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Abstract 
 
Text categorization is an important application of machine learning to the field 
of document information retrieval. Most machine learning methods treat text 
documents as a feature vectors. We report text categorization accuracy for 
different types of features and different types of feature weights. The 
comparison of these classifiers shows that stemmed or un-stemmed single words as 
features give better classifier performance compared with other types of 
features, and LOG(tf)IDF weight as feature weight gives better classifier 
performance than other types of feature weights.  
  
 
 

Introduction 
 
Text categorization is a conventional 
classification problem applied to the 
textual domain. It solves the problem of 
assigning text content to predefined 
categories. As the volume of text 
content grows continuously on-line and 
in corporate domains, text 
categorization, acting as a way to 
organize the text content, becomes 
interesting not only from an academic 
but also from an industrial point of 
view. A growing number of statistical 
classification methods have been applied 
to text categorization, such as Naive 
Bayesian [Joachims,97], Bayesian Network 
[Sahami,96], Decision Tree [Quinlan,93] 
[Weiss,99], Neural Network[Wiener,95], 
Linear Regression[Yang,92], k-NN 
[Yang,99], Support Vector Machines  
[Dumais,98][Joachims, 98], and Boosting 
[Schapire,00][Weiss,99]. A comprehensive 
comparative evaluation of a wide-range 
of text categorization methods is 
reported in ref.[Yang,99][Dumais,98] 
against the Reuters corpus.  
 
Most of the statistical classification 
methods mentioned above are borrowed 
from the field of machine learning, 
where a classified item is treated as a 
feature vector. A simple way to 
transform a text document into a feature 
vector is using a “bag-of-words” 
representation, where each feature is a 

single token. There are two problems 
associated with this representation.  
 
The first problem to be raised when 
using a feature vector representation is 
to answer the question, “what is a 
feature?”. In general, a feature can be 
either local or global. In text 
categorization, local features are 
always used but in different-length 
scales of locality. A feature can be as 
simple as a single token, or a 
linguistic phrase, or a much more 
complicated syntax template. A feature 
can be a characteristic quantity at 
different linguistic levels. To 
transform a document, which can be 
regarded as a string of tokens, into 
another set of tokens will lose some 
linguistic information such as word 
sequence. Word sequence is crucial for a 
human being to understand a document and 
should be also crucial for a computer. 
Using phrases as features is a partial 
solution for incorporating word sequence 
information into text categorization. 
This paper will investigate the 
effectiveness of different classifiers 
by using single tokens, phrases, stemmed 
tokens, etc. as features.  
 
The second problem is how to quantify a 
feature. A feature weight should show 
the degree of information represented by 
local feature occurrences in a document, 
at a minimum. A slightly more 



complicated feature weight scheme may 
also represent statistical information 
of the feature’s occurrence within the 
whole training set or in a pre-existing 
knowledge base (taxonomy or ontology). A 
yet more complicated feature weight may 
also include information about feature 
distribution among different classes. 
This paper will only investigate the 
first two types of feature weights.  
 
From Text to Features 
 
In order to transform a document into a 
feature vector, preprocessing is needed. 
This includes feature formation 
(tokenization, phrase formation, or 
higher level feature extraction), 
feature selection, and feature score 
calculations. Tokenization is a trivial 
problem for white-spaced languages like 
English.  
 
Feature formation must be performed with 
reference to the definition of the 
features. Different linguistic 
components of a document can form 
different types of features. Features 
such as single tokens or single stemmed 
tokens are most frequently used in text 
categorization. In this bag-of-words 
representation, information about 
dependencies and the relative positions 
of different tokens are not used. 
Phrasal features consisting of more than 
one token are one possible way to make 
use of the dependencies and relative 
positions of component tokens. Previous 
experiments [Sahami,96] [Dumais,98] show 
that introducing some degree of term 
dependence in the Bayesian network 
method will achieve undoubtably higher 
accuracy in text categorization compared 
to the independence assumption in the 
Naive Bayesian method. However, whether 
the introduction of phrases will improve 
the accuracy of text categorization has 
been debated for a long time. Lewis 
[Lewis,92] was the first to study the 
effects of syntactic phrases in text 
categorization. In his study, a naive 
Bayesian classifier with only noun 
phrases yielded significantly lower 
effectiveness than a standard classifier 
using bag-of-single-words.  More reports 
on inclusion of syntactic phrases show 
no significant improvement on rule-based 

classifiers [Scott,99] and naive 
Bayesian and SVM classifiers 
[Dumais,98]. For statistical phrases 
like n-grams, one report [Caropreso,01] 
shows that certain term selection 
methods such as document frequency, 
information gain and chi-square give 
high selection scores to a considerable 
number of statistical phrases, which 
indicates they have important predictive 
value. In the same report, directly 
using selected uni-grams or bigrams 
during text categorization with the 
Rocchio classifier yields a slightly 
higher effectiveness compared to only 
using uni-grams in the case that the 
classifier chooses an adequate but equal 
number of terms as features. A 
significant drop in effectiveness was 
observed when the classifier chose fewer 
terms. The report then commented that 
inclusion of some bigrams may only 
duplicate information of existing uni-
grams but force other important uni-
grams out. However, other reports on 
statistical phrases show that the 
addition of n-grams to the single words 
model can improve performance in the 
shorter-length n-grams case [Furnkranz, 
98] [Mladenic,98].  
 
One type of a higher level feature has 
been studied in text categorization 
[Riloff,98], where linguistic patterns 
were extracted automatically and input 
as features to naive Bayesian and rule-
based classifiers. A consistent 
improvement in precision was observed in 
the naive Bayesian classifier and at low 
recall level in the rule-based 
classifier. Adding linguistic patterns 
to the single word representation yields 
consistent improvement of precision 
except at a very high recall level.  
 
Feature selection has been studied by 
[Yang,97], where information gain and 
chi-square methods are found most 
effective for k-NN and linear regression 
learning methods. Term selection based 
on document frequency in the training 
set as a whole is simple but has similar 
performance to information gain and chi-
square methods.  
  
Selected features must be associated 
with a numerical value to evaluate the 



impact of the feature to the 
classification problem. Most types of 
feature weighting schemes in text 
categorization are borrowed from the 
field of information retrieval. The most 
frequently used weight is TFIDF [Salton, 
1988]. The original TFIDF is: 
 

          
f

fdfd df
D

logtf=ω        eq. 1    

 
where ωfd is the weight of feature f in 
document d, tffd  the occurrence 
frequency of feature f in document d, D 
the total number of documents in the 
training set, and dff is the number of 
documents containing the feature f.  
 
In this paper, we will compare text 
categorization using different types of 
features, and different types of feature 
weighting schemes. The feature types 
will include single tokens, single 
stemmed tokens, and phrases. Weighting 
schemes will include binary feature 
(BI), term frequency (TF), TFIDF(eq.1), 
logTFIDF(eq.2), etc.       
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We note that the logarithm of the TF 
part is to amend unfavorable linearity. 
The machine learning algorithms we 
report in this paper include SVM 
[Joachims, 98] and Neural Network. 
Feature selection in Neural Networks and 
Support Vector Machine classifiers is 
based on document frequency. Only 
features (single words or phrases) 
occurring in an adequate number of 
training documents will be selected. The 
corpus includes reuters-21578 and 
ohsumed.  
 
Phrase Features 
 
We only use training set documents to 
find valid phrases. We first scan the 
documents in the training set and detect 
phrases based on linguistic and 
statistical conditions. We only use noun 
phrases as valid phrases. Valid phrases 
are inserted into a phrase database 
which is specific to the training set. 

The phrase database is used to replace 
the phrases in the training documents 
and test documents with specific tokens. 
For example, the phrase "information 
retrieval" in the document will be 
changed to the token 
"information_retrieval". After phrases 
in the documents are marked, the 
documents can be input into tokenization 
program in training or classification 
processes for performance testing.   
 
To detect valid noun phrase chunking, 
Brill’s transformation-based part of 
speech tagger [Brill, 1995] was used to 
mark parts-of-speech in the training 
documents. Training documents with POS 
tags are input into Ramshaw&Marcus’s 
noun phrase chunking detector 
[Ramshaw,95] for noun phrase detection. 
The resultant noun phrase chunks are 
output to a file, which is input to a 
statistical chi-square test program. 
This program tests the statistical 
significance of co-occurrences of the 
component tokens in n-gram noun phrases. 
In particular, we choose the noun 
phrases (ngrams, up to 4-grams) such 
that the null hypothesis that its 
component tokens are independent of each 
other can be proved not true.  
   
Machine Learning Algorithms 
 
We test two different type of machine 
learning algorithms: Neural Networks and 
Support Vector Machines. We use the 
SVM_light package [Joachims, 98] with 
default parameter settings, which 
results in a linear SVM classifier.  
 
For Neural Network, we use a home-made 
program. The Neural Network has no 
hidden layer and therefore is equivalent 
to a linear classifier. Text document 
classification has high dimensional data 
characteristics because of the large 
size of natural language vocabulary. 
Documents in one class usually can be 
linearly separated from other classes 
due to high dimensionality [Joachims, 
98] [Schutze, 1995]. A prior experiment  
[Schutze, 1995] shows that linear neural 
networks can achieve the same accuracy 
as non-linear neural networks with 
hidden layers. 
 



During the learning process, a 
sequential back propagation algorithm is 
used to minimize training error. We use 
cross-entropy error, thus making our 
learning method equivalent to logistic 
regression learning [Schutze, 1995]. We 
tried to use weight regularization 
methods [Zhang, 2001] to deal with 
overfitting, but the accuracy was not 
improved and convergence is hard to 
achieve by using back propagation 
learning. The results we present in this 
paper do not use regularization.  
 
Corpus 
 
The evaluation experiments are done on 
two text collections.  The first is 
Reuters-21578 with ModApte split. Many 
text categorization methods have been 
tested against this corpus [Yang,99] 
[Dumais,98] [Joachims,98]. This is a 
collection of newswire stories from 1987 
compiled by David Lewis. The number of 
distinct tokens in the training set is 
39189, of which 18586 tokens occur more 
than once, 12951 tokens occur more than 
twice, 10328 tokens occur more than 
three times, 8789 tokens occur more than 
four times, and 3262 tokens occur more 
than 20 times in the training set.  
 
The second collection is taken from 
Ohsumed corpus used in the Filtering 
Track in TREC-9 [trec9 report]. The 
Ohsumed collection consists of Medline 
documents from the years 1987-1991 and a 
set of topics and relevance judgments. 
In order to reduce the size of the 
problem, we chose MESH categories in 
which the number of Ohsumed documents in 
1991 is larger than 300 (which results 
98 categories). The training/testing 
split is across the document series 
number 91250000. Training documents have 
the document series number less than 
91250000. This split results in 14655 
training documents and 6698 test 
documents. The resultant training set 
and testing set have more homogenous 
distribution across different categories 
than the Reuters collection. The minimum 
(maximum) number of training documents 
in one category is 65 (465). The minimum 
(maximum) number of testing documents in 
one category is 29(214). In the training 
set, there are 52162 distinct tokens, of 

which 28857 tokens occur more than once, 
22128 tokens occur more than twice, 
18493 tokens occur more than three 
times, 9224 tokens occur more than 12 
times, and 3458 tokens occur more than 
60 times.  
 
Experiment Results and Discussion 
 
We first compare the impact of different 
feature types. The meaning of the 
following legends in the figure denote 
feature types: “single words” means only 
single tokens as features, “noun 
phrases” uses detected noun phrases as 
features without using component tokens, 
“stem words” uses Porter-stemmer-
determined stems for each token as 
features, “noun phrases and words” uses 
detected noun phrases and their 
component tokens. 
  
Fig.1 and Fig.2 show the micro-average 
breakeven points (BEP) with different 
numbers of features using the SVM 
classifier to classify the Reuters and 
ohsumed corpora, respectively. Breakeven 
accuracies increase with the number of 
features. There is no overfitting 
observed in the experimental range as 
the number of features increases. The 
maximum number of features in Fig.1 is 
16000 for Reuters. This number of single 
tokens is roughly the number of tokens 
occurring twice or above in the training 
set. The maximum number of features in 
Fig.2 is 20000 for ohsumed. This number 
of single tokens is roughly the number 
of tokens occurring three times or above 
in the training set.  
 
The maximum BEPs are achieved at the 
maximum number of features. For reuters, 
the best BEP is 0.88, which is slightly 
higher than the reported microAvg. BEP 
in [Joachims, 98] (0.860). For ohsumed, 
the best BEP is 0.602, achieved by using 
stem words.  
 
The effect of stemming can be easily 
seen in Fig. 1 and 2. When the number of 
features is small, the coverage of 
selected features is poor but stemming 
of words can increase the feature 
coverage, thus giving the best breakeven 
accuracy compared to other types of 
features. However, as the number of 



chosen features increases, and coverage 
of the chosen features becomes large 
enough, the accuracy of the features in 
conveying the information becomes more 
important. This can be seen in Fig.1 
where the BEPs of other types of 
features are as good as stem words at 
large number of features. 
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Fig.1 Breakeven points for the Reuters collection using 
SVM. The feature vector is normalized to have unity sum. 
The feature weight is LOGTFIDF. 
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Fig.2 Breakeven points for the ohsumed collection using 
SVM. The feature vector is normalized to have unity sum. 
The feature weight is LOGTFIDF. 
 
 
  
 
It is interesting to see how well the 
automatically determined noun phrase 
features perform. The Fig.1 and Fig. 2 
show that noun phrases classifiers give 
the worst BEP. This is disappointing. It 
was expected that good phrase features 
provide more accurate information by 
constraining the meaning of component 
words. One example is the phrase 
“consumer price index”, where the 
combination of the three token means a 
specific index. However, this result is 
consistent with the findings of the 

previous literature [Lewis,92], 
[Scott,99],[Dumais,98]. This can be 
partially explained by decreased feature 
coverage due to replacement of original 
tokens by phrases. For example, if the 
two words “oracle database” are replaced 
by one phrase “oracle_database”, this 
phrase feature will only match itself 
and can not convey any similarity with 
its individual word components “oracle” 
and “database”. However, we know that an 
article discussing enterprise software 
may only mention “oracle” or “database” 
separately. Another example is replacing 
the two phrases “Oracle database” and 
“DB2 database” with two separate 
features makes it impossible to map the 
similarity existing between them. Thus 
each phrase will have narrower coverage. 
The coverage problem is caused by 
replacing a number of token features 
with a single feature which is more 
accurate but finer. This problem can be 
partially reduced by not eliminating the 
phrase’s component words. In fig.1, we 
see a significant increase of BEP for 
noun phrases including component words.    
 
The single words are natural linguistic 
units and are employed by many text 
classification systems. From Fig.1 and 
Fig.2, one can see that this natural and 
simple feature unit performs fairly well 
compared with other complicated types of 
features.    
    
The above results and discussion about 
types of features are not just applied 
to a single machine learning algorithm 
(SVM in Fig.1, Fig.2). We performed the 
same experiments with a Neural Network 
classifier. The results are shown in 
Fig.3 and Fig.4. The BEPs using Neural 
Network are not as good as those using 
SVM. The maximum BEP using Neural 
Network is 0.871 for Reuters using 
single words and 0.568 for ohsumed using 
stem words. It is worthwhile to mention 
that the training time for the neural 
network is much longer than SVM (>10 
times in this experiment’s problem 
scale).  
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 Fig.3 Breakeven points for the Reuters collection using 
Neural Network. The feature vector is normalized to have 
unity sum. The feature weight is LOGTFIDF 
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 Fig.4 Breakeven points for the ohsumed collection 
using Neural Network. The feature vector is normalized to 
have unity sum. The feature weight is LOGTFIDF 
 
 
So far, the discussed results all use 
one feature weighting scheme: LOGTFIDF 
(eq. 2). In Fig.5, Fig.6, we employed 
different feature weighting schemes. 
They are: 
      IDF:      log(D/dff) 

TF:       tffd 
 TFIDF:    eq. 1 
      LOGTFIDF: eq. 2 
      LOGTF:    log(tffd) 
      BINARY:   1 or 0 
 
Although the BEP ranking sequence for 
different weighting schemes is different 
for Fig.5 and Fig.6, we still can find 
some common characteristics for 

weighting methods based on the results 
vs. the Reuters and ohsumed collections. 
One can observe that the BEPs using 
LOGTF weight are always larger than 
those using TF weight. This shows that 
non-linear weighting of term frequency 
is better than conventional linear 
weighting. We think that this 
observation also holds in the field of 
information retrieval for relevance 
ranking.  
 
Fig.5 and Fig.6 show that IDF weighting 
is better than BINARY weighting. Because 
IDF weight is only assigned to a feature 
occurring in the concerned document, IDF 
weight is actually BINARY weight 
multiplying an IDF score which contains 
the statistical information of the 
feature inside the whole corpus. 
Considering the fact that TFIDF is 
better than TF, LOGTFIDF better than 
LOGTF, one can than conclude that 
introducing the corpus information helps 
improve the accuracy of text 
categorization.  
 
It is seen from Fig.5 and Fig.6 that 
LOGTFIDF, which is the multiplication of 
the LOGTF and IDF weights, performs the 
best in both collections.    
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 Fig.5 Breakeven points for the Reuters collection using 
SVM. The feature vector is normalized to have unity length. 
The features are single words. 
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 Fig.6 Breakeven points for the ohsumed collection 
using SVM. The feature vector is normalized to have unity 
length. The features are single words. 
 
 
 
 
 
 
Conclusions 
 
We have compared text classifiers using 
different types of features and 
different weighting schemes. We employed 
Support Vector Machines and a Neural 
Network algorithm as two linear 
classifiers. We tested these classifiers 
on the Reuters and ohsumed collections. 
Based on this comparison, we find that 
SVM algorithm is superior to the 
linearized neural network both in 
accuracy and training speed. Stem words, 
which normalize different feature forms 
to one stem form, show significant 
advantages in the case where a small 
number of features are used because of 
the larger coverage of the stems. 
Replacing contiguous tokens with 
detected noun phrases as features gains 
accuracy but loses coverage due to the 
problem of normalization. One may 
surmise that if a similarity match 
between different features is introduced 
to replace the current binary match 
between two features, the feature 
normalization problem will be 
eliminated. Single words as features 
perform fairly well. The comparison of 
different weighting schemes shows 

LOGTFIDF as the preferred feature 
weighting method.  
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