
An Indexing Algorithm for Text Retrieval ∗

Maxim Martynov, Boris Novikov
University of St.-Petersburg, Russia

E-mail: mart@gamma.niimm.spb.su, boris@orl.usr.pu.ru

Abstract

The rapid growth of world-wide information systems results in new
requirements for text indexing and retrieval. In this paper we pro-
pose an algorithm for query evaluation in text retrieval systems
based on well-known inverted lists augmented with additional data
structure and estimate expected performance gains. In addition to
improved performance, this data structure is able to support dy-
namic indexing, which is especially important for environments
where documents are changed frequently.

1 Introduction

The importance of text retrieval systems has grown dramatically
during recent years due to very rapid increase of available storage
capacity, increased performance of all types of processors and ex-
ponential growth of the global networks that provide an enormous
source of different documents.

One of the factors that a critical for usability of text retrieval
systems is the performance of search engine and underlying index-
ing techniques [5].

The process of query evaluation and indexing in high perfor-
mance text retrieval systems usually consists of several steps. The
following steps are typically included:

• query pre-processing, e.g. some kinds of linguistic normal-
ization of words used in the query, extension of query with
synonyms checking against thesaurus etc.

• launching of search engine based on pre-build indices

• post-processing of candidate documents to filter out the set
of documents relevant to a query

• refinement of the query based on user’s feedback, and re-
evaluation of the query.

All these steps are extremely important for quality of the result, but
in this paper we concentrate only on the second step of the above
listed, namely, on indexing and search engine.

∗This work was partially supported by Russian Foundation for Basic Research un-
der grant 95-01-00636, and UrbanSoft Ltd. under contract 35/96.

Proceedings of the International Workshop on Advances
in Databases and Information Systems (ADBIS’96).
Moscow, September 10–13, 1996.

Moscow: MEPhI, 1996.

During past years two major classes of indices for text re-
trieval were proposed, investigated and extensively used: a tech-
nique based on inverted lists and superimposed coding scheme pro-
posed in [4] and further enhanced by several authors, e.g. [6]. Both
structures have certain scalability problems of different nature.

The inverted lists provide reasonably good performance for
single-keys searches (logarithmic on the database size, which ac-
tually means few disk accesses per search), but their performance
rapidly degrades when the query size increases, which is of major
importance for text retrieval. Typical queries may contain several
index terms. Moreover, initial user queries may be augmented with
several additional terms (e.g. synonyms), making the query size
significantly larger.

The performance of another extreme, superimposed coding,
does not depend on the query size, but depends linearly on database
size, which potentially implies hard scalability problems for huge
text collections. In addition, this kind of indices inevitably returns
significant portion of noise (that is, documents that are not relevant
to the specified query), which implies expensive extra filtering on
the subsequent phases of query evaluation.

Recent improvements of compressed inverted lists [8, 9] signifi-
cantly enhanced their performance in terms of storage requirements
(and hence access times), so that these indices outperform superim-
posed coding in most cases. In this paper we propose a variation of
this scheme with improved performance especially for queries with
large number of index terms.

The model of data structure for this indexing scheme is repre-
sented on fig. 1.

The dictionary contains all index terms, with the expected size
about few megabytes [8]. The authors of [8] suggest to store it
in the main memory. Although this is probably reasonable for
English, the number of word forms to be stored in the dictionary
may be significantly larger for other languages, e.g. Russian and
Finnish [7]. However, we assume that at least significant part of
the dictionary resides in the main memory.

The inverted lists are stored in compressed form on the disk.
The compression algorithm allows one-pass compression and de-
compression, providing the possibility to process the lists ”on the
fly”, without storing decompressed data at all. However, the tech-
nique described in [8] suggests only sequential scans of the lists,
which may cause extra disk accesses during processing of large in-
verted lists.

We assume that documents (or paragraphs of documents) are
sequentially numbered and are accessible via addressing table.

The query is represented (for the step of index lookup) as a set
of index terms that should (or should not) appear in the same doc-
ument (or same paragraph), and combinations of such conditions.
The query evaluation consists of retrieval of all terms mentioned in
the query from the dictionary, and then merge (intersection, union,

171

Dictionary Address
table

Address
table

Inverted lists Documents

Figure 1: The general index structure

or difference) of corresponding inverted list, to obtain a candidate
list of relevant documents.

The candidate list is passed to subsequent steps of query eval-
uation, which may involve document scans to check the conditions
that cannot be checked with inverted lists only.

The most expensive (time-consuming) step of the query evalu-
ation is the merge of inverted lists.

In this paper we introduce additional index structure which al-
lows random access to inverted lists, thus decreasing the number
of required disk accesses during the merge phase. In addition, this
structure simplifies modification of the inverted list, which may be
important for indexing of dynamic document collections. We fur-
ther propose a merging algorithm that utilizes this additional data
structure and estimate the expected performance improvement.

The paper is organized as follows. In section 2 index structure
that supports random access to inverted lists is described. An al-
gorithm for processing inverted lists is presented and discussed in
section 3. Then in section 4 we estimate the performance improve-
ment that can be achieved with our algorithm. Section 5 concludes
the paper.

2 The Index for Inverted Lists

In this section we introduce an auxiliary data structure (actually a
variation of B-tree) which is used for text retrieval in the algorithm
described in the next section.

For every word (index Term) that occurs in a stored document,
the inverted list contains an entry that includes a document num-
ber and optionally position information. For better search speed
and storage utilization the inverted lists are ordered to enable run-
length encoding and then compressed using one-pass compression
algorithm. This technique is described in detail in [8] and reduces
the total size of inverted lists to few percents of the database size,
if positional information is not stored.

To find all texts relevant to a query (that is, containing specified
words and possibly their synonyms) we need to retrieve appropriate
inverted lists for processing. The reasonable strategy for retrieval
of inverted lists is to order them by their length and process strings
from the shortest ones. This strategy keeps the size of the interme-
diate results relatively small.

Problem arises when some lists have very big length and
traversing becomes inefficient. To overcome this we introduce an
index similar to B-tree for long lists.

To be suitable for search speed-up, the index structure must
satisfy the following properties:

• It should combine run-length encoding and compression with
tree structure so that it does not occupy much more space
than the purely sequential lists without additional indices.

4 7 1 3 2 . . . Leaf node

 run-lengths
 starting document number
number of document terms

for 4 document
numbers:
7, 8, 11, 13

2 7 13 3 20 28 5

7 13 20 28

dead space

. . . non-leaf
node

6

Figure 2: SB-tree structure example

• It must have possibility to representdead spacein every node
so that eliminate unnecessary traversing of the tree.

• It should store information about size of the dead space of
children nodes in every non-leaf node. This information is
used in the proposed algorithm.

Thus, our B-tree should have the following structure. Every
non-leaf node contains entries of the form(min, max, ds, ref),
wheremin andmax is a minimal and maximal text numbers of the
sub-tree pointed byref , andds is a dead space of the child node.
Dead space of a node is defined as a sum of lengths of extents from
node extent which is not covered by children node extents. Node
extent is a minimal extent containing all subtree text numbers.

Leaf nodes contain lowest text number and encoded differences
for other text numbers sorted in increasing order.

Structure of the tree is shown on fig. 2.
This tree structure may be viewed as one-dimensional R-tree[1]

with additional information and special form of leaf nodes. Manip-
ulation of such trees is similar to spatial (multi-dimensional) case
with some simplifications (or similar to B-trees with additional fea-
tures). For example, application offorced reinsert algorithm[1] is
desirable and provides for better distribution of the document num-
bers and more adequate representation of clustering structure of the
inverted lists.

Dead space information is maintained by additional actions dur-
ing tree insertion procedure. Initially tree has only one leaf node
and no dead space information. When we insert new text value,
insertion path is found first. Then starting from the leaf node we

172

insert new entry and evaluate parent node entry with dead space
information, if split is performed then we compose two new nodes
and also evaluate parent node entries for them. Then we insert eval-
uated entries to the parent node in the same way going upwards the
tree.

Another feature of the insertion algorithm of our tree is manag-
ing encoded information in leaves. For them we should use inser-
tion algorithm for run-length encoded lists [8].

Using such B-trees for long lists will cause some additional disk
space consumption, but it will speed up search and update of the
inverted lists.

3 The Algorithm

In this section we will describe the algorithm for merge of inverted
lists which is based on the index structure outlined in the previ-
ous section. We denote this special variant of B-tree as SB-tree in
following.

Let P (w, t) be a predicate: wordw is contained in a document
t. We consider queries of the following form: find all documentst,
where∧n

i=1 ∨mi
j=1 P (wij , t).

Let Q = ∪n
i=1 ∪mi

j=1 wij be a set of all terms that occurs in the
query.

For query evaluation we use|Q| stacks which elements are SB-
tree entries contained in increasing order of text numbers. The en-
tries of the leaf level nodes are placed into stacks in decoded form:
(elem, elem,0, NULL), whereelem is a text number, dead space
is zero and pointer to child node is null. The stacks are referred
in the algorithm in two forms:Stack(i) i = 1, . . . , |Q| and
Stack(wij), so that ifwij is k-th element inQ thenStack(k) and
Stack(wij) denote the same stack. Besides, we use one additional
stackPosZones for storing extents showing zones of possible re-
sulting document numbers.

Now we describe the merge algorithm.

1. Initialization.

(a) Fori = 1, . . . , |Q| read root node of the SB-tree fori-
th word inQ and place its entries inStack(i). If there
is no SB-tree for particular word its list numbers must
be decoded and placed in stack as well as leaf entries.

(b) InitializePosZones to be actual.

2. Normalization.

(a) Delete all entries from word stacks which intersects no
PosZones extents.

(b) If for text numbert all word stacks have entry of the
form (t, t, 0, NULL) then addt to the result set of
the query. Delete this entry from stacks and adjust
PosZones to be actual.

(c) If all stacks are empty then end of the algorithm.

3. Search and retrieval.

(a) Let (tmin, tmax) be the top entry ofPosZones.
Choose word stack which top entry extent(t0, t1) sat-
isfy t0 < tmin < t1, and value of dead space is maxi-
mal. If there is no such stack choose from ones satisfy-
ing t0 ≤ tmin ≤ t1.

(b) Read child node of the top entry of chosen stack and
place its entries instead top entry into stack.

(c) AdjustPosZones to be actual and go to the step 2.

Actual state ofPosZones is defined in the following way.
Let F (Stack) be a union of all extents ofStack entries. Then
PosZones is a minimal set of extents so that

F (PosZones) = ∩n
i=1 ∪mi

j=1 F (Stack(wij)),

whereF (PosZones) is defined as well asF (Stack). To compute
PosZones we should for each OR group of word stacks evalu-
ate respective possible zones by merging and uniting stack extents.
Then possible zones of OR groups must be intersected also using
merge to get result.

More detailed algorithm ofPosZones maintaining is de-
scribed below. BesidesPosZones we usen additional stacks
OrPosZones(i) for every OR group and additionalm ∗ n stack
pointers for every word stack, so we can access these stacks with-
out loosing data. We denote counterpart stacks asEStack(wij).
Further an algorithm for computingOrPosZones(i) is described.

1. Clear OrPosZones(i), initialize EStack(wij) to be
Stack(wij) for everyj.

2. Find extent from tops ofEStack(wij) with minimal left
border. If stacks are empty then end of the algorithm.

3. Pop found extent form itsEStack and push it into
OrPosZones(i) if OrPosZones(i) is empty or its top ex-
tent is not intersected with one added. If added extent do
intersect top one than right border of top extent gets right
border from added.

To initialize PosZones we should evaluateOrPosZones(i)
for every OR group and then intersect them. In item 2.a of the main
algorithm we need only delete entry(t, t) from all OrPosZones
andPosZones. In item 3.c to doPosZones actual we should
computeOrPosZones for OR group of chosen stack and then
evaluate PosZones.

The figure 3 demonstrate howPosZones is defined. Tops of
stacks are at the left side of the picture. Vertical line corresponds to
tmin.

PosZones

OrPosZones(1)

Stack(w11)

Stack(w12)

OrPosZones(2)

Stack(w21)

Stack(w22)

Stack(w23)

OrPosZones(1)

OrPosZones(2)

Figure 3: Example of definingPosZones.

Adjustment ofPosZones is more simple because it links with
local changes of stacks and can be done more effective than initial-
ization. Thus, after reading one stack entry only such extents of
PosZones may change which intersects extent of read entry.

The proposed algorithm has the following properties.

173

• Because of stack order of processing memory requirements
are limited by

|Q| ∗ (L ∗ (E − 1) + 1) ∗ (Ss + Sp) + C,

whereL is a maximal number of levels of SB-trees partici-
pating in the query,E is maximal number of entries of SB-
tree node,Ss andSp are sizes of stack andPosZones en-
tries.C is size of memory for other temporary variables.

• Algorithm prevents most unnecessary page fetching choos-
ing at every step appropriate read candidate.

Evaluation of more complex queries with negations can be done
in the following way. Given query in the form: find all documents
t, where∧n

i=1 ∨mi
j=1 A(wij , t). HereA(wij , t) is P (wij , t) or its

negation. First we find all documents satisfying our query without
OR groups where negations occur. Then we filter out irrelevant
documents for initial query.

For very frequent terms SB-trees ofirrelevant documents can
be maintained, and can be used for negated predicates of such
terms.

4 Performance Analysis

In this section we analyze possible performance gains of the pro-
posed algorithm and provide results of some experimental measure-
ments.

To estimate the performance we need certain assumptions about
term frequencies in the documents and distribution of length of the
inverted lists. It is well known that this distribution is very far from
uniform and usually satisfies Zipf law.

Consequently, the vast majority of inverted list will be ex-
tremely small and will not require any additional index, and our
algorithm will not help to process these terms.

However, we should assume that the frequencies of terms in
queries are very close to that in documents (because otherwise the
probability of any successful retrieval is very close to zero, which
is not the case for actual systems). This means that practically each
large query contains significant number of very frequent terms that
have very long inverted lists.

For the query containingN terms we estimate the number of
frequent terms asNf = N ∗ Pfreq.

The number of disk accesses for frequent terms can be esti-
mated as

Costconv =
AVGFreqListSize∗ Nf

BlockSize
for conventional linear scan of the lists, and as

Costoptim =
(

T ∗ logm

AVGFreqListSize
BlockSize

)
∗ Nf .

Wherem is average number of tree entries in a node, andT is
average length of merged inverted lists for non-frequent terms.

Thus the performance gain for the whole query can be estimated
as

N − Nf + Costoptim

N − Nf + Costconv

This formula was evaluated for following parameters:
Figure 4 shows results of the evaluation.
Really, performance gain will be higher because estimation of

Costoptim does not consider savings due to decreasing number of
relevant non-frequent terms while processing SB-trees, and savings
are gained by choosing appropriate read candidate from stacks. The
latter saving may be high when all query terms are frequent.

In the presence of rather small inverted lists a simplified algo-
rithm may be used. We can traverse SB-trees for frequent terms
sequentially, decreasing the output set in every step.

Param Value
BlockSize 1 KB
m 64
T 100
N 20
Nf 0. . . 1
AVGFreqListSize 200. . . 1200 KB

���

���

���

���

����

���

���

���

���

���

���

���

���

���

���

$9
*)

UH
T/
LVW
6L
]H

QXPEHU RI IUHTXHQW WHUPV

Figure 4: Performance gain estimation.

5 Conclusions

In this paper we propose a technique for creation of dynamic in-
dices for text retrieval systems and full text databases.

This techniques improves efficiency of retrieval and enables ef-
ficient update of the inverted lists, which is especially important for
electronic documents that are subject to frequent updates.

The implementation of this structure should be build on the top
of an object-oriented database system, which enables additional
performance gains [3, 2], but this is a direction of further work.
Another important direction might be an extension of the algorithm
to support positional information in queries.

References

[1] N. Beekmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The
R*-tree: an efficient and robust access method for points and
rectangles. InProc. ACM SIGMOD Int. Conf. on Management
of Data, pages 322–331, Atlantic City, NJ, 1990.

[2] E.W. Brown, J.P. Callan, W.B. Croft, and J.E.B. Moss. Sup-
porting full-text information retrieval with a persistent object
store,. InProc. Intnl.Conf. on EDBT., 1994.

[3] W.B. Croft and L.A. Smith. A loosely-coupled integration of
a text retrieval system and an object-oriented database system.
In 15th Annu. Int. ACM SIGIR Conf. Res. and Dev. Inf. Retriev.,
SIGIR Forum, pages 223–232, October 1991.

[4] C. Faloutsos and S. Christodoulakis. Signature files: an access
method for documents and its analytical performance evalua-
tion. ACM Trans. on Database Systems, 4(2):267–288, 1984.

174

[5] Gerald Huck, Frank Moser, and Erich J. Neuhold. Integra-
tion and handling of hypermedia information as a challenge
for multimedia and federated database systems. InProc. of
the Second Intnl. Workshop on Advances in Databases and In-
formation Systems - ADBIS’95, pages 183–194, Moscow, June
27–30 1995. Phasis.

[6] A. Kent, R. Sacks-Davies, and K. Ramamohanarao. A su-
perimposed coding scheme based on multiple block descriptor
files for indexing very large databases. InProc. 14 conf. VLDB,
pages 351–359, 1988.

[7] Tatu Ylonen. An algorith for full text indexing. Master’s thesis,
Helsinki University of Technology, 1992.

[8] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. Efficient
indexing technique for full-text database systems. InProc. 18th
Intnl.Conf. on VLDB. Vancouver, British Columbia, Canada,
1992., pages 352–362, 1992.

[9] Justin Zobel, Alistair Moffat, and Ron Sacks-Davis. Searching
large lexicons for partially specified terms using compressed
inverted files. InProc. 19th Intnl.Conf. on VLDB. Dublin, Ire-
land, 1993., pages 290–301, 1992.

175

