
___ ALTOS-
UNIX™ SYSTEM V

GRApHics GuidE

UNIX™ System V
Graphics Guide

ACDI(JfLBDGBMENTS

The Altos logo, as it appears in this manual, is a
registered trademark of Altos Computer ·Systems.

DOaJMENTER ' S WORKBENCH™ is a trademark of AT&T
Technologies.

HpB is a registered trademark of Hewlett-Packard Company.

TEKTRONIX8 is a registered trademark of Tektronics, Inc.

UNIX™ is a trademark of AT&T Bell Laboratories.

Versatec8 is a registered trademark of versatec
Corporation.

3WM is a trademark of AT&T Technologies.

Chapter 1.

Chapter 2.

Chapter 3.

Chapter 4.

Chapter 5.

CONTENTS

INTRODUCTION

OVERVIEW

STAT-A TOOL FOR ANALYZING
DATA

GRAPHICS EDITOR

ADMINISTRATIVE
INFORMATION

- 1 -

Chapter 1

INTRODUCTION
The UNIX* System Graphics Guide provides numerical and graphical
commands used to construct and edit numerical data plots and
hierarchy charts. This guide is designed for individuals experienced
in using the UNIX system, in a variety of ways, within the office
environment (electronic mail, document preparation, data analysis,
and so on). These individuals are not expected to know programming
languages to use the UNIX System Graphics Guide, but may write
shell procedures for general purposes. This guide also assumes the
user is familiar with the UNIX System User Reference Manual.

The chapter" OVERVIEW" provides a general description of and an
introduction to the UNIX system graphic facility.

The chapter "STATISTICAL NETWORK" (stat) describes a
collection of routines that can be interconnected using the UNIX
operating system shell to form numerical processing networks.

The chapter " GRAPHICS EDITOR" (ged) describes an interactive
editor used to display, edit, and construct drawings on TEKTRONIXt
4010 series display terminals.

The chapter" ADMINISTRATIVE INFORMATION" is a reference
guide for system administrators. Specific information is contained
about directory structure, installation, makefiles, hardware
requirements, ·and miscellaneous facilities of the graphics package.

Throughout this volume, each reference of the form name(1M),
name (7), or name (8) refers to entries in the UNIX System
Administrator Reference Manual. All other references to entries of
the form name(N), where "N" is a number (1 and 6) possibly

* Trademark of AT&T Bell Laboratories.

t Registered trademark of Tektronix, Inc.

1-1

INTRODUCTION

followed by a letter, refer to entry name in section N of the UNIX
System User Reference Manual.

1-2

Chapter 2

OVERVIEW

PAGE

1. Chapter Introduction. 2-1

2. Basic Concepts . 2-1
3. Getting Started. 2-4

4. Examples Of What You Can Do . 2-5

5. Where To Go From Here..................................... 2-12

Chapter 2

OVERVIEW

1. Chapter Introduction

The UNIX System Graphics, or graphics, is the name given to a
collection of numerical and graphical commands available as part of
the UNIX operating system. In the current release, graphics
includes commands to construct and edit numerical data plots and
hierarchy charts. This chapter will help a user get started using
graphics and show where to find more information. The examples
below assume that the user is familiar with the UNIX operating
system shell.

2. Basic Concepts

The basic approach taken with graphics is to generate a drawing by
describing it rather than by drafting it. Any drawing is seen as
having two fundamental attributes-its underlying logic and its visual
layout. The layout encompasses one representation of the logic. For
example, consider the attributes of a drawing that consists of a plot
y=x2 for x between 0 and 10:

• The logic of the plot is the description as just given, namely
y=x2, for x between 0 and 10 .

• The layout consists of an x-y grid, axes labeled perhaps 0 to 10
and 0 to 100, and lines drawn connecting the x-y pairs 0,0 to 1,1
to 2,4 etc.

The way to generate a picture in graphics is:

gather data I transform the data I generate a layout I
display the layout

The command to generate the plot, y =x2, for x between 0 and 10 and
display it on a TEKTRONIX disp)ay terminal would be

2-1

OVERVIEW

gas -sO,tIO I af" x A2" I plot I td

where:

• The gas command generates sequences of numbers, in this
case starting at 0 and terminating at 10.

• The af command performs general arithmetic transformations.

• The plot command builds x-y plots.

• The td command displays drawings on TEKTRONIX terminals.

The resulting drawing is shown in Figure 2-.1.

120n='1 I I I I
100 _J __ L __ : __ l __ L_~

I ! I I "
I I I I I

80 - -1 - - 1- - -1- - -t - t- -
I I I I I
I I I I

60 -I--T~-I-- --,-
I I I I I

40 - -l - - +- - -I - -+ - - ~ -
I I I I
I I I I I

20 -1-- -I--,--r-
I I I I

o--~~----~----~--~----~----
o 2 4 6 8 10 12

Figure 2-1. Plot of gas -sO,tIO I af" x A2" I plot I td

2-2

OVERVIEW

The layout generated by a graphics program may not always be
precisely what is wanted. There are two ways to influence the layout.
Each drawing program accepts options to direct certain layout
features. For instance, in the previous example, it may be desired to
have the x-axis labels indicate each of the numbers plotted and not
have any y-axis labels at all. To achieve this the plot command
would be changed to:

gas -sO,tlO I af" x
A

2" I plot -xil,ya I td

producing the drawing of Figure 2-2.

I I I I I 1 1 , I
-+ - +- -1- +- -1- -+ -~ -+ - t-

I I I 1 1 1 1 , I

I I I 1 , , 1 ,

'-1-'- T -,-,-,-,-
I I I I I 1 1 , ,

-+-+--j-+-I-+-r- -t-
I I , 1 1 1 1 1

~ _ L _1_l_l_ ~ _1_ -.l_ L
1 I I I I I 1

1 , 1 1 1 1 I 1

-t - t- -j - 1- -r - r- -t - r
1 1 1 1 1 I 1

o 2 3 4 5 S 7 8 9 10

Figure 2-2. Plot of gas -sO,tlO I af" x
A

2" I plot -xil,ya I td

2-3

OVERVIEW

The output from any drawing command can also be affected by
editing it directly at a display terminal using the graphical editor,
ged. To edit a drawing really means to edit the computer
representation of the drawing. In the case of graphics the
representation is called a graphical primitive string, or GPS. All of
the drawing commands (e.g., plot) write GPS, and all of the device
filters (e.g., td) read GPS. Ged allows manipulation of GPS at a
display terminal by interacting with the drawing the G PS describes.

The GPS describes graphical objects drawn within a Cartesian plane,
65,534 units on each axis. The plane, known as the universe, is
partitioned into 25 equal-sized square regions. Multidrawing displays
can be produced by placing drawings into adjacent regions and then
displaying each region.

3. Getting Started

To access the graphics commands when logged in on a UNIX
system, type graphics. The shell variable PATH will be altered to
include the graphics commands and the shell primary prompt will
be changed to A. Any con1ffland accessible before typing graphics
will still be accessible; graphics only adds commands, it does not
take any away. Exception, the 3B*20 computers list command cannot
be accessed in the graphics mode. Once in graphics, a user can
find out about any of the graphics commands using whatis.
Typing whatis by itself on a command line will generate a list of all
the commands in graphics along with instructions on how to find
out more about any of them.

All of the graphics commands accept the same command line
format:

• A command is a command-name followed by argument(s) .

• A command-name is the name of any of the graphics
commands.

* Trademark of AT&T Technologies.

2-4

OVERVIEW

• An argument is a file-name or an option-string.

• A file-name is any file name not beginning with -, or a - by
itself to reference the standard input.

• An option-string is a - followed by option(s).

• An option is a letter(s) followed by an optional value. Options
may be separated by commas.

The graphics commands will produce the best results when used
with a display terminal such as the TEKTRONIX display terminal.
Tplot(lG) filters can be used in conjunction with gtop (see
gutil(lG)) to get somewhat degraded drawings on Versatec printers
and Dasi -type terminals. Since G PS can be stored in a file, it can be
created from any terminal for later display on a graphical device.

The graphics commands can be removed from user's PATH shell
variable by typing an end-of-file indication (control-d on most
terminals). To log off the UNIX operating system from graphics,
type quit.

4. Examples Of What Yon Can Do

4.1 Numerical Manipulation and Plotting

Stat is a collection of numerical and plotting commands. All of
these commands operate on vectors. A vector is a text file that
contains numbers separated by delimiters, where a delimiter is
anything that is not a number.

For example:

12345, and
arf tty47 Mar 5 09:52

are both vectors. The latter is the vector:

475952.

2-5

OVERVIEW

Here is an easy way to generate a Celsius-Fahrenheit conversion
table using gas to generate the vector of Celsius values:

gas -sO,tIOO,iIO I at" C,9/5*C+32" 2>/dev/null

The output is:

o
10
20
30
40
50
60
70
80
90
100

32
50
68
86
104
122
140
158
176
194
212

where:

2-6

• gas -sO,tIOO,iIO generates a sequence that starts at 0,
terminates at 100, and the increment between successive
elements is 10.

• at "C,9/5*C+32" generates the table. Arguments to at are
expressions. Operands in an expression are either constants or
file names. If a file name is given that does not exist in the
current directory it is taken as the name for the standard
input. In this example C references the standard input. The
output is a vector with odd elements coming from the standard
input and even elements being a function of the preceding odd
element.

• 2>/dev/null suppresses the printing of warning messages. It
redirects error message to Idev/null.

OVERVIEW

Here is an example that illustrates the use of vector titles and
multiline plots:

gas I title -v "first ten integers" > N
root N >RN
root -r3 N >R3N
root -r1.5 N >R1.5N
plot -FN,g N R1.5N RN R3N I td

where:

• title -v "name' associates a name with a vector. In this
case, first ten integers is associated with the vector output
by gas. The vector is stored in file N.

• root -rn outputs the nth root of each element on the input.
If -rn is not given, then the square root is output. Also, if the
input is a titled vector, the title will be transformed to reflect
the root function.

• plot -FX,g Y(s) generates a multiline plot with Y(s) plotted
versus X. The g option causes tick marks to appear instead of
grid lines.

The resulting plot is shown in Figure 2-3.

The next example generates a histogram of random numbers:

rand -n100 I title -v "100 random numbers" I qsort I
bucket I hist I td

where:

• rand -n100 outputs random numbers using rand(3C). In
this case 100 numbers are output in the range 0 to 1.

• qsort sorts the elements of a vector in ascending order.

2-7

OVERVIEW

• bucket breaks the range of the elements in a vector into
intervals and counts how many elements from the vector fall
into each interval. The output is a vector with odd elements
being the interval boundaries and even elements being the
counts.

• hist builds a histogram based on interval boundaries and
counts.

The output is shown in Figure 2-4.

11 -'0
-Q)- 10 'O.s::: '0
Q){I)Q)

.s:::aS
:'01:;- 9
'0 '0'0
-o-·~

8 '0
(I) -(I) 0
a:: a::{I)
W(I)W-

7 C)a::C)(I)
wwwa::
t-c)t- w zwzC) 6 t-tS;:t-tw
zt-tzt-
w w z

5 t-zt-t-t

t-~t-z
(I) (l)w 4 a::t-a::t-
t-t(l)t-tt-
Ll-eiLl-(I) 3 MLI-~ei
..... N LI-

2 0
0 0 s...oo os... s...

2 3 4 5 6 7 8 9 10 11

FIRST TEN INTEGERS

Figure 2-3. Some Roots of the First Ten Integers

2-8

OVERVIEW

24~-----------------------------------,

~---------------

~----------------

18 ~ - - - - - - - - - - - - - - -

16 f- - - - - - - - - - -11""--1- - -

14 f- - - - - - - - - - - - -1 - .. ---;

12 I-.---t-- -I~-.- - - - - -,-

10 - - - - - - - - - - - - - - -1-

8---------------1-
6---------------1-
4---------------1-
2---------------1-
O~~--~--~----~--~--~~--~----~

0.02810.165 0.301 0.438 0.574 0.71 0.847 0.983

100 RANDOM NUMBERS

Figure 2-4. Histogram of 100 Random Numbers

4.2 Drawings Built From Boxes

There is a large class of drawings composed from boxes and text.
Examples are structure charts, configuration drawings, and flow
diagrams. In graphics the general procedure to construct such box
drawings is the same as that for numerical plotting; namely, gather
and transform the data, build and display the layout.

As an example, for hierarchy charts, the command line

dtoc I vtoc I td

outputs drawings representing directory structures .

• The dtoc command outputs a table of contents that describes a
directory structure (Figure 2-5). The fields from left to right
are level number, directory name, and the number of ordinary
readable files contained in the directory.

2-9

OVERVIEW

• The vtoc command reads a (textual) table of contents and
outputs a visual table of contents, or hierarchy chart (Figure
2-6). Input to vtoc consists of a sequence of entries, each
describing a box to be drawn. An entry consists of a level
number, an optional style field, a text string to be placed in the
box, and a mark field to appear above the top right-hand
corner of the box.

2-10

O.
1.
1.1.
1.2.
2.
2.1.
2.2.
2.3.
3.
4.
4.1
4.4.
5.
5.1.
5.2.
6.

"source"
"glib.d"
"gpl.d"
"gsl.d"
"gutil.d"
"cvrtopt.d"
"gtop.d"
"ptog.d"
"stat.d"
"tek4000.d"
"ged.d"
"td.d"
"toc.d"
"ttoc.d"
"vtoc.d"
"whatis.d"

2
1
12
14
6
7
8
5
54
5
37
8
3
3
22
108

Figure 2-5. Output of dtoc Command

~
I

I-'
I-'

2.1. 1 7

O. 2

3.

2.2.1 8 2.3.1 5

Figure 2-6. Output of vtoc Command

8 5.2.

o
< t:fj

== <
~

~

OVERVIEW

5. Where To Go From Here
The best way to learn about graphics is to log onto a UNIX
operating system and use it. Other chapters in this guide contain
tutorials for stat(lG) and ged(lG) and administrative information
for graphics. Additional information can be found in the UNIX
System User Reference Manual in the following manual entries:

gdev(lG), a collection of commands to manipulate TEKTRONIX
4000 series terminals; and
ged(lG), the graphical editor;
graphics(lG), the entry point for graphics;
gutil(lG), a collection of graphical utility commands;
stat(lG), numerical manipulation and plotting commands;
toc(lG), routines to build tables of contents;
gps(5), a description of a graphical primitive string.

2-12

Chapter 3

STAT-A TOOL FOR ANALYZING DATA

PAGE

1. Chapter Introduction. 3-1

2. Basic Concepts. 3-2

3. Node Descriptions .. 3-11

4. Examples.. 3-29

Chapter 3

STAT-A TOOL FOR ANALYZING DATA

1. Chapter Introduction
This chapter introduces stat concepts and commands through a
collection of examples. Also, a complete definition of each command
is provided.

Stat is a collection of numerical programs that can be interconnected
using the UNIX system shell to form processing networks. Included
within stat are programs to generate simple statistics and pictorial
output.

Much of the power for manipulating text in the UNIX operating
system comes from the DOCUMENTER'S WORKBENCH* software
text processing package. The general interface is an unformatted
text string. The interconnection mechanism is usually the UNIX
system shell. The programs are independent of one another, new
functions can easily be added and old ones changed. Because the text
editor operates on unformatted text, arbitrary text manipulation can
always be performed even when the more specialized routines are
insufficien t.

Stat uses the same mechanisms to bring similar power to the
manipulation of numbers. It consists of a collection of numerical
processing routines that read and write unformatted text strings. It
includes programs to build graphical files that can be manipulated
using a graphical editor. And since stat programs process
unformatted text, they can readily be connected with other UNIX
operating system command-level (Le., callable from shell) routines.

It is useful to think of the shell as a tool for constructing processing
networks in the sense of data flow programming. Command-level

* Trademark of AT&T Technologies.

3-1

STATISTICAL NETWORK

routines are the nodes of the network, and pipes and tees are the
links. Data flows from node to node in the network via data links.
Throughout this chapter, the operator:= means defined as.

2. Basic Concepts
All numerical data in stat are stored in vectors. A vector is a
sequence of numbers separated by delimiters. Vectors are processed
by command-level routines called nodes.

2.1 Transformers

A transformer is a node that reads an input element, operates upon
it, and outputs the resulting value. For example, suppose file A
contains the vector

12345

then the command

root A (typed input is bold)

produces

1 1.41421 1. 73205 2 2.23607

the square root of each input element. Also,

log A

produces

o 0.693147 1.09861 1.38629 1.60944

the natural logarithm of each element of vector A.

3-2

STATISTICAL NETWORK

Af, for arithmetic function, is a particularly versatile transformer.
Its argument is an expression that is evaluated once for each
complete set of input values. A simple example is

which produces

2 8 18 32 50

twice the square of each element from A. Expression arguments to
af are usually surrounded by quotes since some of the operator
symbols have special meaning to the shell.

2.2 Summarizers

A summarizer is a node that calculates a statistic for a vector.
Typically, summarizers read in all of the input values, then calculate
and output the statistic. For example, using the vector A from the
previous exam pIe,

mean A

produces

3

and

total A

produces

15

3-3

STATISTICAL NETWORK

2.3 Parameters

Most nodes accept parameters to direct their operation. Parameters
are specified as command-line options. Root, for example, is more
general than just square root, any root may be specified using the r
option. For example,

root -r3 A

produces

1 1.25992 1.44225 1.5874 1. 70998

the cube root of each element from A.

2.4 Building Networks

Nodes are interconnected using the standard UNIX system shell
concepts and syntax. A pipe is a linear connector that attaches the
output of one node to the input of another. As an example, to find
the mean of the cube roots of vector A is simply

root -r3 A I mean

which produces

1.39991

Often the required network is not so simple. Tees and sequence can
be used to build nonlinear networks. To find the mean and median of
the transformed vector A is

root -r3 A I tee B I mean; point B

which produces

3-4

1.39991
1.44225

STATISTICAL NETWORK

Beware of the distinction between the sequence operator, (;), and the
linear connector, the pipe (I). Because processes in a pipeline run
concurrently, each file written to in the pipeline should be unique.
Sequence implies run to completion (so long as & is not used) hence
files may be used more than once.

There is a special case of nonlinear networks where the result of one
node is used as command-line input for another. Command
substitution makes this easy. For example, to generate residuals
from the mean of A is simply

af "A-'mean A '

which results in

-2 -1 o 1 2

2.5 Vectors, a Closer Look

Thus far vectors have been used but not created. One way to create a
vector is by using a generator. A generator is a node that accepts no
input and outputs a vector based upon definable parameters. Gas is
a generator that produces additive sequences. One of the parameters
to gas is the number of elements in the generated vector. As an
example, to create the vector A that we· have been using is

gas -n5

which produces

1 2 3 4 5

Vectors are, however, merely text files. Hence, the text editor can be
used to create and modify the same vector.

3-5

STATISTICAL NETWORK

A useful property of vectors is that they consist of a sequence of
numbers surrounded by delimiters, where a delimiter is anything
that is not a number. Numbers are constructed in the usual way

[sign] (digi ts)(.digi ts) [e [sign] digi ts]

where fields are surrounded by brackets and parentheses. All fields
are optional, but at least one of the fields surrounded by parentheses
must be present. Thus vector A could also be created by building the
file B in the text editor as

1 partridge,2tdoves,3fr hens,4cbirds,5g1dnrings,

which, when read by

list B

produces

1 2 3 4 5

A note should be made as to the size of a vector. A vector is a
stream containing numbers terminated by an end of file (control-d
from the keyboard). A good illustration of this is to use the keyboard
as the source of the input vector, as in

cusum -cl
2<cr>
2
16.3<cr>
18.3
25.4<cr>
43.7
-14<cr>
29.7
<control d>

which implements a running accumulator. Since no vector was given

3-6

STATISTICAL NETWORK

to cusum, the input is taken from the standard input until an end of
file.

2.6 A Simple Example: Interacting with a Data Base

When used in conjunction with. the UNIX operating system tools for
manipulating text, stat provides an effective means for exploring a
numerical data base. Suppose, for example, there is a subdirectory
called data containing data files that include the lines:

path length = nn
node count = nn

(nn is any number)

To access the value for node count from each file, sort the values
into ascending order, store the resulting vector in file A, and get a
copy on the terminal by typing

grep "node count" data* I qsort I tee A
17 19 22 32 39
50 68 78 125 139

If some of the data files have numbers in their name, we must
protect those numbers from being considered data. Using cat, this is
easy:

cat data/* I grep "node count" I qsort I tee A

To get a feel for the distribution of node counts, shell iteration can be
used to advantage.

for i in .25 .5 .75
do point -p$i A
done
24.5
44.5
75.5

This generates the lower hinge, the median, and the upper hinge of
the sorted vector A.

3-7

STATISTICAL NETWORK

2.7 Translators

Translators are used to view data pictorially. A translator is a node
that produces a stream of a different structure from that which it
consumes. Graphical translators consume vectors and produce
pictures in a language called GPS. Among the programs that
understand GPS is ged, the graphical editor, which means that the
graphical output of any translator can be edited at a display
terminal. Hist is an example of a translator; it produces a GPS that
describes a histogram from input consisting of interval limits and
counts. The summarizer bucket produces limits and counts, thus

bucket A I hist I td

generates a histogram of the data of vector A and displays it on a
display terminal (Figure 3-1). Td translates the GPS into machine
code for TEKTRONIX 4010 series display terminals.

3-8

STATISTICAL NETWORK

7 ~ __ ~

s~-_--------------_----

5 _-. ..-----________________ _

4 ______________________ _

3 f-- - - _ - - -+-_____ -- ___ - _____ _

2 ~ - - - - - -r_ - - - - - - - - ---__ .., __ -

1 ~------r_----------------

o~ __ ~ __________________ ~ ________ ~ ________ ~ __ ~
17 47.5 78 109 139

Figure 3-1. bucket A I hist I td

A wide range of X-Y plots can be constructed using the translator
plot. For example, to build a scatter plot of path length with node
count (Figure 3-2) is

grep "path length" data/* I title -v "path length" >A
grep "node count" data/* I title -v "node count" I plot

-FA,dg ltd

3-9

STATISTICAL NETWORK

140 "

0
120 ~

100 r--

~ 80 ~ 0 Z
:::::I
C
(.) 0
w
c 60 ~ c
z

0

40 ~ 0
0

20 rt°
0 I I I I I

0 50 100 150 200 250 300

PATH LENGTH

Figure 3-2. Scatter Plot

A vector may be given a title using title. When a titled vector is
plotted, the appropriate axis is labeled with the vector title. When a
titled vector is passed through a transformer, the title is altered to
reflect the transformation. Thus in a graph of log node count
versus the cube root of path length, i.e.,

grep "node count" I title -v "node count" I log> B
root -r3 A I plot -F-,dg B I td

the axis labels automatically agree with the vectors plotted (Figure
3-3).

3-10

STATISTICAL NETWORK

5
0

4.8
0

4.6

4.4
0

4.2 0
I-
Z
:;:)
0 4 (.)

UJ 0
C
0

3.8 z
tlO
0 0 .-

3.6

0
3.4

3.2
0

3
0

2.8 0
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

root3 PATH LENGTH

Figure 3-3. Transformed Scatter Plot

3. Node Descriptions

In this section a more formal description of each node is given. The
mathematical formula given with each description corresponds to the
algorithm implemented by the command. The descriptions are
organized by node class. The stat nodes are divided into these four
classes:

• Transformers

• Summarizers

• Translators

3-11

STATISTICAL NETWORK

• Generators

All of the nodes accept the same command-line format:

• A command is a command-name followed by zero or more
arguments.

• A command-name is the name of any stat node.

• An argument is a file-name or an option-string.

• An option-string is a - followed by one or more options.

• An option is one or more letters followed by an optional value.
Options may be separated by commas.

• A file-name is any name not beginning with -, or a"- by itself
(to reference the standard input).

Each file argument to a node is taken as input to one occurrence of
the node. That is, the node is executed from its initial state once per
file. If no files are given, the standard input is used. All nodes,
except generators, accept files as input, hence it is not made explicit
in the synopses that follow.

Most nodes accept command-line options to direct the execution of
the node. Some options take values. In the following synopses, to
indicate the type of value associated with an option, the option key
letter is followed by:

i to indicate integer,
f to indicate floating point or integer,
string to indicate a character string, or
file to indicate a file-name.

Thus, the option ci implies that c expects an integer value
(c := integer).

3-12

3.1 Transformers

Transformers have the form

Yin transform V out

STATISTICAL NETWORK

where, by convention, Yin is a vector Y, with elements Yl through Yk
(Yl:k) and Vout is a vector Z, Zl:m. All transformers have a ci option,
where c specifies the number of columns per line in the output. By
default, c := 5 ..

abs - absolute value

Zi := ·IYi I

af [-t v] - arithmetic function

The command-line format of af is an extension of the command-line
description given above, with expression replacing file-name; an
expression consists of operands and operators.

An operand is either a vector, function, constant, or expression:

• A vector is a file name with the restriction that file names
begin with a letter and are composed only of letters, digits, ".",
and "_". The first unknown file name (one not in the current
directory) references the standard input. A warning will
appear if a file cannot be read.

• A function is the name of a command followed by its
arguments in parentheses. Arguments are written in
command-line format.

• A constant is an integer or floating point (but not "E"
notation) number.

The operators are listed below in order of decreasing precedence.
Parentheses may be used to alter precedence.

3-13

STATISTICAL NETWORK

The Xi (Yi) represents the start element from X (Y) for the
expression.

• ' Y - reference Yi+l' Yi+1 is consumed; the next value from Y
is Yi +2, Y is a vector .

•)(Y -Y - Xi raised to the Yi power, negation of Yi.

Association is right to left. X and Yare expressions.

• X * Y X / Y X % Y - Xi multiplied by, divided by, modulo
Yi. Association is left to right. X and Yare expressions.

• X + Y X - Y - Xi plus, minus Yi. Association is left to
right. X and Yare expressions.

• X, Y - yields Xi, Yi. Association is left to right. X and Yare
expressions.

Options:

t causes the output to be titled from the vector on the
standard input.

v causes function expansions to be echoed.

ceil - ceiling

Zi := smallest integer greater than Yi

cusum - cumulative sum

i

Zi := ~ Yj
j=l

exp - exponential function

floor - floor

3-14

STATISTICAL NETWORK

Zj := largest integer less than Yj

gamma - gamma function

Zj := r(Yj)

list [-dstring] - list vector elements

Zj := Yj

If d is not specified, then any character that is not
part of a number is a delimiter.
If d is specified, then the white space characters
(space, tab, and new-line) plus the character(s)
of string are delimiters.
Only numbers surrounded by delimiters are listed.

log [-hi] - logarithmic function

Zj := 10gb Yi

By default, h := e (e ~2.71828. ..)

mod [-mi] - modulus

Zj := Yj modulo m

By default, m := 2

pair [-F/ile xl1 - pair elements

3-15

STATISTICAL NETWORK

F is a vector X, X l:j, and x is the number of elements
per group from X.
Let % denote modulo and I denote integer division, then

{

Y (i /(x +1»
Zi:= x (i -i /(x +1»)

if i %(x +1) 0

if i % (x +1) ~ 0

rank(Z) = (x +l)minimum (k ,j Ix)

If F is not specified, then X comes from the standard
input. If both X and Y come from the standard input, X
precedes Y.

By default, x := 1

power [-pi] - raise to a power

By default, p := 2

root [-rf] - extract a root

By default, r := 2

round [-pi s11 - round off values

if S is specified, then
Zi := Yi rounded up to s significant digits,

else if p is specified, then

3-16

Zi := Yi rounded up to p digits beyond the decimal
point.

STATISTICAL NETWORK

By default, p := °
sHine [-if ni s1] - generate a line, given a slope and intercept

Zj = S Yi + i

if n is specified, then

Y == 0, 1, 2, 3, ... , n .

By default, i := 0, s := 1

sin - sine function

spline [-options] - interpolate smooth curve

Yand Z are sequences of X,Y coordinates
(like that produced by pair).

For more information about spline, see spline(1) in the UNIX
System User Reference Manual.

subset [-af hf Ffile ii If ni np pf si tI1 - generate a subset

Z consists of elements selected from Y. Selection occurs as
follows:

Let C(w) be true if

(w>a or w<b or w=p) and w~I

is true. If neither a, b, nor p are specified, C(w) is true if
w ~I is true.

3-17

STATISTICAL NETWORK

CASE 1 - nl or np not specified.

If F is specified, then
else

keYi = Xi
keYi = Yi

For r = s, s + i, s + 2i, '" with r ~ t,
Yr becomes an element of Z if C(keYr) is true.

By default, i := 1, s := 1, t := 32767.

CASE 2 - np is specified.

F is a vector X, xI:j.

For r = xl, X2, ... , Xj,

Yr becomes an element of Z if C(Yr) is true.

CASE 3 - nl is specified.

F is a vector X, X l:j .

For r ~ XI,X2, "', Xj,

Yr becomes an element of Z if C(Yr) is true.

For cases 2 and 3, if F is not specified, then the standard
input is used for X. Either X or Y may come from the
standard input, but not both.

3.2 Summarizers

Summarizers have the form

Yin summarize Vout

where, again, Yin is a vector Y, Yl:kI and Vout is a vector Z, Zl:m'

For many summarizers, rank(Z) = 1.

bucket [-ai ci Ffile hi ii If nI1 - break into buckets

Y must be a sorted vector.
Z consists of odd elements (parenthesized) which are bucket
limits and even elements which are bucket counts.

The count is the number of elements from Y greater than the

3-18

STATISTICAL NETWORK

lower limit (greater than or equal to for the lowest limit), and
less than or equal to the higher limit. If specified, the limit
values are taken from F. Otherwise the limits are evenly spaced
between 1 and h with a total of n buckets. If n is not specified,
the number of buckets is determined as follows:

h - 1 if i is specified
i

n - k
if a is specified ---

a + 1
1 + log2k if neither a nor i are specified.

c specifies the number of columns in the output.

By default:
c:= 5
h := largest element of Y
1 := smallest element of Y

cor [-Ffile] - correlation coefficient

If F is a vector X, X l:k ,
k

~Xi
_ i=l

let x = -. -- and
k k

~Yi
_ i=l
Y = -- then

k '

k

~ (Xj-X)(Yi-Y)
i=l

X and Y must have the same rank.
If F is not specified, the standard input is used for X.
If both X and Y come from the standard input,
X precedes Y.

3-19

STATISTICAL NETWORK

hilo [-h I 0 ox oy] - high and low values

Zl := lowest value across all input vectors

Z2 := highest value across all input vectors

Options to control output:

h Only output high value.
I Only output low value.
o Output high, low values in option form (suitable

for plot).
ox Output high, low values with "x" prefixed.
oy Output high, low values with "y" prefixed.

Ireg [-Flile i 0 s] - linear regression

k k

~Xi ~Yi
_ i=l _ i=l

If F is a vector X, X l:k, let x = -k- and Y = -k-' then

(intercept)

and

k

~XiYi
i=l
--k- - xy

Z2 := --k:-----

~Xi2
j=l -2
-k--X

X and Y must have the same rank.
If F is not specified, then

X == 0, 1, 2, ... , k

3-20

(slope)

STATISTICAL NETWORK

Options to control output:

i Only ou tpu t the intercept.
o Output the slope and intercept in option form

(suitable for sHine).
s Only output the slope.

mean [-ff ni pf'J - (trimmed) mean

k

~ Yi
i=l

zl:=-k-

Y may be trimmed by

(l/f) k
pk
n

By default, n :=0

elements from each end,
elements from each end, or
elements from each end.

point [-ff ni pf s] - empirical cumulative density function point

Zl := linearly interpolated Yvalue corresponding to the

100 (l/f) percent point, the
100 p percent point, or the
nth elemen t.

Negative option values are taken from the high end of Y.
Option s implies Y is sorted.

By default, p := .5 (median)

prod - product

k

Zl:= IT Yi
i=l

qsort [-ell - quicksort

3-21

STATISTICAL NETWORK

Zi := ith smallest element of Y.

By default, c := 5

rank - rank

Zl := number of elements in y.

total - sum

k

Zl:= ~ Yi
i=l

var - variance

k

~(Yi - y)2
i=l

Z 1 := ---:-----
k - 1

3.3 Translators

Translators have the form

Fin translate Fout

where Fin may be a vector or a GPS depending upon the translator.
F out is a GPS. A GPS is a format for storing a picture. A picture is
defined in a Cartesian plane of 64K points on each axis. The plane,
or universe, is divided into 25 square regions numbered 1 to 25 from
the lower left to the upper right. Various commands exist that can
display and edit a GPS. For more information, see graphics(l) in
the UNIX System User Reference Manual and UNIX System
Graphics Overview.

bar [-a b f g ri wi xfxa yfya ylfyhf] - build a bar chart

Fin is a vector, each element of which defines the height of a bar.
By default, the x-axis will be labeled with positive integers

3-22

STATISTICAL NETWORK

beginning at 1; for other labels, see label.

Options:

a
b

f
g
ri

wi

xf(yf)

xa (ya)
ylf
yhf

Suppress axes.
Plot bar chart with bold weight lines, otherwise
use medium.
Do not build a frame around plot area.
Suppress background grid.
Put the bar chart in GPS region i, where 1 IS

between 1 and 25 inclusive. The default is 13.
i is the ratio of the bar width to center-to-center
spacing expressed as a percentage. Default is 50,
giving equal bar width and bar space.
Position the bar chart in the GPS universe with
x-origin (y-origin) at f.
Do not label x-axis (y-axis).
f is the y-axis low tick value.
f is the y-axis high tick value.

hist [-a b f g ri xfxa yfya ylfyhf] - build a histogram

F in is a vector (of the type produced by bucket) of odd rank,
with odd elements being limits and even elements being bucket
counts.

Options:

a
b

f
g
ri

xf(yf)

xa (ya)
ylf
yhf

Suppress axes.
Plot histogram with bold weight lines, otherwise
use medium.
Do not build a frame around plot area.
Suppress background grid.
Put the histogram in GPS region i, where i is
between 1 and 25 inclusive. The default is 13.
Position the histogram in the GPS universe with
x-origin (y-origin) at f.
Do not label x-axis (y-axis).
f is the y-axis low tick value.
f is the y-axis high tick value.

3-23

STATISTICAL NETWORK

label [-b c Ffile h p ri x xu y yr] - label the axis of a GPS file

Fin is a GPS of a data plot (like that produced by hist, bar, and
plot). Each line of the label file is taken as one label. Blank
lines yield null labels. Either the GPS or the label file, but not
both, may come from the standard input.

Options:

b Assume the input is a bar chart.
c Retain lower case letters in labels, otherwise all

letters are upper case.
Ffile file is the label file.
h Assume the input is a histogram.
p Assume the input is an x-y plot. This is the

default.
ri Labels are rotated i degrees. The pivot point is

the first character.
x Label the x-axis. This is the default.
xu Label the upper x-axis, i.e., the top of the plot.
y Label the y-axis.
yr Label the right y-axis, i.e., the right side of the

plot.

pie [-b 0 p pni ppi ri v xi Yl1 - build a pie chart

F in is a vector with a restricted format. Each input line
represents a slice of pie and is of the form:

[< i e f ccolor >] value [label]

with brackets indicating optional fields. The control field options
have the following effect:

i

e

f

ccolor

3-24

The slice will not be drawn, though a space will
be left for it.
The slice is "explod~d" or moved away from the
pie.
The slice is filled. The angle of fill lines depends
on the color of the slice.
The slice is drawn in color rather than the
default black. Legal values for color are b for

STATISTICAL NETWORK

black, r for red, g for green, and u for blue.

The pie is drawn with the value of each slice printed inside and
the label printed outside.

Options:

b

o
p
pni

ppi
ri

v
xi (yi)

Draw pie chart in bold weight lines, otherwise
use medium.
Output values around the outside of the pie.
Output value as a percentage of the total pie.
Output value as a percentage, but total of
percentages equals i rather than 100. The option
pn100 is equivalent to p.
Only draw i percent of a pie.
Put the pie chart in region i, where i is between 1
and 25 inclusive. The default is 13.
Do not output values.
Position the pie chart in the GPS universe with
x-origin (y-origin) at i.

plot [-a b cstring d f Ffile g m ri xfxa xhfxifxlfxni xt
yfyayhfyifylfyni yt] - plot a graph

Fin is a vector(s) which contains the y values of an x-y graph.
Values for the x-axis come from F. Axis scales are determined
from the first vector plotted.

Options:

a Suppress axes.
b Plot graph with bold weight lines, otherwise use

medium.
cstring The character(s) of string are used to mark

points. Characters from string are used, in order,
for each separately plotted graph included in the
plot. If the number of characters in string is less
than the number of plots, the last character will
be used for all remaining plots. The m option is
implied.

d Do not connect plotted points, implies option m.
f Do not build a frame around plot area.

3-25

STATISTICAL NETWORK

Ffile Use file for x-values, otherwise the positive
integers are used. This option may be used more
than once, causing a different set of x-values to
be paired with each input vector. If there are
more input vectors than sets of x-values, the last
set applies to the remaining vectors.

g Suppress the background grid.
m Mark the plotted points.
ri Put the graph in GPS region i, where i is between

1 and 25 inclusive. The default is 13.
xf (yf) Position the graph in the GPS universe with x-

origin (y-origin) at f.
xa (ya) Omit x-axis (y-axis) labels.
xhf (yhf) f is the x-axis (y-axis) high tick value.
xif (yif) f is the x-axis (y-axis) tick increment.
xlf (ylf) f is the x-axis (y-axis) low tick value.
xni (yni) i is the approximate number of ticks on the x

axis (y-axis).
xt (yt) Omit x-axis (y-axis) title.

title [-b c lstring vstring ustring] - title a vector or G PS

Fin can be either a GPS or a vector with F out being of the same
type as Fin. Title prefixes a title to a vector or appends a title
to a GPS.

Options apply as indicated:

3-26

b
c

lstring
ustring
vstring

Make the G PS title bold.
Retain lower case letters in title, otherwise all
letters are upper case.
For a GPS, generate a lower title := string.
For a GPS, generate an upper title := string.
For a vector, title := string.

STATISTICAL NETWORK

3.4 Generators

Generators have the form

generate Vout

where Vout is a vector Z, Zl:k. All generators have a ci option where
c specifies the number of columns per line in the output. By default,
c:= 5.

gas [-if ni sf ttl - generate additive sequence

Z is constructed as follows:

Zj+1 :=
{

Zj +i if I Zj I ~ t
Z 1 otherwise

rank(Z) = n.

By default, i := 1, n := 10, s := 1, t := 00

prime [-hi Ii n11 - generate prime numbers

The elements of Z are consecutive prime numbers with

rank(Z) ~n.

By default, n := 10, 1 := 2, h := 00.

rand [-hf If mf ni s11 - generate random sequence

3-27

STATISTICAL NETWORK

The elements of Z are random numbers generated by a
multiplicative congruential generator with s acting as a
seed, such that

If m is specified, then

h = m + 1

rank(Z) = D.

By default, h := 1, 1 := 0, D := 10, s := 1.

3-28

STATISTICAL NETWORK

4. Examples

4.1 Example 1:

PROBLEM

Calculate the total value of an investment held for a number
of years at an interest rate compounded annually.

SOLUTION

Principal= 1000
echo Total return on $Principal units compounded annually
echo "rates:\t\t\c"; gas -s.05,t.15,i.03 I tee rate
for Years in 1 3 5 8
do

echo "$Years year(s):\t\c"; af "$Principal*(I+rate)A$Years'
done

Total return on 1000 units compounded annually
rates: 0.05 0.08 0.11
1 year(s): 1050 1080 1110
3 year(s): 1157.62 1259.71 1367.63
5 year(s): 1276.28 1469.33 1685.06
8 year(s): 1477.46 1850.93 2304.54

NOTES

0.14
1140
1481.54
1925.41
2852.59

Notice the distinction between vectors and constants as
operands in the expression to af. The shell variables
$Principai and $Years are constants to af, while the file rate
is a vector. Af executes the expression once per element in
rate.

3-29

STATISTICAL NETWORK

4.2 Example 2:

PROBLEM

Given are three ordered vectors (A, B, and C) of scores from
a number of tests. Each vector is from one test-taker, each
element in a vector is the score on one test. There are
missing scores in each vector indicated by the value -1.
Generate three new vectors containing scores only for those
tests where no data is missing.

SOLUTION

3-30

echo Before:
gas -n'rank A' I tee N I af "label,A,B,C"

for i in NBC A
do subset -FA,I-l $i >s$i; done
for i in N A C B
do subset - FsB,I-l s$i I yoo s$i; done
for i in N A BC
do subset -FsC,I-l s$i I yoo s$i; done

echo "\nAfter:"
af" sN,sA,sB,sC"

Before:
1 5
2 7
3 -1
4 10
5 6
6 5
7 -1
8 -1
9 3
10 6
11 7

6
10
10
-1
5
7
7
-1
-1
10
5

-1
10
9
8
-1
5
8
8
8
10
7

STATISTICAL NETWORK

After:
2 7 10 10
6 5 7 5
10 6 10 10
11 7 5 7

NOTES

The approach is to eliminate those elements in all vectors
that correspond to -1 in the base vector. Each of the three
vectors takes a turn at being the base. It is important that
the base be subsetted last. The command yoo (see gutil(l) in
the UNIX System User Reference Manual) takes the output of
a pipeline and copies it into one of the files used in the
pipeline. This cannot be done by redirecting the output of the
pipeline as this would cause a concurrent read and write on
the same file.

The printing of the "Before" matrix illustrates a useful
property of af. The first name in an expression that does not
match any name in the present working directory is a
reference to the standard input. In this example, label
references the input coming through the pipe.

3-31

STATISTICAL NETWORK

4.3 Example 3:

PROBLEM

Generate a bar chart of the percent of execution time
consumed by each routine in a program.

SOLUTION

prof I cut -cl-15 I sed -e Id -e "/O.O/d" -e" s(*11" >P
echo These are the execution percentages; cat P
title P -v" execution time in percent "'I bar -xa -yIO,

yhlOO I label -br-45,FP I td

These are the execution percentages
_fork 32.9
_creat 14.3
_sbrk 14.3
_read 14.3
_open 14.3
_prime 9.9

NOTES

3-32

Prof is a UNIX operating system command that generates a
listing of execution times for a program (see prof(l». Cut
and sed are used to eliminate extraneous text from the
output of prof. (It is because verbiage can get in the way
that stat nodes say very little.) Notice that P is a vector to
title while it is a text file to cat and label.

Figure 3-4 shows the output of these commands.

STATISTICAL NETWORK

98

91

84

77
t-z w 70 (.)
a:
w
0.. 83
z
w 58
E
t- 49
z
0

42
t-
::;:)
(.)

35 w
>< w

28

21

14

7

0

Figure 3-4. Bar Chart Showing Execution Profile

3-33

STATISTICAL NETWORK

4.4 Example 4:

PROBLEM

Plot the relationship between the execution time of a
program and the number of processes in the process table.

SOLUTION

The first program generates the performance data

for i in' gas -nI2'
do

done

ps -ae I wc -1 »Procs&
time prime -nl000 >/dev/null 2»Times
sleep 300

The second program analyzes and plots the data

for i in real user sys
do
grep $i Times I sed" s/$ ill' , I

awk -F: "{ if(NF==2) print \$1*60+\$2; else
print} "I title -v"$i time in seconds" >$i

sHine -' lreg -o,FProcs $i 'Procs >$i.fit
done
title -v "number of processes" Procs I yoo Procs

plot -dg,FProcs real -r12 >R12
plot -ag,FProcs real.fit -r12 »RI2
plot -dg,FProcs sys -r13 >R13
plot -ag,FProcs sys.fit -r13 »RI3
plot -dg,FProcs user -rS >RS
plot -ag,FProcs user.fit -rS »RS
ged R12 R13 R8

NOTES

3-34

The performance data is the execution time, as reported by
the UNIX operating system time command, to generate the

STATISTICAL NETWORK

first 1000 prime numbers. Times outputs three times for
each run:

• The time in system routines

• The time in user routines

• Total real time.

The output of the time command is saved in the file Times.
Each of these types of time is treated separately by the
analysis program.

In the file Procs are the number of processes running on the
system during each execution of prime. The short awk
program converts "minutes:seconds" format to "seconds."
Lreg does a linear regression of the time vectors on the size
of the process table. SHine generates a line based on the
parameters from the regression. One plot is generated for
each type of time. Each plot is put into a different region so
that they can be displayed and manipulated simultaneously in
ged.

Figure 3-5 shows the output of these commands.

3-35

STATISTICAL NETWORK

en 110
0 en
z 100 0
0 z
t.l 90 0
w t.l
en BO

w
en

z
I-t 70 z

I-t
w 60 E w
I-t

50
E I-t

...J 40 < en
w 30 >-
0:: en

20 0

10
10 15 20 25 30 35 40

NUMBER OF PROCESSES

en
0
z
0
t.l
W
en
Z
I-t

w
E
I-t
0::
w
en
::l

2.4
2.2

2
1.B
1.6
1.4
1.2

1
O.B
0.6
0.4

10

B.4

B.2

B

7.B

7.6

7.4

7.2

15 20 25 30 35 40
NUMBER OF PROCESSES

0
0 0

0

0

00

0

15 20 25 30 35 40
NUMBER OF PROCESSES

Figure 3-5. Relationship Between Execution Time and
Number of Processes

3-36

Chapter 4

GRAPHICS EDITOR

PAGE

1. Chapter Introduction. 4-1

2. Commands... 4-2
3. Command Summary. .. 4-20

4. Some Examples of What Can Be Done. .. 4-24

Chapter 4

GRAPHICS EDITOR

1. Chapter Introduction

The graphics editor, (ged), is an interactive graphical editor used to
display, edit, and construct drawings on TEKTRONIX 4010 series
display terminals. The drawings are represented as a sequence of
objects in a token language known as GPS (graphical primitive
string). A G PS is produced by the drawing commands in the UNIX
System Graphics such as vtoc and plot, as well as by ged itself.

Drawings are built from objects consisting of lines, arcs, and text.
Using the editor, the objects can be viewed at various magnifications
and from various locations. Objects can be created, deleted, moved,
copied, rotated, scaled, and modified.

The examples in this tutorial illustrate how to construct and edit
simple drawings. Try them to become familiar with how the editor
works, but keep in mind that ged is intended primarily to edit the
output of other programs rather than to construct drawings from
scratch.

As for notation, literal keystrokes are printed in boldface. Meta
characters are also in boldface and are surrounded by angled
brackets. For example, <cr> means return and <sp> means space.
In the examples, output from the terminal is printed in Roman
(normal) type. In-line comments are in Roman and are surrounded
by parentheses. Section 2 contains an introduction to the commands
understood by the ged. A summary of these editor commands and
options is given in Section 3 under Command Summary.

4-1

GRAPHICS EDITOR

2. Commands

To start, it is assumed that while logged in at a display terminal the
graphics environment (as described in graphics(lG) in the UNIX
System User Reference Manual) has been successfully entered.

Note: In order for ged to work properly, the
standard strap options need to be set on the
terminal. See Section 5.2 under Administrative
Information for these standard settings.

To enter ged type:

ged<cr>

After a moment the screen should be clear except for the ged
prompt, *, in the upper left corner. The * indicates that ged is ready
to accept a command.

Each command passes through a sequence of stages during which you
describe what the command is to do. All commands pass through a
subset of these stages:

1. Command line

2. Text

3. Points

4. Pivot

5. Destination

As a rule, each stage is terminated by typing <cr>. The <cr> for
the last· stage of a command triggers execution.

4-2

GRAPHICS EDITOR

2.1 Command Line

The simplest commands consist only of a command line. The
command line is modeled after a conventional command line in the
shell. That is

command name [-option(s)] [filename]<cr>

A question mark (?) is an example of a simple command. It lists the
commands and options understood by ged. To generate the list, type

(type a question mark followed by a return)

A command is executed by typing the first character of its name.
The ged will echo the full name and wait for the rest of the
command line. For example, e references the erase command. As
erase consists only of stage 1, typing <cr> causes the erase action
to occur. Typing

*<rubout>

after a command name and before the final <cr> for the command
aborts the command. Thus, while

*erase<cr>

erases the display screen,

*erase<rubout>

brings the editor back to the ged prompt, *.

Following the command name, options may be entered. Options
control such things as the width and style of lines to be drawn or the
size and orientation of text. Most options have a default value that
applies if a value for the option is not specified on the command line.
The set command allows examination and modification that the
default values. Type

4-3

GRAPHICS EDITOR

*set<cr>

to see the current default values.

The option value is one of three types: integer, character, or Boolean.
Boolean values are represented by + (for true) and - (for false). A
default value is modified by providing it as an option to the set
command. For example, to change the default text height to 300
units, type

*set - h300<cr>

Arguments on the command line, but not the command name, may be
edited using the erase and kill characters from the shell. This
applies whenever text is being entered.

2.2 Constructing Graphical Objects

Drawings are stored as a GPS in a display buffer internal to the
editor. Typically, a drawing in ged is composed of instances of three
graphical primitives: arcs, Jines, and text.

2.3 Generating Text

To put a line of text on the display screen use the Text command.

First enter the command line (stage 1):

*Text<cr>

Next enter the text (stage 2):

a line of text<cr>

And then enter the starting point for the text (stage 3).

4-4

GRAPHICS EDITOR

<position cursor><cr>

Positioning of the graphic cursor is done either with the thumbwheel
knobs on the terminal keyboard or with an auxiliary joystick. The
<cr> establishes the location of the cursor to be the starting point
for the text string. The Text command ends at stage 3, so this <cr>
initiates the drawing of the text string.

The Text command accepts options to vary the angle, height, and line
width of the characters, and to either center or right justify the text
object. The text string may span more than one line by escaping the
<cr> (i.e., \ <cr» to indicate continuation. To illustrate some of
these capabilities, try the following:

*Text -r<cr> (right justify text)
top\<cr>
right<cr>
<position cursor><cr>
*Text -a90<cr> (rotate text 90 degrees)
lower\<cr>
left<cr>
<position cursor><cr> (pick a point below and left of

the previous point)

Results of these commands are shown in Figure 4-1.

L
(1)
~ ~ o (1)

top

right

Figure 4-1. Generating Text Objects

4-5

GRAPHICS EDITOR

2.4 Drawing Lines

The Lines command is used to construct objects built from a
sequence of straight lines. It consists of stages 1 and 3. Stage 1 is
straightforward:

* Lines options<cr>

The Lines command accepts options to specify line style and line
width.

Stage 3, the entering of points, is more interesting. Points are
referenced either with the graphic cursor or by name. We have
already entered a point with the cursor for the Text command. For
the Lines command it is more of the same. As an example, to build a
triangle, type

*Lines<cr>
<position cursor><sp> (locate the first point)
<position cursor><sp> (the second point)
<position cursor><sp> (the third point)
<position cursor><sp> (back to the first point)
<cr> (terminate points, draw triangle)

Results of these commands are shown in Figure 4-2.

second pOint

first point entered

fourth pOint third pOint

Figure 4-2. Building a Triangle

4-6

GRAPHICS EDITOR

Typing <sp> enters the location of the crosshairs as a point. Ged
identifies the point with an integer and adds the location to the
current point set. The last point entered can be erased by typing #.
The current point set can be cleared by typing @. On receiving the
final <cr> the points are connected in numerical order.

2.5 Accessing Points by N arne

The points in the current point set may be referenced by name using
the $ operator. For instance, $n references the point numbered n. By
using $ the triangle above can be redrawn by entering:

*Lines<cr>
<position cursor><sp>
<position cursor><sp>
<position cursor><sp>
$O<cr> (reference point 0)
<cr>

At the start of each command that includes stage 3, points, the
current point set is empty. The point set from the previous command
is saved and is accessible using the. operator. The. swaps the points
in the previous point set with those in the current set. The =
operator can be used to identify the current points. To illustrate, use
the triangle just entered as the basis for drawing a quadrilateral.

*Lines<cr>
(access the previous set)
(identify the current points)

(erase the last point)
<position cursor><sp> (add a new point)
$O<cr> (close the figure)
<cr>

Resul ts of these commands are shown in Figure 4~3.

Individual points from the previous point set can be referenced by
using the. operator with $. The following example builds a triangle
that shares an edge with the quadrilateral.

4-7

GRAPHICS EDITOR

*Lines<cr>
$.I<cr> (reference point 1 from the previous point set)
$.2<cr> (reference point 2)
<position cursor><sp> (enter a new point)
$O<cr> (or $.1, to close the figure)
<cr>

Results of these points are shown in Figure 4-4.

Figure 4-3. Accessing the Previous Point Set

4-8

point 1 from
previous pOint set

GRAPHICS EDITOR

new pOint

point 2 from
previous point set

Figure 4-4. Referencing Points from Previous Point Set

4-9

GRAPHICS EDITOR

A point can also be given a name. The> operator permits an upper
case letter to be associated with a point just entered. A simple
example is:

*Lines<cr>
<position cursor><sp> (enter a point)
>A<cr> (name the point A)
<position cursor><sp>
<cr>

In commands that follow, point A can be referenced using the $
operator, as in:

*Lines<cr>
$A<cr>
<position cursor><sp>
<cr>

2.6 Drawing Curves

Curves are interpolated from a sequence of three or more points. The
Arc command generates a circular arc given three points on a circle.
The arc is drawn starting at the first point, through the second point,
and ending at the third point. A circle is an arc with the first and
third points coincident. One way to draw a circle is thus:

*Arc<cr>
<position cursor><sp>
<position cursor><sp>
$O<cr>
<cr>

2.7 Editing Objects

2.7.1 Addressing Objects

An object is addressed by pointing to one of its handles. All objects
have an object-handle. Usually the object-handle is the first point

4-10

GRAPHICS EDITOR

entered when the object was created. The objects command marks
the location of each object-handle with an O. For example, to see the
handles of all the 0 bj ects on the screen, type

*objects -v<cr>

Some objects, Lines for example, also have point-handles. Typically
each of the points entered when an object is constructed becomes a
point-handle. (An object-handle is also a point-handle.) The points
command marks each of the point-handles.

A handle is pointed to by including it within a defined-area. A
defined-area is generated either with a command line option or
interactively using the graphic cursor. As an example, to delete one
of the objects that was created on the screen, type

* Delete<cr>
<position cursor><sp> (above and to the left of some

o bj ect-handle)
<position cursor><sp> (below and to the right of the

o bj ect-handle)
<cr> (the defined-area should include the

o bj ect-handle)
<cr> (if all is well, delete the object)

The defined-area is outlined with dotted lines. The reason for the
seemingly extra <cr> at the end of the Delete command is to
provide an opportunity to stop the command (using <rubout» if the
defined-area is not quite right. Every command that accepts a
defined-area will wait for a confirming <cr>. The new command
can be used to get a fresh copy of the remaining objects.

Defined-areas are entered as points in the same way that objects are
created. Actually, a defined-area may be generated by giving
anywhere from 0 to 30 points. Inputting zero points is particularly
useful to point to a single handle. It creates a small defined-area
about the location of the terminating <cr>. Using a zero point

4-11

GRAPHICS EDITOR

defined-area, the Delete command would be

* Delete<cr>
<position cursor> (center crosshairs on the object-handle)
<cr> (terminate the defined-area)
<cr> (delete the object)

A defined-area can also be given as a command line option. For
example, to delete everything in the display buffer give the universe
option (u) to the Delete command. Note the difference between the
commands Delete -universe and erase.

2.7.2 Changing the Location of an Object

Objects are moved using the Move command. Create a circle using
Arc, then move it as follows:

*Move<cr>
<position cursor><cr> (centered on the object-handle)
<cr> (this establishes a pivot, marked with

an asterisk)
<position cursor><cr> (this establishes a destination)

The basic move operation relocates every point in each object within
the defined area by the distance from the pivot to the destination. In
this case, the pivot was chosen to be the object-handle, so effectively
the object-handle was moved to the destination point.

2.7.3 Changing the Shape of an Object

The Box command is a special case of generating lines. Given two
points, it creates a rectangle such that the two points are at opposite
corners. The sides of the rectangle lie parallel to the edges of the
screen. To draw a box, type

*Box<cr>
<position cursor><sp>
<position cursor><cr>

4-12

GRAPHICS EDITOR

The Box command generates point-handles at each vertex of the
rectangle. Use the points command to mark the point-handles. The
shape of an object can be altered by moving point-handles. The next
example illustrates one way to double the height of a box (shown in
Figure 4-5).

* Move -p+<cr>
<position cursor><sp>

<position cursor><cr>

<position cursor><cr>
<position cursor><cr>

two pOints for Box

two pOints for defined - area

(left of the box, between the
top and bottom edges)
(right of the box, below the
bottom edge)
(on the top edge)
(directly below on the bottom
edge)

pivot

destination

Figure 4-5. Growing a Box

4-13

GRAPHICS EDITOR

When the points flag (p) is true, operations are applied to each
point-handle addressed. In this example, the points flag was set to
true using the command-line option -p+ causing each point-handle
within the defined-area to be moved the distance from the pivot to
the destination. If p was false, only the object-handle would have
been addressed.

2.7.4 Changing the Size of an Object

The size of an object can be changed using the Scale command. The
Scale command scales objects by changing the distance from each
handle of the object to the pivot by a factor. Put a line of text on the
screen and try the following Scale commands (Figure 4-6).

*Scale -f200<cr>
<position cursor><cr>
<position cursor><cr>
<cr>

*Scale -f50<cr>

(factor is in percent)
(point to object-handle)
(set pivot to rightmost character)

.<cr> (reference the previous defined-area)
<position cursor><cr> (set pivot above a character

near the middle)
<cr>

*------ pivot for Scale ·f50

A LINE OF TEXT
[AI LINE [ilFinJ6:tXfext -- pivot for Scale ·f200

4-14

~
original line

of text

Figure 4-6. Scaling Text

GRAPHICS EDITOR

A useful insight into the behavior of scaling is to note that the
position of the pivot does not change. Also observe that the defined
area is scaled to preserve its relationship to the graphical objects.

The size of objects can also be changed by moving point-handles.
Generate a circle, this time using the Circle command:

*Circle<cr>
<position cursor><sp>
<position cursor><cr>

(specify the center)
(specify a point on the circle)

The Circle command generates an arc with the first and third point
at the point specified on the circle. The second point of the arc is
located 180 degrees around the circle. One way to change the size of
the circle is to move one of the point-handles (using Move -p+).

The size of text characters can be changed via a third mechanism.
Character height is a property of a line of text. The Edit command
allows changing character height as follows:

*Edit -hheight<cr> (height is in universe units,
see Section 2.8 View Command)

<position cursor><cr> (point to the object-handle)
<cr>

2.7.5 Changing the Orientation of an Object

The orientation of an object can be altered using the Rotate
command. The Rotate command rotates each point of an object
about a pivot by an angle. Try the following rotations on a line of
text (Figure 4-7).

4-15

GRAPHICS EDITOR

*Rotate -a90<cr>
<position cursor><cr>
<position cursor><cr>

<cr>

*Rotate -a-90<cr>

(angle is in degrees)
(point to object-handle)
(set pivot to rightmost
character)

.<cr> (reference previous defined-area)
<position cursor><cr> (set pivot to a character near

the middle)
<cr>

original text

~ pivot for Rotate -a90

ANOTHER LINE OF TEl!!---------
w
t-

U.
o
w

ANOTHER CiNE OF TEXT

i~Pivot for Rotate -a-90

Figure 4-7. Rotating Text

2.7.6 Changing the Style and Width of Lines

In the current editor, objects can be drawn from lines in any of five
styles: solid (so), dashed (da), dot-dashed (dd), long-dashed (ld) and
three widths narrow (n), medium (m), and bold (b). Style is
controlled by the s option and width by w. The next example creates
a narrow dotted line:

*Lines -wn,sdo<cr>
<position cursor><sp>
<position cursor><sp>
<cr>

4-16

GRAPHICS EDITOR

Using the Edit command, the line can be changed to bold dot-dashed:

*Edit -wb,sdd<cr>
$.O<cr> (reference the object-handle of the previous line)
<cr> (complete the defined-area)
<cr>

2.8 View Commands

All of the objects drawn lie within a Cartesian plane, 65,534 units on
each axis, known as the universe. Thus far, only a small portion of
the universe has been displayed on the screen. The command

*view -u <cr>

displays the entire universe.

2.8.1 Windowing

A mapping of a portion of the universe onto the display screen is
called a window. The extent or magnification of a window is altered
using the zoom command. To build a window that includes all of the
o bj ects drawn, type

*zoom<cr>
<position cursor><sp>

<position cursor><cr>

<cr> (verify)

(above and to the left of all
the object)
(below and to the right, also
end points)

Zooming can be either in or out. Zooming in, as with a camera lens,
increases the magnification of the window. The area outlined by
points is expanded to fill the screen. Zooming out decreases
magnification. The current window is shrunk so that it fits within
the defined-area. The direction of the zoom is controlled by the sense
of the out flag; 0 true means zoom out.

The location of a window is altered using the view command. View
moves the window so that a given point in the universe lies at a given

4-17

GRAPHICS EDITOR

location on the screen.

*view<cr>
<position cursor><cr>
<position cursor><cr>

(locate a point in the universe)
(locate a point on the screen)

View also provides access to several predefined windows. As seen
earlier, view -u displays the entire universe. The view -h command
displays the home-window. The home-window is the window that
circumscribes all of the objects in the universe. The result is similar
to that of the example using zoom given earlier.

Lastly, the view command permits selection of a window on a
particular region. The universe is partitioned into 25 equal-sized
regions. Regions are numbered from 1 to 25 beginning at the lower
left and proceeding toward the upper right. Region 13, the center of
the universe, is used as the default region by drawing commands such
as plot(l) and vtoc(l).

2.9 Other Commands

2.9.1 Interacting with Files

The write command saves the contents of the display buffer by
copying it to a file:

*write filename<cr>

The contents of filename will be a GPS, thus it can be displayed
using any of the device filters (e.g., td (1)) or read back into ged.

A GPS is read into the editor using the read command:

*read filename<cr>

The G PS from filename is appended to the display buffer and then
displayed. Because read does not change the current window, only
some (or none) of the objects read may be visible. A useful command

4-18

sequence to view everything read is

*read -e- filename<cr>
*view - h <cr>

GRAPHICS EDITOR

The display function of read is inhibited by setting the echo flag to
false; view -h windows on and displays the full display buffer.

The read command may also be used to input text files. The form is

read [-option(s)] filename<cr>

followed by a single point to locate the first line of text. A text
object is created for each line of text from filename. Options to the
read command are the same as those for the Text command.

2.9.2 Leaving the Editor

The quit command is used to terminate an editing session. As with
the text editor ed, quit responds with ? if the internal buffer has
been modified since the last write command. A second quit
command forces exit.

2.10 Other Useful Information

2.10.1 One-Line UNIX System Escape

As in ed, the! provides a temporary escape to the shell.

2.10.2 Typing Ahead

Most programs under the UNIX operating system allow input to be
typed before the program is ready to receive it. In general, this is
not the case with ged; char-acters typed before the appropriate
prompt are lost.

4-19

GRAPHICS EDITOR

2.10.3 Speeding up Things

Displaying the contents of the display buffer can be time consuming,
particularly if. much text is involved. The wise use of two flags to
control what gets displayed can make life more pleasant:

• The echo flag controls echoing of new additions to the display
buffer .

• The text flag controls whether text will be outlined or drawn.

3. Command Sum~ary
In the summary, characters actually typed are printed in boldface.
Command stages are printed in italics. Arguments surrounded by
brackets (e.g., [...]) are optional. Parentheses surrounding arguments
separated by "or" means that exactly one of the arguments must be
given.

For example, the Delete command accepts the arguments -universe,
-view, and points.

3.1 Construct Commands

Arc [-echo,style,width] points

Box [-echo,style,width] points

Circle [-echo,style,width] points

Hardware [-echo] text points

Lines [-echo,style,width] points

Text [-angle,echo,height,midpoint,rightpoint,
text,width] text points

4-20

GRAPHICS EDITOR

3.2 Edit Commands

Delete (- (universe or view) or points)

Edit [-angle,echo,height,style,width] - (universe or
view) or poin ts)

Kopy [-echo,points,x] points pivot destination

Move [-echo,points,x] points pivot destination

Rotate [-angle,echo,kopy,x] points pivot destination

Scale [-echo,factor,kopy,x] points pivot destination

3.3 View Commands

coordinates points

erase

new

objects (- (universe or view) or points)

points (- (labelled-points or universe or view) or points)

view (- (home or universe or region) or [-x] pivot
destination)

x [-view] points

zoom [-out] points

3.4 Other Commands

quit

read [- angle,echo,heigh t,mid poin t,righ tpoin t, text,
width] filename [destination]

4-21

GRAPHICS EDITOR

set

write

!command

?

3.5 Options

[- angle,echo,factor ,heigh t,kopy ,midpoin t,
points,rightpoint,style, text, width,x]

filename

Options specify parameters used to construct, edit, and view
graphical objects. If a parameter used by a command is not specified
as an option, the default value for the parameter will be used. The
format of command options is

-option [,option]

where option is keyletter[value]. Flags take on the values of true or
false indicated by + and -, respectively. If no value is given with a
flag, true is assumed. Object options are

anglen

echo

factorn

heightn

kopy

midpoint

4-22

Specify an angle of n degrees.

When true, changes to the display buffer will be
echoed on the screen.

Specify a scale factor of n percent.

Specify height of text to be n universe-units (n
greater than or equal to 0 and less than 1280).

The commands Scale and Rotate can be used to
either create new objects or to alter old ones.
When the kopy flag is true, new objects are
created.

When true, use the midpoint of a text string to
locate the string.

GRAPHICS EDITOR

out When true, reduce magnification during zoom.

points When true, operate on points; otherwise operate on
objects.

rightpoint When true, use the rightmost point of a text string
to locate the string.

style type Specify line style to be one of the following types:
so solid
da dashed
dd dot-dashed
do dotted
ld long-dashed

text Most text is drawn as a sequence of lines. This can
sometimes be painfully slow. When the text flag
(t) is false, strings are outlined rather than drawn.

width type Specify line width to be one of the following types:
n narrow

x

Area options are:

home

regionn

universe

view

m medium
b bold

One way to find the center of a rectangular area is
to draw the diagonals of the rectangle. When the
x flag is true, defined-areas are drawn with their
diagonals.

Reference the home-window.

Reference region n.

Reference the universe-window.

Reference those objects currently in view.

4-23

GRAPHICS EDITOR

4. Some Examples of What Can Be Done

The following examples are used to illustrate use of the ged.

4.1 Example I--Text Centered Within a Circle

*Circle<cr>
<position cursor><sp>
<position cursor><cr>
*Text -m <cr>

(establish center)
(establish radius)
(text is to be centered)

some text<cr>
$.O<cr>

<cr>

(first point from previous set,
i.e., circle center)

Figure 4-8 shows the output of these commands.

some text

Figure 4-8. Text Centered Within a Circle

4-24

GRAPHICS EDITOR

4.2 Example 2--Making Notes on a Plot

*! gas I plot -g >A<cr> (generate a plot, put it in file A)
*read -e- A<cr> (input the plot, but do not display it)
*view -h<cr> (window on the plot)
*Lines -sdo<cr> (draw dotted lines)
<position cursor><sp> (0,6.5 y-axis)
<position cursor><sp> (6.5,5.5)
<position cursor><sp> (5.5,0 x-axis)
<cr> (end of Lines)
*set -h150,wn<cr> (set text height to 150, line width to

narrow)
*Text -r<cr> (right justify text)
threshold beyond which nothing matters<cr>
<position cursor><cr> (set right point of text)
*Text -a-90<cr> (rotate text negative 90 degrees)
threshold beyond which nothing matters<cr>
<position cursor><cr> (set top end of text)
*x<cr> (find center of plot)
<position cursor><sp> (top left corner of plot)
<position cursor><cr> (bottom right corner of plot)
*Text -h300,wm,m<cr> (build title: height 300, weight

medium, centered)
SOME KIND OF PLOT<cr>
<position cursor><cr> (set title centered above plot)
*view -h<cr> (window on the resultant drawing)

Figure 4-9 shows the output of these commands.

4-25

GRAPHICS EDITOR

SOME KIND OF PLOT
11r-----~--~

10

9

8

5

4

3

2

threshold beyond which nothing matters ~
s...
Q,)

+->
+->
tU e

Figure 4-9. Making Notes on a Plot

4-26

10

GRAPHICS EDITOR

4.3 Example 3--A Page Layout with Drawings and Text

*! rand -sl,nl00 I title -v" seed 1" I qsort I bucket I
hist -r12 >A<cr> (put a histogram, region

12, of 100 random numbers in file A)
*! rand -s2,nl00 I title -v" seed 2" I qsort I bucket I

hist -rI3 >B<cr> (put another histogram,
region 13, into file B)

*! ed<cr> (create a file of text using the text editor)
a<cr>
On this page are two histograms<cr>
from a series of 40<cr>
designed to illustrate the weakness<cr>
of multiplicative congruential random number
generators.<cr>
.pl 3<cr> (mark end of page)
.<cr>
w C<cr>
151
q<cr>

(put the text into file C)

*! nroff C I yoo C<cr> (format C, leave the output
in C)

*view -u<cr> (window on the universe)
*read -e- A<cr
*read -e- B<cr>
*view -h<cr> (view the two histograms)
*read -h300,wn,m C<cr> (text height 300, line weight

narrow, text centered)
<position cursor><cr> (center text over two plots)
*view -h<cr> (window on the resultant drawing)

Figure 4-10 shows the output of these commands.

4-27

~
I

~
CJ)

ON THIS PAGE ARE TWO HISTORGRAMS FROM A SERIES OF
40 DESIGNED TO ILLUSTRATE THE WEAKNESS OF MULTIPLICATIVE

CONGRUENTIAL RANDOM NUM8ER GENERATORS.

24~,------------------------------~ 221
20 22

20
18

18
14
12 1-1 __ --I-

10
8

8

4

2
o I , ,

0.02810.1850.3010.4380.574 0.710.8470.983

SEED 1

181 - - - - - - - - --

18

14

12

10

8

8

4

2

0' , ,

0.007870.1490.2890.430.5710.7110.8520.993

SEED 2

Figure 4-10. Page Layout with Drawings and Text

o
== >
"tI

= 1-4 n
00
t;I!j
~
1-4

1-3 o
==

Chapter 5

ADMINISTRATIVE INFORMATION

PAGE

1. Chapter Introduction. .. 5-1

2. Graphics Structure .. 5-1

3. Installing Graphics .. 5-3

4. Hewlett-Packard Plotter. 5-6

5. TEKTRONIX Terminal....................................... 5-7

6. Miscellaneous Information. 5-8

Chapter 5

ADMINISTRATIVE INFORMATION

1. Chapter Introduction

This chapter is a reference guide for system administrators using or
establishing a graphics facility on a UNIX operating system. It
contains information about directory structure, installation,
makefiles, hardware requirements, and miscellaneous facilities of the
graphics package.

2. Graphics Structure

Figure 5-1 contains a graphical representation of the directory
structure of graphics. In this part, the shell variable SRC will
represent the parent node for graphics source and is usually set
lusrlsrc/cmd.

The graphics command (see graphics(1G» resides in lusr/bin. All
other graphics executables are located in lusr/bin/graf; the
lusr/lib/graf directory contains text for whatis documentation (see
gutil(1G» and editor scripts for ttoc (see toc(1G».

Graphics source resides below the directory $SRC/graf; $SRC/graf
is broken into the following subdirectories:

• include - contains the following header files: debug.h,
errpr.h, gsl.h, gpl.h, setopt.h, and utH.h .

• src - contains source code partitioned into subdirectories by
subsystem. Each subdirectory contains its own Makefile (or
Install file for whatis.d).

• glib.d - contains source used to build the graphical
subroutine library, $SRC/graf/lib/glib.a .

• stat.d - contains source for numerical manipulation and
plotting routines.

5-1

01
I

~

'-I
I LIB I
L _.-J

Figure 5-1. Directory Structure of Graphics Program

> o
a::
1-1

2!
1-1
'(J'J

~
~
>
~
1-1

<:
t:rj
1-1

2!
~
o
~
a::
>
~
1-1 o
2!

ADMINISTRATIVE INFORMATION

• dev.d - contains source code for device filters partitioned
into subdirectories.

• lolib and up lib - contains source used to create device
independent libraries.

• hp7220.d - contains source for hpd (a Hewlett
Packard Plotter display function).

• tek4000.d - contains source for ged (the graphical
editor), td (a TEKTRONIX display function), and other
TEKTRONIX dependent routines.

• gutil.d - contains source for graphical utility programs.

• toc.d - contains source for table of contents drawing
routines.

• whatis.d - contains nroff files and the installation routine
for on-line documentation .

• lib - contains glib.a which contains commonly used graphical
su brou tines.

The UNIX System User Reference Manual entries for graphics
consist of the following: gdev(lG), ged(lG), graphics(lG),
gutil(lG), stat(lG), toc(lG), and gps(5).

3. Installing Graphics

Procedures for installing graphics:

- To build the entire graphics package, execute (as super-user):

lusrlsrcl:mkcmd graf

- To build a particular graphics subsystem, use the shell variable
ARGS:

5-3

ADMINISTRATIVE INFORMATION

ARGS=subsystem lusrlsre/:mkemd graf

A subsystem is either glib, stat, dey, toe, gutil, or whatis. Glib
must exist before other subsystems can be built. Write permission in
lusr/bin and lusr/lib is needed, and the following libraries are
assumed to exist:

• llib/libc.s - Standard C library, used by all subsystems.

• llib/libm.a - Math library, used by all subsystems.

• lusr/lib/macros/mm[nt] - Memorandum macros for [nt]roff,
used by the whatis subsystem.

The complete build process takes approximately two hours of system
time. If the build must be stopped, it is a good idea to restart from
the beginning. Upon completion, the following things will be created
and owned by bin:

• lusr/lib/graf - A directory for data and editor scripts.

• lusr/bin/graf - A directory for executables.

• lusr/bin/graphics - Command entry point for graphics.

Whatis.d contains source files for whatis and the executable
command Install.

Install command name

calls nroff to produce whatis documentation for command name in
lusr/lib/graf. To install the entire whatis subsystem, use :mkemd
as described above.

5-4

ADMINISTRATIVE INFORMATION

3.1 Makefile Parameters

Makefiles use executable shell procedures cco and cca. Cco is used
to compile C source and install load modules in /usr/bin/graf. The
cca command compiles C programs and loads object code into
archive files.

Makefiles use various macro parameters, some of which can be
specified on the command line to redirect outputs or inputs.
Parameters specified in higher level Makefiles are passed to lower
levels. Below is a list of specifiable parameters for Makefiles
followed by their default values in parentheses and an explanation of
their usage:

$SRCI grafl graf.mk:

• BIN (lusr/bin) - installation directory for the graphics
command.

• BIN (lusr/bin/graf) - -installation directory for other graphic
commands.

• SRC (lusrlsrc/cmd) - parent directory for source code.

$SRCI grafl src/Makefile:

• BINI (lusr/bin) - installation directory for the graphics
command.

• BIN2 (lusr/bin/graf) - installation directory for other
graphic commands.

• LIB (lusr/lib/graf) - installation directory for whatis
documen ta tion.

$SRCI grafl srcl stat.d/Makefile:

• BIN (. .I . .lbin) - installation directory for executable commands.

5-5

ADMINISTRATIVE INFORMATION

$SRCI grafl srcl toc.d/Makefile:

• BIN (. .I . .lbin) - installation directory for executable commands.

$SRCI grafl srcl dev .d/Makefile:

• BIN (. .I . .lbin) - installation directory for executable commands.

$SRC/graf/src/dev.d/hp7220.d/Makefile:

• BIN (. .I . .I . .lbin) - installation directory for executable
commands.

$SRC/graf/src/dev.d/tek4000.d/Makefile:

• BIN (. .I . .I . .lbin) - installation directory for executable
commands.

$SRCI grafl srcl gutil.d/Makefile:

• BIN (. .I . .lbin) - installation directory for executable commands.

The following example will make a new version of the ged, installing
it in /al/pmt/dp/bin (assuming that necessary libraries were
previously built):

cd $SRC/graf/src/dev.d/tek4000.d
make BIN =/al/pmt/dp/bin ged

4. Hewlett-Packard Plotter

The graphics display function, hpd, uses the Hewlett-Packard
(HP*) 7221A Graphics Plotter. The HP plotter can be connected to

* Registered trademark of Hewlett-Packard Company.

5-6

ADMINISTRATIVE INFORMATION

the computer in series with a terminal via a dedicated or dial-up line.
This arrangement allows the plotter to intercept plotting instructions
while passing other data to the terminal unaltered and thus
providing for normal terminal operation. Plotter switch settings
should match those of the terminal. The plotter operating manual
contains a more complete discussion.

5. TEKTRONIX Terminal

The graphics display function, td, and the ged, both use
TEKTRONIX Series 4010 storage tubes. Below is a list of device
considerations necessary for graphics operation.

5.1 Inittab Entry

When a TEKTRONIX 4010 series terminal is connected to a UNIX
operating system via a dedicated 4800 or 9600 baud line, /etc/inittab
should reference speed table entry 6 (the table may vary locally) of
getty. Speed table entry 6 is designed specifically for the
TEKTRONIX 4014 and, among other things, sets a form-feed delay so
that the screen may be cleared without losing information and clears
the screen before prompting for a login. See stty(l), inittab(5) and
getty(8) for more information.

5.2 Strap Options

The standard strap options as listed below should be used (see the
Reference Manual for the TEKTRONIX 4014):

• LF effect - LF causes line-feed only.

• CR effect - CR causes carriage return only.

• DEL implies loy - DEL key is interpreted as low-order y
value.

5-7

ADMINISTRATIVE INFORMATION

6. Miscellaneous Information

6.1 Announcements

The graphics command provides a means of printing out
announcements to users. To set up an announcement facility, create
a readable text file containing the announcements named announce in
directory lusr/adm. If it is desired to use a different directory for
announcements, redefined the shell variable GRAF in
lusr/bin/graphics.

6.2 Graflog

The graphics command also provides a means of monitoring its use
by listing users in a file.

Each time a user executes graphics, an entry of the login name,
terminal number, and system date are recorded in file graflog in
directory lusr/adm, the same directory used for announcements.

6.3 Restricted Environments

Restricted environments can be used to limit access to the system
(see sh(l)). A restricted environment for graphics can be set up by
creating the directories Irbin and lusr/rbin and populating them
with restricted versions of regular UNIX system commands, so that
the environment cannot be compromised. In particular, ed(l), mv(l),
rm(l), and sh(l) require restricted interface programs which do not
allow users to move or remove files whose names begin with".".

5-8

ADMINISTRATIVE INFORMATION

To create a restricted environment for graphics:

• Create a restricted ged command in lusr/rbin as follows:

exec lusr/bin/graf/ged - R

• Create restricted logins for users or create a community login
with a working directory (reached through .profile) set up for
each u~er. A restricted login specifies Ibin/rsh as the
terminal interface program and is created by adding IbinJrsh
to the end of the letc/passwd file entry for that login.

• Call graphics -r from .profile.

The execution of graphics -r changes $PATH to look for commands
in Irbin and lusr/rbin before Ibin and lusr/bin and executes a
restricted shell. The - R option is appended to the ged command so
that the escape from ged to the UNIX operating system (!command)
will also use a restricted shell.

5-9

ADMINISTRATIVE INFORMATION

NOTES

5-10

READER COMMENT FORM

UNIX SYSTEM V GRAPHICS GUIDE

Altos Computer Systems
2641 Orchard Parkway

San Jose, CA 95134

This document has been prepared for use with your Altos
Computer System. Should you find an error or problem in
this manual, please write it down (noting page number),
and return this form to the ALTOS PUBLICATIONS DEPARTMENT.

System Model Number __________________ __

Serial Number ______________ __

Document Title~ __ ___

Revision Number 690-15842-001 Date, ________________________ _

Name, __ ___

Company Name __ ___

Address __ __

Printed in U.S.A .
PIN 690-15842'()01

[ALtm]
COMPUTER SYSTEMS®

2641 Orchard Park Way, San Jose, California 95134
(408) 946-6700, Telex 470642 Alto UI

fT).

J." 1":J

