
SYSTEM DEVELOPMENT DOCUMENTATION

Digital Signal Process .•......

NOTICE

This manual describes the proprietary 16-bit general-purpose Digital Signal Processor (DSP) Core, used in
Adaptec's AIC-4411 DMC. DMC is an acronym for Drive Manager Chip containing a DSP core (PJNETM)
and proprietary circuitry on a single IC. The words PINE and DM (Drive Manager) may, at times, be used
interchangeably in the text.

The information contained in this document is subject to change without notice.

Copycight© 1994 Adaptec, Inc. All rights reserved. This document contains proprietary information which
is protected by U.S. and international copyright laws. It may not be used, copied, distributed, or disclosed
without the express written permission of Adaptec, Inc.

Adaptec and the Adaptec logo are registered trademarks of Adaptec, Inc. All other trademarks used are
held by their respective owhers.

PINE, PINEASM, and COFFLINK are trademarks of DSP Semiconductors USA, Inc.

Microsoft and MS-DOS are registered trademarks of Microsoft Corporation.

DSP Core Programmer's Manual

===.====3='==.111':,.:=::=:, •• 1:. ••• =.=, •• ea.~ •••• a.III:: ••••• IZ •• :I •••• Il0looooAaaaaaa~a, 1.le, iliac y, diradd, ax aOOO-b!!!
OOxxxxxxxxxxxxxx PINE CONTROL OPCODES: 0000-3[ff ; 10IooooAaaa~aaaa, 1.ld, sqr dlradd aOOO-btU
::r;:===================cm ======.m===III:::=z=:.c:: l,. zes.: •••••••••••• z: ••••• : 10looooAaaaaaaaa, 1.le, sqra dlradd, ax aOOO-brr[
OOOOOOOxxxxxxxxx, 3.]Je, nop OOOO-OIH ; 1I000xxxxxxxxxxx unused 1111 eOOO-c7!!
0000001 Oxxxxxxxx, 3.14, trap 0200-0U [; 1I00IOxxxxxxxxllX unused (101 e800-ebf!
OOOOOOllxxxxxxxx unused 181 0300-03((; 1I001l0xOjjUJII, 1. '/a, mpy (Rj)l, (P.l)1 cCOO-ccH, cdOO-cd1!
OOOOOlOxxxxxxxxx, J.]J~, eint 0400-05((: 1100 IIOxlxxxxxxx unu~ed (1,71 ce80-cd !, ed80-cd rr
000001lxxxxxxxxx, 3. Db, dint 0600-07f f : 1l0011lAOjjllJlI, 1. 7b, iliac (Rj)+, (Rill, ax eeOO-ee 7 f, d OO-en (
OOOOIOOxliiii iii, 3.6b, Ipg limm OBOO-09ff ; 1l001llxlxxxxxxx unused [1,71 ce80-cef!, d 80-d rr
0000 I 0 1 xxxxxxxxx unused 191 OaOO-Obtt : IIOIOOOAOjjUJII, 1.7e, JIISU (Rj) I, (Rl) +, ax dOOO-d07f, dIOO-d17!
0000 II0AxxxmmNNN, 3.10, norm IIX, (Rn)t OeOO-Od!! 6/8 Rns ; 1l0100Oxlxxxxxxx unused (1,7 I dOBO-dOf[, dl80-elf (
OOOOl1lxxxxmmNNN, 3.11, modr (Rn)t OeOO-Ottt 6/8 Rns ;IIOIOOlxxxxxltXXX unused (91 d200-d3f!
OOOIOOOx11111111, J.6a, rep fimm 1000-IUt
000 I 00 I xxxxRRRRR 3.7, rep reg 1200-l)ff 31f)2 regs
OOOIOIOx11111111, J.8, bkrep I1mm, II10ng 1400-15!f

; 11010lxxxltXXXXXX unused (101 d400-d7f!
; 11 0 Ilxxxxxxxxxxx unused (111 d800-dffC'
; 11 10ooo.aJ.111111 I, 1.4a, oper Ilmm, ax 'eOOO-eb[f

000 I 0 II xxxxRRRRR, J.9, bkrep reg, II10ng 1600-17!f 31/32 regs ; 1110 1l0Assssssss, 1.4b, mpys • I1R1m, ax ecOO~f!

OOOllxxAt((teeee, 3.12, moda tunet, ax, eond IBOO-l!!f I) fune ; 1110 Illxxxxxxxxx unused (91 eeOO-i!rr[
OOlOOrrrrrrreece, 3.la, e~llr Str, cond 2000-27!f ; Illlxxxxxxxxxxxx unused (121 tOOO-rtrr
00101 rrrrrrrcccc, J.lb, brr S+r, eond 2BOO-2ff f : --
00 II OOOxxxxxeeee, 3.2a, e~ll Il1ong, eond 3000-31ff
OOllOOlxxxxxcccc, 3.2b, br tHong, cond 3200-33ff
OOllOlOxxxxxeecc, J.J, ret cond J400-J5f(
OOllOllxxxxxxxxx, J.4, ret! 3600-J7ff
001 I 100Axxxxxxxx, J.5, e~lla axl J800-J9ft
OOlllOlxxxxxxxxx unused (9) 3aOO-Jbft
OOllllOAaaaaaaaa, J.15, dlvs dlradd, ax JeOO-3dtf
OOlllllxxxxxxxxx unused (9J JeOO-3!ff
======================_=========::e========:===::::===========::====:==::======::==
Olxxxxxxxxxxxxxx PINE HOVE OPCODE 5 : 4000-7fff

OlOOOOOAxxxRMRR, 2.8, moYp (axl), reg 4000-4lff JI/32 regs
OIOOOOliiI ImmNNN, 2.9, movp (Rn)t, (Ri)t 4200-0[f 6/8 Rns
OIOOOlxxxxxxxxxx unused (101 HOO-Of!
0100 I ORRRRRmmNNN , 2.Ja, mov reg, (Rn) t 4800-4bf! JI/32 regs, 6/8 Rns
OIOOIlRMRRmmNNN, 2.Jb, mov (Rn) I, reg 4eOO-Hff 6/8 Rns, JI/J2 regs
010 I OIlNNssssssss, 2.7, JIIOV '111M1, Rn' 5000-51[t
OIOIIODDDDDSSSSS, 2.5, mov sreg, dreg 5BOO-5b[(JI/J2 regs
0101 I IOxxxxRRRRR, 2.4, mov tUong, reg ~cOO-5df! 31/32 regs
OIOllllxxxxxxxxx unused 191 5eOO-5!!!
OIIOOOOAaaaaaaaa, 2.lb, mov dlradd, ax 6000-61! !
OllOOOlAaa~~aa~a, 2.ld, mov dl radd, axh 6200-6Jf t
OllOOIOAaaaaaaaa, 2.1c, mov dlradd, ax! 6400-65ff
110011Aaaaaaaaa, 2.le, mov dl radd, axh, eu 6600-67[(
1l0lNNNaaaaaaaa, 2.6a, mov Rn', dlradd 6800-6fff
1110NNNa~aaaaaa, 2.6b, mov dlradd, Rn' 7000-77ff
11110HAaaaaa~aa, 2.la, mov axH, dlradd 7800-7btf
OlllllO.aJ.l1iiill, 2.2a, mov timm, axl 7eOO-7dff
OllllllAssssssss, 2.2b, mov itimm, axh 7eOO-7Hf
==========:======:Z==:II:'Z::::===: •• tCZ:::II:=='Jtz::=::::::==z:=:a:zz:r.Z=::lI:z.a::=z=:II:~.a=.z.z: •• zz=

Ixxxxxxxxxxxxxxx PINE ALU OPCODES: 8000-Her

100ooooAOOxRRP.RR, I.Ja, oper reg, ax BOOO-80H, BIOO-Bllf JI/32 regs
100ooooAOOxP.RRRR, I.Jb, mpy y, reg BOOO-BO If, 81 OO-Bll f Jl/J2 regs
1000000AOOxRRRRR, I.Je, mac y, reg, ax 8000-BOlf, 8100-811 f 31/J2 regs
1000000AOOxP.RRRR, 1. 3d, sqr reg 8000-80 If, 8100-81H J1/32 regs
10000ooAOOxRRRRR, 1.3e, sqra reg, ax 6000-60 If, 8100-81H JI/32 regs
1 OOOOxxxO lxxxxxx unused {3,6} B040, etc
1000 I OxxO I xxxxxx unused (2,6J 8B40, 8940, 8/140, 8b40
1000110xOlxmmNNN, 1.6/1, mpy (Rn) t, IHong 8e40-BeSf, 8d40-8dSf 6/8 Rns "-
1000111,0.0 IxmmNNN, 1.6b, mac (Rn)t, 'Hong, ax 8e40-8eSt, 8t 40-8t5f 6/8 Rns
100 I 000,1.0 I xmmNNN, 1.6e, msu (Rn)t, 1 Hong, /IX ~040-905f, ~140-913f 6/8 Rns
IOOIOOlxOlxxxxxx unused (I,6J 9240-927f, 9J40-937f
10010lxxOlxxxxxx unused (2,6J 9440, 9540, 9640, 9740
100 llxxxO lxxxxxx unused (3,6 J 9840, etc
10OooooAIOxmmNNN, 1.2/1, oper (Rn)t, ax 80BO-809f, 8180-819f 6/8 Rns
IOOooooAIOxmmNNN, 1. 2b, mpy y, (Rn) + 8060-B09f, 8180-819t 6/6 Rns
1000000AIOxmmNNN, 1.2e, mac y, (Rn)t, ax 80BO-80n, 8180-819f 6/8 Rns
1000000,1. I OXmmNNN, !.2d, sqr (Rn) + 80BO-809 f, 8180-819 f 6/8 Rns
1000000,0. 1 OxmmNNN , 1.2e, sqrll (Rn)t, ~x BOBO-80n, 8IBO-BI9f 6/8 Rns
lOOOOOOAIlxxxxxx, 1. 511, add II10ng, ax BOcO, 81cO
10000OIAllxxxxxx, 1. 5b, sub tl1ong, ax 82eO, 83eO
1000010Allxxxxxx, I.Se, or • Hong, ax 84c0, 8SeO
100001lAllxxxxxx, 1. 5d, xor • 110ng, ax ~6eO, 87eO
100010OAllxxxxxx, 1. Se, and 1 Hong, ax &6eO, 8geO
1000101A11xxxxxx, 1. 5f, , emp f 110ng, ax 6acO, 8beO
1000 Ilxx Ilxxxxxx unused (2,61 8eeO, 8deO, 8eeO, 8feO
100 I xxxx Ilxxxxxx unused (4,6J gecO, ete
1010000Aaaaaaaaa, I.la, oper diradd, /IX aOOO-bt!f
1010oooAaa~~a/l~~, 1.lb, mpy y, diradd aOOO-bfff

~c:[J adoptee ~ DRIVE MANAGER Ie

16.3 DSP INSTRUCTION SET--execution bus cycle times (O-wait):

INSTRUCTION DESCRIPTION 'FLAGS Rea b Ind I Dir SIm LIm
add 00, ax ax += +00 ZMNVCEL- 1 1 1 1 2
addh OPt ax ax += +00 « 16> ax ZMNVCEL- 1 1 1
addlop ax ax += 00 ZMNVCEL- 1 1 1
and 00. ax ax &= 00 ZMN--E-- 1 1 1 1 2
bkreo, 00. add lc = 00: Ip flag = 1 -------- 2 2
br add condl PC = add -------- 2
bIT $off r condl pc += off -------- 2
call add f .condl tos = pc; pc = add -------- 2
calla axl tos = oc: oc = axl -------- 2
callr $off r, condl tos = pc: oc += off -------- I~ 2
clr ax-,condl ax = 0 ZMN--E-- 1
clrr ax .condl ax = Ox8000 ZMN--E-- 1 I
cmp 00 ax flags = ax - +00 ZMNVCEL- 1 1 1 1 2
cop v ax r ,condl aO=al oral =aO ZMN--E-- 1
dint ie-flag = 0 -------- 1
diys dir. ax unsigned divide steJ2 ZMN--E-- 2
eint ie flag = 1 -------- 1
log #00 page register == 00 -------- I 1
mac 001, 002, ax ax += 0: 0 == 001 * 002 ZMNVCEL- 1 1 1 2
modr m)+ rn += O. l. -1. or step -------R 1
may SOD, dop[.eul dop = sao (data soace) -------- 1 1 1 1 2
moYD SOD. dO~ dO~ = sao fugm soace) -------- 3
mpy 001. op2 D = (v=oo 1) * (x=o02) -------- 1 1 1 2
moys Y. #00 p = v * (x=oo) -------- 1
msu 001. 002. ax ax -= P: 0 = 001 * 002 ZMNVCEI.- 1 1 1 2
neg ax .condl ax = -ax ZMNVCEL- 1
noD no ooeratlon -------- 1 I
norm ax. rn if !N ax «= 1: modr ZMNVCELR 2
not ax .condl ax = ax ZMN-.-E-- 1

ax 1= 00 ZMN--E-- 1 1 1 1 2
,

or 00. ax
oacr ax r condl ax = p + Ox8000 ZMNVCEL- 1
rep 00 repeat next OP times -------- 1 1
ret Lcondl pc = tos -------- 2
reti pc = tos: ie flag = 1 -------- 2
rnd ax condl ax += Ox8000 ZMNVCEL- 1
rol ax .condl rotate left throu gh c ZMN-CE-- 1
[or ax .condl rotate right through c ZMN-CE-- 1
shl ax .condl ax «= 1 ZMNVCE-- 1
sh14 ax J .condl ax «= 4 ZMNVCE-- 1
shr ax condl ax »= 1 ZMNOCE-- 1
shr4 ax r .condl ax »= 4 ZMNOCE-- 1
sqr op Q = lV=oo) * (x=oo) -------- 1 1 1
sora OP. ax ax += 0: 0 = 00 * 00 ZXNVCEI,- 1 1 1
sors 00. ax ax -= P: p = 00 * 00 ZMNVCEL- 1 1 1
sub 00. ax ax -= +00 z..'1NVCEL- 1 1 1 1 2
subh 00, ax ax -= +00 « 16 ZMNVCE:'- 1 1 1
subl op. ax ax -= 00 ZMNVCEL- 1 1 1
trao tos = pC:QG = 10: ie=O -------- 2
xor OD ax ax 1\= OD I ZMN--E-- 1 1 1 1 2

PRELII\IIj\ARY SPECIFICATi()~ CON F1D Ei\T iAL l~ev. 0.0 Pa~e 162 of 159

DSP Instruction Set

pacr
Syntax:

Operation:

Affects flags:

rep
Syntax:

Operand:

round product

pacr aX

shifted p + Ox8000 -> aX

Z M N V C E

* * * * * *

repeat next instruction

rep operand

#short immediate
reg

Appendix A

L R

*

(except aX, p)

Operation: Begins a noninterruptible single word
instruction loop, to be repeated operand + 1
(1 •. 256) times.

Affects flags: No

ret conditional return from subroutine

Syntax: ret [cond]

Operation: If condition then
tos -> pc

Affects flags: No

reti return from interrupt

Syntax: reti

Operation: tos -> pc
1 -> ie

Affects flags: No

66 DM_ASM and DM_ COFFLINK User's Manual

Appendix A,~.l I.,...,., " .• ..,_ ..

mac
Syntax:

Operands:

multiply and accumulate previous product

mac operandi, operand2, aX

y, direct address
y, (rn)

y, reg
(rj)' (ri)

(except aX, p)
(XRAM & YRAM)

Operation:

(rn) , ##long immediate

aX + shifted p -> aX
operandi -> y
operand2 -> x
x * y -> p

Affects flags: Z M N v c E L R

* * * * * * *

moda modify accumulator conditionally

Syntax: [moda] Function , aX [, cond]

Operation: If condition then
aX is modified by 'Function'

Function: shr aX = aX » 1
shl aX = aX « 1
shr4 aX = aX » 4
shl4 aX = aX « 4
ror Rotate aX right through
rol Rotate aX left through
not aX = not (aX)
neg aX = -aX
clr aX = 0 -
copy aX = aX
rnd aX = aX + Ox8000
pacr aX = shifted p + Ox8000
clrr aX = Ox8000

carry
carry

Affects flags: According to function, when condition is true.

modr Modify rn

Syntax: modr (rn)

Operation: rn is modified.

Affects flags: Z M N v c E L R

*

Note: R flag is set if rn register is zero, otherwise cleared.

61

Table of Contents

SECTION 1 - Introduction ... 1

1.1 General Description .. 1

1.2 Document Organization ... 1

1.3 Related Documentation ... 1

SECTION 2 - Architecture Features ... 3

2.1 Technology Features .. 3

SECTION 3 - Programming Model ... 5

3.1 General Description .. 5

3.2 Buses .. 7

3.2.1 Data Buses .. 7

3.2.2 Address Buses ... , ... 7

3.3 Computation Unit ... 7

3.3.1 Multiplier ... : ... 7

3.3.2 Data ALU/Shifter ... 7

3.4 Data Address Arithmetic Unit (DAAU) ... 8

3.4.1 Address Modification ... 8

3.5 Program Control Unit (PCU) ... 10

3.5.1 Program Address Arithmetic Unit (PAAU) ... 10

3.6 Memory Spaces and Organization ... 12

3.6.1 Data Memory ... 12

3.6.2 Program Memory ... 13

3.6.3 Memory Addressing Modes ... 14

3.7 Programming Model and Registers .. 15

3.7.1 Programming Model .. 15

3.7.2 Status Registers .. 17

3.7.3 Stack ... 22

3.7.4 User-Defined Registers .. 22

3.8 Input and Output ... 22

DSP Core Programmer's Manual

SECTION 4 - Instruction Set ... 23

4.1 Introduction .. 23

4.2 Notation and Conventions ... 23

4.2.1 Notation ... 23

4.2.2 Conventions ... 26

4.3 Instruction Set Summary ... 27

4.4 Instruction Set Details .. 29

4.4.1 Arithmetic and Logical Instructions .. 29

4.4.2 Multiply Instructions ... 46

4.4.3 Move Instructions .. 51

4.4.4 Loop Instructions ... 55

4.4.5 Branch/Call Instructions .. 57

4.4.6 Control and Miscellaneous Instructions .. 61

4.5 Instruction Execution ... 64

4.5.1 Pipeline Method .. 64

SECTION 5 - Core Interface .. 65

5.1 Introduction .. 65

5.2 Clock .. 65

5.3 Reset .. 65

5.4 Interrupts .. 66

5.4.1 BPI, INTO, INTI ... 66

ii DSP Core Programmer's Manual

1.1 General Description

SECTION 1
Introduction

Drive Manager's DSP (PINE) is a DSP engine for the Adaptec AlC-44 1 1 Drive Manager Chip
(DMC). It enables low-cost, low-power DSP processing. The core consists of the main blocks of
a Central Processing Unit (CPU), including the ALU, multiplier, accumulators, RAM and ROM
addressing units, and the program control logic.

The DSP consists of three main execution units operating in parallel: the Computation Unit (CU),
the Data Addressing Arithmetic Unit (DAAU) and the Program Control Unit (PCU). It has two
blocks of data RAM for parallel feeding of two inputs to the multiplier. The CU has a 16 x 16 mul
tiplier, 36-bit ALU, and two 36-bit accumulators. The DSPDSP programming model and instruc
tion set are aimed at straight forward generation of efficient and compact code.

1.2 Document Organization

The key features of the DSP core are described in Section 2. The core block diagram and detailed
descriptions of each block are given in Section 3. The DSP instruction set is explained in Section
4. Section 5 describes the interface to the DSP core for ASIC design purposes, including details on
clocking, exception handling.

1.3 Related Documents

DM_DBG User's Manual

DM_ASM and DM_COFFLINK User's Manual

AlC-4411 Drive Manager Chip Data Sheet

AIC-4411 Drive Manager Chip ROM Code User's Guide

DSP Core Programmer's Manual 1

Introduction Section 1

This page intentionally left blank.

2 DSP Core Programmer's Manual

SECTION 2
Architecture Features

2.1 Technology Features

• 16x16 bit 2's complement parallel multiplier with 32-bit product.

• Single cycle multiply/accumulate instructions.

• 36-bit ALU.

• Two 36-bit accumulators.

• On-chip lKx16 bit program ROM operation. (See Adaptec's current ~~AIC-4411 Drive
Manager Chip ROM Code User's Guide" for details.)

- Diagnostic commands

- Code download commands

• 32Kx16 bit maximum addressable off-chip program/data space and 24Kx16 bit maximum
off-chip program-only memory space.

• Areas of the 32K off-chip program/data memory can be programmed in 8K blocks for
access using either the RAM_CS or ROM_CS Chip Select signals.

• 2x256x16 bit on-core data RAM.

• On-chip 2Kx16 bit ROM and on-chip 2Kx16 bit RAM is accessible via program or data
buses on the same address space.

• Data RAMs can be also viewed for programmer as a single continuous RAM.

• 16 level hardware stack.

• (4+2) x16 bit general purpose pointer-registers with 2 dedicated Address Arithmetic Units
for data memory (RAMlROM) indirect addressing, circular buffering, loop counters, and
program memory indirect addressing.

• All general and most special-purpose registers are arranged as a global register set of 31
registers for most data move and ALU instructions.

• Shifting capability:

- Accumulator shift +4, +1, -1,-4

- Accumulator rotate +1, -1

- Product register to accumulator +1,0, -1.

• 2Kx16 bit common program/data RAM.

• 2Kx16 bit common program data ROM.

• Memory mapped I/O space (AOOOh-BFFFh) configurable to access any 8K-block of entire
64K off-chip program space, which can be used for Flash chip programming.

DSP Core Programmer's Manual 3

Architecture Features Section 2

• Automatic saturation mode on overflow while reading content of accumulators.

• Zero overhead looping, REPEAT and BLOCKREPEAT instructions with one nesting
level.

• Memory mapped I/O.

• Wait state support for off-chip memory or I/O.

• STOP mode of operation for stopping the core.

• Interrupts and exceptions:

- 1 reset

- 2 maskable interrupts

- 1 TRAP (software interrupt)

• Divide step support.

• N onnalize step support.

4 DSP Core Programmer's Manual

3.1 General Description

SECTION 3
Programming Model

A high-level block diagram of the DSP architecture is shown in Figure 3-1. The major compo
nents of the DSP core are:

• Data Buses

• Address Buses

• Multiplier

* Input registers

* Output register

* Output shifter

• Data ALU/Shifter

* Output accumulators

* Saturation logic

• Data Address Arithmetic Unit

* DAAU registers

* DAAU config. registers

• Program Control Unit

* Program Add. Arith. Unit

* Program decode controller

* Interrupt controller

• Memories

Stack

- XDB, YDB, PDB

- XAB, YAB, PAB

-x, y
-P

- AO, Al

-SATU

-DAAU

- RO +R3, R4+R5

- CFGI, CFGJ

-PCU

-PAAU

- XRAM, YRAM, (PROM)

• Status Registers - STD, STl, S1'2

• User-Defined Registers (off-core) - EXTD + EXT?

Internal Bus Switches

• Input/Output

DSP Core Programmer's Manual 5

Programming J.Wodel Section 3

YAS

XAB ..
T

r

~,

IV-RAMI
i I
IX-RAMi DAAU

: J i ! I~~ : . I :
: : i : .. ~ ~~ ~~

~~

.. ' " .. ,. XDB .. ,
~~

1 1 1
"' r-

VDB

~~ .. ,

EJ§ .. RU,cr

I MULnpUER I STACK ~ BPI CU PCU .. INTO

.+
.. 1HT1

I i mFJER I 1 I PAS ..
POe

h

i i

Figure 3-1 DSP Core Block Diagram

6 DSP Core Programmer's Manual

Section 3 Programming Model

3.2 Buses

3.2.1 Data Buses

Data is transferred on the following 16-bit buses: a bidirectional X Data Bus (XDB); and two uni
directional buses - the Y Data Bus (YDB) and the Program Data bus (PDB). Data transfer
between the Y Data Memory (YRAM) and the Multiplier (Y register) occurs over the YDB.
Instruction word fetches take place in parallel over POB. The bus structure supports register to
register, register to memory, memory to register and program memory to data memory/register
data movement. It can transfer up to two I6-bit words in the same instruction cycle.

3.2.2 Address Buses

Addresses are specified for the on-chip XRAM and YRAM on two unidirectional buses: the 16 bit
X Address Bus (XAB), and the IO-bit Y Address Bus (YAB). Program memory addresses are
specified on the 16-bit unidirectional Program Address Bus (PAB).

3.3 Computation Unit

3.3.1 Multiplier

The multiplier unit consists of a 16x16 to 32 bit parallel, single- cycle, non-pipelined multiplier,
two 16-bit input registers (X and Y), a 32-bit output register (P), and an output shifter. Together
with the Data ALU, PINE can perform a single-cycle Multiply-Accumulate (MAC) instruction.
The P register is updated only after a multiply instructions and not after a change in the X and/or Y
registers.

The X and Y registers may be read or written by the XDB, and the Y register by the YDB, as 16-
bit operands. The 16-bit Most Significant Portion (MSP) of the P register, PH, may be written by
the XDB as an operand. This enables a single-cycle restore of PH during interrupt service routine.
The complete 32-bit P register can be used only by the ALU and can be moved only to the two
accumulators.

The X and Y registers can be also used as general purpose temporary data registers.

The (P) register is sign extended into 36 bits and then shifted.

3.3.2 Data ALU/Shifter

The Data ALU/Shifter performs all arithmetic, logical and shifting operations on data operands.
The Data ALU/Shifter consists of a 36-bit, parallel, single-cycle, non-pipelined ALU/Shift unit
(ALU/S), two 36-bit accumulator registers (AO and AI), and a saturation unit (SATU).

DSP Core Programmer's ManuaI 7

Programming Model Section 3

The Data ALU/Shifter receives one operand from Ax (x=O,I), and another operand from either the
output shifter of the multiplier, the XDB (through the bus alignment logic), or from Ax. The
source operands may be 16 or 36 bits. Operations between the two accumulators are also possible.
ALU/S results are stored in one of the accumulators. The source and destination accumulator of
an instruction is always the same.

The ALU/S can perform positive or negative accumulate, add, subtract, compare, shift, logical,
and several other operations, most of them in one instruction cycle. It uses a two's complement
arithmetic.

Unless otherwise specified, in all operations between the 16-bit operand and Ax (36 bit), the 16-bit
operand will be regarded as the LSP of a 36-bit operand with a sign extension for arithmetic oper
ations and a zero extension for logic operation. The ADDH, SUBH, ADDL and SUBL instruc
tions are used when this convention is not adequate in arithmetic operation (refer to these
instructions in Section 4).

Registers AxH and AxL can also be used as general-purpose temporary data registers.

3.4 Data Address Arithmetic Unit (DAAU)

8

The DAAU performs all address storage and effective address calculations necessary to address
data operands in data and program memories. In addition, it supports loop counter operations in
conjunction with the MODR instruction (see Chapter 4 on Instruction Set) and the R flag (see to
Paragraph 3.7.2 on Status Registers). This unit operates in parallel with other core resources to
minimize address generation overhead. The DAAU can implement two types of arithmetic: linear
and modulo. The DAAU contains six 16-bit address registers (RO-R3 and R4-R5) for indirect
addressing, and two 16-bit configuration registers (CFGI and CFGJ) for modulo and increment!
decrement step control. The registers are divided into two groups for simultaneous addressing
over XAB and YAB (or PAB): RO-R3 with CFGI; and R4-R5 with CFGJ. Registers from both
groups can be used fer beth XA..B and YAB (or PAB) for instructions which use only one address
register. In addition, in these instructions the XRAM and YRAM can be viewed as a single contin
uous data memory space.

All DAAU registers may be read or written by the XDB as 16-bit operands, thus serving as gen
eral-purpose registers.

3.4.1 Address Modification

The DAAU can generate two 16-bit addresses every instruction cycle which can be post-modified
--o-y-two-modtfiers:ltnear (step-ta-mi-mudulu-mudifier:--The-addressmodifiers-allow-the-creation-of

data structures in memory for circular buffers, delay lines, FIFOs, software stacks, etc. They can
also be used when the Rn registers are used as loop counters in conjunction with the MODR
instruction (see Section 4 on Instruction Set) and the R flag of STO (see Section 3.7.2 on Status
Registers). Address modification is performed using 16-bit (modulo 65,536) two's complement
linear arithmetic. The range of values of the registers may be considered as signed (from -32,768
to +32,767) or unsigned (from 0 to +65,536).

DSP Core Programmer's Manual

Section 3 Programming Model

3.4.1.1 Linear (Step) Modifier

During one instruction cycle, one or two (from different groups) of the address register, Rn, can be
post increment/decrement by 1 or by a 2's complement 7-bit step (from -64 to +63). The selection
of linear modifier type (one out of four) is included in the relevant instructions (see Section 4.2.2
on Conventions for Instruction set). Step values STEPI and STEPJ are stored as the 7 LSB of the
configuration register CFGI and CFGJ respectively.

CFGI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

: : : M :0 D: I : : ~ T ~ P > :
CFGJ

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

: : : M :0 n; J : : ~ T ~ P > :
Figure 3-2 Configuration Registers

3.4.1.2 Modulo Modifier

The two modulo arithmetic units can update one or two address registers from different groups
during one instruction cycle. They are capable of performing modulo calculations of up to 2**9.
Each register can be set independently to be affected or unaffected by the modulo calculation using
the six Mn status bits in the ST2 register. Modulo values MODI and MOD] are stored in 9 MSBs
of configuration registers CFGI and CFGJ respectively.

For proper modulo calculation, the following constraints must be satisfied (M = modulo factor; q =
STEPx, +1 or -1):

1. The lower boundary (base address) must have zeros in at least the k LSBs, where k is the mini
mal integer that satisfies 2**k > M-Iql

2 MOD x (x denotes lor J) must be loaded with M-Iql.

3 M must be an integer multiple of q (this is always true for q=+I-l).

Note: Iql denotes the absolute value of q.

The modulo modifier operation, which is a post-modification of the Rn register, is defined as follows:

Rn <- 0 in k LSB; if Rn is equal to MODx in k LSB and q > 0,

Rn <- MODx in k LSB; ifRn is equal to ° in k LSB and q < 0,

Rn <- Rn + q; Otherwise

Note: RO-R3 can only work with STEPI and MODI, while R4-R5 can work only with STEPJ and
MODJ.

DSP Core Programmer's Manual 9

Programming Model Section 3

Examples:

1. M=7 with STEPx=1 (or +1 selected in instruction), MODx=7-1=6, Rn=10H (hex). The
sequence ofRn values will be: 10,11,12,13,14,15,16,10,11, ...

2 M=8 with STEPx=2, MODx=8-2=6, Rn=10H. The sequence ofRn values will be:
10,12,14,16,1 0,12, ...

3 M=9 with STEPx=-3, MODx=9-1-31=6, Rn=16H. The sequence of Rn values will be:
16,13,10,16,13, ...

3.5 Program Control Unit (PCU)

10

The Program Control Unit (PCU) performs instruction fetch, instruction decoding, exception han
dling, and wait state support. In addition, it controls the internal PROM protection (see Section
3.6.2).

3.5.1 Program Address Arithmetic Unit (PAAU)

The Program Address Arithmetic Unit (PAAU) generates the next address to the program memory
and controls hardware loops. It contains the RepeatIBlock-Repeat unit, and two 16-bit directly
accessible registers: the Program Counter (PC) and the Loop Counter (LC) of the block-repeat
unit.

The PAAU selects and/or calculates the next address from several possible sources: the incre
mented PC in sequential program flow; PROM address in branch or call operations; short PC-rela
tive address of 7-bit in relative branch operations; start address of hardware loop; interrupts vector
in interrupt handling; or the Top of Stack (TOS) upon returning from subroutines and interrupts. It
also writes the PC to the TOS in subroutines and interrupts.

The PC always contains the address of the next iristruction.

3.5.1.1 Repeat and Block Repeat Unit

The RepeatIBlock-Repeat unit performs the hardware-loop calculations and control, with no over
head other than the one-time execution of set-up instructions REP and BKREP. In block-repeat
operation, it stores the first and the last addresses of a loop and counts the number of loop repeti
tions. It consists of two 16-bit dedicated registers for start and end addresses of the block repeat,
and two 8-bit repeat and block-repeat counters (1 to 256 repetitions). The start and end address
registers as well as the 8-bit repeat counter cannot be accessed as registers by the programmer.
The 8-bit block-repeat counter is the 8 LSB of the LC register, which is one of the global registers.
The LC register can be used as an index (e.g. address to an array) inside the block-repeat loop or

--fOr--dete-iffiTnliigthe-valueortlie-blocK~repeafcounterw1ieii-ajllmpoufoftneoloc}(.:.repearloop -
occurs.

Single-level nesting of a single-instruction repeat in the block-repeat instruction is supported.
Interrupts are disabled only during a single-instruction repeat, and when the instruction is being
repeated. For details of specific limitations, refer to REP and BKREP instructions in Section 4 on
the Instruction Set.

DSP Core Programmer's Manual

Section 3 Programming Model

The number of repetitions can be a fixed value in the instruction code or a value contained in one
of the processor's 16-bit registers. This supports calculating the number of repetitions in run-time.

For a clean jump (break) from a block-repeat, a special status bit, In-Loop (LP), is available in
ST2. It is set when a block-repeat is executed and reset on normal completion of the block-repeat
loop. The user must reset it when a jump out from the block-repeat loop occurs. See also Section
3.7.2 on Status Registers.

If the LP bit is cleared in the block repeat loop and not by one of the two last instructions of the
loop, the processor is no longer in the loop state. Therefore, there will be no jumps to the fITst
address of the loop and the counter will not be decremented.

If the LP bit is cleared by one of the last two instructions of the loop, its effect will take place only
in the next loop. (Unless the only instruction in the block repeat loop clears the LP and the LC is 2
or more, then the loop will be performed 3 times.)

The LC register may also serve as a general-purpose register for temporary storage.

DSP Core Programmer's Manual 11

Programming Model Section 3

3.6 Memory Spaces and Organization

12

Two independent memory spaces are available: the data space (XRAM and YRAM) and the pro
gram space (PROM). Each is 64K words. The addresses from 1000h to 7FFFh access the same
memory from either the program or data buses.

3.6.1 Data Memory

The data space is divided into an X data space for the XRAM (from zero to 64511 <63K-l», and
a Y data space for the YRAM (from -1 to -1024). The range of the data space can also be consid
ered as unsigned, making the XRAM and YROM spaces continuous. The XRAM space has an
internal space (on-core data RAMlROM) of lK (from 0 to 1023), and an external space of 62K.
The YRAM space is internal only. See also Figure 3-3. The above data space partition allows
modular expansion of the on-core XRAM and YRAM, and at the same time enables looking at the
two RAMs as single continuous data RAM.

The on-core XRAM and YRAM sizes are at least 2x144x16 bits and can be expanded in 2x64x16
bit blocks from 2x128x16 bits (Le. the next size is 2x192x16 bits, the one after that is 2x256x16
bits, etc.) up to 2xlKx16 bits. The XRAM and YRAM can also be expanded by data ROM in
64x16 bit blocks up to a total (RAM + ROM) of 2xlKx16 bits. The X data memory can be
expanded off-core (with no additional wait state cycles) up to the YRAM boundary.

On-chip DMC peripherals are memory mapped I/O into the data space at address Exxxh. Wait
state generation can be supported for off-chip memory. (See the current AIC-44XX Drive Manager
Chip Data Sheet for programming details.)

+- - - - - --
OFFFFh

YRAM (On-Chip)
OFFOOh

Mem Mapped 110 (On-Chip)
08000h

Common ProgIData XRAM

(Off-Chip) 02000h

ProgIData ROM (On-Chip)
01800h

ProglData RAM (On-Chip)
OlOOOh .

-1-- -
OOlOOh

XRAM (On-Chip)

t _______ OOOOOh

_____ ..1

Figure 3-3 Data Memory Map

DSP Core Programmer's Manual

Section 3 Programming Model

3.6.2 Program Memory

The program space starts at address OOOIOH. Addresses OOOOH-OOOIH are used for Reset; and
addresses OOOSH-OOOFH are used for TRAP, BPI (Breakpoint interrupt), and two maskable inter
rupts respectively. Each interrupt address has been separated by two locations so that branch
instructions can be accommodated in those locations if desired. Addresses 0002H-0007H are
reserved (see Figure 3-4.).

Theintemal PROM is lK words and can be extended in lK-word blocks up to 32K words. The
program space may be expanded off-chip up to 64K words.

The program memory addresses are generated by the PCU

Prog Code Area (Off-Chip)

Prog/Data (Off-Chip)

Prog/Data ROM (On-Chip)

Prog/Data RAM (On-Chip)

.
Boot ROM Code (On-Chip)

Interrupt 1

Interrupt 0

TRAP

BPI

Reserved

Reset

FFFFh

8oo0h
7FFFh

2000h

lSOOh

lOOOh

0400h

OOlOh

OOOEh

OOOCh

OOOAh

0OO8h

0OO2h
OOOOh

Figure 3-4 Program Memory Map

DSP Core Programmer's Manual

Off-Chip
Program
Memory

On-Chip
Program
Memory

13

Programming Model Section 3

14

3.6.3 Memory Addressing Modes

There are two data addressing modes:

1. Direct Addressing Mode: Eight bits from instruction as LSB plus eight bits from status register
STI (see Section 3.7.2 on Status Registers) as MSB compose the direct address to the Data
memory. The pages are thus of 256 words each. For example, page 0 is from 0 to 255 in
XRAM, page 1 is from 256 to 511 in XRAM, and page 255 is from -256 to -1 in YRAM.

2 Indirect Addressing Mode: The Rn registers of the DAAU are used for indirect addressing to
the XRAM and YRAM.

Addressing program memory is accomplished by:

1. Indirect Addressing Mode: The Rn registers of the DAAU and the accumulator can be used for
addressing the PROM in specific instructions.

2 Special Relative Addressing Mode: Special Branch-Relative (BRR) and Call-Relative
(CALLR) instructions support jumping relative to the PC (from PC-63 to PC+64).

DSP Core Programmer's Manual

Section 3 Programming Model

3.7 Programming Model and Registers

All of DSP core's visible registers are arranged as a global register set of 31 registers, which can be
accessed by most move and ALU instructions. The registers are listed below, organized according
to units' partition. Additional details on each register can be found in the description of each unit
and in the following paragraphs.

3.7.1 Programming Model

CU REGISTERS:
15 0

X I I
15 0

Y I I
31 16 15 0

P I PH I I
35 32 31 16 15 0

AO I NE. I ACH I NJL I
35 32 31 16 15 0

A1 I A1E I A1H I A1L I

DAAU REGISTERS:

15 7 6 0 15 7 6 0

CFGI MODI STEPI CFGJ MOOJ STEPJ I
15 0 15 0

RO (R4 I
15 0 15 0

R1 I RS 1
15 0

R2 I
15 0

R3 I

DSP Core Programmer's Manual 15

Programming Model Section 3

Programming Model (continued)

PCU REGISTERS:

15 o
PC

15 o
LC

GENERAL REGISTERS:

15 0
sml ~ __________ ~I

15 0

ST1 1.-1 ---_____ -.11
15 0

ST21 ~ _________ ~I
15 0

Tos*1 '--_______ ~I
* Up to 16X16-bit stack levels

USER-DEFINED REGISTERS (Optional Off-Core):

15 o
EXTO

15
EXT1 !

o

------.-----------~
15 o

EXT2 :
l._

15 o
EXT3 c=-___ . _______ .J

EXT4
15 0 .. --------------.

i : .. _------------,
EXT5 f'15

O

-i
\,-------------------~

15 0
EXT6 f------------~-------------------:

t----______________________________ J

EXT7 r~-!?------------------------------~-:
I ,

.... -----------------------------------~

16 DSP Core Programmer's Manual

Section 3 Programming Model

3.7.2 Status Registers

Three status registers are available for flags, status bits, control bits, user 110 bits, and paging bits
for direct addressing. The contents of each register and their field definitions are described below.

3.7.2.1 Status Registers Format

STO

15 14 13 12 11 10 9

Accumulator 0
Extension Bits

Zero

Minus

8

Normalized

7 6

Overflow

Carry

Extension

5 4 3 2 1 o

Interrupt
Mask

Interrupt
Enable

Saturation
Mode

Limit

STI

15 14 13 12 11 10 9 8

Accumulator 1
Extension Bits

Shift
P Register

DSP Core Programmer's Manual

Reserved

7 6 5

Rn is Zero

4 3 2 1

Data Memory Space
Page

o

17

Programming Model

18

ST2

15 14 13 12 11 10 9 8

Interrupt
Pending

IUSERl

Stop
Mode

Inloop

IUSERO

OUSERl

OUSERO

7

Notations: * Written as zero, read as don't care
o Written as don't care, read as 0
- Not
u Or
nAnd
Ee Exclusive-Or

Section 3

6 5 4 3 2 1 o

Modulo Enable

DSP Core Programmer's Manual

Section 3 Programming Model

3.7.2.2 Status Register Field Definition

Most of the fields can be modified by writing to one of the status registers.

The flags (Z, M, N, V, C, E, L) indicate the result of the last ALU operation. At most of the cases
the ALU output is latched at the destination accumulator, i.e. at most of the cases the flags indi
cates the destination accumulator status.

If an instruction has a different effect than those listed under the status register fields, refer to the
specific instruction in Section 4.

STO Register

Zero (Z) - Bit 11
Set if the ALU output equals zero; cleared otherwise.

The zero flag is cleared during processor reset.
The zero flag can be modified by writing to STO.

Minus (M) - Bit 10
Set if ALU output is a negative number; cleared otherwise. The minus flag is the same as the MSB
of the ALU output (bit 35).

The minus flag is cleared during processor reset.
The minus flag can be modified by writing to STO.

Normalized (N) - Bit 9
Set if the 32-bit of the accumulator which was the destination at the last instruction is normalized;
cleared otherwise, i.e. set if Z u «bit 31 Ef) bit 30) n -E).

The normalized flag is cleared during processor reset.
The normalized flag can be modified by writing to STO.

Overflow (V) - Bit 8
Set if an arithmetic overflow (36-bit overflow) occurs after an arithmetic operation; cleared other
wise. It indicates that the result of an operation cannot be represented in a 36 bits.

The overflow flag is cleared during processor reset.
The overflow flag can be modified by writing to STD.

Carry (C) - Bit 7
Set if the result of an add generates a carry, or if the result of a subtract generates a borrow; cleared
otherwise. It is also affected by the shift and rotate operations in the MODA instruction.

The carry flag is cleared during processor reset.
The carry flag can be modified by writing to STD.

DSP Core Programmer's Manual 19

Programming Model Section 3

20

Extension (E) - Bit 6
Set if bits 35-31 of the ALU output, are not identical; cleared otherwise. It indicates that the result
of an operation cannot be represented in a 32-bit accumulator.

The extension flag is cleared during processor reset.
The extension flag can be modified by writing to STO.

Limit (L) - Bit 5
Set if the overflow flag was set (overflow latch) or a limitation ·occurred when performing a move
instruction (MOV) from one of the accumulators (AxH and/or AxL) through the data bus. Other
wise it is not affected.

The limit flag is cleared during processor reset.
The limit flag can be modified by writing to STO.

Rn register is zero (R) - Bit 4
This flag is affected by the MODR and NORM instructions. The R flag is set if the result of the
Rn.modification operation (Rn ; Rn+l; Rn-l; Rn+S) is zero; cleared otherwise.

Note: If the Modulo is enabled for the specific Rn register, Rn reaches the buffer boundary, and
the Modulo mechanism sets a OOOOH value in the register - the R flag is cleared.

The R flag status is latched until one of the above instructions is used.

The R flag is cleared during processor reset.
The R flag can be modified by writing to STO.

Interrupt Mask (IMO, IMl) - Bits 2, 3
1MO - Interrupt mask for INTO
1Ml - Interrupt mask for INTI
Clear - disable the specific interrupt
Set - enable the specific interrupt

The interrupt mask bits are cleared during processor reset.
The interrupt mask bits can be modified by writing to STO.

Interrupt Enable (IE) - Bit 1
Clear - disable all maskable interrupts
Set - enable all maskable interrupts

The interrupt enable bit is cleared during processor reset.
.. Thejnterruptenable-bitcan.bemodified.bJinstructionsEINT (enable interrupts),DINT (disable

interrupts), or by writing to STO.

Saturation Mode (SAT) - Bit 0
Clear - enable the saturation when transferring the contents of the accumulator onto the data bus
Set - disable the saturation mode

The saturation enable bit is cleared during processor reset.
The saturation enable bit can be modified by writing to STO.

DSP Core Programmer's Manual

Section 3 Programming Model

STI Register

Shift P register (SP) • Bits 10, 11
The shift P register bits control the scaling shifter at the P register output.
SP bits 11, 10:
SP = 00 no shift
SP = 01 shift right
SP = 10 shift left
SP = 11 Reserved

The SP bits are cleared during processor reset.
The SP bits can be modified by writing to STI.

RAM Page (PAGE) - Bits 0, 1, 2, 3, 4, 5, 6, 7
Used for direct address. Refer to Section 3.6.3 on Memory Addressing Modes.

The PAGE bits can be modified by the LPG instruction or by writing to STI.

ST2 Register

INT PENDING (IPO, IPl) • Bits 14, 15
IPO - Interrupt pending for INTO
IPI - Interrupt pending for INTI
The interrupt pending bit is set when the corresponding interrupt is active. The bit reflects the
interrupt level regardless of the mask bits.

The IPx bits are read only.

STOP (STP) • Bit 13
Set - stop processing mode (Low-power standby)
Clear - normal operation

The STOP bit is cleared during processor reset.
The STOP bit can be modified by writing to ST2.

INLOOP (LP) • Bit 12
Set if a block repeat is executed; cleared by the user or at the end of the block-repeat.

When transferring data into ST2, the LP bit will be influenced as follows:

"0" The LP bit is unaffected.

"1" The LP bit is cleared.

This bit can be used to break from a block repeat.

The inloop bit is cleared during processor reset.
The inloop bit can be cleared by writing to ST2.

In addition, refer to Section 3.5.1.1 on Repeat and Block-Repeat Unit.

DSP Core Programmer's Manual 21

Programming Model Section 3

IUSERO,IUSERI (IUO, lUI) • Bits 10, 11
The IUSERx bits are read only and reflect the logic state of the corresponding user input pins.

QUSERO, QUSERI (QUO, QUI) • Bits 8, 9
The OUSERx bits can be modified by writing to ST2 and define the logic state of the correspond
ing user output pins.

The OUSERx bits are cleared during processor reset.
The OUSERx bits can be modified by writing to ST2.

Modulo set (MO, Ml, M2, M3, M4, M5) - Bits 0, 1, 2, 3, 4, 5
Cleared Mn bit - when using the corresponding Rn register, the Rn register will be modified as
specified by the instruction regardless of the modulo option.
Set Mn bit - when using the corresponding Rn register, the Rn register will be modified as speci
fied by the instruction using the suitable modulo.

The Mn bits are cleared during processor reset.
The Mn bits can be modified by writing to ST2.

3.7.3 Stack

A hardware stack is connected to the XDB and its top (TOS), and can be accessed as a Last-In
First-Out (LIFO) data register file. The stack is automatically loaded with the PC whenever a sub
routine call or an interrupt occurs and popped back on return from subroutine or interrupt, respec
tively.

3.7.4 User-Defined Registers

The core supports 8 user-definable registers, which can be located on the DMC. This feature
enables future expansion of the core. These registers appear in the data register fields of all rele
vant instructions. With these registers, external computation units can be loaded with data and
read at the end of the computation directly into internal registers in single cycle.

3.8 Input and Output

22

Memory mapped I/O is used.

Two special input bits and two output bits are available as sta.tusbits in status register S't2.Condi
tional instructions can be executed according to the two input bits.

DSP Core Programmer's Manual

4.1 Introduction

SECTION 4
Instruction Set

This chapter provides an overview and detailed description of the DSP instruction set. The chapter
also gives sufficient information to understand the nature of DSP programming and the capability
of the instruction set itself.

4.2 Notation and Conventions

4.2.1 Notation

The following notations are used in this chapter:

Registers:

rN = Address registers: rO, r1, r2, r3, r4, r5
rI = Address registers: rO, r1, r2, r3
rJ = Address registers: r4, r5

aX =aOoral
aXl = Accumulator-low (LSP), x = 0, 1
aXh = Accumulator-high (MSP), x = 0, 1
aXe = Accumulator extension, x = 0, 1
ac = aO, al, aoh, a1h, aOI, all

cfgX = Configuration registers of DAAU (MODI or MODJ, STEPI or STEPJ), x = I, J

tos = Top of stack
pc = Program counter
Ic = Loop counter
extX = External registers, X = 0, 1, ... 7

reg = aO, aI, aOh, alh, aOI, all, rN, x, y, p or ph, pc, lc, tos, stO, stl, st2, cfgI, cfgJ, extX

DSP Core Programmer's Manual 23

Instruction Set Section 4

24

Address Operands:

On-chip data RAMlROM
Off-chip data RAMlROM:
Direct address = Paged direct address of 8 bits (see Chapter 3, Section 3.6.3 on addressing modes)

Program ROM:
Address
$Offset address

= Unsigned 16 bits (0 to 65535)
= 2's complement 7 bits (-64 to 63

offset range: -63 to 64)

Immediate Operands:

= Unsigned 8 bits (0 to 255) #Short immediate
#Signed Short immediate
##Long immediate

= 2's complement 8 bits (-128 to 127)
= 2's complement 16 bits (-32,768 to +32,767)

Assembler syntax: decimal
Ob_ , OB_ binary
Ox_ , OX_ hexadecimal

When using hexadecimal representation, if the number starts with a lettler (A-F), a leading zero
must be inserted.

cond - condition field:

true Always
eq Equal to zero
neq Not equal to zero
gt Greater than zero
ge Greater or equal to zero
It Less than zero
Ie Less or equal to zero
nn Normalize flag is cleared
v Overflow flag is set
c Carry flag is set
e Extension flag is set
1 . Limitilagjs-seL
nr R flag is cleared
niuO IUSERO input user pin 0 is cleared
iuO IUSERO input user pin 0 is set
iu1 IUSER1 input user pin 1 is set

DSP Core Programmer's Manual

Section 4

Other:

(x)= The contents of x

{ } = Optional field at the instruction

[x] = Specific notes

-> = Is assigned to

> > = Shift right

« = Shift left

= Not

=Or

= And

Flags Notation:

The effect of each instruction on the flags is described by the following notation:

* The flag is affected by the execution of the instruction.
The flag is not affected by the instruction.

1 or 0 The flag is unconditionally set or cleared by the instruction.

stO bits
Flags

11
Z

10
M

9
N

8
V

7
C

6
E

5
L

4
R

For flag definitions, refer to Section 3.7.2.2 on Status Register Field Definitions.

DSP Core Programmer's Manual

Instruction Set

25

Instruction Set Section 4

26

4.2.2 Conventions

1. The arithmetic operations are performed in 2's complement.

2 When rN register is used by an instruction, the contents of rN register are post-modified as fol
lows:

.Options controlled by instruction:
rN, rN+l, rN-l, rN+step

Options controlled by configuration registers CFGx:
Step size: STEPI, STEPJ - 2's complement 7 bits (-64 to 63)
Modulo size: MODI, MODJ - unsigned 9 bits (1 to 512)
Options controlled by st2:
For each rN register it should be defined if MODULO is used or not.
For using MODI or MODJ the relative Mn bit must be set.

For more details on the modulo arithmetic unit refer to Section 3.4.1.2 on Modulo Modifier.

Assembler syntax: (rN) , (rN)+, (rN)- , (rN)+S

3 ph (the MSP of the p register) can be write only. The 32-bit p reg is updated after a multiply
operation and can be read only by transferring it to the ALU, that is, it can be moved into aX or
be an operand for arithmetic and logic operations. When transferring it into the ALU, it is sign
extended to 36 bits. This enables the user to store and restore the p register.

4 The p register is used as a source operand for different instructions as follows: as one of the
reg registers; at moda instruction - PACR function; at multiply instructions where the p register
is added or subtracted from one of the accumulators. When using the p register as a source
operand, it always means using the 'shifted p register'. Shifted p register means that the p reg
ister is sign-extended into 36 bit and then shifted as defined at the SP field, status register st1.
In shift right the sign is extended, whereas in shift left a zero is appended into the LSB. The
contents of the p register remain unchanged.

5 All move instructions using the accumulator (aX) as a destination are sign extended. All
instructions which use the accumulator-low (aXI) as a destination, will clear the accumulator
high and the accumulator-extension. Therefore, they are sign extension suppressed.

All instructions using the accumulator-high (aXh) as a destination, wili clear the accumuiator
low and are sign extended. An exception is mov direct address,aXh, { eu}, when moving data
into accumulator-high can be controlled with sign extension or with sign extension suppressed
(the accumulator-extension aXe is unaffected).

6 In all arithmetic operations between 16-bit registers and aX (36 bits), the 16-bit register will be
regarded as the 16 low-order bits of a 36-bit operand with a sign extension in the Most-Order
Bits.

7 It is recommended that the flags be used immediately after the ALU operation or moved into
AC operations (see restrictions at l1.b). Otherwise, very careful programming is required
(some fiagsmay-be-changed-in--themeantime);

8 The condition field is an optional field; when the condition is missing then cond = true.

9 When transferring data into the hardware stack, the data is transferred to the tos, and the stack
is pushed down one level. When transferring data out of the hardware stack, the data is copied
to the destinatio~, and the stack is popped one level.

10 ALU instruction is one of the following instructions: add, sub, or, and, xor, cmp, addl, subl,
addh, subh, moda, norm, mac, msu, sqra, sqrs.

DSP Core Programmer's Manual

Section 4 Instruction Set

11 General Restrictions:

A Arithmetic and logical operations must not be performed with the same accumulator as the
source (soperand) and the destination (doperand). Example: add aO,aO.

B stO cannot be used as a source operand after one of the following instructions:
1. An ALU instruction
2. An instruction where stO/aO/aOllaOh is the destination operand

12 Following the mov operand, pc and movp soperand, pc, a nop instruction must be placed. After
a move instruction to the pc, the nop instruction is executed. Only then is the pc updated
according to the move instruction, e.g. performing a jump instruction. When an interrupt is
accepted after a move to pc instruction (jump instruction), the tos contains the destination of the
jump address.

4.3 Instruction Set Summary

The following is a summary of the Pine instruction set organized by instruction group. Page num
bers for details of each instruction are shown at the right.

ARITHMETIC & LOGICAL INSTRUCTIONS

add Add (p.29)
sub Subtract (p.33)
or OR (p.34)
and AND (p.35)
xor Exclusive - OR (p.37)
cmp Compare (p.38)
addl Add to Low Accumulator (p.38)
subl Subtract from Low Accumulator (p.39)
addh Add to High Accumulator (p.39)
subh Subtract from High Accumulator (p.40)
moda Modify Accumulator Conditionally (p.41)
norm Normalize (p.44)
divs Division Step (p.45)

MULTIPLY INSTRUCTIONS

mpy Multiply (p.46)
mac Multiply and Accumulate Previous Product (p.47)
msu Multiply and Subtract Previous Product (p.48)
mpys Multiply Signed Short Immediate (p.48)
sqr Square (p.49)
sqra Square and Accumulate Previous Product (p.49)
sqrs Square and Subtract Previous Product (p.50)

DSP Core Programmer's Manual 27

Instruction Set

28

MOVE INSTRUCTIONS

mov
movp

Move Data
Move Program Memory

LOOP INSTRUCTIONS

rep
bkrep

Repeat Next Instruction
Block Repeat

BRANCH I CALL INSTRUCTIONS

br Conditional Branch
brr Relative Conditional Branch
call Conditional Call Subroutine
callr Relative Conditional Call Subroutine
calla Call Subroutine at Location Specified

by the Accumulator
ret Return Conditionally
reti Return from Interrupt

CONTROL & MISCELLANEOUS INSTRUCTIONS

nop No Operation
modr ModifyrN
eint Enable Interrupt
dint Disable Interrupt
trap Software Interrupt
lpg Load the Page Bits

(p.51)
(p.54)

(p.55)
(p.56)

(p.57)
(p.58)
(p.58)
(p.59)
(p.59)

(p.60)
(p.60)

(p.61)
(p. ?1)
(p.62)
(p.62)
(p.63)
(p.63)

Section 4

DSP Core Programmer's Manual

Section 4 Instruction Set

4.4 Instruction Set Details

This section provides detailed descriptions of each instruction. It includes instruction syntax,
description of operation, operand details, effect on flags, number of execution cycles, and other
relevant notes and exceptions.

The instructions are organized according to the groups listed in the summary in Section 4.3.

4.4.1 Arithmetic and Logical Instructions

add Add

add operand, aX

Operation: aX +

Source
operand 1

operand

Source
operand 2

-> aX

Destination
operand

The instruction has two source operands which are added at the ALU, the
ALU output is latched at the destination operand.

The flags are affected according to the ALU output, in this instruction
it reflects the status of the destination accumulator.

Affects flags: Z M N V C E L R

* * * * * * *
Cycles: 1

2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

'aX' means one of the accumulators aD or al. This accumulator is both
source operand and destination operand.

The 'Operand' field is the other source operand, added at this instruc
tion and can be one of the following options -

operand: reg

DSP Core Programmer's Manual

#short immediate
##long immediate
(rN)
direct address

29

Instruction Set Section 4

30

reg - is one of the 31 Pine registers : aO, a1, aOh, a1h, aOI, all, rN,
x, y, p, pc, lc, tos, stO, st1, st2, cfgI, cfgJ, extX. The contents of
the source register is added to the accumulator. The operation result,
the ALU output, is placed at the accumulator.

Example:

add r1,aO

Before execution After execution

aO 1001H 1008H

r1 7H 7H

Short Immediate - the 8-bit (positive number) is one of the source oper
ands. The 8-bit value is added, right-justified, to the accumulator. The
operation result, the ALU output, is placed at the accumulator.

Example:

add #255,aO

Before execution After execution

aO 1001 1256

Long Immediate - the 16-bit value is one of the source operands. The 16-
bit value is added, right-justified and sign-extended, to the accumula
tor. The operation result, the ALU output, is placed at the accumulator.

E.g.

add ##OFFFFH,a1

Before execution After execution

a1 20H 1FH

DSP Core Programmer's ManuaI

Section 4 Instruction Set

(rN) - is indirect addressing.

Source operand Data location

rN -71 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ~~ ______ ~
rN - 16 bit

One of the DAAU registers (rO, r1, r2, r3, r4, rS) points to one of the
64k data words. The data location contents, pointed by the register, is
the source operand - added to the accumulator. The operation result, the
ALU output, is placed at the accumulator.

The rN register is modified after the instruction is executed as follows:

no update
rN is autoincrement
rN is autodecrement

(rN)
(rN)+
(rN)
(rN)+S rN is autoincrement/autodecrement by the offset S

Each of these modifications can use the MODULO option.

For further details regarding the postmodification, see section 4.2.2
(2) •

Example:

add (r1)+S,aO

Before execution

aO

r1

Data location 7H

CFJI meaning S=2

st2 meaning no

modulo option for rl

DSP Core Programmer's Manual

1001H

7H

100H

2H

XXXOH

After execution

1101H

9H

100H

2H

XXXOH

31

Instruction Set Section 4

32

Direct Address -

The data location, one of the 64k data words, is one of the source oper
ands. The 16-bit data location is composed of the page number at stl reg
ister and the 'direct address' field - the offset at the page. The data
location contents is added to the accumulator. The operation result, the
ALU output, is placed at the accumulator.

8 LSBs of stl
Page number

'direct address' field
Offset at Page Data location

I I I I I I I I I IIIIIIIIHL-.-_-J
8 bit 8 bit

Example:

add 2,al

Before execution After execution

al OFFFFFFFFFH OH

stl meaning page 1 OF301H 301H

Data location 102H I IH IH

DSP Core Programmer's Manual

Section 4 Instruction Set

sub Subtract

sub operand, aX

Operation: aX operand -> aX

operand: reg

Affects flags: Z

*

Cycles: 1
2

Words: 1
2

DSP Core Programmer's Manual

M

*

(rN)
direct address
#short immediate
##long immediate

N v C E

* * * *

when the operand is

when the operand is

L R

*

##long immediate

##long immediate

33

Instruction Set Section 4

or OR

or operand, aX

Operation: If operand is aX or p
aX[bits 35-0J OR operand -> aX[bits 35-0J

If operand is reg, (rN) ,
short immediate, long immediate

aX[bits 15-0J OR operand -> aX[bits 15-0]
aX[bits 35-16] -> aX[bits 35-16]

Clarification: If the operand is one of the accumula
tors or the p register, it is ORed with the destina
tion accumulator.

If the operand is a 16-bit register or an immediate
value, the operand is zero-extended to form a 36 bits
operand, then ORed with the accumulator. Therefore,
the upper bits of the accumulator are unaffected by
this instruction.

operand: reg
(rN)
direct address
#short immediate
##long immediate

Affects flags: Z

*
M

*
N v
*

C E L R

*

Cycles: 1
2 when the operand is ##long immediate

~AJords : 1
2 when the operand is ##long immediate

34 DSP Core Programmer's Manual

Section 4 Instruction Set

and AND

and operand, aX

Operation: If operand is aX or P
aX[bits 35-0] AND operand -> aX[bits 35-0]

If operand is short immediate
aX[bits 7-0] AND operand -> aX[bits 7-0]
aX [bi ts 15-8] -> aX [bi ts 15-8] [1]
o -> aX[bits 35-16]

If operand is reg, (rN) , long immediate
aX[bits 15-0] AND operand -> aX[bits 15-0]
o -> aX[bits 35-16]

Clarification: If the operand is one of the accumulators or
the p register it is ANDed with the destination accumulator.

If the operand is short immediate, the operand is zero
extended to form a 36-bit operand, then ANDed with the desti
nation accumulator. Bits 15-8 are unaffected; other bits of
the accumulator are cleared. [1]

If the operand is a 16-bit register or a long immediate
value, the operand is zero-extended to form a 36-bit oper
and, then ANDed with the accumulator. Therefore, the upper
bits of the accumulator are cleared by this instruction.

operand: reg

Affects

Cycles:

(rN)
direct address
#short immediate
##long immediate

flags: Z M N V C E L R

* * * *

Z flag is set if all the bits at the ALU output are zeroed,
otherwise cleared. Note: when the operand is short immedi
ate, ALU output is bit[35:8] = 0, bits[7:0] = aX[7:0] AND
operand.

1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

DSP Core Programmer's Manual 35

Instruction Set Section 4

36

and AND (continued)

[lJ The instruction and #short immediate, aX can be used for clearing
some of the low-order bits at a 16-bit destination.

For example: mov ram, aX
and #short immediate, aX
mov aX, ram

Using the and instruction, bits 15-8 are unaffected, therefore the
high-order bits at the destination do not change.

In addition, this instruction can be used for BIT TEST, test one of
the low-order bits of a destination.

For example: mov ram, aX
and #short immediate, aX
br address,eq or br address,neq (check

the zero flag)

DSP Core Programmer's Manual

Section 4 Instruction Set

xor Exclusive - OR

xor operand, aX

Operation: If operand is aX or p
aX[bits 35-0] XOR operand -> aX[bits 35-0]

If operand is reg, (rN) ,

Clarification:

operand: reg
(rN)
direct
#short
##long

Affects flags: Z M

* *

Cycles: 1

short immediate, long immediate
aX[bits 15-0] XOR operand -> aX[bits 15-0]
aX[bits 35-16] -> aX[bits 35-16]

If the operand is one of the accumulators or the p
register it is Exclusive-ORed with the destination
accumulator.

If the operand is a 16-bit register or an immedi
ate value, the operand is zero-extended to form a
36 bits operand, then Exclusive-ORed with the
accumulator. Therefore, the upper bits of the
accumulator are unaffected by this instruction.

address
immediate

immediate

N V C E L R

* *

2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

DSP Core Programmer's Manual 37

Instruction Set Section 4

38

cmp Compare

cmp operand, aX

Operation: aX - operand

operand: reg
(rN)
direct address
#short immediate
##long immediate

Affects flags: Z M N v c
* * * * *

Cycles: 1

E L R

* *

2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

addI Add to Low Accumulator

addl operand, aX

Operation: aX + operand -> aX
The operand is sign-extension suppressed.

operand: (rN)
direct address
reg

Affects flags: Z

*

Cycles: 1

Words: 1

M

*
N v
* *

[1] The reg cannot be: aX, p.

[1]

c E L R

* * *

DSP Core Programmer's Manual

Section 4 Instruction Set

subl Subtract from Low Accumulator

subl operand, aX

Operation: aX - operand -> aX
The operand is sign-extension suppressed.

operand: (rN)
direct address
reg

Affects flags: Z M N v
* * * *

Cycles: 1

Words: 1

[1] The reg cannot be: aX, p.

addh Add to High Accumulator

addh operand, aX

[1]

c
*

Operation: aX + operand*2 A 16 -> aX
The aXl is unaffected.

operand: (rN)
direct address
reg

Affects flags: Z M N v
* * * *

Cycles: 1

Words: 1

[1] The reg cannot be: aX, p.

DSP Core Programmer's Manual

[1]

c
*

E L R

* *

E L R

* *

39

Instruction Set Section 4

40

subh Subtract from High Accumulator

subh operand, aX

Operation: aX - operand*2 A 16 -> aX
The aXl is unaffected.

operand: (rN)
direct address
reg

Affects flags: Z M N v
* * * *

Cycles: 1

Words: 1

[1] The reg cannot be: aX, p.

[1]

C

*
E L R

* *

DSP Core Programmer's Manual

Section 4 Instruction Set

moda Modify Accumulator Conditionally

moda func, aX , { cond

Operation: If condition then aX is modified by 'func'

The accumulator and the flags are modified according
to the function field only when the condition is met.

func: SHR aX aX » 1
SHL aX = aX « 1
SHR4 aX aX » 4
SHL4 aX = aX « 4
ROR Rotate aX right through carry
ROL Rotate aX left through carry
NOT aX not (aX)
NEG aX = -aX
CLR aX = 0
COpy aX = aX
RND Round upper 20 bits of the aX

aX = aX+8000H
PACR aX=shifted p + 8000H [1]
CLRR aX = 8000H

Affects flags: See below.

Cycles: 1

Words: 1

[1] Shifted p register means that the p register is sign-extended to 36
bits and then shifted as defined at the SP field, status register
st1.

[2] At assembler syntax the moda can be omitted.

DSP Core Programmer's Manual 41

Instruction Set Section 4

42

moda Modify Accumulator Conditionally (continued)

SHR, SHR4

Shift right step

r-CIIIJ1 1111111111111111 ~
Waxe aXh aXI

Affects flags: Z

*
M

*
N

*
v
o

c E L R

* *

SHL, SHL4

C - Set according to the LSB (SHR bit 0,
SHR4 bit 3) shifted out of the operand.

Shift left step

@}---i I I I II I I I I I I I II I I I I I I I f- a
aXe aXh aXI

Affects flags: Z M N v c E L R

ROR

* * * * * *

C - Set according to the MSB (SHL bit 35, SHL4 bit 32)
shifted out of the operand.

v - Cleared if the operand being shifted could be repre-
sented in 35 bits for SEL / in 31
otherwise.

bits for SHL4, set

I I I " I I I I I I I II I I I I I I I
aXe aXh aXI

Affects flags: Z M N v C E L R

* * * * *

C - Set according to the LSB (bi to)
shifted out of the operand.

DSP Core Programmer's Manual

Section 4 Instruction Set

moda Modify Accumulator Conditionally (continued)

ROL

I I I II I I I I I I I II I I I I I I I
aXe aXh aXl

Affects flags: Z M N v c E L R

* * * * *

C - Set according to the MSB (bit 35)
shifted out of the operand.

NOT, COPY, CLR, CLRR

Affects flags: Z

*

NEG, RND, PACR

Affects flags: Z

*

DSP Core Programmer's Manual

M

*

M

*

N

*

N

*

v c E L R

*

v c E L R

* * * *

43

Instruction Set Section 4

44

norm Normalize

norm aX, rN

Operation: If N = 0 (aX is not normalized)
then aX = aX * 2

N is modified
else nop

nop

This instruction is used to normalize the signed number at
the accumulator. Affects the rN register.

Affects flags: Z M N v C E L R

* * * * * * * *

R flag is updated in norm instruction ONLY when rN pointer is
modified.

C is set or cleared as at SHL (moda).

Cycles: 2

Words: 1

[1] The norm instruction uses the N flag to decide if shift or nope
Therefore when using norm at the first iteration, the flag must be
updated according to aX.

[2] To normalize a number using the norm instruction, the norm instruc
tion can be used together with a rep instruction.

Example: rep
norm

#n
aO, (rO)+

Another method is to use the N flag for conditional branch.

Example: NRM
brr

norm aO, (rO) +
NRM,NN

DSP Core Programmer's Manual

Section 4 Instruction Set

divs Division Step

diva direct address ,aX

Operation: aX - (direct address*2 A 15) -> ALU output
If ALU output < a

then aX = aX * 2
else aX = ALU output * 2 + 1

Affects flags: Z M N v C E L R

* * * *

Cycles: 2

Words: 1

[1] The 16-bit dividend is placed at accumulator-low; the accumulator
high and the accumulator-extension are cleared.

The divisor is placed at the direct address.

For a 16-bit division, divs should be executed 16 times. After 16
times the quotient is in the accumulator-low and the remainder is
in the accumulator-high.

The dividend and the divisor should both be positive.

DSP Core Programmer's Manual 45

Instruction Set

4.4.2 Multiply Instructions

mpy Multiply

ropy operand1, operand2

Operation: operandl -> y [1]
operand2 -> x
x * y -> P

operand1 , operand2: y , direct address
y , (rN)
y , reg [2]
(rJ) , (rI) [3]
(rN) , ##long immediate

Affects flags: No

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

[1] y -> y means that y retains its value.

[2] The reg cannot be aX, p.

[3] The multiplication at mpy (rJ), (rI) is between XRAM and
YRAM only. Where rJ points to YRAM, rI points to XRAM.

Section 4

46 DSP Core Programmer's Manual

Section 4 Instruction Set

mac Multiply and Accumulate Previous Product

mac operand1, operand2 , aX

Operation: aX + shifted p -> aX [1]
operand1 -> y [2]
operand2 -> x
x * y -> p

operand1 ,operand2: y
y
y
(rJ)
(rN)

Affects flags: Z M N V

* * * *

Cycles: 1

, direct address
, (rN)
, reg [3]
, (rI) [4]
, ##long immediate

C E L R

* * *

2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

[1] Shifted p register means that the previou~ product is sign-extended
into 36 bits, then shifted by defined at the SP field, status regis
ter stl.

[2] y -> y means that y retains its value.

[3] The reg cannot be aX, p.

[4] The multiplication at mac (rJ), (rI) is between XRAM and YRAM only.
Where rJ points to YRAM , rI points to XRAM.

DSP Core Programmer's Manual 47

Instruction Set Section 4

48

msu Multiply and Subtract Previous Product

msu operandi, operand2 , aX

Operation: aX - shifted p -> aX [1]
operandi -> y [2]
operand2 -> x
x * y -> p

operandi, operand2: y , direct address
y , (rN)
y , reg[3]
(rJ) , (rI) [4]
(rN) , ##long immediate

Affects flags: Z

*

Cycles: 1

M

*
N v
* *

C E L R

* * *

2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

[1] Shifted p register means that the previous product is sign-extended
into 36 bits, then shifted as defined by the SP field, status reg
ister stl.

[2] y -> y means that y retains its value.

[3] The reg cannot be aX, p.

[4] The multiplication at msu (rJ), (rI) is between XRAM and YRAM only.
w~ere rJ points to YRfu~ , rI points to XR&~.

mpys Multiply Signed Short Immediate

mpys y, #signed short immediate

Operation: #signedshort immediate -> x
x * y -> p

Affects flags: No

Cycles: 1

Words: 1

DSP Core Programmer's Manual

Section 4 Instruction Set

sqr Square

sqr operand

Operation: operand -> y
operand -> x
y * x -> p

operand: (rN)
reg [1]
direct address

Affects flags: No

Cycles: 1

Words: 1

[1] The reg cannot be aX, p.

sqra Square and Accumulate Previous Product

sqra operand ,aX

Operation: aX + shifted p -> aX [1]
operand -> y
operand -> x
y * x -> p

operand: (rN)
reg [2]

direct address

Affects flags: Z M N V C E L

* * * * * * *

Cycles: 1

Words: 1

R

[1] Shifted p register means that the previous product is sign-extended
into 36 bits, then shifted as defined by the SP field, status regis
ter st1.

[2] The reg cannot be aX, p.

DSP Core Programmer's Manual 49

Instruction Set Section 4

sqrs Square and Subtract Previous Product

sqrs operand, aX

Operation: aX - shifted p -> aX [1]
operand -> y
operand -> x
y * x -> p

operand: (rN)
reg [2]
direct address

Affects flags: Z M N v C E L R

* * * * * * *

Cycles: 1

Words: 1

[1] Shifted p register means that the previous product is sign-extended
into 36 bits, then shifted as defined by the SP field, status regis
ter st1.

[2] The reg cannot be aX, p.

50 DSP Core Programmer's Manual

Section 4 Instruction Set

4.4.3 Move Instructions

mov Move Data

mov soperand I doper and

Operation: soperand -> doperand

soperand I doperand reg
reg
(rN)

reg
(rN)
reg

[1] I [2] I [3] ,[4]

[1] I [5] ,[6]

[4] I [5] ,[6]

rN direct address
aXI direct address
aXh direct address
Y direct address
X direct address

direct address , rN
direct address , y
direct address , x
direct address , aX
direct address , aXI
direct address , aXh I {eu} [7]
##long immediate I. reg [4]
#short immediate I aXI
#signed short immediate , aXh
#signed short immediate ,rN [8]
#signed short immediate I Y [8]
#signed short immediate ,x [8]

Affects flags: No effect when doperand is not ac, stO or when soperand
is not aXI, aXh

When soperand is aXI or aXh:

z M N v C E L R

*

When doperand is ac:

z M N v C E L R

* * * * [7]

If doperand is stO, the instruction affects all the
flags.

Cycles: 1
2 when the operand is ##long immediate

Words: 1
2 when the operand is ##long immediate

DSP Core Programmer's Manual 51

Instruction Set Section 4

mov Move Data (continued)

[lJ The 32-bit p register can be transferred only to aX (mov p,aX

ph is a write-only register, therefore soperand cannot be ph.

[2J The 36-bit aX can be a soperand only with the following instruc
tions: mov aO,a1 ; mova1,aO.

[3J With mov reg, the soperand cannot be the same as the doperand.

[4J When the operand reg is the pc register, a nop instruction must be
placed after the mov soperand,pc instruction.

[5J No mov's are permitted between off-core memory and external regis
ters and vice versa. This means that mov extX, (rN) , mov (rN) ,extX
rN can only point with internal RAM.

[6J It is not permitted to move data from RAM address pointed by one of
the rN registers to the same rN register (and vice versa) with post
modified.

[7J The eu field is an optional field.

eu = accumulator extension is unaffected (sign extension sup
pressed)

Instruction Accumulator Content
Fields After The Instruction

ac eu Extension bits 16 MSB 16 LSB
aXe aXh aXl

aX - sign-extended sign-extended DATA
aXl - clear clear DATA
aXh - sign-extended DATA clear
aXh eu II unaffected I DATA I clear

The flags after executing mov direct address, aXh, eu are the same
as after executing mov direct address,aXh.

[8J Loading the doperand by short immediate number with sign- extension.

52 DSP Core Programmer's Manual

Section 4 Instruction Set

mov Move Data (continued)

[9] Conventions:

The instruction at PROM address 0100H mov pC,ram

After execution (ram)=0101H

mov (rO) ,rO

Before execution After execution

rO 20H 1000

RAM address 20H 1000 1000

DSP Core Programmer's Manual 53

Instruction Set Section 4

movp Move Program Memory

movp soper and, doperand

Operation: soperand points to PROM -> doperand

Move a word from Program ROM pointed by soperand to RAM or
to reg pointed by doperand. When using aX as a soperand,
the address is defined by accumulator-low.

soperand , doperand: (aX)
(rN)

, reg [1]
, (rI)

Affects flags: No effect when doper and is not ac, stO.

When doperand is ac:

Z M N V C E L R

* * * *

If the doper and is stO, the instruction affects all the
flags.

Cycles: 3

Words: 1

[1] When the operand reg is the pc register, a nop instruction must be
placed after the movp (aX),pc instruction.

54 DSP Core Programmer's Manual

Section 4 Instruction Set

4.4.4 Loop Instructions

rep Repeat Next Instruction

rep operand

Operation: Begins a single word instruction loop that is to be
repeated operand+1 times.

Repetition times is between 1 to 256. The rep instruction
and the instruction being repeated are not interruptable.

operand:

Affects flags: No

Cycles: 1

Words: 1

#short immediate
reg

[1] The reg cannot be aX, p.

[1]

[2] When using reg as an operand, the number of times the instruction
is to be repeated is defined by the low-order 8 bits of the reg.

[3] Any instruction that breaks the program address continuity cannot
be repeated. (brr, callr, movp, trap, ret, reti, mov operand,pc
,rep, calla)

[4] rep can be performed inside block-repeat (bkrep).

DSP Core Programmer's Manual 55

Instruction Set Section 4

bkrep Block Repeat

bkrep operand, add

Operation: operand -> lc [1]
1 -> LP status bit

Begins a block repeat that is to be repeated operand+1
times.

The number of repetitions ranges from 1 to 256.

The first block address is the address after the bkrep
instruction, and the last block, address is the address
specified by the 'add' field. [2J

The operand is inserted into the loop counter lc regis
ter. The inloop status bit LP is set - enable block
repeat.

The repeated block is interruptable.

operand: #short immediate
reg [3],[4]

Affects flags: No

Cycles: 2

Words: 2

[1] When using #short immediate as an operand, it is copied to the low
order 8 bits of the lc. The high-order 8 bits are undefined.

[2] In case the last instruction at the block repeat is:

a. One word instruction - 'add' is the address of this instruction.

b. Two words instruction - 'add' is the address of the second word
of the instruction.

[3] When using reg as an operand the 16 bit register is transferred into
the lc. The number of times the block is to be repeated is defined
only by the low-order 8 bits.

[4] The reg cannot be aX, p, pc.

[5] When the block repeat is completed, the low-order 8 bits of the lc
register contains OFFHi the high-order 8 bits are unaffected.

[6] The block repeat length can be one instruction.

[7] If a mov st2, doperand is performed one instruction prior last
instruction of the loop, the value of the LP bit undefined.

56 DSP Core Programmer's Manual

Section 4 Instruction Set

bkrep Block Repeat (continued)

[8] Restrictions:

1. The last two instructions of the bkrep loop cannot be br, brr,
call, callr, calla, trap, mov soperand, pc, movp soperand, pc,
ret, reti, rep, bkrep.

2. During a block-repeat loop there can be no jumps to the last
address of the loop. Forbidden jumps are:

brr, br, call, callr, calla, ret, reti, mov soperand, pc,
movp soperand, pc.

3. Restrictions relating the lc register usage at the block-repeat
loop are:

3.1. The lc register must not be written during the block-repeat
loop.

3 .2. The lc register must not be used one instruction prior to the
last instruction of the block-repeat loop.

3.3. If the block-repeat loop is one instruction long, the lc reg
ister must not be used in this instruction.

4. Notice that illegal instruction sequences are also restricted as
the last and first instructions of a block-repeat loop.

4.4.5 Branch/Call Instructions

br Conditional Branch

br address I {cond}

Operation: If condition
then address -> pc

If the condition is met, branch to the program memory loca
tion specified by 'address'.

Affects flags: No

Cycles: 2

Words: 2

[1] If the condition is met,
program memory location.
instruction.

DSP Core Programmer's Manual

'address' is the address/label of the new
The 'address' is the second word of the

57

Instruction Set Section 4

58

brr Relative Conditional Branch

brr $offset address , {cond}

Operation: If condition then
'the brr inst.' + $offset address + 1 -> pc

If the condition is met, a branch is executed to the fol
lowing program memory location: 'the brr instruction' +
'offset address' + 1

The offset range is -63 to 64. (Offset range is 'offset
address' +1)

Affects flags: No

Cycles: 2

Words: 1

[1] Assembler syntax:
brr $offset address, {cond}
or
brr label , {cond}

Where 'label' is the new program memory location. The instruction
word includes the 'offset address' calculated by the assembler as
follows:

(label address) - (brr address) - 1.

call Conditional Call Subroutine

call address, {cond}

Operation: If condition
then pc -> tos
address -> pc

If the condition is met, the program counter is pushed into
the stack and a branch is performed to the program memory
location specified by 'address'.

Affects flags: No

Cycles: 2

Words: 2

[1] If the condition is met,
program memory location.
instruction.

'address' is the address/label of the new
The 'address' is the second word of the

DSP Core Programmer's Manual

Section 4 Instruction Set

callr Relative Conditional Call Subroutine

callr $offset address , {cond}

Operation: If condition then
pc -> tos
'the brr inst.' + $offset address + 1 -> pc

If the condition is met, the program counter is pushed
into the stack and a branch is executed to the following
program memory location:

'the callr instruction' + 'offset address' + 1

The offset range is -63 to 64. (Offset range is 'offset
address'+l) .

Affects flags: No

Cycles: 2

Words: 1

[1] Assembler syntax:
callr $offset address , {cond}
or
callr label , {cond}

Where 'label' is the new program memory location. The
instruction word includes the 'offset address' calculated by
the assembler as follows:

(label address) - (callr address) - 1.

calla Call Subroutine at Location Specified by the Accumulator

calla aXl

Operation: pc -> tos
(aX) -> pc

Call subroutine indirect (address from aX) .

The program counter is pushed into the stack and a branch
is executed to the address pointed by accumulator-low.

This instruction can be used to perform computed subrou
tine calls.

Affects flags: No

Cycles: 2

Words: 1

DSP Core Programmer's Manual 59

Instruction Set Section 4

60

ret Return Conditionally

ret {cond}

Operation: If condition
then tos -> pc

If the condition is met, the program counter is pulled
from the stack. The previous program counter is lost.
This instruction is used to return from subroutines or
interrupts.

Affects flags: No

Cycles: 2

Words: 1

[1] This instruction can also be used as return from interrupt (INTO or
INTI), to enable more interrupts, the IE bit at stO must be set

.reti Return from Interrupt

reti

Operation: tos -> pc
1 -> IE [1]

The program counter is pulled from the system stack. The
previous program counter is lost. The IE bit is set -
enable interrupts. [1] This instruction is used for
return from interrupt.

Affects flags: No

Cycles: 2

Words: 1

[1] This instruction is used for returning from interrupts. The trap
and BPI interrupt service routines must be ended with reti instruc
tion. In these cases, the IE status will be the same as it was
before entering the routine.

DSP Core Programmer's Manual

Section 4 Instruction Set

4.4.6 Control and Miscellaneous Instructions

nop No Operation

nop

Operation: No operation

Affects flags: No

Cycles: 1

Words: 1

modr Modify rN

modr (rN)

Operation: rN is modified.

Affects flags: z M N v c E L R

*

R flag is set if the 16-bit rN register is zero;
otherwise cleared.

Cycles: 1

Words: 1

[1] This instruction can be used also for loop control.

Example: modr (rO)
brr add I NR

DSP Core Programmer's Manual 61

Instruction Set Section 4

62

eint Enable Interrupt

eint

Operation: 1 -> IE

IE bit is set - Enable interrupts.

Affects flags: No

Cycles: 1

Words: 1

dint Disable Interrupt

dint

Operation: o -> IE

IE bit is cleared - Disable interrupts.

Affects flags: No

Cycles:

Words:

1

1

DSP Core Programmer's Manual

Section 4 Instruction Set

trap Software Interrupt

trap

Operation: pc -> tos
OOOAH -> pc
Disable interrupts (INTO I INTI).

Software interrupt.

The program counter which points to the next instruction
is pushed into the stack. A branch to address location
OOOAH is executed.

The interrupts (INTO I INTI) are disabled regardless of
the interrupt mask bits: lEI IMO I IMI at stO.

Affects flags: No

Cycles: 2

Words: 1

[lJ trap instruction cannot be used at: trap service routine, BPI ser
vice routine.

[2J For returning from trap service routine use reti instruction.

Ipg Load the Page Bits

Ipg #short immediate

Operation: #short immediate -> page bits

The page bits, the low-order 8 bits of stI, are loaded
with an 8-bit constant (0 to 255) .

Affects flags: No

Cycles: 1

Words: 1

DSP Core Programmer's Manual 63

Instruction Set Section 4

4.5 Instruction Execution

64

4.5.1 Pipeline Method

The program controller implements a three-level pipeline architecture. In the operation of the
pipeline, concurrent fetch, operand fetch and execution occur. This allows instruction execution to
overlap. Thus, the effective execution time for most instructions is one cycle. Each pipeline stage
is completed before its result is needed by the next instruction. The pipeline is an "interlocking"
pipeline, transparent to the user, which simplifies programming.

The following chart shows the pipeline operation:

fetch

OPe fetch

execution

cyclel I cycle2 cycle3
I

1<---n---->I<--n+l-->I<--n+2-->1
I I I I

cycle4

I 1<---n--->I<--n+l-->I<--n+2-->1
I I I I I

cycleS

I I 1<---n--->I<--n+l-->I<--n+2-->1
I I I I I I

Three instructions are executed for each cycle. For example in cycle 3, the fetch of instruction
n+2, the operand fetch of instruction n+ 1 and the execution of instruction n are active.

DSP Core Programmer's Manual

5.1 Introduction

SECTION 5
Core Interface

This section describes the basic core clock interface. It includes descriptions of the core clock, the
reset mode, the haJ?dling of interrupts and their priorities, the core signals and cycles.

5.2 Clock

The DSP core is driven by an off-core clock generator.

DSP status bit STP (bit 13 of ST2) is routed to the core edge and can be used by the system clock
generator to stop the clock and enter the STOP mode.

5.3 Reset

Reset is a non-maskable interrupt that can be used at any time to put the DSP core into a known
state. Reset is typically applied after power up when the machine is in a non-deterministic state. It
is also used to exit STOP mode.

When a RESET is applied to the core, the processor enters the reset processing state, the processor
terminates execution and forces the program counter to zero. Therefore, when the RESET signal
is deactivated, execution starts from location OOOOH. Reset affects various registers and status
bits. However when RESET is applied during STOP mode, the contents of the RAM and other reg
isters are unaffected.

The following register bits are cleared during reset:

STO bits 0+11, ,STI bits 10+11, ST2 bits 0+9, ST2 bits 13+12
PC register (0: 15)

For more details about reset effects on status registers, see Section 3.7.2.2.

The RESET signal (reset request to the core) must be active for at least 6 cycles. The fetch from
address OOOOH is executed 1 cycle after RESET is deactivated.

DSP Core Programmer's Manual 65

Core Interface Section 5

5.4 Interrupts

The DSP core has three interrupts: two maskable (INTO and INTI) interrupts and one break-point
interrupt (BPI). It also has one software interrupt (TRAP). The hardware interrupts are high l~vel
sensitive.

Table 5-1 DSP Core Interrupts

66

Memory * Interrupt name & function Priority
location

OOOOH RESET 1 highest

0OO8H BPI External breakpoint interrupt 2

OOOAH TRAP Software interrupt 3

OOOCH INTO External user interruptO 4

OOOEH INT1 External user interrupt1 Slowest

* Start address for the interrupt/reset routine.

Jumping to the interrupt service routine takes two cycles. The only exception to this is after a
move instruction to the PC, which takes only one cycle.

5.4.1 BPI, INTO, INTI

Interrupts are accepted and serviced at the end of the current instruction execution. Interrupt ser
vicing will be delayed when one of the following cases occurs:

1. Until the completion of all the cycles of a multicycle instruction including expansion of read!
write cycles due to wait states.

2. Until the end of the REP instruction and the instruction being repeated.

3. When the processor is in STOP mode.

4. In the cycle after fetch of the following commands: DINT; mov, soperand, STO; movp (aX),
STO.

If more than one interrupt is pending and unmasked, the interrupt with the highest priority is
accepted and serviced.

DSP Core Programmer's Manual

Section 5 Core Interface

5.4.1.1 BPI· Breakpoint Interrupt

This interrupt is an active high, non-maskable interrupt. When executing a BPI service routine,
another BPI will not be accepted.

When the BPI is accepted, DSP core performs the following:

PC ->TOS
0008H -> PC (interrupt starting address)
IACK pulse is generated

The TRAP instruction cannot be used inside a BPI service routine.
The BPI service routine must end with a RETI instruction.

5.4.1.2 5.4.1.2 TRAP· Software Interrupt

When executing a TRAP service routine, another TRAP cannot be used. Due to interrupt priorities
(see above table) a BPI interrupt can be accepted inside a TRAP routine; INTO and INTI are not
accepted.

When the TRAP is accepted, DSP core performs the following:

PC->TOS
OOOAH -> PC (interrupt starting address)

A TRAP service routine must end with a RETI instruction.

5.4.1.3 INTO,INTI. Maskable Interrupts

Interrupts INTO,INTI are active high, maskable interrupts.

When an interrupt is accepted while the IE status bit is set and the individual interrupt is not
masked (the corresponding IMx is set), DSP core performs the following:

IE status bit cleared
PC ->TOS
OOOCH or OOOEH -> PC (interrupt starting address)
IACK pulse is generated
Il\1x is unaffected

Return from an interrupt service routine by RETI or by RET. When using the RET instruction, the
IE flag must be set in order to enable interrupts again.

DSP Core Programmer's Manual 67

Core Interface Section 5

68

Notes:

1. A typical interrupt is activated by applying a high level to the INTOIINTI input, thus setting
the corresponding IPx bit. When the interrupt is acknowledged, the IE at the status register is
disabled. If the interrupt signal at the input pin continues to be active and the IE is still dis
abled, no interrupts will be generated. If the interrupt signal level is removed before the IE is
enabled, no further interrupts are generated. If the interrupt request continues to be active and
the IE bit is subsequently set, then another interrupt will be generated after setting the IE.

2. The PRIORITY between INTOIINTI is significant only if more than one interrupt is received
at the same time or when the IE is disabled for some time and both INTO and INTI were
received. In these cases, the interrupt will be acknowledged according to the interrupts priori
ties.

In case the processor is handling the INTI service routine and INTO was received, the IPO bit
will be set and the processor will enter the INTO service routine according to the status bits: IE,
IM:O. Similar handling will occur if the processor handles INTO service routine and INTI was
received.

DSP Core Programmer's Manual

@adaptec~
Adaptec, Inc.
691 South Milpitas Boulevard
Milpitas, CA 95035
Tel: (408) 945-8600
Fax: (408) 262-2533

PIN: 700175-011 Rev 2
Ptinted in U.S.A. DMlgc 1211/94
Information is subject to change without notification.

