FBASIC USERS MANUAL

Copyright (C) 1980 by Pegasus Software

All rights reserved

No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated
into any language or computer language, in any form or by
any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written

permission of Pegasus Software, P.0. Box 10014, Honolulu,
Hawaii, 96816.

Pegasus Software makes no representations or warranties with
respect to the contents hereof and specifically disclaims
any implied warranties or merchantability or fitness for any
particular purpose. Further, Pegasus Software reserves the
right to revise this publication and to make changes in the
content hereof without obligation of Pegasus Software to
notify any person of such revision or changes.

TABLE OF CONTENTS

Ov e I'Vi e‘N . L J - * * ® L] * L L] L d L d [] L]
How to write and compile a program .
Running a compiled program

Expressions .

Functions
ASC . . .
INT . . .
PEEK . . .

Statements
DIm . . .
DISK! . .
END . . .
FOR - NEXT
GOSUB . .
IF - THEN
POKE o .
PRINT . .
RETURN .
WHILE . .

- Direct register

Reserved words

usage

FBASIC versus 0SI BASIC

Memory usage .

.

.

.

L

NN w N

~ o

\O

10
11
12
12
13
14
14
16
17
18
19

OVERVIEW

The Pegasus Software FBASIC compiler is a complete language
system designed to produce fast efficient machine code.

FBASIC accepts a special subset of the Microsoft version of
BASIC, especially well suited to systems level programming.
Many extensions and slight variations have been included to
take better advantage of the machine facilities available,
and to afford the user greater flexibility.

Pegasus Software will offer continuing support for FBASIC.
Updates with additional features will be made available to
registered FBASIC License holders as they are developed.

FBASIC provides a tool that programmers well versed in BASIC
can use to produce the software they need without having to
resort to assembly language.

HOW TO WRITE AND COMPILE AN FBASIC PROGRAM

First create your program using the Microsoft BASIC editor
supplied with the 0SI system. If you do not use any of
FBASIC's special features, you can test run your program
with Microsoft BASIC.

After creating your program save it to a disk file. Exit
BASIC and invoke the compiler with the command:

XQ FBASIC

The disk operating system will then load and run FBASIC. The
following message should be displayed at the console:

FBASIC Compiler Version 1.0
Copyright 1980 by Pegasus Software

Following this message the compiler will prompt for a
starting address:

Start Address:

This refers to the memory address which you want the object
code to begin at. A four digit hex address can be specified,
or just press the RETURN key, and the compiler will default
to $317E as the start address, which makes the object
program compatible with the operating systems XQ command.

The compiler will then prompt for the name of the source
file to be compiled:

Source file:

Enter the file name of your FBASIC program. The compiler
will search the disk directory for the requested file and
obtain the necessary track limits. If the file is not found,
an error will be reported and control will be returned to
the operating system.

Finally the compiler will prompt for an object file:
Object file:

Any valid file name will be accepted. If no object file is
desired simply press the RETURN key.

The system will now begin translating the source program
into machine code. Any errors encountered will be reported
to the console.

After compilation the system will report the size of the
object file produced and the number of variables used.
Control will then be returned to the operating system. The
compiler may be re-entered for additional compilations with
the command:

A standard BASIC program may now be entered. At any point
where the object module is to be called the USR function may
be used, or just include the following BASIC statement:

DISK!"GO 317E"

This will cause the compiled program to be executed. Control
will then be returned to the calling program when an END
statement is encountered. A hybrid program created 1in this
way can be stored on disk with the PUT command, and then
executed as necessary with the usual:

RUN "filename"

As an example of this facility see the DIR program included
with the FBASIC system. It may be run from BASIC 1in the
normal fashion, or from the operating system with the XQ
command.

RUNNING A COMPILED PROGRAM

After successfully compiling a program with a start address
of $317E, it may be invoked £from the operating system
command loop by typing:

XQ filename

For programs starting at a different address, first read the
file into $317E with the operating systems LOAD command,
then move it into position with the 0S-65D extended monitor.

All object files produced by FBASIC contain the standard
five byte header necessary for their use with the operating
systems LOAD command. Therefore as an alternative to using
the extended monitor, an object file may be CALLed into
memory if allowance is made for the file header. As an
example if a program was compiled for 1location $8000, it
should then be CALLed into $7FFB ($8000-5).

CA 7FFB=50,1
GO 8000

If the program is more than one track long then the address
for CALLing subsequent tracks must be computed by adding
$B00 (2816) to the previous address. If the object file in
the previous example were 2 tracks long then the following
sequence would be appropriate:

CA 7FFB=50,1
CA 8AFB=51,1
GO 8000

This sequence can be executed from wvirtually any program
which allows these operating system calls to be made,
including XPLO, BASIC, the Extended Monitor, and the
Assembler.

The length of a file in tracks is reported at the end of a
compilation, and is also stored in the object file as the
fifth byte in the header.

Object files produced by the compiler are specifically
designed to be used along with the BASIC interpreter. This
allows the user to take better advantage of each systems
capabilities.

To utilize this feature, a program is first compiled in the
normal fashion. The BASIC interpreter is then invoked, and
the compiled program loaded in the same manner as a.standard
BASIC source file.

At this point it will appear that no program is present, the
LIST command will show nothing. The compiled program is
resident at $317E, and has adjusted BASICs work-space
pointers above itself.

Expressions

An expression, in both BASIC and FBASIC, is a list of one or
more arguments coupled with arithmetic and/or logical
operators which evaluate to a numeric value.

FBASIC accepts the following operators, listed in order of
precedence, from highest to lowest:

()

Unary minus

x

+ -

= <> L > <= >=
NOT

AND

OR

This precedence pertains to the order in which the various
operations are evaluated in an expression containing more
than one operator. If an expression is composead of
operations of equal precedence then evaluation occurs from
left to right. The relational operations evaluate to one of
two values; 0 (false), or 65535 (true). As an example, the
expression:

10<>5
will return the value true, because 10 is not equal to 5.

Logical operations accept 16 bit arguments and produce a 16
bit result. This provides a greater degree of control than
is available with 0SI BASIC which is 1limited to 15 bit
arguments.

No run-time error checking is done for overflow, underflow,
or division by zero. This contributes greatly to the speed
of programs produced by the compiler.

FUNCTIONS:

A function is a special operator which requires an argument,
and returns a numeric value. FBASIC functions may be used
freely within numeric expressions, as operands.

The ASC function:

The ASC function returns the ASCII value of the first letter
of a string constant. Therefore in the following example:

PRINT ASC("A")
the number 65 will be printed as that is the ASCII

equivalent for the letter A. The ASC function can be used in
this way to specify any printing character.

The INT function:

The INT function 1is provided to facilitate greater
compatibility between BASIC and FBASIC. In BASIC the INT
function returns the integer part of the enclosed

expression. Since FBASIC is 1ntegwr onL%, to insure that a
program will run with both BASICs the INT function is used
to force the same results.

The division operation 1is the most troublesome to
compatibility for both BASICs since integer division
discards any remainer that may result. Therefore by forcing
all divisions to integer results, a major incompatibility is
alleviated. This allows greater freedom to develope programs
in the interactive environment of BASIC before compiling
them.

Since all numeric operations in FBASIC are integer
operations, the INT function does not actually cause any
code to be produced.

The PEEK function:

The PEEK function allows inspection of any byte of memory.
It requires one argument. The value of the argument is used
to designate a specific memory location. The value stored at
that location is then returned.

PEEK may be used within an expression, or 1in place of an
eXpression. Some examples are:

PRINT PEEK(200)
B=PEEK (AD)+PEEK (AD+1) *256

The second example shows a convenient way of retrieving the
value of a 16 bit address as stored by the 5502 processor,
with the low byte first.

The PEEK function always returns a value within the range 0
to 255.

The DIM statement:

The DIM statement is a declaration statement that reserves
space for integer arrays or vectors.

The statement:
DIM A(500)

allocates memory for 501 integers, (one more than is
specified because the index starts with zero). The DIM
statement requires that the argument be a numeric constant

as no facilities are provided for array allocation at
runtime,

To allow more efficient memory usage, and greater
flexibility, the FBASIC DIM statement may be used to specify
an address rather than to reserve space. This allows the
programmer to place data anywhere he may have additional
memory. The syntax for this option is as follows:

DIM B(157344)

The exclaimation point preceding the number in this example
instructs the compiler to use the constants value as the
adcdress for all subsequent accesses of the declared array.
In this example the first element of the array will be
stored in memory at location 57344. The same location could
be specified in hexidecimal:

DIM B(!$SE000Q)

No boundary checking is done at runtime, so it 1is possible
Lo access a value outside the limits of a dimensioned array.
This should be avoided as other parts of the user program or
the operating system may be overwritten.

The FBASIC DIM statement also allows the values of an array
to be initialized at compile time. Here is an example:

DIM A(10)=¢(1,2,3,4,5)

The first place within this array, location A(0), will be
set equal to 1. Similarly, A(l) would equal 2 and A(4) would
equal 5. Additional locations not provided with initial
values are set to 0. Since this initialization is
accomplished at compile time, use of this feature with an
absolute memory location is invalid.

DIM B(1!32768)=(5,5,5,5) : REM invalid

For . larger tables of data this 1initialization may be
continued on as many additional 1lines as necessary. The
compiler will continue looking for parameters until it
encounters a right parenthesis.

100 DIM C(100)=(1,2,3,4,5,6,7

110 , 8,9,10,11,12,13
120 , 14,15,16,17,18
130 , 19,20,21,22,23)

Notice that the separating comma between the last parameter
of one line and the first parameter of the following line is
placed at the beginning of the 1line. This |is necessary
because BASIC's editor removes blanks from the beginning of
each line, and would therefore concatenate the line -number
with the first parameter. The blank space in the second,

third, and fourth lines of this example is for clarity, and
is not required.

The initializing data must be numeric constants only.

The DISK! statement:

The DISK! statement provides access to the operating system
commands from an FBASIC program. It accepts a string
constant as the command specifier. Any command acceptable to
the 05-65D operating system may be used

.

DISK! "CALL 4000=08,1"

The END statement:

The END statement provides a means for completing or halting
the run of a program.

The END statement may be wused at any point to abort a
programs flow and return control to the <calling program,
usually the operating system.

An END is automatically appended to the end of each FBASIC
program.

The FOR - NEXT loop:

The FBASIC FOR-NEXT loop is very similar to the 0SI FOR-NEXT
loop. The FOR and NEXT statements are used together to
provide a convenient means of loop control. The FOR
statement is the loop initiator and therefore contains the
limit parameters of the loop. In the example:

10 FOR I=1 TO 100
20 PRINT I
30 NEXT I

the variable I is used as the loop counter. Therefore the
sub-statement "I=1" is actually an assignment which sets up
the initial value of the loop counter I. The keyword "TO"
delimits the initialization and 1limit expressions. The
second expression, (in this case "100"), specifies the
termination condition of the loop. In other words, the 1loop
will be exited when the value of the counter variable I is
greater than 100.

The counter variable is incremented by one each time through
the loop until it is greater than the exit parameter.

The NEXT statement provides the delimiter for the “bottom"
of the loop. Therefore, the loop is a group of statements
with FOR at the beginning and NEXT at the end.

The I following the NEXT in this example is optional. Since
each NEXT statement is always associated with the last FOR,
the compiler makes the association automatically. Each FOR
statement must have exactly one NEXT associated with it.

If two or more NEXT statements occur together, as when loops
are nested, the following shorthand may be used in place of
separate NEXT statements back to back:

NEXT J,1

The exit test is effectively at the bottom of the loop,
therefore a FOR - NEXT loop 1is always executed at least
once.

FOR-NEXT loops may be exited prematurely if necessary, with
a GOTO or similar statement.

The initialization and 1limit expressions of the FOR
statement are evaluated only upon entering the loop.
Therefore altering the values of the variables used within
these expressions (other than the loop counter) from within
the FOR-NEXT loop will have no effect on the number of times
the loop is repeated.

EBASIC does not support the step specifier.

TR

The GOSUB statement:

The GOSUB statement 1is used to transfer control to a
specified line much like the GOTO statement. The difference
is that it saves the address of the statement immediately
following the GOSUB, and wupon encountering a RETURN
statement control is then returned to that saved address.

The GOSUB statement requires one argument, the 1line number
to be called or transfered to.

GOosuB 2000

To allow convenient interface to other machine language
routines, the compiler also accepts an absolute address in
place of the line number. This is signalled by placing an
exclamation point in front of the address.

GOSUB !$FDOO
or
GOSUB !64768

The compiler will generate the necessary code to transfer
control to the machine code at 1location $FD00. When the
processor encounters a Return from Subroutine (RTS),
instruction control will be returned to the statement
immediately following the GOSUB.

Since this statement uses the 6502 processor stack to save
the return address, over 100 levels of subroutine calls may
be used. This refers to the ability of a subroutine to <call
another subroutine. In contrast 0SI BASIC allows a maximum
of 26 levels. Although this increased <capability allows a
limited use of recursion, care should be execised so that
the stacks limits are not exceeded as no runtime error.
checking is made on this condition.

The GOTO statement:

The GOTO statement allows the simplest form of control of
program flow. It requires one argument, a line number.

The GOTO statement causes control to transfer to the
specified line, and therefore allows the normal sequential
execution of lines to be altered as required.

The IF statement:

The purpose of the IF statement is to provide control of
program flow. The IF statement provides a means for
conditional execution of a group of statements. This
statement is comprised of a conditional expression and a
statement or group of statements to be conditionally
executed. The THEN keyword separates these two parts, and
the end of line is used to mark the end of the group of
statements.

Execution of an IF statement begins with the evaluation of
the conditional expression. The associated statement or
group of statements is then executed or skipped depending on
the value of the expression.

The conditional expression 1is identical to a standard
expression except that it is interpreted as having only two
possible values, "true" (any non-zero value) or "false"
(zero) .

In the example:
IF A=5 THEN PRINT "YES"

the conditional expression "A=5" is evaluated first. If the
variable A is equal to 5, the condition is true and control
passes to the statement immediately following the THEN
keyword. Therefore if A equals 5 then YES will be printed.
If A is not equal to 5, the PRINT statement is skipped and
control passes to the next line in the program.

The use of the GOTO statement is quite common with IF -
THEN. For this reason a shortened version of this construct
is allowed. The following two statements are functionally
equivalent.

IF A=1 THEN GOTO 500
IF A=1 THEN 500
IF statements may be nested:

IF A=5 THEN IF J=12 THEN PRINT "You Bet!"

The POKE statement:

The POKE statement provides a means for altering any memory
location. It requires two arguments. In the example:

POKE 57088,2
12

the value specified by the second argument, (in this case 2)
is stored at the memory location specified by the first
argument, (57088). Any valid expression may be used for
either argument.

The address is a 16 bit value, allowing access to all 64K
addressable memory locations. The second value 1is stored
into an 8 bit memory location. If this parameter is greater
than 255 (8 bits), then the high order bits are simply
ignored. In the example:

POKE 57088, 255

the value stored at 57088 would be 0. Therefore the second
parameter is effectively ANDed with 255.

The PRINT statement:

The PRINT statement provides program ouput via the 0S-65D
operating system. Output goes through the 0S8-65D
input/output distributor, and may be redirected to the
various system devices as outlined in the 0S-65D manual.
FBASIC does not support the PRINT# statement. Therefore
redirection of output is accomplished through direct access
to the input/output distributor flags. Examples:

POKE 8994,2 : REM output to video
POKE 8994,1 : REM output to serial
POKE 8994, 3 : REM output to both

This form of I/0 redirection is more versatile than the
PRINTE, because it allows output to be directed to several
devices simultaneously.

The PRINT statement accepts a 1list of zero or more
arguments, it supports:

String constants
numeric expressions -
The CHR$ () function

A string constant is a group of characters enclosed in
quotes:

"I AM A STRING"

Numeric expressions are covered in detail within the section
devoted to that topic.

The character string function "CHRS$ (exp)" is used to output
a single character corresponding to the ASCII equivalent of
the enclosed expression.

PRINT statements may contain any combination of these three
types of arguments. FBASIC arguments should be separated by
semicolons, not commas.

A carriage return/line feed is normally printed
automatically at the end of a print statement. This may be
suppressed by placing a semicolon after the last argument in
the statement.

When FBASIC prints the value of a numeric expression no
spaces are printed either before or after the number itself.
This simplifies formatting of numeric output.

The RETURN statement:

The RETURN statement causes control to return to the

statement immediately following the most recently executed
GOsuB.

If a RETURN is encountered without a preceeding GOSUB,
control is returned to the <calling program, usually the
operating system or BASIC.

The WHILE statement:

The WHILE statement is used to <control program flow. It
provides a mean to combine a group of statements into a
single unit, which is conditionally executed, depending on
the value of a conditional expression.

The WHILE statement 1is comprised of two parts, the
conditional expression, and a group of statements. In the
example:

WHILE A<>S
PRINT A
A=A+1

WEND

14

the expression immediately following the WHILE keyword is
evaluated first. If the condition is true, control passes to
the statements immediately following. When the WEND
statement is encountered it passes control back to the WHILE
statement thus forming a loop. If the WHILE condition 1is
false, control passes to the statement immediately following
the WEND keyword.

If the conditional expression is false initially then the
enclosed group of statements will be skipped entirely.

Each WHILE statement must have exactly one WEND associated
with it. This association is similar to that of the FOR-NEXT
statement. Each WEND is automatically associated with the
Closest preceding WHILE. WHILE statements may be nested.

15

DIRECT REGISTER USAGE

FBASIC allows direct access to the A, X, and Y registers of
the 6502 processor. This enables programs to be directly
interfaced to existing machine language routines.

Register access is specified by a dot or period, followed by
the letter corresponding to the desired register. 1In the
assignment statement:

.A=H

the accumulator will be loaded with the 1low-order byte of
the variable H.

As a further example, the 0S-65D operating system contains a
useful subroutine which when called prints the value of the
accumulator to the console in hexadecimal. Therefore the
following program will print the hexadecimal valus of H to
the console:

.A=H/2556 : REM the high byte first
GOSUB !$2D92 : REM call hex print
. A=H : REM the low byte

GOSUB 1!$2D9%2 : REM and print it

Since the 6502 registers are 8 bits wide the high order byte
of the expression is ignored.

In this form of assignment statement any valid numeric
expression is acceptable. However, be careful not to place
any statements between the assignment and the GOSUB that
might corrupt the register value. The only statements that
do not alter the registers are; GOSUB, GOTO, and RETURN.

Assignment of the other registers may be made without
affecting previous register assignments if the assigned
expression is limited to a single variable or constant. For
instance to call a subroutine with the A and Y registers
holding the low and high bytes of a variable use the
following format:

.¥Y=H/255 : REM get high byte of H
.A=H : REM and low byte
GOsSuUB 1000 : REM call subroutine

In this case the two assignments MUST be made in the order
shown, otherwise the computation involved in the first
statement may corrupt at least one of the register values.

In any register assignment involving an expression with one
or more arithmetic or logical operators, only the register
involved is concidered of known value at the completion of
the assignment. The other registers are often used for the
evaluation of the expression.

16

The compiler also provides a means for placing a register
value into a variable. This is necessary for the utilization
of some existing subroutines. As an example, the operating
systems input routines return inputed characters in the A
register. In the following example the main 0S-55D input
routine is called and the returned character placed 1in the
variable CH.

GOSUB 1$2340 : REM input with echo
CH=.A : REM save accumulator
CH=CH AND 255 : REM zero high byte

.

In order to preserve the three processor registers this type
of assignment statement does not affect the high byte of the
variable. Therefore the variable should then be subsequently
ANDed with 255 in order to insure that the high byte 1is
zero, or the variable may be zeroced prior to <calling the
subroutine.

RESERVED WORDS

AND GOosuB OR THEN
AsC GOTO PEEK TO
CHRS$ IF POKE WEND
DIM INT PRINT WHILE
END NEXT REM

FOR NOT RETURN

In,occ'/' spCC)

fRwoc) rosc)

mod T#B8C)

17

FBASIC versus 0SI BASIC

The purpose of this section is to point out some of the
differences between FBASIC and the O0SI interpreter BASIC.

NUMBER SYSTEMS

The most fundamental difference between these two BASICs is
their number systems. While 0SI BASIC supports both integer
and floating point numbers, FBASIC is limited to integers at
this time. Also the representation of integers differs
between the two systems.

OSI BASIC integers are 15 bits wide, with an additional bit
for the sign. They cover the range from -32768 to 32757.

In contrast FBASICs integer representation is unsigned with
a range of from 0 to §5535.

Since the 6502 processor does not directly support signed
integers the unsigned approach supported by FBASIC affords a
much greater level of efficiency and speed to compiled
programs.

With an understanding of the differences between these two
types of integer representation the transition should be
fairly simple. The most important aspect to remember is the
0 boundary. In the example:

IF A<O THEN 200

the condition A<O0 while valid and useful in 0SI BASIC, can
never be true in FBASIC because negative numbers are not
included in it's number system.

With OSI BASIC when the integer range is exceeded in either
direction an error is reported. Conversely, with FBASIC the
nmply wraps around. Therefore the expression:

65535+1
is equivalent to 0 in FBASIC. When fully understood this
feature can be used to great advantage.

OTHER DIFFERENCES

The following statements, commands and functions are not
supported by FBASIC at this time:

ABS FRE POS STEP

ATN ENPYF READ STOP

CLEAR LEFTS RESTORE STRS

CONT LEN RIGHTS iR

cos LIST /A0 TAN

DATA LOG RUN P

DEF MIDS SGN USR

EXIT NEW SIN VAL

EXP NULL SP& WAIT 18

FN ON SQOR

MEMORY USAGE

This section deals with the allocation and use of memory by
a compiled program.

All non-subscripted variables are stored within the base or
zero page of memory. The maximum number of these wvariables
is limited to 100. Allocation starts at location one (not
zero), and goes upward.

Thus the amount of the base-page used by a program may be
ascertained from thz number of integer variables used. As an
example, if the compiler reports that your program contains
10 variables (not including array variables), then the first
free space in the base-page is at location 21 ($15). That
is:

No. variables * 2 + 1

The number of wvariables is multiplied by 2 because
variables require 2 bytes of storage each.

The operating system and the FBASIC runtime package use
various locations in the base-page above $E0O. Therefore
locations from $E0 to S$FF should not be wused in your
programs.

FBASIC does not initialize the processors stack ©pointer.
This allows a compiled program to be called from wvirtually
any other program as a subroutine, and to return to that
calling program when its function is complete.

Dimensioned arrays are allocated space within the object
module. This allows their values to be pre-initialized 1if
desired.

