(A

PEEK [65]

The Unofficial OSI Journal

Column One

Despite appearances, things haven't
totally fallen apart here at PEEK[65).
Quite the contrary. If the size and
cover of this issue doesn't make it
obvious, this issue is covering ‘a

. multitude of sins. The next issue will

have a cover month of September, and
at that time we will go back to our
regular monthly schedule.

The reasons for this Summer issue are
many and varied. First of ali, I wasn't
able to recover the original schedule.
Between all of my commitments and
other reasons, there just haven't been
enough hours in the week to make
much progress. But one of the most
important reasons for the delay of this
issue in particular has been the flurry
of activity that directly relates to our
discussions of new hardware for OSI
systems. Several new product
announcements were imminent and I
was hoping to include them in this
issue. Those announcements have not
been made public as yet. What I can
say is that all OSI owners will soon
have major upgrade paths available
within the next 30 to 60 days at very
reasonable prices. Everybody - from
Superboards to serial systems.

Even though this issue is more than
twice as large as normal, I reatize that
it doesn't make up for the intervening
issues that would normally have been
published. Therefore, I have extended
the subscriptions of everyone who
was current through June by two
months. I know this won't satisfy
everyone, but it is as fair as I can
make it. Note that the mailing labels
on this issue DO NOT reflect the
extension to your subscription, nor
did the recent renewal forms |
recently sent out to many of you.

Summer 1986
Vol. 7Nos. 56,7, & 8

Inside This Month:
User Survey Final Results page 2
16-bit 6502-alikes page 3
Adventures on the OSI page 4
s New 540 Video Driver pageb5
DMS65D: True Random Access page 17
3 CREF: Cross Reference Utility  page 23
A Better Random Number Gen. page 33
4x4 Character Set for 540 page 34
ASM Symbol Table Dump page 35
OSI SIG Data Library page 39
Inside OS-65U page 42
Letters to the Editor page 44

Back on the news front, this issue
contains a 1ot of articles that have
been in the PEEK library for some
time, but that we simply didn't have
room to publish before. It has been,
and remains my policy where possible
to not break up articles over more
than one month. If I present the
article, then the entire program listing
should be printed as well. In addition,
and again where possible, articles are
printed contiguously within each
issue, so you don't have to page back
and forth between the articles and the
listings. This has led to some of the
editor’s curse known as "white space”,
but I think it makes PEEK eminently
more useful.

Cleaning-out the library in this fashion
meéans that I am in desparate need of
new material. The April issue contains
several topics that I hope youl
consider. The library has a couple of
articles that are incomplete. I hope
those of you among those authors will
complete your work and send it in. It
will be most appreciated. ’

Special thanks goes out this month to
Larry Hinsley of Software Consuitants
and Ed Richardson of the Autralian
group KAOS for their contributions to
this issue. Matt Holcomb shows us
how to list out the symbot table in the
0sI Assembler /Editor. Daniel
McDonald provides us with a nifty
random number generator. Doug
Johansen demonstrates a way to
display over-sized characters on video
systems.

Your humble editor has been busy as
well. I have included several articles
in this issue including instructions for
using the Data Library in OSI SIG, a
program for getting true random
access files under 0S-65D, the start of
a series of articles on the innards of
05-65U, and a few other things 1 hope
you'l find interesting.

Thanks to ail of you for your help and
patience over the past few months.
It's been a pleasure dealing with ali of
you and writing in this forum. With
your continued support, the future
looks brighter for all of us than it has
in many years. '



User Survey Final Results

The User Survey was a huge success
as far as I'm concerned. It really
helped me to get a good idea of what
PEEKI6S] readers wanted and how
willing you are to part with your
hard-earned cash to get it. )

40 people mailed in responses. That's
about the number 1 expected
considering the number of subscribers
and the summer computer doldrums.
Of those, some 16 entries listed
multiple systems owned by the
submittor. The breakdown by model
went as follows: '

8" Serial: 18

8" Video: 17

C4P-MF (or equivilent): 17
CIP-MF: 4

36 respondents had printers, and 25
owned modems. The vast majority
listed ownership of 0S-65U V1.44 and
0S-65D V3.3.

0S-DMS was far and away the most
frequently mentioned commercial
software package, with 11 people
naming it as their most often used
software. Close behind was DQFLS
WP-6502 word processor at 8. OSI's
WP-2 and WP-3 came in third with 6
respondents. Fourth place went to my
own Term-Plus program. 9 people
mentioned various accounting
packages from other sources, but none
gained any significant following in our
survey.

Copyright 1986 PEEKIES] AN rights reserved

published monthly

Editor : Richard L. Trethewey

Subsoription Rates Ar  Surface
us $2
Canada & Mexioo (15t olass) $30
Europe $42 $48
Other Foreign $47 $40

All subscriptions are for one year and are payable in
advanoe in US doflars. For back issues,
subscriptions, or other information, write to:

PEEK[6S]

P 0. Box 386

Paoifica, CA 94844  415-359-5708
Mention of products by trade name in editorial
material or advertisements contained herein in no
way constitutes endorsement of the produot or
products by this magazine or the publisher.

Page 2 PEEK[65] Summer 1986

Arazingly, interest in both new CPU
and graphics hardware waned in the
final weeks. Much of that can be
attributed to the influx of a lot of
serial system owners. The final
tabulations went as follows:

New CPU

$0:8

$15:3 ,
$100-3200: 15
$200-$500: 7
$500-31000: 1

New Graphics
$0: 18

§50-$100: 13
$100-3200: 3
$200-500:5

Not all entries voted in the above
figures and many people made
ambiguous comments that made it
hard to put their vote in any catagory.
The main reason for the confusion was
that a lot of people weren't sure why
they would want any new hardware.
Hopefully the rest of this issue will
clear up any such mysteries. I found it
interesting that within the above
tallies, some 1§ people were willing to
commit to upgrading both their CPU
and graphics capabilities. The heavy
NO voting was almost all attributable
to serial system owners, which is
more than understandable in the OS]
world.

Toward the end of tallying up all of
the figures, it became clear that
people's software wish lists and their
suggestions for topics for articles in
PEEK were closely related. It is
abundantly clear that owmers of all
OSI systems are clamoring for new
word processing software. Many
included specific features they wanted
to see, such as disk-based software,
interchangeable fonts/type styles, and
the ability to do superscripts and
subscripts. 17 people mentioned a
desire for a new WP. Second place
went to a desire for an assembler that
would be compatible with the new
CPU chips we're all discussing. A good
number of people also wanted better
terminal software.

Hardware articles dominated the
desires of the respondents. Some
wanted articles about interfacing

various peripherals, but a significant

. number expressed an interest in ways

to add new and better disk drives to
their systems. 1 think the past 3
issues of PEEK demonstrate that these .
desires have been heard for a long
time and something is being done to
help. On the software side, there was a
lot of interest in assembly language,
which 1 was pleased to see. There was
roughly a 50-50 mix of people
mentioning assembly  language
information on the new CPUs and
interests in modifying either 65D or
65U. You can count on PEEK to be a
steady source of such information.

One area in which PEEK has been
weak is in the area of 0S-65U articles
that deal with hard disk management,
Level 3 operations, and specific
0S-DMS applications. While over the
years there have been a slew of
patches to EDMAFL, we haven't really
gone very deep. That situation is also
being addressed. It is clear to me that
as the PEER[65] community matures,
they are becoming ever more
dominated by business users. There is
no doubt this trend wiil continue since
0SI no longer manufactures video
systems.

1 was disappointed by the number of
people who expressed a desire for
software that is not only available, but
is advertised here in PEEK. I'm the
first to admit that the software sold
here could be improved, and it will be,
but what is available often met the
specifications mentioned. So take a
closer look at those ads, folks!

Overall, I think the survey shows that
both PEEK[65] and the commercial
vendors are on the right track. There
are people addressing all of the
desires expressed and that tells me
that we have an exciting autumn to
look forward to. Thanks once again to
all of you who responded to the
survey.




N

16 Bits: The New Horizon
by Richard L. Trethewey

The discussions of new 16-bit
versions of the 6502 microprocessor
have been brewing for several years
now. As I write this, many projects
both inside and outside the OSI
community are coming to fruition at a
most opportune time.

Of the enhanced versions of the 6502,
the 65C02 has been the most popular
to date. When Apple Computer chose
this chip to power its Iic, the chip
began to be available in quantity and
at a price that was affordable. The
65C02 added a number of instructions
to the originai 6502 that made it
attractive to the software buffs, and
since it was pin-compatible with its
predecessor, many OSI owners
adopted it and have been using it for
some time.

However, the 6502 remains an §-bit

microprocessor and the world has
been demanding more power than the
65C02 has been able to provide. The
Western Design Center of Mesa,
Arizona  has  designed  two
microprocessors that bridge the 8 and
16 bit worlds, namely the W65C316
and the W65C802 (which 111 refer to
as simply the 65816 and 65862,
respectively).

The 65816 and 65802 are true 16-bit
microprocessors with full 16-bit
registers that correspond to their 65xx
predecessors. The 65816 is capable of
24-bit external addressing for a range
of 16 megabytes of memory, and the
65802 is capable of 16-bit external
addressing for a range of 64 kilobytes.
Both of these chips have an emulation
mode that make them fully software
compatible with the 6502. The 65562
is pin compatible with the 6502,
making it a naturai replacement in
our systems. In addition, the two
chips are compatible with each other,
save for the hardware differences.
Rather than get too deep into a

- technical discussion of the chips, I

thought it wouid be better to answer
some of the questions that people
asked in the User Survey.

When we speak of a 16-bit
microprocessor, we mean that the chip
is capable of dealing with data in
16-bit chunks for all of its normal
operations including addition,
subtraction, and bit manipulation. It's
hard to generalize about what kinds of
speed gains the 16-bit chips offer
over their 8-bit counterparts, but a
quick look at some typical assembly

fanguage code should be enlightening.

Consider the code to add two 16-bit
values. The 6502 code would look like
this:

Code Cycles

LDA $B@08 4
CLe 2
iDC $p002 4
STA $6082 4
LDR $B001 4
ADC $P883 4
STA $p8e3 1

Total 26

Now for the 65816 in the 16-bit
mode, the code looks like this:

Code Cycles
LOA $B@d8 6
cLe 2
ADC $B982 6
STA $60882 6
Total 20

Just in terms of raw speed, youre
getting a 23% increase. But in addition
to that, the 16-bit code saves 9 bytes
(16 vs. 19)! These savings are not
always going to apply, especially
when the software has to deal with
8-bit hardware. However, if we were
to stay conservative and estimate a
general speed increase of 158 and a
size decrease of 30%, there are some
clear advantages worth investigating.

Of course, in the near term we still
have to deal with our regular
©502-based software that cannot take
advantage of these features without
modifying the hardware to use a
higher system clock speed. But the
advent of these two chips allows us to
make incremental improvements in
our hardware and software to suit our
needs and pocketbooks. The size of
the leap you make is very much
under your control.

As mentioned at the start of this
article, the 65802 is a pin-compatible
replacement for the 6502. Pop the old
one out and the new one in and you're
in business. Your current software
wouldnt know the difference,
although your hardware would
breathe a tad easier due to the CMOS

power savings.

In the near term, I would expect to
see patches to BASIC and the various
operating systems, much like my
Hooks into BASIC, which will take
advantage of the 16-bit capabilities of
these chips. It is the longer term that
is really thrilling to me as a

programmer.

Two key elements of the OSI system
architecture have hindered
development of sophisticated
software. First among these is the
system memory map. The hardware is
scattered all over the top of the
memory map limiting it to only 48K of
contiguous memory. The second
problem is the ancient OS] disk
interface. By attacking the first
obstacle, we can do wonders for
making up for the second.

When you have the ability to address
a lot of memory - contiguous memory,
many doors open up. Database
software can hold linked lists in RAM
so that sorting, searching and otirer
operations are made significantly
faster. Spreadsheets can be huge and
entirely RAM-resident for speed and
versatility. Word processing will no
longer be limited to 5 to 10 pages.
Those are real benefits and they're
just around the corner. The key is
moving to the 65816 and it's ability to
address memory beyond our
traditional base 64K. Many of these
programs will aiso be useful to those
who choose the 650802.

If it isn't obvious by now, this article
is written with some specific
hardware in mind. The Toronto user
group TOSIE, who have given us so
many treasures in the past, is working
on a 65816-based CPU board. Other
hardware announcements are most
certainly in the offing from many
sources. There is no doubt in my mind
that the 658xx family will be the hot
topic in PEEK[65] for a long time and
I'm looking forward to it.

Pege 3 PEEKI65] Summer 1986



ADVENTURES AND THE OSI

By: Ed Richardson

Courtesy of SUPERBOARD
Newsletter of the Ohio Super-
~board User Group

146 York Street, Nundah 40612
Queensland, Australia

AN INTRODUCTION TO ADVENTURE

Adventure games have been
played on computers of all
types for many years, and are
one of the most difficult
games to play, and certainly
the hardest to create. Essen-
tially, the player is in a un-=
iverse of the writer's imagi-
nation, questing for a goal
which is often obscure, and
having to solve problems which
should have logical solutions,
but sometimes don't. Usually,
the objectives are to survive,

and f£ind some sort of treas-
ure. The location can be
caves, castles, outer space,

or even in open surroundings.

The first adventure was simply
titled "Adventure" and was
written in Fortran, to run on
a DEC PDP-10 computer with
300k of memory. Of course,
the introduction of the micro-
processor meant that adven-
tures had to be crammed  into
much smaller memory, usually
16k. Much of the magnificent
wording which described rooms
in the original Adventure had
to be left out. An example of
such wording follows: -

"You're at a low window over-
looking a huge pit, which
extends up out of sight. A
floor is indistinctly wvisible
over 56 feet below. Traces of
white mist cover the floor of
the pit, becoming thicker to
the left. Marks in the dust
around the window would seem
to indicate that someone has
been here recently. Directly
across the pit from you and 25
feet away, there is a similar
window looking into a 1lighted

room. A shadowy figure can be
seen there peering back at
you. What now?"

This is nowhere near the long-
est room description in Adven-
ture, but such descriptions
could not possibly be used 1in
even a 64k machine. The 1IBM,
of course, offers such possi-
bilities. Other machines could
possibly call in the descrip-
tion of the rooms from disk,
however, most adventures for
home computers merely truncate
the description drastically to
only the most essential de-
tails.

Probably, the most advanced

and complex adventure game 1is
ZORK, written entirely in com-

Page 4 PEEKI[6S] Summer 1966

piled code. While ZORK does
not have enormous room des-
criptions, it does accept al-
most any answer. ZORK was
also written on a PDP-18, and
is usually supplied on 2 to 3
disks, which says something of
its size. ZORK has 1its own
interpreter, just like a BASIC
interpreter, which makes it
easier to adapt to different
processors. With ZORK, you
can say "Take the bomb and put
it at the foot of the door".
Almost all other adventures
would require "Take bomb", "Put
bomb", WHERE?, "Door".

Of course, ZORK has already
been eclipsed by graphical ad-
ventures and also role playing
games typified by Dungeons and
Dragons. The ultimate adven-
tures will come when the Laser
video disk is coupled to home
computers. You will then see

the rooms through your char-
acter's eyes. You will also
be able to select your char-

acter's traits and .so the
adventure can be different
every time you play it, the

final outcome depending on the
role you have adopted. With
varying strengths of physical

and intellectual capacity,
several million different
characters would be possible.

A strong heart would also be
recommended for the player.
To see yourself about to be
destroyed would provide quite
a shock. The psychiatrists
might do well out of itl

However, we will have to wait
for this. For the moment, we
will be limited to simple 8 or
16k adventures for the OSI.
Although several quite good 8k
adventures have been written,
(even 5k ones!) I really think
16k is more appropriate. A
really good adventure should
have perhaps 4@ or more rooms,
and this is simply not pos-
sible with 8k. .

SOLVING ADVENTURES

There are two cardinal rules
to observe when setting out on
a new adventure. The first
one is to look at everything,
and the second is to draw a
map as you travel. Most ob-
jects you come across will
have some role to play, and
most will have only one role,
though this is never certain.
With the OSI adventures, you
won't find many red herrings
or dead ends, simply because
the . 8K memory doesn't allow
any space for it. However, in
16K games, you will find
routes which 1lead absolutely
nowhere, and objects which
have not the slightest use
except to annoy you and delay
the solving of the puzzle,

Drawing up a map will always
enable the adventure to be
solved much faster, as it pre-
vents random wanderings over
the same ground. On your map,
you should name each room and
mark the contents as you first
find them, and also note the
exits. Wherever you start
drawing your map on the paper
will almost certainly be the
wrong place, so to avoid crun-
ching up the last part into
some obscure corner, have a
second sheet ready to stick
on. Some adventures have one-
way movement which is rather
hard to represent oun a map.
Perhaps a different colour pen

might help there. If your
adventure contains anything
which suggests a maze, you

should most carefully document
your journey. This will save
much wandering in a later game
when you meet with that in-
evitable nasty fate in early
games.

Some games have random dis-
tribution of objects as in our
Treasure Quest game which will
follow, however, most real
adventures have a fixed and
logical method for solving the

puzzle. If you encounter a
problem, you will not be able
to solve it without the cor-

rect object. Sometimes you
will not be able to return to
get it, and have to replay the

game over. Some adventures
have a "save the game" fea-
ture, though I haven't seen
one for 0SI. This enables you
to recall a partly completed
game, and is a very useful

thing to do before some heroic
but risky venture, such as
attacking a dragon!

ATTENTION: DEALERS!

PEEK[6S] needs new subscribers and
you need new customers, and together
we can make it happen with our own
Co-op advertising program. This
program pays dealers for signing up
new subscribers with free ad space in
PEEK[65]). Just five paid subscriptions
will earn a 1/9th page advertising
credit in PEEK[65].

Call or write today for details and
your free promotional materials.
Making a PEEK[65] subscription a part
of every sale is painless and
profitable. This time, "Co-op™ pays
you.




540 Video Driver
with Color Controls

by Software Consultants
6435 Summer Avenue
Memphis, TN 38134

(Editor’s Note: We are again indebted
to Software Consultants for making
this code available. The software and
accompanying article were originally
written some time ago and 1 have
made changes to the article to reflect
the current state of the OSI
community. Ergo, any errors or
inconsistancies are my fault and not
Software Consuitants'.)

This routine was written to provide
the users of OS] video based systems
most of the features found in the
standard terminals in use on
microcomputers. In addition, it gives
you several options not available on
any terminal. The program consists of
a machine code routine tied into
0S-65D and as such may be used with
any of the languages presently
supported by OSI. The routine takes
up 1.25K of memory and loads in the
top portion of the available memory.

The routine was designed to be as
easy to use as possible while still
allowing the wutmost in end-user
{lexibility. This is done by providing a
carefully chosed set of command
codes that give you complete control
over all parameters associated with
the 540 video board. In addition,
other control functions can be easily
added and linked to the video system.

One concept that is used extensively
in this set of routines is that of
windows and windowing. This concept
will be familiar to users of 0S-65D
V3.3, but may stili be new to some of
you. A window is the area on the
display that is recognized and used by
the video driver software. The video
routine supplied with 0S-65D V3.2
and earlier used all but the bottom
few lines of the 54@'s display area as
its "window” and all printing and
scrolling was done within this area.
This new code allows you to define
any rectangular area on the display as
your “window” and then save and
enable these "windows” as you wish.

Most of the command codes operate

refative to the present window. This
enables you to print something at one
place on the screen and then by
carefully choosing your window
parameters you can print, clear, or do
anything else you like to other
portions of the screen without
affecting what you originally printed.
While some of these concepts may
seem difficult at first, after a little use
you will wonder how you ever did
without it.

We will now take each command code
and explain its function and use. Any
questions you have can probably be
answered by sitting down at your
computer and experimenting. The
ASCII number of the command code is
shown along with its function and any
special instructions for its use. From
BASIC, you use these command codes
by simply printing the command code
with the CHR$ function of BASIC.

Command Codes and Function

{1) Set Master Window - This
initializes the 540 video, setting it to
64 characters per line with 25 lines
available. This is a “special”™ window
and is not considered part of the
define/set window routines. Any time
this command code is printed, a
window starting at $D10@ and ending
at $D7CO with a line length of 64
characters will be set. This command
code does not affect the color or the
sound.

(2) Set 64 - sets the video to the 64
characters per line format. Does not
affect the color or sound.

(3) Set 32 - sets the video to 32
characters per line. Also, does not
affect the color or sound.

(4) Clear 540 -.clears the entire video
display without moving the cursor.

(5) Vertical Plot - used to plot a
vertical line from the present cursor
position. To use, print the command
character followed by the number of
positions to plot, and then the
character to draw while plotting. For

example, in a BASIC program the

statement:

PRINT CHR$(5),CHR$(20),CHR$(161) _

will print a vertical line from the
present cursor position with a length
of 20. The character printed will be a
solid block. The cursor will be at the
end of the line.

(6) Horizontal Plot - same as the
vertical plot except that the line is
horizontal.

(7) Bell - This control code is not
implimented, but is reserved for the
bell function.

(8) Backspace - this is a
non-destructive backspace.

(9) Set window to color - this sets the
present window to a certain color. To
use this feature from BASIC, you;

PRINT CHR$(9),CHR$(x);

where “X" is the desired color code.
This also sets the individual character
color to the window color (see number
11).

(10) Line feed - advances the video
display down by one line. Will scroll if
at the bottom line of the window.

(11) Set character color - sets the
character color. Used from BASIC by;

PRINT CHR$(1 1),CHR$(x);

where “X" is the desired color. From
this point on, anything you print- will
be printed in this color (provided the
color is enabled).

(12) Clear window - clears only the
present window without affecting the -
rest of the video display. Also, homes
the cursor in the present window.

(13) Carriage Return - positions the
cursor at the front of the present line,
but does not print the cursor. This is
useful in some graphics applications
where you do not want the cursor
showing on the screen.

(14) Define as Home - uses the
present cursor position as the "home”
position or the upper left hand corner
of the present window.

Page 5 PEEK[65] Summer 1986 -



{(15) Set lower right hand corner of
window - to use this command,
position the cursor. and print the
command. Using this command in
conjunction with- the Define Home
command allows the programmer to

easily define a window anywhere on-

the 540 display. The 2 command
codes when used together define a
box (window) giving starting and
ending address and the line length.
Remember that all cursor movement
is relative to the present “home"

position.

(16) Define Window - The video
system allows you to save up to 6
windows for instant recall. To use this
from BASIC, you;

PRINT CHR$(16)CHR$(x);

where “x" is a number between & and
5. This saves all current window
parameters (starting line, ending line,
color, and line length) in a table for
fater recall. Window @ is already
defined to be the entire 54@ video
display and window 5 is wused
internaily by the set window to color
command. You may use window @ for

your own use, but you should know

that once that window’s parameters
are changed you have no way
access parts of the video screen
outside of this "master window"
(command code 1). If you are not
using color or the set color controfs,
then you may also use window 5. If
you are using color, don't use window

5.

(17) Set Window - This is the
command that allows you to recall
saved window parameters. To recall a
window from BASIC, you;

PRINT CHR$(17)CHR$(x);

where "x” is a number between @ and
5. This will set the window to the
saved parameters and home the
cursor in that window.

(18) Video Control - This command
code is used to control the video
board's color and sound. To use this
command from BASIC, you;

PRINT CHR$(18),CHR$(x);

where “%" is the desired function

Page 6 PEEKI6S] Summer 1986

number. Refer to the manual that
came with your system for the
desired  function number. This
command also stores the last
command function entered at $259E
(decimal 963@) so that the present
video/sound/color attributes can be
read. For proper operation of the 540
Yideo Routine, you should no longer
POKE the color/sound/video control
function, but use this command
instead.

(19) Output Character - This command
allows you to print any of the graphics
characters, including control
characters. To use this command from
BASIC, you;

PRINT CHR$(19),CHR$(x);

where “X" is the ASCII value from @ to
255 of the character you wish to print.

(2@) Direct Cursor Position - This

command is used to position the

cursor anywhere within the present
window. It is used by;

PRINT CHR$(20),CHR$(x)CHR$(y);

where X" is the desired column and
"y" is the desired row. This routine
does range checking and will now
allow the cursor to move outside of
the presently defined window. All
movement is relative to the "home”

position.

(21) Cursor Up - This command moves
the cursor non-destructively up by
one line.

(22) - (23) Unused.

(24) Cursor Right - This command
moves the cursor non-destructively |
position to the right.

{25)-(28) Unused.

(29) Home - Homes the cursor in the
present window.

(30) Clear the rest of line - clear from
present cursor position to the end of
the line without affecting the cursor
position.

(31) Clear rest of window - clears
from the present cursor position to

the bottom of the window without
affecting the cursor. position.

Installation

The first step is to make a new
0S-65D (version 3.2 or earlier)
diskette. On that disk create three
files: a two-track file named "BEXEC*",
a one-track file named "VIDEO*", and
a large file (1@ tracks for 87, 15 for
mini's) named "VIDASM". Write down
the track number where the file
“VIDEO*" resides on your disk. You'll
need it later.

Boot the Assembler/Editor and enter
the assembly language program given
in Listing 2. Change the origin address
on line #7390 to reflect your system's

. memory size. On 24K systems, it

should remain at $5B@@, on 32K
systems set it to $7B@@, and on 48K
systems use $BB@®. Save this program
in the file named "VIDASM". Use the
"H" command in the assembler to
protect the high end of memory (ie.
"H5A00°, "H7A00", or "HBA99") and
assemble the file to memory with the
command "A3". If the assembly
proceeds without error, save the
machine c¢ode to disk with the
command;

ISA tt,1=xB89/5

where "tt" is the track number where
"VIDEO*" resides and "xB@e" is the
origin address of the code (ie. “5B00",
“7B08", or "BB0O®").

Now, leave the Assembler/Editor and
invoke BASIC. Enter the BEXEC*
program given in Listing 1. Note that

.you'll have to also insert the track

number for "VYIDEO*" in lines 10280
through 10300 as you did in the
above command. Finally, save it in the
file named "BEXEC*" (clever, eh?). Run
this program and the new video
driver will be installed and ready for
use. When you want to install the
video driver on other diskettes, just
transfer the files "BEXEC*” and
"VIDEO*".




Programming Tips

Most of the command codes are easy
to understand and use. However,
several things need to be pointed out.
Defining and setting windows is very
éasy once you understand the step by
step procedure.

First, set the video parameters to the
master window using command code
1. Using direct cursor positioning,
CHR$(20), move the cursor to your
desired "home” location. Then print
the Define As Home command,
CHR$(14). Position the cursor to the
desired lower right hand corner
position of the window you wish to
define. Remember that all cursor
positioning is relative to the current
“home™ position. Thus, if you want
your new window to be 1@ lines by 20
characters long,

width and height you want and finally
print the Set Lower Right Hand Corner
Command as in;

PRINT CHR$(20),CHR$(10),CHR$(15);

" You have just defined a new window
on your video display. Try LISTing a
BASIC program, cursor positioning, set
window color, etc. and you will see
that you can do anything without

affecting the rest of the video display.

If you wish to save this window
definition for later use, print the
Define Window command followed by
the number you wish to assign to this
window. Refer to the Define Window
command (code 16). To recall this
window, print the Set Window
command (code 17) followed by the
window number you chose.

print the cursor,
position command followed by the

18 REN
12 REN
15 REit
16 REM
17 REH
18 REN
19 REM
28 REN
21 REH
22 REN
24 REN

26 IF
308 GOS
100880
18818
10828
18838
19648
18658
19868
1eave
18686
10898
18188
18118
10128
18138
18148
18158
18168
18178
18189
18198
18208
18218
18228
18238
18248
18258
18268
18278

10288
18290
18368
16318
18328
18330
10348
18358
18368
18378
18380
18398
18408

Listing 1

'BEXEC* : BRASIC EXECUTIVE
05650 U3.2

LAST MODIFIED: @7/82/86 BY RICHARD L. TRETHEUEY

NRITTEN BY SHOF BERUERS 81/86/81

SOF THRRE CONSULTRNTS
7853 ROSE TRAIL
HENPHIS, TH 38134
(%@1) 377-3503

SET UP INFLAG AND OUFLAG FRON DEFALT
25 ¥ = PEEK(18958): POKE 8993,X: POKE 8994,%

PEEK(57888)=223 THEN POKE 9794,37

)

UB 18888: PRINT CHR$(12);: END

REM  ROUTINE TO UNLOCK AND HODIFY BASIC 0S
REN '

REM  ENRBLE <CTRL>'C’

POKE 2673,173

REM ALLOH NULL INPUT TO STRINGS AND NUHERICS

POKE 2888,8: POKE 8722,8

REM  CHANGE “REDO FROM START?" MESSAGE
REM  T0 "HUST BE NUHERIC?®
FOR 1 = 3129 TO 3143: READ U: POKE I,U: NEXT 1

DATA 77,85,83,84,32,66,69,32
DATA 78,85,77,69,82,73,67
REH
POKE 2972,13: POKE 2976,13
REM  ALLOM *NEW* AND *LIST*
POKE 741,76: POKE 758,78
REH

ALLOW COMMA AND COLON IN INPUTS

DELETE “?" INPUT STATEHENT PRONHPT

FOR 1 = 2895 TO 2898: POKE I,234: REXT I

POKE 2899,168: POKE 2908,0

POKE 2948,234: POKE 2949,234: POKE 2958,234

REM  KILL AUTO CR/LF FROM PRINT

POKE 2613,234: POKE 2814,234: POKE 2815,234
POKE 2658,234: POKE 2659,234: POKE 2668,234

POKE 23,63: POKE 24,49
REN

CHANGE TNDIRECT FILE LOAD COMMAND TO <CTRL>'Z2’

POKE 9594,26: POKE 9554,11@: POKE 9368,118: REMN MNOUE TO $6E@8

R=PEEK(8068): IF ¥=>05 THEN TA=0@
IF ¥=>127 THEN TR=122 |

IF %=>191 THEN TR=186

IF TA=98 THEN DISK!*CA 5B88=1T,1"
IF TA=122 THEN DISK!*CA 7B0@=TT,1°
IF TA=186 THEN DISK!"CA BB@@=TT,1"
POKE 9628,32: REM CLEAR CHARACTER
POKE 9629,15: REN COLOR CHARACTER
POKE 9638, 1
POKE 56988, 1
POKE 9645,161: REM CURSOR CHARACTER
REM
POKE 8979,255: POKE 8988, TA
REN

PROTECT VIDEO DRIVER FROH BASIC

: REM SET UIDEO TO 64 CHAR/LINE
POKE 9643,32: POKE 9646,8: POKE 9647,8

POINT 05-650 TO HEH VIDEO DRIVER

POKE 132,255: POKE 133,TA: POKE 8968, TR

PAINT CHR$(1);CHR$(4);: RETURH

Page 7 PEEKI65] Summer 1986



10 .PAGE ' 540 VIDEO ROUTINE WITH COLOR '

28 ] —mmememmm—mcec e —————
30 : 540 VIDEO DRIVER WITH
40 ; COLOR CONTROLS FOR 0S65D .V 3.X
50 ; REVISION 1.1
60 H
70 ; WRITTEN BY SHOF BEAVERS
80 ; SOFTWARE CONSULTANTS
90 ; 7053 ROSE TRAIL
100 ; MEMPHIS, TN. 38134
110 : (981)-377-3583 -
128 I e et
130 H
140 ; ZERO PAGE USED
158 ; —eeeesmme—e————
160 B
176 0850 *=$0050
180 9850= ZPAGE=*
190 9B50= CLAL=*
208 0051= CLAH=*+1
219 ;
220 ; CONSTANTS
239 ;] mmme—————
249 H
250 0014= CPOS=514 ; CURSOR POSITION CHARACTER -
260 00@5= PLOTV=5$05 ; VERTICAL PLOT CHARACTER
27¢ 0006= PLOTH=$06 ; HORIZONTAL PLOT CHARACTER
280 0010= DEFW=$10 ; DEFPINE WINDOW CHARACTER
290 @0l1= SETW=511 ; SET WINDOW CHARACTER )
3p8 9012= VCNTRL=18 ; VIDEO CONTROL CODE
31¢ 0009= BCOLOR=© ; BACKGROUND COLOR CODE°
320 @00B= FCOLOR=11 ; CHARACTER COLOR CODE
339 6013= CHROUT=19 ; OUTPUT CHARACTER (X)
340 9006= MAXWIN=6 ; MAXIMUM NUMBER OF WINDOWS-1
358 ; ‘
360 ; SYSTEM ADDRESSES AND SUBROUTINES
370 } e
389 ;
399 DFYe= KPORT=SDF P8 ; POLLED KEYROAT.D PORT
400 DE44= VS1ZE=$DE44 ; VIDEO CONTROL (32/64)
419 .PAGE
420 ;
439 ; OTHER ADDRESSES USED BY VIDEO DRIVER
440 ; $2599 UP TO $2643 USED BY STANDARD VIDEO
450 e
460 ;
479 2599= STOR1=$2599 ; "'STORAGE FOR ZERO DPAGE
4889 259B= CNTRLC=$259B. ; CONTROL CHARACTER SAVE
490 259C= CLEARC=$259C ; CLEAR SCREEN/WINDOW CHARACTER
508 259D= COLORC=$259D : 'COLOR CHARACTER
518 259E= VREG=$259E ; R/W VIDEO REGISTER
520 259F= WCOLOR=$259F ; WINDOW COLOR
530 25A4= VPARM=S25A4 : VIDEO PARAMETERS SAVE
540 25A4= CRL, INE=VPARM ; CURRENT LINE
550 25a4 *=VPARM
560 25A6= HAL=*+2 ; UHOME ADDRESS LOW
570 25A7= HAH=*+3 ; HOME ADDRESS HIGH
580 25AB8= ELAL=*+4 ; ENDING ADDRESS LOW
598 25A9= ELAH=*45 ; ENDING ADDRESS HIGH,
600 25AA= LEN=*+6 ; LINE LENGTH
618 25AB= CSAV=*+7 ; CHARACTER UNDER CURSOR
620 25AC= CURSOR=*+8 ; CURSOR POSITION IN LINE
630 25AD= CCHAR=*+9 ; CURSOR CHARACTER
640 25AE= TEMP=*+10 ; TEMPORARY
650 25AF= CCOUNT=*+11 ; COUNT FOR GET PARM
668 25BO= COLM=*+12 ; COLUMN FOR XY POSITIONING
670 25Bl= ROW=*+13 ; ROW FOR XY POSITIONING
680 25BO= CHAR1=COLM ; FIRST CHARACTER FROM GET PARM
698 25Bl= CHAR2=ROW ; SECOND CHARACTER FROM GET PARM
700 H
718 ; THERE IS NOW OPEN MEMORY FROM $25B2 TO $2643
728 ; .
730 5BOO *=$5B00
740 ;
750 ; START OF VIDEO DRIVER
760 e
770 ;
786 5BO@ BDAE25 WRITE STA TEMP ;VIDEO OUTPUT ROUTINE
79¢ SB@3 AQG2 LDY #$02 ; SWAP OUT 2 BYTES FROM ZERO PAGE
800 5B@5 B94F@@ SWAPIN LDA ZPAGE-1,Y ‘
810 5B@8 299825 STA STOR1-1,Y

~ Poge B PEEKI[65] Summer 1966



820
830
840
850
860
870
880
890
900
910
920
930
940
950
96 0
978
980
990
1000
1910
1020
1030
1040
1950
1660
1070
1080
1090
1109
1110
1120
1130
1149
1159
1160
11780
1180
1190
1209
1219
1229
1239
1240
1250
1260
1270
1280
1296
1309
1310
1320
1330
1340
1350
1360
13780
1380
1399
1400
1410
1420
1430
1449
1459
14690
1478
1480
1490
1500
1510
1520
1538
1549
15508
1560
1578
1580
1590
1600
1610
1620

5B@B
5BOE
5Bl11
5B12
5B14
5B17
5B19
5B1C
5B1F
5B22
5B25
5B26
5B28

5B29
5B2C
5B2E
5B31
5B33
5B35

5B37
5B3A
5B3C
5B3F
5B42
5B44
5B47
5B48
5B4B
5B4D
5B4F
5B52
5B55

5B58
5B5A
5B5D
SB6 D
5B62
5B64
5B66
5B69
5B6C
5B6E
5B70
5B72
5B75
5B78
5B7A

5B7C
5B7F
5B81
5B84
5B87
5B89

5B8BA
5B8D
S5BBE
S5B8F
5B90
5B91
5B94
5B95
5B98
5B99

B9A3 25
994Fr 00
88
DOF1
20295B
ADB2
B9 4F 00
99A325
B99825
S94F D06
88
DOF1
60

ADAF25
DB6C
ADAE25
FB49
Cc920
9853

ACAC25
9159
206 95D
AD9D25
9150
20605D
cs8
CCAA25
Do@8
ABOOQ
8CAC25
4CCF5B
8CAC25

A901
8D@@DF
AD@ODF
C941
D@18
A908
8DGADF
AD@ODF
co80
DRsc
A9B2
8D@ODF
AD@PDF
co8e
D@F9

ACAC25
B15@
8DAB25
ADAD25
9158
60

8D9B25
on
A8
88
88
BY9F 45E
48
B9F35E
48
60

LDA
STA
DEY
BNE
JSR
LDY
SWAPOT LDA
STA
LDA
STA
DEY
BNE
RTS

:
WRT LDA
BNE
LDA
BEQ
CMP
BCC

i

DISPLY LDY

JSR
LDA
STA
JSR
INY
CPY
BNE
LDY
STY
JMP
BACK STY

~e we we we

LDA
STA
LDA
CMP
BNE
LDA
STA
LDA
CMP

- BNE
LDA
STA
STOP LDA
CMP
BNE

LDA
STA
LDA
STA
RTS

CNTL: GET
AND

VPARM-1,Y
ZPAGE-1,Y

SWAPIN
WRT

#502
ZPAGE-1,Y
VPARM-1,Y
STOR1-1,Y
ZPAGE-1,Y

SWAPOT

CCOUNT
GPARM
TEMP
RETURN
#520
CNTL

CURSOR
(CLAL) ,Y
COLADJ
COLORC
(CLAL) ,Y
COLADJ

LEN
BACK
#500
CURSOR
LF
CURSOR

;USE THE OUTPUT BYTE
;RESTORE ZERO PAGE

;IS THE BYTE A PARAMETER
;YES, SAVE IT

; IF NULL GO BACK
;IS IT A CONTROL CODE
;YES, DO IT

;GET INDEX INTO LINE
;OUTPUT THE CHARACTER

; CHANGE $DX TO S$SEX

;GET COLOR

;OUTPUT TO COLOR MEMORY
;CHANGE $EX TO $bX
;BUMP THE INDEX

;END OF LINE

;NO, GO BACK

;SET INDEX INTO LINE=#

;DO LINE FEED
;SAVE THE INDEX

CNTRL S AND CNTRL Q

#S1
KPORT
KPORT
#5541
RETURN
458
KPORT
KPORT
#580
RETURN
#$2
KPORT
KPORT
$#580
STOP

CURSOR
(CLAL) ,Y
Csav
CCHAR
(CLAL) ,Y

;CHECK FOR THE 'CNTRL' KEY
;LATCH THE PORT
;READ THE CHARACTER
;IS IT THE CONTROL
;NO, GO BACK

;YES, CHECK FOR 'S'
;LATCH THE PORT
;READ THE KEYBOARD
;IS IT THE 'S' KEY
;NO, GO BACK

;CHECK FOR THE 'Q'
;LATCH THE PORT
;READ THE KEYBOARD
;IS IT THE 'Q'

;NO, KEEP LOOPING

OUTPUTS CURSOR

;GET INDEX TO LINE

;GET CHARACTER UNDER CURSOR
;SAVE THE CHARACTER

;GET THE CURSOR CHARACTER
;OUTPUT IT

;GO BACK FROM OUTPUT ROUTINE

CONTROL CODE ROUTINE ADDRESS FROM

EXECUTE

)
&
=
m

CNTL STA
ASL
TAY
DEY
DEY
LDA
PHA
LDA
PHA
RTS

.
T

CNTRLC
A

CNTLTB+1,Y

CNTLTB, Y

; SAVE THE CONTROL CODE

;SET TO INDEX TABLE

;GET HIGH BYTE

;PUSH ON STACK

;GET LOW BYTE

; PUSH v

;EXECUTE THE ROUTINE

; GPARM: GET PARAMETERS FOR CURSOR POSITIONING,WINDOWS

i

Page 9 PEEKI65] Summer 1986



1630

’
1640 5B9A ADAF25 GPARM LDA CCOUNT ;GET CHARACTER COUNT
1650 5B9D C9081 CMP #$01 ;IS THIS THE SECOND CHARACTER
1660 S5BI9F FOOA BEQ SPARM ;s YES
1676 5BAl1 ADAE25 LDA TEMP ;GET THE BYTE
1680 S5BA4 8DB@25S STA CHAR1 sSAVE IT AT CHAR1l (COLM)
1690 5BA7 CEAF25 DEC CCOUNT ;sADJUST COUNT
17080 SBAA 60 - RTS
1710 5BAB ADAE25 SPARM LDA TEMP ;GET THE BYTE
1720 S5BAE 8DB125 STA CHAR2 sSAVE IT (ROW)
1730 5BBl1 CEAF25 DEC CCOUNT ;SET CCOUNT = @ .
1740 5BB4 4C675D JMP WHICH1 ;GO DO THE CONTROL FUNCTION
1750 ;
1760 ; BSPACE: BACKSPACE ROUTINE'
1770 R e
1780 :
1790 5BB7 28125D BSPACE JSR DELCUR sDELETE CURSOR
1868 5BBA ACAC25 LDY CURSCR +GET CURSOR POSITION
1818 5BBD FO@BD BEQ RETURN ;IF AT FRONT OF LINE RETUR
1820 SBBF 88 DEY s DECREMENT INDEX
1838 5BCO BCAC25 STY CURSOR ;AND SAVE
1840 5BC3 4C7CSB JMP RETURN +GO BACK AND PRINT NEW CURSOR
1850 :
1860 3 CR: CARRIAGE RETURN ROUTINE
1870 | mem e mr e ———————
1880 :
1898 5BC6 20125D CR JSR DELCUR sDELETE CURSOR
19080 5BCY9 A089 LDY #S00 ;RESET INDEX
1919 5BCB B8CAC25 STY CURSOR
1920 5BCE 60 RTS
193¢ H
1949 ; LF: LINE FEED ROUTINE ( SCROLLS IF NEEDED )
1959 } T —
1960 H
1978 5BCF 28125D LF JSR DELCUR ;DELETE CURSOR
1980 5BD2 28F65C JSR INCL ; INCREMENT THE LINE COUNT
1998 5BDS5 98A5 BCC RETURN ;IF NOT AT END RETURN
20006 5BD7 ADA625 SCROLL LDA HAL ;LAST LINE, DO SCROLL
2019 SBDA 8550 STA CLAL ;RESET CURRENT LINE ADDRESS
2620 5BDC ADA725 LDA HAH
2039 S5BDF 8551 STA CLAH
2040 5BE1 ADAA25 LINE LDA LEN ;A= LINE LENGTH
2050 5BE4 8DAE25 STA TEMP +SET TEMP TO LINE LENGTH
2060 S5BE7 18 CLC ;SET TO ADD
2070 SBEB 6940 OFFSET ADC #5448 sA=LINE LENGTH + $40
2080 S5BEA”AA TAX
2090 5BEB CEAE25 COPY DEC TEMP sDECREMENT LINE COUNT
2160 5BEE CA DEX ; DECREMENT INDEX INTO LINE
2110 5BEF 8A TXA ;MOVE X TO Y THROUGH A
2120 5BFO A8 TAY
2130 5BF1 B158 LDA (CLAL),Y ;GET CHARACTER FROM LINE + $40
2140 5BF3 ACAE25 LDY TEMP sGET LINE INDEX
215@ 5BF6 9150 STA (CLAL),Y ;STORE CHARACTER (MOVE BY $40)
2160 5BF8 DOAF1 BNE COPY sNOT DONE WITH THIS LINE SO LOOP
2170 5BFA 20F65C JSR INCL s INCREMENT CURRENT LINE
2180 5BFD 90E2 BCC LINE ;NOT DONE YET SO LOOP BACK
2199 S5BFF ACAA25 LDY LEN sRESET INDEX TO LINE
2200 5C@2 A920 LDA #$28 ;SET A TO CLEAR LAST LINE
2210 5C04 88 SPLOOP DEY s DECREMENT INDEX
2220 5C@5 9150 STA (CLAL),Y ;OUTPUT THE SPACE
2230 5CB7 DOFB BNE SPLOOP s NOT DONE KEEP LOOPING
22490 5C09 4C7CSB JMP RETURN ;GO BACK AND PRINT CURSOR
2250 H
2269 ; HOME: HOME CURSOR IN WINDOW
2270 ] —mmemmmm—— e mm e s
2280 H
2290 5COC 20C65B HOME JSR CR ;DO CARRIAGE RETURN
23900 5COF ADA625 LDA HAL " ;RESET CURRENT LINE TO HOME LINE
2319 5Cl12 8559 STA CLAL
2328 5Cl4 ADA725 LDA HAH
233@¢ 5C17 8551 STA CLAH
2340 5C19 64 RTS
2359 ; .
23680 ; CLEAR: CLEAR PRESENT WINDOW AND HOME CURSOR
2378 ] e me e m e e s c e e s — e —
2380 H
2398 S5ClA 200C5C CLEAR JSR HOME ;HOME CURSOR

2400 5C1D ADYC25 NXTLIN LDA CLEARC ;GET CLEAR CHARACTER
2419 5C28 9150 NXTSP STA (CLAL),Y ;AND OUTPUT IT

2420 5C22 C8 INY ;BUMP THE INDEX

2439 5C23 CCAA25 CPY LEN ;Y=LINE LENGTH?

' Page 10 PEEKI65] Summer 1986




2440
2450
2460
2478
2480
2499
2508
2510
2520
2530
2540
2550
2560
2570
2580
25908
2600
2610
2620
2638
2648
26580
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3600
3010
3020
3830
3040
3050
3060
3070
3980
3090
3100
3110
3120
3138
3140
3150
3160
3178
3180
3190
3200
3210
3220
3230
3240

5C26
5C28
5C2A
5C2D
5C2F
5C32
5C35

5C36
5C39
5C3A
5C3D
5C3Fr
5C42

5C45
5C47
5C4A
5C4D
5C50
5C53
5C56
5C59
5C5C
S5C5F
5C62
5C63
5C65

5C66
5C69
5C6B
5C6D
5C6E
5C71
5C73

5C76
5C78
5C7B

5C7C
5C7F
5C82
5C84
5C87
5C89
5C8C
5C8F
5C92
5C95
5C98
5C9A
5C9D
5C9F

5CA2
5CAS
5CA7
5CAA
5CAD

DOF8
AQDOO
20F65C
9@EE
8CAC25
2p@8C5C
60

20125D
c8
CCAA25
BBA3
BCAC25
4C7C5B

AGOO
ADI9C25
9986D7
99086D6
9900D5
9900D4
9900D3
9900D2
93%686D1
9900D#0
c8
DBES
60

ACAC25
A928
9150
c8
CCAA25
DOF8
4C7C5B

A982
8DAF 25
60

ACAC25
8CBO25
A550

8DB125
A551

8DAE25
201D5C
ADB@25
8DAC25
ADAE2S
8551

ADB125
8550

4C7C5B

ADSE25
p901
8D44DE
8DY9E25
A%40

BNE NXTSP ;NO LOOP BACK
LDY #3500 ;YES, RESET Y
JSR INCL ; INCREMENT THE CURRENT LINE

BCC NXTLIN ;NOT DONE, LOOP BACK

STY CURSOR ;RESET INDEX TO LINE
JSR HOME ;HOME CURSOR
RET RTS

FORWRD JSR DELCUR ;DELETE CURSOR

INY ;BUMP LINE INDEX
CPY LEN ;AT END OF LINE
BCS RET3 ; YES, GO BACK

STY CURSOR ;SAVE NEW INDEX

RET3 JMP RETURN ;GO BACK AND PRINT CURSOR

CSCRN: CLEAR 540 VIDEO DISPLAY

.~ we we s

CSCRN LDY #500
LDA CLEARC

CSLOP STA $D708,Y
STA $D680,Y
STA $D500,Y
STA $D400,Y
STA $D300,Y
STA SD208,Y
STA $D100,Y
STA $D8O,Y
INY ;BUMP THE INDEX
BNE CSLOP ;LOOP IF NOT DONE
RTS

;SET INDEX TO @
;GET CLEAR CHARACTER
;OUTPUT IT TO ALL LINES

CLINE: CLEAR REST OF LINE

~ we we w¢

CLINE LDY CURSOR ;GET INDEX IN LINE

LDA #$20 ;A="SPACE'
CLOOP STA (CLAL),Y ;OUTPUT SPACE
INY ;BUMP THE INDEX
CPY LEN ;AT END OF LINE?
BNE CLOOP ;NO, KEEP LOOPING
JMP RETURN ;GO BACK AND PRINT CURSOR

i
; CURPOS,PLOT: SAVE CONTROL CODE AND
; SET CCOUNT FOR 2 PARAMETERS

PLOT .

CURPOS LDA #$02 ; SET CCOUNT TO 2 FOR GETPARM
STA CCOUNT
RTS

CRWIN: CLEAR REST OF WINDOW

CRWIN LDY CURSOR ;GET INDEX IN LINE
STY COLM ;SAVE CURRENT LINE PARAMETERS
LDA CLAL '
STA ROW
LDA CLAH
STA TEMP
JSR NXTLIN ;JUMP TO MIDDLE OF CLEAR WINDOW
LDA COLM ®;RESTORE LINE PARAMETERS
STA CURSOR
LDA TEMP
STA CLAH
LDA ROW
STA CLAL
JMP RETURN ;GO BACK AND PRINT CURSOR

: SET VIDEO TO 64 CHARACTERS PER LINE

]
2]
]
(=]
FN

SET64 LDA VREG
ORA #$01
STA VSIZE
STA VREG
LDA #5480 ;SET LINE LENGTH

;SET 548 FOR 64 CHARACTER/LINE

Poge 11 PEEKI6S] Summer 1986

s

323

PR e e 2



3250
3260
3278
3280
3290
3300
3319
3320
3330
3348
31359
3360
3378
3380
3390
3400
3410
3420
1430
1440
1450
3469
1470
1480
3490
1500
3519
3529
1539
1548
1550
3560
3579
3584
3590
3600
3610
1620
16308
1649
1650
1660
1670
16808
1690
1700
1710
1728
1739
1740
17580
{760
778
1780
1790
1809
810
1820
1830
1840
{850
1860
878
1880
{89
900
{910
920
{930

948

950

960

9780
}980
1999
1600
101p
1820
1030
1040
1050

Poge

5CAF
5CB2

5CB3
5CB6
5CB8
5CBB
5CBE
5CCO
5CC3

5CC4
5CC7
5CCA

5CCD
5CCF
5CD#@
5CD3
5CDé6
5CD8
5CDB
5CDE

S5CDF
5CE2
5CES5
5CE7
5CEA
SCEC
5CEF

5CFP
5CF2
5CF5

5CF6
5CF7
5CF9
5CFC
5CFE
5D@o
5D@3
5D85
5DP6
5D@8
5DOA
5DBC
5DOE
5D16
5p1l

5D12
5D15
5D17
SD1A
5D1C
5D1F
5D21

A

8DAA25
60

AD9E25
29FE
8D44DE
8D9E25
A920
8DAA25
60

20125D
20445D
4C7C5B

A550

6DAC25
8DA625
A551

8DA725
208C5C

ADAC25
8DAA25
A5509
B8DAB25
A551
8DA925
60

ASO1
8DAF25
60

18
A551
CDA925
9088
A550
CDA825
9091
60
A550
6940
8550
9003
E651
18

60

ACAC25
B158
CDAD25
DOOA
ADAB25
91506
A9240

STA
RTS

.
’
.
’

’
SET32 LDA
AND
STA
STA
LDA
STA
RTS

CUP: MOVE

~ we we ws

cup JSR
JSR
JMP

LEN

SET32: SET TO 32 CHARACTERS/LINE

VREG {SET TO 32 CHARACTERS PER LINE
#SFE ;TURN OFF 1 BIT

VSIZE

VREG

#520 ;SET LINE LENGTH

LEN

CURSOR UP ‘
DELCUR ;DELETE CURSOR

SUB ;SUBTRACT $40 FROM CL ADDRESS
RETURN ;GO BACK AND PRINT CURSOR

i
; DHOME: DEFINE PRESENT CURSOR POSITON AS HOME

DHOME LDA
CLC
ADC
STA
LDA
STA
JSR
RTS

DLRCW LDA
STA
LDA
STA
LDA
STA
RTS

AL SO USED

we we W we we

WINDOW LDA
STA
RTS

CLAL sSET HOME TO CURRENT LINE

CURSOR ;ADD LINE INDEX

HAL ;AND SAVE LOW BYTE

CLAH ;SET HIGH BYTE

HAH

HOME - ;HOME CURSOR TO SET PARAMETERS

DLRCW: SET LOWER RIGHT CORNER OF WINDOW

CURSOR ;GET INDEX IN LINE

LEN ;s PRESENT INDEX=NEW LINE LENGTH
CLAL. +CURRENT LINE=NEW LAST LINE
ELAL

CLAH

ELAH

WINDOW: SET PARAMETERS FOR WINDOW CONTROLS

FOR ANY COMMAND WITH 1 PARAMETER

#5091 ;SET GET PARM FOR 1 PARAMETER
CCOUNT

i
; INCL: INCREMENT CURRENT LINE. CARRY SET IF AT LAST

INCL CLC
LDA
CcMP
BCC
LDA
CMP
BCC
RTS
INCH LDA
ADC
STA
BCC
INC
CLC
INCEND RTS

e we we we

DELCUR LDY
LDA
CMP
BNE
LDA
STA
LDA

12 PEEKI6S) -Summer 1986

;GET SET TO ADD
CLAH
ELAH ;LESS THAN ENDING ADDRESS
INCH ;YES, DO INCREMENT
CLAL ;CHECK THE LOW BYTES
ELAL
INCH ;DO INCREMENT

;RETURN WITH CARRY SET
CLAL ;INCREMENT CURRENT LINE
$$40 ‘ : . :
CLAL
INCEND
CLAH

i

DELCUR: DELETE CURSOR, RESTORE CHARACTER UNDER CURSOR

CURSOR  ;GET INDEX IN LINE
(CLAL) ,Y ;GET CHARACTER

CCHAR ;IS IT THE CURSOR

RET2 ;1 NO, GO BACK )

CSAV :YES, GET CHAR UNDER CURSOR
(CLAL) ,Y ;AND RESTORE . . .
$#520 ;CLEAR CSAV }




4060
4070
4080
4099
4100
4119
4120
4139
4140
4150
4160
4170
4180
4190
4200
4210
4220
42390
4240
4250
4260
4270
4280
4290
4300
4319
4320
4330
4340
4350
4360
4370
4380
4399
4400
4410
4420
4430
4440
4450
4460
4470
4480
4490
4500
4510
4520
45390
4540
4550
4560
4570
4580
4599
4600
4610
4620
4630
46 40
4650
4660
4670
4680
4690
4700
4710
4720
4730
4740
4750
4760
4779
4780
4790
4800
4810
4820
4830
4840
4850
4860

5D23
5D26

SD27
5D29
5D2B
SD2E
5D31
5D34
5D36
5D38
SD3B
5D3D
5D40
5D 43

5D44
5D46
5D49
5D4B
5D4D
5D50
5D52
5D54
5D55
5D57
5D59
5D5B
5D5D
5D5F

5D68
5D62
5D64
5D66

5D67
SD6A
5D6C
5D6E
5D71
5D73
5D75
5D78
5D7A
5D7C
SD7F
5D81
5D83
5D86
5p88
SD8A
5D8D
5D8F
5D91
5D94
5D96
5D98
5D9B
5D9D
SDIF
5DA2
5DA4

8DAB25
60

A900
8550
8DA625
8DAB25
8DAC25
A9D1
8551

we we s we

~ -

8DA725

A9D7
8DA925
20A25C
60

A551
CDA725
Do@7
A550
CDA625
FO@D
A55p9
38
E940
8550
A551
E90P
8551
60

A551
4930
8551
60

AD9B25
C914
DOa3
4CAC5D
c9a5
DRB3
4CD25D
€906
DBO3
4CEF5D
colp
D63
4COASE
C91l
Doa3
4C365E
c909
DPO3
4C745E
C90B
D@a3
4CB55E
c913
DBB3
4CBCSE
C912
D@a3

~. we e we we

“e e we we

o we we we we we

RET2

MASWIN: SET VIDEO PARAMETERS TO 64 CHAR/LINE

STA
RTS

CSAV

WITH 25 LINES TO THE SCREEN
TURNS OFF COLOR AND SOUND

MASWIN LDA

STA
STA
STA
STA
LDA
STA
STA
LDA
STA

- JSR

RTS

#5009
CLAL
HAL
ELAL
CURSOR
#$D1
CLAH
HAH
#SD7
ELAH
SET64

;RESET VIDEO PARAMETERS

;SET FOR 64 CHAR/LINE

SUB: ADJUST PRESENT CURSOR POSITION
UP BY 1 LINE

DOIT

RET4

COLADJ :

COLADJ LDA CLAH

WHICHI:

LDA
CMP
BNE
LDA
CMP
BEQ
LDA
SEC
SBC
STA
LDA
SBC
STA
RTS

EOR
STA
RTS

CLAH
HAR

DOIT
CLAL
HAL

RET4
CLAL

;CHECK TO SEE IF AT TOP

;NO, ADJUST POSITION

#5540
CLAL
CLAH
#500
CLAH

INTERNAL SUBROUTINE TO ADJUST ADDRESS FOR
COLOR CONTROLS. CHANGES $DX TO $EX OR S$SEX TO $DX.

;GET PRESENT ADDRESS
;CHANGE HIGH BYTE
;AND SAVE

#$30
CLAH

DETERMINE WHICH CONTROL CODE

SET CCOUNT FOR GET PARM AND EXECUTE
THE PROPER ROUTINE

WHICH1 LDA

Wl

W2

W3

W4

w5

W6

w7

w8

CMP
BNE
JMP
CMP
BNE
JMP
CMP
BNE
JMP
CMP
BNE
JMP
CMP
BNE
JMP
CMP
BNE
JMP
CMP
BNE
JMP
CMP
BNE
JMP
CMP
BNE

CNTRLC
#CPOS
Wl
POSCUR
#PLOTV
w2
VLINE
#PLOTH
w3
HLINE
#DEFW
w4
DEFW1
#SETW
W5
SETW1
#BCOLOR
wé
COLOR
#FCOLOR
w7
SCOLOR
#CHROUT
w8

couT
#VCNTRL
w9

Poge 13 PEEKI6S] Summer 1986



4870
4880
4890
49500
4910
4920
4930
4940
4950
4960
4970
4980
4590
5000
5010
50820
5030
5040
5050
5060
5070
5089
5090
5100
5119
5120
5138
5140
5150
5169

5170

5180
5198
5200
5210
5220
5230
5249
5250
5260
5279
5280
5290
53060
5318
5320
5330
5349
5350
5360
5378
5380
5390
5400
5410
5420
5430
5440
5459
5460
5470
5480
5498
5500
55180
5520
5530
5540
5558
5568
5570
5580
5590
5600
5610
5620
5630
5640
5650
5660
5670

5DA6
5DAY9

SDAC
SDAF
5DB2

5DB5
5DB8
5DBB
5DBD
5DC#O
5DC1
5DC3
5DC6
5DC9
5DCB
SDCE
5DD1

5DD2
5DD5
5DD8
5DDB
5DDE
SDE@
SDE3
S5DE>S
5DES
SDEB
5DEE

SDEF
5DF2
SDF5
SDF8
5DFB
5DFD
SE@@
SE@2
SEQ3
SEB6
SE@8

SEBA
SE@D
5E@F
SE1ll
5E14
SE17
SE1A
SE1D
5E20
5E23
5E26
5E29
5E2C
SE2F
5E32
5E35

4CC55E
4C7C5B

20125D
208B55D
4C7C5B

2@08C5C
AEB125
FP26

20F65C

DOFA
ADB@25
CDAA2S
9003
ADAA25
8DAC25
60

ACAC25
AEB@25
8EAF25
ADB125
9150
CEAF25
F@06
20445D
4CDB5D
8CAC25
60

ACAC25
AEB@25
BEAF25
ADB125
9150
CCAA25
FOE9
c8
CEAF25
FOE3
DOF1

ACB125
Co06
BO24
ADA625
99CFSE
ADA725
99D55E
ADA825
99DB5E
ADA925
99E15E
ADAA25
99E75E
ADSF25
99EDSE
60

w9

JMP
JMP

SETVID
RETURN

; POSCUR: DIRECT CURSOR POSITIONING

POSCUR JSR DELCUR

JSR
JMP

sDELETE CURSOR
POS1 ; FIND CURSOR POSITION
RETURN ;GO BACK AND OUTPUT CURSOR

i .
; POS1l: FIND POSITION ON SCREEN

ROWLP

SETCOL

SETC1

.
I
.
’

VLINE

VLINE1l

DPLOT

~ we e we

HLINE

HLINEl

~e e we e

DEFW1

RET1

~e wo we ws we

S5E36 20455E SETW1

JSR
LDX
BEQ
JSR
DEX
BNE
LDA
CMP
BCC
LDA
STA
RTS

LDY
LDX
STX
LDA
STA
DEC
BEQ
JSR
JMP
STY
RTS

LDY
LDX
STX
LDA
STA
CPY
BEQ
INY
DEC
BEQ
BNE

LDY
CpY
BCS
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS

HOME ;HOME CURSOR POSITION
ROW ;GET THE ROW INFORMATION
SETCOL ;IF @ THEN SET THE COLUMN
INCL ;s INCREMENT LINE

sADJUST ROW COUNT
ROWLP +NOT DONE, KEEP LOOPING
COLM ;GET COLUMN INFORMATION
LEN ;AT END OF LINE
SETC1 ;NO, SET COLUMN
LEN ;GET LINE LENGTH
CURSOR ;SAVE INDEX IN LINE

VLINE: PLOT VERTICAL LINE

CURSOR ;GET INDEX IN LINE

CHARL ;GET NUMBER OF BLOCKS

CCOUNT 1AND SAVE

CHAR2 ;GET OUTPUT CHARACTER

(CLAL) ,Y ;OUTPUT IT

CCOUNT ;ADJUST COUNT

DPLOT ;EXIT IF DONE

SuB ;MOVE UP BY 1 LINE

VLINEl ;LOOP BACK FOR NEXT CHARACTER
CURSOR ;SAVE INDEX IN LINE

HLINE: PLOT HORIZONTAL LINE

CURSOR ;GET INDEX IN LINE
CHAR1 ;GET NUMBER OF BLOCKS
CCOUNT ;AND SAVE
CHAR2 ;GET OUTPUT CHARACTER
(CLAL),Y ;OUTPUT IT
LEN ;ARE WE DONE
DPLOT ;YES, GO BACK

;BUMP THE INDEX
CCOUNT ;DECREMENT THE COUNT
DPLOT ;BRANCH IF DONE

HLINE1 ;LOOP BACK FOR NEXT CHARACTER

DEFWl: DEFINE WINDOW (X)

CHAR2 ;GET WINDOW NUMBER
#MAXWIN

RET1

HAL ;SAVE VIDEO PARMS IN TABLES
HALTB, Y

HAH

HAHTB, Y

ELAL

ELALTB,Y

ELAH -

ELAHTB,Y

LEN

LENTB, Y

WCOLOR

COLRTB, Y

SETWl: SET WINDOW (X)
AND SET COLOR

JSR SETW2 ; SET WINDOW PARAMETERS

Poge 14 PEEK[6S] Summer 19686




5680
5690
57089
5718
5720
5730
5740
5750
5760
57780
57880
5790
5800
5810
5820
5830
5840
5850
5860
5870
5880
5890
5900
5919
5920
59390
5949
5950
5960
5970
5980
5990
6000
6010
60208
6030
6040
6050
6060
6070
6080
6090
6100
6110
6120
6130
6140
6150
6160
6170
6180
6199
6200
6210
6220
6230
6240
6250
6260
6270
6280
6290
6300
6310
6320
6330
6340
6350
6360
63790
6380
6390
6400
6410
6420
6430

5E39
5E3C
5E3F
5E42

5E45
S5E48
SE4A
5E4C
S5E4F
SES52
5E55
5E58
5ESB
S5ESE
5E61
5E6 4
5E67
SE6A
S5E6D
5E70
5E73

5E74
SE77
5E78
SE7B
5E7E
5E81
5E84
5E86
S5E89
5E8C
SE8F
5E91
5E94
5E97
5E99
5E9C
S5E9F
S5EAl
5EA4
SEA7
SEAA
S5EAD
SEAE
5EB1
SEB4

SEBS
SEBS8
SEBB

5EBC
SEBF
SEC2

SEC5
5EC8
5ECB
5ECE

AD9F25 LDA WCOLOR  ;NOW SET COLOR
8DB125 STA CHAR2
207 45E JSR COLOR
4C7C5B JMP RETURN
!
; SETW2: SET WINDOW PARAMETERS
!’
ACB125 SETW2 LDY CHAR2 ;GET WINDOW NUMBER
Coo6 CPY #MAXWIN
BOE9 BCS RET1
BYDBSE LDA ELALTB,Y ;LOAD VIDEO PARMS FROM TABLES
BDAB25 STA ELAL
BYE1SE LDA ELAHTB,Y
8DA925 STA ELAH
B9CFSE LDA HALTB,Y
8DA625 STA HAL
BIDS5E LDA HAHTB, Y
8DA725 STA HAH
B9E7SE LDA LENTB,Y
8DAA25 STA LEN
BYEDSE LDA COLRTB,Y
8DIF 25 STA WCOLOR
200C5C JSR HOME
60 RTS
1
; COLOR: SET WINDOW TO COLOR (X)
;
AD9C25 COLOR LDA CLEARC ;SAVE CLEAR CHARACTER
48 PHA
ADB125 LDA CHAR2 ;GET COLOR NUMBER
8D9C25 STA CLEARC ;AND SAVE
8DIF25 STA WCOLOR ;SAVE WINDOW COLOR
8D9D25 STA COLORC ;SET CHARACTER COLOR
A905 LDA #5 : SAVE CURRENT WINDOW
8DB125 STA CHAR2
2B@ASE JSR DEFW1
ADA725 LDA HAH ;CHANGE S$DXXX TO S$EXXX
4930 EOR #$30
8DA725 STA HAH
ADA925 LDA ELAH
4930 EOR #530
8DA925 STA ELAH
201A5C JSR CLEAR ;OUTPUT THE COLOR
A905 LDA #5 ;RESTORE WINDOW PARMS
8DB125 STA CHAR2
208455E JSR SETW2
AD9C25 LDA CLEARC ; SET WINDOW COLOR REG.
8DIF 25 STA WCOLOR
68 PLA
8D9C25 STA CLEARC ;RESTORE CLEAR CHARACTER
206C5C JSR HOME
60 RTS
’
; SCOLOR: SET CHARACTER COLOR
3 oo IllC
ADB125 SCOLOR LDA CHAR2 ;GET COLOR NUMBER
8D9D25 STA COLORC ;AND SET
60 RTS
; COUT: OUTPUT CHARACTER (X)
H .
ADB125 COUT = LDA CHAR2 ;GET THE CHARACTER
8DAE25 STA TEMP ;AND SAVE
4C375B JMP DISPLY ;OUTPUT THE CHARACTER
’
; 'SETVID: SET VIDEO,COLOR, AND SOUND REGISTER
; SET VREG SO PRESENT STATUS CAN BE READ
i
ADB125 SETVID LDA CHAR2 ;GET THE CONTROL BYTE
8D44DE STA VSIZE ;OUTPUT TO VIDEO BOARD
8D9E25 STA VREG :SAVE AT VREG
60 RTS

Page 15 PEEKI6S] Summer 1986



6440
6450
6460
6470
6480
6490
. 6500
6518
6520
6530
6540
6550
6560
6570
6580
6598
6600
6610
6620
6630
6640
6650
6660
6670
6680
6698
6700
6710
6720
6730
6748
6750
6760
6770
6780
6790
6800
6810
6820
6830
6840
6850
6860
6870
6880
6890
6900
6910
6920
6930
6940
6950
6960
69780
6980
6990
7000
7010
7020
7030
7040
7058
7060
7870
7080
7090
7160
7110

71208

7130
7140
7158
7160
71780
7180
7190
7200
7210
7220
7230
7240

Page

5ECF 00
SEDP 00
S5ED1 00
SED2 00
S5ED3 09
5ED4 #0
SEDS D@
SED6 00
5ED7 00
5ED8 20
5EDY @0
5EDA @9
S5EDB C#
S5EDC 00
S5EDD @@
SEDE @0
S5EDF 00
S5EEQ 00
SEEl1 D7
S5EE2 00
S5EE3 80
S5EE4 00
SEE5 0@
SEE6 00
S5EE7 40
5EE8 049
SEE9 00
S5EEA 00
SEEB 08
S5EEC 040
SEED OF
SEEE 00
SEEF 00
SEF@ 00
5EF1 00
SEF2 00

5EF3 265D
S5EF5 AlSC
5EF7 B25C
5EF9 445C
5EFB 755C
S5EFD 755C
SEFF 7B5B
S5F@1 B65B
SF@83 EF5C
5FB85 CESB
SF@7 EF5C
S5F89 195C
SF@B C55B
5F@D CC5C
SFOF DESC
5F11 EF5C
5F13 EF5C
5F15 EF5C
5F17 EFSC
S5F19 755C
5F1B C35C
S5F1D 7B5B
SF1F 7B5B
SF21 355C
SF23 7B5B
5F25 7B5B
5F27 7B5B
5F29 7B5SB
S5F2B @B5C
5F2D 655C
SF2F 7B5C

5F31=

e we we me wa e we

HAHTB

ELALTB

ELAHTB

LENTB

COLRTB

OF TABLES FOR DEFINED WINDOWS

- o (9] o
~J ) =

Faoaaaoeodt el paeRn e ax™

wn

CNTLTB: CONTROL CODE TABLE. CONTAINS THE
ADDRESS 18
PUSHED ON THE STACK AND THEN CALLED BY

DOING AN RTS.

THE ADDRESS OF THE ROUTINE-1.

CNTLTB

.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
.WORD
«WORD
«WORD
«WORD
+«WORD
.WORD
«WORD
«WORD
+«WORD
«WORD
.WORD
. WORD
. WORD
.WORD
.WORD
.WORD
«WORD
«WORD
.WORD
- WORD
+«WORD
.WORD
.WORD
«WORD
+«WORD

MASWIN-1
SET64-1
SET32-1
CSCRN-1
PLOT-1
PLOT-1
RETURN-1
BSPACE-1
WINDOW-1
LF-1
WINDOW-1
CLEAR-1
CR-1
DHOME-1
DLRCW-1
WINDOW-1
WINDOW-1
WINDOW-1
WINDOW-1
CURPOS-1
cup-1
RETURN-1
RETURN-1
FORWRD-1
RETURN-1
RETURN-1
RETURN-1
RETURN-1
HOME-1
CLINE-1
CRWIN-1

2272%=%*

.END

16 PEEKI6S] Summer 1986

Ne M %E NE Me Ne Me Ne ME Ne We Me Ne NE e %o We N4 S we e w8 w8

WhoHIVLONOTTAR WS

~e ~e

gNNNNNNI—‘I—‘HHI—"—‘HHHI—‘\D@\IG\mthl—‘
(5,0 -

~

~. we we e
wwporoN
HWwWo

SET MASTER WINDOW
SET TO 64 CHAR/LINE
SET TO 32 CHAR/LINE
CLEAR 540 VIDEO
VERTICAL PLOT
HORIZONTAL PLOT
BELL (NOT IMPLEMENTED)
BACKSPACE

SET WINDOW TO COLOR
LINE FEED

SET CHAR COLOR
CLEAR WINDOW
CARRIAGE RETURN
DEFINE AS HOME

SET LOWER R CORNER
DEFINE WINDOW

SET WINDOW

VIDEO CONTROL
CHARACTER 0OUT
CURSOR POSITION
CURSOR UP

(UNUSED)

(UNUSED)

CURSOR RIGHT
(UNUSED)

(UNUSED)

(UNUSED)

(UNUSED)

HOME CURSOR

CLEAR REST OF LINE
CLEAR REST OF WINDOW



DMS-65D: True Random Acgess
Files for 0S-65D V3.3

One of the biggest drawbacks of
0S-65D is the way it handles data files
in general, and random access data
files in particular. If you go by the
book, 65D limits you to record sizes
that are powers of two in length. That
is, 2, 4, 8, 16, 32, 64, 128, or 256. If
your data file needs records that are
129 bytes long, 65D forces you to the
next larger record size, 256 bytes,
thus wasting 127 bytes of disk space
between each record. Even worse
perhaps, is that fields within records
are stored sequentially, forcing the
user to read and write the entire
record even when manipulating only
one field.

8" disk systems have always had the
advantage of being able to use 0S-65U
which allows direct access to each
byte on the diskette as well as having
simultaneous access to up to 8

different files. In conjunction with this

ability, Ohio Sclentific developed their
0S-DMS series of software. OS-DMS is
a  much-maligned data  base
management system that many 65U
packages have been based upon. Most
of the criticism centers around the
application software from OSl, not the
structure of the system. While not as
sophisticated as much of the data base
software for other systems, 0S-DMS is
a functional file structure that
remains the standard for most of the
65U users.

DMS65D is an out and out copy of the
0S-DMS file structure and 1 used it for
two reasons. First, 1 have used
0S-DMS heavily and so have a lot of
others. Second, it's an easy structure
to understand. Let's take a ook at that
structure;

Imagine a sheet of graph paper.
Instead of looking at it as a grid of
intersecting lines, look at it as a series
of boxes, with the box at the upper
left hand corner being box #@ and
each box after that being numbered
consecutively higher to the bottom of
the page. These boxes are our data file
with each box holding a single
character. The capacity of our data file
is equal to the number of boxes on the

18 REM- Data File Manager for 0S-65D U3.3

28 GOTO1860

30 :

49 REN- Construct Device 6 Current Track String
58 c6=FNa({PEEK(98084)):t6$=RIGHT$(STRS$(c6+kh),k2):RETURN
60 :

78 REN- Construct Device 7 Current Track String

60 c?-FHu(PEEK(9012)):t?S'HIGHTS(STH$(c?*kh),k2):HETUHN
90 ‘

188 REN- Get Record %r6 for Device 36

118 16=bodf+{(r6-k1)*rl) :wt=INT{16/13)+st(k6)

128 GOSUBS8: |Fc6=wt THEN168 .

138 d6=PEEK(9885): IFd6=kBTHEN158

148 DISK!"sa "+t6$+",1=3a7e/" +pg$:POKEIRES, kB

158 DISK!"ca 3aTe="+t6$+",1":POKE 9884,FHb(c6)

160 i=i6-((wt-c6)*ts)+bs(k6):ih=INT(i/pg):il=i-ih*pg
178 POKEip(k6),il:POKEip(k6)+k1,ih

175 POKEop(k6),il:POKEop(k6)+kl,ih

168 RETURN

198 :

288 REN- Set Device 6 1/0 Pointers to Index(6)

218 1=i6+bs(k6)-{FHa(PEEK(9884))-st{k6))*ts

215 Th=IHT(i/pg):il=i-ih*pg

228 POKE|p(k6),il:POKEip(k6)+kl,ih

225 POKEop(k6),il:POKEop(k6)+1, Ih:RETURN

238

249 REN- Set Device 7 !/0 Pointers to Index(?)

- 258 i=17+bs(k?)-(FNa(PEEK(9812))-st(k?))*ts

255 ih=INT(i/pg):il=i-ih*pg

268 POKE9213,i1:POKE9214,ih:POKE9238,i1:POKES239, Ih:RETURN
278

308 REN- Fetch Record from Device %6 .

318 GOSUB188:FORK=k1T0nf:i6=bodf+{(ré-k1)}*rl)+i6(k)

338 60SUB28@: INPUT®K6,a$(k ) : HEXTk : RETUAN

348 .

488 REN- Put Record Out to Device %6

418 GOSuBiee

428 FORk=k1TOnf: i6=bodf+({r6-ki)*r1)+i6(k):605UB2088

438 PRINT®k6,a$(k) :HEXTk : RETURN

448

788 REH- Display Record Contents

718 PRINT®dy," 3";TAB(k4);"Field Hame*;TAB(32);"Contents"
728 PRINT:FORK=k1TOnf

738 PRINTSdu,k; TRB(k4);n$(k);TAB(32);a$(k) :NEXTk : PRINT®dv
748 RETURN

750

688 AEN- Nain Nenu

818 _ v

828 PRINT!(28);&(k9,k8);"DNS-650 Data File Manager®

838 PRINT&(k5,k2);"(1) Directory®

848 PRINTR(kS,k3);"(2) Create a DHS-65D Haster File"

858 PAINTR(kS,k4);"°(3) Edit o DNS-65D Haster File"

868 PRINTR(K5,k5);"(4) Print o DHS-65D faster File"

988 PRINT&(k9,kt); Your Choice *;:INPUTy$:k=UAL(y$): TAAPD
918 PRINT!(20);: IFk=k@THENEND

928 |Fk<k10Rk>k40Rk<> INT(k)THENO28

938 ON k GOTO 2808,3008,4008,5808

998

1008 kB=8:k1=1:k2=2:k3=3:k4=4:k5=5:k6=6:k?=7:k8=8:k9=9:kt=19
1818 aa=RSC("A"):az=ASC("2°):aB8=ASC("8"):a9=RSC{"9"):kh=180
1828 pg~256:hex$=~"8123456709abcdef" :sx=16:tt=32:di=11897

Page 17 PEEK[65] Summer 1986



sheet of graph paper.

Now, let's define what a random
access data file is. A random access
data file is a file in which each piece
of data within the file is positioned in
a defined location. This allows the
programmer to immediately “jump” to
the Nth piece of data without having
to read in N-1 pices of data, as is
necessary with sequential files. Most
often, but not always, random access
data files are composed of groups of

related information. These groups are -

called records. The easiest way to
illustrate a record is a mailing list. A
typical mailing list entry would
contain the following information:

Name, Address, City, State, Zip Code

Each entry within a record is called a '

field. In this example, each record
contains 5 fields. When a random
access data file is being created, the
programmer defines the maximum
number of characters each field will
be allowed to hold. This allows him to
calculate precisely the size of the each
record and thus, the position of each
record and each field within the file.
For example, if we know that each
record is 59 bytes long, multiplying
50 by the number of the record to be
manipulated, yields the position of the
beginning of that record number.
Going back to our sheet of graph
paper, the position of a record or field
corresponds to the box number we
defined earlier. The software used to
manipulate the data file maintains a
position pointer to the file. The value
of this position pointer is called an
INDEX. Under DMS65D, or more
accurately under 0S-65D, a separate
pointer is maintained for both input
from and output to the data file. In
the program presented here, the
indeces are stored in the variables
“ip(k6)" and “op(k6)".

When creating a data file application,
the specifications of the data file must
either be incorporated into the
application software, or be included in
the data file itself. It is apparent that
the most efficient method is to
incorporate the file specifications into
cach data file so that the same
application software can be used with
many different files. However, this

Page 18 PEEKI6S] Summer 1966

1838
1048
1958
1868
1978
1068
1099
1168
1118

1128

1130
1148
1158
1160

2818
2028
2038
26840
2841
2858
2851
2068
2818
28069
2898
2108
2118 :
Jeee
jeie
3820
3ezt
3038
3835
3048
3858
3868
jere
Jece
3098
3108
3118
3128
3138
3148

3158

3168
3178
jiee
3198
3280
J218
3229
3238
3248
3258
J268
3278
3208
3298

POKE2972,13:POXE2976,13:REN- Disable Cosma & Colon

DEF FHa{x)=kt*INT(x/sx)+x-INT(x/sx)*sx

DEF FHb(x)= sx*INT{x/kt)+x-INT(x/kt)*kt )
ht=FHa(PEEK{11687)):dt=FHa{PEEK(11716)):e=35

DIN index(k?),bs(k?),be(k?),st(k?),et(k?),cu{k?),df(k?)
DI ip(k?),op(k?), f$(ht),ut(ht)
bs(k6)=PEEK(8998)+PEEK(8999)*pg:REN- Buffer Start Address
bs(k?)-PEEK(9096)‘PEEK(9807)‘DQ
be(k6)=PEEK(9808)+PEEK(9881)*pg:REN- Buffer End Address
be{k?)=PEEK(9@88)+PEEK(9889)*pg
ts={be(k6)-bs(k6)):pg$=H10$(hex$,ts/pg+kl, ki)
dt$=RIGHTS(STRS(dt+kh),k2)+","
ip{k6)=9132:0p(k6)=9155:ip(k?)=9213:0p(k?)=9238

6G0T0888

1999
- 2008

REN- Directory Printer
605UB56860;60SUB11180
PRINTI(26);TAB(21); "Directory” :PRINT
FORKk=k@TOht : IFLEN(f$(k))~kBTHEN2808
PRINTTRB(x*19);LEFT${{$(k),k6);

p=k8: IFk>k9THENp=k?
PRINTTAB(x*19+p);ASC(NIDS(f$(k),k?,k1));
p=12; IFk>k9THENp=18

PRINTTAB(x*19+p); ASC(RIGHTS( 1${k), k1));
x=x+k1: |Fx=k3THEHx=k®:PRINT
NHEXTk:PRINT:PRINT

INPUT*Press <RETURM> to Continue
PHINT!(ZB)':GOTOBGG

';g$

REN- Create Hew DHS-65D Haster Flle

PRINT"DHS-65D Haster File Creation Utility":PRINT
GOSUBSeesn :GOSUB! 1108

PRINT*File Hames may be up to 5 characters long®:PRINT
IKPUT"Enter the name for this new NHaster File ";y$
PRINT: )FLEN(y$) >kSTHENPRINT"T00 LONG!":PRINT:G0T03838
FORK=k 1 TOLEN(y$): c=ASC(MID$(y$,k, k1))

IFe=>ASC("a" )ANDc<=ASC("z" ) THEHC=c-t t

f$=1$+CHRS (c) :NEXTK '
IFLEN(f$)<KSTHENf$=f$+* *:G0T03870

f$=1$+"0":PRINT

FORk=k@8TOht : IFf$<>LEFT$(f$(k),k6) THENNERTK :60T03128
PRINT"THE NAHE * CHH$(31) F$;CHR$(34);"1S IN USE"
6071059888

PRINT"How many FIELDS did you want in *;f$;

IHPUTYS :nf=UAL(y$) : IFnf<=kBORnf<>INT(nf) THEN3128
DIN n${nf), f1{nf):PRINT

FORk=k1T0nf

PRINT®FIELD *";k:PRINT

IHPUT"Enter the FIELD HAHE *;n$(k):PRINT
INPUT*Enter the FIELD LENGTH *;f1(k):PRINT
1F1(k)>71THEN3 180

f1(k)=f1(k)+k1:NEXTK

PRINTI(28);"File: ";f$:PRINT

PRINT® ®  Field Home";TAB(32);"Field Length®:PRINT
FORk=k1TOnf:PRINTHIDS$(STR$(k),k2);"."; TAB(k6);n$(k);
PRINTTAB(36); f1(k)-k1:HEXTk :PRINT

INPUT"Rre these alright ';g$:g$-LEFT$(g$*' ",k1)
PRINT: |Fy$<>"y"THENRUN

PRINT"How many RECORDS did you want in *;f$;
IRPUTY$ :PRINT :nr=UAL(y$): anr(-kOTHENB??B
rl=k@:FORk=k1TOnf:rl=r1+{1(k):HEXTK




method also dictates that all of the
data files to be used by the

application software must store the

file specifications in a uniform
manner. We have already defined the
critical  elements of the file
specifications; the number of fields in
each record, the length of each field,
and the number of records the file can
hold. On the surface, this would
appear to be enough information to
use the data file, but that's not the
case. We also need to know where the
first piece of data has been stored in
the file, and how many pieces have
been stored in the file. These extra
parts of the file specification are
incorporated into two numbers; the
beginning of the data file and the end
. of the data file. In DMS65D, all of this
information is stored at the front of
the file in an area called the "header”.

The following table illustrates the

contents of the header:

INDEX DESCRIPTION o

0 File Name. Allows
double-checking for proper
file being opened.

6 File Type. Allows file
typing for key files.

9 EODF - Index to End of Data

: File.
T 20 BODF - Index to Beginning

of Data File. '

31 RL - Record Length.

42 NR - Number of Records
allowed in file. _

53 Start of storage of Field

Names and Field Lengths.

BODF will be the first free byte after
the last field name/field length entry.
When the software first opens the
data file, it reads in the values of
“eodf”, “bodf", °rl°, and °"nr". The
following calculation determines how
many records have been stored in the
file:

" tn = int((eodf-bodf)/r1)

where “tn” equals the total number of
records. Following that, a counter is
initialized to zero and a field
name/field length pair is read. After
each pair is read, the counter is
incremented by one and the current
input pointer f{or index) is checked.
The program continues to read in field
name/field length pairs until the

3388
3318
3328
3330
3340
3356
3318
3308
3381
3390

3391

3480
341e
3428
3438
3448
3458
3451
3160
3470
3160
3490
3568
3518

T 3528

3538
3548
3568
3578
3568
3590
3688
3610
3620
J638
1888
1010
10828
4638
1048
4650
4851
1860
1678
4000
1890
1160
4118
1120
1138
4140
4158
4168
4178
1188
4198
1280
1218
4220
4238
4240

REN- Compute Header Length
1-53:FORK=k1TOnf:1=1+LEN(n$(k))+k1 -
1=1+LEH(STR$(f1(k)))+k1 . NEXKTK

REN- Compute File Length {in TRACKs)
bodf=1:hl=1+nr*rl:nt=iNT(h1/ts)+k1;:t=dt+k1

IFnt >(ht -dt )*k A THEHPRINT*T00 LOHG!®:PRINT:60T03278
tk=k@

IFut (t )=k THEN3480

tk=tk+kt:IFtk=nt THEN3420
t=t+k1: IFt>ht THENPRINT"NOT ENOUGH ROOM!":G0T059888
GOT03368

t=t+k1: IFL{>ht THEN3398

60703378 :REN- .Reset “tk"
s=kl:st=t-tk+ki:et=t :st (kb)=st;et(kb)=et

DISK!*ca 2e79="+dt§+RIGHTS(STR$(s), k1)
Fﬂﬂl-diTOdi*pg-leTEPkﬁ:IFPEEK(i)'eTHEN3168 '
NEXTi:s=a+k!: IFs=k2THEN3438 I
PRINT*D{RECTORY FULL!":060T059068

t=i:i=di+pg:NEXTi

FORK=k 1 TOk6:POKEt +k-k1,RSC{HIDS(f$,k, k1)) :NEXTK
POKEt +k-k1,FNb{st):POKEt+k,FNb(et) '
DISK!"sa "+dt$+RIGHT$(STR$(s),k1)+"=2e79/1" :GOSUD 18888
FORk=stTOet : t$=RIGHTS(STR${k+kh),k2):DISK!"in "+t$ -
DISK!®sa "+1$+",1=3a7e/"+pg}

NEXTk:DiSK open,k6,f$:D1SK get k8

PRINT®k6, f$:PRINT®k6,"1"

i6=53:605UB210
FORk-leOnf:PBINT'kﬁ,nS(k):PHIHT'kﬁ,fI(k):HEXTk
bodf=PEEK(op(k6))+ (PEEK(op(k6)+k1)*pg)-bs(k6) : eodf=bodf
i6=k9:G0SUB218:PRINT®k6, eodf
i6=206:60SUB21@:PRINT*k6,bodf
16%31:605UB210:PRINT#*k6,rl
16=42:605UB210:PRINT3k6,nr

DISK close,k6:RUN

REH- Edit DNS-650 Master File .

GOSUB13088 |
PRINT!(28); "DHS-65D Haster File Editor":PRINT
PAINT*(1) Add a Hew Record®

PRINT*(2) Change an 01d Record"

PRINT"(3) Delete a Record®

PRINT"(4) Return to Main Henu"

PRINT: INPUT" Your Choice ";y$:k=UAL(y$)

IFk<k 10Rk >k40Rk< > INT(k ) THEN4828

0N k GOTO 4180, 4488, 4688, 4986

REN Add o Record ‘ :
IFtn=nrTHENPRINT*F ILE FULL":605UB688@8:60T04828
FORk=k 1TOn{ :PRINT

PRINT*Enter *;n$(k):PRINTTRB(K2);
FOR1=k1TOf1(k)-k1:PRINT"-"; :HEXTL:PRINT
INPUTe$ (k) :1=LEN(a$(k))

IF1<f1{k) THENNEXTk :G0T04168

PRINT®TO0 LONG !":PRINT:GOT04130

PRINT!(28);" %*;TRB(k4); "Name";TRB(32);"Contents" :PRINT
FORk=k1TOnf:PRINTK; TAB(k4);n$(k); TAB(32);a$(k) :NEXTK
PRINT: INPUT*Rre These Rlright *;y$:y$=LEFT$(y$+* * ki)
PRINT: IFy$="y"THEN4388

INPUT"UWhich one did you want to change *;y$:k=UAL{y$)
IFk<k10Rk >nf THENPRINT"HHAT 2?° :PRINT:G0T04188
PRINT®Enter *;n$(k):PRINTTAB(k2);

Page 19 PEEK[65] Summer 1986



index is equal to bodf. When BODF is

. reached, the counter equals the,

number of fields in each record. At
this point, four arrays are
dimensioned, each equal in size to the
number of fields. :

The arrays are:

n$(x) - Field Name Storage
fi{x) - Field Length Storage
i6(x) - Field Index Storage
a$(x) - Field Contents Storage

After the arrays are set up, the input
index is reset to 53 and the field
name/field length pairs are re-read
and stored in the proper arrays. Along
the way, the variable "i" is used to
calculate the index of each field within
each record. This allows us to
immediately set either the input or
output index to an individual field.
This last feature is not completely
implimented in this program, but it is
available for your use.

With the information described so far,
we can find the absolute position
within the file of any piece of data we
want to get ahold of. However, the job
fsn't done yet. We also need to
determine two other values. The first
is the track number on which the data
we want resides and the memory
address it will be called into when the
track is read by our software. The
BASIC command “DISK OPEN" under
0S-65D performs much of the dirty
work for us automatically. Once 65D
locates the file to be opened, it stores
" three track numbers in a table. Also
included on this table are three other
vital pieces of information. This table
is shown in Table 1.
~These addresses are stored in
"bs(k6), "be(k6)”, “st(k6)", "et(k6)",
‘cu(k6)”, and °“df(k6)", respectively.
The defined functions FNa(x) and
FNb(x) translate BCD values to decimal

and decimal to BCD respectively. Youll

note the discrepency between the
labels using the suffix “5" and the
device number “6". This is due to the
way BASIC calculates the device
number for 0S-65D. In 0S-65D, the
input or output device number is
-stored in a single byte. More than one
output device can be made active
simultaneously, but only one active
input device is allowed. The "5 for

Page 20 PEEKI6S5] Summer 1966

4258
4260
1278

FOR1=k1TOf1(k)-k1:PRINT"-"; :HEXT1:PRINT
INPUTa$(k): 1=LEN(a$(k)): IF1<f1(k)THEN1IBO
PRINT®TOD LONG":PRINT:GOT04240

4288

1300

tn=tn+kl :rb=tn:GOSUB488:G0T04820

4388

1400
4410
1428
4421
4422
4423
1124
4425
1430
4448
1458
1460
141068
4498
1568
1510
4528

4538

4548
4558
4560

REN- Change an 01d Record -

PRINT:PRINT"File Contains®;tn;"Record(s)" :PRINT _
IFtn=k@THENPRINT"HO RECORDS ON FILE":G0SUB6@@88:G0T04828
PAINT*(1) Edit by Record Humber®

PRINT*(2) Edit by Searching File®:PRINT

INPUT® Your Choice *;y$:k=UAL(y$):PRINT
IFk<k10Rk>k20Rk<> INT(k) THEN4418

O k GOTO 4430,46088

INPUT*Rhich RECORD NUHBER did you want to see ";y$
PRINT :k=UAL (y$) : IFk<k 10Rk>tnDRK<> INT(k ) THEN4438
r6=k ;: GOSUB308

PRINT!(28); : du=PEEK(8993) :60SUB708

INPUT*Did you want to change this record *;y$
PRINT: IFLEFT${y$+" ", k1)<>"y"THEN4568

{NPUT"Enter the FIELD HUHBER you wanted to change
PRINT:k=UAL(y$): le(k!UH(k>nf)0Rk(>lNT(k)THEN1588
PRINT*Enter ";n$(k):PRINT:PRINTTAB(Kk2);
FOR1~k1TOf1(k)-k1:PRINT®-"; :NERTL:PRINT
lHPUTu$(k):PHINT:I-LEH(uS(k)):IFl(fl(k)THEN156G
PRINT"TOO LONG!":PRINT:GOT04528

G0SUB488:60T04828

";y$

4570 :

1689
1618
1628
1638
1648
4658
4668
1679
1671
4675
4679
4688
4681
4698
4788
4719
4720
4739

REN- Search File for Editing

60SUD6e8e; PRINT

INPUT"Uhich FIELD NUMBER did you want to search in
PAINT :k=UAL (y$) : IFk<k 10R{k>nf)ORk<> INT(k )THEN1618
PRINT"Hhat STRING did you want to find in ";n$(k);
IHPUT™ " ;s33$:PRINT:1=LEN(ss$): IF1<{1(k)THEN4678
PRINT"T00 LONG !*:G0SUB6@8@8:G0T04618
sf=k:sl=LEN(s3$)

G0T06888 :REN- Remove this if Searches FAIL
FORr6=k 110t n:G0OSUBIGE

x=LEN(a$(sf)):FOR1=k1T0x
1FHID$(a$(sf),1,1)=5s$THEH1=x:HEXT1:60704788
NEXT1

HEXTr6:PRINT*STRING NOT FOUND":GOSUB6@8@B:GOT04820
PRINT!(28); :dv=PEEK(68993):60SUB788

INPUT"Is this the right record *;y$

IFLEFT$(y$+" =, k1)<>"y"THEH4690
x=r6:rb=tn:NERTr6:r6=x:60T04468

";y$

4740 .

4089
41810
4620
1839
1849
4850
4869 :
1989
4919
1920
4938
4948

REN- Hark a Record for Deletion

PRINT*File contains";tn; "record(s)":PRINT
IFtn=kBTHENGOSUBGABARB: GOT04828

IHPUT*Which RECORD NUMBER did you want to delete
PRINT :k=UAL (y$) : IFk<k10Rk >t nORK <> INT(k ) THEN4830
r6=k :6GOSUB308: uS(kl)-'“P' G0SUB4#8:60T04628

-,_gs

REN- Close DHS-65D Haster Flle

BISK get,k8:eodf=bodf+({tn*rl)
i6=bs(k6)+k9:ih=INT(i6/pg):il=i6-ih*pg
POKEop(k6), i1:POKEop(k6)+kl, ih :
PRINT®k6,e0df: DISK close,k6: RUN

4958 :



65D refers to the bit number within
that byte. More details on this are
available in the 0S-65D V3.3 Tutorial
Manual.

Alright, getting back to the subject,
the calculation to determine which
track holds the record we want is
done by first calculating the index to
the start of the record and putting it
in "i6". Then, the size of the buffer is
calculated by subtracting “bs(k6)
from “be(k6)" and storing it in ts.
Since the size of both buffer #6 and
buffer *7 is identical, we don't need to
put it in an array. The calculation to
determine the track that holds the
record we want is as follows:

16 = desired record number
i6 = bodf + r6*rl
wt = st(k6) + int(i6/ts)

Where “wt" is the wanted track. After
we have calculated the track we want,
the program checks to see if that track
is already in the pbuffer. If it is not, the
program first checks to see if the
buffer is “dirty” and if so, the contents
are written out to disk - then the
wanted track is called into the buffer.
When the program determines that
the proper track is in the buffer, it
goes on to find the individual record
within the buffer.

The calculation for the actual RAM
address where the record will start is
a bit stickier. It is:

i =16 - ( {cu(k6)-st(k6)) *ts) + bs(k6)

"In the program, “il® holds the least
significant byte and ih holds the most
signifcant byte of the memory
address. The calculation is the record
index, less the number of bytes held
on disk in front of the track currently
in the buffer, plus the address of the
start of the buffer. Once the
calculation is completed, "il” and “ih”
are passed to 0S-65D so that BASIC
can use INPUT*k6, or PRINT*k6, for
reading and writing and also so that if
the contents of a field crosses a track
boundary, BASIC will handle calling
the next track into memory
automatically.

The Edit function of DMS65D allows
you to add new records, alter current

5688 REN- File Dump Routine

5818 GOSUB13088:PRINT ,

5828 PRINT"File contains®;tn;"record(s)” :PRINT

5838 IFtn=k@THENPRINT FILE ENPTY®:60T059888 )

5648 INPUT*Which RECORD NUMBER did you want to start with ";y$
5858 PRINT:sr=UAL{y$): IFsr<k10Asr>tnORsr<> INT(sr)THENS028
5868 INPUT"Which RECORD HUMBER did you want to end with *;y$
5878 PRINT:er=UAL(y$):IFer<srORer>tn0Rer<>INT(er) THENS828
5880 INPUT"Enter the OUTPUT DEVICE NUMBER *;y$

5898 PRINT;dv=UAL(y$): IFdu<k10Rdv>kBTHENS808

5189 FORr6=srT0er:60SUB306:60SUBT88:NEXTr6

5118 PRINT: INPUT"Press <RETURH> to continue ®;y$

5128 DISK close,k6:6070880 . . =
6088 REM- Fast Device %6 Search Routine

6018 r6=-k1:605UB1808:REN- Initiolize Pointer to BODF

6028 TRAP6288:DISK find,ss$

6838 i6=PEEK{ip{k6))+(PEEK(ip(k6)+k1)*pg)-bs(k6)-ki

6848 i6=i6+(FNa(PEEK(9884))-3t (k6))%ts

6858 r6=INT((i6-bodf)/rl)+ki

6852 GOSUB388:1=LEN(a$(sf))

6868 FORk=k1701

6878 1FNID$(a$(sf),k,s1)=ss$THENGRSR

6888 NEXTk:r6=r6+k1:0605UB188:60T06828

6898 k=1:NEXTk:dv=PEEK(8993):G0SUB?688

6188 INPUT"Is this the correct record *;y$

6118 IFLEFT$(y$+" *,k1)<>"y"THENr6~r6+k1:G0SUB1BE:60T06828
6138 TRAPB:GOT04468

6148 : >

6280 TRAPB:PRINT"STRING NOT FOUND":G0SUB6P@88:G0T04828
6210 :

7999

8888 REN- Display Fields

6818 PRINT!(28);"File: *;f$:PRINT

6811 PRINT" %°;TAB(k4);"Field Hame";TAB(32); "Length® :PRINT
8828 FORKk=k1TOnf:PRINTk;TAB(k4);n${k);TAB(34); f1(k)-k1
6638 NEXTk:RETURN

6e48

18888 REM- Fill Buffer %6 with Zeroes

18818 FORk=k8T017:READQ:POKEdi+k,a:NEXTK

18828 POKE di+k1, INT{ts/pg)

18838 POKEB955,121:POKEBIS6,46:x=USR{x) :AESTORE : RETURN

18848 DATA 162,12 :REN- LDX s$acC
18858 DRTA 168,08 :REN- LDy *$84
18868 DATA 152 ‘RER-  TYA

1887@ DATA 153,126,858 :REN- STA $3ATE,Y
186868 DATA 288 :REM-  INY

18898 DATA 288,258 :REN- BHE *-4
18188 DATA 238,126,046 :RER- INC $2E68
18128 DATAR 282 :REN- DEX

18138 DATA 206,244 :REN- BNE *-18
18148 DATA 96 :REN- RTS

11188 s=ki:REN- Gather Directory

11181 FORk=kBTOht :ut (k)=k8: f$(k)="":NEKTk

11185 DISK!"ca 2e79="+dt$+RIGHT$(STAS(s),k1)

11118 FORi=diTOdi+pg-kISTEPKS: IFPEEK(i)=eTHEN11158
11128 st=FNa(PEEK(i+k6)):et=FNa(PEEK(i+k?))

11138 FORj=k@8TOKS: f${st)=f$(st )+CHR$(PEEK(i+j)) :NEKT]
11148 $(st)=1$(st)+CHR$ (st )+CHAS(et)

11146 FORk=stTOet :ut (k)=k1:NEXTk

11158 HEXTi:IFs=k1THENs=k2:60T011185

11168 RETURN

Poge 21 PEEK[65] Summer 1986



records, and to mark records for
deletion. When a record is marked for
deletion, “P” is written in field #1 of
that record, but the rest of the record
is left intact. The add a new record
function asks you to make entries for
each field in a record. Then it
redisplays your entries for your

approval before actually writing them

out to disk. You may make as many
changes as you like before approving
a record. There are two ways of
choosing a curreat record to be edited.
The first is to select a record by it's
record number. However, since you
may not know the record number but
you will likely know the current
contents of a record you want to
change, a field search function is
available.

The search function asks you which
field number to search in and what
should be searched for in that field.
You'll note that the software actually
includes two different search routines.
The one that is enabled uses the
0S-65D "DISK FIND" command. This is
a fast machine code search, but it does
have one drawback. The software will
search the entire file for the string to
the last track, even if it has to look
beyond the last record stored in the
file. Another search routine written
entirely in BASIC is also included in
the code and requires only that the
*GOT06000" statement be removed for
it to be enabled. The BASIC routine
will be slower if there are many
records to be searched, but it will also
discover that it cannot find the search
string faster if there are very few
records currently in the file. The
BASIC routine demonstrates more
clearly how a field search would work.

1 hope you enjoy DMS65D and-begin
to build your own data files and
application software. BE SURE TO
RUR THE "CHANGE" PROGRAM TO
CREATE AT LEAST ONE DISK
BUFFER BEFORE ENTERING
DMS65D INTO YOUR SYSTEM! Next
month, well discuss a simple mailing
list manager program which is based
on DMS65D. For exercise, try writing a
~ routine that removes records marked
for deletion from a data file and frees
.-up space in the data file. Good luck
and have fun!

Page 22 PEEKI6S] Summer 1986

13809
13818
13820
13038
13040
13859
13068
13899
13108

© 13118

13128
13130
13148
13158
13168
13178

- 13168

13198
13208
13219

REN- Open a DNS-650 Master File on Device 6
TRAPS6088: 60SUB58988

INPUT"File Mame *;f$:PRINT:IFLEN(f$)>kSTHEN130828
IFLEN(f$)<kSTHEN{$={$+* “:GOT013830

f$=1$+"8":DISK open, k6, f$: TRAPS

st (k6)=FHa(PEEK(90882)):et (k6)=FNa(PEEK(9883))
i6=k9:605UB218: INPUT®Kk6,e0df

16=208:605UB218: INPUT®Kk6, bod

i6=31:605UB218: INPUT®K6,r]

i6=42:605UB218: INPUT®*k6, nr

i6=53:605UB8218;nf=k®

1NPUT#K6, y$, k:nf=nf+k]
i6=(PEEK(9132)+PEEK(9133)*pg)-bs(k6)

i6=i6+( FNa( PEEK(9884) ) - FHu( PEEK(9082)) )* ts
IFi6<bodfTHEN13138

IFPEEK(98084)=PEEK(9082) THEN13198

D1SK!"ca 3a7e="+RIGHT$(STR$(FHa{PEEK(9082))),k2)+",1"
16=53:605UB210:0IH n$(nf),fl{nf),i6(nf),a${nf):i=k8
FORK=k1T0nf: INPUT#Kk6,n$(k), f1(k):i6(k)=1: |-|+f1(k) NEXTK
tn=INT((eodf-bodf)/rl):RETURH

13228 :

50008
58018
56828
58838

INPUT"Drive (A/B/C/D) ";y$:y$=LEFTS$(y$+" * k1)
PRINT:c=ASC{y$): IFc>azTHENc=c-tt
IFc<aaORc>ASC( "D ) THENS6B88

DiISK!"se "+CHR${c):RETURN

568040 :

56008
50818

REN- Show File Hot Found
PRINT:PRINT"FILE: *;f$;" HOT FOUHD":PRINT

56028 :

508999
598688

REN- Rbort!
60SUB688as : RUN

59810 :

6e8es

FORk=k 1703880 : NEXTK : RETURN

Table 1

ADDRESS LABEL  DESCRIPTION

$2326 BUFSTS Memory address of start of device
number 6 buffer.

$2328 BUFENS Memory address of end of device
number 6 buffer (+1).

$232A TRKS Track number of Ist track in file
in Binary Coded Decimal.

$232B MAXS Track number of last track in file

' in Binary Coded Decimal.

$232C CUR5 Track number of track currently
in the buffer in BCD.

$232D DFLGS Buffer dirty flag. If @, it means that

the buffer hasnt been altered
since it was read in. If 1, it has.



Cross Reference Utility (REF)

(Editor's Note: We are much indebted
to Larry Hinsley for releasing this
software to the public domain and
thus allowing any non-commercial
use.)

'by Software Consultants
6435 Summer Avenue
Memphis, TN 38134

The Cross Reference Utility (REF) is a
high speed, memory resident utility
running under 0S-65D. The command
REF” lists all occurrences of BASIC
variables, line numbers, and numeric
constants for the program currently in
the workspace. It sorts and lists all
variables and numbers to either the
console or a printer.

REF is enabled by running the
installation program written in BASIC
and provided here. The machine code
for the REF command is stored at the
top of the workspace. The BASIC
“program will automatically install it at
the top of memory. The machine code
for REF occupies 1K of RAM and
reduces the amount of memory
available for your programs by that
same amount.

Installing REF disables the BASIC
keyword “LET". After installation,
programs including the keyword "LET"
will no longer run. Of course, in all
such programs, simply removing the
word “"LET" will allow the program to
run. The same installation program
used to install REF will also remove it
and return your system to normal.

.To begin installing REF, you must first
create 3 files on your disk. The first
“one is to hold the machine code for
REF. Make it one track long and name
it "OB]". The second file is to hold the
BASIC program that instalts REF. Make
this file two tracks long and name it
‘REF~. The third and final file is to
hold the assembly language source
program. On 8" systems, make it 19
tracks long. On mini-floppy systems,
make it 15 tracks. You can make this
file smaller if need be by omitting
comments where you feel you can do
without them. Be sure to write down
the track number of the file "OBJ".
You'll need it later on. Name this file
"REFSRC".

Listing 1
28 REN REF : 05-65D CROSS REFERENCE CONIMAND
4@ REN WRITTEN BY SHOF BERVERS : 94/82/82 : REV 1.2
68 REN NMODIFIED BY RICHARD L. TRETHEHEY 86/28/86
80 REN
108 REN This progroe is released to the Pubiic Domain by :
148 REN Software Consultants
168 REN 6435 Suamer Rve,
188 REN Nemphis, TN 38134
208 REN (981) 377-35083
228 REN

298 FOR I.= 1 T0 24: PRINT: NEXT

268 F=12681: T=12677: TR=526: LO=678: TP=8968: DB=11897

268 PD=3: REN ..... printer device

308 PRINT"*** REF COHNAND ***": PRINT
. 328 PRINT TAB(3) "1. Enable REF command.”

348 PRINT TAB(3) “2. Enable LET command."
366 PRINT: INPUT"Option:";A$: R=UAL(AS): IF A<>1 AND A<>2 GOTO 368

368 ON R GOTO 498,868

488 RED ..... endable ref command, disable let ..... o _
428 POKE LO,ASC(*R*): POKE LO+1,ASC("E"): POKE L0+2,ASC("F")+128

418 1-8
468 READ A: POKE DB+I, A:

I=1+1; IF A<>96 THEN 468

458 DATA 169,127,141,1486,46,173,116,44,141,149,46,169,8,178

588 DATA 141,151,46,173,8,35,56,233,3,141,152,46,173,255,2535

528 DATA 141,259,255,238,148,46,208,3,238,149,46,238,151,46

548 DATA 2@8,237,238,152,46,232,2868,229,96

568 POKE 574,121: POKE 575,46: X=USR(X): REN- Install code in RAN
588 NM=PEEK(TP): RENM Find current last page of user RAN '

688 POKE TR,255: POKE TR+1,N-3: REN Put address in dispatch table
628 POKE TP,N-4: POKE 133,N-4: REN Set BASIC, 65D to protect it
768 REN ..... kill auto CRLF on terminal ..... .

7688 FOR I1=26813 TO 2B815: POKE 1,234: NEXT I: RER for alpha print
888 FOR 1=2658 TO 2668: POKE I,234: NEXT I: RER for nuaeric print
828 POKE 23,79: POKE 24,71: REN set auto tabs for terminal

848 PRINT: PRINT "REF Command is now-enabled.”: PRINT: NEH

868 REIl ..... enable let coamand, disable ref .....

868 POKE LO,RSC("L"): POKE LO+1,RSC("E"): POKE LO+2,ASC("T")+128
988 POKE TR,165: POKE TA+1,9: REN restore dispatch table to LET code
928 N=PEEK(TP): POKE TP,N+4; POKE 133,Nn+4

948 PRINT: PRINT"LET Comaand is now enabled.”: PRINT: NEW

The next step is to enter the
assembler you wuse, type in the
assembly language program and save
it in the file "REFSRC". The installation
program assumes that an
appropriately assembied version of
REF is stored in front of the BASIC
program. Thus, you must first set the
origin address on line #580 in the
assembly language program given in
Listing 4 to reflect your system’s
memory size. For 24K systems, set the
origin at $5C80, 32K systems should
use $7C00, and 48K systems should
leave the setting at $BC@0. In addition,
make sure that "DEVICE" in line #2960
reflects the printer device number for

your system. Don't forget to use the
05-65D device number here, and not
the one you use in BASIC programs.

Now that you have the source code
properly modified, .its time to
assemble the program to memory. If
you're using the OSI Assembler Editor,
be sure to execute the "H™ command to
protect the high end of memory;

24K systems: HS5Bee

32K systems: H7B00
48K systems: HBBee

Page 23 PEEK[65] Summer 1986



If youre using ASM-Plus, respond
with these same numbefs when
prompted.

Once the machine code is in memory,
save it to the object code file "OB}” you
created above with the command:

24K systems: ISATT,1 =5C00/4
32K systems: ISA TT,1=7C00e/4
46K systems: ISATT,1 =BCoe/4

where “TT" above is the track number
where the file "OB]" resides on your
disk.

Now, leave the assembler you're using
and boot up a vanilla version of
0S-65D's ‘BASIC. Run the program
"CHANGE® and tell it you want t
reserve 1034 bytes in front of the

workspace. When CHANGE is done, it

NEWs itself out of existence and
you're ready to type in the installation
program from Listing 1.

But before you begin typing in the
program, you must calli the machine

code for REF into memory from the -

disk file “OBJ". Use the following
command to do this;

05-65D V3.2
8" systems: DISKI"CA_317F=TT,1"
5 systems: DISKI"CA 327F=TT,1°

0S-65D V3.3
All systems: DISKI"CA 3A7F=TT,1"

again, where “TT" is the track nuinbcr
for the file "OB]".

Now type in and save the instailation
program with the command;

DISK!"PUT REF~

Finally, run the installation program
and select item #1 to install REF.

To use the REF command, load the
program you want to cross-reference
into the workspace. If you want to
cross-reference a single variable or
numeric constant, enter "REF” followed
by that variable name or the number
at the "OK" prompt in BASIC. For
variable names, just enter a one or
two character name since that is the
maximum size BASIC recognizes as

Page 24 PEEK[65] Summer 1986

unique. Trailing “8" or "$~ for integer
and string variables should not be
entered. If you want a complete
cross-reference of the program, enter
the' command "REF*" to send the
output to the console or "REF*” to send
the output to the printer device you
have selected.

12 REM
208 REM

The output generated by this code is
as follows: The variable name or
number is printed first, followed by a
colon, and then for each occurrance, a
line number/count pair is displayed.
Separate entries will be displayed for
floating point, integer, and string
variable types, which will also be
differentiated by subscripted and
non-subscripted types, allowing for ail
possible variations. See the example
below.

Cross Reference Utility Example

30 A=1:A%=1:A(1)=1:A%(1)=1:A$="X":A$(1)="X"

40 ON T GOTO 40,60

60 T%=1:A$="String constants are not searched,

i.e.,X=1 not found"

70 GOSUB4@:REM Same for Remarks...X=1l

80 GOTO10

9@ ABCD=1.2578435 E12:ABCDS$="X"

95 A=A+A+A+A%+A+A+A+A+A+AS+A+AHA+A+AS+HA+A+AS+HA+A+A+ATA

1 30/7 60/1

1.2578435E12 908/1

10 : 80/1

40 : 40/1 78/1

60 : 48/1

A 30(%1 30(S$1
60/51 95/%4

AB : 90/51 99/1

T : ‘ 40/1 60/%1

CompuServe Subscription Kits

CompuServe is the host for the Ohio
Scientific Special Interest Group that
you've heard about here for so long. It
is the largest such network in the
country offering many services in
addition to OSI SIG. You can send and
recieve MCI Mail™ via CompuServe as
well as checking airline schedules and
rates with the Online Airline Guide™,
of even check the latest stock market
quotes just to name a few.

PEEE [65] is offering CompuServe
subscription kits for just $32.00 plus
shipping. That's 20% off the iIst price
of $39.95. The kit includes an
instruction manual and a $25.09
credit to help get you started. Armed
with this kit, a modem, and a terminal
program you're off and running.

3e(1
95/20

39/%1 368/%1 30/1

DISK DRIVE
RECONDITIONING
WINCHESTER DRIVES

FLAT RATE CLEAN ROOM SERVICE.
{parts & labor included)

Shugart SA4008 23meg $550.00
Shugart SA1004 10meg $390.00
Seagate ST412 10meg $295.00

FLOPPY DRIVE FLAT RATES
8" Single Sided Shugart $190.00

8" Double Sided Shugart $250.00
8" Single Sided Siemens D&E Series $150.00

8" Double Sided Siemens P Series  $170.00
Write or call for detailed brochure

90 Day warranty on Floppy & Large Winch. g
1Yr. Warrantyon 5" & 8" Winchesters.

Phone: (417)485-2501

E FESSENDEN COMPUTERS
116 N. 3RD STREET
Sadl OZARK, MO 65721




&

-

[

10 s e—————————

20 -** XREF 0S65-U **
K S — .
40 ;CROSS REFERENCE OF BASIC VARIABLES
50 :
6@ __________________________________
70 ,SYSTEM ADDRESSES AND SUBROUTINES
80 e e e
90 ;
100 86C7= VARPNT=$C7 ; POINTER TO 1ST CHAR IN SEARCH STRING
110 BAEE= CHROUT=$AEE ; SUBROUTINE TO PRINT CHAR IN ACC
120 POAF= BINHI=SAF ; BINARY HIGH NUMBER
130 00BRO= BINLO=$B@ ; BINARY LOW NUMBER
140 1B44= BUILD1=$1B44 ; SUBROUTINES TO TAKE BINHI AND
150 1CEC= BUILD2=$1CEC ; BINLO - CONVERT TO DECIMAL
160 ; RESULT IN PNTBUF
178 OElE= SNERR=$8E1E ; SYNTAX ERROR ROUTINE
180 5FFC= BSIZE=$5FFC ; 2 BYTE OFFSET FOR BASIC WORKSPACE
198 9474= RETBAS=$474 ; RETURN TO IMMEDIATE MODE BASIC
200 9100= PNTBUF=$0100 ; PRINT BUFFER FOR DECIMAL NUMBERS
.219 00l6= PRNPOS=22 ; PRESENT PRINT POSITION
. 220 0918= PRNLMT=24 ; TAB PRINT LIMIT
230 BA73= CRLF=$A73 ; PRINT CR/LF ROUTINE
240 GO7E= ENUML=S7E ; END OF NUMERIC VARIABLES, LOW
250 @07F= ENUMH=$7F ; END OF NUMERIC VARIABLES, HIGH
260 0080= EMEML=$80 ; END OF MEMORY, LOW
270 8088l1= EMEMH=$81 ; END OF MEMORY, HIGH
280 2DA6= OUTBYT=$2DA6 ; OUTPUT DISTRIBUTOR
290 0004= DEVICE=$04 ; PRINTER DEVICE
360 :
318 e e
320 ,ZERO PAGE LOCATIONS USED BY THIS ROUTINE
330 e ekl e LT L e
340 ;
350 P030= NUMCNT=$30 ; COUNTER FOR NUMERIC STRING
360 9031= ZPAGE=$31 ; FIRST ZERO PAGE LOCATION
370 0031= FPVAR=ZPAGE ; COUNTER FOR FLOATING POINT VARIABLE
388 0@32= STVAR=ZPAGE+1 ; COUNTER FOR STRING VARIABLE
390 B@33= INVAR=ZPAGE+2 ; COUNTER FOR INTEGER VARIABLE
400 0034= SFPVAR=ZPAGE+3 ; COUNTER SUBSCRIPTED F.P VARIABLE
419 9@35= SSTVAR=ZPAGE+4 ; COUNTER SUBSCRIPTED STRINGS
420 0036= SINVAR=ZPAGE+5 ; COUNTER SUBSCRIPTED INTEGERS
430 6037= VARLEN=ZPAGE+6 ; LENGTH OF SEARCH STRING
440 0038= SFLAG=ZPAGE+7 ; SEARCH FLAG
450 PB39= LNPNT=ZPAGE+8 ; POINTER TO CHAR IN BASIC LINE
460 0B3B= TEMP=ZPAGE+18 ; TEMPORARY STORAGE
470 083C= TEMP1=ZPAGE+11 ; TEMPORARY STORAGE
480 003D= TEMP2=ZPAGE+12 ; TEMPORAY STORAGE
490 B@3E= LINELO=ZPAGE+13 ; LINE NUMBER LOW
500 @03F= LINEHI=2PAGE+14 ; LINE NUMBER HIGH
519 00848= TESTLN=ZPAGE+1S5 ; LENGTH OF TEST STRING
520 004l= TABPOS=ZPAGE+16 ; TAB PRINT STOP POSITION
530 @042= TERM=ZPAGE+17 ; TERMINAL OUTPUT DEVICE
540 0043= TABLE=2PAGE+18 ; ADDRESS OF TABLE:ALL VAR ROUTINE
550 B045= INPOS=ZPAGE+28 ; INPUT POSITION FOR NEW VARIABLES
560 0047= TEMPT=ZPAGE+22 ; TEMPORARY TABLE FOR VARIABLE SEARCH
570 :
580 BCOO *=$BCOG
L T R T T —————
609 ,INITIALIZATION
610 jmmm e
620 ' ;
630 BCOD 48 PHA ; SAVE THE FIRST CHARACTER
640 BCO1l A900 INIT LDA #$08 ; INIT VARIABLE COUNTERS TO @
650 BC@3 8538 STA SFLAG ; INITIALIZE SEARCH FLAG
660 BC@5 AO0S8 LDY #8 ; SET TO CLEAR 8 ZERO PAGE LOCATIONS
670 BCOB7 992E@A@ CLOOP STA ZPAGE-3,Y -
680 BCOA 88 DEY ; GET SET FOR NEXT VARIABLE
6908 BCOB DAFA BNE CLOOP ; GO DO IT IF NOT #
768 BCPD 68 PLA ; RESTORE THE FIRST CHARACTER
7189 ;
728 BCOE C92E CMP #S2E ; FIRST CHARACTER A '.'
730 BCl@ FB027 BEQ DETLEN ; YES, COUNT AS A NUMERIC
740 BCl2 CY9AB CMP #S$SAB ; CROSS REFERENCE ALL VARIABLES?
750 BCl4 DPR4 BNE CK1 ; NO, AT LEAST NOT TO THE TERMINAL
760 BCl6 8538 © STA SFLAG ; YES, LET'S SET THE FLAG
778 BC18 FO3E BEQ ADJADD ; BRANCH TO ADJADD
788 BClA C923 CK1 CMP #'#$ ; REFERENCE ALL VARIABLES TO PRINTER? .
7908 BC1C D024 BNE BEGIN ; NO, LET'S CHECK FOR SYNTAX
800 BClE 8538 STA SFLAG ; YES, SET THAT FLAG
818 BC20 FO36 BEQ ADJADD ; BRANCH TO ADJUST THE ADDRESS FOR BASIC

Page 25 PEEK[65] Summer 1986



820
830
840
850
860
8740
880
890
909
9190
920
930
940
950
960
970
984
990
1000
1010
1029
1830
1049
1950
1060
1670
1080
1090
1100
1119
1120
1139
1140
1150
1160
1170
1180
1190
1209
1210
1229
1239
1240
12509
1260
1279
1280
1299
1300
1310
1320
1330
1340
1350
1360
1370
1380
1398
1400
1419
1429
1430
14490
1450
1460
1470
1480
1499
1500
1519
1520
1530
1540
1550
1560
. 1570
1580
1590
1600
1610
1620

BC22
BC24
BC26
BC28
BC2A
BC2D
BC2F
BC31
BC33
BC35
BC37

BC39
BC3B
BC3D
BC3E
BC41

BC44
BC46
BC48
BC4A
BC4C
BC4E
BC50
BC52
BC54
BC56

BC58
BC5B
BC5D
BC5F
BC61
BC63
BC65
BC68

BC6B
BC6E
BC70
BC72
BC74
BC76
BC78

BC7B
BC7D
BC7F
BC81
BC83
BC85
BC87

BC89
BC8C
BCBE
BC9@
BCI1
BC93
BC94
BC96
BC99
BCY9B
BCYD
BCOF
BCA2
BCA4
BCA®6
BCAS8
BCAB
BCAE
BCB1
BCB4

C930
901B
C93A
BOB3
4C39BC
C941
9019
C95B
BB#C
A901
8538

B1C7
Feo7
c8
4C39BC
4ClEQE

8437
A538
FOBE
A537
Ccoo1
F0o8
Cc943
BBED
A980
8538

2066BF
A538
C9AB
Fooa
Cc923
FO06
206ABD
4C7404

ADA62D
8542
A538
C9AB
FO85
A904
8DA62D

AS57F
8544
ASTE
8543
AOGO
A9FF
9143

203FBE

D629
853B

4C89BC

BEGIN

TALPHA

DETLEN

JSNERR

CKLEN

ADJADD

ALLVAR

GO

FINDVR

CNTNUL

FIND1

CNSCAN

!

CMP
BCC
CMP
BCS
JMP
cMP
BCC
CMP
BCS
LDA
STA

1

LDA
BEQ
INY
JMP
JMP

i
STY
LDA

r
s ALLVAR

#S30 ;
JSNERR ;
#S3A ;
TALPHA ;
DETLEN ;
#8541 :
JSNERR ;
#$5B :
JSNERR ;
#501 ;
SFLAG ;

(VARPNT)
CKLEN ;

i
DETLEN ;
SNERR ;

VARLEN ;
SFLAG ;
ADJADD ;
VARLEN ;
#$01 :
;
1
,
1

-ADJADD

#5803
JSNERR
#580
SFLAG

SETADD
SFLAG
#SAB
ALLVAR
$#'4
ALLVAR
SEARCH
RETBAS

r

e we we Ne e we Ne we

1ST CHAR LESS THAN '@‘'
YES, DO SYNTAX ERROR
18T CHAR NUMERIC

; NO IT'S NOT
; LETS CONTINUE

1ST CHAR LESS THAN 'A'
YES, DO SYNTAX ERROR

1ST CHAR GREATER THAN 'Z'
YES, SYNTAX ERROR

SET FLAG FOR ALPHA SEARCH
1 CHAR VARIABLE

Y ; GET CHAR FROM BUFFER

IF NULL GOTO CKLEN

GET SET FOR NEXT CHARACTER

LET'S GO GET IT

DO SYNTAX ERROR AND RETURN TO BASIC

SAVE THE VARIABLE LENGTH'

IS THIS ALPHA OR NUMERIC

IT'S NUMERIC SO LET'S GO

GET THE VARIABLE LENGTH

IS IT 1

YES WE ARE READY TO GO

IS THE LENGTH GREATER THAN 2

YES, DO SYNTAX ERROR

SET SEARCH FLAG FOR 2 CHAR VARIABLE

INITIALIZE POINTER TO BASIC WORKSPACE
WHAT ARE WE SEARCHING FOR

ALL VARIABLES TO TERMINAL?

YES! LET'S GO

ALL VARIABLES TO PRINTER?

YES! LET'S GO

LOOK FOR THIS ONE VARIABLE

GOTO BASIC WHEN DONE

SEARCH FOR ALL VARIABLES AND OUTPUT

7 INFORMATION TO TERMINAL(*) OR TO PRINTER(#).

CMP
BEQ

STA

’

JSR
BNE
STA
Tax
LDY
DEY
BEQ
JSR
LDA
BNE
INC
JMP
LDA
CMP
BNE
JMP
JSR
JSR
JSR
JMP

'

Page 26 PEEK[65] Summer 1986

OUTBYT
TERM
SFLAG
#SAB

GO
#DEVICE
OUTBYT

ENUMH
TABLE+1
ENUML
TABLE
#500
#SFF
(TABLE) ,

GETCHR
SETTAB
TEMP

$#$03

FIND1
BLNPNT
(LNPNT, X
CNTNUL
TEMP
CNTNUL
TEMP
#5092
CNSCAN
OUTVAR
BLNPNT
BLNPNT
BLNPNT
FINDVR

e ne ws ws

SAVE THE PRESENT OUTPUT DEVICE
AT ZERO PAGE 'TERM'

WHICH OUTPUT?

TERMINAL?

; GET THE PRINTER DEVICE NUMBER

~

HG e Se we we Se we

MO NS We Ne N6 Ne N Ne Se e e e wa e Ne %o e we e e

SET THE OUTPUT DISTRIBUTOR

GET THE HIGH BYTE OF LAST MEMORY
SET BEGINING OF TABLE

GET THE LOW BYTE

SET IT

SET END OF TABLE FLAG

TO PRESENT END OF TABLE

GET CHARACTER FROM BASIC LINE

NOT A NULL-PRESS ON

RESET TEMP

GET SET TO READ NEXT

TWO CHARACTERS '

COUNT THIS CHARACTER

IFY=0 THEN WE HAVE TESTED THEM BOTH
INCREMENT BASIC LINE POINTER

: GET THE NEXT CHARACTER

IF NOT NULL LET'S CHECK THE NEXT ONE
NOT NULL SO 'BUMP' TEMP

LET'S FINISH COUNTING NULLS

GET THE NULL COUNT

IF 2 NULLS THEN WE ARE DONE

NO, PRESS ON

YES, OUTPUT THE INFORMATION

NOT DONE SO SKIP THE

NEXT TWO CHARACTERS

GET READY FOR SOME MORE

LET'S KEEP SEARCHING

aq

L

0




1630
1640
1650
1660
1678
1680
1690
1700
17190
1720
1730
1740
1758
1760
1770
1788
1790
1800
1810
1820
1830
1840
1858
1860
1870
1880
1890
1969
1919
1920
193¢
1949
1950
1960
1970
1980
1994
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2109
2110
2120
2138
2140
2159
2160
2178
2180
2190
2200
2210
2220
2230
2240
2258
2260
2270
2280
2299
2300
2318

2320
2330
2348
2350
2368
2370
2380
2390
2400
2410
2420
2430

BCB7
BCBY
BCBB
BCBE
BCBF
BCC2
BCC4
BCC6
BCC8
BCCB
BCCC
BCCE
BCD@
BCD2
BCD4
BCD6
BCDS
BCDA
BCDC
BCDF
BCE®
BCE2
BCE4
BCE6
BCES
BCEA

BCEC
BCEE
BCF1
BCF3
BCF5
BCF7
BCF8
BCFA
BCFC
BCFE
BDOO

BD@2
BDO4
BDB7
BDAY9
BDOB
BDBE
BD11
BD13
BD15

BD17
BD19
BDI1B
BD1D
BD1F
BD21
BD23
BD25
BD27
BD2A
BD2D
BD2F
BD31
BD33
BD35
BD37
BD39

BD3C
BD3E
BD40
BD42
BD44
BD46
BD48
BD4A
BD4C
BD4E
BD50
BD52
BD54
BD56

90D0
ABGD
994700
cs8
203FBE
Foo2
BOFS
A900
994700
c8
8437
coo4
92190
B547
Cc941
900A
AS00
APB2
994700
cs
8437
ADDD
AS57TF
8544
A57E
8543

B143
D94700
900F
FBO2
B@ 20
cs8
C437
90F @
cs00
F@89
D@15

AOGD
207EBF
B143
D006
287EBF
4CECBC
CIOFF
F@D7
DOEB

A543
8545
A544
8546
AQ0D
B143
COFF
F006
207EBF
4C21BD
AS544
c581
9009
A543
c580
9003
4ClEQE

A200
A437
Al43
9143
A544
C546
DBOA
A543
C545
DRo4
ABFF
DO@B
A543
DBA2

SETTAB

BUILDT

SETVAR

SETV1

COMPAR

CNEXT

FNEXTV

FNEXT1

INSERT

FEND

FOUND1

MOVE

MOVELP

ADJTAB

BCC
LDY
STA
INY
JSR
BEQ
BCS
LDA
STA
INY
STY
CpY
BCC
LDA
CMP
BCC
LDA
LDY
STA
INY
STY
LDY
LDA
STA
LDA
STA

’
LDA
CMP
BCC
BEQ
BCS
INY
CPY
BCC
CMP
BEQ
BNE

’
LDY
JSR
LDA
BNE
JSR
JMP
CMP
BEQ
BNE

LDA
STA
LDA
STA
LDY
LDA
CMP
BEQ
JSR
JMP
LDA
CMP
BCC
LDA
CMP
BCC
JMP

LDX
LDY
LDA
STA
LDA
CMP
BNE
LDA

BNE
LDY
BNE
LDA
BNE

FINDVR
#5009
TEMPT, Y

GETCHR
SETVAR
BUILDT
#500

TEMPT, Y

VARLEN
#5904
SETV1
TEMPT, X
$'A
SETV1
#500
#5502
TEMPT, ¥

e ME WE e NS e Mg NS NE N me e we N W %o e

VARLEN
$500
ENUMH
TABLE+1
ENUML
TABLE

s s e we we

(TABLE) ,Y
TEMPT, Y
FNEXTV
CNEXT

INSERT

VARLEN
COMPAR
#500

FINDVR
INSERT

e N Ne Ne we me %y we e N

500
INPNT
(TABLE) ,
FNEXT1
INPNT
COMPAR
#SFF
COMPAR
FNEXTV

e we we s e N B we we

TABLE
INPOS
TABLE+1
INPOS+1
#9500
(TABLE) ,
#$FF
FOUND1
INPNT
FEND
TABLE+1
EMEMH
MOVE
TABLE
EMEML
MOVE
SNERR

-~

e me we e %o e we wa g e

~ e

$500
VARLEN
(TABLE, X)
(TABLE} ,Y

-TABLE+1

INPOS+1
ADJTAB
TABLE
INPOS
ADJTAB
§SFF
PUTIT
TABLE
*+4

NOT ALPHA/NUMERIC : TRY AGAIN
STORE VARIABLE IN TEMPORARY TABLE
SAVE THIS CHARACTER

SET FOR NEXT CHARACTER

GO GET IT FROM BASIC LINE

IF NULL LET'S PUT IT IN TABLE

IF STILL ALPHA TRY THE NEXT

GET NULL FOR DELIMITER

SAVE IT

ADJUST Y FOR THE NULL

SAVE THE VARIABLE LENGTH

Y<=3

YES, PRESS ON

GET FIRST CHARACTER FROM TEMP TABLE
LESS THAN 'A'

YES, PRESS ON

GET SET TO LIMIT VARIABLE

PUT IN THE NEW END OF VARIABLE
ADJUST Y

AND SAVE :

SET FOR INDIRECT ADDRESSING
SET TABLE TO FRONT FOR SCAN

; GET NEXT CHARACTER FROM TABLE
COMPARE THE CHARACTERS

IF < GOTO FIND NEXT VARIABLE
IF = THEN TEST THE REST

IF > GOTO INSERT THE VARIABLE
BUMP THE INDEX

Y=VARIABLE LENGTH

IT'S LESS THAN SO TRY AGAIN
SET ZERO FLAG

GO FIND NEXT VARIABLE

GO INSERT VARIABLE IN TABLE

SET FOR INDIRECT

INCREMENT TABLE POINTER

;i GET NEXT CHARACTER

IF NOT NULL CONTINUE

BUMP THE LINE POINTER

LET'S TRY AGAIN

ARE WE AT THE END?

YES, RETURN TO LOOP

ALWAYS BRANCH TO FIND NEXT VARIABLE

SAVE CURRENT TABLE POINTER
AT INPUT POSITION

RESET Y FOR INDEXING

; GET CHARACTER FROM TABLE

ARE WE AT THE END?

YES, TEST MEMORY

BUMP THE TABLE POINTER

LET'S KEEP SEARCHING

COMPARE PRESENT MEMORY LOCATION
TO END OF MEMORY

IT'S COOL SO LET'S GO

TEST THE LOW BYTES

ALL COOL!
DO OUT OF MEMORY ERROR (SYNTAX ERROR)

;7 GET CHARACTER FROM TABLE
; SAVE AT TABLE + VARIABLE LENGTH

; ARE WE AT THE INPUT POSITION

; ARE THE LOW BYTES =

; GET LOW BYTE OF TABLE POINTER
; SKIP DEC. HIGH BYTE IF NOT @

Page 27 PEEKI[6S] Summer 19686




2440
2450
24689
2470
2480
2490
2500
2518
2520
2538
2540
2550
2568
2578
2580
2590
2600
2610
2620
2630
26 40
2658
2660
2670
2680
26 90
2708
2719
2728
2730
2740
2750
2768
2770
2780
2790
2800
2810
2820
2838
2840
2850
2860
2870
2880
2898
2900
29190
2920
2939
2940
2950
2968
2970
2980
2990
3000
3019
3020
3030
3040
3050
3060
3070
3080
3090
3100
3118
3120
3139
3140
3158
3160
3179
3180
3198
3200
3216
3220
3230
3240

BD58
BD5A
BD5C

.BD5F

BD60
BD63
BD65
BD67

BD6A
BD6D
BD6F
BD71
BD73
BD75
BD78
BD7A
BD7B
BD7E
BD8
BD83
BD85
BDB8
BD8A
BD8C
BD8E
BDY O
BD92
BD94
BD96
BD99
BDIB
BD9E
BDA#
BDA2
BDA4
BDA6
BDAS

BDAA
BDAD
BDAF
BDB2
BDB4
BDB6
BDBS
BDBA
BDBC
BDBE
BDCH
BDC2
BDC4
BDC6

BDC8
BDCA
BDCD
BDCF
BDD1
BDD3
BDD5
BDD7
BDD9
BDDB
BDDD
BDDF
BDE1

BDE3
BDES
BDES8
BDEA

C644
C643
4C40BD

c8 PUTIT
B94700

9145

DOF8

4C89BC

20730A SEARCH
ADOGD

B1C7 PVARLP
FOGB

843B

20EEQA

A43B

c8

4C6FBD

AS28 coNouT
20EEQGA

A93A

20EEQA

AS00

8541

A516

c989

9004

A9OGA

8541

203FBE SRLOOP
DOo3

4CBABE

908F6 sl
ADGD

853B

B1C7

C53B

Foas

2060BF CONTSH
DOE7

4C8ABE

A538 S2
383D

A539

Dp@2

C63A

€639

A539 ADJLPN
853C

A53A

853D

8440

E6 40 CNTLEN
203FBE
FO02 -
BOF7

C640 83
A53C

8539

A53D

853A

A540

C537

Fo@2

D@c?7

A000 54

203FBE S4LP
D1C7
DOBE

DEC TABLE+1l ; DECREMENT HIGH BYTE

DEC TABLE DECREMENT LOW BYTE

JMP MOVELP

’

INY ; GET SET FOR NEXT CHARACTER

LDA TEMPT,Y ; GET CHARACTER FROM STORAGE

STA (INPOS),Y ; PUT IT IN THE TABLE

BNE PUTIT -3 IF NOT THE NULL THEN CONTINUE
; SEARCH FOR THE NEXT VARIABLE

JMP FINDVR

1’
; SEARCH : SUBBROUTINE TO SCAN BASIC

; PROGRAM AND LOOK FOR VARIABLE POINTED

; TO BY VARPNT. WILL PRINT ANY OCCURANCES
; OF THE VARIABLE AND THE NUMBER OF

; OCCURANCES WITHIN A SPECIFIC LINE.

JSR CRLF

LDY #$00

LDA (VARPNT),Y ; GET CHAR FROM VARIABLE

BEQ CONOUT ; IF NULL THE EXIT PRINT LOOP

STY TEMP ; SAVE THE INDEX

JSR CHROUT ; PRINT THIS CHARACTER

LDY TEMP ; RESTORE THE INDEX

INY ; AND INCREMENT

JMP PVARLP ; GO PRINT THE NEXT.CHARACTER

LDA #$20 ; GO PRINT A SPACE

JSR CHROUT

LDA #S3A ; PRINT A ':°®

JSR CHROUT

LDA #0 ; RESET TAB POSITION

STA TABPOS

LDA PRNPOS ; TAB TO NEXT POSITION

CMP #9

BCC SRLOOP ; NO

LDA #180

STA TABPOS :

JSR GETCHR ; LETS READ A CHARACTER

BNE S1 ; NOT A NULL, LETS CONTINUE

JMP TEST ; SEE WHAT THIS NULL MEANS

BCC SRLOOP ; IF NOT ALPHA/NUMERIC TRY AGAIN
LDY #S00 ; GET SET TO INDEX THE INPUT STRING
STA TEMP ; SAVE THE CHARACTER

LDA (VARPNT),Y ; GET FIRST CHAR IN SEARCH STRING
CMP TEMP ; ARE THE FIRST CHARACTERS THE SAME
BEQ S2 ; YES, LETS CONTINUE

JSR NXTNAL ; NO, GET THE NEXT NON-ALPHA CHARACTER
BNE SRLOOP ; NOT A NULL, LETS CONTINUE

JMP TEST ; SEE WHAT THE NULL MEANS

LDA SFLAG ; WHAT ARE WE SEARCHING FOR?

BMI S5 ; SKIP TEST FOR LENGTH IF 2 CHAR VAR
LDA LNPNT ; SET LINE POINTER BACK 1

BNE *+4 ; IF NOT @ SKIP DEC HIGH BYTE

DEC LNPNT+1 ; DEC HIGH BYTE

DEC LNPNT ; DEC LOW BYTE

LDA LNPNT ; SAVE LINE POINTER FOR LATER

STA TEMP1

LDA LNPNT+1

STA TEMP2

STY TESTLN ; INITIALIZE TEST LENGTH

H
INC TESTLN

; BUMP THE TEST LENGTH

JSR GETCHR ; GET THE NEXT CHARACTER

BEQ S3 ; IF NULL LETS TEST THE RESULTS

BCS CNTLEN ; IF STILL ALPHA/NUMERIC TRY AGAIN

DEC TESTLN ; ADJUST FOR NON-ALPHA CHARACTER

LDA TEMP1 ; RESTORE LINE POINTER

STA LNPNT

LDA TEMP2

STA LNPNT+1

LDA TESTLN ; LETS SEE IF LENGTH OF TEST STRING =

CMP VARLEN ; LENGTH OF SEARCH STRING

BEQ S4 ; YES, LET'S SEE IF THEY ARE THE SAME
; NO, LETS SEARCH SOME MORE

BNE CONTSH

LDY #$00 ; GET SET TO COMPARE THE STRINGS
JSR GETCHR ; GET NEXT CHARACTER FROM BASIC LINE
CMP (VARPNT),Y ; ARE THEY THE SAME

BNE CONTSH ; NO LETS SEARCH AGAIN

Page 28 PEEK[65] Summer 1986




3250
3260
3270
3280
3290
3300
3319
3320
3339
3349
3350
3360
3370
3380
3390
3400
3418
3429
3430
3440
3450
34690
3470
3480
3496
3500
3510
3520
3538
3540
3550
3560
3570
3580
3590
3600
3619
3620
3630
3640
3650
3660
36789
3680
3690
3709
3710
3720
3730
3740
3750
3768
3770
3780
3790
3800
3819
3820
38380
3840
3850
3860
3878
3880
3890
3900
3910
3920
393¢
3949
3950
3960
3970
3980
3990
4000
4010
4020
4030
4040
4050

BDEC
BDED
BDEF
BDF1
BDF3
BDF 4
BDF7
BDF9
BDFB

BDFD
BDFF
BEG1
BE#3
BEO6
BEGS8
BEOA
BE®BD
BE@F
BEl1l
BE13
BEl5
BE17
BE19
BE1B
BE1D
BE1F
BE21
BE23
BE25

BE28
BE2A
BE2C
BE2E
BE3@
BE32
BE34
BE36
BE38
BE3A
BE3C

BE3F
BE41
BE43
BE45
BE47
BE49
BE4B
BE4D
BE5#@
BES52
BE54
BE56
BES8
BE5A
BES5C
BESE
BE6 0O
BE6 2
BE6 4
BE66
BE68
BE6A
BE6C
BE6D
BEGE
BE6F

BE70
BE73
BE75
BE77

cs

C640

FoecC

D@F 2

Cc8 S5
203FBE
999D

D1C7

DOAD

A538 FOUND
DBB5

E638

4C96BD

AGDD FVAR
843B

206 0BF

C924

Dog2

E63B

C925 Fl
DPB6

A902

853B

FO0B

c928 F2
Dog7

A903

853B

4C38BE

A53B F3
FO8C

B139

c928

D886

E63B

E63B

E63B

A63B TOTAL
F631
4C96BD

A200 GETCHR
Al39

FB29

C98E

FB27

Cc922

F@2C

20C1BE

C920

FOEB

C92E

DeA4

Cc9p60

D010

Cc930 Gl
9@0E

C93A

9098

C941

9806

C395B

B8B2

38 BACK
60

18 BACK1
60

20C1BE REM
Al39
Focs
D@F7

INY
DEC
BEQ
BNE
INY
JSR
BCC
CMP
BNE

LDA
BNE
INC
JMP
LDY
STY
JSR
CMP
BNE
INC
CMP
BNE
LDA
STA
BEQ
CMP
BNE
LDA
STA
JMP

LDA
BEQ
LDA

TESTLN
FOUND
S4LP

GETCHR
SRLOOP
(VARPNT)
CONTSH

e W W Ne e W e e we

SFLAG
FVAR
NUMCNT
SRLOOP
4500
TEMP
NXTNAL
#'S

Fl
TEMP
§'s

F2
$#$02
TEMP
F3

#'(

F3
#503
TEMP
TOTAL

-~ we

~

e we We me e e we

. we we we

~e

TEMP
TOTAL
(LNPNT) ,Y
#'(
TOTAL
TEMP
TEMP
TEMP
TEMP
ZPAGE,X ;

~. ws we

SRLOOP ;

GET SET FOR NEXT CHARACTER

WE HAVE TESTED ANOTHER CHARACTER

IF @ THEN WE HAVE CHECKED THE STRING
TEST THE NEXT CHARACTER

GET SET FOR SECOND CHARACTER IN STRING
GET THE NEXT CHARACTER FROM BASIC LINE
NON-ALPHA SO PRESS ON

Y ; ARE THEY THE SAME

NO, LETS SEARCH SOME MORE

WHAT ARE WE SEARCHING FOR
BRANCH IF SEARCHING FOR A VARIABLE
INCREMENT THE NUMERIC COUNTER

INITIALIZE TEMP: DETERMINE VAR TYPE

GET THE FIRST CHAR AFTER THE VARIABLE
IS IT A STRING?

NO

SET TEMP TO 1

IS IT AN INTEGER?

NO

YES, ADJUST TEMP

SEE IF IT'S SUBSCRIPTED

IS IT A SUBSCRIPTED FLOATING POINT VAR
NO IT'S NOT

YES, ADJUST TEMP TO REFLECT THIS

LETS GO TALLY

IS IT A SUBSCRIPTED VARIABLE
NO, LETS TALLY
YES ADJUST TEMP TO REFLECT VHIS

ADJUST THE PROPER V. COUNTER
LETS SEARCH AGAIN

GET CHARACTER ROUTINE

CARRY IS CLEAR IF NOT

r
i
; RETURNS WITH CARRY SET IF ALPHA/NUMERIC
H
1

Z FLAG USED ONLY FOR NULL, END OF LINE

500
(LNPNT, X
BACK1
#S8E
REM
#522
QUOTE
BLNPNT
#s20
GETCHR
#S2E
Gl
500
BACK
#$30
BACK1
#$3A
BACK
$541
BACK1
#$5B
BACK1

e me me Mo %o we Se NE e W e S e

ne me we ws we we we e we

~

BLNPNT ;
(LNPNT, X)
GETCHR
REM s

GET SET FOR INDEXED LOAD

; GET THE NEXT CHARACTER

IF NULL THEN RETURN

IS IT THE 'REM'

YES, LET'S GO TO THE NEXT LINE
HAVE WE FOUND A QUOTATION

YES, LETS SKIP IT

GET SET FOR NEXT CHARACTER

IS IT THE SPACE

TRY AGAIN

IS IT A '.!

NO, PRESS ON -

THIS WAS ADDED TO CLEAR THE 'Z' FLAG

CHAR > ASCII '@'

YES, LET'S GO BACK

CHAR ASCII '9' OR LESS

YES, LET'S RETURN WITH IT
CHAR LESS THAN ASCII 'A'
YES, LET'S GO BACK

CHAR GREATER THAN ASCII 'Z'
NO, IT'S NOT

SET CARRY FOR ALPHA/NUMERIC

CLEAR CARRY (NON-ALPHA)

GET SET FOR NEXT CHARACTER

; GET IT!

WE FOUND A NULL SO TRY AGAIN
NO NULL SO GET NEXT CHARACTER

Page 29

PEEK[65] Summer 1986



4060 H
JSR

4070@¢ BE79 20Cl1BE QUOTE
4080 BE7C Al39 LDA
4090 BE7E FOBF BEQ
4100 BE8O C922 CMP
4110 BE82 DOF5 BNE
41290 BE84 28C1BE JSR
4130 BEB7 4C6EBE JMP
4140 : ;
4150 BEBA A200 TEST LDX
4160 BESC 863B STX
4170 BESBE 20C1BE JSR
4180 BE91 Al39 LDA
4190 BE93 F082 BEQ
4200 BE95 E63B " INC
4210 BE97 20Cl1BE Tl JSR
4220 BE9A Al39 LDA
4230 BE9C F902 BEQ
4249 BEY9E E63B INC
4258 ;
4260 BEAG AS53B T2 LDA
4270 BEA2 FB19 BEQ
4280 BEA4 20CBBE JSR
4290 BEA7 A200 LDX
4300 BEA9 20ClBE JSR
4319 BEAC Al39 LDA
4320 BEAE 853E STA
4330 BEBO 20CI1BE JSR
4340 BEB3 Al39. LDA
4350 BEBS 853F STA
4360 BEB7 20ClBE JSR
4370 BEBA 4C96BD JMP
4380 ;
4390 BEBD 206C8BE DONE JSR
44008 BECP 60 RTS
4410 ;
4420 BEC1 E639 BLNPNT INC
4430 BEC3 D@92 BNE
4440 BEC5 E63A INC
4450 BEC7 60 BLNRET RTS
4460 H
4470 - ;
4480 H
4490 ;
4500 H
4510 H
4520 H
4530 H
4540 BEC8 AQ06 PRINT LDY
4550 BECA B9300¢ CKLOOP LDA
4569 BECD D#@4 BNE
4570 BECF 88 DEY
4588 BEDO 10F8 BPL
4590 BED2 60 RTS
4600 i
4610 BED3 843C QUTPUT STY
4620 BED5 AS3E LDA
4630 BED7 85B#@ STA
464¢ BED9 AS53F LDA
4650 BEDB 85AF STA
4660 BEDD 18 CLC
4679 BEDE A54l1 LDA
4680 BEES 690A ADC
4690 BEE2 8541 STA
4706 BEE4 C518 CMP
4710 BEE6 9007 BCC
4720 BEE8 20730A JSR
4730 BEEB ASOA LDA
4740 BEED 8541 STA
4750 ;
4760 BEEF A516 TABLP LDA
4770 BEF1l C541 CMP
4780 BEF3 BOOG8 BCS
4790 BEFS A920 LDA
4800 BEF7 20EEQA JSR
4819 BEFA 4CEFBE JMP
4820 BEFD 2044BF TABEND JSR
4830 BFO@ A43C LDY
4840 BF02 CB04 CPY
4850 BF94 906D BCC
BFQ6 A928 LDA

4860

Page 3@ PEEKI6S] Summer 1986

BLNPNT
(LNPNT, X
GETCHR
#$22
QUOTE
BLNPNT
BACK1

#5080

TEMP
BLNPNT
(LNPNT, X
Tl

TEMP
BLNPNT
(LNPNT, X
T2

TEMP

TEMP
DONE
PRINT
#500
BLNPNT
(LNPNT, X
LINELO
BLNPNT
(LNPNT, X
LINEHI
BLNPNT
SRLOOP

PRINT

LNPNT
BLNRET
LNPNT+1

#506
ZPAGE-1,
OUTPUT

CKLOOP

TEMP1
LINELO
BINLO
LINEHI
BINHI

TABPOS
#10
TABPOS
PRNLMT
TABLP
CRLF
$#10
TABPOS

PRNPOS
TABPOS
TABEND
#3520
CHROUT
TABLP
PDEC
TEMP1
#504
PSLSH
#528

e e N W e me ~e w8 wo e s e

Ne Mo e me we e ws A % e we

’

e we wa wme e

B T

BUMP THE LINE POINTER

; GET THE NEXT CHARACTER

FOUND THE NULL! .

HAVE WE FOUND THE NEXT QUOTE

NO, LET'S GET THE NEXT CHARACTER
BUMP LINE POINTER PAST THE QUOTE

INITALIZE TEMP STORAGE

GET SET FOR NEXT CHARACTER
;- GET IT

IF NULL TRY THE HIGH BYTE
BUMP TEMP (NOT DONE YET)
GET SET FOR NEXT CHARACTER
;7 GET IT!

IF NULL LETS TEST

TEMP TELLS IF WE ARE DONE

WE HAVE FOUND THE 3 NULLS!!

LET'S SEE IF WE FOUND ANY VARIABLES
RESTORE THE INDEX

GET SET FOR THAT NEXT CHARACTER

; GET IT!
STORE THE
GET READY

LOW BYTE OF THE LINE NUMBER
AGAIN - :

; GET THE HIGH BYTE OF THE LINE NUMBER
SAVE IT

BUMP THAT LINE POINTER

LET'S TRY AGAIN

LET'S SEE IF WE FOUND ANY VARIABLES

INCREMENT THE LOW BYTE
IF NOT ZERO THEN RETURN
INCREMENT THE HIGH BYTE

PRINT ROUTINE : CHECKS VARIABLE COUNTERS - IF ANY
ARE NON-ZERO THEN THE INFORMATION IS PRINTED AND
THE VARIABLE IS CLEARED. USES PDEC TO PRINT THE
INFORMATION IN DECIMAL FORM INSTEAD OF BINARY.

GET SET TO CHECK VARIABLE COUNTERS
; LOAD THE VARIABLE

FOUND A VARIABLE! LET'S PRINT IT

GET SET FOR NEXT VARIABLE .

GO IF WE ARE NOT DONE

SAVE THE Y REGISTER FOR LATER
GET LOW BYTE OF LINE NUMBER
PUT AT BINARY LOW

GET HIGH BYTE OF LINE NUMBER
PUT AT BINARY HIGH

PRESENT PRINT
ADD TAB FIELD SIZE

STOP PRINTING HERE WHEN DONE
COMPARE TO TAB LIMIT

GO TAB OVER TO NEXT FIELD
NEW LINE IF >=

RESET TAB POSITION

POSITION

PRESENT PRINT POSITION
CHECK IF AT END OF TAB FIELD
IF SO, PRESS ON

PRINT A SPACE

CONTINUE LOOP

GO PRINT THE LINE NUMBER
RESTORE THE Y REGISTER
NOT SUBSCRIPTED?

IF NOT, PRINT /

LOAD ASCII FOR '('




48780
48880
4890
4900
4910
4920
4930
49490
4950
4960
4978
4988
4990
5000
5010
5029
50380
5040
5850
5060
5070
5080
5099
5100
5119
5129
5139
5140
5158
5160
5178
5180
5190
5200
5219
5220
5230
5249
5258
5260
5270
5280
5299
5300
5319
5320
5339
5340
5358
5360
53780
5380
5390
5409
5410
5420
5439
5449
5450
5460
5470
5480
5490
5500
5518
5520
5530
5540
5558
5560
5578
5580
5590
5600
5610
5620
5630
5640
5650
5660
5670

BF@8
BFPB
BFOD
BFOE
BF@F
BF19

BF13
BF15
BF18
BF1A
BF1C
BF1E
BF20
BF22
BF25
BF28
BF2A

BF2D
BF2F
BF32
BF34
BF36
BF38
BF3B
BF3E
BF 40
BF41
BF43

BF44
BF46
BF47
BF4A
BF4D
BF4F
BF52
BF54
BF56
BF59
BF5B
BF5C
BF5SF

BF60
BF63
BF65

BF66
BF68
BF6A
BF6C
BF6E
BF71
BF72
BF74
BF76
BF79

‘BF7B

BF7D

BF7E
BF88
BF82
BF84

28EEBA
A43C
88

88

88
4C1ABF

A92F
20EEQA
A43C
ceo2
9@oF
Do@s
A924
20EEBA
4C2DBF
A925
20EEBA

A43C
B93000
85B0
A960
85AF
993000
2@ 44BF
A43C
88
1687
60

A290
38
20441B
2@ECI1C
AGQ1
B920G1
F@oB
843D
20EEQA
A43D
Cc8
4C4AFBF
60

203FBE
BOAFB
60

A960
853A
ASH0
8539
ADFC5F
18
6539
8539
ADFDSF
653A
853Aa
68

E643
D@g2
E644
60

PSLSH

OUT1

PINT

POCCUR

PDEC

PRNTLP

RET

NXTNAL

SETADD

INPNT

INRET

JSR CHROUT ; PRINT THAT BABY

LDY TEMP1 ; RESTORE INDEX

DEY

DEY ; SUBTRACT 3 FROM THE Y REGISTER
DEY

JMP OUT1 ; SKIP /

; :

LDA #$2F ; LOAD ASCII FOR '/'

JSR CHROUT ; PRINT IT e

LDY TEMP1 ; RESTORE INDEX

CPY #$02 i IF Y<2 THEN SKIP VARIABLE TAGS
BCC POCCUR ; GO PRINT NUMBER OF OCCURANCES
BNE PINT ; NO, GO PRINT INTEGER TAG

LDA #$24 ; LOAD ASCII FOR '§$'

JSR CHROUT ; PRINT THAT BABY!

JMP POCCUR ; GO PRINT NUMBER OF OCCURANCES
LDA #$25 ; LOAD ASCII FOR '%'

JSR CHROUT ; GUESS

!

LDY TEMP1l : RESTORE INDEX INTO VARIABLE TABLE
LDA ZPAGE-1,Y ; GET NUMBER OF OCCURANCES

STA BINLO ; AND SET TO CONVERT

LDA #0

STA BINHI

STA ZPAGE-1,Y ; CLEAR THE VARIABLE COUNTER
JSR PDEC GO PRINT THE DECIMAL VALUE

1

LDY TEMP1 ; RESTORE INDEX

DEY ; GET READY FOR NEXT VARIABLE

BPL CKLOOP ; GO BACK AND TEST NEXT VARIABLE IF < @
; WE HAVE CHECKED ALL THE VARIABLES

3 e s e b e e e o e o e e e e = Y A A e A o =

; PDEC : PRINT BINARY NUMBER AS DECIMAL. USES
; SYSTEM ROUTINES BUILD1 AND BUILD2 TO TAKE

; BINARY NUMBER IN BINLO AND BINHI (S$AF,S$B@)
; AND CONVERT TO DECIMAL. RESULT IS AT $0100
; AND IS TERMINATED BY A NULL.

i
LDX #$90 ; INITIALIZE X REGISTER (?)

SEC

JSR BUILDI1 ; SUBROUTINES TO CONVERT BINARY NUMBER
JSR BUILD2 ; TO DECIMAL FOR PRINTOUT

LDY #1 © ;i SET INDEX TO NOT PRINT LEADING SPACE
LDA PNTBUF,Y ; GET THE NEXT CHAR. OUT OF THE BUFFER
BEQ RET i IF NULL THEN WE ARE THROUGH

STY TEMP2 ;i SAVE THAT INDEX

JSR CHROUT ; OUTPUT THE CHARACTER

LDY TEMP2 ; RESTORE THE INDEX

INY i GET SET FOR NEXT CHARACTGR

JMP PRNTLP ; LET'S GO GET 1IT!

RTS ;7 WE HAVE PRINTED THE DECIMAL NUMBER

i
JSR GETCHR

~

BCS NXTNAL ; IF ALPHA/NUMERIC TRY AGAIN

RTS ; NO - GO BACK

1

LDA #$60 ; INITIALIZE LINE POINTER TO

STA LNPNT+1 ; NORMAL START OF BASIC WORKSPACE
LDA #5080

STA LNPNT

LDA BSIZE ;i GET LOW BYTE OF OFFSET FOR BASIC
CLC ; GET SET TO ADD

ADC LNPNT ; ADD WITH CARRY TO LOW BYTE

STA LNPNT ; SAVE THE RESULT

LDA BSIZE+l ; GET HIGH BYTE OFFSET

ADC LNPNT+1 ; ADD IT

STA LNPNT+1 ; SAVE THE RESULT

RTS ; GO BACK

’

INC TABLE ; INCREMENT THE LOW BYTE

BNE INRET ; NOT ZERO TTHEN RETURN

INC TABLE+1 ; INCREMENT HIGH BYTE

RTS.

i OUTVAR : ROUTINE TO TAKE VARIABLES FROM
i TEMPORARY TABLE AND USE SEARCH TO SCAN
; FOR THE SPECIFIC VARIABLE.

Page 31

GET THE NEXT CHARACTER FROM BASIC LINE

PEEKI6S] Summer 1986



SET TABLE POINTER TO FRONT OF TABLE

5680 BFB85 AS5S7E OUTVAR LDA ENUML :

5690 BFB7 8543 STA TABLE

5780 BF89 AS7F LDA ENUMH

5716 BF8B 8544 STA TABLE+1

5728 BF8D A200 OUTLP LDX #$00 ; SET X FOR INDIRECT

5730 BFSF AQG9D LDY #5080 ; RESET Y

5740 BF91 Al43 LDA (TABLE,X) ; GET CHARACTER FROM TEMP TABLE
5750 BF93 CYFF CMP #SFF ; ARE WE AT THE END?

5760 BF95 F@#39 BEQ RBASIC ; ¥ES, LET'S GET OUT OF HERE
5778 BF97 91C7 STA (VARPNT),Y ; NO, SAVE THE FIRST CHARACTER
5780 BF99 207EBF SETVR JSR INPNT ; BUMP VARIABLE POINTER

5798 BF9C C8 INY ; GET SET FOR THE NEXT ONE

5800 BFY9D Al43 LDA (TABLE, X) ; GET IT

5818 BF9F 91C7 STA (VARPNT),Y ; SAVE IT FOR CROSS REFERENCE
5828 BFAl D@F6 BNE SETVR ; IF NOT NULL THE KEEP LOOPING
5830 BFA3 207EBF JSR INPNT ; BUMP THE VARIABLE POINTER FOR NEXT
5840 BFA6 8437 STY VARLEN ; SAVE THE VARIABLE LENGTH
5850 BFA8 A@00 LDY #$00 ; GET SET TO OUTPUT VARIABLE
586@ BFAA A900 LDA #$090 : SET THE SEARCH FLAG

5878 BFAC 8538 STA SFLAG .

5880 BFAE B1C7 LDA (VARPNT),Y ; GET THE FIRST CHARACTER

5898 BFB@ C941 CMP #S541 ; CHARACTER LESS THAN 'A‘

5900 BFB2 9810 BCC PRLOOP ; YES, WE ARE READY TO GO

5919 BFB4 A537 LDA VARLEN ; NO, LET'S TEST THE LENGTH
5920 BFB6 C962 CMP #$82 s IS IT 2 OR MORE

5930 BFB8 B@O6 BCS SETFLG : YES, GO SET SFLAG

5940 BFBA A901 LDA #3501 ; SET SFLAG FOR 1 CHARACTER VARIABLE
5950 BFBC 8538 STA SFLAG

5969 BFBE DR04 BNE PRLOOP ; ALWAYS BRANCH TO PRINT LOOP
59780 BFC@ A980 SETFLG LDA #$80 ; SET SFLAG FOR 2 CHARACTER VARIABLE
5988 BFC2 8538 STA SFLAG

5998 BFC4 2066BF PRLOOP JSR SETADD ; RESET BASIC POINTER TO FRONT
6000 BFC7 206ABD JSR SEARCH ; GO SEARCH FOR THIS VARIABLE
6010 BFCA 208730A JSR CRLF ; DO CR/LF

6820 BFCD 4C8DBF JMP OUTLP ; KEEP LOOPING TILL DONE

6030 BFD@ A542 RBASIC LDA TERM ; RESTORE TERMINAL DEVICE

6040 BFD2. 8DA62D STA OUTBYT

6850 BFD5 4C7404 JMP RETBAS : BACK TO CONSOL MODE

Book Bergains!

Now's the time to pick up a copy of
the reference menuals you've needed.
Don't forget to add shipping costs.

‘s Service Manuals
These are the only professional guides
evailoble for servicing end modifying
your 0S| equipment. They include full
schematics, block diagrems, wave
form tracings, parts lists, and
diagnostic tips. They were written for
the pre-1980 series of 0S| systems,
but since 0S| never has changed that

much they ore stil) valuable no matter

when your computer was made.

CIP  Regulor: $7.95 Sele: $4.09
C4P Regular: $15.95 Sale: $10.09
C2/C3 Regulor: $39.95 Sale: $25.00

65Y Primer
This is an introductory guide to

machine code thet shows you how to
program your video system using the
Monitor ROM. An excellent tutorial on
the fundeamentals of machine code.
Regular: $5.95 Sale: $3.00

Page 32 PEEKI65] Summer 1986

User Guides

These are excellent books. They ere
complete tutoriels on all of the
stonderd herdwore and softwere for
video systems. Covers mony topics
not documented anywhere else. If
you've been struggling along with just
the big blue notebooks, don't wait!
Order today!

CIP-MF Regular: $6.95 Sale: $4.00
C4P-MF Reguler: $8.95 Sale: $5.00
CoP-DF Reguiar: $6.95 Sale: $5.00

Assembler/Editor - Ex. Mon. Manual

Until recently, 0S| included the
Assembler/Editor aend  Extended
Monitor software with all copies of
0S-65D. However, even when it was
free, there was little documentotion
accompanying the disks. If you've been
looking for instructions on these two
programs, this is the book for you!
Regulor: $6.95 Sale: $4.09

Professional Computers Set Up and
Operations Manua)

A valuoble guide for installing end
using 0S| serial systems. includes an
overview of classic 0S| software for
these systems. The book also provides

information on how to program the C3

series using the 2-80 end 6600
microprocessors.
Regular: $9.95 Sale: $6.09

Introductory Menuels

These books don't contain o lot of
information that isn't duplicated in
mony other places. Still, for the
first-time user, they cen be o

valuoble reference to keep by your

system while you're learning. Specify
CIP/CIP-MF, C4P cassette, C4P-MF,
or CBP-DF.

Regular: $6.95 Sole: $2.00

How To Progre (1]o]1] 8

By William Barden, this book explains
the instruction set of the 8090, 6509,
ond 68090 series of microprocessors.
while not 0SI-specific, this book
contains many velueble algorithms for
solving problems in machine code
using the microprocessors available
in 0S|I computers. '

Regular: $8.95 Sale: $4.00




A Better Random Number
Generator ( in less than 1 page!)

by Daniel ]. McDonald
Asbury College CPO
Wilmore, KY 490399

Have you ever tried to use the
random number generator supplied
by Microsoft for any amount of time?
It really doesn't work too well. 1 have
noticed that after a while, it starts to
repeat itself in a cycle of about 66
different numbers or so - clearly not
sufficient for any use whatsoever. |
happened to mention this to a
mathematics professor at Asbury
College and he pulled out a copy of
Art of Computer Programming,
Yolume I Semi-Numerical
Algorithms by Donald E. Knuth. In this
tome there are many wonderful
algorithms, including a real good
random number generator. “Its so
good”, the professor said, “that they
dont know how good it is”
Supposedly, it will repeat the first
order of magnitude once every 2755
iterations. A machine code
implimentation of this algorithm is
given in Listing 1 here.

A few -notes about installation:
Assemble the routine. Then enter the
Extended Monitor and set the stack
pointers to $00 and $3C respectively.
Then, starting at the beginning of the
stack, put in 162 pseudo-random
values. (Editor's Note: The
references to “STACK POINTER®
all refer to the program’'s own
local storage for the table of
random numbers and program's
internal pointers to that table,
NOT THE 6502°'s STACK POINTER)
You can use BASIC's RND(1) function
for this if you like. Finally, save the
machine code to disk, noting the track
and sector number where you are
saving it so you can include the
information in the BASIC programs
that use the code. Your programs that
use this code should always re-save
the program and the “stack™ of
random numbers back to disk to
insure a supply of new numbers and
thus avoiding the need to always
‘re-seed” the stack. The BASIC
program example in Listing 2 outlines
this technique. Note that "XXXX" is the

start of the stack, "TT,S" is the track
and sector location of where you want
to store the machine code on your
disk, and YYYY" is "XXXX"+116, the
start of the program itself in memory.

The way the program works is quite
simple. The random data that you put
in the stack is added to-another piece
30 words away. This sum is stored in

the old location, so that even after 55
uses of the random number generator,
you get a brand new number. You can
continually add because the 2-byte
words have a limit of 65535 as a
maximum value and after that they
start over. The routine keeps adding
words from different parts of the
stack, and the resuit is a constant flow
of unique and random numbers.

10 ;LABLES

20 D100= PA=$D100

30 plol= PB=$D101

40 D102= STACK=$D102
50 D1FO= OUTVAR=$D1FO
60 1218= RETVAL=$1218
70 D1AO *=$D1A0

80 D1AO 18 cLc

90 DlAl AEO1DI1 LDX PB
100 D1A4 BDO2D1 LDA STACK,X
110 D1A7 E8 INX

120 D1A8 BEQOLD1 STX PB

130 D1AB AEOOD1 LDX PA

140 D1AE 7D02D1 ADC STACK,X
150 D1B1 9D02D1 STA STACK,X
160 D1B4 A8 TAY

170 D1B5 E8 INX

180 D1B6 BDO2D1 LDA STACK,X
190 D1BY 8EOODI STX PA

200 D1BC AEOLD1 LDX PB

210 D1BF 7D02D1 ADC STACK,X
220 D1C2 EB INX

230 D1C3 B8EOLD1 STX PB

240 D1C6 AEOQOOD1 LDX PA

250 D1C9 9D02D1 STA STACK,X
260 D1CC 8DFODI1 STA OUTVAR
270 DICF E8 INX

280 D1DO B8EOODL STX PA

290 DID3 8A TXA

300 D1D4 38 SEC

310 D1D5 E96C SBC #108
320 D1D7 DOO3 BNE Bl

330 D1D9 8DOOD1 STA PA

340 D1DC ADO1D1 Bl LDA PB

350 D1DF 38 SEC

360 DIEO E96C SBC #108
370 D1E2 DOO3 BNE FINE
380 D1E4 8D01D1 STA PB

390 D1E7 ADFOD1 FINE LDA OUTVAR
400 D1EA 4C1812 . JMP RETVAL

Listing 2

18 DEF FNR(X) = INT((PEEK(OUTM)*256+PEEK(DUTM+1))*X/65536)+ 1
20 REM - where OUTM is the decimal value of OUTM in the ASM code
30 ML = YYYY- (INT(YYYY/256)%256): MH = INT(YYYY/256)

40 POKE 574, ML: POKE 575,MH: REM- Point USR(X) to our code

5@ DISKI"CA XXXX=TT,S": REM- Call program into memory at $XXXX
6@ X=USR(X): REM- Generate a new random number

70 A = FNR(100). REM- Fetch a number between | and 100

..program text to end. At the end of the program, where it quits

1900 DISKI"SA TT,S=XXXX/ 1"

Page 33 PEEKI6S] Summer 19686



Challenger 4x4 Character Set

by D. G. Johansen
P.O. Box 252
La Honda, CA 949020

(Editor's Note: Mr. Johansen is the
author of the BETA/65 language used
in this article.)

This article shows how to display
characters on your screen which are
four times larger than normal. This is
a perfect size for display to several
viewers and those with impaired
vision. Larger characters support
video applications such as message

boards, score boards, teleprompter,

etc.

The Challenger C4P has 64 columns
and this allows 16 characters in the
4x4 *format. This is suitable for
displaying two or three words across
the screen. With 32 rows available for

the C4P video screen, up to § lines -

may be displayed in 4x4 format. This
is enough for two or three sentences.

Figure 1 shows a set of ideal
components for building a 4x4
character set. As each cell is 2x2, the
final character has 8x8 cells, just the
right size to duplicate the ASCII
. character set magnified by four.

The term “ideal” is defined as follows:
(1) The set is complete - this means
that all 16 combinations are available
and (2) The set is logically ordered
with bit-mapping as shown in Figure
2. ’

There are clearly major advantages to

such a set. First, by having a complete -

set, all possible combinations are
available. Also, bit-mapping to a
64x128 element screen would be
feasible. Finally, by logically ordering
the set it is more easily manipulated
by software. For example, a character
inversion would correspond to logical
inversion of the lower four bits.

In Table 1, the correspondence of the -

Challenger character set and the
fogically ordered set is given. It is
necessary that substitution be made
for the “L-shaped™ components 135,
139, 141, and 142. Depending on
best-fit esthetics, either a “full” or

Page 34 PEEKI65] Summer 1986

Figure 1 - Udeal Components
for 4x4 Character Set

-’80 B1

B2 81

B0

I- B2 83

Figure 2 - deal Bit-mapping

“half-diagonal” may be used for these
components. The result is distinctive
in appearance to several of the
characters. This lends a definite
personality to the displayed message.

Listing 1 shows the 4x4 character set
for ASCII values from 32 (space) to 95
(underscrore), including numbers,
upper-case letters, plus most of the
common alpha-numeric characters.
For entry convenience, the- last two
numbers of the line number
correspond to the ASCII value of the
character. '

Listing 2 shows a short program
written in BETA/65 which displays a
message in 4Xx4 characters across your
screen. The subroutine SHOW_4x4,

starting at line 100, prints to the
screen the data-field characters
referenced to the parameter named
“label”. The screen position is
indicated by the argument values
passed to the parameters named “line”
and “column’. ‘

Several calls are made to SHOW_4x4,
starting at line 1@. The data field
information is given in lines above
1000, with each character data
preceded by its symbolic name. Again,
there is no significance to the line
numbers in the data field other than
entry convenience. Each call passes to
the subroutine the desired reference
field information (preceding ") and
the vatue field information (following
"R).




0SI Assembler Symbol Table
Dump Utility

by Matt Holcomb
382 Newark Street
Aurora,CO 80010

I thought I would share one the the
utilities I've written, a program which

sorts and prints the OSI Assembler's

symbol table list. To use it, simply (1)
load/assemble this program into
unused memory; (2) load AND
ASSEMBLE your target program using
any “A” command (A, A1, A2,A3); and

{3) enter "IGO 8000" (or wherever

you've put this utility in memory). A
word of caution though: Make sure the
symbol list generated in step (2)
doesn't overwrite the dump utility
code. Use the "Hxxxx" command to
limit the OSI Assembler’s memory
usage.

A few general comments: The OSI
Assembler stores 6 character symbols
in a compressed 4 byte field. Bytes @
and 1 represent the first 3 characters
of the symbol name in LO/HI format.
Bytes 2 and 3 hold the last 3
characters in the same LO/HI format.
And bytes ¢ and S5 hold the
assembly-time value of the symbot.

There are 40 valid characters which
can make up a symbol name. Each
character is assigned a numerical
value: i

8 = SPACE>

{ through 26 = "A" to 2"

27 through 36 = “@" to "9~
 —————— ]

The program in Listing 2 is not noted
for speed, which serves to point out
that video routines should be comitted
to high-speed machine code. The
proper role of high-fevel languages
such as BETA/65, should be to set up
and LINK the machiné activity. The
advantages of low-level and
high-level languages are speed and
flexibility, respectively. These are
complimentary, and an optimized
program would take this into account.

The 4x4 character set presented here
provides an alternative size between
normal (ix1) and ‘“high-res” (8x8)
ASCIL characters for display on your
Challenger screen.

So, a 6 character symbol can' be
compressed into a 4-bit word as:

BYTE @
char 1¥40°2 + char2*40°1 + char 3

BYTE 1
char4*49°2 + char5%4e°1 + char6

Notice that the maximum “word”
(arising from "$$$") would be
30x16090 + 39*40 + 39 = $FOFF. The
assembler flags undefined symbols
simply by setting the MSB of the 2nd
3 character word above this highest
value (namely, to $FF), and storing the
character that would normally be
there in the MSB of the value field
(byte S, abova),

To see how this compression works,
use the assembler's (undocumented)
«QUOTE> command (ie. 7). Simply
follow a quotation mark with up to 3
characters, and the Assembler will
generate its 2 byte representation. For
example:

.WORD "SYM, "BOL
generates:

B57A (for "SYM" LO/HI)
E4@E (for "BOL" LO/HI)

Simitarly, opcodes can be encoded:
407D .WORD TAX

Youll find (among other things) the
6562 mneumonics encoded at $0Fxx.
(For those of you who are real
hackers, disassemble the assembler
itself.. youre in for quite a few
ELEGANT surprises!)

Listing starts on page 36

Call for Articles

As noted in Column One, PEER [65]'s
library of articles is extremely low. |
hope youll take the time to share
some of the work you've done with
the rest of us. Thanks a lot.

AD$

FOR SALE: Two Cipher interface
boards and DEI cartridge Tape backup
drives. Originally $3500 ea. Both fuily
checked and aligned. Edward Dell
(603) 924-9464

FOR SALE: 12 fully populated 520
boards. Each provides 16K of static
RAM. Not tested. $50.00 plus shipping.
Contact PEEK[65]

FORTH $24.95. Utilities available also.
Free catalog. Aurora Software, 37
South Mitchell, Arlington Heights, IL
60005

Have you got something to sell? Why
not take out a classified ad in PEEK?
Ads cost 35 cents per word, not
including “price” words. Copy is due

30 days before the cover month.

DONTFORGETTO
RENEW!

OSI-CALC:
SPREADSHEET PROGRAM

OSI-CALC has been a smash hit here
at PEEK[65). Written entirely in BASIC
by Paul Chidley of TOSIE, the program
gives you a 26 column by 36 row
spreadsheet with many features. Don't
let the fact that it's written in BASIC
foot you. It's VERY FAST.

Each cell can contain text (left or right
justified) or numeric data (in’ floating
point or dollar format) or a formula
which computes its results based on
the contents of the other cells.
Formulas can perform addition,
subtraction, multiplication or division
using cell contents and/or numeric
constants. Spreadsheets can be stored
on disk, and the program does very
nice printing too.

© OSI-CALC requires 48K of memory

and 0S-65D V3.3. Specify video or
serial system and mini-floppy or 8"
disks. Price $1000 plus $3.70
shipping ($13.76 total).

Page 35 PEEKI6S] Summer 1966



150 002
160 UKD

178 @waa=

BAG8

8006
H0a8
GUOR
BOOE
8110
8aL2
8015
80148

400 a1
41@ A

BOAC
BUAK
BOS?
8053
BUS8
BHOSEH

805D
8061

B8O6A
SA6LE

B86E
2071
8u7E
875
8078
8a7n
BAO7C
Qaa7n
8OVE
8080
8081

BOGI
| B08S
BOBE
B08A
08D

S0 BB I8

—-ASM Symbol Listing Frogram-
Matt Holcomb :: 26 May, 1986

2% -an cax

SYMG TR =
Erthsl =
WORD =
BYTE =
MEM =

s start of ASHM symbol table
s end ot workspace

FIELD
VALUE

OuTrUT =
STROUT =
FR 1X =
DFLTIO =
auTnsr =
DIk =
=lalhln]
Swap back ASM constants from DOS context.

an

Backup SYMSIR -~ on return
from DOS, SYMETR i reset
LDX BAESYM+1 to rero. ' ‘
NRESET &8TA SYMSTR

STX SYMETR+1

STA RBAESYM

STX HAKSYM+1

Foint to start of tat aymb

[RERTH

s WHIHDIR
: HQA

S1TA EstizWil

o

LD OUTrnsT output only to wvideo
FeHEy
LA DFELT IO
STa QUTDST
JER STROUT
CEBYTE CReading & sorting ... CRGLEF LG
M

RSLOCF R Frint CR
) e ad print synbol
fdd sart

Foint to ne syvmbol
and repeabt for all.

JER STROUT
CBYTE CR, " LR LF,@
i
LA
STa OUTDHST Reaet 170
.
JER TEW:M NMow, FRINT the sorted list
LDhY %@
STY TEMF # of symb/line counter

FRTLIE JSR FEMSYHM
JSR STROUT
LBYTE = 0,0

Read % print symbol

LINX FIELD+3 Check to see if symbol is
InNX defined. I+ not, X=fFF
BEE NODEF

H .
LD # % Symbol detined: print its
JER QUTEUT value in HEX format.

LDA VALUE+L
JER FRT2ZHX
LDA VALLUE

Poge 36 PEEKI65] Summer 1966




BU8F JER
Buez J Pt
FOYS NODEF JER
8094 CBYTE "undef
DEF = 0k TN
1 VIS
BEY BOAL AND
G 8hY g
SO0 BAG
,1w 3 : |~
SAMLIN  JHK
BYTE
FRTLIEF  JGR
BINES
H
FrLFCR O LDA
*r‘ ICJ JER

&JQI*D

STROUT
.0

TEME
P EMF
#ADDOVEAV11

S IN

STROUT

L

Symb

increase

Use
char
Frin

Tab

ol not defined.

# on line count
LOABEOVVL for EZ
/line systems
t CR LF

to next column

Foint to

repeat for

and ,

we e

next symb %
whole list.

done.

Backup SYMSTR

1 into m

compressed 4-bit

Firs

Seco

1+ g
trom

Extr

v

Residue
Translate B-3

AZBT:

emary & print 1t

symbhol .

t 3 characters

nd

L ocharacters

ymbnl unclef ,
VALUE field.

get

act first char.

act second char.
ig third char.
9 into

¥ format

have A=1 foar a ‘4’

Frint it.

Diwvi

Resdit

1mmm L. LR
BukF JEE OUTELT
k]
HACE BB BAESYM L WORD W
1446 H
L@a%56 T e e o e
1@é 3 MEMSYM 1: read symbo
Tasy H
1atl gutd Abyd MEMSYM 1LY #Y
163d 8 MEMSBLT LA (MEM) Y
1 1@y STe FLELD,Y
111@ DEY
11526 BFL. MEMSLT
11 H
1148 3 MNow, FRINT the
1150 H
1168 LDA
117w LY
1180 JER
1198 L.DA
120 LY
Cry
5] U DB EBRE
HBELLD LDY VAL HL +1
STA WORD
K STY WORD+1
[SYHINEN LDY #4Undds 256
AV R0] LDA #4043
”m@DHI JHBR DECNRM
LY HAW/ 2856
Léy H#40
JEH DECNRM
LDY WORD
‘213 DECSTR  Tya
16 [
Uiz : SHACE.
E91A #Z+i—-"A
U AZ.
EYUE He+l-"0
) FuUse
B@OFF Fagz
1 If we re we
8101 ADC .11
L4 81QE I.. ADC 111
1450 5103 I@:. 2151 -1
1440 3187 ; AZ. ADL #°Z2-SFACE
14780 61809 4920 SFACE. ALC #SFACE
1460 &10B DUE2 ENE J:0UT
€100 DECNERM RYTE+1
[EFRUIS BY IE
8111 #2
G110 N
(R DECNI. L LDA WORD
Hilé
8117 BYTE

8119

TAX

de

returned

WORD by BYTE

in Yy

Page 37 PEEK[65] Summer 1986




1640 B125 BOED
1450

16660

1670

1680 AS1H
161“‘?0 H(ll’“’

H141 FOEB

[ZR
8145
81L47
G145y
B814R
‘ 814D
1950 814F
1960 81391

€156
81358
@0 g1ED
2040 815F
20850 Hl(‘) |

B1&Y

BL&HE
H16D
8BraF {
Hl/l Duv4g

LANAT7 Y 1

’lbﬂ
2170
2180
2190
317)

8185
8187
8188
818H
a1an
a168F
8190
8192

8154
8196
8196
8190
B19C
B19E

2410 1
_Poge 38 PEEK[65] Summer 19686

SAXME S8TX

LDA WORD+1
SHC EYTE+1

W.Rbﬁl
STX WORD
INY
BCS DECNL.Y

TEW: M Lna Dl

L.DX W1
SEXMEM JIK MELM-+ 1
SAMEM MEM
SARTS

TEW:M 1: Tranasfer

beanch

E:Q:W to MEM

: SUBGCE. 12 Decrement PMEM by & % compare w/SYMSTR

UHbL}

SUH&K 1
SOMER
SAXMEM

s ING

INSERT  LDA
STA
LDA
L.DX

GEM2 GTA
LDY IIHh
BINE
IMY
1.0A
CHE
BEME T
DEY

YDEF

YREFZ

TEST "
INSL. 1 LDY H

INSL.Z  LDA (MEMZ),

TRX

LDA FIELD,Y

Return BEO 14 at end
catrty set

£ Add SYMBOL to list & sort by a&lpha.

FLAG indicates when a
swap 1s neaded.

I we know we need to
] y don't waste time
king for it!

mebh, first I char.
Y=
labh, ftirst 2 char.

msb ., second char .
Handle wndaf. svinbols

leb, second 3 char.

Alpha compare
Swap routine...
Yy :

STA (F-Mf),V

STX FIELD,Y

DEY
EFL ITNSL. T
STY FLAG

INSL.2 LDA

INGL.. 4

* MEM
SARTS
INSL.. 4 #é
SAM2

DEX )
BCC SAXM2

YV=fFF -—~— alwavs swap now

Check if done:
I+ so, RTS.
Else, move to next
uymbol and cantinue.

carry set

branch




OSI SIG Data Library
Where the Megabytes Bite

This is the part of OSI SIG where we
keep program and text files. Like the
other areas of the SIG, the Data
Library is devided up into sections
with each section dealing with a
particular topic. All of the sections in
the Data Library directly correspond
to the sections in the message base.
For example, section 9 is our “General”
topic section. For the Data Library, we
use it to hold text files which describe
the various parts and functions of OS]
SIG. Section 1's topic is 0S-65D and all
of the files in that section of the Data
Library refer to that operating
system. A full description of the topic
of each section in the SIG Data Library
is available by entering “DES" at the
"DLx:” prompt in the DNata Library
(where ™* is the number of the
section involved).

One thing that is important to note up
front is that the SIG Data Library can
be used in two different ways or
‘modes”, as they are often calted. The
default mode is called the Menu Mode.
In the Menu Mode, the primary
commands that are available to you
are displayed on a menu and you can
select them by number. The other
mode is the command mode. In the
command meode, you enter the actual
command. The benefit of the

command mode is that it is much:

faster. You don't have to wait for the
menus to be displayed before and
after each command. However, the
command words are acceptable in
either mode. See the “SET" command
below for details on selecting a mode.

The first thing you're likely to want to
do in the Data Library is to find out
what files are available there. There
are two commands available to you
which will display a list of the files in
a section - BROWSE and SCAN. All
commands in the Data Library may be
abbreviated to the first three letters
(or sometimes less) of the command.
From now on, when a command is
referenced, the portion of the
command that is an acceptable
abbreviation will be in capital letters
and the remainder will be in lower
case. For exampe, "Read” would

indicate that "R" alone would be

acceptable as an abbreviation. Now

then, back to Scan and BROwse:

Scan

The Scan command allows you to
examine the contents of the SIG Data
Library. The format is:

S NAME EXT{User ID]/option/option...

- Each file is listed in the following

form:

NAMEEXT DD-MM-YY * nr
where * = size of the file in bytes and
nr = number of times the file has been
retrived. If the file has the extension
BIN or .IMG, the size (*) will be
followed by the approximate
down-loaded size.

"The order of listing is a function of the

option(s) used. The defauit sequence
is in inverse-order of submission date
(ie, most recent first). If you use a
file name, or file name with wild
cards, then the order is alphabetical

by file name. If the /key option is

used, the files appear in no particular
sequence.

The simplest form is:

S

which will give a brief list of all files.
The NAMEEXT may have “wildcards”
in them, where ™*" in either the NAME
or EXT positions signifies any file will
match the ™. A “?" may be used to
mean any letter/digit will match in
that specific position. For exampte:

S*bas

will find any file with an extension of
"BAS" in any User ID.

Sabc???2xy?
will match any file whose name
begins with abc and whose extension
begins with “xy’; also, any User 1D will
match. The form:

S{User ID]

will match any file submitted by that
specific user.

The options allowed are:

/agen - output only if the entry has
been SUBmitted within the last n
days.

/des - output the description of each
fite as given by the submittor.

/keylist - select only files which have
the given set of keywords. The flist
may be a series of words separated by
commas and/or spaces. If multiple
keywords are supplied, there is an
implicit “and”™ operation between
them. An asterisk may be used to
indicate the “tightness™ of the search
as follows:

Xyz - an exact match with “xyz®

Xyz* - any keyword which BEGINS
with "xyz"

¥xyz - any keyword which ENDS "xyz"
*xyz* - any keyword which CONTAINS
“xyz"

For example: _ ,
/keymodem - finds files having
the exact keyword “modem” h
/key:modem* - finds files with
‘modem” or “‘modem?7” o
/key*modem - finds files with
‘modem” or “smartmodem”
/key*modem?* - finds files with
"modem”, "modem7” or “smartmodem”

Note that keywords may consist of the
following characters:

AT to 77 (or "a”to 27)

9" to "9”

R T

BROwse

The BROwse command is similar to the
Scan command and accepts the same
options. It forces a /des (description)
option, and pauses after each file to
give you a chance to:

Read, DOWnload, ERAse, or CHAnge
the fite.

These options are displayed after each
file is listed by the BROwse command.
The Read option will type the file out
for you. The DOWnload option will

Poge 39 PEEKI65] Summer 1986



automatically transfer the file to your
computer if you are using Term-Plus,
Term-32, Term-65U, or TERM-A ASM
as your terminal program. For details
on these programs, read the file
TPLUSDOC in Section @ of the Data
Library. The ERAse option marks the
file in a way that tells the SYSOP (me)
thi t you want the file removed from
the Data Library. You might want to
do this if you found an error in the
original file. You are only able to mark

files for erasure that you have

submitted to the Data Library. Lastly,
the CHAnge option allows you to
replace the keywords and descriptions
you originally entered for a file.
Again, CHAnge is only available when
the file being examined is your own.

Read
The Read command allows you to see
- specific files. The format is:

R FILENM EXT

Entering a control-P (hold down the
“control” key and press P) causes the
printing of the file to stop and you are
returned to the top function level.

ERAse

The ERAse command is used to
request the removal of one of your
files from the Data Library. It is
entered simply as:

ERA FILENM EXT

When the SYSOP (me) recieves your
request to have a file removed, he (I)
will examine the file in question, and
if he (I) agree that the file should be
removed, he (1) will do so. Therefore,
it is a good idea to leave the SYSOP a
message  explaining why  you
requested that the file be removed.

UPload

The UPLoad command is used to
directly transfer files from your
computer to the SIG Data Library
Reference Library. UPLoad is most
often used like the DOWnlgad
command, in that special terminal
programs like Term-Plus will perform

Page 40 PEEKI6S] Summer 1986

the transfer automatically, and
additionally, . these programs do
error-checking along the way to
insure that the file is properly
transferred. If you do not have a
program like Term-Plus, you may
instead either type the file in by hand
or have your computer "LIST" the file.
If you use this second method, you
must enter a €<TRL>Z' when you (or
your computer) are iis) finished
entering or LISTing the file to tell
CompuServe that you are finished.
The command format is:

UPL FILENM EXT

where 'FILENMEXT" is the name of
the file for the CompuServe Data
Library database. You will then be
prompted for the fite specification on
your personal computer which is to be
uploaded.

The "ext” has two special forms as
follows: “BIN" is used for “binary"~ (ie,
8-bit) data. In OS] SIG, "BIN" files are
used to hold machine code programs.
"IMG” is used for “image” data. Image
data is similar to binary, except that it
carries with it an identification of the
kind of computer from which it came.
OSI systems do not use the “IMG”
extension. If you use any other three
letter extension in your file name, it
will be stored as a 7-bit text file.

After entering the UPL command, you
will be prompted for some additional
information. First, you will be
prompted for a list of "keywords”
which users may use with the Scan
command to find your file. Please use
keywords which identify what you
are submitting. Using obscure and
inconsistent keywords will hinder
other users who are trying to locate
your file. For example, if you are
submitting an Adventure-type game

written in Microsoft basic, you might

use the keywords “adventure, game,
mbasic.”

Note that keywords may. be made up,

of the following characters:
"ATto "Z° (or "a"to "z°)
"®"to "9”

R

All other characters are removed. The
non-alphanumeric characters above
should only be used as part of the

_ keyword, NOT as separators. For

example:
CPM2.2
or CPM+
are acceptable, but
TEST-FILE
or  GRAPHICS_PROGRAM~*18
are not.

In general, the keywords should be
descriptive of the file's CONTENT and
not used as a title. You will then be
asked for a short description of the

" file. Tou will be limited to about 500

characters, or nearly a full 32 x 16
page. If the file is a program, the -
description should include the models
of computers that the program will
run on and brief instructions on its
use.

DOWnload

The DOWnload command is the same
as the DOWnload option of the BROwse
command listed above. The only
difference is that you are requesting a
specific file rather than picking one as
you are going through the SIG Data
Library Reference Library. Here again,
the benefit of being able to use the
DOWnload command is that the
transfer is done automatically and
without error so that the effects of
phone line noise and other problems
are minimized. Use of the DOWnload
command requires a program like
Term-Plus. The format of the
commang is:

DOW FILENM EXT

SET

The SET command is used to control
certain operating characteristics of the
Data Library during your visit. The
following options are available for the
SET command:

BRIEF - shortens some prompts
NO BRIEF - normal prompts

~ MENU - use menu mode " -
.~ NO MENU - use command mode

PAUSE - pauses when screen full
NO PAUSE - doesn't o

The SET command without options "
will display your current settings.




EE 2 2 %3
L3 2 223

SET ##x
X W

COMPONENTS ARE %% %%

READING FROM LEFT-
TOP ROW FIRST.

4x4 Character Set Listi

(RS ETI LTSS SLL LSS SIS SIS SIS SR SRS LY S T

txxx DATA

FOR CHALLENGER 4x4 CHARACTER
WITH THE

'##% EACH 4x4 CHRRACTER IS COMPDSED OF 16 #x#%%
txx% CHARACTERS FROM THE CHALLENGER GRA-

txx% PHICS CHARACTER SET.

'##% ORDERED IN ROWS,
'w#% TO-RIGHT,

EZ LI TE S ST S TS EALASS SIS EEL SIS LZSL SRS S L B T

0@
34
906
3128
1@
914
316
318

91

Y] X} ) Xt
0 . ™) g o | ) "3 DY | 0l 0j ) oJ [} uJ
o T T XY (] [ RS R RH [ X H i {3 ) ) i 3 0 0 3 3 £ 0l 3 -
rF3 MM ~ =+ (SR V] m [} 3 M@y o ond 6 3 Ml g ol M X1 IO
aQ Wl i «Q i@ DU TP GMaQumm (X)) M wuwa M 63w M L]
g T - V1@ W@ Mg ool 7 =g - G w g ong X &
M a Gid 0l 0 0y nl PO IR VIV o b — I [ R Bl | %3] @ o~ ) ) S MG
—i 3 ot il M Eg M — - ~ 0 MO i - W " —
o i i3 '] ig] ™ML Qo A TS| FIR=NIpN'p] — M D i BEURs R
DR s OV IR AT I 3 T I o Gl — QN W) T U g I U5l Mg - - AR ORGSRV RTy i 5 I o YT D M UM oM
TR IR MU - e [N} G =M=l @— e — MW 9] Pl ot = (I F) — — 1] — MM~ - o ™M Al
0 7 ) - U] e i — g s} n [V T O 7 U3 [§s} — ) Wi~y 1]
] il g ol [C s Ita xRyt Y i nj M [Rs} AV S QUMM G - MY QW) — QO Wi = 0o Ul wud
W r M MmOy niam 0 (g Q8 0d Mg Mmwm ™ W (GRS (s T NT:] DO —- 0w m 3~ 0l e ~ W
WRGEU ~ — - 0~y PURTP I P30 ~ as] LTS LY T I [ R, | R = | - 5
") — [ Vil G () Qo nj 3 o~ (LR ™M 04 0 g 0 Mm "M M 0l m 151 0 WL R R R at} il (2 R
. LU I I S A IS BT BT N T o BV J ) A B I A IEAT | M ajr— M i M KTRaR0] T 0 gl ad 3 o od o ) "1 m [URGEUR ORI — O
IS o] M — I~ 0l Moy M MY QM M @Mt MR MMM IO o7 B o2 TN ) B T I ]
"M [Py o (] M =~y 3 o~ M- gl g m ™M g ~rm 3 - IS UM [} 0 )

X AL S BV N o) BN R [} PO 1D B wBesmMmmMmeM 0 - i M~ ) Q) gl s ul ) IR RCRY] R}
ny g m — (U] URORIB ISP SR o 03y D= MEm~nrmMmY M il ]
") ] R3] 52 M AV -1 - -~ Lal U ST U T [0 BT ] -t - 0 TRV

X 3o o] ) X3} MMM -G ¥ i) v~ 0] 0] — (RS Mam TRV}
bth Bl I A B [ R v [ EVe IEnT S In BN SRRVERYS N o3 V1 | (s ¥ )M RO L] WY < %) M o~ gl
MM ” -t ™~ 1M O [ A I o] 117 Mg M) — TR D] 0l — g [F i e Y R Sa ] - {9

13, v vt
[URC R R 3}

My W ~
— 1
-

166
1

16
&
!
a
1

Q
Vit
GJ vt 1Y 04

U3 i
U3 M
) o~ T3]

i) —

IRV ]

[
—t
oy
MM a
6]

166

€6 185 168

17

3

167
166 155

]

~

-
i ) -

M N~

™~ W

p] -

]

1]

-

5
177

i3]

W

157 1&8 1S
8

5

S

S

7

l::'

176
165 1€8 15
157 166 (7@
157 166

187 1686
7
5

ot
T e} T - N 03 M7 0 — N~ M~ [T ]
i — ] 0 0 S~ Wa~ 30y — 4] n 3N (<3 C13 o)
Ty o— 17 M =L —
— 0 0O~ Ty ]
oy ] il A D IECA RTINS

¥
-t
VOl U = —rman S e X
et Lol U9~ T3] by — 7 —~ X X 3 r o0
W it [XTRGT IR B O e 0 vt 1) vt vl Vi et o) U7 ™~y 0] 01 PY =] - 39 ol
i) 0 [XTRRXY nt ] il M) — Y et DR G TG VTR TN O — 0l [OR VK] [N PRV EURURUNY
X A ~- ] ME A M ol ad M oo [ I T I o N ]
0y "} © [} [ P30 g 0 g (RO NS N~ ™M [} M)

5] 0 oo WM
o 0419 Q) —
X ] ™~ MMeM MM Mmoo M
DTS MMmEMMBUS OO~~~ My B 5 Ml ~ G
MANEN =B~ g My ~
N~ @ MNP n o~ woM
R TSR RS R p) T o ~ -
NSMMA - 3 :
&

~ @ Wl Mg n
M0y —~mM .o
vt
QT
Gwuw—w
ul gt [ I A T
WM bl ul O

Ui P M
X b1}
™~ ~ g mM 0o 0
[ I Ch IR -~
o W W~ LTI Y R i Ty BT B Ty IS I ST R
™ oJ J NS0 MM D] MWy =) M o—
- — g i) 5] ) ] 0 — - vt ) () vy
i r [0} M - (RS IR S IR AN NG a3 N B o 0 g vg o) W2 M) oy RO RO RO 9} — 04 3] Gl g oy o) 0l 0l g g
~ AV SR o T ) ) =y KRG RUEONUNURUED DR EU RS RO R o MM eI M0 0] 0]y MM M M
MMM [ORO RS (] ) I3J] ™M [ X 1 0] ) g ™M MMMem L]
ol M [p] MM Ml WM MO — uJ — MM G0y ro m oo w (&1 r g amonmi — @ Qg ol
™ 1RV Vs ™~ "3 m 83} DI WUWIawugmr ™~ h [ R uv M ey
[URTRRE RN o WS MY Vs IR | W)t o o~ D) =) = U et ot vt vt = 3D D DY o )
—_
3}
2
-

165

1
7
~Jd
1
1

57
5

1

T
-
=4
S
fors,
2o
TS
o
(=4
[S4
[y
3
o
=
-
<

=

~
ol —
"3 g
5 ©Q

0 U~
3

<
N U ol
1M -t

177 168
1
157 165 161
3
5
5
168
1
16
£S5
15
157 154 17@
157 1S4 17@

~ S
NN IS b -
Al

<

5]

v
NN
MWREBN . AN WD

- i 1

-

1

1
1€5

1
157

2o
S
-
S
okl
o=
=
ac
54
>
ol
<
-
K
S
9
I
-
<
=
£

168

WER R — 52 i IR M a0y 03 ™ - - [P RU R SR -“Ii ) RIS
~ 1~ ) [p R3] ul Nnwunmm 3 v

NOYDNOUSS g NUNNNNSDNN [UETP Y]
RPN ETE N RS IEC T BNV JETe g et Bt B Y T BRI SR IR T [ X W = -

JE) vt ot et — — ][V — - — 07—

iy Ul
[N RS R BT I8 Ty VS YT RAS T IR ST BT wY et art Vs BEnT RS BTG By [Ty QAT IRVG Vs Vs et REsV Iy
MMM EIE = 100 A T 0Y0) e 07 At ot 0] o 1) et v o 1T 1)

4
&
]

mMmm
i o

BN OW

@
83}
-
LU
1 W WD e RV TR
~
-~

17 167
S
S

1
1
165

XERAT RN
M~

157 167 17
1
1
1
1
1

165
187
[
3
57
S
165
5
S
3
S
7
S
166 161
7
-
166 155

DATA_4x

WM uN~gm
[REw RN

12@@

1041
1245
1243
1248
1Q6@
1261
126
1264
1265
1268
1@7a
1271
1@7
1273
1276
1@77
1284
1286
1293

PEEKI65] Summer 1986

Page 41



number.

Pege 42 PEEKI65] Summer 1986

4x4 Character Set Listing 2

(2SR SRS R 2R LIRSS IR TS ES L E S EL SR S L 2

4 !
S ! %% PROGRAM DISPLAYING TEST MESSAGE *x*
£ ! wx* TO VIDED SCREEN TLLUSTRATING USE x#
7 ' w*x% OF CHALLENGER 4x4 CHARACTER SET %%
[EEREE 222 T E 2R T LS R SR R R R A T
3 !
L@ CALl SHOW 4x4 alRt % 19,12
& CALL SHOW_ 4x4 af % 1@, 14
30 CALL SHOW_4x4 aT % 10,18
40 CALL SHOW 4x4 aft %
52 COALL GHOW 4x4 ak %
60 CALL SHOU. 4x4 ab %
79 CALL SHOW_4x4 aS %
80 END
38 !
12@ SUBR SHDW 4x4 label % lirne,column
112 REF label
120 FOR 1= TO 3
132 FOR J=0 TO 3
140 READ X
15@ PRINT AT(lirne+I®#6A+calumit ), CHRS (X)
160 NEXT J
178 NEXT I
18 RET
998 ! ,
1847 :ak 3¢ 38 16T 165 16D 3T
1053 1a% 157 155 155 LGS 1ER 167 16
1054 a6 32 179 159 157 154 167 157 3
1PES 1af 32 170 167 3& 1G7 38 157 3& 157 15
1066 :aB 157 155 163 3 194 179 3
1263 :aE 157 155 155 154 167
1084 :aT 166 161 1S5 33 3& 197 3& 32
BASIC/DOS Interface Code for
0S-65U
: 19 REN- **#* 0S-65U DISK RERD/MRITE UTILITY et
i i 40 : »
| wr.ot.e tmet program a long time ago. ol
All it does is to allow you to read or 78 UL=PEEK(8778) : UH=PEEK(8779)
ite specific sections of any fio 80
VV'ﬂte 5 ! 7 Ppy Q@ REM- DISABLE <CTRL> 'C° CHECKING AND SAVE CURRENT STRTUS
disk to or from any RAM address in 180 -
memory. I wrote it to be able to pull 110 CC-PEEK(2073> : POKE 2073,96
sectors off 65U disk into memory so 130 REM- SET UP DOS READ/HRITE VECTOR
that I could store them on 63D disks :gg POKEST78, 192 = POKEB779,36 :REMH- $2400
for disassembly and other purposes. It 159 - et o
can also be helpful for repairing files 1;3 REM- SET UP ISR FUT IN SUBROUTINE
. 1 :
in extreme emergencies. 199 POKE 9432,243 : POKE 9433, 40
’ 200
However, it also shows the essential 218 ReM- SET UP ISR GET IN SUBROUTINE
elements of the BASIC/DOS interface 238 FOKE 9435,232 : POKEQ436,40
is built i $-65U. You'll 240
code th.at.ls built mto 0 65 250 CB=9889:REM- CONTROL BLOCK $26R1
see variations on this code in most of 260
the 0S-65U utility programs such as ggg 0=256:REH- ONE PAGE
DIR, CREATE, and DELETE. The 200 REM- GET DISK ADDRESS FROM USER
essential premise behind the code is 300 ENTER DISK FDOFESS FOR RERDARITE"-D
to allow the BASIC programmer to gég SHPU ENTER DISK ADDRESS FOR RERD/WRITE™;DA
execute low-level disk operations and 330 REM- GET NUMBER OF BYTES FROM USER
. 340 :
to have the results of those operations 358 PRINT"HOW MAHY BYTES ARE TO BE READ/HRITTEN":GOSUBO9A:NB=A
be made available to the program. 360 ¢ .
370 REM- GET RAM ADDRESS FROM USER
i i 380
Digk operations are routed through 298 PRINT"FOR THE MEMORY RDDRESS™:GOSUBI98:RA=A
) ; ; 408 : )
BASIC's USR(X) function. The ‘“?‘“‘“‘ 410 REM- GET OFERATION TYPE FROM USER
returns the result of the operation. A 428 :
result of @ means no errors occurred. 430 IHPUT'HEHD“OFE WRITE (H/N):;lju& RH$=LEFT$<RUS$, 1)
Any other value is the disk error :gg IF RW$ <> "R* AND RM$ ¢> "W" THEN PRINT : GOTO 430



1 have published parts of this
program before, but I wanted to use it
again to help point out some detaits 1
haven't previousty discussed.

As 1 mentioned, the various 65U
utilities often use this procedure. Line
70 saves the user's original USR(X)
vector so that it can be restored on
exiting. That's just good practice since
you can never be sure if the user is
running in an environment that
depends on some machine code that is
already installed, but only sets the
pointers upon installation. Line 1@
saves the incoming «TRL>C' -enable
status, and turns it off. The same
principle applies here.

Lines 130-230 set up pointers in the
interface subroutine within 0S-65U.
This is largely a precautionary
measure since these pointers are
normally restored by any program
that disturbs them, but when you're
doing anything that could damage the
contents of a disk, it's better to be
safe. Since these pointers should be
the default settings, we are under no
obligation to save and restore their
incoming values. Next time we'll puil
apart the code itself and discuss how
it operates.

I hard-coded the program to only
operate on DEVice "A" on purpose. The
program would operate on hard disks,
but don't do it unless you are *very*
confident that you know what you're
doing. In any event, 1 hope you find
the program useful.

DISK LLABEL MAKER FOR HOOKS
Bvy Jaclk Noble (72737, 1dd@)
746 N. 165th St.
Seattle, WA 98133
Here’s a little 1@ liner that
has ®saved me a lot of
acgravation in keeping track
of Jjust what®s on which disk.
It prints the disk directory
in four columns 1in  condensed
print onto sticky bacled
address labels avallable at
Radion Shack. There's really
not much to the program since
it makes Ui of THOOKES?®
cdirectory format which is in

four columns anyway. To use
the program  youw load the
fanfold labels into your
printer and run  the program.
Then put the first disl that
vou want a label for in  the
active drive and press any
liy o The label will be

466 REM- CHECK DA, RA, AND NB FOR VALIDITY
476 : '

488 IF DR < 8 OR DA > 275967 I1HEN 318

498 IF RR < B OR RA > 03336 THEN 390

560 IF NB < 8 OR NB > 65536 THEN 358
518 :

538 :

348 DH=INT<DR/16777216) :
558 DM=INT(RM/65536)
560 DL=INT(RM/256)
570 :

590
61e

630 :

648 REM- NOW DO IT

656

668 IF RU$ = “R™ THEN R
678 IF RH$ = "H" THEN RH
680

698 DEV “R*

289 :

716 ER = USR (RW)

?20 :

738 REM- CHECK FOR ERRORS
740

750 IF ER THEN GOSUBS?7@
760

nou
-

288
788 POKE 8778,UL : POKE 8779,UH
800 :

820 :

830 POKE 2873,CC
848 :

830 END

860

888 PRINT:RETURN
890 :

778 REM- RESTORE USER'S USRCX) VECTOR

RM=DA-DH* 16777216
: RM=RM-DM*65536
: RM=RM-DL*256

810 REH- RESTORE OLD <CTRL> °'C' STATUS

5268 REM- NOW PERFORM CALCULATIONS FOR OPERATION

580 éOKECB+l,Rﬂ : POKECB+2,DL : POKECB+3,DM : POKECB+4,DH
600 I;’OKECB+5,NB—INT(NB/Q)*O : POKECB+6, INTC(NB/Q)
620 éOKECB+7,Rﬂ-IHT(Rﬂ/Q)*Q‘: POKECB+8, INTCRA/Q)

870 éﬂIHT"** DEVICE A ERROR #°;ER; " AT ADDRESS";DA

900 éﬂlﬂT'EﬂTEB THE DECINAL UARLUE OR HEX URLUE PRECEEDED"
918 INPUT"BY A "$° ~;A$: IFLEFT$CAS, 1)="¢"THEN9G48
928 FORX=1TGLENCA$)>:C$=HID$(RS,X, 1)>: IFC$<~0~0RCS> “9"THENGEA

938 NEXTX:R=URLC(A$):RETURN
946 A=0: IFLEN(A$)<2THENQAA

950 FORX=2TOLEN(A$>:C$=MID$(AS, X, 1): IFC$<"0"THENIBD
968 IFC$<="9"THENA=R+UAL (C$ »*( 16~ (LENCA$ )-X)):G0OT0998

970 1FC$<"A~ORCS> “F "THENOGO

988 A=A+CASC(CH)-55*(16° (LENCA$I-X))

998 NEXTX:RETURN

printed and the program will
wait for vou to insert the
next disk after which Yo
anain press any lkey. A you
can sec from the sample, you

can print a directory of up to
28 files per disk on one of
these address labels. The
control codes qlven are for an
EFSON MX -~ printer—-~you
Bshowul d adijust these as
required for your printer.l
gtick the labels right on the
disle cover as thoy come out of
the printer so 1 no longer
have to worry about mixing up
jackets or lonsing the loose
directory printouts that 1
used previously,

S REMX¥DIRECTORY LAREL MAKERXX

148
15
20
gt
Ly
S
b
7
8

056503 #9-06
PRINT
PGMKEY 21-21
CRVRT 27-29
NSGTRE 33-34

FORES$ROES, $4C1 FOKESRLED, $CC
FORESRBSOEA, kBG4 REM NO BANNER
DISK!"IO ,@A31REM #4 PRINTER
FRINTCHR® (15) : REM CONDENSED
PRINTCHR®(27) 2 "C" e CHR$ (&)
CALLY2SZBAREM WAIT FOR KEY
D¥s REM PRINT DIRECTORY
FRINTCHR® (12) 5 sREM FORMFEED
GOTD S@iREM DO ANOTHER

TERM+  B7-11 DIR$
BASIC 15-18
MDDSET 22-23
BINRUN 38-38
FILBE 35-37

12-12 05650 13-13
BEXECS 17-18 CHGPAS 19-20
PGMFUN 24-24 XFER  25-26
CBMODE 31-31 L06 ON 32-32

14-14

Poge 43 PEEKIGS) Summer 1986



Letters to the Editor
Editor;

I just finished looking through the
latest issue of PEEK and decided it was
time for me to send my reader survey
form. 1 have had the letter hand
written for quite a while now, but
never got around to typing it in the
computer.

1 agree with your view of the OSI
video board being a stumbling block
to new software. 1 purchased a
Generic Color Plus video board about a
year ago and have been pleased with

it. The main advantage to this board is

that it works along with the OSI 540
board and it only takes a couple of
bytes of memory. However, as I
indicated in the survey, 1 would like
to sce mofe software available that
utilizes this board.

If a new graphics board is designed, I
would like to see a board similar to
the Color Plus but with an §@ column
display and 640x409 pixels. If we are
going to do something, we might as
well go all the way. 1 would like to see
possibly a software package sold with
the board. A bare board would be fine
with me.

As for ideas on a new operating
system, here are my ideas: (1) Include
a WINDOW command that would allow
you to jump back and forth between
windows. Also have the command put
a box around the window. (2) Include
the Color Plus code. (3) Include the
BSR X-1@ code for the home controf
system. (4) Include a CALL statement
to call different machine code
programs from BASIC without having
to reset the pointers: for the USR(X)
function. (5) If you are familiar with
‘the CA-20 board and manual, they
show some commands in the manual
from something called Process Control
BASIC. OSI said this BASIC was never
finished but some of the commands

would be nice. These inciluded a TIME

and DATE command for the on-board
clock. There were aiso commands for
the CA-22 board (analog/digital
converter board) which I use with my
temperature probe program. (6)
Include a full-screen editor. The

Page 44 PEEK[65] Summer 1966

CEGMON ROM had a nice editor and
also a good window system. (7) A
screen dump to printer wouid be nice
also. '

Good fuck on all your software
projects and hope to talk to you on
CompuServe.

John Schneider
326 Chestnut Street
Wheeling, WV 26003

Dear john,

Thanks for all of the suggestions. The
video board problem is going to be a
tough one to crack. Through PEEK, |
have been trying to inspire several
people to design a new board that will
see us through the foreseeable future,
but there is nothing imminent.

One crucial element in the design of
such a board is the resolution. It's
certainly going to have to be capable
of 80 columns for it to gain
widespread support in the OS]
community. After all, people arent
going to be willing to shell out a lot of
money for a new board and put up
with some inevitable software
incompatibilities unless there are
substantial gains to be had. I simply
don't  know enough
hardware to make any concrete
suggestions. All I can do is point out
what 1 consider to be minimal design
goals.

If you hardware wizards are listening,
please remember that the OSI video
community is largely made up of
people who are using televisions and
inexpensive monitors. Please make
sure that anything you design is
capable of composite video output. If
we make the upgrade too expensive, it
will never take hold.

Speaking of the video community, as I
mentioned in the article on the User
Survey, serial system owners almost
unjversally said they didn't care about
a graphics board. I think this is likely
due to the fact that they see no
benefits to a second display just for
occasional graphs. However, since
replacing the 540 board on video
systems would also necessarily mean
replacing the keyboard interface, this

about the

would seem to me to be a most
opportune time to make it possible for
OSI users to attatch one of the
replacement keyboards for the IBM
PCs which have been so widely
praised. If we oould produce a
combination video/keyboard upgrade,
we would be vastly increasing the size
of the potential market for this
hardware and thus lowering the costs
to all of us - not to mention making a

_quantum leap forward possible in the

software.

Rick

 Editor:

While I was filling out (the User
Survey), an idea occurred to me. On
the form, I requested that you publish
topics concerning changes to 0S-65D,
but I suddenty thought that while I
know 65D fairly well, I know
absolutely nothing about 0S-65U. Is it
possible that what I really want is
already in 0S-65U?

Anyway, maybe a brief descriptions
of the different operating systems and
a list of the different variations that
exist for each might be an interesting
topic for PEEK. If possible, could the
discussion for each system include
hardware requirements, features, and

peripherals supported?

A little history of my machine might
help explain my request: I ordered
my machine as a Challenger with 12K,
paper tape BASIC, and 430 cassette
board in June 1977. What was
delivered was one of the first
Challenger I1's (500 CPU, three 420C
boards, and 430 cassetie). Over the
years, I upgraded the machine with
video (first a 540, then a 546B-1) and
homemade keyboard, then added a
470-110 disk kit. Then | upgraded the
65F and 65A ROMs to a STGMON ROM
plugged into one of the BASIC ROM
locations with the required decode
logic on a piggyback board. I now
have two 8" drives, the original GSI
116 as drive B and a Siemens
FDD109-8 as drive A. I've also added
a D&N BIO-1600 with serial, paralell,
memory, and a battery backed-up
clock (on the Diablo port), a D&N
MEM-CM9 board with memory only,
and a 2K block of memory on a 426C




board addressed at $E800.

(As far as software is concerned), I've
gone from paper tape BASIC and
~ assembler to a home-grown cassette
tape block transfer program, to a tape
operating system (??) written locally
by another OSI user, to 0S-65D V1.0
(with handwritten directories) to
V2.0, to V3x, and finally to V3.3 last
year.

My dealer moved away about § years
ago to become the west ocoast
distributor for OSI, and then left OSI
entirely when MA/COMM bought OSI.
There are some questions I need
answered and few places to get them
answered.

I've tried some of the software that
came with 0S-65D V3.3 and some of it
doesn't work. For instance, (using) the
MODEM program after changing the
ACIA address to match mine, I
consistantly drop every other
character at 300 baud. I think that
most newer machines run at 2 MHz
while mine is old and runs at 1 MHz
(I've tweeked iit and found that it
runs reliably at 1.4 MHz and fails at
1.7 MHz. [ tried a 6502B, but can't get
it to boot at any speed, even .9 MHz1
think I have a couple of slow
memories or address decode chips).

The 0S-65D V 3.3 printer driver drives
me batty. I wrote my own driver in
the $E600 2K to perform the skip over
perforations, but '1 cant figure out
how to defeat the built-in driver. It
doesn't ever pass the TRL>C' to the
printer. This makes it hard to sub and
superscript and still have each page
start at the right place.

Where is, and how does the new
keyboard driver live and work? |
again had my own to handle uppoer
and lower case and «APS LOCK>. My
keyboard also has 63 keys, not 54, so
while I can handle it with V3.2, 33
expects other codes and my driver
won't work with 33. 3.3 is also
inconsistent between BASIC, and the
Assembler /Editor-Extended  Monitor,
the lower case only works with BASIC.

1 like my OSI, but after using a
PC~clone at work 1 miss some of the
features that MS-DOS has such as open
files on both drive A and dfive B at
the same time and dynamic file
creation without running CREATE or
including the same code in each

program.

Sincerety,

Alan G. Albright
2935 Hypoint Avenue
Escondido, CA 92027

Dear Alan,

Thanks for all your comments. To
answer some of your questions, the
leap from 0S-65D to 0S-65U isn't as
great as many people perceive. The
two share many fundamental design
principles. The core of the BASICs in
both operating systems is identical,
making the transition fairly easy once
you get familiar with the way 0S-65U
handles data files. My series last year
on this topic should help clear that up.
05-65U does answer your prayer for
the ability to have files open
simultaneuosly on different drives,
though. So do ook into it.

I think youre probably right in
sugpecting that your problems with
0S-65D V3.3 stem from your
non-standard hardware. However, I
don't think you've gone so far afield
as to make it impossible to overcome
them.

The MODEM program that comes with
0S-65D is very simple. For it to be
dropping characters at 300 baud is
extremely unusual. 1 can't tell from
your letter where the problem might
be. Most of my problems in this area
stem from the slowness of the
keyboard polling software in 3.3. At 1
MHz, 1 can see where you may really
run into trouble with it. My advice
would have to be to try to find a copy
of the 3.2 version of that program
(which OSI published in a couple of
places) or port the 3.3 version to 3.2.
The latter will require disassembling
the machine code, but it's short and
the only change you'd have to make
would be to change the JSR's to the
input and output routines.

Under V3.3, the keyboard poll is
located at $3590. Higher up in the
operating system, the 0S-65D dispatch
table still points to the old address of
$252B, but from there 3.3 merely
JSR's to a JMP to the real location
stated above. Going directly to $3590
will have no effect on any software
except for saving a few miltiseconds.

I don't know why youre having so
much trouble with the automatic
paging under 3.3. I have found,
however, that by NOT initializing it
with the PRINT*1,(?2,2?) command
(sorry, 1 forget the code) that I can
position the paper in my printer with
absolute accuracy. Try just cold
booting and see how it works without
intervention. The code for this resides
within the old keyboard polling
routine slightly above $252B, but if
you get that deep youll aiso want to
check the latches in the OUTCH routine
at $2343.

As far as the ASM/EM not accepting
lower case, you're absolutely correct,
although neither of those programs
would benefit greatly from the ability.
Oh sure, lower case in assembly
language programs can be heipful, but
not cruciai. Thankfully the rest of the
0S is case-blind.

Rick

Last Cail on Backissue Sale

The backissues of PEEK[65] contain a
wealth of information not available
anywhere else at any price. From
cassette systems to multi-user hard
disks, PEEK has been the source of
innovative support to the OS]
community since 1980.

If your library of PEEK backissues is
incomplete, now is the time to fill in
the holes in your collection. Backissues
are available from January 1981 to
date. Full year backissues cost $6.00
per set plus $3.00 shipping. Single
issues are $1.00 each plus $.75 each.
For muitiple set orders, reduce
shipping per set by 508. Order today.
This sale ends September 30, 1986.

Page 45 PEEKI65] Summer 1986



SOFTWARE FROM
PEEK!!

Term-Plus

A smart terminal progrem running
under 0S-65D V3.3 which allows
cepturing ond transmitting to and
from disk. Term-Plus also supports
error-free file transfers and cursor
addressing on CompuServe. Memory
size does not limit the size of files
that can be captured or transmitted.
Yideo systems get enhanced keyboard
driver with 16  programmable
charecter keys. 10 programmable
function keys on both serial and video
systems. Utilities included allow
translating captured text files into
0SI source formot for BASIC  and
Assembler  programs or into
WP-2/w%P-3 format, trenslating 0S|
source files into text files for
trensmitting to non-0SI systems, and
printing captured text files. Runs on
all disk systems, mini's or 8", except
the CIP-MF. $35.00.

Term-32

Same as Term-Plus, but for 0S-65D
V3.2. Yideo system support includes
enhanced keyboard driver, but uses
V3.2 screen driver. $35.00.

Term-65U

Patterned after Term-Plus, Term-65U
is o smart terminal progrem for
0S-65U {(all versions) running in the
single user mode. Allows capturing
text to disk files. Term-65U will
transmit text files, or BASIC
programs as text. The program will
olso send WP-3/Edit-Plus files as
formotted text ond. can transmit
selected fields in records from
'0S-DMS Mester files with sorts.
Includes utility to print ceptured text
files and convert them into
WP-3/Edit-Plus files for editing.
$50.00

ORDER TODAY!

Page 46 PEEKI65] Summer 1986

ASM-Plus

ASM-Plus is a disk-based assembler

running under 0S-65D V3.3 thet
ollows linked source files enabling
you to write very large programs,
regardless of system memory size.
ASM-Plus assembles roughly 6 to 10
times faster then. the 0SI
Assembler/Editor and is compatible
with files for that assembler.
ASM-Plus adds several assembly-time
commands (pseudo-opcodes) for extro
functionelity. Included is o file editor
for composing files that allows line
editing ond global searches. $50.60

Edit-Plus

word processor styled ofter WP-3-1,
olthough not quite as powerful.
Edit-Plus allows composing and
editing WP-3 compatible files ond to
have those files printed as formatted
text. Edit-Plus uses line-oriented
editing, as opposed to the screen
editing of WP-3, ond olso ollows
global search and replace. Edit-Plus
fixes problems in WP-3 including
pegination, inputs from the console,
and file merging (selectable line
numbers from the merged file).
Edit-Plus cen perform o triviel
right-justification, but it does not
support true proportional spacing.
Requires 0S-65D ¥3.3. $40.00

A program to insert fields from
0S-DMS Master files into WP-3
documents. Output con be routed to e
printer or to a disk file for printing
leter or for transmission via modem
using Term-65U. Insertions are fully
selectable and are properly formatted
into the output. Perfect for generating
form letters. $30.00

Data-Plus Nucleus

Date-Plus Nucleus is e replacement
package to the 0S-DMS Nucleus from
0Sl. All of the programs from the
original except SORT have been
duplicated and enchenced end new
softwere, the MC-DMS Interface, has
been added. The name "MC-DMS" stems
from the extensive use of machine
code support built into the utilities to
replace slower, BASIC code. Features
include; (1) MC-DMS Interface code
supports up to B Master files
simulteneously without requiring

OPEN/CLOSE commends under Level 3
ot every file access. The only 65U
softwore support needed for Level 3
file access is semiphores. This
produces o significant increase in
speed. READ, WRITE, and FIND
commands operate on the field level.
FIND skips over embedded garbage
between fields eliminsting the need
for embedded blanks, and
outomatically stops on the last record
in the file. (2) Meachine code DIR
utility. Ultre-fast. Automatic paging.
C interrupt. Con selectively list by
file type or cen seerch for file name
matches with wildcards. {3) Machine
code file monoger. Creotes, deletes,
or renames files in a flash. The file
manager is linked to the Master/Key
file creation utility. (4) Machine code
file transfer/merge. Grabs up to 30
records per pess. Single/duel drive.
Fully selectable field specifications.

Also allows searching for matches in
source ond destination files for linked
merges. (S) Machine code single/dual
drive floppy diskette copier. Moves up
to 7 tracks per pass. {6) Disk-based
mailing label printer. Stores printing
formet designs on disk. Selectable
fields ond record range, Key file
occess, sesrches, ond more. (7)
Disk-based report writer. Stores
report formet designs on disk. Seme
features as above, but with formeatted
columns by type and width. (8)

"Edit-Plus 65U. Most of the same

features as the 65D version. Suitable
for correspondence and form letters.
(9) Doto-Plus Mail Merge. Complete
documentation allows implimenting
the MC-DMS interface into your own
applications. $150.00



SHORTEST HEX/DEC-DEC/HEX
GOSUB VERSION

By: R. N. Hislop
5B Awatea Street
Porirua, New Zealand

As a follow-up to my HEX/DEC:
DEC/HEX conversion that you
published in the Dec. '84 is-
sue, here is an even shorter
version which is excellent for
use in GOSUBs, and a Stand-
Alone version too.

STAND-ALONE PROGRAM

RUN3

L=ASC(HS$)-48:L=L+7*(L>9):

N=N*16+L:HS$=MIDS (HS$,2) :

IFH$GOTO1

2 A=INT(D/16) :B=D-A*16:HS=
CHRS$ (B-7* (B>9) +48) +HS$:D=A:
IFDGOTO2

3 PRINT"***DEC="N"HEX="HS:

PRINT:INPUT"HEX,DEC";HS,D:

N=0:PRINT:GOTO1

==

GOSUBs SHORTEST HEX/DEC or
DEC/HEX Conversions?

B RUN1O

1 L=ASC(R$)-48:L=L+7*(L>9):
N=N*16+L:RS$=MIDS(RS,2):
IFR$GOTOL

RETURN

A=INT(D/16) :B=D-A*16:R$=
CHRS$ (B=7* (B>9) +48) +R$:D=A:
IFDGOTO3

4 RETURN

wN

Watch This

[ =]

@ PRINT"LINEs 1 & 3 are used
in normal way. Have N=0@:
just

11 PRINT"prior to GOSUBl and
R$="": prior to GOSUB3.

12 PRINT"Do not use as vari-
ables elsewhere in program

14 PRINT"L,RS$,N,A,B,D

15 PRINT"LINEs 100 and 208
just for testing. RS$ and D
would

16 PRINT"derive from program.

17 :

180 PRINT:INPUT"HEX=";RS$:
GOSUB1:PRINT, "DEC ="N:
N=@:L=0:G0T0100

158 :

200 PRINT:INPUT"DEC=";D:

GOSUB3 :PRINT, "HEX="RS$:

R$="":B=0:G0TO0200

RUN 10

LINEs 1 & 3 are used in normal
way. Have N=@: just prior to
GOSUBl and R$=: prior to
GOSUB3. Do not use as vari-
ables elsewhere in program
L,R$,N,A,B,D. LINEs 100  and
20® just for testing. R$ and
D would derive from program.

- Space Grow!

Page 47 PEEK[65] Summer 19686



PEEK [65]

PO Box 586
Pacifica, CA 94044

415-359-5708

DELIVER TO:

GOODIES for U5l Users)
PEEII Go)

The Unotficial 0S| Users Journal

( )} C1P Sams Photo-Facts Manual. Compléte schematics, scope waveforms and board photos. All you

Bulk Rate
U s Postage
PAID
Pacifica, CA
Permt *a2
2ip Code 94044

need to be a C1P or Sll Wizard, just $7.95 $
{ )} C4P Sams Photo-Facts Manual. Includes pinouts, photos, schematics for the 502, 505, 527, 540 and
542 boards. A bargain at $15.00 $
{ ) C2/C3 Sams Photo-Facts Manual. The facts you need to repair the larger OSI computers. Fat with $30.00 $
useful information, -but just
( ) OSI's Small Systems Journals. The complete set, July 1977 through April 1978, bound and reproduced
by PEEK (65). Full set only $15.00 $
{ ) Terminal Extensions Package - lets you program like the mini-users do, with direct cursor positioning,
mnemonics and a number formatting function much more powerful than a mere *‘print using.”” Requires
85U. $50.00 $
{ ) RESEQ - BASIC program resequencer plus much more. Global changes, tables of bad references,
GOSUBs & GOTOs, variables by line number, resequences parts of programs or entire programs,
handles line 50000 trap. Best debug tool I've seen. MACHINE LANGUAGE - VERY FAST! Requires 65U.
Manual & samples only, $5.00 Everything for $50.00 $
{ ) Sanders Machine Language Sort/Merge for 0S-65U. Complete disk sort and merge, documentation
shows you how to call from any BASIC program on any disk and return it or any other BASIC program
on any disk, floppy or hard Most versatile dnsk sort yet. Will run under LEVEL |, I, or 111, lt should cost
more but Sanders says, “...sell it for just... $89.00 $
{ ) KYUTIL - The ultimate OS-DMS keyfile utility package. This implementation.of Sander's SORT/MERGE
creates, loads and sorts multiple-field, conditionally loaded keyfiles. KYUTIL will load and sort a keyfile of
over 156000 ZIP codes in under three hours. Never sort another Master File. - $100.00 $ -
() Assembler Editor & Extended Monitor Reference Manual (C1P, C4P & C8P) $6.95 &
() 65V Primer. Introduces machine language programming. $495 ¢ . .
()} C1P, C1P MF, C4P, CAP DF, C4AP MF, C8P DF Iniroductory Manuals ($5.95 each, please specify) $595 $
( ) Basic Reference Manual — (ROM, 65D and 65U) $5.95 §
( ) C1P, C4P, C8P Users Manuals — ($7.95 each. please specify) $7.95 %
( ) How to program Microcomputers. The C-3 Series $7.95 $
.
() Professional Computers Set Up & Operations Manual — C2-OEM/C2-D/C3-OEM/C3-D/C3-A/C3-B/ $8.95 § -
C3-C/C3-C’
TOTAL $
CA Residents add 6% Sales Tox s
C.0.D. orders add $1.90 S
Name Postage & Handling S_ﬂ.
Street TOTAL DUE $

CityA State Zip POSTAGE MAY VARY FOR OVERSEAS




