Please tell us more about the new CPU board from Paul Chidley at TOSIE. The closest OSI group is a two hour drive away from me, and my family and schedule makes it very difficult to attend.

You asked for responses to the programming project for a new OS-65D. Here are some of the items I think should be addressed:

Hardware

- the new CPU should be driven at the highest practical speed. The higher speed will allow better programs due to less restrictions in timing.

- A clock/calendar should be included.

- An ASCII-encoded port for keyboards as well as an unencoded input would allow those with video machines to get right of the old unencoded keyboards. An alternative to this is a small adapter board allowing the use of encoded keyboards.

- Serial ports for printer and modem, one of which should be RS-232/RS-422 compatible.

- a disk controller compatible with single and double-sided drives, including 8", 5-1/4", and 3-1/2".

- Hi-res graphics and color. At least 640x400 since that is becoming a standard.

- Obviously we will need new memory cards for all this. With the price of the 6264 static RAM chips down to about \$3.00, a 256K card can be wired for less than \$200.00

Software

- the memory map shoud! allow at least 4 MB of contiguous memory for future expansion, include a reserved area for disk buffers and RAM disks.

- a built-in directory function.

- Automatic file creation. This would remove the necessity of running a separate program.

- Dynamic file sizing. When developing a program, the file size changes constantly. Let the operating system figure out the size and save it. This could be implimented in one of two methods. UCSD Pascal requires contiguous space on the disk. MS-DOS allows fragmentation of the file and storage in any available sectors.

- a true random access file system built into the operating system with variable record size from 1 bytes to at least 1 Kbyte. - Automatic buffering when using files. Having to save the buffers with a program is a waste of precious disk space.

- Support for more than two disk buffers. In many cases, two buffers are enough, but more wuld make many operations easier and much faster.

- No built-in language. When a language is built in, the machine architecture sometimes is tailored for that language. That tailoring can make implimentation of other languages more difficult than it should be.

There are other things I would like to see, such as character generation in RAM, like the Macintosh, windowing, maybe even multi-tasking (how about a print spooler?). However, what I outlined here are things that should be addressed immediately if the OSI community is to survive and gain any support from the outside.

Sincerely, Norman Thorsen 22225 Woodward Way NW Poulsbo, WA 98370

Dear Norman,

Thanks for your comments. Many of the issues you raise are common complaints about OSI systems. Some of them have been addressed by my Hooks into BASIC. You might want to check out your back-issues of PEEK for the article I wrote that includes that software. You'll find a directory command and a file creation command that you can call from BASIC. This eliminates the need to keep scratch file during а program development.

Many of the other items you ask for are also on our list, but some may not be possible or practical. Just as you don't like a language built into the system, I am not in favor of building random file access into the operating system. That should be handled at the language or application program level. Whether or not we switch to non-contiguous files will probably depend on how well such a scheme works on our ancient 8" disk systems. I'm convinced this would be a better way to go, but I don't know how it would work in real life. In any event, keep thinking about it!

Rick

OSI-CALC: SPREADSHEET PROGRAM

OSI-CALC has been a hit smash here at PEEK[65]. Written entirely in BASIC by Paul Chidley of TOSIE. the program gives you a 26 column by 36 row spreadsheet with many features. Don't let the fact that it's written in BASIC fool you. It's VERY FAST.

Each cell can contain text (left or right justified) or numeric data (in floating point or dollar format) or a formula which computes its results based on the contents of the other cells. Formulas can perform addition. subtraction, multiplication division or using cell and/or contents numeric constants. Spreadsheets can be stored disk, on and the program does very nice printing too.

OSI-CALC requires 48K of memory and OS-65D V3.3. Specify video or serial system and mini-floppy 8" or Price \$10.00 disks. \$3.70 plus shipping (\$13.70 total).

OS-65U Disk File Editor and Directory Utility Part 1

by Richard L. Trethewey

Sooner or later it happens to everyone. There's a disk error, errant program, or pilot error waiting out there to mangle your precious data. When it happens, you face a difficult problem because there are few tools out there that will let you examine and repair disk files under OS-65U. Last year, while testing MC-DMS and some other software, I kept running into the problem of not being able to easily tell where my software was actually reading and writing to disk. After going through 4 or 5 little utility programs in BASIC, I sat down and wrote this editor in machine code to save time, memory, and hair. I call it DKEDIT.

As with any machine code routine for OS-65U, there are two components to DKEDIT the assembly language source code and the support program in BASIC. The assembly language is broken into two separate files "DKED1" and "DKED2" and will require about 10 tracks each on your OS-65D diskette. They are written for my ASM-Plus assembler, so if you're using another assembler, you'll have to copy the starting equates into DKED2. Both files will also have to have all cross-references added if you're using a different assembler like the ones from OSI.

The idea behind this editor is very simple. You select a file to edit, and the program displays the contents of that file one page (256 bytes) at a time on the screen. You can page through the file to examine the contents or you can edit it. There are two modes of editing supported. You can enter the hexadecimal value to insert at the cursor position, or you can type in replacement ASCII characters for editing text.

The main reason the program is so large is because it contains all of the support for examining the directory track to locate files. This code came from the directory printing program I showed you last month. Since being able to examine and/or search disk directories is always a handy feature, I left that part of the code intact when I moved it.

The editor depends on a Hazeltine compatible console terminal. Serial systems using other terminals will have to alter the code to reflect any differences between their terminal and a Hazeltine. Video system owners are rather stuck unless they port the video driver from OS-65D V3.3 into OS-65U. I've done it, but I don't think there's any good way for me to write up the technique. However, if there is interest in the video community, I'll try to come up with a legal way of passing on the information without

```
10 REM- Disk File Screen Editor
20
K0=0:K1=1:K2=2:K3=3:K4=4:K5=5:K6=6:K7=7:K8=8:K9
=9:KT=10
30 CLS$=CHR$ (27) +CHR$ (28)
40 U1SER=PEEK(8778):U2SER=PEEK(8779)
50 POKE 8778,K0: POKE 8779,96
60 T=PEEK(9832): IF T>127 THEN T=T-124: IF T>63
THEN T=T-58
70 DD$=CHR$(T+65)
100 PRINT CLS$; "Disk File Screen Editor": PRINT
110 PRINT "(1) Directory"
120 PRINT "(2) Edit a File"
125 PRINT "(3) Ouit"
130 PRINT: INPUT "
                       Your Choice ";Y$:
CMD=VAL(Y$)
140 PRINT: IF Y$="" THEN 500
150 IF CMD=K1 THEN 200
160 IF CMD=K2 THEN 300
165 IF CMD=K3 THEN 500
170 GOTO 100
200 REM- Vanilla Directory
210 PRINT CLS$
220 INPUT "DEVice ";DR$: L=LEN(DR$)
230 PRINT: IF L<>K1 THEN 220
240 C=ASC(DR$): IF C>ASC("Z") THEN C=C-32
250 DEV CHR$(C)
260 X=USR(K0), NP, NM, NK, NS: PRINT X;" Bytes in
Use"
270 PRINT: GOSUB 63000: GOTO 100
280 :
300 PRINT"Edit File on ";: X=USR(K6): GOTO 100
310 :
500 GOSUB 63000: IF DD$<>"" THEN DEV DD$
510 POKE 8778, UISER: POKE 8779, U2SER
520 IF RP$="" THEN END
530 RUN RP$, PW$
540 :
60000 RP$="BEXEC*": PW$="PASS": GOTO 20
60010 :
63000 INPUT "Press <RETURN> to continue ";Y$
63010 IF Y$<>"STOP" AND Y$<>"stop" THEN RETURN
63020 GOTO 510
```

violating any copyrights. In any event, the directory program and the techniques involved will be of benefit to any 65U user regardless of their set-up.

As I said, the editor is very simple and I hope, simple for others to use. Whatever you're doing, there's always a prompt line along the bottom of the display which reflects the level you're at within the program. The top level is where you start when you've just opened the file. The contents of the first page of the file are displayed in hexadecimal, and the cursor is positioned at the upper lefthand corner of the contents display. Pressing the ">" key brings up the next page of data from the file and the "<" key brings back the previous page. The page number is also displayed so you know where you are. Pressing "Q" stops the program and returns you to the main menu.

Two other commands are available at this top level. These commands send you to the next level of the program and determine the editing mode. Entering "N" selects numeric editing in which you enter hexadecimal values to insert in the file. "A" selects ASCII editing in which your keystrokes are directly entered in the file.

Once you have selected the editing mode, the prompt line changes. Entering "M" sends you to a level where you can move the cursor with the "U", "D", "L", and "R" keys (for Up, Down, Left, and Right respectively).

Entering "E" enables editing and your changes are made effective at the current cursor position. After each byte is changed, the cursor is automatically moved to the next byte in the page. When the end of the page is reached, the cursor is returned to the top of the same page. Yes, I probably should have written it to advance to the next page, but I didn't so that you could abort without making any changes you weren't sure of. In the editing mode, you must press the <ESC> key to stop editing and return to the next higher level.

That's all there is to it. As I said, its a simple program. However, there are a number of things within the program worth examining closer.

First of all, there is the interface to BASIC where the machine code calculates what command you've issued from the main menu. Naturally, the USR(X) vectors pointing to the machine code (ie. locations 8778 and 8779) have been set up. I have mentioned this before, but it bears repeating. Whenever you alter the USR(X) vector to your own code, you should always retain a copy of the initial contents of these locations and restore the vector when your program is finished

10 .PAGE 'OS-65U DISK FILE EDITOR' 20; WRITTEN BY RICHARD L. TRETHEWEY 30; COPYRIGHT 9/7/85 ALL RIGHTS RESERVED 40; 50; BASIC EXTERNALS 60: 70 STRFLG =\$000E STRING FLAG 80 INTFLG =\$000F INTEGER FLAG 90 POSCNT =\$0016 CURSOR POSITION 100 POKER =\$0019 UTILITY POINTER =\$001B BASIC Z-PAGE BUFFER (71 CHARS.) 110 BUF 120 INDEX =\$006F UTLITY POINTER 130 MEMSIZ =\$0084 END OF BASIC MEMORY 140 VARNAM =\$0092 VARIABLE NAME STORAGE 150 VARPNT =\$0094 POINTER TO VARIABLE STORAGE 160 FORPNT =\$0096 PTR. TO VAR. FOR STORING 170 VARPTR =\$00AC VARIABLE POINTER 180 FACEXP =\$00AE F.P. ACC. EXPONENT 190 FACHI =\$00AF F.P. ACC. MSB 200 FACMHI =\$00B0 F.P. ACC. NMSB 210 FACMLO =\$00B1 F.P. ACC. NLSB 220 FACLO =\$00B2 F.P. ACC. LSB 230 FACSGN =\$00B3 F.P. ACC. SIGN (+/-) 240 FACGRD =\$00BD F.P. ACC. EXPONENT GUARD BYTE 250 CHRGET =\$00C0 FETCH NEXT CHARACTER 260 CHRGOT =\$00C6 RETRIEVE LAST CHAR. SEEN 270 TXTPTR =\$00C7 PTR. TO PROGRAM FOR CHRGET/GOT 280 CRDO =\$0A73 OUTPUT CR/LF PAIR 290 OUTSTR =\$0ACC OUTPUT STRING POINTED TO BY A/Y 300 OUTDO =\$0AEE OUTPUT CHARACTER IN ACC. 310 CHKTYP =\$0CBC MAKE SURE NUMERIC TYPE EXPRESSION 320 CHKSTR =\$0CBE MAKE SURE STRING EXPRESSION 330 FRMEVL =\$0CCD FORMULA EVALUATOR 340 CHKCLS =\$0E0D INSURE ")", EXIT THROUGH CHRGET 350 CHKOPN =\$0E10 INSURE "(", EXIT THROUGH CHRGET 360 CHKCOM =\$0E13 INSURE ",", EXIT THROUGH CHRGET 370 SNERR =\$0E1E SYNTAX ERROR 380 PTRGET =\$0F2E FIND VARIABLE IN STORAGE TABLE 390 FCERR =\$10D0 FUNCTION CALL ERROR 400 GIVAYF =\$1218 GIVE A/Y PAIR TO F.P. ACC. 410 FREFAC =\$1520 FIND STRING LOCATION & LENGTH 420 GETBYT =\$1618 EVALUATE EXPRESSION<256 --> X REG. 430 GETVAR =\$1A9D PUT VARIABLE IN F.P. ACC. 440 FLOAT =\$1B44 CONVERT INTEGER TO F.P. TYPE 450 QUINT =\$1B96 CONVERT F.P. TO INTEGER 460 ASCFP =\$1BEE CONVERT ASCII AT 'TXTPTR' TO FP 470 ASCII =\$1CEC CONVERT F.P. ACC. TO ASCII STRING 480: 490; OS-65U EXTERNALS 500; 510 DISCN =\$2668 CURRENT DRIVE =\$26A1 DISK UNIT CONTROL BLOCK 520 DUN 530 DIRADR =\$26AB DIRECTORY DISK ADDR. STORAGE 540 DIRSIZ =\$26AE DIRECTORY SIZE STORAGE 550 DIRBUF =\$26F2 DIRECTORY BUFFER 560 OUTCH =\$2808 OUTPUT CHARACTER IN ACC. 570 GET =\$28E8 READ DISK =\$28F3 WRITE TO DISK 580 PUT 590 FLUSH =\$2C23 FLUSH SYSTEM DISK BUFFER/CLOSE 600 OUFLAG =\$2DA6 CURRENT OUTPUT DEVICE # 610 SWBUFF =\$4700 PAGE 0/1 SWAP BUFFER 620 SWAP =\$4907 SWAP 0/1 WITH SWAP BUFFER 630; 640; OS-65U DISK CONTROL BLOCK DEFINITION 650: 660; DUN = DISC UNIT NUMBER TO READ/WRITE 670; DUN+1 = DISK ADDRESS LSB

5

z -,

680; DUN+2 = DISK ADDRESS NLSB 690; DUN+3 = DISK ADDRESS NMSB 700; DUN+4 = DISK ADDRESS MSB 710; DUN+5 = NUMBER OF BYTES LSB 720; DUN+6 = NUMBER OF BYTES MSB 730; DUN+7 = MEMORY ADDRESS LSB 740; DUN+8 = MEMORY ADDRESS MSB 750; 760; ASSEMBLY CONSTANTS 770: 780 BS =\$08 =\$0A 790 LF 800 CR =\$0D 810 ESC =\$1B =\$20 820 SP 830 SKIP2 =\$2C =\$5F 840 DEL 850 STACK =\$100 860; 870; EDITOR EXTERNALS 880; 890 PTR =\$50 900 STRPTR =\$52 910 TMP =\$54 920 TMP1 =\$55 930; 940 *=\$6000 950; 960 LDA FORPNT FETCH ENTRY FORPNT 970 STA OLDFOR SAVE FOR RESTORE ON EXIT 980 LDA FORPNT+1 STA OLDFOR+1 990 1000 JSR \$1047 MAKE CMD# AN INTEGER 1010 LDA FACLO PICK UP CMD# 1020 CMP #TYPE-CMDTBL/2 BCS BADCMD 1030 SAVE COMMAND # 1040 STA CMD 1050 ASL A *21 1060 TAX 1070 LDA CMDTBL, X 1080 STA DOCMD+1 1090 LDA CMDTBL+1,X 1100 STA DOCMD+2 1110 DOCMD JMP \$FFFF MODIFIED CODE!!!! 1120 BADCMD JMP FCERR 1130; 1140 USRDIR JSR CRDO 1150 JSR DIRSU 1160 JSR HEADER 1170 JMP D2 GO TO DISPLAY 1180; 1190 DIRSU LDA DISCN GET DEVICE NUMBER 1200 STA DUN GIVE TO 65U CONTROL BLOCK 1210 LDA #\$00 TNTZ 1220 STA DUN+1 CLEAR DISK ADDR. LSB 1230 STA DUN+3 1240 STA DUN+4 1250 STA DUN+5 CLEAR # BYTES LSB 1260 LDA #\$01 1270 STA DUN+6 SET R/W FOR 1 PAGE 1280 LDA #DIRBUF 1290 STA DUN+7 SET RAM ADDRESS LSB 1300 LDA #DIRBUF/256 1310 STA DUN+8 SET RAM ADDRESS MSB 1320 LDA #25088/256 1330 POINT TO DIREC* STA DUN+2 1340 JSR GETDSK READ IT

1

õ

because it is a common practice for software packages to install machine code routines in the BEXEC* program and to install a USR(X) vector at boot up. Sometimes, other programs within such packages will assume that the vectors are untouched since they were installed. Thus, if you alter these locations without restoring them afterward, you can get hit with some mysterious crashes.

Two things happen when BASIC processes the statement X=USR(??). First of all, BASIC knows it's processing an equation as soon as it sees a variable name at the start of the statement. It then insures the inclusion of the "=" and then begins to decipher the right hand side of the equation. In our case, the only thing there is the USR(??) function. BASIC handles USR by evaluating the contents of the parenthesis and then jumps to the machine code pointed to by locations 8778 and 8779 (low/hight byte format, of course).

The first thing my machine code does when it gets control is to save the location of the storage for the variable "X" that BASIC found when it began to process the left hand side of the equation. The reason I do this is because I will be passing values back to BASIC and in the interim, I will likely have overwritten the pointer labeled "FORPNT" at \$96 several times. Next I make sure the contents of the parenthesis is not a string and change its numeric value from floating point into an integer so I can handle it easily in machine code at the byte level. Based on the value found here, the command number, I use a look-up table to jump to the code that corresponds to the desired command.

The directory printer will probably interest a lot of people for a couple of reasons. First of all, it's fast. I mean REALLY FAST! Have your fingers ready on <CTRL>'S' when you use this baby. Second, the program prints out a valid password for each file. Note that due to the encoding method used by OSI, the password displayed may not be identical to the one you selected when the file was created, but it will work nonetheless. Third, the code used does several interesting things. First, it expands the normal format of the USR(??) function. Second, it demonstrates how to access the disk drives and the directory under OS-65U. Third, it demonstrates several useful techniques for calling routines in BASIC from your own machine code.

The vanilla directory printer is fairly straightforward. It calls sectors of the directory into the 65U directory buffer one page at a time and proceeds to count the entries by file type and size. When it hits the end of the directory, a summary is displayed and several parameters are passed back to the BASIC program. The routine will also display only selected file types; depending on the command number passed to it by the BASIC program. Note that the routine counts any data file whose name ends with "0" as an OS-DMS Master File and any data file that ends with a number from "1" to "7" is considered an OS-DMS Key File. All other data files are denoted as "Scratch".

Sign Up for CompuServe!

e 1

CompuServe subscription kits with \$25.00 connecta credit time are now available directly from \$32.00 PEEK[65] for only plus 20% off shipping. That's the regular price of \$39.95. This kit includes the CompuServe User's Manual.

In addition giving to you **OSI-related** the access to files bulletin and board. а CompuServe account can be your gateway to a wealth of information and communications services such as MCI Mail, the Online Airline Guide, and the CompuServe Mall for shopping home. Send for at your kit now! .

 \mathbb{F}_{n}

350		LDY	#\$00	INIZ
360	ח	גרוד	DIBBUELSC V	PEAD DIPEC* STOP
070		AGT	DIRBUTTSC, I	READ DIREC" SIZE
370		STA	SIZE,Y	SAVE IT LOCALLY
1380		INY		
390		CPY	#\$03	
400		BNF	1	LOOP TTL DONE
410		TDN		HOOL THE BOME
410		LDY	#\$00	
420		TYA		
430	D6	STA	INUSE, Y	
440		TNY		
		101		
1450		CPI	#TABTO-INUSE	
460		BNE	D6	
L470		LDA	#98	
480		STA	TNUSE+1	SHOW DIR OFFS
400		рлс	11000.1	
1930		RI S		
1500;				
L510;	MAIN	LOOP		
520:				
1530	D2	тер	CRUDCK	DEND IN DID
530	DZ	036	GEIDSK	READ IN DIR
1540		LDA	#DIRBUF	LOAD DIRBUP
L550		STA	POKER	GIVE TO POKE
1560		T DA	#DIRBUF/256	LOAD MSB
570		CTT N	DOVED+1	
570		51A	FURERTI	SEI II OP IO
1580		LDA	#\$00	
1590		STA	EC	
600		LDA	COUNT	BUMP COUNTER
610		DNF	ng	WATCH FOR DA
1010			03	WATCH FOR FA
620		LDA	COUNT+1	BOWD NW2B ON
1630		BNE	D3	AND WATCH AG
1640		LDA	COUNT+2	BUMP MSB ON
650		BNE	n3	
		DNE	55	•
1660		INC	EC	
1670		LDA	#\$10	
1680		CLC		
600		ADC	DOKED	
1090		ADC	PORER	
1700		STA	POKER	
1710		BCC	D3	
720		INC	POKER+1	
1720	D 2	TOD		
1/30	03	JSR	DIRUUI	DISPLAT CONT
1740		INC	COUNT	BUMP COUNTER
1750		BNE	D4	WATCH FOR PA
760		TNC	COUNT+1	BUMP NMSB ON
770			DA	
		BNE	D4	AND WATCH AG
1780		INC	COUNT+2	BUMP MSB ON
1790	D4	LDA	COUNT	FETHC LSB
800		CMP	STZE	READ ENTIRE
910		DNE	D5	
1010		DIVE	05	NO: ==> D3
1820		LDA	COUNT+1	MAYBE, CHECK
1830		CMP	SIZE+1	SAME?
1840		BNE	D5	NO! ==> $D5$
050		TDA		FETCU MCD
1050		DUA		FEICH MSB
1860		CMP	SIZE+2	SAME?
1870		BEQ	DIRQT	YES! END!
0881	D5	JSR	DRUMP	BUMP DIRECTO
		TID		
1890		JMP	DZ	AND LOOP!
1900	DIRQT	JSR	SAVVAL	SAVE FILE CO
1910		LDA	INUSE	
1920		STA	FACLO	
1020		1010	TNUCELI	
1930		LDA	INUSETI	
1940		STA	FACMLO	
1950		LDA	INUSE+2	
1960		STA	FACMHT	
1070		101	TNIICETT	
12/0			THOSETS	
1980		STA	FACHI	
1990		LDA	OLDFOR	GET X= FORPN
2000		STA	FORPNT	RESTORE IT F
2010		1014		
2010		цυя	OPDI OK+1	GET MSB TOU

DONE IR OFFSET IN DIR PAGE DIRBUF LSB TO POKER MSB T UP TOO COUNTER LSB FOR PAGING NMSB ON PAGING ATCH AGAIN MSB ON PAGING AY CONTENTS COUNTER LSB FOR PAGING NMSB ON PAGING ATCH AGAIN MSB ON PAGING LSB ENTIRE DIR? => D5 , CHECK NMSB => D5 MSB END! DIRECTORY PTRS OOP! FILE COUNTS

= FORPNT RE IT FOR BASIC ISB TOO

PEEK[65] Page 20

1000

2020		STA	FOI	RPNT+1						
2030		JMP	NOI	RMAL	1	EXIT	VIA	NOR	MAL	
2040;										
2050	SAVVAL	LDA	NUI	MPRG+1	(GET	#P F	ILES	MSB	
2060		LDY	NUI	MPRG		GET	⋕P F	ILES	LSB	
2070		JSR	GI	VAYF		GIVE	то	FPAC	c.	
2080		JSR	SA	VNUM		GIVE	то	"NP"	VAR	
2090		LDA	NU	MMF+1		GET	# OF	MF	MSB	
2100		LDY	NUI	MMF		AND	LSB			
2110		JSR	GT	VAYE		GIVE	то	FPAC	c.	
2120		JSR	SA	VNIIM		GIVE	FP	то "	NM"	
2130		LDA	NII	MKF+1		GET	#KEY	MSB		
2110		LDV	NII	MKE		CFT	#KEA	T.SB	l	
2150		TCD	GT			CIVE	TO	FDAC	, C	
2150		TCD	C A			CIVE	тО ТО	"NK"		
2100		TDA	MU	MCCD+1		CET	#9CB	- RTT	FC	
2100		TDA	NU	MCCD		951	#300		120	
2100			CT	VAVE		CIVE	ΨO	FDAC	·c	
2190		USK	GI	VAIL		GIVE	10	FFAC		
2200;	CAUNTIM	TOD	CU	KCOM		FIND		ד מים	END	
2210	SAVNUM	JOR				FIND				
2220		USR	PT	RGEI		CAND				
2230		STA	FO	RPNT DDNm+1		SAVE	PIR	10	VAR	
2240		STI	FO	RPN1+1						
2250		LDA	ST	RFLG						
2260		BNE	SA	VNU2						
2270		LDA	IN	TFLG						
2280		BPL	SA	VNU1						
2290		JMP	\$0	9C5	GI	VE F	.P.	TO 8	s VAR	
2300	SAVNU1	JMP	\$1	ACB	FA	CC.	TO F	'.P.	VAR	
2310	SAVNU2	JMP	FC	ERR	CA	N'T	USE	STRI	INGS!	
2320;										
2330	DBUMP	INC	DU	N+2						
2340		BNE	DB	UM1						
2350		INC	DU	N+3						
2360		BNE	DB	UM1						
2370		INC	DU	N+4						
2380	DBUM1	RTS								
2390;										
2400	CMDTBL	.WO	RD	USRDIF	ł	DIS	PLAY	ALI		
2410		.WO	RD	USRDIF	ł	DAI	A FI	LES	ONLY	
2420		.WO	RD	USRDIF	٤Ì	PRC	GRAN	IS ON	ILY	
2430		.WO	RD	USRFII	L	FIN	ID DI	SK 7	ADDR.	
2440		. WOI	RD	WILD		WII	D C7	ARD D	DIR	
2450		.WOI	RD	KEYGET	?	GEI	' KEY	PRES	ss	
2460		.WOI	RD	EDIT		FII	E ED	ITOF	٤	
2470;										
2480	TYPE	.BY	ΓЕ	'DATA	1					
2490		.BY	ΓE	'BASIC	; '					
2500		.BY	ΓЕ	'OTHER	21					
2510	AR	.BY	ΓE	'NONE	ı.					
2520		.BY	ΓЕ	'READ	۲					
2530		.BY	ΤE	'WRITE	1					
2540		.BY	TE	'R/W	1					
2550	DELTYP	BY	TE	1 [- 1	Del	etec	i Fil	le'.	
\$00	000111	•+		L.	,	001			,	
2560	METYP	BY	ሆም	Maste	۲ م	500	N			
2570	KETVD	ים. עם	TD TD	IKovi	's r	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			
2580	SCDUAD	יעם. יעם	⊥⊑ ጥଢ	ICONO+	- ~ h		0			
2500	UTAD	ים. יעם	±₽ TE	1Nome	1-1	. ,		cd 1	r	
2030	ILAU	.51	I É.			rds No	SWOI	.u '		
2000		.BY	1 E mr	Type		ACCE	:55	-		
2610		.81	TE	Addre	:55	5				
2620		.BY	TE	'Size	~ ~		spec	∶ıa⊥	•	
2630	00000000	• BY	ΤE	CK, LF,	, \$0	10				
2640	CURFIL	.BY	TE	• XXXXX	(X)	, CR	m			
2650	TMPTYP	.BY	TE	\$UU \$00	ΤΈ	SMP.	TYPI	ST(JKAGE	
2660	CMD	. ВҮ	тĿ	ຽບບ		(_UMM/	AND		

,

1

2670 OLDFOR .WORD \$FFFF 2680 DRIVE .BYTE \$00 2690 SIZE .BYTE \$00,\$00,\$00 2700 STADDR .BYTE \$00,\$00,\$00 2710 ENADDR .BYTE \$00,\$00,\$00,\$00 2720 CADDR .BYTE \$00,\$00,\$00,\$00 2730 FSIZE .BYTE \$00,\$00,\$00 2740 BFENPG .BYTE \$00 2750 BSIZE .BYTE \$00 2760 INUSE .BYTE \$00,\$00,\$00,\$00 2770 RECOV .BYTE \$00,\$00,\$00,\$00 2780 COUNT .BYTE \$00,\$00,\$00 2790 NUMMF .WORD \$0000 2800 NUMKF .WORD \$0000 2810 NUMSCR .WORD \$0000 2820 NUMPRG .WORD \$0000 2830 TEMP .BYTE \$00 2840 EC .WORD \$0000 .BYTE \$00,\$00,\$00,\$00 2850 PW 2860 TABTO .BYTE \$00 2870; 2880 TABER LDA POSCNT 2890 CMP TABTO 2900 BCS TABER1 2910 LDA #SP 2920 JSR OUTDO 2930 JMP TABER 2940 TABER1 RTS 2950; 2960 HEADER LDA #HEAD LDY #HEAD/256 2970 2980 JSR OUTSTR LDY #\$00 2990 3000 LDA #'-3010 HEADE1 JSR OUTDO 3020 INY 3030 CPY #62 3040 BNE HEADE1 3050 JMP CRDO 3060; 3070 TYPCHK LDY #\$08 3080 LDA (POKER),Y 3090 AND #%11100 3100 LSR A LSR A 3110 3120 PHA 3130 STA TYPCH1+1 3140 ASL A 3150 ASL A 3160 TYPCH1 ADC #\$FF *5! STA TMPTYP SAVE FOR LATER 3170 3180 PLA 3190 TAX 3200 INX +1! 3210 CHECK COMMAND # LDY CMD 3220 BEQ TYPCH2 CMD 0? --> PASS 3230 CPX CMD CMD = TYPE?BNE TYPCH3 NO! ==> 3240 3250 TYPCH2 SEC 3260 RTS 3270 TYPCH3 LDY #\$0C 3280 LDA (POKER),Y 3290 CLC 3300 ADC INUSE+1 3310 STA INUSE+1 3320 INY

PEEK[65] Page 21

LDA (POKER), Y

3330

3340	ADC	INUSE+2	4000	TAY	
3350	STA	INUSE+2	4010	BNE	GETD2
3360	INY		4020	RTS	
3370	LDA	(POKER),Y	4030;		
3380	ADC	INUSE+3	4040 TYPER	LDA	#18
3390	STA	INUSE+3	4050	STA	TABTO
3400	CLC		4060	JSR	TABER
3410	RTS		4070	LDX	#\$00
3420;			4080	LDY	TMPTYP
3430 DIRDUN	JSR	CRDO	4090 TYPE1	STX	TEMP
3440	PLA		4100	LDA	TYPE,Y
3450	PLA		4110	JSR	OUTDO
3460	JMP	DIRQT RETURN TO CALLER	4120	LDX	TEMP
34/0;			4130	INX	
3480 DIRNX0	LDA		4140	INY	***
3490	TOD	#DELTIP	4150	CPX	#\$05
3500	JSR	OUTSTR	4160	BNE	TYPE1
3510	JSR	CDDO	4170	LDA	#25
3520	USR		4180	STA	TABTO
3530	JMP	DIRNAL	4190	JSR	TABER
3540; 2550 DIDOUT	TOD		4200	TDA	
3550 DIROUI	DCC	DIPOL	4210		(POKER),Y
3570			4220	AND	#\$U3
5570 STR1	OME	DIRNAL NOI WANIED:	4230	ACT	TIPEZ+1
3590 DTDO1	τοv	#\$^^	4240	ASL	A
3500 DIROI	עתד		4200	ASL	A Lénn
3600	DDA	DIDNIN OF VEST END DIDI	4200 11262		# > 2 5
3610	CWD		4270	TAI	#600
3620	BEO		4200 4200 TVDE2	LUX	
3630	JEQ.	PNAME PRINT NAME/DW	4290 11765	LDA	AD V
3640	JSR	TYPER PRINT TYPE & RIGHTS	4310	JUDA	
3650	JSR	FTYPE	4320		TEMP
3660 DIRNXT	LDA	POKER	4330	TNY	1.0111
3670	CLC		4340	TNX	
3680	ADC	#\$10	4350	CPX	#\$05
3690	STA	POKER	4360	BNE	TYPE3
3700	BCC	DIRNX1	4370 TYPE4	LDA	#32
3710	INC	POKER+1	4380	STA	TABTO
3720 DIRNX1	INC	EC	4390	JSR	TABER
3730	LDA	EC	4400	LDA	#\$00
3740	CMP	#256/16	4410	STA	FACLO
3750	BNE	DIROUT	4420	LDY	#\$09
3760	RTS		4430	LDA	(POKER),Y
3770;			4440	STA	FACMLO
3780 GETDSK	JSR	SWAP	4450	INY	
3790	LDA	#GETD1-1/256	4460	LDA	(POKER),Y
3800	PHA		4470	STA	FACMHI
3810	LDA	#GETD1-1	4480	INY	
3820	PHA		4490	LDA	(POKER),Y
3830	JMP	GET	4500	STA	FACHI
3840 GETD1	.WOF	RD DUN	4510	JSR	NORMAL
3850	JSR	SWAP	4520	JSR	ASCII
3860	TAY		4530	LDA	#STACK
3870	BNE	GETD2	4540	LDY	#STACK/256
3880	RTS		4550	JSR	OUTSTR
3890;			4560	LDA	#43
3900 GETD2	JMP	FCERR ABORT ON DISK ERR.	4570	STA	TABTO
3910;			4580	JSR	TABER
3920 PUTDSK	JSR	SWAP	4590	LDA	#\$00
3930	LDA	#PUTD1-1/256	4600	STA	FACLO
3940	PHA		4610	LDY	#\$0C
3950		#POIDI-I	4620		(POKER),Y
3960	PHA	2110	4630	STA	FACMLO
3970 2000 DUMD1	UMP		4640	CTC.	THUCH
3980 FOLDI	. WOF		4600	ADC	INUSE+1
2220	USK	SWAL			

PEEK[65] Page 22

4660		STA	INUSE+1				
4670		INY					
4680		LDA	(POKER),	Y,			
4690		STA	FACMHI				
4700		ADC	INUSE+2				
4710		STA	INUSE+2				
4720		INY					
4730		LDA	(POKER),	, Y			
4740		STA	FACHI				
4750		ADC	INUSE+3				
4760		STA	INUSE+3				
4770		JSR	NORMAL				
4780		JSR	ASCII				
4790		LDA	#STACK				
4800		LDY	#STACK/	256			
4810		JSR	OUTSTR				
4820		RTS					
4830;							
4840	FTYPE	LDY	#\$08				
4850		LDA	(POKER)	, Y			
4860		AND	#%11100				
4870		BNE	FTYPE6	NOT	DATA	PRG?	
4880		LDA	#55				
4890		STA	TABTO				
4900		JSR	TABER				
4910		LDY	#\$05				
4920		LDA	(POKER)	, Y			
4930		CMP	#'0 770774				
4940		BEQ	FTYPE4		MASTER		
4950		CMP	#'l				
4960		BCC	FTYPE2		SCRATC	н	
4970		CMP	#'8 ======0				
4980		BCS	FTYPEZ		SCRATC	н	
4990		LDA	#KFTYP	050			
5000		LDY	#KFTYP/	256			
5010		JSR	OUTSTR				
5020		INC	NUMKE				
5030		BNE	FTYPEI				
5040		INC	NUMKF+1				
5050	PTIPEL	JMP					
5060	FTIPEZ	LDA	#SCRTIP	1050	-		
5070		LUI	#SCRIIP	/238	5		
5080		USR	NUMBER				
5090		INC	NUMBER				
5100		BNE	ELIPES NUMCCD :	1			
5110	רחסעוות	INC	CDDO	- Т			
5120	FTIPES						
5130	FTIPE4	LDA	#METIP	256			
5150				200			
5150		USK	NUMME				
5100		DNE	DOPPER DOPPES				
5100		DINE	LILLED MUMMEL1				
5100				-			
5200	TITES TTVDE6	CMD	#\$100				
5210	FILEO	DNF	# 100 FTV0F7				
5220			NUMDDO				
5220			FTVDF7				
5230			NUMPRCA	⊦1			
5250	ריזמעיים		CBDU	· .			
5250	· · · · · ·	UMP	CRUU				
5270	, ווכסדיי	TCD	ርሞሮክአለ		ሮሮሞ	FTTP	NAME
5200	USREIL	, USK 197,	ENDERM		BEWOUL	FITE FITE	FIND
5200		BCC	USBEI			ښدي. د	+ 110
5300			#SFF				
5310		TAV					
5320		גמינ	OLDFOR				
5520							

STX FORPNT 5330 5340 LDX OLDFOR+1 STX FORPNT+1 5350 JMP GIVAYF SHOW NO MATCH! 5360 5370; 5380 USRF1 LDY #\$09 LDA (POKER),Y 5390 5400 STA FACMLO 5410 INY LDA (POKER),Y 5420 STA FACMHI 5430 5440 INY 5450 LDA (POKER),Y 5460 STA FACHI LDA #\$00 5470 STA FACLO 5480 JSR NORMAL 5490 LDX OLDFOR 5500 STX FORPNT 5510 LDX OLDFOR+1 5520 5530 STX FORPNT+1 AND RETURN TO CALLER 5540 RTS 5550; 5560; NORMALIZE FLOATING POINT ACCUMULATOR 5570; 5580 NORMAL LDA #32+\$80 5590 STA FACEXP 5600 LDA FACHI 5610 BMI NORMA2 5620 BNE NORMA1 5630 LDA FACMHI BNE NORMA1 5640 5650 LDA FACMLO 5660 BNE NORMA1 LDA FACLO 5670 BEQ NORMA3 0! ==> 5680 5690 NORMA1 DEC FACEXP 5700 ASL FACLO ROL FACMLO 5710 ROL FACMHI 5720 5730 ROL FACHI 5740 BPL NORMA1 5750 NORMA2 RTS 5760 NORMA3 STA FACEXP RTS 5770 5780; 5790 KEYGET JSR \$0587 5800 TAY 5810 LDA #\$00 5820 JMP GIVAYF 5830; 5840 PNAME LDY #\$00 INIZ 5850 PNAME1 LDA (POKER),Y FETCH CHAR. 5860 JSR OUTDO PRINT IT BUMP IT 5870 INY CPY #\$06 PRINTED WHOLE NAME? 5880 NO! LOOP! 5890 BNE PNAME1 LDA #8 5900 STA TABTO 5910 JSR TABER 5920 LDY #\$06 GET INDEX TO PW 5930 5940 LDX #\$00 5950 PNAME2 LDA (POKER), Y GET 1ST PW CHAR. 5960 РНА SAVE IT 5970 AND #\$0F MASK TO LOW NIBBLE 5980 CMP #\$0F

5990		BNE	PNAME3 NOT DEFAULT ==>	6660		BNE	WILDO
6000		LDA	# ' —	6670	WILD2	JSR	GETDSK
60 10		BNE	PNAME4	6680		LDA	#DIRBUF
6020	PNAME 3	CLC		6690		STA	POKER
6030		ADC	#78	6700		LDA	#DIRBUF/256
6040	PNAME 4	STA	PW+1.X	6710		STA	POKER+1
6050		ρτ.δ	- · · · · - / · ·	6720		LDA	#\$00
6050		TCD	λ.	6720		CUDY	#\$00 EC
6000		TOD		6730	MITTOO	JIA	
6070		LSR	A	6740	WILDS	TDI	#\$00
6080		LSR	A	6750	WILD4	LDA	(POKER),Y
6090		LSR	A	6760		BEQ	WILDC END OF DIR! ==>
6100		CMP	#\$0F	6770		CMP	#\$01
6110		BNE	PNAME5	6780		BEQ	WILD9 SKIP DELETED'S
6120		LDA	# '	6790		LDA	BUF,Y
6130		BNE	PNAME 6	6800		CMP	#!?
6140	PNAME 5	CLC		6810		BEQ	WILD8
6150		ADC	#65	6820		CMP	# LOOK FOR #?
6160	PNAME 6	STA	PW.X	6830		BNE	WILD6
6170		CPX	#\$02	6840		LDA	(POKER) - Y
6180		BEO	PNAME7	6850		CMP	#10
6100		TNV		6050		DCC	
6190		TDV	4600	6000		CMD	
6200		TDY		6870		CMP	
6210		BNE	PNAMEZ	6880		BCS	WILD9
6220	PNAME /	LDY	#\$00	6890		всс	WILD8
6230	PNAME8	LDA	PW,Y	6900	WILD6	LDA	BUF,Y
6240		JSR	OUTDO	6910		CMP	(POKER),Y
6250		INY		6920		BNE	WILD9
6260		СРҮ	#\$04	6930	WILD8	INY	
6270		BNE	PNAME8	6940		CPY	#\$06
6280		RTS		6950		BNE	WILD4
62.90 :	1			6960		JSR	ТҮРСНК
6300	GTENAM	JSR	CHKCOM FIND THE COMMA	6970		JSR	PNAME
6310	011.000.0	JCD.	EPMEVI. EVALUATE EXPRES	6980		TCR	
6320		TOD	EDEENC-3 CURCED C EIND	6000		TOD	
6320		CMD	REFAC-S CHRSTR & FIND	7000	WIIDO	JOR	POKER
6330		CMP	#\$U7 CHECK LENGTH	7000	WILDA	LDA	POKER
6340		BCC	GTENI U.K. ==> CONT.	7010		CTC	
6350	,,	JMP	SNERR BAD! ERROR!	7020		ADC	#\$10
6360	GTFN1	STA	GTFN3+1 SAVE LENGTH	7030		STA	POKER
6370		LDY	#\$00 INIZ	7040		LDA	POKER+1
6380		STY	STRFLG CLEAR STRFLG EARLY	7050		ADC	#\$00
6390	GTFN2	LDA	(INDEX),Y FETCH A CHAR.	7060		STA	POKER+1
6400	•	JSR	CASECK MAKE IT ALL CAPS	7070		INC	EC
6410		STA	BUF,Y SAVE IT	7080		LDA	EC
6420		INY		7090		CMP	#256/16
6430	GTFN3	CPY	#SFF	7100		BNE	WILD3
6440		BNE	GTFN2	7110		INC	COUNT
6450		T.DA	#SD	7120		DNE	WILDA
6450	CTEN/	CDV	#506	7130		TNC	
6470	GIENA	DEO		7140		DND	WID
6470		CUN CUN		7140		BNE	
6480		STA	BUF, I	7150		INC	COUNT+2
6490		INY		7160	WILDA	LDA	COUNT+2
6500		BNE	GTFN4	7170		CMP	SIZE+2
6510	GTFN5	LDA	#CR	7180		BNE	WILDB
6520		STA	BUF, Y	7190		LDA	COUNT+1
6530		RTS		7200		CMP	SIZE+1
6540;	;			7210		BNE	WILDB
6550	WILD	JSR	GTFNAM GET FILE NAME	7220		LDA	COUNT
6560		JSR	DIRSU SET UP FOR DIR READ	7230		CMP	SIZE
6570		JSR	HEADER	7240		BEO	WILDC
6590		LDV	#\$00	7250	WITTOD	TCD	DRIMB
6500	WITT DO	101		7250		TMP	WILDO
0390	MITDO	AUL		1200	MTT D 0	UMP	MTTDS
6600		CWP		12/0	WILDC	LDA	₩>UU
6610		BNE	MIDI	/280		'I'AY	
6620		LDA	#"?	7290		LDX	OLDFOR
6630		STA	BUF,Y	7300		STX	FORPNT
6640	WILD1	INY		7310		LDX	OLDFOR+1
6650		CPY	#\$06	7320		STX	FORPNT+1

PEEK[65] Page 24

Book Bargains!

Sam's Service Manuals

The hardware enthusiast's best friend. These are the only professional guides available for servic modifying your OSI equipment. They include full schematics, block diagrams, wave form tracings, pa and diagnostic tips. They were written for the pre-1980 series of OSI systems, but since OSI never has that much they are still valuable no matter when your computer was made.

C1P Sam's Regular Price: \$7.95 Sale Price: \$4.00

C4P Sam's Regular Price: \$15.95 Sale Price: \$10.00

C2/C3Regular Price: \$39.95 Sale Price: \$25.00

65V Primer

This is an introductory guide to machine code that shows you how to program your video system u Monitor ROM. An excellent tutorial on the fundamentals of machine code. Regular Price: \$5.95 Sale Price: \$3.00

Assembler/Editor - Extended Monitor Manual

Until recently, OSI included the Assembler/Editor and Extended Monitor software with all copies of However, even when it was free, there was little documentation accompanying the disks. If you've beer for instructions on these two programs, this is the book for you!

Regular Price: \$6.95 Sale Price: \$4.00

How To Program Microcomputers

By William Barden, this book explains the instruction set of the 8000, 6500, and 6800 su microprocessors. While not OSI-specific, this book contains many valuable algorithms for solving prot machine code using the microprocessors available in OSI computers.

Regular Price: \$8.95 Sale Price: \$4.00

Professional Computers Set Up and Operations Manual

A valuable guide for installing and using OSI serial systems. Includes an overview of classic OSI soft these systems. The book also provides information on how to program the C3 series using the Z-80 a microprocessors.

Regular Price: \$9.95 Sale Price: \$6.00

Introductory Manuals

These books don't contain a lot of information that isn't duplicated in many other places. Still, for the user, they can be a valuable reference to keep by your system while you're learning. Specify C1P/C1P-I cassette, C4P-MF, or C8P-DF.

Regular Price: \$6.95 Sale Price: \$2.00

User Guides

These are excellent books. They are complete tutorials on all of the standard hardware and software f systems. Covers many topics not documented anywhere else. If you've been struggling along with just blue notebooks, don't wait! Order today!

C1P-MF Regular Price: \$8.95 Sale Price: \$4.00

C4P-MF Regular Price: \$8.95 Sale Price: \$5.00

C8P-DF Regular Price: \$8.95 Sale Price: \$5.00

PEEK[65] Page 25

1986 Index to PEEK[65]

<u>Title</u>

<u>Author</u>

<u>Issue</u>

16 Bits: The New Horizon 540 Video Driver with Color Controls 8 More K for the 610 Board Adventures and the OSI Another Screen Dissolve BASIC/DOS Interface Code for OS-65U **Becterm Systems** Beginner's Corner: Draw-A-Graph Beginner's Corner: Windows A Better Random Number Generator Challenger 4x4 Character Set Color+ Additions A Common 5.25" Interface Problem Cross-Reference Utility (REF) **DB-65E Debugging and Testing Programs** Direct Boot DMS-65D: True Random Access for 65D EPROM Burner FDUMP How to Add 5.25" 40 or 80 Track DS Drives Input Control & the 6850 Insights to Programming Sorts for 65U Interfacing C1P to MPI 5.25" Drive, pt. 1 Interfacing C1P to MPI 5.25" Drive, pt. 2 Level 3 Semiphore Standard Mailing Label Utility for DMS-65D Math Trainer Mortgages and Annuities New OSI at Comdex Notes on WP6502 v1.3 5.25" OS-65U Data Files, pt. 2 OS-65U Data Files, pt. 3 **OS-65U Machine Code DIRectory** The OSI - 68000 OSI Assembler Symbol Table Dump OSI Keyboard **OSI SIG OSI SIG Data Library OS-65D** Revisited OS-65U Disk File Editor Programmer's Delight

R. Trethewey S. Beavers S. Larson E. Richardson H. H. Grassel R. Trethewey R. Trethewey L.E. Jankowski L. E. Jankowski D. McDonald D.G. Johansen J. Horemans P. Chidley S. Beavers A. Hughes L. E. Jankowski D.G. Johansen R. Trethewey J. Horemans R. Clegg D. Livesav E. Gieske R. Cleaa S. McGinnis S. McGinnis R. Trethewey R. Trethewev R. Reed D. Kina R. Trethewey P. Chidley R. Trethewey R. Trethewey R. Trethewey D. Livesay M. Holcomb J. Whitehead R. Trethewey R. Trethewey R. Trethewey R. Trethewey Luis E. Robles

Sum, p3 Sum, p5 Sept, p11 Sum, p4 Jan, p3 Sum, p42 Dec, p7 Apr, p2 Mar, p2 Sum, p33 Sum, p34 Dec, p14 Feb, p5 Sum, p23 Jan, p18 Jan. p6 Jan, p2 Sum, p17 Jan, p16 Jan, p11 Sept, p2 Dec, p2 Oct/Nov, p25 Mar, p9 Apr, p8 Apr, p5 Sept, p7 Oct/Nov. p20 Dec, p9 Jan, p19 Jan, p8 Jan, p12 Feb, p5 Oct/Nov, p2 Mar. p5 Sum, p35 Jan, p4 Feb, p3 Sum, p39 Feb, p9 Dec, p17 Mar, p4

Public Digital Radio Service Remote Break and Boot SAM, the Self-Aware Microcomputer Speed Hints for 65U BASIC String Swap for 65D BASIC A Tale of Two Ads User Survey: Final Results User Survey: Preliminary Results Using High Density 5-1/4" Drives Using OSI SIG on CompuServe USR(X) (Y) (Z) (1) (2) (3) U-Word: 65U Word Processor Wazzat Corner: Printer control D. Stoner G. Jennings R. Reed R. Clegg E. Morris E. Morris R. Trethewey R. Trethewey D. Livesay R. Trethewey E. Morris R. Trethewey L. E. Jankowski

Oct/Nov, p7 Dec, p4 Sept, p13 Oct/Nov, p13 Apr, p7 Feb, p3 Sum, p2 Apr, p11 Dec, p12 Mar, p7 Jan, p10 Sept, p9 Feb, p2

Sign Up for CompuServe!

CompuServe subscription kits with a \$25.00 connecttime credit are now available directly from PEEK[65] \$32.00 for only plus shipping. That's 20% off the regular price of \$39.95. This includes kit CompuServe User's the Manual.

addition In to giving you **OSI-related** access to the files and bulletin board. а CompuServe account can be your gateway to a wealth of information and communications services such as MCI Mail. the Online Airline Guide. and CompuServe for the Mall Send shopping at home. for your kit now!

Classy-AD\$

C8P-DF New, never used. 12-inch BMC monitor. \$495. Al Stark 703-524-5455 DWH

C3B with 80MB hard disk, dual floppies, Hazeltine 1420 terminal with Polaroid screen, OSI rack cabinet, D&N CP/M card, D&N serial card, OSI serial card. New disks, manuals, software. Al Stark 703-524-5455

OSI C1P 32K, \$100; C2P, 8K, \$75; unused ISID 5-1/4" drive, \$75; 5" monitor, \$50; parts for RS-232 and disc cable. All for \$250. Bob Oldham, 344 White Oak Creek Road, Burnsville, NC 28714

Isotron OSI Work System 200, forty meg hard disk, Terminal and Printer, like new. \$3400.00. Cleveland, 216-524-8686 or 216-467-2652

C3 system with four user memory paritions, two SS floppy drives, CD-74 hard disk, serial and parallel printer ports, two Hazeltine 1500 terminals, lots of software. Best offer. Call Ron in Denver at 303-771-6990.

OSI boards, cases, power supplies, disc drives, and software for sale. Send SASE for list and prices. R. Groome, 824 West Main Street, Richmond, IN 47374

For Sale: C3-S1, Hazeltine 1420, Remex 8" double-sided floppies, serial board, 56K RAM, extras. Asking \$600.00. Three 1 MHz 520 boards, asking \$50. 470 parallel output board, asking \$35. Contact William Haas, Box 361, Lowell, OH 45744, 614-896-2344 Solve Your Disk Drive Problems. Increase storage capacity. Introducing DL Systems the E-15 data separator/motor control board. With this board you can use any standard 5.25" drive to replace your mini-floppy drives or use high-density 5.25" drives to replace 8" drives. The board comes completely assembled and tested. A 34pin connector with ejector clips for the disk drive cable is installed on the board. All IC's are on machined gold-plated socket. The board comes with an instruction manual describing how to install it and instructions for converting to 80-track usage. For mini-floppy systems, order P/N E-15. For 8" systems, order P/N E-15HD. Price: \$49.00 including shipping and handling. For information, contact David Livesay. Order from PEEK[65].

NOTICE!

Your mailing label has the day and month transposed.

DELIVER TO:

P.O. Box 586 Pacifica, CA 94044 415-993-6029

(

(

(

Buik Rate U.S. Postage PAID Pacifica, CA Permit #92 Zip Code 94044

GOODIES for DSI Users!

)	C1P Sams Photo-Facts Manual. Complete schematics, scope waveforms and boar	d photos. All you
	need to be a C1P or SII Wizard, just	

- C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505, 527, 540 and 542 boards. A bargain at
-) C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with useful information, but just
-) OSI's Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced by PEEK (65). Full set only
-) Terminal Extensions Package lets you program like the mini-users do, with direct cursor positioning, mnemonics and a number formatting function much more powerful than a mere "print using." Requires 65U.
-) RESEQ BASIC program resequencer plus much more. Global changes, tables of bad references, (GOSUBs & GOTOs, variables by line number, resequences parts of programs or entire programs, handles line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FAST! Requires 65U. Manual & samples only, \$5.00 Everything for
-) Sanders Machine Language Sort/Merge for 0S-65U. Complete disk sort and merge, documentation (shows you how to call from any BASIC program on any disk and return it or any other BASIC program on any disk, floppy or hard. Most versatile disk sort yet. Will run under LEVEL I, II, or III. It should cost more but Sanders says, "...sell it for just ...
-) KYUTIL The ultimate OS-DMS keyfile utility package. This implementation of Sander's SORT/MERGE (creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of over 15000 ZIP codes in under three hours. Never sort another Master File.
-) Assembler Editor & Extended Monitor Reference Manual (C1P, C4P & C8P) (
-) 65V Primer. Introduces machine language programming. (

C1P, C1P MF, C4P, C4P DF, C4P MF, C8P DF Introductory Manuals (\$5.95 each, please specify))

-) Basic Reference Manual (ROM, 65D and 65U) (
-) C1P, C4P, C8P Users Manuals (\$7.95 each, please specify) (
- How to program Microcomputers. The C-3 Series -)
- Professional Computers Set Up & Operations Manual C2-OEM/C2-D/C3-OEM/C3-D/C3-A/C3-B/ () C3-C/C3-C'

TOTAL

		CA Residents add 6% Sales Tax	\$
	· · ·	C.O.D. orders add \$1.90	\$
Name .		Postage & Handling	\$
Street .		TOTAL DUE	\$
City	State Zip	POSTAGE MAY VARY FOR OVERS	SEAS

				• •		. 1
	•					9
¢7.05	¢					. ,
φ1.55	φ					-
\$15.00	\$					
\$30.00	¢					
\$30.00	Ψ			•		
\$15.00	\$					•
\$50.00	¢					
φ00.00	Ψ					
¢50.00	•					
\$50.00	\$					
• •						
•	. *	ŕ.	•			
\$89.00	\$					
					••	
\$100.00	\$					
\$6.95	\$					
\$4.95	\$					
\$5.95	\$					
\$5.95	\$					
\$7.95	\$					
\$7.05	¢		-			
φr.55	Ψ					
\$8.95	\$					
	_		\$			
Sales		ax	\$			
.90			\$			
			\$	3.70		