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Abstract

The information about the Hilbert transform is often scattered in
books about signal processing. Their authors frequently use mathe-
matical formulas without explaining them thoroughly to the reader.
The purpose of this report is to make a more stringent presentation of
the Hilbert transform but still with the signal processing application
in mind.
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1. Introduction

Signal processing is a fast growing area today and a desired e®ectiveness in uti-
lization of bandwidth and energy makes the progress even faster. Special signal
processors have been developed to make it possible to implement the theoretical
knowledge in an e±cient way. Signal processors are nowadays frequently used in
equipment for radio, transportation, medicine and production etc.
In 1743 a famous Swiss mathematician named Leonard Euler (1707-1783) de-

rived the formula
ejz = cos(z) + j sin(z):

150 years later the physicist Arthur E: Kennelly and the scientist Charles P:
Steinmetz used this formula to introduce the complex notation of harmonic wave
forms in electrical engineering, that is

ej!t = cos(!t) + j sin(!t):

Later on, in the beginning of the 20th century, the German scientist David Hilbert
(1862-1943) ¯nally showed that the function sin(!t) is the Hilbert transform of
cos(!t). This gave us the §¼=2 phase-shift operator which is a basic property of
the Hilbert transform.
A real function f(t) and its Hilbert transform bf(t) are related to each other

in such a way that they together create a so called strong analytic signal. The
strong analytic signal can be written with an amplitude and a phase where the
derivative of the phase can be identi¯ed as the instantaneous frequency. The
Fourier transform of the strong analytic signal gives us a one-sided spectrum in the
frequency domain. It is not hard to see that a function and its Hilbert transform
also are orthogonal. This orthogonality is not always realized in applications
because of truncations in numerical calculations. However, a function and its
Hilbert transform has the same energy and therefore the energy can be used to
measure the calculation accuracy of the approximated Hilbert transform.
The Hilbert transform de¯ned in the time domain is a convolution between

the Hilbert transformer 1=(¼t) and a function f(t) [7]. This is motivated later on.

De¯nition 1.1. The Hilbert transform bf(t) of a function f (t) is de¯ned for all t
by

bf(t) =
1

¼
P

Z 1

¡1

f(¿ )

t¡ ¿ d¿;

when the integral exists.

It is normally not possible to calculate the Hilbert transform as an ordinary
improper integral because of the pole at ¿ = t. However, the P in front of the
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integral denotes the Cauchy principal value which expanding the class of functions
for which the integral in De¯nition 1.1 exist. It can be de¯ned by the following
de¯nition [5].

De¯nition 1.2. Let [®; ¯] be a real interval and let f be a complex-valued func-
tion de¯ned on [®; ¯]. If f is unbounded near an interior point » of [®;¯], the
integral of f over [®; ¯] does not always exist. However, the two limits

lim
²!0

Z »¡²

®
f(x)dx and lim

²!0

Z ¯

»+²
f (x)dx;

still may exist, and if they do their sum is called the improper integral of f over
[®; ¯] and is denoted by the ordinary integration symbol

Z ¯

®
f(x)dx:

Even if these two limits do not exist, it may happen that the "symmetric limit"

lim
²!0+

ÃZ »¡²

®
f(x)dx+

Z ¯

»+²
f(x)dx

!
;

exists. If it does, it is called the principal value integral of f from ® to ¯ and is
denoted by the symbol

P
Z ¯

®
f (x)dx:

Example 1.3. An ordinary real function 1=x that is integrated from ¡a to a can
be written as Z a

¡a

1

x
dx = lim

±!0+

Z ¡±

¡a

1

x
dx+ lim

"!0+

Z a

"

1

x
dx,

and we see that it is not possible to calculate these integrals separately because
of the pole in x = 0: However, if we apply the Cauchy principal value then ± and
" tend to zero at the same speed, that is

P
Z a

¡a

1

x
dx = lim

"!0+

µZ ¡"

¡a

1

x
dx+

Z a

"

1

x
dx

¶
= 0;

and the integral converges.

2. Mathematical motivations for the Hilbert transform

In this chapter we motivate the Hilbert transform in three di®erent ways. First
we use the Cauchy integral in the complex plane and second we use the Fourier
transform in the frequency domain and third we look at the §¼=2 phase-shift
which is a basic property of the Hilbert transform.
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Figure 2.1: ¡ is a piecewise smooth closed contour on an open domain ­

2.1. The Cauchy integral

The Cauchy integral is a ¯gurative way to motivate the Hilbert transform. The
complex view helps us to relate the Hilbert transform to something more concrete
and understandable.
Consider an integral in the complex z-plane on the form

I

¡

f(z)

z ¡ adz,

which is known as a Cauchy integral. If f is analytic and ¡ is a piecewise smooth
closed contour in an open domain ­; see Figure 2.1, then the Cauchy integral
theorem is applicable as

I

¡

f(z)

z ¡ adz =
(
2¼if (a) if a is inside ¡
0 if a is outside ¡

To get a result when a lies on ¡ we have to create a new contour ¡
0
" as in

Figure 2.2 where I

¡0"

f(z)

z ¡ adz = 2¼if(a). (2.1)

If the radius " of the semicircle °" tends to zero, the contribution from the semi-
circle °" to the integral along ¡

0
" approaches ¼if (a) according to Lemma 2.1 [7].

Lemma 2.1. If g has a simple pole at z = a and °r is the circular arc of Figure
2.3 de¯ned by

°r : z = a+ re
i£ (£1 · £ · £2),
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Figure 2.2: ¡
0
" is a piecewise smooth closed contour on an open domain ­.

Figure 2.3: °r is a circular arc around a
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Figure 2.4: ¡ is a piecewise smooth closed contour.

then
lim
r!0+

Z

°r
g(z)dz = i(£2 ¡£1) Res

z=a
g(z).

From Lemma 2.1 and from the de¯nition of the Cauchy principal value, we
see that

lim
"!0

I

¡
0
"

f (z)

z ¡ adz = P
Z

¡

f (z)

z ¡ adz + lim"!0
Z

°"

f(z)

z ¡ adz = 2¼if(a),

and that the integral of the Cauchy principal value is

P
Z

¡

f(z)

z ¡ adz ´ lim
"!0

Z

¡"

f(z)

z ¡ adz = ¼if (a). (2.2)

where ¡" is a non closed contour without the indentation °". By (2.2) we have
generalized the de¯nition of the Cauchy principal value compared to De¯nition
1.2.
A particularly useful identity arises when we have a contour ¡ as in Figure 2.4

that is closed by the semicircle °R and the real x-axis. If f (z) is a function that
is analytic in an open region that contains the upper half-plane and tends to zero
at in¯nity in such a rate that the contribution from the semicircle °R vanishes as
R ! 1, then we have

P
Z 1

¡1

f (»)

» ¡ xd» = ¼if(x). (2.3)

The integral over °R will disappear when R ! 1 if

jf (z)j < C

jzj ,
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for any positive constant C. The same yields if

jf (z)j < C
¯̄
¯eimz

¯̄
¯ ,

for positive m according to Lemma 2.2 [7].

Lemma 2.2. (Jordan's lemma) If m > 0 and P=Q is the quotient of two poly-
nomials such that

degree Q ¸ 1 + degree P ,

then

lim
½!1

Z

C+½

P (z)

Q(z)
eimzdz = 0,

where C+½ is the upper half-circle with radius ½.

If we express f (x) as
f(x) = g(x)¡ ih(x);

on both sides of (2.3) with arguments on the real x-axis and equating real and
imaginary parts then we obtain for the real part

g(x) = ¡ 1
¼
P

Z 1

¡1

h(»)

x¡ » d» = ¡Hh(x);

and for the imaginary part

h(x) =
1

¼
P

Z 1

¡1

g(»)

x¡ »d» = Hg(x): (2.4)

From De¯nition 1.1 we have that h(x) in (2.4) is the Hilbert transform of g(x)
where H is the Hilbert transform operator. We also note that g(x) = H¡1h(x)
with H¡1 as the inverse Hilbert transform operator. We see that H Re f(x) =
Im f (x) which motivates the following de¯nition.

De¯nition 2.3. A complex signal f (x) that ful¯ls the conditions preceding (2.3)
is called a strong analytic signal.

Above we have just proved the following theorem.

Theorem 2.4. For a strong analytic signal f(x) we have that H Re f(x) =
Im f (x):
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2.2. The Fourier transform

The Fourier transform is important in the theory of signal processing. When a
function f(t) is real, we only have to look on the positive frequency axis because
it contains the complete information about the waveform in the time domain.
Therefore, we do not need the negative frequency axis and the Hilbert transform
can be used to remove it. This is explained below.
Let us de¯ne the Fourier transform F (!) of a signal f(t) by

F (!) =
Z 1

¡1
f(t)e¡i!tdt: (2.5)

This de¯nition makes sense if f 2 L1(<); that is if R1
¡1 jf(t)j dt exists. It is

important to be able to recover the signal from its Fourier transform. To do that
we de¯ne the inverse Fourier transform as

ef(t) =
1

2¼

Z 1

¡1
F (!)ei!td!:

If both f and F belong to L1(<) then f(t) is continuous and bounded for all real
t and we have that ef(t) = f(t); that is [1]

f(t) =
1

2¼

Z 1

¡1
F (!)ei!td!: (2.6)

This result is a form of the Fourier inversion theorem.
Another variant of the inversion theorem [2] is that if f belongs to L1(<); f

is of bounded variation in a neighbourhood of t and f is continuous at t then

f(t) = lim
T!1

1

2¼

Z T

¡T
F (!)ei!td!:

This means that (2.6) is to be interpreted as a type of Cauchy Principal value.
Further more general variants of the inversion theorem exist for f 2 L1(<) but
are not mentioned here.
There is also a theory for the Fourier transform when f 2 L2(<) [2]. In this

case we de¯ne the Fourier transform as

F (!) = lim
N!1

Z N

¡N
f(t)e¡i!tdt:

The mean limit
F (!) = lim

N!1
FN (!);

is to be interpreted as

lim
N!1

kF (!)¡ FN (!)k2 = 0:
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Now F 2 L2(<) and the inversion formula states that

f(t) = lim
N!1

1

2¼

Z N

¡N
F (!)ei!td!:

Often we need to consider the Fourier transform of a signal as it neither belongs
to L1(<) nor to L2(<). The delta function is such an example. There is a theory
of the Fourier transform, see e.g. [1], for there so called temperature distributions.
This theory is, however, outside the scoop of this report, but occasionally we use
some results from this theory.
A useful relation is the Plancherel formula.

Theorem 2.5. If f , g and G belong to L1(<) or if f and g belong to L2(<) then
Z 1

¡1
f (t)g¤(t)dt =

1

2¼

Z 1

¡1
F (!)G¤(!)d!:

Proof. For a proof we refer to [1].

If f(t) is a real function that can be represented by an inverse Fourier transform
then we have the following relationship in the time domain

f(t) = f¤(t) =
1

2¼

Z 1

¡1
F (!)ei!td!

=
1

2¼

Z 1

¡1
F ¤(!)e¡i!td!

=
1

2¼

Z 1

¡1
F ¤(¡!)ei!td!:

This gives us the relation F (!) = F ¤(¡!) or F (¡!) = F ¤(!) in the frequency
domain and we see that F for negative frequencies can be expressed by F ¤ for
positive ones.

Theorem 2.6. If f(t) is a real function then

f (t) =
1

2¼

Z 1

0

h
F ¤(!)e¡i!t + F (!)ei!t

i
d!:

Proof. If we apply the Fourier transform on a real function f(t) then

f (t) =
1

2¼

Z 0

¡1
F (!)ei!td! +

1

2¼

Z 1

0
F (!)ei!td!

=
1

2¼

Z 1

0
F (¡!)e¡i!td! + 1

2¼

Z 1

0
F (!)ei!td!

=
1

2¼

Z 1

0

³
F ¤(!)e¡i!t + F (!)ei!t

´
d!:
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Figure 2.5: The amplitudes of F (!) and Zf(!) as functions of !:

This means that the positive frequency spectra is su±cient to represent a real
signal.

Let us de¯ne a function Zf (!); that is zero for all negative frequencies and
2F (!) for all positive frequencies

Zf (!) = F (!) + sgn(!)F (!); (2.7)

where

sgn(!) =

8
><
>:

1 for ! > 0
0 for ! = 0

¡1 for ! < 0

and F (!) is the Fourier transform of the real function f(t). In Figure 2.5 we see
the relation (2.7) between F (!) and Zf (!). The inverse transform of Zf(!) is
therefore written as

zf (t) =
1

2¼

Z 1

¡1
Zf(!)e

i!td! =
1

¼

Z 1

0
F (!)ei!td!;

where zf (t) is a complex function on the form

zf(t) = f(t) + ig(t): (2.8)

We will show below that g(t) is real. From (2.7) and (2.8) we have that

f(t) + ig(t)
F, F (!) + sgn(!)F (!): (2.9)
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The de¯nition of the Fourier transform tells us that f (t)
F, F (!) and therefore

we know from (2.9) that F (!)sgn(!) is the Fourier transform of ig(t), thus

g(t)
F, F (!) (¡isgn(!)) :

It is a standard result that the inverse transform of ¡isgn(!) equals 1=(¼t); that
is

g(t) = f(t) ¤ 1

¼t
=
1

¼
P

Z 1

¡1

f (¿)

t¡ ¿ d¿ = Hf(t) =
bf (t);

and we see that g(t) can be written as bf(t) which is known as the Hilbert transform
of f (t): Further more g(t) is real.

2.3. The §¼=2 phaseshift
The §¼=2 phaseshift is interpreted in the frequency domain as a multiplication
with the imaginary value §i, thus

H(!) =

(
¡i = e¡i¼2 for ! > 0
i = ei

¼
2 for ! < 0

H(!) is unfortunately not a property of Fourier transform but the problem can
be solved by expressing H(!) as a limit of a bounded function G(!), that is

G(!) =

(
¡ie¡¾! for ! > 0
ie¾! for ! < 0

where
lim
¾!0

G(!) = H(!): (2.10)

It is now possible to use the inverse Fourier transform on G(!), thus

g(t) = F¡1G(!)

=
1

2¼

Z 0

¡1
ie¾!ei!td! +

1

2¼

Z 1

0
¡ie¡¾!ei!td!

=
i

2¼

Z 1

0
(e¡(¾+it)! ¡ e¡(¾¡it)!)d!

=
i

2¼

·
¡ 1

¾ + it
e¡(¾+it)! +

1

¾ ¡ ite
¡(¾¡it)!

¸1

0

=
t

¼(¾2 + t2)
:
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where g(t) ! h(t) when ¾ ! 0 and the inverse Fourier transform of the impulse
response of H(!) is

h(t) =lim
¾!0

g(t) =lim
¾!0

t

¼(¾2 + t2)
=
1

¼t
:

A convolution between f(t) and the impulse response h(t) gives us

bf(t) =
1

¼

Z 1

¡1

f(¿ )

t¡ ¿ d¿;

where bf(t) is known as the Hilbert transform. Notice that this integral shall be
considered as a principal-valued integral a limit that corresponds to the limit in
(2.10). To make a rigorous presentation of this problem we should apply the
distribution theory but that is beyond the scoop of this report.

3. Properties of the Hilbert transform

In this chapter we look at some properties of the Hilbert transform. We assume
that F (!) does not contain any impulses for ! = 0 and that f(t) is a real valued
function. Some of the formulas are to be interpreted in a distributional sense.

3.1. Linearity

The Hilbert transform that is a Cauchy principle-valued function, see Chapter 1,
is expressed on the form

Hf (t) =lim
"!0

1

¼

Z

jx¡tj>"

f(¿ )

t¡ ¿ d¿:

If we write the function f(t) as c1f1(t) + c2f2(t) where the Hilbert transform of
f1(t) and f2(t) exists then

Hf(t) = H (c1f1(t) + c2f2(t))

= lim
"!0

1

¼

Z

jx¡tj>"

c1f1(¿) + c2f2(¿ )

t¡ ¿ d¿

= c1 lim
"!0

1

¼

Z

jx¡tj>"

f1(¿ )

t¡ ¿ d¿ + c2 lim"!0
1

¼

Z

jx¡tj>"

f2(¿ )

t¡ ¿ d¿

= c1Hf1(t) + c2Hf2(t):

This is the linearity property of the Hilbert transform.
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3.2. Multiple Hilbert transforms and their inverses

The Hilbert transform used twice on a real function gives us the same real function
but with altered sign

H2 = ¡I;
with I as the identity operator. The Hilbert transform used four times on the
same real function gives us the original function back

H2H2 = H4 = I: (3.1)

A more interesting property of multiple Hilbert transforms arises if we use the
Hilbert transform 3 times, thus

H3H = I ) H¡1 = H3:

This tells us that it is possible to use the multiple Hilbert transform to calculate
the inverse Hilbert transform.
As we seen before the Hilbert transform can be applied in the time domain

by using the de¯nition of the Hilbert transform. In the frequency domain we
simply multiply the Hilbert transform operator ¡isgn(!) to the function F (!).
By multiplying the Hilbert transform operator by itself we get an easy method to
do multiple Hilbert transforms, that is

Hnf(t)
F, (¡isgn(!))n F (!);

where n is the number of Hilbert transforms.

Example 3.1. We want to calculate the inverse Hilbert transform of the function
f(t) by using multiple Hilbert transforms in the frequency domain. First we have
to Fourier transform the function f(t)

F (!) =
Z 1

¡1
f(t)e¡i!tdt;

and then use the Hilbert transform three times in the frequency domain, that is

H3 = (¡isgn(!))3 :
Finally we use the inverse Fourier transform

H¡1f(t) =
1

2¼

Z 1

¡1
H3F (!)ei!td!:

From above we see that we only have to calculate two in¯nite integrals in
the frequency domain compared to three in¯nite integrals in the time domain.
Another advantage in the frequency domain is that we formally can choose the
number of times we want to use the Hilbert transform.
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3.3. Derivatives of the Hilbert transform

Theorem 3.2. The Hilbert transform of the derivative of a function is equivalent
to the derivative of the Hilbert transform of a function, that is

f 0(t) H, d

dt
bf (t): (3.2)

Proof. From De¯nition 1.1 we have that

bf(t) =
1

¼
P

Z 1

¡1

f(¿ )

t¡ ¿ d¿:

If we substitute ¿ with t¡ s

bf(t) =
1

¼
P

Z 1

¡1

f (t¡ s)
s

ds;

and then apply the derivative of t on both sides we get

d

dt
bf (t) =

1

¼
P

Z 1

¡1

f 0(t¡ s)
s

ds:

The substitution s = t¡ ¿ gives us that
d

dt
bf(t) =

1

¼
P

Z 1

¡1

f 0(¿)

t¡ ¿ d¿;

and the relation in (3.2) is valid.

From the proof above we conclude that the relation can be used repeatedly.
Let us look at an example where we also make use of multiple Hilbert transforms,
see Section 3.2.

Example 3.3. By (3.2) we may calculate the Hilbert transform of the delta func-
tion ±(t) and its derivatives. At the same time we get the Hilbert transform rep-
resentation of the delta function. Consider the Hilbert transform of the delta
function

H±(t) =
1

¼t
:

The derivative of the delta function is calculated to

H±0(t) = ¡ 1

¼t2
; (3.3)

and if we apply the Hilbert transform on both sides then we get

±0(t) = H
µ
1

¼t2

¶
:
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The derivative of (3.3) is

H±00(t) =
2

¼t3
;

and when we apply the Hilbert transform on both sides we get

±00(t) = H
µ
¡ 2

¼t3

¶
:

This procedure can be continued.

3.4. Orthogonality properties

A symmetry found in Section 2.2 about the Fourier transform F (!) of a real
function f(t) leads us to do the following de¯nition [6].

De¯nition 3.4. A complex function is called Hermitian if its real part is even
and its imaginary part is odd.

From this we have that the Fourier transform F (!) of a real function f(t) is
Hermitian.

Theorem 3.5. A real function f (t) and its Hilbert transform bf(t) are orthogonal
if f; bf and F belong to L1(<) or if f and bf belong to L2(<):

Proof. From Theorem 2.5 we have that
Z 1

¡1
f(t) bf(t)dt =

1

2¼

Z 1

¡1
F (!) (¡isgn(!)F (!))¤ d!

=
i

2¼

Z 1

¡1
sgn(!)F (!)F ¤(!)d!

=
i

2¼

Z 1

¡1
sgn(!) jF (!)j2 d!;

where sgn(!) is an odd function and the fact that F (!) is Hermitian gives us that
jF (!)j2 is an even function. We conclude that

Z 1

¡1
f(t) bf(t)dt = 0;

and a real function and its Hilbert transform are orthogonal.
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3.5. Energy aspects of the Hilbert transform

The energy of a function f (t) is closely related to the energy of its Fourier trans-
form F (!). Theorem 2.5 with f(t) = g(t) is called the Rayleigh theorem and it
helps us to de¯ne the energy of f (t) and F (!) as

Ef =
Z 1

¡1
jf(t)j2 dt = 1

2¼

Z 1

¡1
jF (!)j2 d!: (3.4)

Here it is natural to assume that f 2 L2(<) which means that Ef is ¯nite. The
same theorem is used to de¯ne the energy of the Hilbert transform of f(t) and
F (!); that is

Ebf =
Z 1

¡1

¯̄
¯ bf (t)

¯̄
¯
2
dt =

1

2¼

Z 1

¡1
j¡isgn(!)F (!)j2 d!; (3.5)

where j¡isgn(!)j2 = 1 except for ! = 0: But, since F (!) does not contain any
impulses at the origin we get Ebf = Ef .
A consequence of (3.5) is that f 2 L2(<) induces that bf 2 L2(<): The accuracy

of the approximated Hilbert transform operator can be measured by comparing
the energy in (3.4) and (3.5). However, a minor di®erence in energy always exists
in real applications due to unavoidable truncation errors.

3.6. The Hilbert transform of strong analytic signals

From Section 3.2 we have that the Hilbert transform of a strong analytic signal
z(t) is

Hz(t) = H
³
f(t) + i bf(t)

´
= bf(t)¡ if (t) = ¡iz(t): (3.6)

From this follows the result of the Hilbert transform of two multiplied strong
analytic signals.

Theorem 3.6. The product of H(z1(t))z2(t) is identical with the product of
z1(t)H(z2(t)) if z1(t) and z2(t) are strong analytic signals.

Proof. Since z1(t) and z2(t) are strong analytic signals then

H (z1(t)) z2(t) =
³ bf1(t)¡ if1(t)

´ ³
f2(t) + i bf2(t)

´
(3.7)

= ¡i
³
f1(t) + i bf1(t)

´ ³
f2(t) + i bf2(t)

´

= ¡iz1(t)z2(t)
=

³
f1(t) + i bf1(t)

´ ³ bf2(t)¡ if2(t)
´

(3.8)

= z1(t)H (z2(t)) ; (3.9)

where we make use of (3.6) in (3.7) and (3.8).
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Theorem 3.7. The product of z1(t)z2(t) is identical with the product iH(z1(t))z2(t) =
iz1(t)H(z2(t)) if z1(t) and z2(t) are strong analytic signals.

Proof. Since z1(t) and z2(t) are strong analytic signals then

z1(t)z2(t) =
³
f1(t) + i bf1(t)

´ ³
f2(t) + i bf2(t)

´

= i
³ bf1(t)¡ if1(t)

´ ³
f2(t) + i bf2(t)

´

= iH(z1(t))z2(t) = iz1(t)H(z2(t));

and the theorem follows.

The Hilbert transform of the product of two strong analytic signals gives us
the same result as in (3.9). To prove this we ¯rst need to show that the product
of two strong analytic signals is strong analytic.

Theorem 3.8. The product of two strong analytic signals is strong analytic.

Proof. Let z1(t00) and z2(t00) be analytic signals of the complex variable t00 = t+it
in the open upper half-plane. Then z1(t00)z2(t00) is also an analytic signal in the
same region. Assume that z1(t

00) and z2(t00) are decreasing in such a rate at
in¯nity that the discussion in Section 2.1 is true then z1(t) and z2(t) are strong
analytic signals. If z1(t

00) and z2(t00) are decreasing su±ciently rapid at in¯nity
then z1(t00)z2(t00) have to decrease faster than the one of z1(t00) and z2(t00) that
is decreasing with the least rate. From this we have that H (Re (z1(t)z2(t))) =
Im(z1(t)z2(t)) and that z1(t)z2(t) is a strong analytic signal.

Theorem 3.9. H (z1(t)z2(t)) = ¡iz1(t)z2(t) if z1(t) and z2(t) are strong analytic
signals.

Proof. Since z1(t) and z2(t) are strong analytic signals then

H (z1(t)z2(t)) = H
³
f1(t) + i bf1(t)

´ ³
f2(t) + i bf2(t)

´

= H(f1(t)f2(t)¡ bf1(t) bf2(t)
+i

³
f1(t) bf2(t) + bf1(t)f2(t)

´
)

= f1(t) bf2(t) + bf1(t)f2(t)
¡i

³
f1(t)f2(t)¡ bf1(t) bf2(t)

´
(3.10)

= ¡i(f1(t)f2(t) + if1(t) bf2(t)
+i bf1(t)f2(t)¡ i bf1(t) bf2(t))

= ¡i
³
f1(t) + i bf1(t)

´ ³
f2(t) + i bf2(t)

´

= ¡iz1(t)z2(t);
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where we make use of Theorem 3.8 in (3.10).

Consequently it is possible to apply the Hilbert transform on the product of
two strong analytic signals in several di®erent ways, thus

H (z1(t)z2(t)) = H (z1(t)) z2(t) = z1(t)H (z2(t)) = ¡iz1(t)z2(t):

It does not matter on which strong analytic signal we apply the Hilbert transform.
We conclude that the Hilbert transform of the product of n strong analytic signals
form the equation

Hzn(t) = H (z(t)) zn¡1(t) = ¡iz(t)zn¡1(t) = ¡izn(t):

3.7. Analytic signals in the time domain

The Hilbert transform can be used to create an analytic signal from a real signal.
Instead of studying the signal in the frequency domain it is possible to look at a
rotating vector with an instantaneous phase '(t) and an instantaneous amplitude
A(t) in the time domain, that is

z(t) = f(t) + i bf(t) = A(t)ei'(t):

This notation is usually called the polar notation where

A(t) =
q
f2(t) + bf2(t);

and

'(t) = arctan

Ã bf(t)
f(t)

!
:

If we express the phase with a Taylor series then

'(t) = '(t0) + (t¡ t0)'0(t0) +R;

where R is small when t is close to t0. The analytic signal becomes

z(t) = A(t)ei'(t) = A(t)ei('(t0)¡t0'
0(t0))eit'

0(t0)eiR;

and we see that '0(t0) has the role of frequency if R is neglected. This makes it
natural to introduce the notion of instantaneous (angular) frequency, that is

!(t) =
d'(t)

dt
:
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Example 3.10. We have a real signal and its Hilbert transform

f(t) = cos(!0t);
bf(t) = sin(!0t):

Together they form an analytic signal where the instantaneous amplitude is

A(t) =
q
cos2(!0t) + sin

2(!0t) = 1:

The instantaneous frequency is easy to calculate from the phase '(t) = !0t, that
is

!(t) = !0:

We see that in this particular case the instantaneous frequency is the same as the
real frequency.

4. Numerical calculations of the Hilbert transform

The purpose of this chapter is to study di®erent types of numerical calculation
methods for the Hilbert transform.

4.1. Continuous time

4.1.1. Numerical integration.

Numerical integration works ¯ne on smooth functions that decrease rapidly at
in¯nity. When we want to calculate the Hilbert transform by De¯nition 1.1 we
are facing some problems. In numerical integration we use ¯nite intervals and it
is therefore important to consider the integration region to control the calculation
error. This is the reason why a rapid decrease at in¯nity is an advantage. Another
problem is that the integrand in De¯nition 1.1 is in¯nite when the nominator van-
ishes. However, by using more integration grid points in the numerical integration
close to this value we get a better approximation.

4.1.2. Hermite polynomials

The numerical integration is ine±cient when a function decreases in a slow rate
at in¯nity. It is sometimes better to use a series of orthogonal polynomials where
the function does not have to decrease rapid at in¯nity. In this section we use the
Hermite polynomials to calculate the Hilbert transform. First we need to take a
look at the de¯nition of the Hermite polynomials.
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The successive di®erentiation of the Gaussian pulse e¡t
2
generates the nth

order Hermite polynomial which is de¯ned by Rodrigues' formula as [4]

Hn(t) = (¡1)net
2 dn

dtn
e¡t

2

:

It is also possible to calculate the Hermite polynomials by the recursion formula
[3]

Hn(t) = 2tHn¡1(t)¡ 2(n¡ 1)Hn¡2(t); (4.1)

with n = 1; 2; 3; ::. and the start condition

H0(t) = 1:

Let us also de¯ne the weighted Hermite polynomials that is weighted by the
generating function e¡t

2
on the form [3]

gn(t) = Hn(t)e
¡t2 = (¡1)n d

n

dtn
e¡t

2

:

The weighted Hermite polynomials gn(t) do not represent an orthogonal set in L2
since the scalar product

Z 1

¡1
gn(t)gm(t)dt =

Z 1

¡1
Hn(t)Hm(t)e

¡2t2dt;

is in general di®erent from zero when n 6= m. The solution is to replace the

weighting function e¡t
2
with e¡

t2

2 , that is

Z 1

¡1
Hn(t)Hm(t)e

¡t2dt =

(
0 for n 6= m

2nn!
p
¼ for n = m

By that the weighted Hermite polynomials ful¯l the condition of orthogonality.

The weighted polynomial e¡
t2

2 Hn(t) divided by their norm
q
2nn!

p
¼ yields a set

of orthonormal functions in L2 and is called the Hermite function

'n(t) =
e¡

t2

2 Hn(t)q
2nn!

p
¼
: (4.2)

If we combine (4.1) and (4.2) we get the recursive algorithm

'n(t) =

s
2(n ¡ 1)!
n!

t'n¡1(t)¡ (n¡ 1)
s
(n¡ 2)!
n!

'n¡2(t); (4.3)

which can be used to derive the Hilbert transform of the Hermite functions by
applying the "multiplication by t" theorem [3].
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Theorem 4.1. If we assume that f(t) and bf(t) belong to L1 then the Hilbert
transform of tf(t) is given by the equation

H(tf(t)) = t bf(t)¡ 1

¼

Z 1

¡1
f(¿ )d¿:

The integral is a constant de¯ned by the function f(t). For odd functions this
constant equals zero.

Proof. Consider the Hilbert transform of tf(t)

H(tf(t)) =
1

¼
P

Z 1

¡1

¿f (¿)

t¡ ¿ d¿:

The insertion of a new variable s = t¡ ¿ yields

H(tf(t)) =
1

¼
P

Z 1

¡1

(t¡ s)f (t¡ s)
s

ds

=
1

¼
P

Z 1

¡1

tf (t¡ s)
s

ds¡ 1

¼

Z 1

¡1
f (t¡ s)ds

= tH(f(t))¡ 1

¼

Z 1

¡1
f (¿)d¿;

and the theorem follows.

From Theorem 4.1 and from (4.3) we have that

H('n(t)) = b'n(t) =

s
2(n¡ 1)!
n!

µ
t b'n¡1(t)¡

1

¼

Z 1

¡1
'n¡1(´)d´

¶

¡(n¡ 1)
s
(n¡ 2)!
n!

b'n¡2(t); (4.4)

where n = 1; 2; 3::: . The ¯rst term '0(t) can be calculated by using the Fourier
transform on equation (4.2), that is

'0(t) = ¼
¡ 1
4e¡

t2

2
F,

p
2¼

1
4 e¡

!2

2 :

In the frequency domain we multiply the Hermite function '0(t) by the Hilbert
transformer ¡isgn(!) and ¯nally we use the inverse Fourier transform to get the
Hilbert transform of the Hermite function, that is

H('0(t)) = b'0(t) =
p
2¼

1
4

Z 1

¡1
e¡

!2

2 (¡isgn(!))ei!td!:
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Since sgn(!)e¡
!2

2 is odd we have

b'0(t) = 2
p
2¼

1
4

Z 1

0
e¡

!2

2 sin(!t)d!; (4.5)

which can be used in (4.4) to derive the rest of the Hilbert transforms.
It has been found that the error is large for higher order of the Hilbert trans-

formed Hermite functions (e.g. b'5(t)) when we use the recursive formula (4.4).
This e®ect is caused by the ¯nite accuracy in the calculation of the integral in (4.5)
where the error increases in (4.4). It is therefore not suitable to use the recursive
method to calculate the Hilbert transform for higher order Hermite functions.
Another method to calculate the Hilbert transform by the Hermite functions

is to multiply the Hilbert transformer by the spectrum of the Hermite function
and use the inverse Fourier transform. No in¯nite integrals is needed in the
calculations of the Hermite functions. Therefore the error does not propagate as
in (4.4).
The series expansion of f(t) can be written as

f(t) =
1X

n=0

an'n(t);

where
an =

Z 1

¡1
f (t)'n(t)dt:

If the series expansion f(t) is limited at in¯nity there will be an error "N(t), that
is

f(t) =
N¡1X

n=0

an'n(t) + "N (t):

This series expansion can also be used to calculate the Hilbert transform

Hf(t) =
N¡1X

n=0

an b'n(t) + b"N (t); (4.6)

and we see that this kind of method is useful for functions where b"N (t) is small.
To calculate the Hilbert transform of 'n(t) by using the inverse Fourier trans-

form on the product of the Hermite function spectra and the Hilbert transformer
is a rather demanding method. However, the Hermite functions never change and
we therefore only have to calculate their Hilbert transforms once while an, which
depends on f; represents an easy integral to calculate.
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Figure 4.1: Approximation by a Fourier series ef (t) with its Hilbert transform
H ef(t), n = 30:

4.1.3. Fourier series

If we create a Fourier series of a function f(t) and changes the sine functions to
cos functions and cos functions to sine functions we get the Hilbert transform of
f(t). This method gives us a the ability, in an easy way, to study the unavoidable
truncation errors (a ¯nite number of terms in the Fourier series) for the Hilbert
transform of a periodic rectangular wave. In Figure 4.1 we see that the peaks of
the Hilbert transform only are 1.5 in their maxima and minima while they should
have been in¯nite. The implementation in computer code of the Fourier series in
Figure 4.1 is found in Appendix A.2.

4.2. Discrete Fourier transform

To derive the discrete Hilbert transform we need the de¯nition of the discrete
Fourier transform (DFT ), that is

F [k] =
N¡1X

n=0

f [n]e¡i
2¼
N
kn; k = 0; 1; :::; N ¡ 1; (4.7)

and the inversion formula

f [n] =
1

N

N¡1X

k=0

F [k]ei
2¼
N
kn; n = 0; 1; :::; N ¡ 1: (4.8)

where k is the discrete frequency and n is the discrete time. It is easy to prove
(4.8) by inserting (4.8) into (4.7). Note that (4.8) de¯nes a periodic function with
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period N . Let us expand (4.7) in its real and imaginary parts on both sides, thus

F [k] = FRe[k] + iFIm[k];

and
N¡1X

n=0

f [n]e¡i
2¼
N
kn =

N¡1X

n=0

f [n] cos(
2¼

N
kn)¡ i

N¡1X

n=0

f [n] sin(
2¼

N
kn):

The real and imaginary part is now identi¯ed as

FRe[k] =
N¡1X

n=0

f [n] cos(
2¼

N
kn);

FIm[k] = ¡
N¡1X

n=0

f [n] sin(
2¼

N
kn);

and we conclude that FIm = 0 when k = 0 and k = N=2: As we have seen before
the Hilbert transform of the delta pulse ±(t) gives us the Hilbert transformer
1=(¼t) and the Fourier transform of the Hilbert transformer gives us the sign shift
function ¡isgn(!); that is

±(t)
H, 1

¼t
F, ¡isgn(!): (4.9)

The discrete analogue of the Hilbert transformer in (4.9) for even N is therefore
given by

H[k] =

8
><
>:

¡i
0
i

for k = 1; 2; :::; N=2¡ 1
for k = 0 and N=2
for k = N=2 + 1; :::; N ¡ 2; N ¡ 1;

and H[k] can be written on the form

H[k] = ¡isgn(N
2

¡ k)sgn(k). (4.10)

Here we have used the convention that sgn(0) = 0. The discrete frequency k is
called positive in the interval 0 < k < N=2 and negative in the interval N=2 <
k < N and alternate sign at N=2.
The discrete inverse Fourier transform of the discrete Hilbert transformer in

(4.10) gives us the discrete impulse response in the time domain, for even N , thus

h[n] =
1

N

N¡1X

k=0

H[k]ei
2¼
N
kn

=
1

N

N¡1X

k=0

¡isgn(N
2

¡ k)sgn(k)ei 2¼N kn

=
2

N

N
2
¡1X

k=1

sin(
2¼

N
kn); (4.11)
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Figure 4.2: The discrete impulse response of the Hilbert transform for even
N (N = 10) given by the cotangent function with every second sample (n =
0; 2; 4; :::) erased by sin2(¼n=2):

and h[n] can be expressed in closed form as

h[n] =
2

N
sin2(

¼n

2
) cot(

¼n

N
): (4.12)

The function is given by the cotangent function with every second sample (n =
0; 2; 4; :::) erased by sin2(¼n=2); see Figure 4.2.
The same derivation for odd N is given by

H[k] =

8
><
>:

¡i
0
i

for k = 1; 2; :::; (N ¡ 1)=2
for k = 0
for k = (N + 1)=2; :::; N ¡ 2; N ¡ 1:

It is written on the same closed form as in the even case with the di®erence that
there is no cancellation for sgn(N=2¡ k) that is

H[k] = ¡isgn(N
2

¡ k)sgn(k): (4.13)

The discrete impulse response for odd N of the Hilbert transformer in (4.9) is
given by the discrete inverse Fourier transform of H[k] in (4.13), thus

h[n] =
2

N

N¡1
2X

k=1

sin(
2¼

N
kn);
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Figure 4.3: The discrete impulse response of the Hilbert transform for odd N
(N = 11) with every second sample positive with next sample negative.

where the closed form of h[n] can be expressed as

h[n] =
1

N

Ã
cot(

¼n

N
)¡ cos(¼n)

sin(¼n
N
)

!
: (4.14)

As we mentioned before we do not have the same cancellation for odd N (4.14)
as for even N (4.12), instead h[n] is changing sign by odd and even values of n,
see Figure (4.3).
The discrete Hilbert transform of the sequence bf [n] is de¯ned by convolution

on the form

bf [n] =
N¡1X

m=0

h [n ¡m] f [m] : (4.15)

If we instead choose to use theDFT algorithm we then have the following relations

f [n]
DFT) F [k]

DHT) bF [k] = ¡isgn(N
2

¡ k)sgn(k)F [k] DFT¡1) bf [n]; (4.16)

where DFT denotes the discrete Fourier transform, DHT denotes the discrete
Hilbert transform and DFT¡1 denotes the discrete inverse Fourier transform.
The discrete convolution algorithm (4.15) is faster than the DFT algorithm

(4.16) because it involves only a single summation. However the DFT algorithm
may be replaced by a fast Fourier transform algorithm (FFT ).
The accuracy of the discrete Fourier transform when applied to continuous

signals is depending on how many samples we have in our calculation (A sample
is the same as one single value of a function for one speci¯c time). It is important
that the sample frequency is higher than double the signal frequency, that is the
Nyqvist frequency.
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Figure 4.4: The Fourier transform eF (w) by N = 10 terms of the function f (t) =
cos(2t):

Example 4.2. Assume that we want to calculate the discrete Hilbert transform
of a sine-wave f (t) = cos(2t) with N = 10 samples using the DFT algorithm
according to (4.16) where the sampling frequency is 5=¼ and the signal frequency
is 1=¼: First we need to calculate the discrete Fourier transform (4.7) of f(t). Then
we need to use (4.11) (N even) to apply the inverse discrete Fourier transform
on the product of the discrete Hilbert transform operator H [k] in (4.13) and the
discrete Fourier transform of f(t): The de¯nition of the discrete Fourier transform
gives us (see Figure 4.4)

eF [k] =
N¡1X

n=0

f [n] e¡i
2¼
N
kn =

9X

n=0

cos
µ
2¼

5
n

¶
e
¡i¼

5
kn
:

By using (4.11) we get the Hilbert transform Hf [n] in the time domain (N even)

Hf [n] =
2

N

N
2
¡1X

k=1

eF [k] sin(
2¼

N
kn)

=
1

5

4X

k=1

Ã
9X

n=0

cos
µ
2¼

5
n

¶
e
¡i¼

5
kn

!
sin(

¼

5
kn);

The fact that this is an harmonic periodic signal (of sin and cos) and that the
sampling rate is more than double the signal frequency gives us the exact answer,
see Figure 4.5. The implementation in computer code is found in Appendix A.3.

Example 4.3. We want to calculate the Hilbert transform of f(t) = 1=(t2 + 1)
with N = 2 terms of the Hermitian polynomial in (4.6) and use n = 20 terms of

26



Figure 4.5: f(t) and its Hilbert transform H ef(t).

the discrete Fourier transform in (4.7) and (4.11).
First we need to calculate '0(t); :::; '2(t) by (4.2) or (4.3) and then b'0(t); :::; b'2(t)
as in Example 4.2. an is possible to calculate with a numerical integration method
because the integral converges su±ciently rapid at in¯nity. In Figure 4.6 we can
see the function f(t) and its approximated Hilbert transform Hy(t) compared to
the known Hilbert transform Hf(t) = t=(t2+1). The implementation in computer
code is found in Appendix A.1.

5. An application

In signal systems we often make use of modulated signals. One big problem when
we modulate a signal is that its spectrum mirrors itself on both sides of the carrier
frequency. Only one of these spectra, or sidebands, is needed to demodulate the
signal and therefore we have redundant information. There are di®erent tech-
niques to remove one of the sidebands and thereby create a single sideband signal
(SSB). The most simple one is to use a low-pass ¯lter with the middle of the
transitionband on the carrier frequency. This technique demands that we have a
narrow transitionband and a good suppression which is hard to obtain. Another
technique is to use the Hilbert transform where we remove one of the sidebands
by adding the signal to itself. In theory we will get a transitionband that is zero
and a suppression that is in¯nite.
Let us use the Hilbert transform to create an amplitude modulated SSB signal

(AM-SSB) with a Phase/Hilbert modulator, see Figure 5.1.
The incoming signal

fm(t) = sin(!mt); (5.1)
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Figure 4.6: The function f(t) and its Hilbert transform Hf(t) and Hy(t) as the
approximated Hilbert transform.

Figure 5.1: Phase/Hilbert modulator.
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is divided in two parts where one is preserved and the other one is passing throw
a Hilbert ¯lter, that is

bfm(t) = cos(!mt):

We modulate the preserved signal fm(t) with a sine-signal sin(!ct) with the carrier
frequency !c, thus

fmc(t) = sin(!mt) sin(!ct):

To modulate bfm(t) we need a ¼=2 phase lag on the carrier frequency which gives
us a cos(!ct) function, see Figure 5.1, that is

bfmc(t) = cos(!mt) cos(!ct):

With some help from the trigonometry we get that

fmc(t) =
1

2
(cos((!m ¡ !c)t)¡ cos((!m + !c)t)) ;

and
bfmc(t) =

1

2
(cos((!m ¡ !c)t) + cos((!m + !c)t)) :

Finally we add fmc and bfmc which gives us

s(t) = cos((!m ¡ !c)t);

and we have a lower AM-SSB signal. If we instead subtract fmc and bfmc we get
an upper AM-SSB signal.
The delay-box in Figure 5.1 has the same delay as the Hilbert ¯lter. The delay

is needed in real applications to synchronize the two signals fm(t) and bfm(t).
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A. Appendix

A.1. Implementation of the Hermite polynomial

Implemented in Mathematica.

t:=t;
x:=x;
k:=k;
Hy=0;
f=1/(t^2+1);
Hf=t/(t^2+1);
a=-In¯nity;
b=In¯nity;
m=2;
M=20;
Do[
Fi=E^(-t^2/2)*HermiteH[n,t]/Sqrt[2^n*n!*Sqrt[Pi]];
FFi=Sum[Fi*E^(-I*2*Pi*k*t/M),ft,0,M-1g];
HFi=Re[2/M*Sum[FFi*Sin[(2*Pi*k*t)/M],fk,1,M/2-1g]];
Hy+=Integrate[f*Fi,ft,a,bg]*HFi,

fn,0,mg]
Plot[ff,Hf,Hyg,ft,-10,10g,AxesLabel -> f"t","f(t), Hf(t), Hy(t)"g];
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A.2. Implementation of the Fourier series

Implemented in Mathematica.

t:=t;
k:=k;
y=Hy=0;
f=1;
a=-1;
b=1;
m=30;
Do[
If[k<1,
an=1/(2*Pi)*Integrate[f,ft,a,bg],
an=1/Pi*Integrate[f*Cos[k*t],ft,a,bg];
bn=1/Pi*Integrate[f*Sin[k*t],ft,a,bg];
y+=an*Cos[k*t]+bn*Sin[k*t],

fk,0,mg]
Do[
Han=1/Pi*Integrate[f*Sin[k*t],ft,a,bg];
Hbn=1/Pi*Integrate[f*Cos[k*t],ft,a,bg];
Hy+=Han*Cos[k*t]+Hbn*Sin[k*t],

fk,1,mg]
Plot[fy,Hy,f*(Sign[b-t]+Sign[t-a])/2g,ft,-5,5g,AxesLabel -> f"t","f(t)"g];
Print["f(t)=",f," from ",a," to ",b," calculated by ",m," terms."]
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A.3. Implementation of the Fourier transform

Implemented in Mathematica.

n:=n;
k:=k;
M=10;
Freq=2;
f=Cos[2*Pi/M*n*Freq];
F=Sum[f*E ^(-I*2*Pi*k*n/M),fn,0,M-1g];
Hf=2/M*Sum[F*Sin[(2*Pi*k*n)/M],fk,1,M/2-1g];
Plot[Abs[F],fk,-M/2,M/2g,AxesLabel -> f"w","F(w)"g];
Plot[ff,Hfg],fn,-2*M/Pi,2*M/Pig,AxesLabel -> f"t","f(t),Hf(t)"g];
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