
r

IIEE
The Unofficial OSI Users Journal

1819 aay Ridge Ave. , Suite 220
Annapolia, MD 21403

Column One
Al Peabody

PEEK(6S) continues to gr ow . I am amazed
at the respons e we have had t o the first
two issues. Amazed and encouraged and
delighted. Someone complained in a letter
that ther e had been very little for
CIP' ers except promises in the first two
issues. This issue is a veritable elP
feast. Please do not write l etters
complaining ahout 8 lack of features for
C3 users. Write an article or a letter
instead.

Letters. Last issue , a reader asked what
could be done about the "string handling
bug." I could have thought of something
terribly wise to say about how it was a
Garbage Collection problem and let it go
at that. Instead, we threw the question
open to our readers. and have a very
scholarly article with a solution. plus a
letter with another solution. and I even
had a phone call from a C4P user who says
his machine, purchased just this February.
doesn't have the problem. I learned my
lesson. From now on, PEEK(65) will not
attempt to answer "problem" letters .
Turns out. you guys out there know far
better than we how to solve each other's
problems. All that is needed is a forum,
and that we can provide. •

rEEK(6S) is moving. Beginning April
First, perhaps symbolically, our address
will be 1819 Bay Ridge Avenue. Suite 220,
Annapolis. HD 21401. We have simply
outgrown our present quart ers. But please
do note the date of the move. Mail sent
to us at the new addr ess before April
First may be lost or returned. Mail sent
to the old address wil, of course, be
forwarded, if not by the Postal Disservice
then by the new tenants.

And do
coming.

keep those cards and letters
I cannot emphasize enough how

Editor: AI Peabody
Tech Editor: Dick McGuire
Contributing Editor: Corky Kirk
OSlO Editor: Wallace Kendall

necessary that is. PEEK(6S) will be
useless if I have to write it alII

One more thing. If what you want to send
in is a program or memory dump, do us all
a favor: send it in ~ or printed with
a nice clean black ribbon. Third-genera
tion photocopies of printouts which were
done with last year ' s ribbon print j ust
awful, and if old fatfingers the editor
tries to retype your 300 lines of machine
code, why, there's just bound to be at
least three fatal typos before I'm through.

Tech Notes
Dick McGuire

BASIC - DOS Interface Subroutine The OS65-
U manual gives, as an example of machine
code - BASIC interfacing. a description of
how to use the DISK I/O under programmer
control inst ead of the usual PRINT XCD
instruction. One might well ask, ''Why?''.
There are several reasons. The main
reason I have used it in the past is to
reduce or eliminate contention for the
buffer in Q~65-U.

BASIC can handle up to seven channels at
oncej however there is only one buffer. A
program which reads from one file and
writes sequentially to another will suffer
from this buffer contention unless the
programmer uses the DOS subroutine . A
very good way to use it is to establish a
buffer of appropriate length at the top of
the workspace BEFORE any string variables
have been declared. This is done by
POKEing 127, 129 and 131 with a page
number 'which represents the new top of

·'memory. In a 48K system the normal top of
mem~ry is at page 188. One page is
equlvalent to 256 bytesj therefore if one
wanted a buffer 1024 bytes long the new
values for the three POKEs would be 184.

The progra.mer could then load this buffer
by POREiog stuff up there or printing to
memory (PRINTI4). When he vanted to write
tbe buffer out to the disk be could invoke
the subroutine belovo

Before doing that however; a few things
need to be done. The programmer must find
the location on the disk where he vants to
write the buffer. This location (called
DA in the subroutine above) is the INDEX
intQ the file plu. the Disk Address of the
st'ct of the file plus 16 bytes. The
following subroutine will find the DA of
the begining of file XN$ as DA. Both of
these subroutines use a buffer which
starts at 45056 .pecified as RA (RAM
Address) and will read or write HB (Number
of Byte.) bytes . The variable IV
determines whether a Read or a Write is to
take place. o-read; l-wTite.

There are several things to watch out for .
The first is t o be sure that you are
r eading from or writing to the correct
place on the correct disk . This
subroutine doesn~t bother with such
trivial things as OPENing or CLOSEing
files. It read from or writes to the
location it is told to. no matter what.
Another problem i. that the subroutine
hiccups a little when it crosses track
boundaries and may lose a l ittle data.
Doe. anyone know why or haw to fiz that?

34200 IlEH SUBROUTINE TO FINn BEGINING OF FILE lUiS
34300 DEV DV$O) :OPENIfDIREC*" J ''"PASS". 3
34400 FIND KN$,3
34500 A·INDEX(3)+25
34600 DA-25088:NB-512:AR-45312:RW-o:GOSUB 35100
34700 CLOSE 3

(lossy ADs
FOR SALE OR TRADE - Honeywell Xeytape
Sy.tem #7 15. consists of #901 ~eyt~pe,
#112 High speed Printer and Commun~cat~ons
Adaptor with RS232/DP25.
Interface - Best offer over $800 or viII
trade for 1??
I also have an Ohio CD2P Di.k Drive with
interface. retail $1599, but will
sacrifice for $1200. A UByte 8 ft power
supply and ten slot S-IOO Hotber Board in
.. all cabinet for $250 and a Z-80 CPU
kit/S-100 board for $150 (both for $350).
All of the above including manuals. Write
Bill Reid. 7259-B Nestle Ave., Reseda, CA
91335. No phone calls please.

SOFTWARE FOR OSI CIP or Superboard on
ca •• ette: Tank attack 4K, Tic-Tac-Toe 4X,
Bingo 8K $5.00 ea. Di.assembler 4X $7.00.
Inat. and .ource listing incl. Write:
J . L. Smith, 11201 Crestfield Dr ..
Huntsville, AL 35803 .

COLOR GRAPHICS for the Ost challenger IP
or auperboard II
Detail. on aodifications that will enable
you to operate in several color graphic
model (8 colora plus black). Eaay
inatallation. Includea color-video game
for demonatration aod checkout that will
run on sylteas with 4K RAM . Law-COlt
hardware not included. Send $8 .65 to S.
Hoffman, 873 Dorset Dr., Knoxville, TN
37919.

34800 Q-45312+A:DA.PEEK(Q)*256+PEEK(Q+1)*65536+PEEK(Q+2)*16777216
34900 NB.PEEK(Q+3)*256+PEEK(Q+4)*256+PEEK(Q+5)*256

r
_____J

35000 RETURN
35200 POkE 8778,192: POkE 8779,36
35300 POkE 9432,243:POkE 9433,40
35400 POkE 9435,232:POKE 9436,40
35500 CB'9889
35600 DU.INT(DA/16777216):RH.DA-DU*16777216
35700 DH'INT(RH/65536)
35800 RH·RH-DH*65536
35900 DL'INT(RH/256):RH'RH-DL*256
36000 POlE CB+1,RH:POKE CB+2,DL
36100 POkE CB+3,DH: POKE CB+4,DH
36200 Q-256
36300 POlE CB+5,NB-INT(NB/Q)*Q:POKE CB+6,INT(NB/Q)
36400 POlE CB+7,AR-INT(AR/Q)*Q
36500 POKE CB+8,INT(AR/Q)
36600 ER'USR(RW)
36700 IF £R'O THEN RETURN
)6800 IF ER<>OlllENPRIHT "DISK ERROR # II;ER

MULTIPLE KEY FUNCTION -This small utility
(206 bytes; 11 lines) permits certain keys
to be used as words in program.ing. You
no longer have to type out FOR, THEN,
POkE, COTO ect.; Si.ply type one key. It
ia like using a flt ft for the word PRINT.
It can eaaily be modified for any number
of different words. Thi. program listing
con.iats of eleven lines written in OSI
BASIC. Operating instructiona for .11
.y.tema are included with this utility
program. Price: $1.50. Send to: Jamea
Beneke. 12 Kent Drive, Orchard Park. NY ' r
14127.

L-- T

\
I

CHECKSUM LOADER - Written in basic this
program will poke checksum values into
data statements before loading to tape,
and read them back for verification after
the program is loaded. Will identify
errors by line number . Occupies lK.
Loads over existing programs. $8.95
postpaid .
SCREEN COLOR AND CLEAR - Machine language
program. Fast color background and screen
clear . Choose the color of your choice or
screen clear with two POKES and X-USR(X).
Both cor esident in memory. $5 . 95
postpaid.
AU programs with
documentation : Stan
Sedalia St., Aurora, CO,

listing
New, 7236
80016

TH E STRlIm HANDLING BUG REPAIRED!
By Stan Murphy ~
Seattle, WA V

THE PROBLEM:

and
So.

Strings that are not defined between
quotes in a BASIC statement are stored in
the "string space" at the top of memory.
For example, A$",,"A" is stored in the BASIC
statement. However, INPUT B$ puts B$ in
the string space with pointers to B$
stored in the BASIC variable table.

Suppose the following progran is run.

20 C$-'''' :A$-"A"
30 INPUT K
40 FORI-ITOK: C$-C$+A$:NEXT

C$ is now K bytes long and takes K bytes
to store. However, we have "used"
K(K+l)/2 bytes of memory in generating and
storing C$. Thus, in the above program,
if Ka 255 (the maximum string length), we
need 255 bytes to store the final C$ but
we have tried to use 32,640 bytes!
Available memory vanishes very quickly if
a program contains repetetive operations
of this kind .

A memory rearrangement is needed if memory
is to be properly utilized. This is ac
complished through the Garbage Collection
(CC) routine. This routine is called by
BASIC when the string space is full. The
GC relocates the valid strings bac~ __ t.o_~he

top of memory and defines new pointers in
BASIC variable space. Using the above
numeric example, after GC is executed,
32,385 bytes of memory have been recovered
for further use.

OSI's BASIC in ROM GC routine works fine
for programs containing numeric variables,
string variables, and numeric arrays. The
above program can be run on the smallest
memory machines without a problem.
However. if the program also contains a
s t ring array, then the internal GC will
not work properly, If, for example , we
add the following line to the above
program,

10 DIM 1$(6)

and K-255, the internal GC will cause the
screen to "pulse" several times at a 1.6
second period as the GC routine walks
through memory. This pulsing is char
acteristic of GC failure along with a
"dead" keyboard . Extraneous charactacters
may show up on the screen and the BASIC
program may be altered. The execution
time without line 10 is under 2 seconds
and exceeds 12 seconds with line 10. If
the program is entered exactly as written,
the pulsing may continue until the
computer is reset. Even if the program
finally executes. C$ is not placed
properly at the top of memory.

A more general program to
demonstrate the GC problem is:

10 INPUT Q,K
20 DIM L$(Q)
30 FORI-ITO Q
40 FORJ-ITOK: L$(I)-L$(I)+CHR$(64+J)
50 NEXTJ
70 PRINTL$ (I).I:NEXTI

Here a first order array with dimension Q
is established. Each element is formed
from the ASCII code starting at A and
contains K symbols. For K=26, each
element of the array contains the upper
case alphabet in order. At the conclusion
of filling each of the array's Q elements
with K symbols the element is printed
foll?Wed by the element number.

For an OSI BASIC in ROM machine with 8K of
memory, and K-26, the program will run for
Q<=18. If Q exceeds 18 the GC routine
fails. Similarly, if K*"62 , failure occurs
for Q>3 . 3

CIRCUMVENTING THE PROBLEM:

Ideally, one would like to correct the
errora in the ROM program. One could
reprogram a 2716 EPROM with the correct
code and substitute it, after some wiriDg
changes, for the incorrect ROM. This is
Dot a simple solution to execute . There
is, fortunately, a simpler approach that
is useful.

The enclosed listing is a BASIC program
that, when run, places a corrected GC
program at the top of memory. It protects
the program from being written over by
other BASIC programs. It a180 sets USR
function pointers so that the program can
be called by X-USR{ X) • Fins 11y it
displays on the screen two useful pieces
of information. It provides 8 POKE
statement that may be needed to reset the
USR pointers if they are changed by
another program. It also provides, in
decimal, the LOCATION of the GC program
called by USR(X).

The .teps to use this appr osch are
&8 follows:

1. Cold start
2. Load the program

4

3. Run the program ONCE. (each time the
program is run after cold start "memory
available ll is reduced in increments of the
program length) Run time is about 15
seconds.
4. Record the POKE data and LOCATION data
for future use
5. Type NEW and LOAD the program to be
run that contains string arrays
6. Insert X-USR(X) in the program after
each major concatenation to call the
corrected CC. Place the POKE statement
before this call if USR(X) is used
elsewhere in the program to be run.

Take the general program listed above.
Add the following line:

60 X-USR(X)

This cleans up the garbage left after the
completion of each string array element,
LS(I) . With this addition, an 8K machine
with J-26 will now operate for Q-75
instead of 3 &8 before . For J-26 the
program will operate for Q over 200 .
Unfortunately, after 50 or 60 elements are
generated, the progr am slows down
noticeably since the CC is moving a large
number of strings. This is the penalty

paid for being forced to call the GC more
frequently than is necessary. It is
better to err on the side of conservatism
because if the internal GC is triggered
the program Bombs.

LIST

10
20
30
40
50
55
60
70
BO
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

X-PEEK (133):Y-PEEX (134)
L-256*Y+X:L-L-262
Y-INT (L/256) :X-L-256*Y
POKEI33,X:POKEI34,Y
POKEll,X:POKE12,Y
PRINT"POKEll,";X;II:";POKEI2,";Y
PRINTL; :A-453B3: B-45644
K-L: FORI-ATOB
IFI<>A+34THENIOO
M-K+146:GOT0230

IFI<>A+159TMENI20
M-K+14O:GOT0230
IFI-A+67THENPOKEL,4:GOT0220
IFI<>A+B4TMENI50
M-K+209:GOT0230
IPl<>A+137THEN170
M-K+146:GOT0230
IFI-A+216THENPOKEL,2:GOT0220
IFI-A+217TMENPOKEL.24:GOT0220
IFI<>A+26ITMEN210
M-K+4:GOT0230
X-PEEX(I):POKEL.X
L-L+l : NEXT :PRINT"LOCATIONII : END
Y-INT(M/256) :X","- 256*Y
POKEL, Y :POKEL-l,X
GOT0220

RESEQ 5.1 MAGIC RESEQUEfiCER --$50

Written by Jim Sanders

Machine Language Resequencer which:

Resequences programs under as 65U
Handles line 50000
Generates complete diagnostic tables of

all variables used, by type and line I
Removes REMs and Spaces if desired
Makes Clobal Changes if asked
Detects and displays bad references
Makes diagnostic tables only if asked
Comes with complete documentation.
DBHS,Inc. 62 Southgate Ave., Annapolis,
MD 21401: Please Send RESEQ to:
NMm, ________________________ __

~R:. ________________________ __

CITY, ______________ ST zP. _______ _

Me/VISA U ________________________ _

Expires : ______ ,SIG: ________ __

C2-C3 TIME SHARmG

Jeff Beamsley
Tek-Aids Industries Inc.
44 E. University Dr.
Arlington Heights, Ill. 60004

Did you know you can time share on ~ C2
or C3 serial computer under 05-65U LEVEL
11 You can by using the program MULT~
your 0565-U disk. with CIP's Or C4P's 88

intelligent terminals. Let's look closer .

The Ohio Scientific Levell Multi-Terminal
Operating System is B very simple
implementation of a time shared system.
It allows up to 16 serial devices with
some level of local intelligence to share
the resources of a disk-based system. In
the version that is delivered by Ohio
Scientific, ItMULTI" on the Levell 05-65U
disket t es, the common shared resources are
the floppy disk drive. through the Land S
~ommands. and a printer, through the P
; ommand. You are not limited to those
commands, however . The "MULTI" program
is written in Basic and the structure of
the program is very straightforward . The
addition of new commands as well as the
modification of existing ones is very easy
as a result . The same cannot be said,
however, for the hardware construction of
the system . The documentation in this
area is at best ambiguous . Beyond thst,
if you attempt to constr uct the system as
the Level I documentation implies there is
a fairly good chance that it won't work.
In the following paragraphs 1 will
describe the theory of operation of the
Level 1 system, one possible hardware
implementation of that system, and an
example of the installation of an
additonal command.

The theory of operation of the Level 1
system as well as the recommended
hardware implementation is covered in
considerable detail in the Ohio Scientific
Multiple User Computer System Manual.
This article is not intended as a
substitute for that manual, but rath~r an
addition to it.

6

The Level I system is based on the Device
#8 I/O driver, the CIS function of the
ACIA, and the REM statement in Basic. The

' Device #8 I/O driver for the CA-IO
multiple serial I/O port board has several
unique features. When an "INPUT #811

occurs, the input driver will scan all of
the possible 16 serial ports on the CA-10
board until it receives an input from one
of them. It will then POKE the
appropriate input aod output locations to
communicate with that active port . This
feature relieves the programmer/operator
from worry over which port msy be active
at anyone time. The next active port in
the order of the scan will always be the
next one accessed. This would seem then to
be a great way to run a multi-user system.
A problem arises. however. when two ports
are active simultaneously. The software
can service only one port at a time and
will continue to service that port until
it is done communicating. There has to be
some way of preventing transmission from
all of the other potentially active ports
until the currently active port has
concluded its conversat i on. This is
accomplished in hardware by toggling the
CTS line (pin 24) on the ACIA's of each of
the intelligent terminals communicating
with the CA-IO board in the host system.
The CTS line mus t be low (0 volts) for
the intelligent terminal to put a
character into its transmit buffer for
transmission. If we tie that line in each
of the intelligent terminals to a line
that we can control from the host machine.
then it is possible to communicate with
one active port at a time and not lose any
data from the other potentially active
ports. The Levell sys tem uses the RTS
line (pin 5) of the ACrA's on the CA-10
board to do this toggling.

The final problem arises at the
intelligent terminal end. Assuming that
we are using IIBASIC-IN-ROM II machines
populated with a serial port. it is no
problem to turn that serial port on or off
through software. It is treated the same
as a cassette port via the LOAD snd SAVE
commands. The method of passing commands
back snd forth through that port to the
host system once that port has been
IISAVEd" on is not clear given the limited
capabilities of the BASIC-IN-ROM machine.
The command should be executable from the
immediate mode,
commands ths t
immediate mode

but there are only a few
can be executed in the
that won't result in a

T

syntax error. All but one of them cause
some action that might not be appropriate
for terminal-host communication. REM is
the perfect candidate for a
command-passer. It requires no action on
the part of the terminal and it places no
restrictions on the format of the command
used to pass information to the host. We
will take advantage of this flexibility
when we add additional commands.

So there you have it. The Device #8
driver scanning the ports for input.
The Level I software simultaneously
toggling the CTS lines of the intelligent
terminals with the RTS lines of the
CA-IO's ACIAs. The instant the Level I
software receives the uRu of REM it locks
on to that port and looks for a space and
the appropriate command (L,S, or P). It
then looks for another space and the name
of the file to be handled . From there it
is all downhill .

I have made several choices in this
hardware implementation. For the sake of
brevity let's discuss only the 502 board
based intelligent terminal. There are
several unique problems with
implementation of this type of system on
earlier BASIC-IN-ROM systems, but none are
insurmountable. Also I recommend that the
clock used for the Level 1 transmissions
come' from the CA-10 board rather than
attempting to generate it internally in
each of the intelligent terminals. For
BASIC-IN-ROM machines this method has the
distinct advantage of maintaining cassette
compatibility for "off-lineu use .

Let ' s follow the convention of the Levell
manual and configure the CA-I0 board
first. The RS-232 transmit and receive
data are already at the connector. All we
need to concern ourselves with are the RTS
and clock signals. Ohio Scientific
recommends the use of the CA-IO's spare
7417 output drivers to buffer the RTS
lines from the ACIAs. It has been my
experience that these drivers are very
sensitive to line length and environment.
Unless you are going to populate all 16
ports on the CA-I0 board, I would advise
use of the 1488 drivers to buffer
addtional lines coming off the board. If
you run out of 1488 drivers, it is not
very difficult to install them in the
unused 7417 sockets and rewire the board
appropriately. One thing we do need to
keep in mind with this approach is the

inversion that the 1488 driver introduces
in the RTS signal . Depending on the number
of intelligent terminals in the system,
you might also have to be concerned about
the fan-out of the clock signal line. I
usually limit the number of terminals tied
to one 1488 clock driver to 4.

As the number of intelligent terminals
connnected to the CA-lO board increases,
so do the problems of cabling . I
recommend that the RTS signals be run to
the spare grounds seperating each ACIA's
I/O (pins 4,7,10,13, etc.). The free
grounds can be bussed externally to pin 1.
I also suggest that the clock be run off
the J2 extension connector on the outside
edge of the board (pins 50-61). This
keeps those signals out of the inevitable
jumble along the top of the board and
makes bussing those signals much easier .
As a final note on cabling, I would also
suggest that you use an intermediate cable
connector (Molex works very well) between
the board and the individual DB25S
connectors. This allows you to
the cables separately and makes
easier to remove the CA-I0 board
system.

construct
it much

from the

Modification of the 502 board is similarly
straightforward. There are only three
general functional blocks that require
attention . First the RS232 transmiter and
receiver must be populated. Then we need
to buffer the incoming RTS and clock
signals. Finally some attention must be
paid to how the system can be best cabled
to allow easy transition f r om Level I I/O
to cassette and back.

The construction of the RS232 transmitter
and receiver is covered in some detail
under procedure II of the "Modifications
to 502 Boards" section of the Level 1
manual . There are also two foil cuts and
a jumper that must be made per procedure
V. The first cut prevents the output of
the synchronous output driver, U4l pin 2,
from affecting the output of the RS232
output driver . The second cut and jumper
wires the -9 volt side of the RS232 output
driver to ground. This is necessary
because the BASIC-IN-ROM machines don't
have a -9V supply. If you are
contemplating using this serial interface
in ~.pplications other than the Level 1
system where the -9 volt swing on the
RS232 output would be important (e.g. a
local printer). don't make this

7

modification. Wire the -9 to a spare pin
on the DB25S connector instead and use
the same method we will describe later to
connect it to ground when in the Level I
mode. This leaves you free to "steal"-9
volts and get it into the machine for some
other application. U20 should also be
populated if it isn't already .

There is foil on the board for buffers for
both the RTS and clock signals. The
component values for both of these
receivers are the same as those for the
RS232 receive data buffer Q4. Procedure IV
of the Level I manual instructs you to
bypass an inverter on the ACIA SP.I
buffer. Because of the inversion we
received on the CA-lO board from the 1488
driver, this is unnecessary.

At this point we have all the proper
signals coming into the board. Now we need
to determine how to route th ese signals to
allow us to use the machine on-line in a

Level I system and off-line as a cassette
machine. There are three signals that
determine what state the BASIC-IN-ROM is
in. Receive Data is coming either from
the cassette interface or the Level 1
RS232 input buffe r. The clock is being
generated either internally or on the
Level I CA-lO board. Lastly, the CTS
signal is connected either to ground or
the RTS line from the CA-IO board. One
approach that is certainly valid is to
mount a 3PDT switch on each BASIC-IN-ROM
machine with each of the three signals as
a pole and one throw the Level 1 mode and
the other throw cassete. Switches of this
type are not cheap, however, and you still
have the problem of accidental switching
and proper switch polarity for each mode
of operation . A somewhat less expensive
method that insures the proper signals
are in place for each mode of operation is
available using the unused pins of the
DB25S connector to route the signals. One
possible pin-out of a DB25S socket using
this idea is the following.

Pin Number Signal Name

2 RS232 Receive Data
3 RS232 Transmit Data
5 RTS
7 Ground
19 Level I clock
20 Cassette clock
21 System clock
22 Level I clock (TTL level)
23 RS232 Receive Data (TTL)
24 System Receive Data
25 Cassette Receive Data

3

J3
I
2
3
4
5
7
~

8
9
10
II
12

Now if we wire pin 21 to 22 and pin 23 to
24 in the DB2SP cable that connects the
BASIC-IN-ROM machine to the CA-10 board,
all the proper connections for a Level I
system will be made when the cable is
plugged in. Further, if we construct a
dummy DB25P plug with pin 20 wired to pin
21 and pin 25 connected to pin 24 and
plug it in, the BASIC-IN-ROM machine will
be able to read and write cassettes.(Note:
the RTS signal floats high when not
connected and effectively grounds CTS
permitting transmission.}

The cabling of this end of the system
requires some care . I recommend using the
J3 connector for all signals coming into
or out of the 502 board. J3 pin 8 through
pin 12 are available for DB2SS pin 21
(System clock) through DB25S pin 25
(Cassette Cl ock). The spare ground of J3
pin 6 can be used for the remaining
signal on DB2SS pin 20 (Cassette Clock).
The following cable diagram summarizes
this configuration.
Procedure I of the Level I manual
describes the modifications required to
connect RTS to CTS (refer to 502 schematic
page 7 of 12) . The board also provides a
convenient area to wire the clock switch
(W2 on the 502 schematic page 7 of 12) .
The System Receive Data switch is not
documented in the schematics . though there
is also an optimum spot to wire it. That
spot is located at a feed-through directly
above U12. The foil going from that
feed-through to ACIA pin 2 represents
System Receive Data. The foil leading
from that feed-through on the parts side
to U20 pin 2 represents RS232 Receive Data
(TTL) . The foil leading from that
feed-through on the foil side to U23 pin 5
represents Cassette Receive Data. Some
foil cuts and jumpers will easily install
this switch. This completes the
modifications necessary to install a Level
1 system .

Pin CA-lO Port I
RS232 Receive Data -------- 2 RS232 Transmit
Ground -------------------- I Ground Buss
Level I Clock ------------- 50 Level I Clock
N.C.
CTS ----------------------- 4 RTS
RS232 Transmit data ------- 3 RS232 Receive
Cassette Clock ------------ i
System Clock -------------- I
Level I Clock (TTL) ------- ,

\ RS232 Receive Data (TTL) i --
System Receive Data ------- ,
Cassette Receieve Data , ----

The operation of this system is well
described in the "Mul ti-Terminal
Timesharing Executive" portion of the
Level 1 manual. The Executive program.
MULTI. is the key to its operation. This
program is written in Basic so it is
easily modifiable. The current commands
implemented are L(oad). S(sve). and
P(rint). As an example of the flexibility
of this system let's add an additional
command. The current system allows
printing of program listings only. Let's
add a command to print data called D(ata).
The MULTI program is roughly structured
into three parts. The first two set up
the variables for the system and look for
the REM statement that initiates
communication. The third decodes the
commands. This is the only area of the
program that requi res any change to add
an additional command. The listing below
of the D(ata) command is a simple
modification of the existing p(rint)
command . The only unusual restriction
placed on the transfer of data to be
printed by this program is that the string
"OX" will terminate data transmission.

731 IF C$ ()"D" GOTO 740
732 PRINT "PORT";N; "PRINTING DATAII
733 PRINT IDV: PRINT #DV."FROK TERMINAL";N:

734 INPUT#8,S$, M-PEEK(TNl/2
735 IF NO M GOTO 120
736 IF S$·<)"OK" THEN PRINT#DV. S$
737 GOTOlJO

This command differs from the implemented
commands because it can be initiated
under program control from the
BASIC-IN-ROM machine. An example of how
this might be done is included below.

5 FLAG-517
10 POKE FLAG.l
20 PRINT"REM D"
30 FOR X-I TO 10
40 PR INT X
50 NEXT X
60 PRINT "OK"
70 POKE FLAG, 0

I
(Turn on SAVE mode)
(Output command)

(End transmission)
(Turn off SAVE mode)

This program will print out numbers 1 to
10 on the Level 1 printer. This is a
simple example and there is no prov1s10n
to insure that a BASIC-IN-ROM machine in a
Level 1 system using this command
teminates its transmission with the proper
string. There is also no provision to
prohibit the BASIC-IN-ROM machine from
keeping control of the Level 1 machine

through this command for an inordinate
amount of time. Both of these problems
are fairly easily solved with tools
present in the standard MULTI program.
Careful study of the Level 1 listing will
reveal those tools.

Several other useful commands that
would greatly increase the power of the
Level 1 system are F(ile), a command to
dump data into the BAStC-tN-ROM machine;
R(un), a command that will both load and
execute a program file; C(reate), a
command to allow creation of program and
data files from the BAStC-IN-ROM machine;
and E(rase), a command to erase program
and data files. Another useful utility
would be some sort of "mailbox" system to
allow one BAStC-tN-ROM machine in the
Level 1 system to talk to another using a
file or series of files on the host's
disk. Each of these commands can be
implemented in the MULTI program. Some
are obviously more complicated than
others, but they are all possible.

The Ohio Scientific Level I system has
great application in the educational
market where this type of BASIC-tN-ROM
machine network can greatly speed machine
throughput. Educators who are adventurous
enough to delve into some of the command
structures discussed will also find the
Level 1 system an excellent tutorial in
the construction of operating systems.
This type of application is really only
the begining for this network. Depending
on the BAStC-tN-ROM machine that is used,
the "per-user" cost for Level 1 systems
can easily drop below $IK. With some
work. in fully populated systems. the cost
per user can approach $.5K. These days it
is very difficult to purchase just a CRT
terminal for less than $.75K. much less an
intelligent terminal in a time-shared
network. Some very obvious applications
come to mind quickly. These Level 1
networks can be used as data collection
terminals in a production environment.
One terminal at each workstation. for
example, recording parts used or, in
conjunction with the real-time clock,
production time per piece. In hospitals
and nursing care homes. these networks can
be employed to update patient information
and disseminate instructions. In those
types of institutions. these networks have
the added advantage of logging all
inquiries and information transfers and
can optionally be used. in conjunction
with the real-time clock, to log employee
activity. These systems can even be used

'9

business oriented
The BASIC-IN-ROM.

in more traditional
multi-user systems.
machines can collect and buffer data for
transfer to some larger machine's disK
based files all at a very low per-ststion
cost. If the concept of memory buffering
is exploited. tbe BASIC-IN-ROM machines
can store a considerable amount of
information before they need to make a
transfer. This sort of progr~ing will
cut down on the total number of
transmissions from BASIC-IN-ROM machines
to the Level 1 host machine and thereby
lower the incidence of simulstaneous or
queried requests and improve the
individual terminal response time .

The Ohio Scientific Level multi-user
system is a very interesting and
versatile implementation of some very
basic concepts . It works suprisingly well
and due to the independent nature of each
of its terminals. is relatively difficult
to crash . The most amazing thing of all
is that there is a real industrial
problem solver lurking in the Ohio
Scientific Level 1 system in the garb of
an educational toy. Because of my
interest in the diverse applications for
this type of system . I would welcome any
questions or dialogue concerning unique
applica tions.

LETTERS
ED:

Been in love with my CIP Super board for a
year now. and have at times gone on
computer-mania binges tbat were halted
only by threat of divorce. One .of these
sessions led to the near complet~on of a
match-up of the Superboard to a KIMSI
5-100 adaptor. Would very much like to
know if someone else has worked out the
lsst few glitches remaining; even to any
other buss adaptor.

About the slow 300 Baud rate that Paul
Bowen complained about. I happened to
purchase a how-to-do-it sheet from
Aardvark and have had zero error rate at
600 Baud. It really is quite simple for
all that is needed is to cut a few foil
traces and wire in several jumpers. add
one small common capacitor. hook it up to
a DPDT switch so you can have 300 and 600
Baud. Sit back and enjoy the speed.

Paul Savard
Kalkaska. MI

10
; .

ED:

As aD answer to Paul Bowens' letter. you A..,
can speed up the cassette part by moving
pin 2 of V57 from (C4) pin 14 of V59 to
(CO) - (cll - (C2) or (C3) of V30. You
will have to reset R57 the 10K pot on V69
of the receiver. What I did on my C4 was
to install a switch to change the clock
speed of tbe trans •• and a new second pot
in the receiver so I could speed from 300
Baud to 600 or 900 Baud. In the C4 the
timing cap on the N£555 must be changed to
change the speed of the clock. Also. 600
and 900 Baud takes a good tape recorder.

I like PEEK (65) very much. Keep up the
good work.

Andrew Hubbell
Adrian. Michigan

ED:

Please excuse my being a "dumb" computer
person but Have a program written for
TRS-SO that I would like to use on my OSI
C3-S1 •... however. some things in tbe TRS
program confound me somewhat, for
instance:
"CLS " for a TRS means what for a OSH
"ELSE" for TRS valid for OS!?
"0UT255,4" for TRS means what for OS!?
"OUT255.0" for TRS means what for OSI?

Does "BREAK" in programmer jargon mean the
"space barll in typist jargon??

Appreciate your help!! I!

Larry Kiner
Redmond. Washington

ED:

I am glad to hear that PEEK (65) is going
to thrive. I'll be looking forwa rd to
future articles. especially on hardware.

I'd appreciate it if you'd mention to your
readers that I have copies of a hex dump
of the S.II's monitor ROM (all 2048 bytes)
for Sl.00 per copy. I'm also looking for a
machine code programer to find tbe video
RAM. scroll r outine in the aforementioned
firmware.

Here are some questions about the S. II/Cl
tbat I'd like to have answered: How and
when do the tbe REPEAT, RUBOUT and ESCAPE
keya work? How can one copy a machine
code program onto cassette?

If anyone wants to compare notes
to double the line length of the

~ CI video display, my address is:

on how
5.11 or

Bruce Showalt er
857 Cedar
Abilene. IX 79601

ED,

This is in response to the plea from
Arthur Fink in your second issue of PEEK
(65). Fink says he can't find anybody who
can tell him how to copy track zero from
one 05-650 disk to another. Maybe there's
more to the question than I'm seeing, but
what I (and any other user of OS-65D I've
ever talked with) do is use OSI's
handy-dandy little copy utility stored on
track I sector 2 of 8"disks, track 13,
sector 1 for 5" units. Here"'s the
procedure:

For
For

You
the

8" disks type: DISK!"CA
5" disks type: DISK!"CA

will see the following
screen:

--DISKETTE UTILITIES-
SElECT ONE,
1) COPIER
2) TRACK 0 READ/WRITE

0200-bl,2
0200-13 ,I

displayed on

Select number 2 from the menu and push
RETURN. Next this will be displayed on -the screen:

--TRACK ZERO READ/WRITE UTILITY-
COMMANDS ,

Rnnnn--READ INTO LOCATION nnnn.
Wnnnn/gggg,p--WRITE FROM nnnn FOR p PACES

WITIl gggg AS TIlE LOAD VECTOR
E--EXIT TO OS-65D

COMMAND?
This time type: R400 and push

RETURN.

The same TRACK ZERO/WRITE UTILITY menu
will be displayed again, indicating the
operation is complete. At this point
remove your master disk and replace it
with the disk onto which you want to copy
track zero.

Then type:

W4000/2200,B (For an a" disk) or
W4000/2200,a (For a 5" disk)

/

Next replace your original disk, choose E
from the menu and push RETURN. Type CO
0200 and push RETURN. The original
DISKETTE UTILITIES menu will be displayed
an~ you may select 1 (the COPIER) and copy
tracks 1-76 (8" disks) or 1-39 (5" disks)
as usual.

All of this information is included in
OSI's 05-650 users manual, but.
admittedly, the LOAD VECTOR address (2200)
is pretty obscure. You have to really dig
to figure that one out.

Hope r"'ve helped Mr. Fink and others who
have had trouble with this routine.

Tom Badgett
Bluefield, West Virginia

ED,

I would like to recommend Aardvark"'s ROM
BASIC Data Sheet ($9.95) for anyone
wishing to get a look at how Microsoft and
the 6502 work together to implement OSI
BASIC. It's only a rough framework, but
it provides a good basis from which to dig
out more information. Aardvark's
DISASSEMBLED ROM LISTING ($8 . 95) is
indeed, as advertised, 16 packed pages,
five columns per page, 59 lines per
column. This results in a format that is
not as easy to read as it should be (the
leftmost column is illegible in places),
but still represents an advantage over
trying to copy it down by hand from the
TV. One warning: their disassembler does
not correctly distinguish between indexed
and indexed-indirect addressing modes when
the X register is involved (eg.
B7A}.-B7A4). This can be extremely
misleading to anyone trying to decipher
the code. and one should check the
mnemonics against the machine code (if
legible) to prevent wasted effort. I have
advised Aardvark of this shortcoming. and
they do not appear able to distinguish
between the unavoidable loss of sync that
occurs when a disassembler encounters data
and the failure of a diaassembler to
produce correct mnemonics. The product is
good but could easily be improved.

Philip Hooper
Northfield, VI

' 11

ED:

Where do I send my money for the
replacement BASIC ROM? You started the

rumor so provide the rest of the
information I I If Dot t I om going ahead
with my plan to burn the corrections into'

8 2716 EPROM.

I would like to correspond with others who
are using the OSI 440 video board with dot
graphics option .

~ Earl Morris
,/ Midland, HI

Earl:

It was JUBt a rumor I heard at aD OSlO
meeting. Burn away I

Ed

ED:

I would like to submit for the PEEK (6S)
readers a routine they might find helpful
in developing programs for card games.
This routine is a fast, memory-efficient
way of getting 8 truly random "shuffle" of
a deck of 52 cards.

100 FOR Q-53248 TO 53299:
POKE Q.O:NEXT

110 POKE 57088,254
120 FOR Q-l TO 13
130 FOR R-l TO 4
140 S -INT(RNDC5)*52:

IF PEEK(S3248+5»0
THEN 140

150 POKE 53248+5,Q*lO+R
160 IF PEEK (57088)-190

THEN S-RND(S):GOTO 160
170 NEXT R
180 NEXT Q

The result of this routine is the storage
of 52 random cards in bytes 53248 to 53299
of the Video RAM. The cards are stored as
integers ranging from 11 (ace of hearts)
to 134 (king of diamonds). The rank of
the card (from 1-13) is obtained by using
the formula R-INT(X/IO) where R is the
rank and X is the value stored in the
byte. The suit of the card (from 1-4) is
obtained by using the formula
S-X-INT(X/10)*10 where S is the suit and X
is the value of the byte.

The use of single bytes rather than
subscripted variables for storing values

12

r-of cards will save about 200 bytes of
memory. The occasional pressing of the 50
CTRL key during the few seconds it takes .~~
for the routine to execute will break up ""'SO
the pattern of pseudo-random numbers 5(
generated by the machine and will result
in a unique shuffle each time. Note also
that a "1" will have to be POKE'd into 530
to disable CONTROL C for the keyboard
polling routine.

It is possible for any card game to be
programmed. with the computer playing from
1 to 6 hands simultaneously, if the
programer uses some ingenuity and has 8K
of memory to work with.

David Hille
San Antonio, TX

ED:

Let me thank all of you on your first two
issues and contribute the following:

I 1) The "string bug"
garbage collector is
(located at $A2B6).
10 DIll A$(J)

on the OSI elP - the
the culprit of course
Try:

20 PRINT FRE(O)
The hangup occurs. However, change 10 to

10 DIM A$(2l

snd no problem occurs. In fact, no
problem occurs whenever working with
strings dimensioned of size N, where
N-3*(any integerh2. .J

? 2) Need to detect a key without having to
turn on specific rows. then decode
columns? This routine will detect a key -
any key -without the Input statement.
First poke the following anywhere in
memory:
32, 186. 255. 133, 255. 96;
then poke the start address into 11 and 12
so it can be called as USR(X).

In the program use the following code:
110 POKE 57988,0
120 IF PEEK(57088)-254 THEN 140
130 X-USR(X):CHARACTER- PEEK(255)
140 (PROGRAM CONTINUES)

If there is no key pressed, the program
continues. If there is, USR(X) is called.
which puts the character code in 255.

3) There's a non-machine language screen
clear that's really fast.

II,
S

f

r-:~-----'
5000 LO-PEEK(129):HI-PEEK(130)
5010 POKE 129,5:POKE130,212
5020 A$-"(48 SPACES)!!

• ~030 FORI-l TO 20 :A$_AS ... u ":NEXT
5040 POKE 129,LO:POKE130,HI

Mark Minssi
Stony Brook. NY

ofC-. ED:

Maybe you can help me with a mystery.
Quite often l a tely I have been getting the
following error code - B -. It is not
anywhere in osr;s documentation. It is
really baffling me 88 to what this error
could meaD.

Well, the most frustrating thing I have
found in the OSI documentation is their
SCATTERING of Pokes throughout the manual.
So, I took it upon myself to list all the
Pokes I could find, most of which were not
shown in your last issue . If this helps
anyone please pass it along.

Valerie Winer
Chestnut Hill, HA

2) hulnal ~ldth

12; LtI byte .oldren or bellnnl~ or 3:>1; ~"r&-I;.a

121 HI byn '4d~US or be.lnnl",.. i;.51; .o~<-""9

1)2 1.<> bya ... dnu ot 'n<I Of a",,,1 "~r<-.~.:'

I)J HI ~)'U .ddrus o f and Of lIAS I ~ar<- I;la

'" '" '" '" '" ,,'
'" '" :JJ

'" '" ,,,
'" "S
'" '" '"
'" ,"S

'" ,..,
",
"" 2_1J 22 __

'"" "" >s,.
281!8 . 81U

IInl 1'11., ItOIUter (l_,ntbl.. ; -dl •• blui

Stut COllntdo,", tlMr \I-Ita<'t ~-na~j

H~ura to CO ... 'Itd.....-n
Mlnut .. to COLlntdown

S.eond. to :owudo
wau Rt.ht.r far Port U ~~r:. _ cor~ • • ;:o..":i", ,.,~.~.r

29

;C:,~.=~

)1. _~.~

Jl .-."

Canu,ina lat .. t value ot 568]2 " ce'l ~. i~':'-;.! .

IIi byU .ddr ... for,. C drlv~r

to bytt .~~ru. for 1. C'driHr
·un- (76 _ .nt.I>I.. I.;' _ dl .. ~ltsl

~OII dlr.ction af _~_ $I to lo .. ~ It .p.z1/
Kull Inpu t jUllps alit Of ~ra,ra", (¢'-~: .. ~le Z7_1"'~:u;

(lB-- RlWO Pri(llol SU'(T- .n.bhl

(ll--WIO ntQI.I STAn" 'no':ll,1

~~t~o~"~21"~~,~nc:~~a ';!~:~~/~~~~l:;'~!~r!:~;~.~~ • I
(58-co..:l b I strint: h?"t te:""'>I"."," l:::-:~:~:~I

(4~_colon h • Itrl ... Input t.,...lr.at::'1 :;-~!.n:!,l

Cllaput £1"1\ for f"Iriphtral d.vic .. (.... 1
LH lnu .. ",01, r.,hur 0 ... 1) f,;: ,: :~ an".
III by to wdrou at FU f'r ~l.:';" .~.~_~~r.t;

1.0 byte .ddr .. a ot PIA for RT;l;J!i .cln.-.II\£

8911
S,"

8954

8955

SOl' S,,,
"" .".

"" "" "" S,,,

US~(XI ape ... tlon cod.

Ollt"l'~t flq

1.ooatl"" ·or JSR to 4hk USII(l) rOll tln.
to bytt ad4r ... at US~(XI llalnt,r

Hi byta ... d.ren of USRlll pointer
~,. tRAM) pee. oaunt alnus 1

1/0 dillrlbu\or Input flac

I/O dhtrlbutor aut,,"t fl ..
In<1,,, t a ourrent ACTA on 55; bo.reI
Location of rando ••• "'Il for /iIIU fWlett""
to byte .401 of polntar to dla .. butt.r 1

IIi bytt ... d of pointer to dis);. bllfr ... I

9"_
9111
9_;f6-1)
9.9a

9';;9
91.~

91;6
91)2
91))

9lH
9156
921)
921~

92)8
92)9

1.<> bytt .ddr ••• or til. and (phu 1) of 0111);. bufr,r _

HI byte ad4 ... a. of til. a<>'l (plus 1) ot dhl< b..t!e .. u-e.

"''''''ry buffer.d disk 1/0 bit 6 device l"I ~,e:art

" .. 9~!1o

Lo byt. Ilddrou tor ... eor)' Inpllt
III byte Ilddr ... for ... "",,,y InPllt

1.<> by .•• ~<I .. u~ for ory out;out
HI byte address for _aary out;>llt
Lo byte ... drus for __ ry butfer&<! disk In"ut

Hi byu .dd tor _.ory bufr.red 41._ In;>"t

Lo byu .ddr ... for ",."ary bllrr d dilk ~,,~;~t

III byu .ddress tor .. aory I>U.tr'''ed dhk Ollt;>~t

1.<> bItt .4d :01' .. .ory b..tr d dh);. In;lI:
HI byu .4d tar .. ao ..), buff.red dltk In~ut
1.<> bytt add".a. fOl" •• ~ory burhred dh);. allt~t

III by;,. .dd fer .aeory burfeud dll>: o~~;>u~
111 byU add .. t., fOl" Indlrtc: tn. Inp\olt (10"-11)

Ki ":,ou 84dru. for InHrtot rlh olltput no"'-;;II
9)92

"',I ~~95

Act~y, St!tt hlli!:.r f:r I'c~t l~

"
"
"
' !
'!

Data .• ,lst . ~
Control -
0.:.

9J96
9J91 W;
~:r
~~2 ,.."
,'"
"" ""
9822 S.ctor /I tor I/SR(11 Obit Op Uon

982) Pac. count fa .. USII(l) di,k wrlt.t

Control
Control
Ccnlr~!
Oat.
Contrcl
Cat.
Control

982" Lo byte Jd of •• ltOry bloc_ for UJitUI Ob);. O~ lIon
982, H~ byte .dd '" Of "_0")' block f or USR(lJ Dlall: O~ tion
9826 fraek , f or IISR(l) Dis);. O~ tion

12142 Looallon or 24 uud by r.n<lc •• ec, .. flh calc . .. outin .. .
5)241:1-55295 Vldao "' 1")'

.$68)2 "ron. c.n tor . ch.l oUr/l1n. a. Colcr on/at! (; _ 71
57_S8 hyboard - hyptd _ Jaynlck

57_89 I'raqu • ...,y tar Tone C.n tor
S8)118 S~olflu Color t_ - 15)

6)1188 Tel.phon. InUrflC.

6)4e!1 COntrol 1I.,har ter 6J4ea
6)49; Taltpllan. Interfac.

6}'o91 Control Re,hur tor 6)l1,"
6)492 ~:; = ~t~ .. !!d,IP.l~C~~~::~::.!P~..;~~:.I od,lut.

6~) .,..,..
6;Jli93

, 6)496
6)1197

'"'' 610512
(1051)

Control Raclnar tor 6}Oy.<

lnll". lPII1 Dialer Data (IClI! . 1;32 nat lIat~1
Cont r ol h.iahr for 6)1094

ACU

Cont .. ol IIqltttr for 6)496

4Jjf board". AID con't".rUr owtpUt
MUD RAT! (1-12__ 2-J;_1

.lCU o.u M'lIhttr (for printer or IMId ••)

Oata IIqhtar for Port U
Control • " • •

'm Control

"''' Control "',.
Control "",.
Centrol D.""
Control

"

I 13

OSI OSI
SOFTWARE

FOR
OHIO SCIENTIFIC

Over 50 programs for C1, C2, C4 & Superboard, on tape and disk. All
come with listings and compete documentation.

GAMES· 4K • Tape UTfLiTIES
CHESS FOR OSI • C1P CURSOR CONTROL $9.95
specify system $19.95
STARFIGHTER 5.95
Real time space war.
SEAWOLFE
Floating mines, three
target ships, etc.
LUNAR LANDER
With full graphics
TEN TANK BLITZ
A sophisticated real time
tank game.
8K GAMES
BACKGAMMON
BLACKJACK
Plays all Vegas rules

5.95

5.95

9.95

9.95
6.95

Add $1.00 each for Color/Sound

gives real backspace, one key
screen clear, and midline edltlnll
RENUMBERER 5.95
SUPERUTILITY 12.95
Has Renumberer, Variable table
maker and Search
BUSINESS
SMALL BUSINESS ANALYSIS 15.95

Does profit and loss, quick ratio,
breakeven analysis and more. 13
pages of documentation.
STOCK PORTFOLIO 8.95
Keeps track of your Investments

Alien Invaders $6.95
Our $1.00 catalog has free game
and utility listings, programming
hints and a lot of PEEKs and
POKEs and other stuff that OSI
forgot to mention - and a lot more
programs for sale.

DISKS 5" COLOR/SOUND $29.95
DISK 1. STARFIGHTER, ROBO
TANK, SEA WOLFE, BOMBER,
TEN TANK BLITZ
DISK 2 BREAK'THROUGH,LUNAR
LANDER, ALIEN INVADER, KILL
ERROBOTS, SLASHBALL

AARDVARK
1690 Bolton, Walled Lake, Michigan 48088. (313) 624-6316

~ave you noticed that
~ork under 0565-U Ver
fstch from D & H
~ould restore it.

RUNIICllANGEII. "PASS

your 430 board ~on~t
1.21 Here 18 8

Hicroproducta which

DISK CHANGE UTILITY

HODE: HEX(H). DEC(D) ? H
UNIT 1 A
ADDRESS OFFSET ? COO
ADDRESS 1 3CC8
00003CC8 A2? AD
00003CCC IE? 06
00003CCD A9? F8
00003CCE 03? A9
00003CCF 9D FF
00003COO OO? 8D
00003CDI F8? 05
00003CD2 A9? F8
00003C03 II? 4C
00003CD4 90? 08
00003CD5 OO? 3C
00003CD6 F8?
ADDRESS ? JCE9
00003CE9 AE? AD
00003CEA FA? 05
00003CE8 < 3C ? FB
00003CEC 80? 4A
00003CED OO? 90
00003CEE F8? FA
00003CEF J 4A ? AD
00003CFO 9O? 03
00003CFl FA? F8
00003CF2 8D? 80
00003CF3 01? 07
00003CF4 F8 1
ADDRESS 1 3D5E
0000305E AE? AD
00003D5F FA? 05
00003D60 < 3C ? F8
00003D61 8D? 10
00003062 OO? F8
00003D63 F8? AD
00003D64 J 4A ? B6
00003D65 J 4A 38
00003D66 90? 80
00003067 F9? 04
00003D68 AD? FB
00003D69 86? 4C
0000306A CE? 6E
00003D68 90 1 3D
00003D6C OJ? X

OK
the patch is permanent. to the disk.

THE GRAPHICS CHIP

E.8. Carlson
3872 Raleigh Drive

·Okem~B. HI 48864

What do you make of (or with) the 128 non
ASCII characters available from the
graphics chip? Pull out your G~aphic8
Reference Manual and puzzle along WIth me.
Or perhaps better. use the little program
below to put pairs of graphics characters
on the screen. because many of thea do Dot
look the 8ame on the graph paper 88 on the
screen.

10 Q-53248
15 POKE 56900.0
20 D-Q+I024+16
30 INPUT A,B

40 POKE O.A
42 POKE D+l,B
50 PRINT
99 GOT010

There are some very good characters in the
set. For example, the eight orientations
of the tank of the arrow probably can't be
beat by anyone . But.. .• there are allo
some real wonderments!

Characters 0 and are two race cars,
always going straight ahead. The road
will have to be curvable to make an action
display with them. I think 5 and 6. 7 and
8 are submarines going right and leLt.
But what are 9-121 Perhaps 9 and 10 fora
the spaceship ~NTERPRISE. On the other
hand, 9 and 12 may be a biplane awaiting
the Red Barron's bullets.

Now chess: 4 is the queen and perhaps 24
is the knight and 30 the rook. But here
my imagination peters out. Where are the
king and bishops? The pawns can be fudged
in many ways, for example, by the up arrow
16. What are 25 and 28 supposed to be?
Part of the chess set somehow?

The line segments 128-135 sllow
adjustments of a horizontal line by 1
pixel step. Likewise, 136-143 for
vertical lines. The set 135, 145, lSI,
155. 162-164. 158-161. 154. 150. 144 Bnd
128 allow vertical bar graphs whose
heights and base are sdjustable to 1
pixel. The corresponding horizontal let
is quite incomplete.

With 175-182 we are back to war, small
gunboats. Larger ships can be made by
tacking 'on the tails of the submarines. 5
or 8.

	v1n3pg01
	v1n3pg02
	v1n3pg03
	v1n3pg04
	v1n3pg06
	v1n3pg07
	v1n3pg08
	v1n3pg09
	v1n3pg10
	v1n3pg11
	v1n3pg12
	v1n3pg13
	v1n3pg14
	v1n3pg15

