
 Feature Preparation in Text Categorization

 Ciya Liao, Shamim Alpha, Paul Dixon
 Oracle Corporation,
 {david.liao, shamim.alpha, paul.dixon}@oracle.com

Abstract

Text categorization is an important application of machine learning to the field
of document information retrieval. Most machine learning methods treat text
documents as a feature vectors. We report text categorization accuracy for
different types of features and different types of feature weights. The
comparison of these classifiers shows that stemmed or un-stemmed single words as
features give better classifier performance compared with other types of
features, and LOG(tf)IDF weight as feature weight gives better classifier
performance than other types of feature weights.

Introduction

Text categorization is a conventional
classification problem applied to the
textual domain. It solves the problem of
assigning text content to predefined
categories. As the volume of text
content grows continuously on-line and
in corporate domains, text
categorization, acting as a way to
organize the text content, becomes
interesting not only from an academic
but also from an industrial point of
view. A growing number of statistical
classification methods have been applied
to text categorization, such as Naive
Bayesian [Joachims,97], Bayesian Network
[Sahami,96], Decision Tree [Quinlan,93]
[Weiss,99], Neural Network[Wiener,95],
Linear Regression[Yang,92], k-NN
[Yang,99], Support Vector Machines
[Dumais,98][Joachims, 98], and Boosting
[Schapire,00][Weiss,99]. A comprehensive
comparative evaluation of a wide-range
of text categorization methods is
reported in ref.[Yang,99][Dumais,98]
against the Reuters corpus.

Most of the statistical classification
methods mentioned above are borrowed
from the field of machine learning,
where a classified item is treated as a
feature vector. A simple way to
transform a text document into a feature
vector is using a “bag-of-words”
representation, where each feature is a

single token. There are two problems
associated with this representation.

The first problem to be raised when
using a feature vector representation is
to answer the question, “what is a
feature?”. In general, a feature can be
either local or global. In text
categorization, local features are
always used but in different-length
scales of locality. A feature can be as
simple as a single token, or a
linguistic phrase, or a much more
complicated syntax template. A feature
can be a characteristic quantity at
different linguistic levels. To
transform a document, which can be
regarded as a string of tokens, into
another set of tokens will lose some
linguistic information such as word
sequence. Word sequence is crucial for a
human being to understand a document and
should be also crucial for a computer.
Using phrases as features is a partial
solution for incorporating word sequence
information into text categorization.
This paper will investigate the
effectiveness of different classifiers
by using single tokens, phrases, stemmed
tokens, etc. as features.

The second problem is how to quantify a
feature. A feature weight should show
the degree of information represented by
local feature occurrences in a document,
at a minimum. A slightly more

complicated feature weight scheme may
also represent statistical information
of the feature’s occurrence within the
whole training set or in a pre-existing
knowledge base (taxonomy or ontology). A
yet more complicated feature weight may
also include information about feature
distribution among different classes.
This paper will only investigate the
first two types of feature weights.

From Text to Features

In order to transform a document into a
feature vector, preprocessing is needed.
This includes feature formation
(tokenization, phrase formation, or
higher level feature extraction),
feature selection, and feature score
calculations. Tokenization is a trivial
problem for white-spaced languages like
English.

Feature formation must be performed with
reference to the definition of the
features. Different linguistic
components of a document can form
different types of features. Features
such as single tokens or single stemmed
tokens are most frequently used in text
categorization. In this bag-of-words
representation, information about
dependencies and the relative positions
of different tokens are not used.
Phrasal features consisting of more than
one token are one possible way to make
use of the dependencies and relative
positions of component tokens. Previous
experiments [Sahami,96] [Dumais,98] show
that introducing some degree of term
dependence in the Bayesian network
method will achieve undoubtably higher
accuracy in text categorization compared
to the independence assumption in the
Naive Bayesian method. However, whether
the introduction of phrases will improve
the accuracy of text categorization has
been debated for a long time. Lewis
[Lewis,92] was the first to study the
effects of syntactic phrases in text
categorization. In his study, a naive
Bayesian classifier with only noun
phrases yielded significantly lower
effectiveness than a standard classifier
using bag-of-single-words. More reports
on inclusion of syntactic phrases show
no significant improvement on rule-based

classifiers [Scott,99] and naive
Bayesian and SVM classifiers
[Dumais,98]. For statistical phrases
like n-grams, one report [Caropreso,01]
shows that certain term selection
methods such as document frequency,
information gain and chi-square give
high selection scores to a considerable
number of statistical phrases, which
indicates they have important predictive
value. In the same report, directly
using selected uni-grams or bigrams
during text categorization with the
Rocchio classifier yields a slightly
higher effectiveness compared to only
using uni-grams in the case that the
classifier chooses an adequate but equal
number of terms as features. A
significant drop in effectiveness was
observed when the classifier chose fewer
terms. The report then commented that
inclusion of some bigrams may only
duplicate information of existing uni-
grams but force other important uni-
grams out. However, other reports on
statistical phrases show that the
addition of n-grams to the single words
model can improve performance in the
shorter-length n-grams case [Furnkranz,
98] [Mladenic,98].

One type of a higher level feature has
been studied in text categorization
[Riloff,98], where linguistic patterns
were extracted automatically and input
as features to naive Bayesian and rule-
based classifiers. A consistent
improvement in precision was observed in
the naive Bayesian classifier and at low
recall level in the rule-based
classifier. Adding linguistic patterns
to the single word representation yields
consistent improvement of precision
except at a very high recall level.

Feature selection has been studied by
[Yang,97], where information gain and
chi-square methods are found most
effective for k-NN and linear regression
learning methods. Term selection based
on document frequency in the training
set as a whole is simple but has similar
performance to information gain and chi-
square methods.

Selected features must be associated
with a numerical value to evaluate the

impact of the feature to the
classification problem. Most types of
feature weighting schemes in text
categorization are borrowed from the
field of information retrieval. The most
frequently used weight is TFIDF [Salton,
1988]. The original TFIDF is:

f

fdfd df
D

logtf=ω eq. 1

where ωfd is the weight of feature f in
document d, tffd the occurrence
frequency of feature f in document d, D
the total number of documents in the
training set, and dff is the number of
documents containing the feature f.

In this paper, we will compare text
categorization using different types of
features, and different types of feature
weighting schemes. The feature types
will include single tokens, single
stemmed tokens, and phrases. Weighting
schemes will include binary feature
(BI), term frequency (TF), TFIDF(eq.1),
logTFIDF(eq.2), etc.

f

fdfd df
D

log)5.0tflog(+=ω eq. 2

We note that the logarithm of the TF
part is to amend unfavorable linearity.
The machine learning algorithms we
report in this paper include SVM
[Joachims, 98] and Neural Network.
Feature selection in Neural Networks and
Support Vector Machine classifiers is
based on document frequency. Only
features (single words or phrases)
occurring in an adequate number of
training documents will be selected. The
corpus includes reuters-21578 and
ohsumed.

Phrase Features

We only use training set documents to
find valid phrases. We first scan the
documents in the training set and detect
phrases based on linguistic and
statistical conditions. We only use noun
phrases as valid phrases. Valid phrases
are inserted into a phrase database
which is specific to the training set.

The phrase database is used to replace
the phrases in the training documents
and test documents with specific tokens.
For example, the phrase "information
retrieval" in the document will be
changed to the token
"information_retrieval". After phrases
in the documents are marked, the
documents can be input into tokenization
program in training or classification
processes for performance testing.

To detect valid noun phrase chunking,
Brill’s transformation-based part of
speech tagger [Brill, 1995] was used to
mark parts-of-speech in the training
documents. Training documents with POS
tags are input into Ramshaw&Marcus’s
noun phrase chunking detector
[Ramshaw,95] for noun phrase detection.
The resultant noun phrase chunks are
output to a file, which is input to a
statistical chi-square test program.
This program tests the statistical
significance of co-occurrences of the
component tokens in n-gram noun phrases.
In particular, we choose the noun
phrases (ngrams, up to 4-grams) such
that the null hypothesis that its
component tokens are independent of each
other can be proved not true.

Machine Learning Algorithms

We test two different type of machine
learning algorithms: Neural Networks and
Support Vector Machines. We use the
SVM_light package [Joachims, 98] with
default parameter settings, which
results in a linear SVM classifier.

For Neural Network, we use a home-made
program. The Neural Network has no
hidden layer and therefore is equivalent
to a linear classifier. Text document
classification has high dimensional data
characteristics because of the large
size of natural language vocabulary.
Documents in one class usually can be
linearly separated from other classes
due to high dimensionality [Joachims,
98] [Schutze, 1995]. A prior experiment
[Schutze, 1995] shows that linear neural
networks can achieve the same accuracy
as non-linear neural networks with
hidden layers.

During the learning process, a
sequential back propagation algorithm is
used to minimize training error. We use
cross-entropy error, thus making our
learning method equivalent to logistic
regression learning [Schutze, 1995]. We
tried to use weight regularization
methods [Zhang, 2001] to deal with
overfitting, but the accuracy was not
improved and convergence is hard to
achieve by using back propagation
learning. The results we present in this
paper do not use regularization.

Corpus

The evaluation experiments are done on
two text collections. The first is
Reuters-21578 with ModApte split. Many
text categorization methods have been
tested against this corpus [Yang,99]
[Dumais,98] [Joachims,98]. This is a
collection of newswire stories from 1987
compiled by David Lewis. The number of
distinct tokens in the training set is
39189, of which 18586 tokens occur more
than once, 12951 tokens occur more than
twice, 10328 tokens occur more than
three times, 8789 tokens occur more than
four times, and 3262 tokens occur more
than 20 times in the training set.

The second collection is taken from
Ohsumed corpus used in the Filtering
Track in TREC-9 [trec9 report]. The
Ohsumed collection consists of Medline
documents from the years 1987-1991 and a
set of topics and relevance judgments.
In order to reduce the size of the
problem, we chose MESH categories in
which the number of Ohsumed documents in
1991 is larger than 300 (which results
98 categories). The training/testing
split is across the document series
number 91250000. Training documents have
the document series number less than
91250000. This split results in 14655
training documents and 6698 test
documents. The resultant training set
and testing set have more homogenous
distribution across different categories
than the Reuters collection. The minimum
(maximum) number of training documents
in one category is 65 (465). The minimum
(maximum) number of testing documents in
one category is 29(214). In the training
set, there are 52162 distinct tokens, of

which 28857 tokens occur more than once,
22128 tokens occur more than twice,
18493 tokens occur more than three
times, 9224 tokens occur more than 12
times, and 3458 tokens occur more than
60 times.

Experiment Results and Discussion

We first compare the impact of different
feature types. The meaning of the
following legends in the figure denote
feature types: “single words” means only
single tokens as features, “noun
phrases” uses detected noun phrases as
features without using component tokens,
“stem words” uses Porter-stemmer-
determined stems for each token as
features, “noun phrases and words” uses
detected noun phrases and their
component tokens.

Fig.1 and Fig.2 show the micro-average
breakeven points (BEP) with different
numbers of features using the SVM
classifier to classify the Reuters and
ohsumed corpora, respectively. Breakeven
accuracies increase with the number of
features. There is no overfitting
observed in the experimental range as
the number of features increases. The
maximum number of features in Fig.1 is
16000 for Reuters. This number of single
tokens is roughly the number of tokens
occurring twice or above in the training
set. The maximum number of features in
Fig.2 is 20000 for ohsumed. This number
of single tokens is roughly the number
of tokens occurring three times or above
in the training set.

The maximum BEPs are achieved at the
maximum number of features. For reuters,
the best BEP is 0.88, which is slightly
higher than the reported microAvg. BEP
in [Joachims, 98] (0.860). For ohsumed,
the best BEP is 0.602, achieved by using
stem words.

The effect of stemming can be easily
seen in Fig. 1 and 2. When the number of
features is small, the coverage of
selected features is poor but stemming
of words can increase the feature
coverage, thus giving the best breakeven
accuracy compared to other types of
features. However, as the number of

chosen features increases, and coverage
of the chosen features becomes large
enough, the accuracy of the features in
conveying the information becomes more
important. This can be seen in Fig.1
where the BEPs of other types of
features are as good as stem words at
large number of features.

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0 2000 4000 6000 8000 10000 12000 14000 16000
number of features

br
ea

ke
ve

n
po

in
ts

single words
noun phrases
stem words
noun phrases and words

Fig.1 Breakeven points for the Reuters collection using
SVM. The feature vector is normalized to have unity sum.
The feature weight is LOGTFIDF.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 5000 10000 15000 20000
number of features

br
ea

ke
ve

n
po

in
ts

single words
noun phrases
stem words

Fig.2 Breakeven points for the ohsumed collection using
SVM. The feature vector is normalized to have unity sum.
The feature weight is LOGTFIDF.

It is interesting to see how well the
automatically determined noun phrase
features perform. The Fig.1 and Fig. 2
show that noun phrases classifiers give
the worst BEP. This is disappointing. It
was expected that good phrase features
provide more accurate information by
constraining the meaning of component
words. One example is the phrase
“consumer price index”, where the
combination of the three token means a
specific index. However, this result is
consistent with the findings of the

previous literature [Lewis,92],
[Scott,99],[Dumais,98]. This can be
partially explained by decreased feature
coverage due to replacement of original
tokens by phrases. For example, if the
two words “oracle database” are replaced
by one phrase “oracle_database”, this
phrase feature will only match itself
and can not convey any similarity with
its individual word components “oracle”
and “database”. However, we know that an
article discussing enterprise software
may only mention “oracle” or “database”
separately. Another example is replacing
the two phrases “Oracle database” and
“DB2 database” with two separate
features makes it impossible to map the
similarity existing between them. Thus
each phrase will have narrower coverage.
The coverage problem is caused by
replacing a number of token features
with a single feature which is more
accurate but finer. This problem can be
partially reduced by not eliminating the
phrase’s component words. In fig.1, we
see a significant increase of BEP for
noun phrases including component words.

The single words are natural linguistic
units and are employed by many text
classification systems. From Fig.1 and
Fig.2, one can see that this natural and
simple feature unit performs fairly well
compared with other complicated types of
features.

The above results and discussion about
types of features are not just applied
to a single machine learning algorithm
(SVM in Fig.1, Fig.2). We performed the
same experiments with a Neural Network
classifier. The results are shown in
Fig.3 and Fig.4. The BEPs using Neural
Network are not as good as those using
SVM. The maximum BEP using Neural
Network is 0.871 for Reuters using
single words and 0.568 for ohsumed using
stem words. It is worthwhile to mention
that the training time for the neural
network is much longer than SVM (>10
times in this experiment’s problem
scale).

0.7

0.75

0.8

0.85

0.9

0 2000 4000 6000 8000 10000

number of features

br
ea

ke
ve

n
po

in
ts

single words
noun phrases
stem words
noun phrases and words

 Fig.3 Breakeven points for the Reuters collection using
Neural Network. The feature vector is normalized to have
unity sum. The feature weight is LOGTFIDF

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000

number of features

br
ea

ke
ve

n
po

in
ts

single words

noun phrases

stem words

 Fig.4 Breakeven points for the ohsumed collection
using Neural Network. The feature vector is normalized to
have unity sum. The feature weight is LOGTFIDF

So far, the discussed results all use
one feature weighting scheme: LOGTFIDF
(eq. 2). In Fig.5, Fig.6, we employed
different feature weighting schemes.
They are:
 IDF: log(D/dff)

TF: tffd
 TFIDF: eq. 1
 LOGTFIDF: eq. 2
 LOGTF: log(tffd)
 BINARY: 1 or 0

Although the BEP ranking sequence for
different weighting schemes is different
for Fig.5 and Fig.6, we still can find
some common characteristics for

weighting methods based on the results
vs. the Reuters and ohsumed collections.
One can observe that the BEPs using
LOGTF weight are always larger than
those using TF weight. This shows that
non-linear weighting of term frequency
is better than conventional linear
weighting. We think that this
observation also holds in the field of
information retrieval for relevance
ranking.

Fig.5 and Fig.6 show that IDF weighting
is better than BINARY weighting. Because
IDF weight is only assigned to a feature
occurring in the concerned document, IDF
weight is actually BINARY weight
multiplying an IDF score which contains
the statistical information of the
feature inside the whole corpus.
Considering the fact that TFIDF is
better than TF, LOGTFIDF better than
LOGTF, one can than conclude that
introducing the corpus information helps
improve the accuracy of text
categorization.

It is seen from Fig.5 and Fig.6 that
LOGTFIDF, which is the multiplication of
the LOGTF and IDF weights, performs the
best in both collections.

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0 2000 4000 6000 8000 10000 12000 14000 16000

number of features

br
ea

ke
ve

n
po

in
ts

IDF

TFIDF

LOGTFIDF

TF

LOGTF

BINARY

 Fig.5 Breakeven points for the Reuters collection using
SVM. The feature vector is normalized to have unity length.
The features are single words.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 5000 10000 15000 20000

number of features

br
ea

ke
ve

n
po

in
ts

IDF

TFIDF

LOGTFIDF

TF

LOGTF

BINARY

 Fig.6 Breakeven points for the ohsumed collection
using SVM. The feature vector is normalized to have unity
length. The features are single words.

Conclusions

We have compared text classifiers using
different types of features and
different weighting schemes. We employed
Support Vector Machines and a Neural
Network algorithm as two linear
classifiers. We tested these classifiers
on the Reuters and ohsumed collections.
Based on this comparison, we find that
SVM algorithm is superior to the
linearized neural network both in
accuracy and training speed. Stem words,
which normalize different feature forms
to one stem form, show significant
advantages in the case where a small
number of features are used because of
the larger coverage of the stems.
Replacing contiguous tokens with
detected noun phrases as features gains
accuracy but loses coverage due to the
problem of normalization. One may
surmise that if a similarity match
between different features is introduced
to replace the current binary match
between two features, the feature
normalization problem will be
eliminated. Single words as features
perform fairly well. The comparison of
different weighting schemes shows

LOGTFIDF as the preferred feature
weighting method.

References

[Joachims, 98] T.Joachims, Text
categorization with support vector
machines: learning with many relevant
features. Proceedings of ECML-98, 10th
European Conference on Machine Learning,
1998.

[Yang,97] Y.Yang, J.O. Pederson, A
comparative study on feature selection
in text categorization, International
Conference on Machine Learning (ICML),
1997.

[Yang,99] Y.Yang, An evaluation of
statistical approaches to text
categorization. Journal of Information
Retrieval, Vol.1, No.1/2, 1999.

[Weiss,99] S.M.Weiss,C.Apte,F.J.Damerau,
D.E.Johnson,F.J.Oles,T.Goetz,T.Hampp,
Maximizing text-mining performance,IEEE
Intelligent systems,1999.

[Quinlan,93] J.R.Quinlan, C4.5: Programs
for machine learning, Morgan Kaufmann,
1993.

[Joachims,97] T. Joachims, A
probabilistic analysis of the Rocchio
algorithm with TFIDF for text
categorization, Proceedings of ICML-97,
14th International Conference on Machine
Learning, 1997.

[Wiener,95] E. Wiener, J.O.Pederson,
A.S.Weigend, A neural network approach
to topic spotting. Proceedings of SDAIR-
95, 4th Annual Symposium on Document
Analysis and Information Retrieval,
1995.

[Dumais,98] S.Dumais, J.Platt,
D.Heckerman, M.Sahami, Inductive
learning algorithms and representations
for text categorization. Proceedings of
the 7th International Conference on
Information and Knowledge Management
(CIKM 98), 1998.

[Sahami, 96] M. Sahami,Learning limited
dependence Bayesian classifier. In KDD-
96: Proceedings of the second
international Conference on Knowledge
Discovery and Data Mining, 335-338. AAAI
press, 1996.

[Yang, 92] Y.Yang, C.G.Chute, A linear
least squares fit mapping method for
information retrieval from natural
language texts. Proceedings of the 14th
International Conference on
Computational Linguistics (COLING 92),
1992.

[Schapire,00] R.E.Schapire, Y.Singer,
Boostexter: A boosting-based system for
text categorization. Machine Learning,
39(2/3), 2000.

[Lewis,92] D.D.Lewis, Feature selection
and feature extraction for text
categorization, Proceedings of Speech
and Natural Language Workshop, 1992.

[Scott,99] S.Scott, S.Matwin, Feature
engineering for text classification,
Proceedings of ICML-99, 16th
International Conference on Machine
Learning, 1999.

[Caropreso,01] M.F.Caropreso, S.Matwin,
F.Sebastiani, A learner-independent
evaluation of the usefulness of
statistical phrases in automated text
categorization, Text database and
Document Management: Theory and
Practice, 2001.

[Furnkranz, 98] J.Furnkranz, A study
using n-gram features for text
categorization. Technical Report
OEFAITR-98-30. 1998.

[Mladenic,98] D.Mladenic, M.Grobelnik,
Word sequences as features in text-
learning. Proceedings of ERK-98, the
Seventh Electrotechnical and Computer
Science Conferences, 1998.

[Riloff,98] J.Furnkranz, T,Mitchell,
E.Riloff, A case study of using
linguistic phrases for text
categorization on the WWW, Proceedings
of the 1st AAAI Workshop on Learning for
Text Categorization, 1998.

[Brill,95] Transformation-based error-
driven learning and natural language
processing: a case study in part of
speech tagging, Computational
Linguistics, 21(4),1995.

[Ramshaw, 95] L.A.Ramshaw, M.P.Marcus,
Text chunking using transformation-based
learning, Proceedings of third Workshop
on Very Large Corpora, 1995.

[Salton, 1988] G. Salton, C. Buckley,
Term Weighting Approaches in Automatic
Text Retrieval, Information Processing
and Management, Vol. 24, No.5, P513,
1988.

[Schutze, 1995] H. Schutze, D.A.Hull,
J.O.Pederson, A Comprison of Classiifers
and Document Representations for the
Routing Problem, in Proceedings of
SIGIR95, 1995.

[Zhang, 2001] T. Zhang, F.J. Oles, Text
Categorization Based on Regularized
Linear Classification Methods,
Information Retrieval, vol.4, 2001.

[trec9 report] S. Robertson, D.A.Hull,
The TREC-9 Filter Track Final report,
Proceedings of the Ninth Text Retrieval
Conference (TREC-9), 2000.

