Programming Style Guidelines

HLA Programming Style Guidelines Appendix C

C.1 Introduction

Most people consider assembly language prograrisutifto read.While there are a multitude of rea
sons wly people feel this @y, the primary reason is that assembly language does netitmedsy for pro
grammers to write readable progranishis doesrt mean its impossible to write readable programs, only
that it tales an gtra efort on the part of an assembly language programmer to produce readable code.

One of the design goals of the HighveeAssembler (HLA) vas to mak it possible for assembly lan
guage programmers to write readable assembly language prograrmthbless, without discipline, pande
monium will result in ap program of an decent size. Bn if you adhere to axiéd set of style guidelines,
others may still ha trouble reading and understanding your code. Equally important tevifal@a set of
style guidelines is that you folldng a generally accepted set of style guidelines; guidelines that others are
familiar and agree withithe purpose of this appendix, written by the designer of the HLA language, is to
provide a consistent set of guidelines that HLA programmers can use consisi@fdlss you can shoa
good reason to violate these rules, you shouldvidtig them carefully when writing HLA programs; other
HLA programmers will thank you for this.

C.1.1 Intended Audience

Of course, an assembly language program is going to be nearly unreadable to someone who doesn’
know assembly languagerhis is true for almost gnprogramming language. Other thamying a tutorial
on 80x86 assembly language in a proggaa@mments, there is ncawto address this problémther than
to assume that the readerasniliar with assembly language programming and spadifi HLA.

In view of the abwe, it males sense to def an "intended audience" that we intend teeh@ad our
assembly language programs. Such a person should:

* Be areasonably competent 80x86 assembly language/HLA programmer.
* Be reasonably familiar with the problem the assembly language program is attempting to
solve.

Fluently read English

» Have a good grasp of high level language concepts.

» Possess appropriate knowledge for someone working in the field of Computer Science (e.g.,
understands standard algorithms and data structures, understands basic machine architecture,
and understands basic discrete mathematics).

C.1.2 Readability Metrics

One has to ask "What is it that neskone program more readable than another?" In otirelsyhav
do we measure the "readability" of a programfie usual metric, "I kn@ a well-written program when | see
one" is inappropriate; for most people, this translates to "If your programs leoknikbetter programs
then thg are readable, otherwise thare not." Oliously, such a metric is of littleatlue since it changes
with every person.

To develop a metric for measuring the readability of an assembly language programstttienty we
must ask is "W is readability important?This question has a simple (though saat fippant) answer:

1. Doing so (inserting an 80x86 tutorial into your comments) would wind up making the pilegsar@adable to those who

already know assembly language since, at the very least, they'd have to skip over this material; at the worst they’'d have to
read it (wasting their time).

2. Or whatever other natural language is in use at the site(s) where you develop, maintain, and use the software.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel411

Appendix C Appendices

Readability is important because programsraeal (furthermore, a line of code is typically read ten times
more often than it is written)To expand on this, consider thadt that most programs are read and main
tained by other programmers (&eMcConnell claims that up to ten generations of maintenance program
mers vork on a typical real wrld program before it is witten from scratch; furthermore, thepend up to
60% of their eiort on that code simplyduring out hav it works). The more readable your programs are,
the less time these other people wilvéao spend §juring out what your program does. Insteady tten
concentrate on adding features or correcting defects in the code.

For the purposes of this document, we will defa "readable" program as one that has thewfwitp
trait:

* A'readable" program is one that a competent programmer (one who is familiar with the prob
lem the program is attempting to solve) can pick up, without ever having seen the program
before, and fully comprehend the entire program in a minimal amount of time.

That’s a tall order! This definition doesn’t sound very difficult to achieve, but few non-trivial programs
ewer really achieve this status. This definition suggests that an appropriate programmer (i.e., one who is
familiar with the problem the program is trying to solve) can pick up a program, read it at their normal read-
ing pace (just once), and fully comprehend the program. Anything less is not a "readable” program.

Of course, in practice, this definition is unusable since very few programs reach this goal. Part of the
problem is that programs tend to be quite long and few human beings are capable of managing a large num-
ber of details in their head at one time. Furthermore, no matter how well-written a program may be, "a com-
petent programmer" does not suggest that the programmer’s IQ is so high they can read a statement a fully
comprehend its meaning without expending much thought. Therefore, we must define readability, not as a
boolean entity, but as a scale. Although truly unreadable programs exist, there are many "readable" pro-
grams that are less readable than other programs. Therefore, perhaps the following definition is more realis-
tic:

» Areadable program is one that consists of one or moriles.A competent program should

be able to pick a given module in that program and achieve an 80% comprehension level by
expending no more than an average of one minute for each statement in the program.

An 80% comprehension level means that the programmer can correct bugs in the program and add new
features to the program without making mistakes due to a misunderstanding of the code at hand.

C.1.3

How to Achieve Readability

The "I'll know one when | see one" metric for readable programsiges a big hint concerning Wwo
one should write programs that are readabkepointed out earlythe "I'll know it when | see it" metric sug
gests that an indidual will consider a program to be readable if it éysimilar to (good) programs that
this particular person has writterthis suggests an important trait that readable programs must possess:
consisteng. If all programmers were to write programs using a consistent styyéd fired programs writ
ten by others to be similar to theiwn, and, therefore, easier to reddhis single goal is the primary purpose
of this appendix - to suggest a consistent standardvesatame will follow.

Of course, consistegpdy itself is not good enough. Consistently bad programs are not particularly
easy to readTherefore, one must carefully consider the guidelines to use whemmdedn all-encompass
ing standardThe purpose of this paper is to create such a standamdeveipdont get the impression that
the material appearing in this document appears simply because it sounded good at the time or because of
some personal preferencelhe material in this paper comes fromesal softvare engineering xés on the
subject (including Elements of Programming Style, Code Complete\aitichg Solid Code), nearly 20
years of personal assembly language programnxipgrience, and research that led to theetigment of a
set of generic programming guidelines for industrial use.

This document assumes consistent usage by its readtezsefore, it concentrates on a lot of mechani
cal and psychological issues thafeaf the readability of a program.ofexample, uppercase letters are
harder to read thanwer case letters (this is a well-kmo result from psychology research). Iteakonger

Pagel412 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

for a human being to recognize uppercase characters, therefoverageshuman being will teakmore time
to read t&t written all in upper case. Hence, this document suggests that one stwdlthe use of upper
case sequences in a program. Wahthe other issues appearing in this document are in a simifgr the
suggest minor changes to thaywou might write your programs that neak easier for someone to reeog
nize some pattern in your code, thus aiding in comprehension.

C.14

How This Document is Organized

This document folles a top-dan discussion of readabilitylt starts with the concept of a program.
Then it discusses modules. From theredtks its vay davn to proceduresThen it talks about indidual
statements. B@nd that, it talks about components that enak statements (e.g., instructions, names, and
operators). Finallythis paper concludes by discussing some orthogonal issues.

SectionTwo discusses programs in general. It primarily discusses documentation that must agcompan
a program and the ganization of sourcelés. It also discusses, brigfconfguration management and
source code control issues.eép in mind that §uring out hav to kuild a program (mak assemble, link,
test, dehg, etc.) is important. If your reader fully understands the "heapsort" algorithm you are using, b
cannot hild an eecutable module to run, thstill do not fully understand your program.

SectionThree discusses hoto oiganize modules in your program in a logicastion. This males it
easier for others to locate sections of code agdnizes related sections of code together so someone can
easily fnd important code and ignore unimportant or unrelated code while attempting to understand what
your program does.

Section Bur discusses the use of procedures within a proghdris is a continuation of the theme in
SectionThree, although at awer, more detailed, iel.

Section Rre discusses the program at theeleof the statementThis (laige) section prades the meat
of this proposal. Most of the rules this paper presents appear in this section.

Section Six discusses comments and other documentation appearing within the source code.

Section Seen discusses those items that malp a statement (labels, names, instructions, operands,
operators, etc.)rhis is another l@e section that presents ag@mumber of rules one should fellavhen
writing readable programslhis section discusses naming zentions, appropriateness of operators, and so
on.

Section Eight discusses data types and other related topics.

C.15

Guidelines, Rules, Enforced Rules, and Exceptions

Not all rules are equally important.of~example, a rule that you check the spelling of all thoeds in
your comments is probably less important than suggesting that the comments all be ir?.EﬁIgﬁsdefore,
this paper uses three designationsdaegkthings straight: Guidelines, Rules, and Enforced Rules.

A Guideline is a suggestion. It is a rule you should Volimless you canerbally defend wi you
should break the ruleAs long as there is a good, defensible, reason, you should feel no apprehension vio
lated a guideline. Guidelinesist in order to encourage consistgiiic areas where there are no good rea
sons for choosing one methodologyepanother You shouldrt violate a Guideline just because you don’
like it -- doing so will ma& your programs inconsistent with respect to other programs that do tbo
Guideline (and, therefore, harder to readwéer, you shouldrt lose agy sleep because you violated a
Guideline.

Rules are much stronger than Guidelin¥su should neer break a rule unless there is sommal
reason for doing so (e.g., making a call to a library routine forces you to use a bad nawvémgiaon
Wheneer you feel you must violate a rule, you shouddify that it is reasonable to do so in a pegrere
with at least tw peers. Furthermore, you shoulglkain in the prograns’ comments whit was necessary

3. You may substitute the local language in your area if it is not English.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel413

Appendix C Appendices

to violate the rule. Rules are just that -- rules to bevi@th Havever, there are certain situations where it
may be necessary to violate the rule in order to satktéyreal requirements oven male the program more
readable.

Enforced Rules are the toughest of the Yaiu shouldnever violate an enforced rule. If there iseea
true need to do this, then you should consider demoting the Enforced Rule to a simple Rule ratherthan treat
ing the violation as a reasonable alteneti

An Exception is eactly that, a kmen example where one ould commonly violate a Guideline, Rule,
or (very rarely) Enforced RuleAlthough exceptions are rare, the old adageé&Bnrule has its)eeptions..."
certainly applies to this documenthe Exceptions point out some of the common violations one might
expect.

Of course, the cagerization of Guidelines, Rules, Enforced Rules, and Exceptions herein is orse man’
opinion. At some oganizations, this cag@rization may require varking depending on the needs of that
organization.

C.1.6 Source Language Concerns

This document will assume that the entire program is written in 80x86 assembly language using the
HLA assembler/compilerAlthough this oganization is rare in commercial applications, this assumption
will, in no way, invalidate these guidelines. Other guidelinesteor various high legel languages (includ
ing a set written by this papsrauthor).You should adopt a reasonable set of guidelines for the other lan
guages you use and apply these guidelines to the 80x86 assembly language modules in the program.

C.2 Program Organization

A source program generally consists of one or more source, object, and lilesanpdia project gets
larger and the number ofds increases, it becomesfiditilt to keep track of the s in a project.This is
especially true if a number of tBfent projects share a common set of source modileis. section will
address these concerns.

C.2.1 Library Functions

A library, by its \ery nature, suggests stabilitjgnoring the possibility of softare defects, oneaould
rarely xpect the number or function of routines in a librarydonfrom project to projectA good example
is the "HLA Standard Library One would expect "stdout.put" to bekra identically in tvo different pre
grams that use the Standard LibraGontrast this ajnst two programs, each of which implement theimo
version ofstdout.put One could not reasonably assume both programes idantical implementatiofis
This leads to the follwing rule:

Rule: Library functions are those routines intended for common reuse in many different assembly
language programs. All assembly language (callable) libraries on a system should exist as
"lib" files and should appear in a "\lib" or "\hlalib" subdirectory.

Guideline: “\hlalib" is probably a better choice if you're using multiple languages since those other lan
guages may need to put files in a "\lib" directory.

Exception: It's probably reasonable to leave the HLA Standard Library’s "hlalib.lib" file in the "\kla\hla
lib" directory since most people expect it there.

4. In fact, just the opposite is true. One should get concerned if both implemergegiaentical. This would suggest poor
planning on the part of the program’s author(s) since the same routine must now be maintained in two different programs.

Pagel414 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

The rule abwee ensures that the libraryes are all in one location so thare easy totfid, modify and
review. By putting all your library modules into a single directorgu aoid confguration management
problems such as Wiag outdated &rsions of a library linking with one program and up-to-daesiens
linking with other programs.

C.2.2 Common Object Modules

This document defies alibrary as a collection of object modules thavéavide application in man
different programsThe HLA Standard Library is a typicak&le of a library Some object modules are
not so general purposeytistill find application in tw or more diferent programsTwo major confjuration
management problemsist in this situation: (1) making sure the ".objefis up-to-date when linking it
with a program; (2) Knwing which modules use the module so one aaifythat changes to the module
won't break gisting code.

The following rules taks care of case one:

Rule: If two different program share an object module, then the associated source, object, and make
files for that module should appear in a subdirectory that is specific to that module (i.e., no
other files in the subdirectory). The subdirectory name should be the same as the module
name. If possible, you should create a set of link/alias/shortcuts to this subdirectory and place
these links in the main directory of each of the projects that utilize the module. If links are not
possible, you should place the module’s subdirectory in a "\common" subdirectory.

Enforced Rule: Every subdirectory containing one or more modules should have a make file that wilt automat
ically generate the appropriate, up-to-date, ".obj" files. An individual, a batch file, or another
make file should be able to automatically generate new object modules (if necessary) by sim
ply executing the make program.

Guideline: Use Microsoft's nmake program. At the very least, use nmake acceptable syntax in your make
files.

The other problem, noting which projects use a given module is much more difficult. The obvious solu-
tion, commenting the source code associated with the module to tell the reader which programs use the mod-
ule, is impractical. Maintaining these comments is too error-prone and the comments will quickly get out of
phase and be worse than useless -- they would be incorrect. A better solution is to create alias and place this
alias in the main subdirectory of each program that links the module.

Guideline: If a project uses a module that is not local to the project’s subdirectory, create an alias to the file
in the project’s subdirectory. This makes locating the file very easy.

C.2.3 Local Modules

Local modules are those that a single program/project usgscally, the source and object code for
each module appears in the same directory as the dédseaigsociated with the projedthis is a reasonable
arrangement until the number d&§ increases to the point that it isfidifilt to find a fle in a directory list
ing. At that point, most programmersdie reoganizing their directory by creating subdirectories to hold
mary of these source modules. \ever, the placement, name, and contents of thesesnbdirectories can
have a big impact on theverall readability of the progranihis section will address these issues.

The frst issue to consider is the contents of these subdirectories. Since programmers rummaging
through this project in the future will need to easily locate soueifi a project, it is important that you
organize these me subdirectories so that it is easy tadfithe source lés you are mdng into them. The
best oganization is to put each source module (or a small grosprasfgly elated modules) into its wn
subdirectory The subdirectory should bear the name of the source module minudiits(@uthe main
module if there is more than one present in the subdirectory). If you plaaa twore sourcelés in the
same directoryensure this set of sourcéef forms acohesive set (meaning the sourcéef contain code
that sole a single problem)A discussion of cohegness appears later in this document.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel415

Appendix C Appendices

Rule: If a project directory contains too many files, try to move some of the modules to subdirecto
ries within the project directory; give the subdirectory the same name as the source-file with
out the suffix. This will nearly reduce the number of files in half. If this reduction is
insufficient, try categorizing the source modules (e.g., FilelO, Graphics, Rendering, and
Sound) and move these modules to a subdirectory bearing the name of the category.

Enforced Rule: Each new subdirectory you create should have its own make file that will automatically assem
ble all source modules within that subdirectory, as appropriate.

Enforced Rule: Any new subdirectories you create for these source modules should appear within the directory
containing the project. The only excepts are those modules that are, or you anticipate, sharing
with other projects. Sé€ommon Object Modules” on pad&15for more details.

Stand-alone assembly language programs generally contain a "main" procedure — the first program unit
that executes when the operating system loads the program into memory. For any programmer new to a
project, this procedure is tl@cor where one fist bajins reading the code and the point where the reader
will continually refer Therefore, the reader should be able to easily locate this sdarcé&He folloving
rule helps ensure this is the case:

Rule: The source module containing timain programshould have the same name as the executable
(obviously the suffix will be different). For example, if the "Simulate 886" program’s execut
able name is "Sim886.exe" then you should find the main program in the "Sim886.hla" source
file.

Finding the source file that contains the main program is one thing. Finding the main program itself can
be almost as hard. Assembly language lets you give the main program any name you want. However, to
make the main procedure easy to find (both in the source code and at the O/S level), you should actually
name this program "main". See “Module Organization” on page 1417 for more details about the placement
of the main program. An alternative is to give the main program’s source file the name of the project.

Guideline: The name of the main procedure in an assembly language program should be "main” or the

name of the entire project.

C.2.4 Program Make Files

Every project, gen if it contains only a single source module, shoule fen associated malile. If
someone ant to assemble your program,ttshould not hee to worry about what program (e.g., HLA) to
use to compile the program, what command line options to use, what library modules to u3beetc.
should be able to type "nmeik and wind up with anxecutable program. Ew if assembling the program
consists of nothing more than typing the name of the assembler and the $euyce fshould still hae a
male file. Someone else may not realize thatl that is necessary

Enforced Rule: The main project directory should contain a make file that will automatically generate an exe

cutable (or other expected object module) in response to a simple make/nmake command.

Rule: If your project uses object modules that are not in the same subdirectory as the main program’s
module, you should test the ".obj" files for those modules and execute the corresponding make
files in their directories if the object code is out of date. You can assume that library files are up
to date.

Guideline: Avoid using fancy "make" features. Most programmers only learn the basics about make and

will not be able to understand what your make file is doing if you fully exploit the make lan
guage. Especially avoid the use of default rules since this can create havoc if someone arbi
trarily adds or removes files from the directory containing the make file.

5. Or whatever make program you normally use.

Pagel416 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

C.3

Note:

Module Organization

A module is a collection of objects that are logically relafBldose objects may include constants, data
types, ariables, and program units (e.g., functions, procedures, etc.). Note that objects in a module need not
be physicallyrelated. Br example, it is quite possible to construct a module usimgragdiferent source
files. Likewise, it is quite possible to W several diferent modules in the same sourde. fiHovever, the
best modules are phically related as well as logically related; that is, all the objects associated with a mod
ule «ist in a single sourceld (or directory if the sourceldi would be too lage) and nothing else is present.

Modules contain seral diferent objects including constants, typesrjables, and program units (rou
tines). Modules shares maaf the attrilutes with routines (program units); this is not surprising since rou
tines are the major component of a typical modulewdder, modules hae some additional attnitbes of
their ovn. The following sections describe the attrtbs of a well-written module.

Unit andpackage are both synonyms for the termodule.

C3.1

Module Attributes

A module is a generic term that describes a set of program related objects (program units as well as data
and type objects) that are somehmupled. Good modules share maifiithe same attriies as good pro
gram units as well as the ability to hide certain details from code outside the module.

C.3.1.1 Module Cohesion

Modules &hibit the folloving different kinds ofcohesion(listed from good to bad):

* Functional or logical cohesion exists if the module accomplishes exactly one (simple) task.

» Sequential opipelinedcohesion exists when a module does several sequential operations that
must be performed in a certain order with the data from one operation being fed to the next in
a “filter-like” fashion.

* Global orcommunicationatohesion exists when a module performs a set of operations that
make use of a common set of data, but are otherwise unrelated.

e Temporal cohesion exists when a module performs a set of operations that need to be done at
the same time (though not necessarily in the same order). A typical initialization module is an
example of such code.

* Procedural cohesion exists when a module performs a sequence of operations in a specific
order, but the only thing that binds them together is the order in which they must be done.
Unlike sequential cohesion, the operations do not share data.

» State cohesion occurs when several different (unrelated) operations appear in the same module
and a state variable (e.g., a parameter) selects the operation to execute. Typically such modules
contain a case (switch) dr.elseif..elseif.. statement.

* No cohesion exists if the operations in a module have no apparent relationship with one
another.

The first three forms of cohesion above are generally acceptable in a program. The fourth (temporal) is
probably okay, but you should rarely use it. The last three forms should almost never appear in a program.
For some reasonable examples of module cohesion, you should consult “Code Complete”.

Guideline: Design good moduleSbod modules exhibit strong cohesidiat is, a module should offer a

(small) group of services that are logically related. For example, a “printer” module might pro
vide all the services one would expect from a printer. The individual routines within the mod
ule would provide the individual services.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel417

Appendix C Appendices

C.3.1.2 Module Coupling

Coupling refers to the ay that twvo modules communicate with one anoth&here are sesral criteria
that defie the lgel of coupling between twvmodules:

e Cardinality- the number of objects communicated between two modules. The fewer objects
the better (i.e., fewer parameters).

* Intimacy- how “private” is the communication? Parameter lists are the most private form; pri
vate data fields in a class or object are next level; public data fields in a class or object are next,
global variables are even less intimate, and passing data in a file or database is the least inti
mate connection. Well-written modules exhibit a high degree of intimacy.

» Visibility- this is somewhat related to intimacy above. This refers to how visible the data is to
the entire system that you pass between two modules. For example, passing data in-a parame
ter list is direct and very visible (you always see the data the caller is passing in the call to the
routine); passing data in global variables makes the transfer less visible (you could have set up
the global variable long before the call to the routine). Another example is passing simple (sca
lar) variables rather than loading up a bunch of values into a structure/record and passing that
structure/record to the callee.

* Flexibility- This refers to how easy it is to make the connection between two routines that may
not have been originally intended to call one another. For example, suppose you pass a struc
ture containing three fields into a function. If you want to call that function but you only have
three data objects, not the structure, you would have to create a dummy structure, copy the
three values into the field of that structure, and then call the function. On the other hand, had
you simply passed the three values as separate parameters, you could still pass in structures (by
specifying each field) as well as call the function with separate values. The module containing
this later function is more flexible.

A module isloosely coupledf its functions &hibit low cardinality high intimag, high visibility, and

high flexibility. Often, these features are in cmtflvith one another (e.g., increasing thexifility by
breaking out the élds from a structures [a good thing] will also increase the cardinality [a bad thing]). Itis
the traditional goal of gnengineer to choose the appropriate compromises for eagtdiraicircumstance;
therefore, you will need to carefully balance each of the four aitstabue.

A module that uses loose coupling generally containerfeerrors per KLOC (thousands of lines of
code). Furthermore, modules thahibit loose coupling are easier to reuse (both in the current and future
projects). Br more information on coupling, see the appropriate chapter in “Code Complete”.

Guideline: Design good modulessood modules exhibit loose couplinghat is, there are only a few,

well-defined (visible) interfaces between the module and the outside world. Most data is pri
vate, accessible only through accessor functions (see information hiding below). Furthermore,
the interface should be flexible.

Guideline: Design good moduleSlood modules exhibit information hidingode outside the module

should only have access to the module through a small set of public routines. All data should
be private to that module. A module should implemerdtastract data typeAll interface to
the module should be through a well-defined set of operations.

C.3.1.3 Physical Organization of Modules

Rule:

Many languages prade direct support for modules (e.g., units in HLA, packagesda modules in
Modula-2, and units in Delphi#Bcal). Some languages yide only indirect support for modules (e.g., a
source fie in C/C++). Others, lik BASIC, dont really support modules, so yowuld hare to simulate
them by plgsically grouping objects together anxkecising some disciplinelhe primary mechanism in
HLA for hiding names from other modules is to implement a module as aidunali source fe and publish
only those names that are part of the modutgertice to the outsidearld (i.e., EXTERML directives in
a header Fe.

Each module should completely reside in a single source file. If size considerations prevent

Pagel418 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

this, then all the sourceds for a given module should reside in a subdirectory specifically des
ignated for that module.

Some people have the crazy idea that modularization means putting each function in a separate source
file. Suchphysical modularizatiogenerally impairs the readability of a program more than it helpsze Stri
instead fological modularizationthat is, defiing a module by its actions rather than by source code syntax
(e.g., separating out functions).

This document does not address the decomposition of a problem into its modular components. Presum
ably, you can already handle that part of the taRhere are a wideariety of tets on this subject if you feel
weak in this area.

C.3.1.4 Module Interface

In ary language system that supports modules, there argiwary components of a module: the
interface component that publicizes the module visible names and the implementation component that con
tains the actual code, data, and/ate objects. HLA (lik most assemblers) uses a scheme thatyssimi
lar to the one C/C++ useslhere are directes that let you import andgort names. Lik C/C++, you
could place these direeéis directly in the related source moduleswE®r, such code is ditult to main
tain (since you need to change the dixediin @ery file whenger you modify a public name)lhe solu
tion, as adopted in the HLA programming language, is thveader fies Header fes contain all the public
definitions and gports (as well as common data type wiéfins and constant daftions). The header I
provides thanterface to the other modules thatwt to use the code present in the implementation module.

The HLA EXTERNAL attribute is perfect for creating intade/header lés. When you use EXTER
NAL within a source module that defis a symbol, EXTERAL behaves like apublic directive, exporting
the name to other module®Vhen you use EXTERAL within a source modules that refers to ateenal
name, EXTERML declares the object to be supplied in dedtdnt module.This lets you place an EXTER
NAL declaration of an object in a single headkr &ind include this I into both the modules that import
and eport the public names.

Rule: Keep all module interface directives (EXTERNAL) in a single header file for a given module.
Place any other common data type definitions and constant definitions in this header file as
well.

Guideline: There should only be a single header file associated with any one module (even if the module

has multiple source files associated with it). If, for some reason, you feel it is necessary to
have multiple header files associated with a module, you should create a single file that
includes all of the other interface files. That way a program that wants to use all the header
files need only include the single file.

When designing header files, make sure you can include a file more than once without ill effects (e.qg.,
duplicate symbol errors). The traditional way to do this is to put a #IF statement like the following around
all the statements in a header file:

Modul e: MyHeader . hhf

f(@efined(M/Header_hhf))
?M/Header _hhf:=true; // Actual type and val ue doesn’'t really natter.

Statenents in this header file.
#endi f

The frst time a sourcelé includes "MyHeadenhf" the symbol "MyHeader_hhf" is undeéd. There
fore, the assembler will process all the statements in the hdaddnfsuccesse include operations (during
the same assembly) the symbol "MyHeader_hhf" is alreadyedkfso the assembler ignores the body of the
include fle.

My would you eer include a fe twice? Easy Some headerléis may include other headdefi. By
including the fie "YourHeadehhf" a module might also be including "MyHeatief" (assuming "Yur

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel419

Appendix C Appendices

Headehhf" contains the appropriate include direeji Your main program, that includesdtrHeadehhf"
might also need "MyHeadéhf" so it plicitly includes this fie not realizing "6urHeadehhf" has already
processed "MyHeadéhf" thereby causing symbol redgfions.

Rule: Always put an appropriate #IF statement around all the definitions in a header file to allow
multiple inclusion of the header file without ill effect.

Guideline: Use the ".hhf" suffix for HLA header/interface files.

Rule: Include files for library functions on a system should exist as ".hhf" files and should appear in
the "\include" or "\hla\include" subdirectory.

Guideline: “\hla\include" is probably a better choice if you're using multiple languages since those other
languages may need to put files in a "\include" directory.

Exception: It's probably reasonable to leave the HLA Standard Library’s "stdlib.hhf" file in the
“\hla\include" directory since most people expect it there.

You can also prevent multiple inclusion of a file by using the #iNCLUDEONCE directive. However, it's
safer to use the #IF..#ENDIF approach since that doesn't rely on the user of your include file to use the right
directive.

C.4 Program Unit Organization

A program unit is approcedure, function, coroutine, itergtsubroutine, subprogram, routine, or other
term that describes a section of code that abstracts a set of common operations on the chnigtedr
will simply use the ternprocedue or routine to describe these concepts.

Routines are closely related to modules, sincyg tiied to be the major component of a module (along
with data, constants, and types). Hence,yhwdrthe attrilutes that apply to a module also apply to routines.
The following paragraphs, at themgense of being redundant, repeat the earlienitiefis so you dot’have
to flip back to the prgous sections.

C.4.1 Routine Cohesion

Routines rhibit the followving kinds of cohesion(listed from good to bad and are mostly identical to
the kinds of cohesion that moduleghibit):

» Functional or logical cohesion exists if the routine accomplishes exactly one (simple) task.

» Sequential opipelinedcohesion exists when a routine does several sequential operations that
must be performed in a certain order with the data from one operation being fed to the next in
a “filter-like” fashion.

* Global orcommunicationatohesion exists when a routine performs a set of operations that
make use of a common set of data, but are otherwise unrelated.

» Temporal cohesion exists when a routine performs a set of operations that need to be done at
the same time (though not necessarily in the same order). A typical initialization routine is an
example of such code.

* Procedural cohesion exists when a routine performs a sequence of operations in a specific
order, but the only thing that binds them together is the order in which they must be done.
Unlike sequential cohesion, the operations do not share data.

» State cohesion occurs when several different (unrelated) operations appear in the same routine
and a state variable (e.g., a parameter) selects the operation to execute. Typically such routines
contain a case (switch) dr.elseif..elseif.. statement.

* No cohesion exists if the operations in a routine have no apparent relationship with one
another.

The first three forms of cohesion above are generally acceptable in a program. The fourth (temporal) is

probably okay, but you should rarely use it. The last three forms should almost never appear in a program.
For some reasonable examples of routine cohesion, you should consult “Code Complete”.

Pagel420 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

Guideline: All routines should exhibit good cohesiveness. Functional cohesiveness is best, followed by
sequential and global cohesiveness. Temporal cohesiveness is okay on occasion. You should
awid the other forms.

C.4.2 Routine Coupling

Coupling refers to the ay that tvo routines communicate with one anoth&here are seral criteria
that defne the lgel of coupling between twroutines; agin these are identical to the types of coupling that
modules ghibit:

e Cardinality- the number of objects communicated between two routines. The fewer objects the
better (i.e., fewer parameters).

* Intimacy- how “private” is the communication? Parameter lists are the most private ferm; pri
vate data fields in a class or object are next level; public data fields in a class or object are next,
global variables are even less intimate, and passing data in a file or database is the least inti
mate connection. Well-written routines exhibit a high degree of intimacy.

* Visibility- this is somewhat related to intimacy above. This refers to how visible the data is to
the entire system that you pass between two routines. For example, passing data in a parameter
list is direct and very visible (you always see the data the caller is passing in the call te the rou
tine); passing data in global variables makes the transfer less visible (you could have set up the
global variable long before the call to the routine). Another example is passing simple (scalar)
variables rather than loading up a bunch of values into a structure/record and passing-that struc
ture/record to the callee.

* Flexibility- This refers to how easy it is to make the connection between two routines that may
not have been originally intended to call one another. For example, suppose you pass a struc
ture containing three fields into a function. If you want to call that function but you only have
three data objects, not the structure, you would have to create a dummy structure, copy the
three values into the field of that structure, and then call the routine. On the other hand, had
you simply passed the three values as separate parameters, you could still pass in structures (by
specifying each field) as well as call the routine with separate values.

A function isloosely coupledf it exhibits low cardinality high intimag, high visibility, and high #xi-
bility. Often, these features are in cmiflvith one another (e.g., increasing trexiility by breaking out
the fields from a structures [a good thing] will also increase the cardinality [a bad thing]). It is the traditional
goal of aly engineer to choose the appropriate compromises for eaefdirali circumstance; therefore,
you will need to carefully balance each of the four aiteb abwe.

A program that uses loose coupling generally contawsrferrors per KLOC (thousands of lines of
code). Furthermore, routines thahibit loose coupling are easier to reuse (both in the current and future
projects). Ier more information on coupling, see the appropriate chapter in “Code Complete”.

Guideline: Coupling between routines in source code should be loose.

C.4.3 Routine Size

Sometime in the 1966, someone decided that programmers could only look at one page in a listing at a
time, therefore routines should be a maximum of one page long (66 lines, at the time). In thend®f0’
interactve computing became populéhis was adjusted to 24 lines -- the size of a terminal screeractn f
there is ery little empirical gidence to suggest that small routine size is a goodwtribin fict, sgeral
studies on code containing auifil constraints on routine size indicate just the opposite -- shorter routines
often contain moreuys per KLOE.

6. This happens because shorter functions invariably have stronger coupling, leading to integration errors.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel421

Appendix C Appendices

A routine that ghibits functional coheseness is the right size, almogjaedless of the number of lines
of code it containsYou shouldr artificially break up a routine into twor more subroutines (e.g., sub_partl
and sub_partll) just because you feel a routine is getting to be too long. é¥ifgtthat your routineéhib-
its strong cohesion and loose coupling. If this is the case, the routine is not too loregpDo kind, he-
ever, that a long routine is probably a good indication that it is performiveraeactions and, therefore,
does not ¥hibit strong cohesion.

Of course, you can tekthis too & Most studies on the subject indicate that routinesx@ess of
150-200 lines of code tend to contain moug$and are more costly ta than shorter routines. Note, by
the way, that you do not count blank lines or lines containing only comments when counting the lines of
code in a program.

Also note that most studies/miving routine size deal with HLLSA comparable HLA routine will con
tain more lines of code than the corresponding HLL routifieerefore, you canxpect your routines in
assembly language to be a little longer

Guideline: Do not let artificial constraints affect the size of your routines. If a routine exceeds about

200-250 lines of code, make sure the routine exhibits functional or sequential cohesion. Also
look to see if there aren’t some generic subsequences in your code that you can turn into stand
alone routines.

Rule: Never shorten a routine by dividing it imparts that you would always call in the appropriate
sequence as a way of shortening the original routine.
C.5 Statement Organization

In an assembly language program, the author moit &tra hard to mag a program readable. By fol
lowing a lage number of rules, you can produce a program that is readablevetidoy breaking a single
rule no matter how many other rules yee’ followedyou can render a program unreadable whire is
this more true than moyou oganize the statements within your program.

C.5.1 Writing “Pure” Assembly Code

Consider the follwing example taken from "TheArt of Assembly Language Programming/DOS Edi
tion" and comerted to HLA:

The Microsoft MacrdAssembler is a free form assembler. The various fields of an assembly
language statement may appear in any column (as long as they appear in the proper order).
Any number of spaces or tabs can separate the various fields in the statement. To the assem
bler, the following two code sequences are identical:

nmov(0, ax);
nov(ax, bx);
add(dx, ax);
nov(ax, CX);

mov(O, ax) ;
mov(ax, bx) ;
add(ad, ax) ;
nmov(ax, ¢x);

The first code sequence is much easier to read than the second (if you don't think so, perhaps you
should go see a doctor!). With respect to readability, the judicial use of spacing within your pro

Pagel422 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

gram can mak all the difference in the world.

While this is an extreme example, do note that it only takes a few mistakes to have a large impact on the
readability of a program.

HLA is a free-form assembler insofar as it does not place stringent formatting requirements on its state-
ments. For example, you can put multiple statements on a single line as well as spread a single statement
across multiple lines. However, the freedom to arrange these statements in any manner is one of the primary
contributors to hard to read assembly language programs. Although HLA lets you enter your programs in
free-form, there is absolutely no reason you cannot adopt a fixed format. Doing so generally helps make an
assembly language program much easier to read. Here are the rules you should use:

Guideline: Only place one statement per source line.

Rule: Within a given block of code, all mnemonics should start in the same column.

Exception: See the indentation rules appearing later in this documentation.

Guideline: Try to always start the comment fields on adjacent source lines in the same column (note that it

is impractical to always start the comment field in the same column throughout a program).

Most people learn a high level language prior to learning assembly language. They have been firmly
taught that readable (HLL) programs have their control structures properly indented to show the structure of
the program. Indentation works great when you havedk structured language. In oldashioned assem
bly language this scheme doésmbrk; one of the principle bentfito HLA is that it lets you continue to
use the indentation schemes yeudamiliar with in HLLs like C/C++ and &scal. Havever, this assumes that
you're using the HLA high leel control structures. If you choose tonk in “pure” assembly language, then
these rules dohapply The folloving discussion assumes the use of “pure” assembly language collle; we’
address HL#s high level control statements later

If you need to set bfa sequence of statements from surrounding code, the best thing you can do is use
blank lines in your source code. orFa small amount of detachment, to separate one computation from
another for gample, a single blank line is $igfent. To really shav that one section of code is special, use
two, three, oreen four blank lines to separate one block of statements from the surroundingJ ccepa
rate two totally unrelated sections of code, you might usersé blank lines and awoof dashes or asterisks
to separate the statements. E.g.,

mov(FileSpec, eax);
mov(0, cl);

call M/Function;

jc Error;

//***

nov(&fileRecords, edi);
nov(&files, ebx);
sub(2, ebx);

Guideline: Use blank lines to separate special blocks of code from the surrounding code. Use an aesthetic
looking row of asterisks or dashes if you need a stronger separation between two blocks of
code (do not overdo this, however).

If two sequences of assembly language statements correspond to roughly two HLL statements, it's gen-
erally a good idea to put a blank line between the two sequences. This helps clarify the two segments of
code in the reader’'s mind. Of course, it is easy to get carried away and insert too much white space in a pro-
gram, so use some common sense here.

Guideline: If two sequences of code in assembly language correspond to two adjacent statements in a
HLL, then use a blank line to separate those two assembly sequences (assuming the sequences

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel423

Appendix C Appendices

are real short).

A common problem in gnlanguage (not just assembly language) is a line containing a comment that is
adjacent to one or twlines containing code. Such a programesywdifficult read because it is hard to
determine where the code ends and the commemdéor vice-ersa). This is especially true when the
comments contain sample code. It is often quitiécdit to determine if what yoré looking at is code or
comments; hence the folling enforced rule:

Enforced Rule: Always put at least one blank line between code and comments (assuming, of course; the com

ment is sitting only a line by itself; that is, it is not an endline comfent

C.5.2 Using HLA's High Level Control Statements

Since HLAs high lerel control statements are so similar to higreldanguage control statementss it’
not surprising to disaer that youll use the same formatting for HLAstatements as yowwld with those
other HLLs. Most of these statements compileety \eficient machine code (usually matching what gou’
write yourself if you were writing “pure” assembly code). Since their use cae ymak programs more
readable, you should use them whesgractical.

Guideline: Use the HLA high level control structures when they are appropriate in your programs.

There are two problems advanced assembly programmers have with high level control structures: (1)
the compiler for such statements (e.g., HLA) doesn'’t always generate the best code, and (2) the use of such
statements encourages inefficient coding on the programmer’s part.

HLA's control structures are relatively limited, so point (1) above isn't as big a problem as you might
expect. Nevertheless, there will certainly be situations where HLA does not generate the same exact instruc-
tion sequence you would for a given control construct. Therefore, it's a good idea to become familiar with
the low-level code that HLA emits for each of the control structures so that you can intelligently choose
whether to use a high level or low level control structure in a given situation. A later appendix explains how
HLA generates code for the high level control structures; you should study this material. Also note that
HLA emits MASM compatible assembly code, so you can certainly study HLA'S output if you've got any
guestions about the code HLA generates.

Point (2) above is something that HLA has no control over. It is quite true that if you write “C code with
MOV instructions” in HLA, the code probably isn’t going to be as efficient as pure assembly code. How-
ewer, with a little discipline you can prevent this problem from occurring.

One of the benefits to using the high level control structures HLA provides is that you can now use
indentation of your statements to better show the structure of the program. Since HLA's high level control
structures are very similar to those found in traditional high level languages, you can use well-established
programming conventions when indenting statements in your HLA programs. Here are some suggestions:

Rule: Indent statements within a high-level control block four space. The ENDxxxx clause that
matches the statement should begin in the same column as the statement that starts a block.
/1 Exanple of nesting an IF.. THEN . ENDI F statemnent:
if(eax =0) then
<< Indent these statements four spaces >>
endif; // endif should be at the sane |level as the if statenent.
Guideline: Avoid putting multiple statements on the same line.

7. See the next section concerning comments for more information.

Pagel424 © 2001, By Randall Hyde Beta Draft - Do not distribute

Rule:

Programming Style Guidelines

The HLA programming language contains eigbtvfof-control statements: twconditional selection
statements (IFTHEN..ELSEIF.ELSE and SWITCH..CASE..DRRILT..ENDSWITCH), five loops
(WHILE..ENDWHILE, REPEA..UNTIL, FOR..ENDFOR, FORE&H..ENDFOR, and FOREVER..END
FOR), a program unit ffrocation (i.e., procedure call), and the statement sequence.

If your code contains a chain of if..elseif..elseif....... elseif..... statements, do not use the final
else clause to handle a remaining case. Only use the final else to catch an error condition. If
you need to test for some value in an if..elseif..elseif.... chain, always test the value in an if or
elseif statement.

The HLA Standard Library implements the multi-way selection statements (SWITCH) using a jump
table. This means that the order of the cases within the selection statement is usually irrelevant. Placing the
statements in a particular order rarely improves performance. Since the order is usually irrelevant to the
compiler, you should organize the cases so that they are easy to read. There are two common organizations
that make sense: sorted (numerically or alphabetically) or by frequency (the most common cases first).
Either organization is readable; one drawback to this approach is that it is often difficult to predict which
cases the program will execute most often.

Guideline: When using multi-way selection statements (case/switch) sort the cases numerically {alphabet

ically) or by frequency of expected occurrence.

There are three general categories of looping constructs available in common high-level languages-
loops that test for termination at the beginning of the loop (e.g., WHILE), loops that test for loop termination
at the bottom of the loop (e.g., REPEAT..UNTIL), and those that test for loop termination in the middle of
the loop (e.g., FOREVER..ENDFOR). Itis possible simulate any one of these loops using any of the others.
This is particularly trivial with the FOREVER..ENDFOR construct:

/* Test for loop termnation at beginning of FOREVER . ENDFCR */

forever
breakif(ax =y);

endf or;
/* Test for loop termnation in the nmddl e of FOREVER . ENDFCR */
forever

breakif(ax =y);

endf or ;
/* Test for loop termnation at the end of FOREVER . ENDFCR */

f or ever

breakif(x =y);
endf or;

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel425

Appendix C Appendices

Rule:

Rule:

Rule:

Given the fixibility of the FOREVER..ENDFORcontrol structure, you might question wbane would
even lurden a compiler with the other loop statements. wéder, using the appropriate looping structure
malkes a programar more readable, therefore, you shouldenaise one type of loop when the situation
demands anothelf someone reading your code se€ORREVER..ENDFORconstruct, thg may think its
okay to insert statements before or after tkiestatement in the loop. If your algorithm truly depends on
WHILE..ENDWHILE or REPEA..UNTIL semantics, the program maywmalfunction.

Always use the most appropriate type of loop (categorized by termination test position). Never
force one type of loop to behave like another.

Many languages provide a special case of the while loop that executes some number of times specified
upon first encountering the loopdafnite loop rather than aimdefnite loop). This is the for” loop in most
languagesThe \ast majority of the time #r loop sequences through &dil range of @lue incrementing or
decrementing the loop controdnable by one.Therefore, most programmers automatically assume this is
the way afor loop will operate until thetake a closer look at the code. Since most programmers immedi
ately expect this behdor, it makes sense to limiEOR loops to these semantics. If some other looping
mechanism is desirable, you should us&HILE loop to implement it (since ther loop is just a special
case of thavhile loop). There are other reasons behind this decision as well.

“FOR” loops should always use an ordinal loop control variable (e.g., integer, char, boolean,
enumerated type) and should always increment or decrement the loop control variable by one.

Most people expect the execution of a loop to begin with the first statement at the top of the loop, there-
fore,

All loops should have one entry point. The program should enter the loop with the instruction
at the top of the loop.

Likewise, most people expect a loop to have a single exit point, especially if it's a WHILE or
REPEAT..UNTIL loop. They will rarely look closely inside a loop body to determine if there are “break”
statements within the loop once they find one exit point. Therefore,

Guideline: Loops with a single exit point are more easily understood.

Whenever a programmer sees an empty loop, the first thought is that something is missing. Therefore,

Guideline: Avoid empty loops. If testing the loop termination condition produces some side effect that is

the whole purpose of the loop, move that side effect into the body of the loop. If a loop truly
has an empty body, place a comment like "/* nothing */" within your code.

Even if the loop body is not empty, you should avoid side effects in a loop termination expression.
When someone else reads your code and sees a loop body, they may skim right over the loop termination
expression and start reading the code in the body of the loop. If the (correct) execution of the loop body
depends upon the side effect, the reader may become confused since s/he did not notice the side effect ear-
lier. The presence of side effects (that is, having the loop termination expression compute some other value
beyond whether the loop should terminate or repeat) indicates that you're probably using the wrong control
structure. Consider the following WHILE loop in HLA that is easily corrected:

whi | e(nov(stdin.geti32(), ecx) '=0) do
<< statenments >>
endwhi | e;

A better implementation of this code fragmermiud be to use a FOREVER..ENDFOR construct:

forever

Pagel426 © 2001, By Randall Hyde Beta Draft - Do not distribute

Rule:

Programming Style Guidelines

stdin.geti32();
nov(eax, ecx);
breakif(eax = 0);

endf or;

Avoid side-effects in the computation of the loop termination expression (others may not be
expecting such side effects). Also see the guideline about empty loops.

Like functions, loops should exhibit functional cohesion. That is, the loop should accomplish exactly
one thing. It's very tempting to initialize two separate arrays in the same loop. You have to ask yourself,
though, “what do you really accomplish by this?” You save about four machine instructions on each loop
iteration, that's what. That rarely accounts for much. Furthermore, now the operations on those two arrays
are tied together, you cannot change the size of one without changing the size of the other. Finally, someone
reading your code has to remember two things the loop is doing rather than one.

Guideline: Make each loop perform only one function.

Rule:

Rule:

Programs are much easier to read if you read them from left to right, top to bottom (beginning to end).
Programs that jump around quite a bit are much harder to read. Of courpep tfgoto)statement is
well-known for its ability to scramble the logicab#l of a program, bt you can produce equally hard to
read code using othestructured, statements in a languager éample, a deeply nested set of if state
ments, some with and some with&UltSE clauses, can beswy difficult to follow because of the number of
possible places the code can transfer depending upon the resudtraf déferent booleanygressions.

Code, as much as possible, should read from top to bottom.

Related statements should be grouped together and separated from unrelated statements with
whitespace or comments.

In theory, a line of source code can be arbitrarily long. In practice, there are several practical limitations
on source code lines. Paramount is the amount of text that will fit on a given terminal display device (we
don't all have 21" high resolution monitors!) and what can be printed on a typical sheet of paper. Even with
small fonts and wide carriage printers, keep in mind that many people like to print listings two-up or
three-up in order to save paper. |If this isn't enough to suggest an 80 character limit on source lines, McCo-
nnell suggests that longer lines are harder to read (remember, people tend to look at only the left side of the
page while skimming through a listing).

Enforced Rule: Source code lines will not exceed 80 characters in length.

If a statement approaches the maximum limit of 80 characters, it should be broken up at a reasonable
point and split across two lines. If the line is a control statement that involves a particularly long logical
expression, the expression should be broken up at a logical point (e.g., at the point of a low-precedence oper-
ator outside any parentheses) and the remainder of the expression placed underneath the first part of the
expression. E.g., (note that the following involves constant expressions, run-time expressions generally
aren’t very long):

#i f
(
((x+y*z) <(ConputeProfits(1980,1990) / 1.0775))
&% (Val uer Stock[ThisYear] >= Val ueX Stock[LastYear])

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel427

Appendix C

<< statenents >>

#endi f

Appendices

Many statements (e.g., |WHILE, FOR, and function or procedure calls) contairepnord followed
by a parenthesis. If thegression appearing between the parentheses is too lohgrimfie line, consider
putting the opening and closing parentheses in the same column &t tteafiacter of the start of the state
ment and indenting the remainingpeession elementsThe &xkample abwe demonstrates this for the "IF"
statement.The followving examples demonstrate this technique for other statements:

whil e

(

SoneFunct i onRet ur ni ngAVal uel nEAX(with, lots, of, paraneters)
<= AFuncti onRet ur ni ngAval uel nEBX(al so, has, lots, of, parameters)
) do

<< Statenents to execute >>

endwhi | e;

fileio.put

(

Guideline:

out put Fi | eHandl e,
"Error in nodule “,
Modul eNane,

“at line #,

Li neNunber ,

“, encountered illegal value",

nl

For statements that are too long to fit on one physical 80-column line, you should break the
statement into two (or more) lines at points in the statement that will have the least impact on
the readability of the statement. This situation usually occurs immediately after low-prece
dence operators or after commas.

If a procedure, function, or other program unit has a particularly long actual or formal parameter list,
each parameter should be placed on a separate line. The following examples demonstrate a procedure decla-
ration and call using this technique:

procedure M/Function

(

Nunber O Dat aPoi nt's: i nt32,
X1Root : real 32,

X2Root : real 32,

var Ylintercept: real 32

M/Funct i on

(

Pagel428

Get Nunber O Poi nt s(Root Array) ,

Root Array[EBX*4],
Root Array[ECX*4],
Sol ution

/1 Assurme “RETURNS’ val ue is EAX

© 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

Rule: If an actual or formal parameter list is too long to fit a function call or definition on a single
line, then place each parameter on a separate line and align them so they are easy to read.

Guideline: If a boolean expression exceeds the length of the source line (usually 80 characters), then break
the source line into pieces and align the parentheses associated with the statement underneath
the start of the statement.

This usually isn’t a problem in HLA since expressions are very limited. However, if you call a function
with a long parameter list you could run into this problem. One area where this problem does occur is when
you're using HLA's hybrid control structures. For such sequences you should always place the statements
associated with the boolean expression on separate lines and align the braces with the high level control
structure, e.g.,

if

{
cnp(ax, bx);;
jne true;

cnp(ax, 5);
jl fal se;

cnp(bx, 0);
je fal se;

<< statenents to execute on TRUE >>

endi f;

Rule: Always put a blank line between a high level control statement and the nested statements asso
ciated with that statement. Likewise, put a blank line between the end of the nested statements
and the corresponding ENDxxx clause of the statement. E.g.,

if(ax =0) then
<-- Blank line.
<< Nested Statenents >>
<-- Blank line.
endi f;

HLA provides special symbols E“@c” and “@s” to denotedl bits within booleanx@ressions.
Using statements l&k“if(@c) then endif;” is semantically egalent to using a conditional jump (JNC
in this case) to jump around tMelEN code. Not only is this statement semantically\edent, it is &actly
equialent since it simply generates the JNC (or wha)anstruction to transfer control to the statement fol
lowing the ENDIE The diference between the dyfrom a readability point of we is that INC requires a
statement labelAs it turns out, the lge number of statement labels that appear in an assembly language
program contribite to the lack of readabilityHence, aything you can do to tgtimately reduce the number
of statement labels will impve the readability of your program. So,

Guideline: Try to use statements like “if(@c) then...endif;” rather than “jnc label; ... label:” in your pro
grams to reduce the number of statement labels in the code. Combined with indentation, this
will make your programs easier to read since the user doesn’t have to search for a specific label
associated with the branch (searching for the end of indentation is a much easier task).

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel429

Appendix C Appendices

C.6 Comments

Comments in an assembly language program generally come ifotms: endline comments and
standalonecomment&, As their names suggest, endline lines commentayal occur at the end of a source
statement and standalone comments sit on a line by thesisélhese two types of comments ha distinct
purposes, this section wilkplore their use and describe the atttés of a well-commented program.

C.6.1 What is a Bad Comment?

It is amazing her mary programmers claim their code is well-comment&éere you to count charac
ters between (or after) the comment delimitersy theght hare a point. Considehawvever, the follaving
comment:

mov(0, ax); //Set AX to zero.

Quite frankly this comment is arse than no comment at all. It doegell the reader aphing the
instruction itself doesh'tell and it requires the reader to éasome of his or her precious time gufie out
that the comment isovthless. If someone cannot tell that this instruction is seidihtp zero, thg have no
business reading an assembly language progidms. brings up thefst guideline of this section:

Guideline: Choose an intended audience for your source code and write the comments to that audience.
For HLA source code, you can usually assume that the target audience are those who know a
reasonable amount of HLA and assembly language.

Don't explain the actions of an assembly language instruction in your code unless that instruction is
doing something that isn’'t obvious (and most of the time you should consider changing the code sequence if
it isn’t obvious what is going on). Instead, explain how that instruction is helping to solve the problem at
hand. The following is a much better comment for the instruction above:

nov(0, ax); [IAXis the resulting sum Initialize it.

Note that the comment does not say "Initialize it to zefAdthough there wuld be nothing intrinsically
wrong with saying this, the phrase "Initialize it" remains true no matter valhad you assign t&X. This
makes maintaining the code (and comment) much easier since ydihdanto change the comment when
ever you change the constant associated with the instruction.

Guideline: Write your comments in such a way that minor changes to the instruction do not require that
you change the corresponding comment.

Note: Although a trvial comment is bad (indeedonse than no comment at all), thernst comment a
program can hee is one that is wrong. Consider the foliog statement:

nov(1, ax); /1Set AX to zero.

It is amazing ha long a typical person will look at this code trying @ufie out hav on earth the pro
gram set@\X to zero when i olvious it does not do thisPeople will always beliee commentswer code
If there is some ambiguity between the comments and the cogeyithassume that the code is tricknd
that the comments are correct. Only aftdragisting all possible options is theeeage person lidy to con
cede that the comment must be incorrect.

Enforced Rule: Never allow incorrect comments in your program.

This is another reason not to put trivial comments like "Set AX to zero" in your code. As you modify
the program, these are the comments most likely to become incorrect as you change the code and fail to keep
the comments in sync. However, even some non-trivial comments can become incorrect via changes to the
code. Therefore, always follow this rule:

8. This document will simply use the temmmmentswhen referring to standalone comments.
9. Since the label, mnemonic, and operand fields are all optional, it is legal to have a comment on a line by itself.

Pagel430 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

Enforced Rule: Always updateall comments affected by a code change immediately after making the code
change.

Undoubtedly you've heard the phrase "make sure you comment your code as though someone else
wrote it for you; otherwise in six months you'll wish you had." This statement encompasses two concepts.
First, don't ever think that your understanding of the current code will last. While working on a given sec-
tion of a program you're probably investing considerable thought and study to figure out what's going on.
Six months down the road, however, you will have forgotten much of what you figured out and the com-
ments can go a long way to getting you back up to speed quickly. The second point this code makes is the
implication that others read and write code too. You will have to read someone else’s code, they will have to
read yours. If you write the comments the way you would expect others to write it for you, chances are
pretty good that your comments will work for them as well.

Rule: Never use racist, sexist, obscene, or other exceptionally politically incorrect language in your
comments. Undoubtedly such language in your comments will come back to embarrass you in
the future. Furthermore, it's doubtful that such language would help someone better under
stand the program.

It's much easier to give examples of bad comments than it is to discuss good comments. The following
list describes some of the worst possible comments you can put in a program (from worst up to barely toler-
able):

» The absolute worst comment you can put into a program is an incorrect comment. Consider
the following assembly statement:
nov(10, ax); [// Set AXto 11
It is amazing hev many programmers will automatically assume the comment is correct and
try to figure out how this code manages to set the variable “A” to the value 11 when the code so
obviously sets it to 10.

e The second worst comment you can place in a program is a comment that explains what a
statement is doing. The typical example is something like “mov(10, ax); // Set ‘A to 10".
Unlike the previous example, this comment is correct. But it is still worse than no comment at
all because it is redundant and forces the reader to spend additional time reading the code
(reading time is directly proportional to reading difficulty). This also makes it harder te main
tain since slight changes to the code (e.g., "mov(9, ax);") requires modifications to the com
ment that would not otherwise be required.

e The third worst comment in a program is an irrelevant one. Telling a joke, for example, may
seem cute, but it does little to improve the readability of a program; indeed, it offers a distrac
tion that breaks concentration.

e The fourth worst comment is no comment at all.

* The fifth worst comment is a comment that is obsolete or out of date (though not incorrect).
For example, comments at the beginning of the file may describe the current version ef a mod
ule and who last worked on it. If the last programmer to modify the file did not update the
comments, the comments are now out of date.

C.6.2 What is a Good Comment?

Steve McConnell preides a long list of suggestions for high-quality co@leese suggestions include:

e Use commenting styles that don’t break down or discourage modificationEssentially,
he’s saying pick a commenting style that isn't so much work people refuse to use it. He gives
an example of a block of comments surrounded by asterisks as being hard to maintain. This is
a poor example since modern text editors will automatically “outline” the comments for you.
Nevertheless, the basic idea is sound.

e« Comment as you go along If you put commenting off until the last moment, then it seems
like another task in the software development process always comes along and management is
likely to discourage the completion of the commenting task in hopes of meeting new deadlines.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel431

Appendix C Appendices

» Avoid self-indulgent comments. Also, you should avoid sexist, profane, or other insulting
remarks in your comments. Always remember, someone else will eventually read your code.

e Avoid putting comments on the same physical line as the statement they descrit&uch
comments are very hard to maintain since there is very little room. McConnell suggests that
endline comments are okay for variable declarations. For some this might be true but many
variable declarations may require considerable explanation that simply won't fit at the end of a
line. One exception to this rule is “maintenance notes.” Comments that refer to a defect track
ing entry in the defect database are okay (note that the CodeWright text editor provides a much
better solution for this -- buttons that can bring up an external file). Of course, endline com
ments are marginally more useful in assembly language than in the HLLs that McConnell
addresses, but the basic idea is sound.

* Write comments that describe blocks of statements rather than individual statements.
Comments covering single statements tend to discuss the mechanics of that statement rather
than discussing what the program is doing.

» Focus paragraph comments on thehy rather than the how. Code should explain what the
program is doing and why the programmer chose to do it that way rather than explain what
each individual statement is doing.

» Use comments to prepare the reader for what is to follownSomeone reading the comments
should be able to have a good idea of what the following code does without actually looking at
the code. Note that this rule also suggests that comments should always precede the code to
which they apply.

* Make every comment count.If the reader wastes time reading a comment of little value, the
program is harder to read; period.

» Document surprises and tricky code.Of course, the best solution is not to have any tricky
code. In practice, you can't always achieve this goal. When you do need to restore to some
tricky code, make sure you fully document what you've done.

» Avoid abbreviations. While there may be an argument for abbreviating identifiers that appear
in a program, no way does this apply to comments.

» Keep comments close to the code they describEhe prologue to a program unit should give
its name, describe the parameters, and provide a short description of the program. It should not
go into details about the operation of the module itself. Internal comments should to that.

» Comments should explain the parameters to a functigrassertions about these parameters,
whether they are input, output, or in/fout parameters.

» Comments should describe a routine’s limitations, assumptions, and any side effects

Rule: All comments will be high-quality comments that describe the actions of the surrounding code
in a concise manner

C.6.3 Endline vs. Standalone Comments
Guideline: Adjacent lines of comments should not have any interspersed blank lines. At least lead off the
comment with the HLA comment character sequence (e.g., “/I").

The guideline above suggests that your code should look like this:

/]l This is a comment with a blank |ine between it and the next commrent.
/1
// This is another line with a comment on it.

Rather than lik this:

/] This is a comment with a blank |ine between it and the next comment.

/] This is another line with a comment on it.

Pagel432 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

The “/I" appearing between the dvstatements suggest continuity that is not present when yowrgemo
the “/I". If two blocks of comments are truly separate and whitespace between them is appropriate, you
should consider separating them by géanumber of blank lines to completely eliminatg passible asso
ciation between the tov

Standalone comments are great for describing the actions of the code that immediatety f<o
what are endline comments useful for? Endline commentsxgdairehav a sequence of instructions are
implementing the algorithm described in avioes set of standalone comments. Consider thewivitp
code:

/1 Conpute the transpose of a matrix using the algorithm

/1

/1 for i :=0to 3 do

/1 for j :=0to 3 do

1 swap(ali][j], b[jI[i]);

for(mov(O, i); i <3; inc(i)) do

for(mv(O, j); j <3; inc(j)) do

nov(i, ebx); /1 Conpute address of a[i][j] using

shl (2, ebx); /1 row major ordering (i*4 + j)*4.

add(j, ebx);

| ea(ebx, a[ebx*4]);

push(ebx); /1 Push address of a[i][j] onto stack.

nov(j, ebx); /1 Conpute address of b[j][i] using

shl (2, ebx); /1 row major ordering (j*4 + i)*4.

add(i, ebx);

| ea(ebx, b[ebx*4]);

push(ebx); /1 Push address of b[j][i] onto stack.

cal | swap; /1 Swap objects pointed at by [esp] and [esp+4].
endf or;

endfor;

Note that the block comments before this sequexyglaie, in high leel terms, what the code is doing.
The endline commentxplain hav the statement sequence implements the general algorithm. Nete, ho
ever, that the endline comments do ngpkain what each statement is doing (at least at the machkile le
Rather than claiminglta(ebx, b[ebx*4])" also multiplies the quantity in EBX by fquthis code
assumes the reader cagufie that out for themseadg (ay reasonable assembly programmeuld knav
this). Once agin, keep in mind your audience and write your comments for them.

C.6.4

Unfinished Code

Often it is the case that a programmer will write a section of code that (partially) accomplishes some
task lut needs further ark to complete a feature set, redkmore rolist, or remaee some knen defect in
the code. Itis common for such programmers to place comments into the eddéigkneeds moreavk,"
"Kludge ahead," etc.The problem with these comments is thay/thee often fagotten. It isnt until the
code #ils in the feld that the section of code associated with these comments is found and their problems
corrected.

Ideally, one should neer have to put such code into a program. Of course, idgaibgrams neer have
ary defects in them, eitheiSince such code iigably finds its vay into a program, &' best to hae a poliy
in place to deal with it, hence this section.

Unfinished code comes irvé general cagories: non-functional code, partially functioning code; sus
pect code, code in need of enhancement, and code documentation. Non-functional code might be a stub or
driver that needs to be replaced in the future with actual code or some code thaetesrsmugh defects

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel433

Appendix C Appendices

that it is uselessxeept for some small special cas@his code is really bad, fortunately itvegty prevents
you from ignoring it. It is unlikly aryone would miss such a poorly constructed piece of code in early test
ing prior to release.

Partially functioning code is, perhaps, the biggest probl&his code wrks well enough to pass some
simple tests yet contains serious defects that should be corrected.véidiesse defects are kmn. Soft
ware often contains a & number of unkmven defects; i a shame to let some (prior) knmodefects ship
with the product simply because a programmegdbabout a defect or couldriind the defect later

Suspect code isxactly that- code that is suspiciouShe programmer may not bevare of a quantifi
able problem bt may suspect that a problexists. Such code will need a latevissv in order to ‘erify
whether it is correct.

The fourth catgory, code in need of enhancement, is the least serious.exemple, to gpedite a
release, a programmer might choose to use a simple algorithm rather than xclastelealgorithm. S/he
could male a comment in the code éikKThis linear search should be replaced by a hash table lookup in a
future \ersion of the softare.” Although it might not be absolutely necessary to correct such a problem, it
would be nice to kne about such problems so yhean be dealt with in the future.

The fiith catgory, documentation, refers to changes made to soéhat will afect the corresponding
documentation (user guide, design document, efthle documentation department can search for these
defects to bringxasting documentation in line with the current code.

This standard defes a mechanism for dealing with these filasses of problem#ny occurrence of
unfinished code will be preceded by a comment thastake of the follwing forms (where " " denotes a
single space):

/| _#def ect #severe_//

/| _#def ect #f unctional _//

/| _#def ect #suspect _//

/| _#def ect #enhancernent _//

/| _#def ect #docunent ation_//

It is important to use all lger case anderify the correct spelling so it is easy todithese comments
using a tgt editor search or a tool kkgrep. Otiously, a separate commentaining the situation must
follow these comments in the source code.

Examples:

/1 #def ect #suspect //
/| #def ect #enhancenent //
/| #def ect #docunentation //

Notice the use of comment delimiters (the “//*) on both sides ¢hough HLA doeshtrequire them.

Enforced Rule: If a module contains some defects that cannot be immediately removed because of time or
other constraints, the program will insert a standardized comment before the code so that it is
easy to locate such problems in the future. The five standardized comments are
"Il_#defect#tsevere_/I”, "/l _#defect#functional //”, “/l_#defect#suspect //”,
“Il_#defect#enhancement_//”, and “//_#defect#documentation_//” where “_” denotes a single

space. The spelling and spacing should be exact so it is easy to search for these strings in the
source tree.

C.6.5 Cross References in Code to Other Documents
In mary instances a section of code might be intrinsically tied to some other docunoergarple,

you might refer the reader to the user document or the design document within your comments in a program.
This document proposes a standamywvo do this so that it is relatily easy to locate cross references

Pagel434 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

appearing in source cod&he technique is similar to that for defect reportingept the comments takhe
form:

/1 text #l ink#location text |/
"Text" is optional and represents arbitraryttéalthough it is really intended for embedding html eom
mands to preide hyperlinks to the specé#d document). Locatior' describes the document and section
where the associated information can be found.

Exanpl es:

/'l #link#User’'s Quide Section 3.1 //

/| #li nk#Program Desi gn Docunent, Page 5 //

/1 #link#Funcs. pas nodul e, "xyz" function //

/1 #l i nk#xyzfunc //

Guideline: If a module contains some cross references to other documents, there should be a comment that

takes the form "fext#link#locationtext//" that provides the reference to that other document.
In this commenttéext' represents some optional text (typically reserved for html tags) and
"location” is some descriptive text that describes the document (and a position in that docu
ment) related to the current section of code in the program.

C.7 Names, Instructions, Operators, and Operands
Although program features Bkgood comments, proper spacing of statements, and good modularization
can help yield programs that are more readable; ultimatglyogrammer must read the instructions in a
program to understand what it doéherefore, do not underestimate the importance of making your state
ments as readable as possiblbis section deals with this issue.
C.7.1 Names

According to studies done at IBM, the use of high-quality idensifin a program contributes more to
the readability of that program than any other single factor, including high-quality comments. The quality
of your identifiers can make or break your program; program with high-quality identifiers can be very easy
to read, programs with poor quality identifiers will be very difficult to read. There are very few “tricks” to
developing high-quality names; most of the rules are nothing more than plain old-fashion common sense.
Unfortunately, programmers (especially C/C++ programmers) have developed many arcane naming conven
tions that ignore common sense. The biggest obstacle most programmers have to learning how to create
good names is an unwillingness to abandon existing conventions. Yet their only defense when quizzed on
why they adhere to (existing) bad conventions seems to be “because that's the way I've always done it and
that’s the way everybody else does it.”

The aforementioned researchers at IBM developed several programs with the following set of
attributes:

e Bad comments, bad names

e Bad comments, good names
e Good comments, bad names
e Good comments, good names

As should be obvious, the programs that had bad comments and names were the hardest to read; like-
wise, those programs with good comments and names were the easiest to read. The surprising results con-
cerned the other two cases. Most people assume good comments are more important than good names in a
program. Not only did IBM find this to be false, they found it todzdly false.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel435

Appendix C Appendices

As it turns out, good names angeea more important that good comments in a prograhis is not to
say that comments are unimportantythee etremely important; hwever, it is worth pointing out that if
you spend the time to write good comments and then choose poor names for your pritgatifiers,
you've damaged the readability of your program despite itk wouVve put into your comments. Quickly
read wer the follaving code:

nov(SignedVal ue, ax);

cwd() ;
add(-1, ax);
rcl(1, dx);

nov(dx, Absol uteVal ue);

Question:What does this code compute and store irAtheolute\alue \ariable?

* The sign extension of SignedValue.

e The negation of SignedValue.

e The absolute value of SignedValue.

* A boolean value indicating that the result is positive or negative.
e Signum(SignedValue) (-1, 0, +1 if neg, zero, pos).

» Ceil(SignedValue)

* Floor(SignedValue)

The obvious answer is the absolute value of SignedValue. This is also incorrect. The correct answer is

signum:;
nov(SignedValue, ax); // Get value to check.
cwd() ; // DX = FFFF if neg, 0000 ot herwi se.
add($ffff, ax); // Carry=0 if ax is zero, one otherw se.
rcl (1, dx); // DX =FFFF if AXis neg, O if ax=0,
nmov(dx, Signum); /1 1if ax>0.

Granted, this is a trigkpiece of cod®. Nonethelessyen without the comments you can probaldy fi
ure out what the code sequence does éf you cart figure out hav it does it:

nov(SignedVal ue, ax);
cwd() ;

add($ffff, ax);

rcl (1, dx);

nmov(dx, Signhum);

Based on the names alone you can probablyrdi out that this code computes the signum function
(even if understandindpow it does it remains a mystery)This is the "understanding 80% of the code"
referred to earlier Note that you do’'need misleading names to meatkis code urithomable. Consider
the folloving code that doesntrick you by using misleading names:

nmov(X, ax);
cwd() ;

add($ffff, ax);
rcl(1, dx);
nov(dx, y);

This is a ery simple gample. Nav imagine a lage program that has manames.As the number of
names increase in a program, it becomes harderep ack of them all. If the names themssldo not
provide a good clue to the meaning of the name, understanding the program besgnaéioult.

Enforced Rule: All identifiers appearing in an assembly language program must be descriptive names whose
meaning and use are clear.

10. It could be worse, you should see what the "superoptimizer" outputs for the signum function. It's even shorter and harder
to understand than this code.

Pagel436 © 2001, By Randall Hyde Beta Draft - Do not distribute

Rule:

Programming Style Guidelines

Since labels (i.e., ident#is) are the tget of jump and call instructions, a typical assembly language
program may hze a lage number of identiirs, especially if you write in “pure” assembly and ¢arehe
HLA high level control structuresTherefore, it is tempting to ga using names li"labell, label2, label3,

... Avoid this temptation! There is alvays a reason you are jumping to some spot in your cddeto
describe that reason and use that description for your label name.

Never use names like "LblO, Lbl1, Lbl2, ..." in your program. Always use meaningful names!

C.7.1.1 Naming Conventions

Rule:

Naming corentions represent one area in Computer Science where there are far too many divergent
views (program layout is the other principle area). The primary purpose of an object’s name in a-program
ming language is to describe the use and/or contents of that object. A secondary consideration may be to
describe the type of the object. Programmers use different mechanisms to handle these objectives. Unfortu
nately, there are far too many “conventions” in place, it would be asking too much to expect any one pro
grammer to follow several different standards. Therefore, this standard will apply across all languages as
much as possible.

The vast majority of programmers know only one language - English. Some programmers know
English as a second language and may not be familiar with a common non-English phrase that is not in their
own language (e.g., rendezvous). Since English is the common language of most programmers, -all identifi
ers should use easily recognizable English words and phrases.

All identifiers that represent words or phrases must be English words or phrases.

C.7.1.2 Alphabetic Case Considerations

A case-neutral identdr will work properly whether you compile it with a compiler that has case-sensi
tive identifiers or case insensitive identifiers. In practice, this means that all uses of the identifiers must be
spelled exactly the same way (including casejthat no other identifier exists whose only difference is the
case of the letters in the identifier. For example, if you declare an identifier “ProfitsThisYear” in Pascal (a
case-insensitive language), you could legally refer to this variable as “profitsThisYear” and “PROFITSTHI
SYEAR”. However, this is not a case-neutral usage since a case sensitive language would treat these three
identifiers as different names. Conversely, in case-sensitive languages like C/C++, it is possible to create
two different identifiers with names like “PROFITS” and “profits” in the program. This is not case-neutral
since attempting to use these two identifiers in a case insensitive language (like Pascal) would produce an
error since the case-insensitive language would think they were the same name.

Enforced Rule: All identifiers must be “case-neutral.”

Rule:

Fortunately, HLA enforces case neutrality in its identifiers; so HLA doesn’t allow you to violate this
rule. However, if you are linking assembly and high level language code together, it's a good idea to follow
this rule in the HLL code to prevent problems when linking with the HLA code.

Different programmers (especially in different languages) use alphabetic case to denote different
objects. For example, a common C/C++ coding convention is to use all upper case to denote a constant,
macro, or type definition and to use all lower case to denote variable names or reserved words. Prolog pro
grammers use an initial lower case alphabetic to denote a variable. Other comparable coding conventions
exist. Unfortunately, there are so many different conventions that make use of alphabetic case, they are
nearly worthless, hence the following rule:

You should never use alphabetic case to denote the type, classification, or any-other pro
gram-related attribute of an identifier.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel437

Appendix C Appendices

Rule:

Rule:

There are going to be somevidus exceptions to the above rule, this document will cover those-excep
tions a little later. Alphabetic case does have one very useful purpose in identifiers - it is useful for separat
ing words in a multi-word identifier; more on that subject in a moment.

To produce readable identifiers often requires a multi-word phrase. Natural languages typically use
spaces to separate words; we can not, however, use this technique in identifiers.

Unfortunatelywritingmultiwordidentifiers makesthemalmostimpossibletoreadifyoudonotdosomething
todistiguishtheindividualwords (Unfortunately writing multiword identifiers makes them almost impossible
to read if you do not do something to distinguish the individual words).

There are a couple of good conventions in place to solve this problem. This standard’s convention is to
capitalize the first alphabetic character of each word in the middle of an identifier.

Capitalize the first letter of interior words in all multi-word identifiers.

Note that the rule above does not specify whether the first letter of an identifier is upper or lower case.
Subject to the other rules governing case, you can elect to use upper or lower case for the first symbol,
although you should be consistent throughout your program. The second convention is to use an underscore
to separate words in a multi-word document. This is also acceptable, though the capitalization rule probably
produces identifiers that are easier to read and write.

Lower case characters are easier to read than upper case. Identifiers written completely in upper case
take almost twice as long to recognize and, therefore, impair the readability of a program. Yes, all upper
case does make an identifier stand out. Such emphasis is rarely necessary in real programs. Yes, common
C/C++ coding conventions dictate the use of all upper case identifiers. Forget them. They not only make
your programs harder to read, they also violate the first rule above.

Avoid using all upper case characters in an identifier.

Some programmers prefer to begin all identifiers with a lower case letter. Others prefer to begin them
with an upper case alphabetic character. Either scheme is fine as long as you apply it consistently through
out your program. Under no circumstances should you use the presence of an upper or lower case character
to denote different things in your code (see the earlier rule about this).

C.7.1.3 Abbreviations

The primary purpose of an idengifiis to describe the use of, or value associated with, that identifier.
The best way to create an identifier for an object is to describe that object in English and then create a vari
able name from that description. Variable names should be meaningful, concise, and non-ambiguous to an
average programmer fluent in the English language. Avoid short names. Some research has shown that pro
grams using identifiers whose average length is 10-20 characters are generally easier to debug than programs
with substantially shorter or longer identifiers.

Avoid abbreviations as much as possible. What may seem like a perfectly reasonable abbreviation to
you may totally confound someone else. Consider the following variable names that have actually appeared
in commercial software:

NoEmployees, NoAccounts, pend

The “NoEmployees” and “NoAccounts” variables seem to be boolean variables indicating the presence
or absence of employees and accounts. In fact, this particular programmer was using the (perfeetly reason
able in the real world) abbreviation of “number” to indicate the number of employees and the number of
accounts. The “pend” name referred to a procedure’s end rather than any pending operation.

Programmers often use abbreviations in two situations: they’re poor typists and they want to reduce the
typing effort, or a good descriptive name for an object is simply too long. The former case is an unaccept
able reason for using abbreviations. The second case, especially if care is taken, may warrant the occasional
use of an abbreviation.

Guideline: Avoid all identifier abbreviations in your programs. When necessary, use standardized abbre

Pagel438 © 2001, By Randall Hyde Beta Draft - Do not distribute

Rule:

Programming Style Guidelines

viations or ask someone toview your abbreviations. Whenever you use abbreviations in
your programs, create a “data dictionary” in the comments near the names’ definition-that pro
vides a full name and description for your abbreviation.

The variable names you create should be pronounceable. “NumFiles” is a much better identifier than
“NmFIs”. The first can be spoken, the second you must generally spell out. Avoid homonyms and long
names that are identical except for a few syllables. If you choose good names for your identifiers, you
should be able to read a program listing over the telephone to a peer without overly confusing that person.

All identifiers should be pronounceable (in English) without having to spell out more than one
letter.

C.7.1.4 The Position of Components Within an Identifier

When scanning through a listing, most programmers only readgshtefi characters of an identifier. It
is important, therefore, to place the most important information (that defines and makes this identifier
unique) in the first few characters of the identifier. So, you should avoid creating several identifiers that all
begin with the same phrase or sequence of characters since this will force the programmer to mentally pro
cess additional characters in the identifier while reading the listing. Since this slows the reader down, it
makes the program harder to read.

Guideline: Try to make most identifiers unique in the first few character positions of the identifier. This

makes the program easier to read.

Corollary: Never use a numeric suffix to differentiate two names.

Many C/C++ Programmers, especially Microsoft Windows programmers, have adopted a formal nam
ing convention known as “Hungarian Notation.” To quote Steve McConnell from Code Complete: “The
term ‘Hungarian’ refers both to the fact that names that follow the convention look like words in a foreign
language and to the fact that the creator of the convention, Charles Simonyi, is originally from Hungary.”
One of the first rules given concerning identifiers stated that all identifiers are to be English names. Do we
really want to create “artificially foreign” identifiers? Hungarian notation actually violates another rule as
well: names using the Hungarian notation generally have very common prefixes, thus making them harder to
read.

Hungarian notation does have a few minor advantages, but the disadvantages far outweigh-the advan
tages. The following list from Code Complete and other sources describeswbatsvith Hungarian
notation:

» Hungarian notation generally defines objects in terms of basic machine types rather than in
terms of abstract data types.

* Hungarian notation combineseaningwith representation One of the primary purposes of
high level language is to abstract representation away. For example, if you declare a variable to
be of typeinteger you shouldn’t have to change the variable’s name just because you changed
its type toreal

* Hungarian notation encourages lazy, uninformative variable names. Indeed, it is common to
find variable names in Windows programs that coraiy type prefix characters, without an
descriptive name attached.

* Hungarian notation prefixes the descriptive name with some type information, thus making it
harder for the programming to find the descriptive portion of the name.

Guideline: Avoid using Hungarian notation and any other formal naming convention that attaches

low-level type information to the identifier.

Although attachingnachinetype information to an identifier is generally a bad idea, a well thought-out

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel439

Appendix C Appendices

name can successfully associate some higdl-tgpe information with the identifier, especially if the name
implies the type or the type information appears as a suffix. For example, names like “PencilCount” and
“BytesAvailable” suggest integer values. Likewise, names like “IsReady” and “Busy” indicate boolean val
ues. “KeyCode” and “Middlelnitial” suggest character variables. A name like “StopWatchTime” probably
indicates a real value. Likewise, “CustomerName” is probably a string variable. Unfortunately, it isn’t
always possible to choose a great name that describes both the content and type of an object; this is particu
larly true when the object is an instance (or definition of) some abstract data type. In such instances, some
additional text can improve the identifier. Hungarian notation is a raw attempt at this that, unfortunately,
fails for a variety of reasons.

A better solution is to usesalffix phraséo denote the type or class of an identifier. A common UNIX/C
convention, for example, is to apply a “_t” suffix to denote a type name (e.g., size_t, key _t, etc.). -This con
vention succeeds over Hungarian notation for several reasons including (1) the “type phrase” is a suffix and
doesn't interfere with reading the name, (2) this particular convention specifietasgiseof the object
(const, var, type, function, etc.) rather than a low leyed and (3) It certainly makes sense to change the
identifier if it's classification changes.

Guideline: If youwantto differentiate identifiers that are constants, type definitions, and variable names,
use the suffixes “_c”, “ t”, and “_v”, respectively (generally, the lack of a suffix denotes a
variable).

Rule: The classification suffix should not be the only component that differentiates two identifiers.

Can we apply this suffix idea to variables and avoid the pitfalls? Sometimes. Consider a high level data
type “button” corresponding to a button on a Visual BASIC or Delphi form. A variable name like “Cancel
Button” makes perfect sense. Likewise, labels appearing on a form could use names like “ETWWLabel”
and “EditPageLabel”’. Note that these suffixes still suffer from the fact that a change in type will require that
you change the variable’s name. However, changes in high level types are far less common than changes in
low-level types, so this shouldn’t present a big problem.

HLA provides a special operator, “” (grave accent) that separates an identifier name from an attached
comment. For example, the legal HLA identifier “Hello‘'world” is really just “Hello”. The characters fol
lowing the grave accent (to the end of the identifier) are treated as a comment by the compiler. So if you
want to attach a comment concerning the variable’s type or use to the identifier, you can use this feature in
HLA.

GuideLine: If you must attach low level type information to an identifier, use the HLA identifier comment
(", grave accent) and append the information to the end of the identifier.

C.7.1.5 Names to Avoid

Avoid using symbols in an identifier that are easily mistaken for other symbols. This includes the sets
{*1” (one), “I" (upper case “I"), and “I" (lower case “L")}, {“0” (zero) and “O" (upper case “O")}, {*2”
(two) and “Z” (upper case “Z")}, {"5” (five) and “S” (upper case “S")}, and (“6” (six) and “G” (upper case
“G”)}.

Guideline: Avoid using symbols in identifiers that are easily mistaken for other symbols (see the list
above).

Avoid misleading abbreviations and names. For example, FALSE shouldn’t be an identifier that stands
for “Failed As a Legitimate Software Engineer.” Likewise, you shouldn’t compute the amount of free mem
ory available to a program and stuff it into the variable “Profits”.

Rule: Avoid misleading abbreviations and names.

You should avoid nhames with similar meanings. For example, if you have two variables “InputLine”
and “InputLn” that you use for two separate purposes, you will undoubtedly confuse the two when writing

Pagel440 © 2001, By Randall Hyde Beta Draft - Do not distribute

Rule:

Rule:

Programming Style Guidelines

or reading the code. If you canawthe names of the two objects and the program still makes sense, you
should rename those identifiers. Note that the names do not have to be similar, only their meanings. “Input
Line” and “LineBuffer” are obviously different but you can still easily confuse them in a program.

Do not use names with similar meanings for different objects in your programs.

In a similar vein, you should avoid using two or more variables that have different meanings but similar
names. For example, if you are writing a teacher’s grading program you probably wouldn’t want to use the
name “NumsStudents” to indicate the number of students in the class along with the variable “StudentNum”
to hold an individual student’s ID number. “NumStudents” and “StudentNum” are too similar.

Do not use similar names that have different meanings.

Avoid names that sound similar when read aloud, especially out of context. This would include names
like “hard” and “heart”, “Knew” and “new”, etc. Remember the discussion in the section above on-abbrevi
ations, you should be able to discuss your problem listing over the telephone with a peer. Names that sound
alike make such discussions difficult.

Guideline: Avoid homonyms in identifiers.

Avoid misspelled words in names and avoid names that are commonly misspelled. Most programmers
are notoriously bad spellers (look at some of the comments in our own code!). Spelling words correctly is
hard enough, remembering how to spell an ideniifiesrrectlyis even more difficult. Likewise, if a word
is often spelled incorrectly, requiring a programer to spell it correctly on each use is probably asking too
much.

Guideline: Avoid misspelled words and names that are often misspelled in identifiers.

If you redefine the name of some library routine in your code, another program will surely confuse your
name with the library’s version. This is especially true when dealing with standard library routines and
APIs.

Enforced Rule: Do not reuse existing standard library routine names in your program unless you are specifi

cally replacing that routine with one that has similar semantics (i.e., don’t reuse the name for a
different purpose).

Corollary: Use Namespaces to prevent name space pollution!

C.7.1.6 Special Identifers

By convention, HLA programmers use certain ideptigi for special purposeény identifier beinning
with an underscorefls into this catgory. HLA defines fie such coventions. The HLA compiler does not
enforce these coentions, bt if you violate them you may run into problemshe following paragraphs
describe each of these eentions.

HLA resenes for its an use (and the use of the HLA Standard Library) all idensifihat bgin and
end with a single underscor&ou should neer defne ary identifiers in your programs that &ilthis form
since your identiirs may conitt with HLA's use. These reseeration efectively reseres an “HLA
namespace” of identéis that the compiler and Standard Library camvdram without fear of breaking
ary existing code (that follws this comention).

Identifiers that bgin and end with te@ underscores are resedvfor use as local symbols in usiefined
macros. To avoid conflcts with such symbols (especially in coxitéree/multi-part macros) you should
never use symbols that gim and end with ter underscores outside of a macwWithin a macro, you should
use the covention for all symbols that are local to that macro.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel441

Appendix C Appendices

By convention, HLA programmers resenall identifers bginning with two underscores for defing
private data in classes, records, and other declaration sections.réf ysing a class (or other structure) and
some if its identiers bgin with two underscores, this is your hint that thes&l§ are pxiate to that class
and subject to chang&ou should neer directly access suclefils. When youre defning your avn classes,
you should emphpthis cowention to varn others when yorg defning private data to that class.

Identifiers that bgin with a single underscorevetwo uses. First, some languages and callingeren
tions (most notablyC) prepend an underscore to alleznal namesTherefore, it is common to use reserv
symbols that bgin with a single underscore foxternal linkage. The second use is closely related to the
first — HLA programmers corntionally use identiéirs bginning with a single underscore ast@adow
name Consider the folling linkage to anxernal procedure written in C:

procedure _external CGrunc(parn®:int32; parnl:int32); external;
#macro external CGFunc(pl, p2);

_external CGFunc(p2, pl);
#endnacr o;

The C compiler xports the name “_externalCFunc” for the C function that is actually named “external
CFunc” inside the C code. Of course, inside our HLA code we would like to use the C name, not the
exported name. We could easily achieve this using the following external definition:

procedur e external CFunc(parn®:int32; parml:int32); external (“_external CFunc”);

The only catch is that we’have to always remember to put the parameters in the reverse order (to match C's
calling convention). Savvy HLA programmers use a macro to swap the parameters as in the previous exam
ple. They use the exported C name as a shadow name of the function and then write the macro that swaps
the function’s parameters as the real name.

You can use shadow names for all sorts of different purposes, not just for linkage to C functions. For
example, the chapter on macros in this text has given examples of function overloading that uses a macro
with the overloaded function nhame and shadow names for the actual functions that implement each of the
overloaded calls. The convention is to use a leading underscore on all the shadow function (and other
object) names.

C.7.2 Instructions, Directives, and Pseudo-Opcodes

Your choice of assembly language sequences, the instructions thesmaaly your choice of direatis
and pseudo-opcodes carvba big impact on the readability of your programibe folloving subsections
discuss these problems.

C.7.2.1 Choosing the Best Instruction Sequence

Like ary language, you can s@\a gven problem using a wideriety of solutions imolving different
instruction sequenced\s a continuing xample, consider (a&in) the follaving code sequence:

nov(SignedValue, ax); // Get value to check.

cwd() ; // DX = FFFF if neg, 0000 ot herwi se.
add($ffff, ax); // Carry=0 if ax is zero, one otherw se.
rcl (1, dx); // DX =FFFF if AXis neg, O if ax=0,
nmov(dx, Signhum); /1 1 if ax>0.

Now consider the follwing code sequence that also computes the signum function:

nov(SignedVal ue, ax); // Get value to check.

cnp(ax, 0); /] Check the sign.
je GotSigum // W're done if it’'s zero
mov(1, ax); // Assune it’s positive.

Pagel442 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines

jns Got Si gnum // W're done if it was positive.
neg(ax); /Il 1->-1, we've got a negative val ue.
Got Si gnum nmov(ax, Signhum);

Yes, the secondevsion is longer and sker However, an aerage person can read the instruction
sequence anddiure out what is doing; hence the secondrsion is much easier to read than thst.fi
Which sequence is best? Unless speed or space idramely critical &ctor and you can shothat this
routine is in the critical>@cution path, then the seconersion is oliiously better There is a time and a
place for tricly assembly code; kever, it's rare that you wuld need to pull tricks li this throughout
your code.

So hav does one choose appropriate instruction sequences when there greassible vays to
accomplish the same taskhe best \ay is to ensure that youvea choice Although there are mardif-
ferent vays to accomplish an operationwfeeople bother to consideryamstruction sequence other than
the first one that comes to their mind. Unfortunatéhe "best" instruction sequence is rarely thst fi
instruction sequence that comes to most pesphehds?. In order to mak a choice, you ha to hae a
choice to ma&. That means you should create at least different code sequences for &egi operation if
there is ger a question concerning the readability of your code. Once yauatdeast tw versions, you
can choose between them based on your needs at Nehide it is impractical to "write your program
twice" so that youl have a choice forwery sequence of instructions in the program, you should apply this
technique to particularly bothersome code sequences.

Guideline: For particularly difficult to understand sections of code, try solving the problem several differ
ent ways. Then choose the most easily understood solution for actual incorporation into your
program.

One problem with the above suggestion is that you're often too close to your own work to make deci-
sions like "this code isn’'t too hard to understand, | don't have to worry about it." It is often a good idea to
have someone else review your code and point out those sections they find hard to uhderstand

Guideline: Take advantage of reviews to determine those sections of code in your program that may need
to be rewritten to make them easier to understand.

C.7.2.2 Control Structures

Ralph Grisvold!® once said (roughly) the folldng about C, Bscal, and Icon: "C mak it easy to write
hard to read prograr‘?’fé Pascal maks it hard to write hard to read programs, and Icoresdleasy to write
easy to read programsAssembly language can be summed ug iikis: "Assembly language nexkit hard
to write easy to read programs and easy to write hard to read programses lt@akiderable discipline to
write readable assembly language programsijt can be done Sadly most assembly code yomdi today
is extremely poorly written. Indeed, that state daak is the whole reason for this document. Once you get
past issues |l& comments and naming s@mtions, issues l&k program control éw and data structure
design hae among the Ilgest impacts on program readabilitPne need look naafther than the public
domain code on the Internet, or at Microsotample code for that mattérto see abndant gamples of
poorly written assembly language code.

Fortunately with a little discipline it is possible to write readable assembly language prograntis: P
ularly in HLA which was designed from the gi@ning to allev the easy creation of readable codewhou
design your control structures carvéa big impact on the readability of your programie best \ay to do
this can be summed up indwvords: aoid spaghetti.

11. This is true regardless of what metric you use to determine the "best" code sequence.

12. Of course, if the program ilssassignmentyou may want to check your instructor’s cheating policy before showing

your work to your classmates!

13. The designer of the SNOBOL4 and Icon programming languages.

14. Note that this does not infer that it is hard to write easy to read C programs. Only that if one is sloppy, one can easily
write something that is near impossible to understand.

15. Okay, this is a cheap shot. In fact, most of the assembly code on this planet is poorly written.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel443

Appendix C Appendices

Spayhetti code is the name gen to a program that has agarnumber of intertwined branches and
branch tagets within a code sequence. Consider theviotig example:

jmp L1,

L1: nmov(0, ax ;
jnp L2

L3: mov(1, ax);
jmp L2;

L4: nov(-1, ax);
jmp L2;

LO: mov(X, ax);
cnp(ax, 0);
je L1,
jns L3;
jnp L4,

L2: nov(ax, y);

This code sequence, by thayvis our good friend the Signum function. Itéslka fev moments to §-
ure this out because as you manually trace through the codegawf(irself spending more time foNng
jumps around than you do looking at code that computes useful resultsthiNdés a ratherndgreme eanm
ple, hut it is also &irly short. A longer code sequence code become just as obfuscatedveisittiemer
branches alleer the place.

Spaghetti code is g@n this name because it resembles\l lmd spaghetti. That is, if we consider a
control path in the program a spaghetti noodle, spaghetti code contains lots of intertwined branches into and
out of diferent sections of the program. Needless to sest spaghetti programs arefidifilt to under
stand, generally contain lots aidps, and are often irfefient (dont forget that branches are among thevslo
est ecuting instructions on most modern processors).

So hav to we resole this? Easy by pisically adopting structured programming techniques in assem
bly language code. Of course, “pure” 80x86 assembly language dpeside IFE. THEN..ELSE..ENDIF
WHILE..ENDWHILE, REPEA..UNTIL, and other such statements} lve can certainly simulate them if
you insist on writing “pure” assembly code Consider the folling high level sequence:

i f(expression) then

<< statenents to execute if expression is true >>
el se

<< statenents to execute if expression is false >>
endi f;

Almost ary high level language programmer caguie out what this type of statement will desssem
bly language programmers shoulddeage this knwledge by attempting to ganize their code so it tak
this same form. Spedifilly, the assembly languagersion should look something éikhe follaving:

<< Assenbly code to conpute val ue of expression >>

JNXX El sePart ;xx is the opposite condition we want to check.
<< Assenbly code corresponding to the then portion >>

jnp AroundE! sePart

El sePart:
<< Assenbly code corresponding to the el se portion >>

AroundHEl sePart :

16. We'll consider the HLA high level control statements elsewhere in this appendix.

Pagel444 © 2001, By Randall Hyde Beta Draft - Do not distribute

Rule:

Programming Style Guidelines
For an concretexample, consider the folldng:

if(ax =y) then
wite("ax =y);
el se
wite('ax <>y);
endi f;
; Correspondi ng Assenbly Code:

mov(X, ax);

cnp(ax, y);
jne El sePart;

stdout.put("x =y",nl);
jnp | fDone;

E sePart: stdout. put ("x<>y",nl);
| f Done:

While this may seem l&kthe olious way to oganize an IETHEN.ELSE..ENDIF statement, it is sur
prising hav mary people wvould naturally assume thiere got to place the ELSE part somiere else in the
program as follas:

mov(X, ax);

cnp(ax, y);
jne E sePart;

stdout.put("x =y", nl);
| f Done:

E sePart: stdout.put("x <>y", nl);
jnp | fDone;

This code aganization ma&s the program more @ifult to follov. Most programmers ka a HLL
background and despite a current assignment stilework mostly in HLLs. Assembly language programs
will be more readable if tiyemimic the HLL control constructs,

For similar reasons, you should attempt tgamize your assembly code that simulaM<ILE loops,
REPEA..UNTIL loops, FOR loops, etc., so that the code resembles the HLL codedfople, aVHILE
loop should pisically test the condition at thediening of the loop with a jump at the bottom of the loop).

Attempt to design your programs using HLL control structures. The organization of the
assembly code that you write should physically resemble the organization of some cofrespond
ing HLL program.

Assembly language offers you the flexibility to design arbitrary control structures. This flexibility is
one of the reasons good assembly language programmers can write better code than that produced by a com-
piler (that can only work with high level control structures). However, keep in mind that a fast program

17. Sometimes, for performance reasons, the code sequence above is justified since straight-line code executes faster than
code with jumps. If the program rarely executes the ELSE portion of an if statement, always having to jump over it could be
a waste of time. But if you're optimizing for speed, you will often need to sacrifice readability.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel445

Appendix C Appendices

doesnt have to contain the tightest possible codeviarg sequence. Exution speed is nearly irrgbnt in
most parts of the program. Saailfig readability for speed igra big win in most of the program.

Guideline: Avoid control structures that don’t easily map to well-known high level language contrel struc
tures in your assembly language programs. Deviant control structures should only appear in
small sections of code when efficiency demands their use.

C.7.2.3 Instruction Synonyms

HLA defines seeral synogms for common instructionsThis is especially true for the conditional
jump and "set on condition code" instructionsor Example, A and JNBE are syngms for one another
Logically, one could use either instruction in the same adntdovever, the choice of syngm can hae an
impact on the readability of a code sequeritesee wi, consider the follwing:

if(x <=y) then

<< true statenents>>
el se

<< fal se statenents>>
endi f

/1 Assenbly code:

nov(X, ax);

cnp(ax, y);
ja B sePart;

<< true code >>
jnp | fDone;

El sePart: << fal se code >>
| f Done:

When someone reads this program, th#' 'statement skipswer the true portion. Unfortunatelghe
"JA" instruction gves the illusion wee checking to see if something is greater than something else; -n actu
ality, we're testing to see if some condition is less than or equal, not greater Akasuch, this code
sequence hides some of the original intent of higél lelgorithm. One solution is to aw the &lse and true
portions of the code:

nov(X, ax);

cnp(ax, y
j be ThenPart;

<< fal se code >>
jnp | fDone;

ThenPart : << true code >>
| f Done:

This code sequence uses the conditional jump that matches thevieighiderithms test (less than or
equal). Havever, this code is n@ organized in a non-standardshion (its an IF.ELSE..THEN..ENDIF
statement).This hurts the readability more than using the proper jump helped . chiosider the foll-
ing solution:

nov(X, ax);
cnp(ax, y);
jnbe H sePart;

<< true code >>

Pagel446 © 2001, By Randall Hyde Beta Draft - Do not distribute

Programming Style Guidelines
jnp | fDone;

El sePart: << fal se code >>
| f Done:

This code is @qanized in the traditional IFHEN..ELSE..ENDIF &shion. Instead of usiné do skip
over the then portion, it uses JNBE to do 3dnis helps indicate, in a more readalasHion, that the code
falls through on belw or equal and branches if it is not helor equal. Since the instruction (JNBE) is-eas
ier to relate to the original test (<=) thak $his males this section of code a little more readable.

Rule: When skipping over some code because some condition has failed (e.g., you fall into the code
because the condition is successful), always use a conditional jump of the fosxth takip
over the code section. For example, to fall through to a section of code if one value is less than
another, use the JNL or JNB instruction to skip over the code. Of course, if you are testing a
negative condition (e.g., testing for equality) then use an instruction of thexdorskip over
the code.

C.8 DataTypes

Prior to the arsial of MASM from Microsoft for the 80x86, most assemblersvjgied \ery little capa
bility for declaring and allocated complédata types. Generallyou could allocate bytes,ands, and other
primitive machine structuresfou could also set aside a block of bytés. high level languages impred
their ability to declare and use abstract data types, assembly languageHetl anddrther behind.Then
MASM came along and changed all tfatHLA expands the ability to declare abstract data types ér
ther than MASM. Unfortunatelynan nev assembly language programmers tlbother learning and using
these data typingatilities because thge already werwhelmed by assembly language arahimo mint
mize the number of things tyi@e got to learn.This is really a shame because Hé Aata typing is one of
the biggest impneements to assembly language since using mnemonics rather than binary opcodes for
machine lgel programming.

Note that HLA is a "high-kel" assembler It does things assemblers for other chimg'tvdo like
checking the types of operands and reporting errors if there are mismatches. Some people, who are used to
assemblers on other machinexdfthis annging. However, it's a great idea in assembly language for the
same reason #'a great idea in HLES. These features laa one other benefal side-efect: the help other
understand what yoi€ trying to do in your programs. It should come as no surprise, then, that this style
guide will encourage the use of these features in your assembly language programs.

C.8.1 Declaring Structures in Assembly Language

HLA provides an ecellent &cility for declaring and using records and unions; for some reasog, man
assembly language programmers ignore them and manually comfaets ¢ felds within structures in
their code. Not only does this produce hard to read code, the result is nearly unmaintainable as well.

Rule: When a structure data type is appropriate in an assembly language program, declare the corre
sponding structure in the program and use it. Do not compute the offsets to fields in the struc
ture manually, use the standard structure "dot-notation" to access fields of the structure.

One problem with using structures occurs when you access structure fields indirectly (i.e., through a
pointer). Indirect access always occurs through a register. Once you load a pointer value into a register, the
program doesn’t readily indicate what pointer you are using. This is especially true if you use the indirect

18. Okay, MASM wasn't the first, but such techniques were not popularized until MASM appeared.
19. Of course, MASM gives you the ability to override this behavior when necessary. Therefore, the complaints from
"old-hand" assembly language programmers that this is insane are groundless.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel447

Appendix C Appendices
access seeral times in a section of code without reloading tlggster(s). One solution is to use atteon
stant to create a special symbol thgiands as appropriate. Consider the foitm code:

type
s:record

a: int32;
b: int32;

endr ecor d;

static
r: s;
ptr2r: pointer to s;

mov(ptr2r, edi);
nov((type s [edi]).a, eax); /1 No indication this is ptr2r

mov(ebx, (type s [edi).b); /1 Still no indication

Now consider the follwing:

type
s:record

a: int32;
b: int32;

endr ecor d;

sptr : pointer to s;

static
r: s;
ptr2r: sptr :=q
?ritext := (type s [edi])”;

nmov(ptr2r, edi);
nov(_r.a, eax); // Nowit's alot nmore clear that we're using r

nov(ebx, _r.b); I/l 1t's still clear that we're using r!

Note that the "_" symbol is adal identifier character to HLA, hence "_r" is just another symbol. Of
course, you mustwahys mak sure to load the pointer into EDI when using thé ¢enstant abee. If you
use seeral diferent rgjisters to access the data that "r" points at, this trick may na thalkcode gmmore
readable since you will needveeal text constants that all mean the same thing.

Pagel448 © 2001, By Randall Hyde Beta Draft - Do not distribute

	HLA Programming Style Guidelines Appendix C
	C.1 Introduction
	C.1.1 Intended Audience
	C.1.2 Readability Metrics
	C.1.3 How to Achieve Readability
	C.1.4 How This Document is Organized
	C.1.5 Guidelines, Rules, Enforced Rules, and Exceptions
	C.1.6 Source Language Concerns

	C.2 Program Organization
	C.2.1 Library Functions
	C.2.2 Common Object Modules
	C.2.3 Local Modules
	C.2.4 Program Make Files

	C.3 Module Organization
	C.3.1 Module Attributes
	C.3.1.1 Module Cohesion
	C.3.1.2 Module Coupling
	C.3.1.3 Physical Organization of Modules
	C.3.1.4 Module Interface

	C.4 Program Unit Organization
	C.4.1 Routine Cohesion
	C.4.2 Routine Coupling
	C.4.3 Routine Size

	C.5 Statement Organization
	C.5.1 Writing “Pure” Assembly Code
	C.5.2 Using HLA’s High Level Control Statements

	C.6 Comments
	C.6.1 What is a Bad Comment?
	C.6.2 What is a Good Comment?
	C.6.3 Endline vs. Standalone Comments
	C.6.4 Unfinished Code
	C.6.5 Cross References in Code to Other Documents

	C.7 Names, Instructions, Operators, and Operands
	C.7.1 Names
	C.7.1.1 Naming Conventions
	C.7.1.2 Alphabetic Case Considerations
	C.7.1.3 Abbreviations
	C.7.1.4 The Position of Components Within an Identifier
	C.7.1.5 Names to Avoid
	C.7.1.6 Special Identifers

	C.7.2 Instructions, Directives, and Pseudo-Opcodes
	C.7.2.1 Choosing the Best Instruction Sequence
	C.7.2.2 Control Structures
	C.7.2.3 Instruction Synonyms

	C.8 Data Types
	C.8.1 Declaring Structures in Assembly Language

