A\ Y :
(Ca’mbrldge Parallel Processing

DAP Series

Program Development
Under UNIX

(man003.04)

" A Note To The Reader: This Manual Is In The Process Of Revision

This technical manual is an unaltered reprint in reference to the CPP DAP. The DAP was originally manufactured and supported by Active Memory Technology
(AMT). All software and hardware rights to the original machine have since been acquired by Cambridge Management Corporation. The DAP product line
is now manufactured & supported by Cambridge Parallel Processing (CPP); a division of Cambridge Management Corporation; and referred to as the CPP DAP.
For additional information on the DAP product line please contact: Cambridge Parallel Processing, 16755 Von Karman Avenue, Suite 120, Irvine, CA 92714
Tel: 714-261-8901 or Fax: 714-261-8802

CPP endeavors to ensure that the information in this document is
correct but does not accept responsibility for any error or omission.

Any procedure described in this document for operating

CPP equipment should be read and understood by the operator before
the equipment is used. To ensure that CPP functions without risk to
safety or health, such procedures should be strictly observed by the
operator.

The development of CPP products and services is continuous and
published information may not be up to date. Any particular issue of a
product may contain part only of the facilities described in this
document or may contain facilities not described here. It is important to
check the current position with CPP,

Specifications and statements as to performance in this document are
CPP estimates intended for general guidance. They may require
adjustment in particular circumstances and are therefore not formal
offers or undertakings.

Statements in this document are not part of a contract or program
product license save in os far as they are incorporated into a contract or
license by express reference. Issue of this document does no entitle the
recipient to access to or use of the products described, and such access
or use may be subject to separate contracts or licenses.

Technical publication man003.04
(CPP filenames: pubs\avent\man\pdu\ed4\...)

First Edition: June 1987

Second Edition October 1987

Third Edition 13 October 1988

Fourth Edition 1 February 1991

Copyright 1987, 1988, 1991 by Cambridge Management Corporation
DAP is a registered trademark of Cambridge Management Corporation.

No part of this publication may be reproduced in any form without
written permission from Cambridge Management Corporation.

CPP will be pleased to receive readers’ views on the contents,

Publications Manager organization, etc. of this publication. Please make contact at either of
Cambridge Parallel Processing the addresses below:
16755 Von Karman Avenue Suite 120
Irvine Publications Manager
California, 92714, USA Cambridge Parallel Processing Ltd.
Centennial Court, Easthampstead Road
Tel: (714) 261-8901 Bracknell, Berkshire, RG12 1JA
Fax: (714) 261-8802 England, United Kingdom

Tel: 0114 344 861 024
Fax: 0114 344 305 544
ii man003.04 CFPP

i

Preface

This manual describes the development of programs to be run
on an AMT DAP Series massively parallel computer
connected to a host computer running the UNIX operating
system.

It covers the compilation, execution and debugging of DAP
software for programs written in both FORTRAN-PLUS and
APAL (Array Processor Assembly Language), running on
either the DAP hardware or on the simulator system. You are
assumed to be familiar with one or both of these languages.
They are described in the AMT publications listed in
References, which starts at the bottom of this page.

This manual is arranged as follows. Chapter 1 gives an
introduction. Chapter 2 describes the FORTRAN-PLUS
compilation system. Chapter 3 describes how to run DAP
programs, which includes writing the host program, the
interface subroutines used by the host to communicate with
the DAP and the run time options available. An example of a
DAP program in FORTRAN-PLUS is given, together with host
programs written in ‘C' and FORTRAN. Program testing and
debugging techniques are covered in chapter 4.
Maintenance of DAP code libraries is discussed in chapter 5.
Chapter 6 describes the APAL assembly system. Chapter 77
covers some aspects of multi-programming control on DAP
hardware.

If you intend to use only FORTRAN-PLUS, you should read
chapters 1, 2, 3, and 4. APAL programmers should read
chapters 1, 6, 3, and 4. If you are developing a large program
or subroutine library, you should also read chapter 5.
Chapter 7 is mostly of interest to system managers.

The appendices contain command specifications and error

codes.
References:
[1] DAP Series: Introduction to FORTRAN-PLUS enhanced AMT man101
[2] DAP Series: FORTRAN-PLUS enhanced AMT man102
[3] DAP Series: APAL Language AMT man005 -
[4] DAP Series: Parallel Data Transforms AMT man022

DAP Series: Program Development under UNIX man003.04 i

v Preface

[5] DAP Series: General Support Library AMT man010
[6] DAP Series: DAP System Calls AMT man023
WARNINGS and cautions There may be places in this manual where AMT wants to let
you know of possible problems. If you see the word WARNING

WARNINGS in the margin, then we are saying that if you ignore the

comment in the body of the text alongside WARNING, then
your code will almost certainly cause an error, either at
compilation or run time. The words ‘you have to ... ' or ‘you
must ..." or ‘you must not ..." elsewhere in the body of the text
are meant to give you a similar warning.

Cautions If you see the word Caution in the margin, then we are saying
that if you ignore the comment in the body of the text alongside
Caution, then your code may cause problems, but in any case
we consider you would not be following good (or at least
normal) practice. The words ‘you should {not) ... ' elsewhere
in the body of the text are meant to give you a similar caution.

Typographical conventions The following typographical conventions are used in this
manual:;

= Names of variable, commands, functions, subroutines
and files mentioned in the text are showninbold type
face.

= Computer screen or hard copy output is shown in a box:

L This is an example of screen output]

= Any input that you would type is shown in bold type
face.

Occasionally, what you have to type in is shown boxed,
as an alternative to being shown in bold typeface .

= Textthat would be replaced by other text in what youtype
in or what the computer outputs is shown in Jtalics.

For example, you might be asked to type the command:
save name

When you come to type the command you would repliace
name with the name of the file into which you wanted to
save whatever was involved.

v man003.04 AMT

Preface v

Similarly, a host screen display might be shown as:

Version nm with SCSI HCU link
MCU code size 512 Kbytes, array size 4 Mbytes

TWON>
whereas, in what you would actually see on your screen,
n.m would replaced by a number combination, such as
3.1.

m Ifyouareaskedtopress a particular key on the keyboard,
that key will printed in capital letters and will be enclosed
in angled brackets.

For example:
<RETURN>
is asking you to press the Return key.

m If you are asked to press one key whilst holding down
another key, both keys will be enclosed in angled
brackets, with the to-be-held-down key given first and the
keys joined by a ‘-,

For example:
<CONTROL-Z>
is asking you to hold down the Control key and press the
'Z’ key.
Similarly:
<CONTROL-SHIFT-Q>
is asking you to press and hold down the Control key, then
press and hold down either Shift key, and then press the
‘Q' key.
command syntax s The syntax for a command specifies optional and

alternative sub-items in the command as:

[1 Youdon'tneed toinclude any of the item(s) enclosed
in square brackets, but if you do, then you can
include only one.

{} You must have one - and only one - of the items
enclosed in braces.

. You can repeat the item (and its delimiter, if
appropriate) preceding an ellipsis zero or more
times; that is, the item can occur one or more times.

As an example, a hypothetical command, and the way it
might be specified, is given on the next page.

DAP Series: Program Development under UNIX man003.04 v

vi

vi

ab
a

ad

il

Preface
The command might be specified as:

option [, option ...]
filename

Possible variations of the command include:
ab
ab option
ab option1, option2, option3
ab filename
ac option1, option2
and so on, where option, option1, option2, oplion3 and

filename would be defined as appropriate to the
command.

man003.04 AMT

Table of Contents

Preface

Chapter 1
1.1
1.2

1.21
1.22
1.23

1.3
1.4
1.5

Chapter 2
2.1
22
23

231
232
233
234
235
24

241
242
243
25

251
252
253

2.6
2.7

Introduction

Source files .

Producing executable programs
Host program production
DAP program production
Using the co-processors

Other development tools

Run-time diagnostic facilities

Filename conventions

FORTRAN-PLUS compilation system

Producing FORTRAN-PLUS programs for various DAP mode!s

Components of the FORTRAN-PLUS compilation system
FORTRAN-PLUS preprocessor

Tab characters

#include directive

#if and #endi £ directives

#pdt directive

Preprocessor errors .
FORTRAN-PLUS compiler

Compiler input and output

Compiler listing and messages

Compiler control of run-time diagnostics
FORTRAN-PLUS Linking

CIF library input e

Consolidator messages and link map

Consolidator diagnostics

Examples
dapf flags

DAP Series: Program Development under UNIX man003.04

vii

DWW WD NN - =

o ~N~N

W NN N NN ek md b ed ad b ek
N O B = OO0 O O

W W
NN

Vil

viif

Chapter 3 Running DAPprograms e e e e . 35

3.1 Introduction e 35
3.2 DAP interface routines S e 37
3.2.1 dapconanddaprel 37
3.22 dapsenanddaprec e 38
323 dapent e 39
33 Example e 39
3.3.1 The DAP program e, 40
332 Compiling the FORTRAN host program e 40
3.33 Compiling the € host program e 42
3.34 Running the program e, 42
34 Specifying run-time options — dapopt S e 42
3.4.1 trace execution control e e 44
3.4.2 Run-time diagnostics | e 44
3.4.3 Run-time error action e 45
344 Examining options e 46
3.45 Simulator options e 46
346 Restoring default options . . . e, 52
3.47 dapoptflags S 52
3.5 Using the high-level execution profler 54
3.5.1 Introduction e, 54
3.5.2 Analysing the profile with dapprof e 55

Chapter 4 Programtesting e e e e, 57

4.1 Introduction T 57
4.2 Overview of program testng S 57
4.2.1 On-line facilites e 57
4.22 Post-mortem facilies | e 58
423 Summary of psam and dapdb commands e e, 58
4.3 Program state analysis mode (psam)o 60
4.3.1 Introducton e 60
4.32 Interface withdapdb S 63
4.33 Examining variables e -. - 63
4.34 Breakpoints | e 65
435 Programcontrol | e 66
4.36 Accesstosourcecode e, 67
4.37 Machine-level commands . . . e e 68

viif man003.04 AMT

Contents ix

438 Stack examinaton L. €8
4.39 Environmentvariables 69
4.3.10 Miscellaneouscommands 71
4.3.11 Command line interpreter 71
4.4 Analysingdump files(dapdb) 72
441 Enteringdapdb 73
4.42 dapdb-only commands e e e 73
45 trace 74
451 Intfroduction L L. 74
452 FORTRAN-PLUS trace e e 74
453 APAL trace C e e e 75
46 Diagnosticreports . . . e e 75
46.1 Reports from FORTRAN-PLUS code e e 76
46.2 Reports from APAL code e 78
4.7 Full specification of pgam and dapdb commands 80

Chapter 5 CIF file and library maintenance C e e e e e e e e 101

5.1 Multi-module CiFfiles 101
5.2 The daplib command e e 102
5.21 Creatinga ClFlbrary 102
5.22 Including and excluding CIF modules 103
523 Synonyms . . . 104
5.24 Listing CIF library contents Ce e e 105
5.25 Interaction of daplib's -m, -£, -d and -x options L e 107
5.3 daplibflags . . e e 107
5.4 Linking with CIF llbranes Ce e 108
Chapter 6 APAL assembly system . . . e e e e e e 111
6.1 Producing APAL programs for various DAP mode!s e 111
6.2 Components of the APAL assembly system 113
6.3 APAL preprocessor e 113
6.3.1 Tabcharacters 113
6.3.2 #include directive e 114
6.3.3 #if and #endif directives 114
6.34 Preprocessor errors e 114
6.4 APAL assembler Ce e 114
6.4.1 Assembler input and output e e e 114
6.4.2 Assembler listingandmessages 115
6.4.3 Assembly of APAL tracestatements | 123

DAP Series: Program Development under UNIX man003.04 ix

6.5 Mixing FORTRAN-PLUS and APAL routines S 123
6.6 APAL linking e e 124
6.7 dapafags e 124

Chapter 7 Controlling multi-programming on the DAP e e e e e e . 127

7.1 Introduction D 127
7.1.1 Definiton of terms | e 127
7.2 Controlling DAP programs e e 128
7.3 Monitoringusage e 128
7.3.1 Facilities available e 129
7.3.2 Specification of the routines e e e, 129
7.33 Example interface e 131

Appendix A Command specificaton e e e e e e e 133

A1 dapa e 133
A2 daped L . 135
A3 dapf e e e 137
A4 daplib e e 139
A5 dapopt e 140
A6 Summary of psam and dapdb commands e 142

Appendix B Messages from the run-time system e e e e e e e, 145

Appendix C System error messages, ., 149
C.1 DAP system error messages e 149
C2 System error messages S e 149

Appendix D Messages from psam and dapdb e e e e e e e 153

D1 Error messages e 153
D.2 Internal error messages S 158
D.3 Warning messages S e 158

Appendix E DAPinterface routines e e e e e e, 161

E.1 C language routines e 161
E.2 FORTRAN language routines e 162
Index Tt e e e e e e e e 165

Reader comment form R T-1"

man003.04 AMT

Chapter 1

Introduction

DAP and host programs

DAP Series: Program Development under UNIX

The DAP (standing for 'Distributed Array of Processors'’) is a
massively parallel computer of the SIMD type, which attaches
to a host computer as a peripheral processor.

The processors in the base DAP are single bit, and are
arranged in a square matrix; 32 x 32 in the case of the DAP
500 range and 64 x 64 in the DAP 600. The number of
processors on one side of the square gives the edge-size of
the DAP. ES is used as an abbreviation for edge-size in this
manual.

Some models of the DAP — those with a C in their model
numbers (for example, the DAP 610C) — are also fitted with
ES x ES 8-bit co-processors, one co-processor for each 1-bit
processor.

Programs which use the DAP are developed on a suitable
host, and then executed on the DAP. A simulation system is
also available, which lets you develop and run programs in the
absence of DAP hardware.

This manual describes the DAP program development and
run-time software for use on host systems running under the
UNIX operating system. This software will let you produce
programs to run on all the DAP series machines.

A companion manual, DAP Series: Program Development
under VAX/VMS (man004), similarly describes program
development on a VAX/VMS host.

A program which runs on the DAP is called a DAP program
and runs in conjunction with a program on the host. The host
program is entered first and controls the loading and
subsequent execution of the DAP program, and the data
transfers to and from the DAP, using special interface
subroutines. More than one DAP program can be resident in
the DAP at any one time.

This chapter provides a general description of how to develop
a program which uses a DAP. The description assumes that
you have already produced and edited the source files using
the various facilities available on the host computer. Each
stage in the development process is described inthe chapters
that follow.

man003.04 1

1.1 Source files

Chapter 1: Introduction

You produce a DAP program from source files written in the
high level language FORTRAN-PLUS (see [2], DAP Series:
FORTRAN-PLUS enhanceq), or the low-level language APAL
(Array Processor Assembly Language - see [3], DAP Series:
APAL Language), or in a mixture of both.

The host program is produced from source files which you can
write in any language that is supported by the host operating
systemand is compatible with FORTRAN. The term FORTRAN
is used throughout this manual as an abbreviation for
FORTRAN 77.

1.2 Producing executable programs

1.2.1 Host program production

You compile and link the FORTRAN-PLUS and APAL source
using the DAP software development system described in this
manual, to produce an executable DAP program. All of the
DAP program development software runs on your host
processor.

You compile the subroutines of the associated host program
using the compiling systems running on the host. For details
of host program development, see the program development
publications issued by your host's manufacturer.

You produce the host program by compiling the host source
code files and linking them with AMT-supplied interface
routines. The routines make possible the communication
between the host and DAP programs. The routines are
supplied in object code format in the library dap, which you
can access by adding ~1dap to your compilation command
in the usual way.

For example, the following command compiles a FORTRAN
host program in jimcal. £:

[£77 dimeal.f -ldap

By default, the executable code is put in file a.out in the
current directory. You can specify an output file, out file
say, with the -o flag:

Lf77 jimcal.f -1dap -o ocutfile

1.22 DAP program production

The interface routines are described in section 3.2 on
page 37.

You compile and link DAP programs using dapf (the
FORTRAN-PLUS compilation system) or dapa (the APAL
assembly system).

man003.04 AMT

1.3: Other development tools 3

The following command compiles a FORTRAN-PLUS DAP
program in dapdev . df and generates a DAP object format
(DOF) file in the current directory:

[7 dapf dapdev.df

By default the DOF file will be named d. out. You can specify
an output file, dapout say, using the -o flag to dap£:

(, dapf dapdev.df ~o dapout

dapf is described in chapter 2, which starts on page 7.
dapa is described in chapter 6, which starts on page 111.

1.2.3 Using the co-processors AFORTRAN-PLUS programmer who wants to make use of the
speed-up available with the 8-bit co-processors needs only to
set the environment variable DAPCP8 to yes. This variable is
read by the complier, which then generates code to make use
of the co-processors — without any further action from the
programmer.

For more details, see section 2.1 on page 7.

1.3 Other development tools

The DAP development software also includes various tools
which you might find useful when you are producing or running
DAP programs. The tools are:

dapdb The DAP interactive dump analyser.
daped The DAP object format (DOF) file editor.
daplib The DAP library maintenance system.
dapprof The DAP execution profile analyser.
dapopt The DAP run-time options controller.

dapdb is described in chapter 4, which starts on page 57,
daped briefly in section 2.5.2.2 on page 27, , and more fully
in appendix A.2, which starts on page 135; daplib in
chapter 5, which starts on page 101; dapprof in section 3.5,
which starts on page 54; dapopt in section 3.4, which starts
on page 42.

When you are running DAP programs, you have available a
powerful interactive debugging facility called psam (Program
State Analysis Mode). psam is described in section 4.3, which
starts on page 60.

1.4 Run-time diagnostic facilities

The host program has access to all the usual input, output and
diagnostic facilities available in the host operating system to
non-DAP programs. In particular, run-time errors in the host
program are treated in the way the host operating system

DAP Series: Program Development under UNIX man003.04 3

1.5

Chapter 1: Introduction

normally treats errors. If the host program terminates for any
reason when the DAP is connected to it, an automatic call to
daprel will occur (for more details, see section 3.2.1, on
page 37).

You have access to DAP program diagnostics in either of two
ways:

» Through the use of psam, the Program State Analysis
Mode sub-system. You'll find full details of Ppsan in
section 4.3 on page 60. psam can be invoked in two
ways (unless the default option for the -e flag in dapopt
is not in force - see section 3.4.3 on page 45.):

o If a run-time error occurs in your DAP program, a
diagnostic report is output, and then control is passed
to psam automaticaliy.

o Ifyou putpause statements in your FORTRAN-PLUS
or APAL code, then when they are executed, control
is passed to psam automatically.

s Through FORTRAN-PLUS or APAL trace statements,
which display on the standard error stream (usually on
the screen) during the execution of your DAP program
the DAP data items specified in your trace statements.

AMT does not recommend the use of t race statements,
as they tend to slow down execution of DAP programs,
but they have been kept for compatibility with earlier
versions of FORTRAN-PLUS and APAL.

If a run-time error occurs in the DAP program a diagnostic
reportis sent to the standard error stream. This report contains
the following information:

» The nature and location of the error.

= A stack trace of the currently active subroutines and
functions.

» Adisplay of the values of the local variables (if the failing
procedure is a FORTRAN-PLUS subprogram and was
compiled at diagnostic level 2, see section 2.4.3.2 on
page 22).

Filename conventions

The DAP software development system uses certain suffixes
on filenames to identify the file contents. These are:

= .da For APAL source code files.

®= .dc For Consolidator Input Format (CIF) files.

® .df For FORTRAN-PLUS source code files.

= .dl For Consolidator Input Format (CIF) library files.
dr For DAP state dump files.

manQ003.04 AMT

1.5: Filename conventions

files holding object code

DAP Series: Program Development under UNIX

You should always use the correct suffix for source code files
and Consolidator Input Files. You are recommended to use
.dx for libraries and dump files.

Examples:
frieda.da

is an APAL source file in the current directory,
/usr/dapprog/frieda.df

is a FORTRAN-PLUS source file in the directory
/usr/dapprog.

There is no AMT-recommended convention for filenames
holding DAP or host object code. The default values are
d.out and a. out, but no suffix need be used in any names
you specify.

man003.04 5

man003.04 AMT

Chapter 2

FORTRAN-PLUS compilation system

Executable DAP program files are loaded from the host and
run on the DAP, the host controlling the run. The process of
generating DOF files from one or more FORTRAN-PLUS
source files is carried out by the FORTRAN-PLUS compilation
system running on the host.

2.1 Producing FORTRAN-PLUS programs for various DAP models

The FORTRAN-PLUS compilation system can produce object
code for DAP 500 or 600 series machines, with or without
co-processors. Two environment variables, DAPSIZE and
DAPCPS, let you specify what DAP model you want to
generate object code for. You set environment variables using
the command setenv, and delete them using unsetenv.
For example:

[setenv FRED xyz

)

sets the value of the environment variable FRED to xyz, and:

[unsetenv FRED

deletes FRED from the environment. setenv on its own:

[setenv

lists all the current environment variables, and their values.

DAPSIZE lets you specify whether you want to generate code
for a DAP 500 or DAP 600 machine, and takes the value 32
or 64 (the DAP edge size).

DAPCPS, if it has the value yes, specifies that you want code
for a DAP with co-processors.

So the commands:

setenv DAPSIZE 64
setenv DAPCP8 yes

)

DAP Series: Program Development under UNIX

tell the FORTRAN-PLUS compilation system that you want to
generate code for a DAP 600C series machine.

If you do not give either DAPSIZE or DAPCP8 or both a value
(or set them to unrecognised values) then the default action is

man003.04 7

8 Chapter 2. FORTRAN-PLUS compilation system

to generate code for a DAP 500 (DAPSIZE not set) or for a
DAP without co-processors (DAPCP8 not set).

You cannot mix code for different DAP edge sizes in the same
DAP program. However, you can mix code for DAPs with and
without co-processors, but the resultant DAP program will only
run on a DAP with co-processors, and the code compiled for
a DAP without co-processors will not use the co-processors.

2.2 Components of the FORTRAN-PLUS compilation system

The FORTRAN-PLUS compilation process runs entirely on the
host, and can be divided into the 3 phases:

» FORTRAN-PLUS preprocessor
s FORTRAN-PLUS compiler
= Consolidator (linker)

The structure of the system is shown in figure 2.1 opposite.
The command dap£ controls all 3 phases and in the simplest
case a single FORTRAN-PLUS source file is preprocessed,
compiled and linked to form a runnable DAP object format
(DOF) file. For example the command;

dapf testprog.df

compiles the FORTRAN-PLUS source file and generates a
DOF file with default name d. out.

The preprocessor phase expands tab characters, attaches
any included files referred to in the FORTRAN-PLUS source
code to the source files, selects or'ignores source lines
depending on the edge-size of the target DAP the program is
run on, and incorporates the code for any Parallel Data
Transform (PDT) statements specified in the source. (For
details of PDTs, see [4] DAP Series: Parallel Data Transforms.)
The compilation phase generates output files in Consolidator
Input Format (CIF), one CIF file for each input file, which are
then passed to the consolidator and linked together to form
an executable DOF file. Options in the FORTRAN-PLUS
compilation system are controlled by flags to the dapf
command as described in later sections of this chapter.

For a summary of all the dapf flags, see section 2.7 on
page 32.

23 FORTRAN-PLUS preprocessor

The FORTRAN-PLUS preprocessor takes the source files you
have input and produces one continuous stream of output
which is passed to the compiler. It interprets directives in the
source files, replaces tab characters with an appropriate
number of spaces, and enables the compiler to report errors
by filename and line number.

8 man003.04 AMT

2.3: FORTRAN-PLUS preprocessor

#included files

code associated with
#ipdt statements

FORTRAN-PLUS source files

FORTRAN-PLUS
source pre-processor

pre-processed source code files

compiler

user CIF files

user CIF file§ ——

consolidator
(linker)

h———— system CIF files

DOF file

DAP program

Figure 2.1 FORTRAN-PLUS compilation system

DAP Series: Program Development under UNIX

man003.04

10

2.3.1 Tab characters

23.2 #include directive

2.3.2.1 Specifying include directories

10

Chapter 2: FORTRAN-PLUS compilation system

A directive always has a # in column one, and can be one of:

= #include
= #ifor fendif
= jpdt

Lines which do not start with a directive are non-directive lines.

FORTRAN-PLUS source code files can contain tab
characters. The FORTRAN-PLUS preprocessor replaces atab
in columns 1 to 6 with one or more space characters, such
that the next character in the expanded source line is in
column 7. Any tabs in columns 7 onwards in the source line
are each replaced with one space character.

The expanded source code should not exceed 80 characters
per line. Note that characters beyond column 72 in the
expanded|ine are ignored, according to the normal FORTRAN
rules.

A source code file can refer to one or more included files. An
included file can also refer to one or more included files. The
number of levels of nesting is restricted to 16.

A #include directive has three forms:

s #include filename
s #include "“filename"
®» #include <filename>

The first two are identical in effect. The significance of the third
is explained in section 2.3.2.1 below.

A#include directive has to startin column 1 and cannot be
continued onto the next line.

Figure 2.2 opposite shows how the #include directive is
used, and how it affects the compiler listings. Overall line
numbering might become corrupted if the file specified in a
#include directive does not exist. For each top level source
file the compiler listing line number is reset to 1.

When the preprocessor encounters a #include directive
and the filename does not start with a /, alist of directories is
searched in an attempt to find the file. You can add extra
directories to the list by using the - I flag with dapf£. This flag
takes the form:

~I dirname

which adds the directory dirname to the list. The -I flag can
appear more than once, so that you can add as many
directories to the list as you need. The list of directories
searched, and the order in which they are searched, are as
follows:

man003.04 AMT

2.3: FORTRAN-PLUS preprocessor

11

namel.df
source line 1/1 ‘1

source line 1/2

(input file 1)

name3.df

#include name3.df
source line 1/4
source line 1/5

source line 3/1
source line 3/2

source line 1/6 source line 3/3 named .df
source line 1/7 #include named.df
source line 3/5 source line 4/1

source line 3/6 source line 4/2
source line 4/3
source line 4/4

name2.df (input file 2)

source line 2/1 ‘\

source line 2/2

source line 2/3 name$5.df

#include nameb.df

source line 2/5 source line 5/1

source line 2/6 source line 5/2

source line 2/7 source line 5/3

source line 5/4

,) source line 5/5

The two source files are compiled and a listing is output by the compiler:

/'File:namel.df
l:source line 1/1
2:source line 1/2
File:name3.df Line 1(overall line 3)
3:source line 3/1
4:source line 3/2
S5:source line 3/3
File:named4.df Line 1(overall line 6)
6:source line 4/1
7T:source line 4/2
B8:source line 4/3
9:source line 4/4
File:name3.df Line 5(overall line 10)
10:source line 3/5
ll:source line 3/6
File:namel.df Line 4(overall line 12)
12:source line 1/4
13:source line 1/5
l4:source line 1/6
15:source line 1/7
File:name2.df
l:source line 2/1
2:source line 2/2
3:source line 2/3
File:name5.df Line 1(overall line 4)
4:source line 5/1
S:source line 5/2
6:source line 5/3
7:source line 5/4
8:source line 5/5
File:name2.df Line 5(overall line 9)
9:source line 2/5
10:source line 2/6
_ ll:source line 2/7

Figure 2.2 Handling multiple input source code files

DAP Series: Program Development under UNIX man003.04

12

12

Example 1:

Chapter 2: FORTRAN-PLUS compilation system

1 The directory of the file containing the #include
directive.

2 The directory of the original source file specified in the
call to dapa or dapf.

3 The current working directory.

4 The list of directories specified in dapa's or dapf's
-1 flag, in the left-to-right order in which they appear in
the call to dapa or dap£.

5 The system directories:

/usr/lib/dap
/usr/include
and then:

/usr/1ib

The searching algorithm is applied in full if the #include
directive has the form:

#include frieda
or
#include "frieda"
If the directive has the form:
#include <frieda>

the search isrestricted to the places detailed in 4 and 5 above.

To explain further how the preprocessor search path works,
consider a simple directory hierarchy as shown in figure 2.3
opposite.

If the current directory is maths, consider the command:

dapf calculation.df

The FORTRAN-PLUS preprocessor attempts to compile the
FORTRAN-PLUS program calculation.df untilit comes
tothe #include sqroot.dfline. It then searches for the
file sqroot .df in the current directory maths (items 1, 2
and 3 in the list on page 12), but fails to find it. Since, in this
case the -I flag has not been used, the preprocessor
searches the three standard directories /usr/lib/dap,
/usr/include and /usr/lib. Unable to find
sqroot.df in any of these directories, the preprocessor
reports the failure on the standard error stream, ignores the
#include directive and preprocesses the rest of the input
file.

man003.04 AMT

2.3: FORTRAN-PLUS preprocessor

13

usr

device

include 1lib tom

dick

ch

ris

user directories

harriet frieda

maths

|

english history

calculation.df

#include sqroot.df

algebra.df geometry.df

l user sub-directories

procedures

add.df subtract.df

sqroot.df

Figure 2.3 Typical directory hierarchy

DAP Series: Program Development under UNIX

man003.04

13

14

Example 2:

2.3.3 #ifand #endif directives

14

Chapter 2: FORTRAN-PLUS compilation system

Now consider the same command, but this time the
procedures directory is specified using the -I
<dirname> option:

dapf -I ../procedures calculation.df

Inthis case, the preprocessor will eventuallyfind sqroot .df
in the directory procedures, as it looks in the directories
specified in item 4 in the list given on page 12 of the places
to be searched.

You can select or ignore lines from the source code files by
using the #i £ and #endif directives.

The #i£ directive has the general form:
#1i£ constant expression

There is only one form of constant expression currently
recognised:

DAPSIZE == value
where:

® DAPSIZE is a name known to the preprocessor, and
which contains either the value of the environment
variable DAPSIZE (see section 2.1 on page 7) or the
value 32

® valueis the edge-size (ES) of the DAP that the program
istorunon

The #endif directive has the form:
#endif [comment]
where comment can be omitted.

You have got to use #i £ and #endi £ directives in matching
pairs; they can be nested to a depth of 16. They can appear
inincluded files; AMT recommends that a file does not contain
unmatched #if or #endi £ directives.

If constant expression is true, then the preprocessor sends
non-directive lines to the compiler and processes any
directive lines.

If constant expression is false the preprocessor ignores all
subsequent lines until it finds a matching #endif. The
exception to this rule is if the preprocessor finds #include
directives, or further #if and #endif directives.
#include directives will be followed to check for further
#ifs, #endifsor #includes butthe non-directive lines
will be ignored, until it finds a #endif matching the #if
asscociated with the ‘constant expression is false’. The
preprocessor will continue to ignore lines even if it comes
across another #i £ directive where constant expression is

man003.04 AMT

2.4: FORTRAN-PLUS compiler

2.3.4 #pat directive

2.3.5 Preprocessor errors

24 FORTRAN-PLUS compiler
24.1 Compiler input and output

changing the DOF filename

DAP Series: Program Development under UNIX

15

true, until it finds a #endif matching the original ‘constant
expressionis false’.

The #pdt directive lets you incorporate routines for data
routing on the DAP from the Parallel Data Transformlibrary into
FORTRAN-PLUS programs.The #pdt directive has the form:

#pdt pdi-statement

pdit-statements are described in [4], DAP Series: Parallel Data
Transforms. A #pdt directive can have up to 19 continuation
lines, each of which has to contain a - in column 1.

The preprocessor turns a #pdt directive - with its
continuation lines, if any — into FORTRAN-PLUS comment lines
and sends them to the compiler, reformatted into 80 columns
if necessary. The complete directive is then interpreted and
the FORTRAN-PLUS statements are generated to invoke the
Parallel Data Transform routines.

The FORTRAN-PLUS preprocessor, dapdfpp, outputs
diagnostic messages on the standard error stream. Each
message is self-explanatory, and should give you a clue as to
how to fix the error.

The FORTRAN-PLUS compiler is called automatically, once
the preprocessing phase has been completed. The compiler
generates output in consolidator input format (CIF). By default
one CIF file is created for each input source file. The CIF file
has the same name as the inputfile, but has the file extension
.dc instead of .df.

You can have all the CIF files combined into a single file by
using the -3 flag to dap£. For example:

dapf ~j cif a.df b.df

would combine the CIF files normally placed in a.dc and
b.dcintoonefile cif.dec

The DOF file created by dap£ has the default name d.. out.
You don't need to accept the default filename for the DOF file
name, and can specify one using the -o flag. Hence

dapf -o dof a.df

would create the CIF file a . de and link it to produce the DOF
file dof.

You can suppress the linking phase by specifying the -¢ flag.
In this case the CIF files would be produced, but no DOF file
would be generated. Some time later you can link the CIF files
to form a DOF file using dap#£ again, and specifying the CIF
files themselves as input. Hence, if the FORTRAN-PLUS

man003.04 15

16

using dap€£ only to link CIF files

using dapf as a syntax checker

24.2 Compiler listing and
messages

approximate position of any errors
shown In listing

2.4.2.1 Brief listing

16

Chapter 2: FORTRAN-PLUS compilation system

source is in several files, you only need to recompile those files
which have changed.

For example, if a program consists of two FORTRAN-PLUS
source files, a.df andb.d£, and if a. dc has already been
created, the following command would compile b.df (to
generate b.dc) and then link a.dc and b. de to produce
d.out:

dapf b.df a.dc

In fact, you don't need to specify any FORTRAN-PLUS source
files when using dap#£. If all input files are CIF files, then the
compiler is not invoked and the consolidator is entered
immediately to link all the CIF files into a single DOF program
file. For example:

dapf a.dc b.dc

will simply link the files a.dec andb.dc into the default DOF
file d.out.

You can also suppress the linking phase by specifying the -y
flag. The effect is similar to that produced by the -c flag,
except that no CIF files are produced. The ~y flag is useful if
you want to carry out a syntax check of your FORTRAN-PLUS
source without producing any CIF output.

By default the FORTRAN-PLUS compiler will not generate any
compilation listings. However, you can use the -L flag to
dapf to produce a brief or a full listing, according to its
argument: 1 for brief, 2 for full. In both cases the listing is sent
to standard output. In addition, you can use dap£’s -a flag
to get a cross-reference and attribute listing, and the -e flag
to get an external reference listing.

Diagnostic messages (comments, warnings and errors) from
the compiler are also sent to standard output. The name of the
file containing the offending line(s) is displayed, followed by
the line(s) themselves. When an error is reported, its
approximate position within the line is shown by a » character,
Whenever diagnostic messages are generated, a one line
summary of the number of comments, warnings and errors is
also sent to the standard error stream. You can turn off
reporting of comments by specifying the ~q flag to dapf.

An example of a brief listing is given in figure 2.4 opposite.

A brief listing contains lines marking the start (File
source-filename :' in figure 2.4) and the end {(End of
source file source-filename) of each source file. Any
error messages and their associated source lines are also
listed. At the end of each subprogram a summary is given,
consisting of a line recording the end of the subprogram.

man003.04 AMT

2.4: FORTRAN-PLUS compiler 17

(" DAP FORTRAN-PLUS Compiler 4.0S (c) Copyright AMT 1987 Mon Nov 5 15:36:25 1990)

Compilation for DAP 500 series
File : driver.df :

**%*COMMENT 370%*%
Constant list insufficient for SUBID
- padded with 25 * 7
26: TRACE 5 (RESULTS)
A
COMMENT 479 line 26 column 24
No code generated for TRACE statement

End of compilation of subprogram - DRIVER
Subprogram diagnostics: 2 comments 0 warnings 0 errors

End of source file driver.df
Compilation summary: 2 comments 0 warnings 0 errors

_ Figure 2.4 An example of a brief listing)

If compilation of the subprogram produced diagnostics, there
is in addition a record of the number of comments, warnings
and errors.

2.4.2.2 Full listing The full listing consists of the pre-processed source code as
it is input to the compiler, together with the information in the
brief listing, as discussed above. You'll find an example of a
full listing in figure 2.5 on page 18.

2.4.2.3 Cross reference and attribute A cross reference and attribute listing is a list of all the names
listing and labels used in a subprogram, except for the names of
built-in functions and common block names.

The information given for each name is:

» The overall line number (that is, the line number when the
source file has been expanded by any #includedfiles)
of the line in which the name is declared.

= The name itself.
» The class of the name. The different classes are:

Class Meaning

LOCAL A local variable

PRESET A static local variable
PARAMETER A parameter to the subprogram
COMMON A variable in a common block

DAP Series: Program Development under UNIX man003.04 17

18 Chapter 2: FORTRAN-PLUS compilation system

4 B

DAP FORTRAN-PLUS Compiler 4.0S (c) Copyright AMT 1987 Mon Nov 5 14:40:39 1990

Compilation for DAP 500 series

File : driver.df :

1: entry subroutine driver

2:

3: common /data/ data

4: common /results/ results

5:

6: integer*2 data(,)

7: real*4 results(,)

8:

9: integer monitor
10: character sub_id() /’driver.’/
11:
12: external real*4 matrix function clean_up
13:

COMMENT 370%
Constant list insufficient for SUBID
- padded with 25 * * 7

14: call convim2 (data)

15:

16: call process (data, results, monitor)
17: if (monitor.gt.0) goto 93939
18:

19: call convmfe (results)

20: return

21:

22: 999 continue

23:

24: call report (sub_id, monitor)
25: results = clean_up (results)
26: trace 5 (results)

A

COMMENT 479 line 26 column 24
No code generated for TRACE statement

27: return
28:
29: end

End of compilation of subprogram - DRIVER
Subprogram diagnostics: 2 comments 0 warnings 0 errors

End of source file driver.df
Compilation summary: 2 comments 0 warnings 0 errors

_ Figure 2.5 An example of a full listing Y,

18 man003.04 AMT

2.4: FORTRAN-PLUS compiler

19

FUNCTION A function name

SUBROUTINE A subroutine name

BLOCK A block data subprogram name
CONSTANT A named constant

2.4.2.4 External reference listing

2.4.2.5 Compilation diagnostics

DAP Series: Program Development under UNIX

s The type of the item identified by the name — one of
INTEGER, REAL, LOGICAL, or CHARACTER .

Mode and rank of the item identified by the name — one
of SCALAR, VECTOR or MATRIX; rank is given in
parentheses after mode.

For example:
SCALAR (2) is an array of two dimensions.

MATRIX (3) is an array of 3 dimensions, two of
which are parallel.

s Length in bytes - for INTEGER and REAL items.

® A list of overall line numbers for the lines in which the
name is referenced, not including the line in which the
name is declared.

The information given for each label is:

= The line number in which the label is declared.
s The label itself.

= Alistof line numbers in which the label is referenced, not
including the line in which the label is declared.

An example of a cross reference and attribute listing is given
in figure 2.6 on page 20.

The external reference listing is an alphabetical list of all the
names in the subprogram that are defined as or assumed to
be external references. As with the other listings, any
diagnostic information that is output by the compiler is
appended to the listing.

An example of an external reference listing is given in
figure 2.7 on page 21.

Compiler diagnostic messages are classified according to
their severity level. There are four severity levels:

s comment Such messages indicate something that is
valid in terms of the FORTRAN-PLUS language
specification but is of a dubious nature. The compiler
assumes that the source code is correct and continues
compilation.

® warning Such messages indicate that something is
invalid in terms of the FORTRAN-PLUS language
specification but has an obvious valid interpretation. The
compiler accepts this interpretation and continues
compilation.

man003.04 19

20

20

Chapter 2: FORTRAN-PLUS compilation system

File :

26:

Line

12

16

24

10

Line

22

Compilation summary:

Compilation for DAP 500 series

driver.df :

***COMMENT 370%%x

Constant list insufficient for SUBID

- padded with 25 *
TRACE 5 (RESULTS)

I r

A

COMMENT 479 line 26 column 24
No code generated for TRACE statement

** Cross-reference and attributes listing **

Identifier

CLEANUP

25
DATA

6, 14, 16
DRIVER

MONITOR
16,
PROCESS

17, 24

REPORT

RESULTS

7, 16, 19, 25, 25,
SUBID

24

Class

FUNCTION

COMMON

SUBROUTINE

LOCAL

SUBROUTINE

SUBROUTINE

COMMON
26
PRESET

** Labels listing **

Label References

999 17

2 comments

0 warnings

/'th FORTRAN-PLUS Compiler 4.0S (c) Copyright AMT 1987 Mon Nov 5 14:40:43 1990)

Type Mode

REAL MATRIX (2)

INTEGER MATRIX (2)

INTEGER SCALAR

REAL MATRIX (2)

CHARACTER VECTOR (1)
0 errors

Figure 2.6 An example of a cross reference and attribute listing

Length

4

® error JSuch messages indicate something invalid
about which the compiler can make no valid
interpretation. The compiler continues compilation, but
no CIF file is produced.

man003.04

AMT

2.4: FORTRAN-PLUS compiler 21

/" DAP FORTRAN-PLUS Compiler 4.0S (c) Copyright AMT 1987 Mon Nov 5 14:40:46 1990

Compilation for DAP 500 series
File : driver.df :

***COMMENT 370%%*
Constant list insufficient for subid
- padded with 25 * ¢

26: trace 5 (results)
A

COMMENT 479 line 26 column 24
No code generated for trace statement

** External references **

Line Identifier Class Type Mode Length
12 CLEANUP FUNCTION REAL MATRIX 4
16 PROCESS SUBROUTINE
24 REPORT SUBROUTINE

Compilation summary: 2 comments 0 warnings 0 errors

Figure 2.7 An example of an external reference listing

/

» terminal Such messages indicate somethinginthe
system which stops the compiler from working. No CIF
file is produced.

The compiler error messages should be self explanatory, and
give you some idea of the source of the problem, and how to
put matters right.

2.4.3 Compiler control of Certain diagnostic features are only available at run-time if you
run-time diagnostics include the appropriate code in your source code, and take
the correct action at compilation time.

These features are:

= The FORTRAN-PLUS trace facility.

m The diagnostic information which is available if a run-time
error occurs.

= The various run-time checks described in section 2.4.3.3
below.

= The ability fo single-step through your source code.
2.4.3.1 FORTRAN-PLUS trace All FORTRAN-PLUS trace statements have an associated

level number, which can be used to control their execution at
run-time (for more details see section 3.4.1, on page 44).

DAP Series: Program Development under UNIX man003.04 21

22

2.4.3.2 Run-time diagnostic
information

2.4.3.3 Run-time checks

22

Chapter 2: FORTRAN-PLUS compilation system

The level number is also used to control the conditional
compilation of the trace statements. The -t flag to dapf
specifies the maximum level number of trace statements
which are to be compiled. The level number has to be in the
range Oto 5. At level 5 all trace statements are compiled,
and at level 0 no trace statements are compiled.

Thus:
dapf -t2 a.df

will compile all level 1 and level 2 trace statements. The
default value for the ~t flag is zero, meaning that no trace
statements are compiled.

If a run-time error occurs during the execution of a DAP
program, the amount of diagnostic information available will
depend on the diagnostic level you specified for the
compilation. The default is to give you maximum diagnostics,
but you can specify a lesser level with the -D flag to dap#£,
which takes an argument in the range 0 - 2.

The information associated with each of the diagnostic levels
is:

Only subprogram names are available.
As for level O, plus line numbers.

As for level 1, plus the names and values of all variables in common and
static areas or currently on the stack.

The default value is 2.

When a FORTRAN-PLUS program is executing, various
run-time checks are normally made, as described below. By
default, all the checks are carried out, but you can turn them
off. You might get a slight improvement in performance as a
result, but AMT does not recommend the practice unless the
program has been thoroughly debugged.

You use dapf's -r flag to switch off the check or checks, as
specified by the letter(s) you give as an argument. The options
are:

Do not check the shape of operands for conformance.
Do not check for DO loop increments of zero.

Do not check real data for normalisation. (that is, for valid internal
represenation) before floating point operations.

Do not check whether formal and actual parameters to routines conform in
type, data-length, shape and mode.

Do not check for overfiow.
Do not check if subscripts are in range.

Do not apply any of the above-mentioned checks — that is, do not apply
any run-time checks.

man003.04 AMT

2.4: FORTRAN-PLUS compiler

23

In addition, there is a run-time check that is not applied by
default, but which you can switch on with the +x flag:

+rh Check whether formal and actual parameters to routines match in their
non-parallel dimensions.

By default, non-parallel dimensions are not checked, but parallel
dimensions are. You can turn off the checking of parallel dimensions with
the -rp option.

2.4.3.4 Single-stepping

2.4.3.5 Execution profiling

2.4.3.6 Optimising

DAP Series: Program Development under UNIX

Thus:
dapf -ra a.df

would compile a . d£ with no run-time checks at all, and:
dapf +rh -rd -rn a.df

would compile with the non-parallel dimensions checking
switched on, and with the DO loop incrementing variable and
the normalisation checks switched off.

It is often of value to be able to execute only one line of source
code at atime, halting program execution after each line. This
single-stepping is available in psam, the program state
analysis mode sub-system, provided that the source code
was compiled using the -g flag to dap¥£.

For example, if you want to compile the FORTRAN-PLUS
source code in file a.df and single step through the code
when you enter psam, you could use the command:

dapf a.df -g

When you have debugged the program thoroughly, you
should re-compile it without the ~g flag.

When a FORTRAN-PLUS program is executing, profiling
information is generated, providing you compiled the source
code using the -p flag to dap¥£.

This profiling information is stored in the file dmon . out in the
current directory when the program is run. You can use the
utility dapprof to analyse the file; dapprof is described in
section 3.5 on page 54.

When you don't want this profiling information any more you
should recompile without the -p flag.

The FORTRAN-PLUS compiler lets you specify different levels
of optimisation, using the ~On flag to dap¥f .

man003.04 23

24 Chapter 2: FORTRAN-PLUS compilation system

Valid values for nare;

0 Do not carry out any optimisations.
Optimise the use of MCU registers and co-processor memory using simple
cacheing.

2 As 1, and also carry out expression analysis, to optimise co-processor
usage.

The defaultis -00. The ~02 option is accepted when you are
compiling for non co-processor machines, although it only has
an effect different from -01 if you are compiling for a
co-processor machine.

If you specify O without a number, then the greatest level of
optimisation available in the release of the compiler you're
using will be selected.

2.5 FORTRAN-PLUS Linking

The final phase of the compilation process is to link all the
consolidator input format (CIF) files (and CIF libraries, if
appropriate) to form the DAP object format (DOF) file. This
operation is carried out by the consolidator (also known as the
linker). When dapf is used, the consolidator is usually
entered automatically, after the compiler has finished
compiling any FORTRAN-PLUS source files which you
specified. The consolidator will not be invoked if you specified
dapf's -c or -y flags, or a compile-time error occurred.

You will get a consolidation error if any of the CIF files or
libraries specified are incompatible with the current (or
defaulted) values of the environment variables DAPSIZE and
DAPCP8 (for more details, see section 2.1 on page 7).

2.5.1 CIF library input A CIF library is a collection of individual CIF files. You can
specify one or more CIF libraries as input to dapf.

The consolidator will search the specified libraries for external
references to subroutines and functions.

user-defined CIF libraries CIF libraries can be user-defined or system libraries. See
chapter 5, which starts on page 101, for details of how to build
user-defined libraries.

User-defined libraries have the extension . d1. You can link in
such libraries by putting the filename(s) after the input source
of the CIF filename(s).

For example:
dapf a.df daplib.dl

will compile the FORTRAN-PLUS source code in file a. df,
and then attempt to link it with the user-defined library
daplib.dl, which is scanned to satisfy any external
references ina.df.

24 man003.04 AMT

2.5: FORTRAN-PLUS Linking

25.2 Consolidator messages and
link map

2.5.2.1 DAP program block

DAP Series: Program Development under UNIX

25

You can link in standard system CIF libraries using the -1 flag
to dapf. For example, if a routine from the General Support
Library (see [5], DAP Series: General Support Library) is
referred to in a. d£, you can access it at compile time with:

dapf a.df -1 gslib

Coprocessor versions of system CIF libraries are used where
appropriate.

The order in which the libraries and other CIF files are
specifiedis significant, as the consolidator uses a rigid search
algorithm when it is looking for unsatisfied external references
~ for more details, see section 5.4, starting on page 108.

Error messages from the consolidator are sent to standard
output and a summary is also sent to the standard error
stream. In addition, you can ask the consolidator to display a
link map on the standard output stream. This map gives
information concerning the code and data areas which make
up the DOF file being generated. Most users will not need to
get involved with these details (at least not for simple
programs). If you are a first-time reader you might want to skip
this section, and carry on reading at section 2.5.3 on page 32.

The consolidator provides 3 maps: brief, standard and full. The
dapf flag -m requests a map, and its argument specifies the
level required (1 for brief, 2 for standard or 3 for full). By default
no map is produced.

The DOF file is loaded into the memory of the DAP, when it
becomes known as the user's DAP program block. There is a

DAP program block for each user-program resident in the
DAP.

The link map produced by the consolidator describes the
memory of the DAP in terms of its code and data areas. These
areas are described in the following sections, along with
details of the different map options you can choose.

The DAP program block consists of two storage areas:

- MCU code store
» Array store

Figure 2.8 on the next page shows the format of these two
storage areas.

Hardware datumand limit registers in the DAP and associated
with each current user make sure that a user's DAP program
cannot access areas outside its own block. The names given
in figure 8 for the different areas in DAP memory are used
internally by the consolidator, and some of them appear on
consolidator listings.

Note that the co-processor code is stored in an area separate
from the user’s program block. A user doesn't normally make

man003.04 25

26 Chapter 2: FORTRAN-PLUS compilation system

Consolidator map

Code store area names Array store
datum datum 0 planes
¥
AMTS5ACODE
code

~ & limit AMTS5AWORK workspace
119
AMT5ACONTROL control 120
127

AMT5ALITS literals
AMTS5ARDATA read only data
read only
AMTS5ARHCOMM

host common

AMTS5ARWHCOMM readjwrite
host common

AMTS5ARWDATA read/write data

AMTS5ACPSTATE co-processor context
save area

AMTSASTACK stack

limit ~ ~

Figure 2.8 DAP program block structure

26 man003.04 AMT

2.5: FORTRAN-PLUS Linking

often no need to specify required
stack area

-s options to dapf

WARNING

a7

explicit use of the co-processor code store, as his program
will normally only make use of system co-processor routines,
which are stored in an area common to all user's programs.

The size of the stack area is set by the consolidator, which by
default makes an estimate of the size needed, based on the
stack requirements of the individual CIF modules which make
up the DAP program.

Often you don't need to specify a required stack area, since
the default estimate is usually adequate, at least for
FORTRAN-PLUS programs. (If you write APAL programs you
are responsible for including stack request statements in each
module.) However, you will sometimes find it useful to adjust
the consolidator's stack estimate.

For example, if your DAP program is very large, its default
stack estimate might be so large that its program allocation
overflows the available space in array store, even though the
program would still run correctly with a smaller stack section.

The -s noption to dapf instructs the consolidator to ignore
its own estimate and make the stack section n planes in size.
The -s+n option to dapf instructs the consolidator to
increase its estimate of the stack section size by nplanes.

Beware that if you declare your FORTRAN-PLUS variables as,
say, :

matvar (¥, *)

then the consaclidator has no basis on which to allocate stack
to your program. It makes certain assumptions about the stack
requirement, but its estimate may be too low and when you
come to run the program you might get a message:

[Attempted access outside array store datum or limit

2.5.2.2 Using daped to change stack
requirements

You can forestall this memory access problem by declaring
the sizes of all your variables explicitly in your source code, or
by specifying how much stack space you need.

To change the allocation of stack space to your program you
could use the -s flag to dap£ at link time, as discussed
above.

Alternatively, once your DOF file has been produced you can
use daped to modify the DOF file to ask for less — or more -
space at run time. If, for example, you need to increase your
stack allocation by 1024 planes, you could enter daped with
the command:

(daped DOF-file-name

DAP Series: Program Development under UNIX

where DOF-file-name is the name of your DOF file. daped’s
command for changing stack size is s, so when you issue it
you might get the response shown at the top of the next page.

man003.04 27

28 Chapter 2: FORTRAN-PLUS compilation system

daped: s

Current array size (planes) 131072
Current stack size (planes) 4096
Original stack size (planes) 4096

Enter new stack size (planes):

Since you want to increase your stack size by 1024 planes,
from its current value of 4096 to 5120, you would enter 5120
at the prompt.

You can now exit daped with command q, and run your
program again. For a formal description of the effects of all
dapeds flags, see section A.2, on page 135.

Even if you specify your variables' sizes explicitly, you can still
have problems - if the total memory size needed to hold your
problem s greater than the array store size of your DAP! If this
were to happen, you can either recompile, using dapf's -s
option, or use daped to change stack size requirement.

2.5.2.3 Brief map A brief consolidator map gives details of:

® The areas forming the DAP program block.

The start address and size of each area in the DAP
program block is given. The names used in the map
correspond to those in figure 2.8, except for the two host
common areas, where the names of each constituent
section are given. These sections correspond to
FORTRAN-PLUS common blocks or APAL data sections
with the host common properties.

Start points and sizes are given in bytes and words
(32 bits) for MCU code store data objects and in words
and planes for array store data objects, and are printed
as hexadecimal values. The total array store occupied is
given in planes, in hexadecimal and decimal. The total
MCU code store occupied is given in words, in
hexadecimal and decimal.

» Entry points in the DAP program block.

Entry points are the places in the DAP program at which
execution can start; that is, FORTRAN-PLUS entry
subroutines, or APAL code sections or entry
points with the host property. The start address of each
entry point is given in words, in decimal, together with the
name of the code section in which it occurs.

This map is sent to the standard output stream. If there are any
diagnostics, a one line summary of all comments, warnings
and errors is also sent to the standard error stream.

An example of a brief map is shown in figure 2.9 opposite.

28 man003.04 AMT

2.5: FORTRAN-PLUS Linking

('VDAP Consolidator 4.0S

Area name

AMTS5ACODE
AMTS5AWORK
AMT5ACONTROL
AMTSALITS
AMTS5ARDATA
DATA
AMTSASTACK

Entry point name
words

TIME

DOF file created : daptime

_ Figure 2.9 An example of a brief map

Total code store occupancy = 00d15 (hex),
Total array store occupancy = 00134 (hex),

(c) Copyright AMT 1987

Start
words
planes/

bytes
words

00000 000000
00000/00000000
00078/00000£00
00080/00001000
00081/00001020
00089/00001120
000a1/00001420

Current working directory is /usr/arcs02/cnm/pduu
Consolidation for DAP 500 series

** Areas forming the DAP program block **

Size
words
planes/

bytes

words

00d15 003454
00078/00000£00
00008/00000100
00000/00000015
00008/00000100
00018/00000300
00093/00001260

3349 (dec) words
308 (dec) planes

** Entry points in the DAP program block **

Code section name

TIME

Mom Nov 5 14:40:52 1990)

Start

00000

2.5.2.4 Standard map

DAP Series: Program Development under UNIX

A standard map gives exactly the same information as the
brief map, with the addition of details of the user-supplied
sections in the following areas:

s MCU code area

m Read-only data area

= Read-only host common area

= Read and write host common area

m Read and write data area

An example of a standard map is shown in figure 2.10 on the

next page.

In both the code and data sections of a standard map the
scope of the different sections is given as HOST, DAP or
PRIV. The meaning of these scope values is discussed

below.

man003.04

29

30 Chapter 2: FORTRAN-PLUS compilation system

/,VDAP Consolidator 4.0S

Consolidation for DAP 500 series

Area name Start
words bytes
planes/ words
AMTSACODE 00000 000000
AMTS5AWORK 00000/00000000
AMT5ACONTROL 00078/00000£00
AMTSALITS 00080/00001000
AMT5ARDATA 00081/00001020
DATA 00089/00001120
AMTS5ASTACK 000a1/00001420

00d15 (hex),
00134 (hex),

Total code store occupancy
Total array store occupancy

Entry point name
words

TIME TIME

* Code sections *

Code section name Scope Start
Entry point name words
TIME HOST 00000
module : TIME
CIF file : time.dc
CLOCK DAP 0004b
module : CLOCK
CIF file : time.dc
* Read/write host common data
Name Scope Start
Common planes
DATA HOST Y 00089
module : TIME
CIF file : time.dc
DOF file created : daptime

_ Figure 2.10 An example of a standard map

(c) Copyright AMT 1987

Current working directory is /usr/arcs02/cnm/pduu

** Areas forming the DAP program block **

Size
words
planes/

bytes

words

00d15 003454
00078/00000£00
00008/00000100
00000/00000015
00008/00000100
00018/00000300
00093/00001260

3349 (dec) words
308 (dec) planes

** Entry points in the DAP program block **

Code section name

** Sections in the DAP program block **

Start
00000
Size Lits Used
words
0004b 0005
00022 0001

sections *

Size
planes

00018

Mon Nov 5 14:40:56 1990

30 man003.04

AMT

2.5: FORTRAN-PLUS Linking

code sections

data sections

2.5.2.5 Fullmap

DAP Series: Program Development under UNIX

31

The meaning of the scope values is:

® HOST - applies to a FORTRAN-PLUS entry
subroutine, or an APAL code section or entry
point with the host property.

s DAP - applies to a FORTRAN-PLUS subroutine or
function, or an APAL code section or entry point
with the dap property.

m PRIV - applies to an APAL code section or entry
point with neither the host nor the dap property.

The start address and size of each code section are given in
words, together with the number of literals used by the code
section, and are printed as hexadecimal values. Any
additional entry points to the code section are also listed with
their start addresses.

The names are also given of the module containing the code
section, and of the CIF file or library containing that module.

Up to four separate lists are given, corresponding to the four
different data areas in array store (see figure 2.8, on page 26).

The four data areas contain:

= Read-only data - an APAL data section; either
private, or with the dap property, or with the dap and
common properties.

® Read-only host common -an APAL data section
with the host and common properties.

® Read and write host common - a
FORTRAN-PLUS common block, or APAL data section
with the host, common and write properties.

®= Read and write data - an APAL data section
with the write property; either private, or with the dap
property, or with the dap and common properties.

The format of each of the lists of the four data areas is the
same. The start address and size of each data section is given
in planes, and are printed as hexadecimal values. The scope
of the name is given as HOST, DAP or PRIV, and aY or N
field indicates whether or not the name has the common
property. The name of the module containing the data section
and the CIF file or library containing that module is also given.

If the name of a data section has the common property, then
that section is listed in the map only once. The consolidator
lists the first occurence of the section it comes across, even
though many modules may share that one common data
section.

A full map gives exactly the same information as the standard
map, with the addition of details of all AMT-supplied code
sections and data sections. A list of any AMT-supplied
co-processor code sections is also given. The format is the
same as for a standard map.

man003.04 31

32

25.3

2.6

2.7

32

Chapter 2: FORTRAN-PLUS compilation system

Consolidator diagnostics The consolidator generates the same classes of diagnostic
messages as the compiler and the assembler, that is,
comment, warning, error and terminal error messages.

Examples

example 1; The simplest case is the compilation of a single source code
file followed by linking the resulting CIF file, for example:

dapf filename.df

The resulting CIF file is called £ilename . dc; the DOF file is
called d. out by default. You can give the DOF file a name of
your choice by using the -o flag:

dapf -o myprog filename.df

The DOF file produced by this command is called myprog.

example 2: When you are compiling several source code files, you can
join the resulting CIF files together and put them into one file
~ using the ~ 1 flag:

dapf -j dapcif dapfortl.df dapfort2.df dapfort3.df

This command results in one multi-module CIF file called
dapcif.dc. In this case the CIF file would then be linked
into a single DOF file, named d.out by default. You can
inhibit the production of a DOF file by using the -¢ flag:

dapf -3 dapcif -c dapfortl.df dapfort2.df dapfort3.df

example 3: On request, the compiler and consolidator produce listings
and maps. For example, if you want to get an external
reference listing, a cross reference and attribute listing and a
listing of the source, you could use:

dapf -e -~a -L2 dapfort.df

In addition, you can get a link map using the -m flag:

dapf -e =~a -L2 -m2 dapfort.df

dapt flags

This section contains a summary of all the flags available with
dap£. You can put dap£ flags and filenames in any order, but
the consolidator searches files and CIF libraries in the
sequence specified and this order may be significant (see
section 5.4 on page 108).

man003.04 AMT

2.7: dapf flags

-a

-C

-e
g

~I dirname

-j name
-1 name
~-Ln

-0 filename

-0on

33

Generate a cross reference and attribute listing
Do not link

Generate various levels of diagnostic information that might be used in the event of
run-time errors or by dapdb. Valid values for n are 0 to 2 inclusive; it controls the extent
of available information:

Value of n Effect

0 Subprogram names only are available.
1 As for 0, plus line numbers.
2 As for 1, plus names and values of all variables in common areas.

or currently on the stack.
The default value is 2.
Generate an external reference listing
Allow single-stepping (execution of one line of source code) from within psam .

Modify search paths for #include files. This option instructs the preprocessor to add
dirname to the search path for #include files whose names do not begin with / .

Join all CIF files into one file called name.dc .

Pass the CIF library associated with the software called name to the consolidator.

Generate a source listing of the level specified by n. Valid values for n are:
Valueofn Effect

1 Brief listing
2 Full listing

By default, no listing is given.
Generate a consolidator map of the level specified by n. Valid values for n are:
Valueof n Effect

1 Brief map
2 Standard map
3 Full map

By default, no map is given.

Generate an executable DAP program file called filename instead of the default name
d.out.

Carry out the optimisations specified by n. Valid values for nare:

Value of n Effect

0 No optimisations.

1 MCU registers and co-processor memory optimised using simple
cacheing.

2 As 1, plus expression analysis, to optimise co-processor usage.

If nis omitted, the highest level of optimisation available in the release of the compiler
in use is selected.

By default, no optimisations are carried out.

DAP Series: Program Development under UNIX man003.04 33

34 Chapter 2: FORTRAN-PLUS compilation system
-p Generate profiling information when the program is run.
-q Suppress compiler comment messages.
-rX Suppress run-time checks in the program specified by x. Valid values for x are:
Value of x Effect
c No checking for the shape of operands in expressions for conformance.
d No checking whether the value of the DO loop increment is zero.
n No checking of real data for normalisation before floating point operations
are carried out.
° No checking for overflow.
No checking if formal and actual parameters to routines conform in type,
data-length, shape and mode.
s No checking if subscripts are in range.
None of the above-mentioned checks are applied - that is, no run-time
checks are applied.
By default, no checks are suppressed.
+rh Checkif formal and actual parameters to routines match in their non-parallel dimensions.
-sn Set DOF stack record to n planes.
-s+n Set DOF stack record to n planes plus the consolidator estimate.
-tn Compile source trace statements which have a leve! less than or equal to n. Valid values
for nare 0 to 5 inclusive. The default value is 0.
-y Inhibit the production of CIF files. The consalidator is not run. This option is in effect a
syntax checker.
Other flags are ignored and a warning message is produced.
If conflicting options are specified (such as -L1 -L2)the last
one is used and the previous ones ignored.
34 manQ003.04 AMT

Chapter 3

35

Running DAP programs

3.1 Introduction

default action if run-time error or
pause

DOF file holds value of DAP edge
slze and co-processor
requirements

DAP Series: Program Development under UNIX

Once you have compiled a DAP program, and created the
resultant DOF file, you execute the program by running the
associated host program on your host. The host program
loads the DAP code into the DAP store and transfers data (if
necessary) to the DAP before passing control to the DAP,

The DAP program will then run, with the host program
suspended until the DAP program passes control back to the
host in the usual way - or a run-time error occurs or a pause
statementin the DAP program s executed. If the DAP program
passes control back to the host, execution of the host program
continues.

Ifa run-time error occurs or the programis paused, by default
the run-time diagnostic system passes control to the program
state analysis mode utility (psam). You can use psam to
examine the state of the DAP when the error occurred or the
program was paused, and to restart the DAP program. See
chapter 4 for more details of psam .

The default action when a run-time error occurs or a pause
is executed is to enter psam, although the -e flag to dapopt
lets you specify other actions. For more details of the -e flag
see section 3.4.3 on page 45.

The method by which program control and data pass between
the host and the DAP is described in section 3.2, and an
example of how to compile and run a complete DAP program
is given in section 3.3.

The edge-size (ES) of the DAP machine the DAP program is
torunon (the target DAP) is contained within the DOF file itself,
as is the program’s co-processor requirements. If you specify
that the DAP program is to run on the simulator (see
section 3.4, on page 42) the required simulator is invoked at
run-time. However if the DAP program is to be run on the
hardware, and the edge-size of the DAP which is connected
to the host does not match the edge-size of the DAP in the
DOF file, an error will occur. Similarly, if the DAP program
needs a co-processor machine, and the DAP the program is
run on is not a co-processor model, an error will occur.

man003.04 35

36 Chapter 3: Running DAP programs

DAP programs that do not use the co-processors can run on
machines with or without co-processors.

A variety of options are available at run-time; these are
described in section 3.4, on page 42.

Host Communication DAP
between Host and DAP

Host program DAP program
dapcon the DAP program is loaded into code store,
requests space in the DAP preset data is loaded into the array store
dapsen host data is loaded into a common block
dapent entry subroutine

control is passed to the DAP and
host processing is suspended

data is converted from host to DAP formats

required processing takes place in the DAP

data is converted from DAP to host formats

return
control is returned to the host

host processing is resumed

daprec
reads data from the DAP

daprel .
releases space in the DAP DAP space used by this program is now free
for other programs

Figure 3.1 Communication between a host program

36 man003.04 ' AMT

3.2: DAP interface routines

3.2 DAP interface routines

3.2.1 dapcon and daprel

arguments to dapcon

running on the simulator

running on DAP hardware

37

You transfer control and data between host and DAP programs
using AMT-supplied interface routines dapcon, dapent,
dapsen, daprec and daprel. You link these routines into
the host program by adding -1dap to your compilation
command. Note that they can be called from the host program
either as subroutines or functions, but the only interface
routine which returns a useful result when invoked as a
function is dapcon. In FORTRAN, you should invoke
dapcon as afunction, and declare itas integer dapcon.
Formal specifications for the FORTRAN and C routines are
given in appendix E, starting on page 161.

Figure 3.1 opposite shows the communication that takes
place between the DAP program and the host program.

Before a DOF file can be executed by the DAP it has to be
loaded into the DAP code store. You carry out this loading
process by a call to dapcon (DAP, connect) in your host
program.

dapcon is the first interface routine call to be issued by the
host program. Itis an integer function and takes one argument
- the name of the file containing the DOF version of the
program to be loaded. The usual form of the argument is the
name of the DOF file given as a literal.

For example, in a FORTRAN host program you might issue:
result = dapcon (’ DOF-file-name’)

or in a C program:
result = dapcon ("DOF-file-name") ;

The DOF file will direct dapcon to the hardware or to the
simulator, whichever you specified in your call to dapopt. If
you have not called dapopt, the default action is to run on
the hardware. For more details of dapopt, see section 3.4,
on page 42.

If in dapopt you specified your DAP program was to be run
on the simulator, dapcon will load your program immediately.

If you specified DAP hardware, then loading might not take
place immediately. Several programs can be loaded into the
DAP at the same time; if there is not enough space to load a
new program into the DAP, the following message appears on
the host screen:

[Awaiting DAP resources

DAP Series: Program Development under UNIX

the program will be put in a queue, and dapcon will wait until
there is a large enough slot in the DAP to load the program.

man003.04 37

38 Chapter 3: Running DAP programs

For more details of multi-programming on the DAP, see
chapter 7, which starts on page 127.

Once your program is loaded into the DAP, dapcon returns
control to your host program, which continues executing.
dapcon returns an integer value in the range 0 to 5:

Result returned Meaning of result from dapcon

Success

Unable to open DOF file

Unable to read DOF file

Not a DOF file

Unable to open channel to hardware DAP
DAP load failed

o b W N =+ O

daprel You should call daprel (DAP, release) from the host program
when all DAP processing and communication has been
completed. daprel should therefore always be the last DAP
interface subroutine that you call from the host; it frees the DAP
so that other users can access it.

arguments to daprel daprel takes no arguments.

daprel is called automatically if the host program terminates
or if you issue a second call to dapcon in your host program
without an intervening call to daprel. (In this case daprel
is first called automatically, then your second dapcon is
acted on). If you issue a call to daprel when the DAP is not
connected, the call is ignored.

3.2.2 dapsen and daprec The interface subroutines dapsen (DAP, send to) and
daprec (DAP, receive from) are used for the transfer of data
between the host program and the DAP program.

dapsen sends data from the host program to the DAP
program and daprec receives data from the DAP program
into the host program. The use of the arguments for these two
subroutines is identical, only the direction of transfer changes.

arguments to dapsen and Each subroutine takes three arguments:

daprec
= The name of a FORTRAN-PLUS common block (or of an
APAL datasectionwiththe host, common andwrite
name of DAP common block properties) to or from which the data is to be sent.

start location of data to be » The name of a word-aligned data area in the host

transferred program (in FORTRAN programs), or the address of such
an area (in C programs), identifying the start location of
the block of data to be transferred.

Iin a FORTRAN host program In a FORTRAN host program the normal choice for this
argument is the name of the firstitem in a common block,
because it will always be word-aligned. Character
variables and arrays require special treatment when
being transferred. Before you give the name of a

38 man003.04 AMT

3.3: Example

In a C host program

number of DAP words to be
transferred

3.2.3 dapent

arguments to dapent

3.3 Example

DAP Series: Program Development under UNIX

39

character variable or array as the second argument to
dapsen or daprec you should equivalence the
character variable with an integer variable, which will
make sure that the object is word-aligned. For a formal
specification of the FORTRAN language interface see
section E.2 on page 162.

In a C host program this argument should be the address
of a word-aligned variable or array. If the address is not
word-aligned it should be unioned to a word-aligned
variable or placed in a word-aligned structure. AMT
recommends that all character and short variables and
arrays to be transferred to and from the DAP are actually
or effectively word-aligned in this way. For a formal
specification of the C language interface see section E.1
on page 161.

= An integer constant (or the name of an integer variable)
which specifies the size of the data block to be
transferred, in units of DAP words (a DAP word contains
32 bits)

The examples of host programs in figures 3.3 and 3.4 illustrate
the use of daprec and dapsen.

Note: In your DAP program, before you use data transferred
from the host, you have to call the FORTRAN-PLUS mode
conversion routine convhtod. Similarly, if you are going to
transfer data back to the host, before you leave the DAP
program, you have to call convdtoh. For more details, see
[2], DAP Series: FORTRAN-PLUS enhanced.

You can make any number of dapsen and daprec calls
between a dapcon and a daprel call in a host program.

You transfer control from the host program to the DAP by a call
to dapent (DAP, enter).

dapent takes one argument - the name of the
FORTRAN-PLUS entry subroutine (or APAL code
section or entry point with the host property) which is to
be executed. Once the DAP program is running, execution of
the host program is suspended until a return instruction in
the DAP entry subroutine is obeyed. At this point the
host program will start again, at the instruction immediately
after the call to dapent.

The following is a simple example of a complete
FORTRAN-PLUS program, with examples of suitable host
programs, one written in FORTRAN, and one in C. The
example shows how to compile and run the program on the
DAP hardware and on the simulator.

man003.04 39

40 Chapter 3: Running DAP programs

3.3.1 The DAP program This example can be run on a DAP 500 or DAP 600 machine.
You should set the environment variable DAPSIZE to the
correct value for your target DAP before running dapf£ (for
more details of DAPSIZE see section 2.1 on page 7).

Each of the two host programs initialises an array of numbers,
transfers them to the DAP, which sums all the components and
returns the tofal to the host. The example is intended to
illustrate compiling and running DAP programs and host-DAP
communications: itis notintended to represent an efficient use
of the DAP.

The DAP program is shown in figure 3.2 below.

4 entry subroutine dapentry N
parameter (NROWS = 40, NCOLS = 70)
integer*4 in(*NROWS, *NCOLS)
integer*4 isum
common /indata/ in
common /outdata/ isum

C
C Convert input data from host mode to matrix mode
C
call convhtod(in)
C
C Calculate sum of matrix components
c
isum = sum(in)
C
C Convert result from scalar mode to host mode
c
call convdtoh (isum)
c
C Return contrel to the host program
Cc
return
end

_ Figure 3.2 Example DAP program Y,
The FORTRAN-PLUS code is compiled using the dapf
command:

(dapf -o dapprog dapprog.df)
which compiles dapprog.df and generates the DOF file
dapprog.

3.3.2 Compiling the FORTRAN The FORTRAN host program is compiled using the 77
host program command:

[7 £f77 -o hostprog hostprog.f -ldap)

40 man003.04 AMT

3.3: Example 41

which compiles hostprog. £ and generates the executable
file hostprog. The programis listed in figure 3.3 below.

4 program hostprog
parameter (NROWS = 40, NCOLS = 70)
integer in(NROWS,NCOLS)
integer isum
integer i, j, ires, dapcon
common /indata/ in
common /outdata/ isum
C
C Initialise input data
C
do 10 j = 1, NCOLS
do 10 i = 1, NROWS
in(i,j) =1 + 3
10 continue
o}
C Load DAP program
Cc
ires = dapcon(’dapprog’)
if (ires.ne.0) then
write(0,1000) ires
1000 format (//’dapcon call failed (reason = ', i5, ’)’/)
stop
endif
C
C Transfer input data to the DAP
C
call dapsen(’indata’, in, NROWS*NCOLS)
C
C Execute DAP program
C
call dapent(’dapentry’)
C
C Transfer result back from DAP and release DAP resource
C
call daprec(’outdata’, isum, 1)
call daprel
C
C Display result
C
write(6,2000) isum
2000 format(//’Sum of matrix is: ’, i8/)
stop
end

_ Figure 3.3 Example FORTRAN host program

DAP Series: Program Development under UNIX man003.04 41

42 Chapter 3: Running DAP programs

3.3.3 Compiling the C host The C host program is compiled using the ¢¢ command:
program
[cec -o hostprog hostprog.c -ldap]

which compiles hostprog. ¢ and generates the executable
flehostprog. The programis listed in figure 3.4 onthe page
opposite.

3.3.4 Running the program The host program is now executed in the usual way, by typing:
hostprog

The DAP program will be loaded into the DAP hardware (by
dapcon) and data sent to the DAP (by dapsen). Control is
then passed to the DAP (by dapent), and after the DAP
processing is complete, control is returned to the host
program and the result is returned to the host (by daprec).
The DAP space used by this program is then released (by
daprel), so that other users can access it, and the host
post-processing starts. In this case the post-processing is
simply a display of the result.

If dapcon fails to connect to the DAP it will return an error
code, the host program will print the value of the code, and
will stop. Appendix E on page 162 lists the meanings of the
six possible dapcon return codes.

If you want to run the program on the simulator instead of on
the hardware, you would first issue the dapopt command
using the -s1 flag:

(dapopt -sl1 dapprog J

For more details of dapopt, see section 3.4 below. The host
program can then be run exactly as before, except that the
DAP program will be executed by the simulator,

3.4 Specifying run-time options — dapopt

There are a variety of run-time options available when a DAP
program is executed (for example, those options concerning
trace output and diagnostic levels). The information on the
options required is stored in the DOF file itself. You can modify
the options by using the dapopt program.

You specify the options you want to change using dapopt's
flags. A single DOF filename has to be given as input, and by
default the option information is added to that file. The -o flag
lets you specify a new output file, the input file being left
unchanged.

After you have used dapopt, the options you selected remain
in force every time that DOF file is used, until explicitly
changed by another run of dapopt; default values are used
for those options which have not been modified by dapopt.

42 man003.04 AMT

3.4: Specifying run-time options - dapopt

43

4 #include <stdio.h>

#define NROWS 40
#define NCOLS 70

extern int dapcon();
extern void dapent():;
extern void dapsen();
extern void daprec();
extern void daprel();

main ()

{
int in[NCOLS] [NROWS];

int isum;

int 41, j, ires;
/%
* Initialise input data
*/

for (j = 0; j§ < NCOLS; J++) {
for (i = 0; i < NROWS; i++) {
in(jl1[i]l = (1 + 1) + (3 + 1);
}
}

/%
* Load DAP program
*/
ires = dapcon("dapprog");
if (ires != 0) {
(void) fprintf(stderr, "\n\ndapcon call failed (reason =
exit(1l);
}
/*
* Transfer input data to the DAP
*/
dapsen("indata", &in[0][0], NROWS*NCOLS);
/*
* Execute DAP program
*/
dapent ("dapentry");
/*
* Transfer result back from DAP and release DAP resource
*/
daprec("outdata®, &isum, 1);
daprel();
/*
* Display result
*/
(void) fprintf(stdout, "\n\nSum of matrix is: %8d\n\n", isum);
exit (0);

}

_ Figure 3.4 Example C host program

%5d) \n\n", ires);

DAP Series: Program Development under UNIX man003.04

43

44

hardware or simulator

Chapter 3: Running DAP programs

Default values are used for all options in a DOF file if dapopt
has never been run on the file (see section 3.4.6 on page 52
for details of the default values of the options).

For a summary of all the dapopt flags, see section 3.4.7 on
page 52.

The ~g flag specifies whether the program is to be run on the
hardware or on the DAP simulator. The argument after -s
should be 0 if you want to run the program on the hardware
(the default), or 1 for the simulator.

The following command creates a DOF file called sim from
the DOF file d . out which will run on the DAP simulator:

(7 dapopt -sl -o sim d.out

breakpoint edit mode

The -b flag to dapopt takes one argument, which can be 0
(the default) or 1. The effect of ~b1 is that whenever dapent
is called from the host program, psam is entered before the
first user instruction in the DAP programis executed. The main
use of this =b option is to let you set breakpoints in your DAP
program (or to execute the program in single-step mode right
from the first user instruction in the program) without having to
enter psam by some other means. For more information on
psam and breakpoints, see chapter 4, which starts on
page 57.

To enable breakpoint edit mode for DOF file d.out, you
would issue the command:

[dapopt -bl d.out

3.4.1 trace execution control

3.4.2 Run-time diagnostics

44

The run-time trace level for FORTRAN-PLUS trace
statements is defined by the - £ flag to dapopt. The trace
level is specified by its argument, which has to be in the range
0 to 5. trace statements are only executed if their level is
less than or equal to that given by the - £ flag. (As explained
in section 2.4.3.1 on page 21, compilation of trace
statements is itself controlled by the -t flag to dapf). The
default value for ~£ is 5, that is, all compiled trace
statements are executed.

Similarly, APAL trace statements are only executed if the
argument to dapopt's -a flag is greater than or equal to the
level specified in the APAL trace statement. The -a flag
argument should be in the range Oto 15 (default 15). Assembly
of APAL trace statements is controlled by the -t flag to
dapa - see section 6.4.3 on page 123 for more details.

If a run-time error occurs in a DAP program, the diagnostic
system will output information relating to the nature and
location of the problem. The information displayed can be
specified using the -d flag to dapopt, which takes an

man003.04 AMT

3.4: Specifying run-time options - dapopt

Value of -d argument Effect

45

argument in the range O to 2 (default 0) and defines the output
as:

0 A description of the error, its location (subprogram name and line number),
and a route summary showing which procedures have been entered but
notyetleft. Inthe case of vector or matrix computational errors, anindication
of which components were in error is also given .

1 As for 0, plus the names of and values held by all variables on the failing
line.

2 As for 1, plus the names of and values held by all variables in the failing
subprogram.

diagnostics file

Note that information concerning line numbers and the values
of variables is not generated if the subprogram was not
compiled at the appropriate diagnostic level. See
section 2.4.3 on page 21 for more details of run-time
diagnostics.

By default, diagnostic information is sent to the standard error
stream. You can, however redirect it to a diagnostic file, which
you can specify using dapopt's =D flag. If -D is followed by
a filename, then when you run the executable DAP program
file and a run-time error occurs in the DAP, the diagnostics
information will be written to the file specified in the ~D option.
lif the file already exists its contents are deleted before the
diagnostics are written to it. If you don't give any filename after
-D, then the diagnostic output reverts to the standard error
stream.

For example:

[dapopt -D diag -d2 d.out

3.4.3 Run-time error action

DAP Series: Program Development under UNIX

will, when d.. out is being run, select diagnostic level 2 and
redirect diagnostic output to the file diag.

Note that information written to the standard error stream by
the host program is not redirected.

More details about diagnostic information are given in
section 4.6 on page 75.

After a DAP run-time error and the diagnostics described
above have been output, the default action is to enter psam,
the program state analysis mode subsystem, which is
described in section 4.3 on page 60. You can change the
default by using the -e flag with an appropriate argument,
detailed at the top of the next page.

man003.04 45

46

Chapter 3: Running DAP programs

Value of —e argument Required action

Abort the program and return immediately to the invoking host shell.

Dump the DAP status (including stack and variable information) to a file
before returning to the shell.

P Enter psam .
c Ignore the error and try to continue execution.
cdorde Try to continue execution after dumping the DAP status to a file.

3.4.4 Examining options

If you specify d or dc, the DAP state is output to a file with
name doffile.dr, where doffile is the name of the DOF file
being executed. You can examine this file later using dapdb
(for more details see section 4.4 on page 72).

The options selected by dapopt are stored in the DOF file
itself. You can examine them for a particular DOF file by using
the -L flag, which will give you the old and new values of all
the options corresponding to the input and output DOF files.

For example:

[dapopt ~L -e d d.out

specifies that a dump is to be taken if a run-time error occurs
in d. out and the options are to be listed to standard output.

An example of the output generated by the use of a ~L flag is
shown in figure 3.5 opposite. A command that might have
generated such a display is:

[dapopt -L -sl -h OX64 -t2 -f2 -e

dc -S stats

3.4.5 Simulator options

3.4.5.1 Timing facilities

timing facilities on hardware and
simulator

46

If the simulator option is effective (that is, if ~s1 has been
specified) several extra facilities are available at run-time and
these are selected by dapopt as described in this section.

If you specify any simulator-only options, but option ~s1 is not
in force ~ perhaps because no -s option has been specified
~these simulator-only options will still be recorded in the DOF
file, and dapopt will output a comment.

You can include appropriate DAP system calls in either
FORTRAN-PLUS or APAL programs to measure the elapsed
time and active running time on the DAP. You can also get
timing information from within psam. For more details see [6],
DAP Series: DAP System Calls, and for psam, section 4.7 on
page 80. All these facilities are available on both hardware
and simulator. There are additional timing facilities only
available on the simulator.

man003.04 AMT

3.4: Specifying run-time options ~ dapopt 47

(~ Dap Options Utility 4.0S (c) Copyright AMT 1987 Mon Nov 5 14:41:02 1990

* Comment : Histogram selected but no lower address specified
default: start of program

* Comment : Histogram selected but no upper address specified
default: end of program

0ld filename: test
(linked on Mon Nov 5 14:41:00 1990 as test)
New filename: test

Option 0ld value New value

Target system: DAP 500 hardware DAP 500 simulator
APAL trace level: 15 15

FORTRAN-PLUS trace level: 5 2

Breakpoints:

Rtd level: 0 0

End option: psam dump and continue
Diagnostics file:

Statistics file: stats

Histogram slice: 0x00064

Histogram low address: code start
Histogram high address: code end

Timing information output: full

dapopt summary: 2 comments 0 warnings 0 errors

&Figure 3.5 An example of a dapopt listing

timing facllities on simulator only If you run your program on the simulator you can get an
estimate of the time the program would take to run on the DAP
hardware in units of machine clock cycles. The period of one
clock cycle depends on the version of DAP on which you
intend to run your code.

You can ask for timing for the complete run, and at standard
or user-defined points within the DAP program. The -t flag
specifies the timing option required by its argument:

0 No timing information
1 Standard timing information
2 Full timing information
standard timing If you ask for standard timing the estimate for the run as a

whole is printed, together with a line recording the total
number of instructions executed.

full iming Full timing outputs the same information as standard timing,
with the addition of intermediate reports during the run
whenever a defined event occurs. The events which cause a
report to be output are listed at the top of the next page.

DAP Series: Program Development under UNIX man003.04 47

48

48

Chapter 3: Running DAP programs

Event Details of the event

EXIT This event corresponds to an exit instruction in APAL, or a return statement in
FORTRAN-PLUS.

JSL This event corresponds o a §s1 instruction in APAL, or a call statement or a function
reference in FORTRAN-PLUS.

svC This event corresponds to a system supervisor call, and is used, for example, by the
trace and run-time diagnostics facilities. An svc is also one of the last events before
any DAP program ends.

END OF RUN

The format of the information output depends on the type of
the event, but in general is as follows:

Event: fype at PC = X n
Time since last event = X beats
Time for run so far = y beats

where type is one of the events above, and nis the instruction
address (in hexadecimal) at which the event occurred. The
times are given in beats or machine clock cycies.

user-defined timing requests For both standard and full timing a report similar to an event
report is output whenever a FORTRAN-PLUS or APAL:

pause 9899

statement is encountered.

These pause 9999 statements only have this special
timing significance when you are using the simulator and have
specified one or more of the timing options. In all other cases
pause 9999s are freated as normal user-defined pause
statements and the program is suspended in the normal way.

The information output at a user-defined timing point is:

SOURCE CODE TIMING REQUEST at PC = x N
Time since last request = X beats
Time for run so far = y beats

Note that the system code associated with user-defined timing
points keeps an estimate of the time since it encountered the
previous user-defined timing point; that record is independent
of the record it keeps of the full timing events described above.

An exampile of a full timing listing incorporating a user-defined
timing request is given in figure 3.6 opposite.

using timing information You can convert timing estimates specified in terms of beats
(machine clock cycles) to actual execution times on DAP
hardware by multiplying the estimates by the clock cycle time
of the hardware being simulated. Where a substantial part of
the processing occurs in the DAP program, and there is little

man003.04 AMT

3.4: Specifying run-time options - dapopt 49

(" DAP 500 Simulator 4.0S (c) Copyright AMT 1987 Mon Nov 5 14:41:04 1990)

Event: JSL at PC = X002a, new PC = X0017
Time since last event = 27 beats
Time for run so far = 27 beats

Event: EXIT at PC = X0017
Time since last event = 3 beats
Time for run so far = 30 beats

Event: JSL at PC = X000c, new PC = X0157
Time since last event = 22 beats
Time for run so far = 52 beats

Event: EXIT at PC = X0176
Time since last event = 30 beats
Time for run so far = 82 beats

Event: JSL at PC = X000e, new PC = X0178
Time since last event = 3 beats
Time for run so far = 85 beats

Event: EXIT at PC = X01b9
Time since last event = 98 beats
Time for run so far = 183 beats

SOURCE CODE TIMING REQUEST at PC = X0011
Time since last request = 188 beats

Time for run so far = 188 beats
Event: EXIT at PC = X0015

Time since last event = 15 beats
Time for run so far = 198 beats

Event: SVC at PC = X002b
Time since last event = 3 beats

Time for run so far = 201 beats
Returned from DAP program

Event: END OF RUN

Time since last event = 0 beats
Total DAP time in run = 201 beats

Total DAP instructions obeyed in run = 125

_ Figure 3.6 An example of a full timing listing

interaction with the host, these execution times will be close
to the active run time when you are running the programon a
DAP. If a large part of the processing is being carried out on
the host, orif a ot of data is transmitted between the host and

DAP Series: Program Development under UNIX man003.04 49

50

3.4.5.2 Program profiling and

50

execution histogram

execution profile on hardware and
simulator

execution histogram on simulator
only

instruction addresses

Chapter 3: Running DAP programs

DAP during execution, then the total active running time is
dominated by the scheduler on the host processor.

A FORTRAN-PLUS program that has been compiled with the
-p option to dapf creates a high-level execution profile when
run; the facility is available on both hardware and simulator. A
similar facility is available for APAL programs. You can analyse
the profile using dapprof - see section 3.5 on page 54 for
more details.

There is a low-level profiling facility for both FORTRAN-PLUS
and APAL programs which is only available on the simulator.
The rest of this section 3.4.5.2 describes that facility.

You use dapopt's -h option to ask for an execution
histogram of the machine instructions in a DAP program run
on the simulator. You give an argument n to the option, where
n specifies that you would like the instructions in the program
divided into ‘slices’ of n instructions each. The system then
keeps a count for each slice of how many times any of the
instructions from that slice is executed during the program.
The histogramis sent to standard output. If you want to disable
histogram output, set nto O; that is, specify the option ~h0.

Each line of the histogram records the instruction range to
which the line refers, and displays the total instruction count
in that slice during the run, both as a number and pictorially
in the form of one or more asterisks. At the start of the
histogram a line records the number of instructions
represented by a single asterisk.

You can relate the instruction addresses in the histogram to
user-written or AMT-supplied procedures by consulting a full
map produced by the consolidator. You get this map by
specifying -m3 to dapa (for more details, see section 6.7 on
page 124) or -m3 to dap£ (see section 2.7 on page 32). The
information contained in the consolidator map is described in
section 2.5.2 on page 25. By using an assembler listing, APAL
programmers can relate instruction addresses to specific
instructions in their code sections. FORTRAN-PLUS
programmers can only associate an instruction range with a
complete procedure; you can't usually associate a given
instruction slice with only some of the lines in a procedure.

It you specify ~hn, then by default, the histogram is a profile
of the whole of the DAP program. You can specifiy alternative
start or end addresses with the -1n flag (for start, or lower
address) and the -un flag (for end, or upper address), where
nis the address. If you use one or both of these flags, then
extra line(s) in the histogram record the total number of
instructions executed in the address range(s) not covered in
the rest of the histogram.

man003.04 AMT

3.4: Specifying run-time options - dapopt 51

address in octal, decimal, You can specify the address n after the -1 or ~u flags in

or hex decimal, octal or hexadecimal. The system assumes that
numbers starting with OX (that is, zero-X) are in hexadecimal:
those starting with O (that is, zero) are in octal, and all others
are in decimal.

When you use the histogram facility, a final line records the
total number of instructions obeyed in the run. An example of
a histogram is given in figure 3.7 below. The dapopt option
to produce this histogram could have been ~h0X14.

\

DAP 500 Simulator 4.0S (c) Copyright AMT 1987 Mon Nov 5 14:41:06 1990
Execution profile histogram (scale * = 1)

Start End Count
X0000 X0013 20 % sk % v sk ¥ d g v %k Kk ok 3k ok K e ek ok

X0014 X0027 19 Kkhkkkkkdkhkhhkkhkkkhkkx
X0028 X003b *kokk

X003¢c X004f
X0050 X0063
X0064 X0077
X0078 X008b
X008c X009f
X00a0 X00b3
X00b4 X00c7
X00c8 X00db
X00de X00ef
X00£f0 X0103
X0104 X0117
X0118 X012b
X012¢c X013f
X0140 X0153
X0154 Xo0167
X0168 X017b
X017c¢ X018f
X0190 X01la3
X0lad4 X01b7
X01b8 X0lcb
X0lcc XO01df
X0le0 XO01f3
X01f4 Xo0207
X0208 X0210

-3

(== ellololNeReNoNeNeNoNolNoe

o

% %k Kk ok ok ok kkkok

=
IS

%k K K ek sk Kok ok

% 2k ks ok vk vk ok gk ok ok sk ok ok ok vk ok ok ok ok ok ok 3k ok ok ok ok ok %k ok ok ok ok ok ek
% Jodk ok ok ok Kk kk

* %

ok
[\S A -

%k %k Kk

OO OoCoOoONnN

X0211 XOfff 0

Total DAP instructions obeyed in run = 125

Figure 3.7 An example of a histogram

- J

DAP Series: Program Development under UNIX man003.04 51

52 Chapter 3: Running DAP programs

3.4.5.3 Specifying a statistics file The timing and histogram information described above is sent
to standard output by default. However, you can re-directit to
a file by using the -8 flag. This takes one argument, the name
of the file to be written. If the file already exists, its contents
will be deleted when the DAP programis next executed before
statistics are written to the file. If you use the -8 flag without
an argument the default is restored; that is, statistics are sent
to standard output.

3.4.6 Restoring default options The -x flag restores all run-time options to their default values.
It also cancels any preceding flags specified in the current
dapopt command. However, if you specify any flags after a
-x the flags are acted upon in the usual way.

For example:
dapopt -x -f 2 d.out

will first reset all options in the DOF file d. out and then set
the run-time FORTRAN-PLUS trace level to 2, whereas:

dapopt -f 2 -x d.out

would leave d. out with all the default options set (including
the run-time FORTRAN-PLUS trace level as 5), the - £ flag
being ignored as it comes before the -x flag.

When a DOF file is first created, its run-time options take
default values equivalent to applying the dapopt command
with the following flags:

~a 15 -b0 -d 0 -D e p -£ 5 -S -5 0

3.4.7 dapopt flags This section contains a summary of all the dapopt flags.

~-an Set the maximum level of APAL trace statements o be executed to n, where n is in
the range O to 15.

The defaultis n= 15.

~bn Take the specified action whenever dapent is called from the host program, where n
is one of: ‘
0 Enter the DAP program.
1 Pass control directly to psam, and do not enter the DAP program.

The defaultis n=0.

-dn Set diagnostics level nto 0, 1, or 2.
The defaultis n=0.

-D name Send diagnostics to file narme.

~D Send diagnostics to the standard error stream (the default).

52 man003.04 AMT

3.4: Specifying run-time options -~ dapopt 53

-X

Y

Take the specified action if a run-time error occurs or a pause is executed, where xis
one of:

a Abort.

c Continue.

P Enter psam.
d Dump.

dc or cd Dump and continue.
The defaultis x=p .

Setthe maximum level of FORTRAN-PLUS t race statements to be executed to n, where
nisintherange Oto 5.

The defaultis n=5.

Generate a histogram based on slices of n instructions (simulator only). A value of 0
generates no histogram.

The defaultis n=0.

Set the histogram lower limit to code address n (simulator only).
The default is start of program.

List the file options to standard output.

Put the DOF output in file name .

Suppress dapopt comments output.

Send statistics to file name (simulator only).

Send statistics to standard output (the default).

Run the DAP program as specified, where n is one of:

0 Run on the DAP hardware.
1 Run on the DAP simulator.

The defaultis n=0.
Provide timing information as specified by n (simulator only):

0 No timing information.
1 Standard timing information.
2 Full timing information.

The defaultis n=0.
Set the histogram upper limit to code address n (simulator only).

Reset default values for all options —ignore previous flags (if any) in this call to dapopt.

Suppress the output of a DOF file.

DAP Series: Program Development under UNIX man003.04 53

54

3.5
3.5.1

54

Chapter 3: Running DAP programs

Using the high-level execution profiler

introduction

low-level execution histogram on
simulator

high-level execution profiler on
hardware or simulator

for a FORTRAN-PLUS
program

and an APAL program

for a mixed FORTRAN-PLUS
and APAL program

One of the problems associated with increasing the speed of
execution of a DAP program is to find out what percentages
of total execution time are spent in what parts of the program.
Once you have this information, you can optimise code that is
critical to program speed-up.

When you run a FORTRAN-PLUS or APAL program on the
simulator, a low-level execution histogram of the program is
available through dapopt's -h flag and can help you to
optimise your code. Section 3.4.5.2 on page 50 gives more
details of this simulator-only execution profile.

When you run a FORTRAN-PLUS program on DAP hardware
or simulator, if you have specified the -p flag to dap£ when
you compiled the program, then an execution profile of that
program is written to file dmon . out in your current directory.
You can then examine dmon . out using the utility dapprof,
described later in this section.

A similar facility is available for APAL programs. You need to
specify the ~p flag to dapa, but you also need to #include
various AMT system macros held in file amtmacs . da in your
APAL source. If your APAL program makes use of the AMT
system macros, you might already have #included
amtmacs . da - or you might have the line:

#include usrmacs.da

atappropriate places in your APAL source. AMT upgraded the
macros in usrmacs.da, and re-issued them in file
amtmacs.da, and it is the upgraded macros that the high
level profiler needs when APAL code is being run.

Hence, if you are already using usrmacs . da in your APAL
source, if you change filename usrmacs.da to
amtmacs.da, then you can make use of the high-level
execution profiler with your APAL code.

If your APAL program does not use the various AMT system
macros, but you want to use the execution profiler when you
run your APAL code, you will need to include the line:

#include amtmacs.da

in every APAL module for which you want execution profile
information. You will also need to adopt the entry and exit
conventions described in [3], DAP Series: APAL Langauge.

When you run your APAL program, the profiling information is
written to file dmon . out in your current directory.

If your program contains FORTRAN-PLUS and APAL code
sections, then provided you compile or assemble the relevant
sections as described above, when you run the program
dmon. out will contain the profile for the whole program.

man003.04 AMT

3.5: Using the high-level execution profiler 55

recomplle without the -p flagwhen Once you have finished program development, AMT
development Iis over recommends that you recompile your program, having
removed the -p flag — and other flags associated with
development tools - from the dapf or dapa command line.

3.5.2 Analysing the profile with To analyse the execution profile, run the command:
dapprof

(dapprof dof-fle-name

where dof-file-name s the name of the DOF file containing the
DAP code associated with the profile.

You will then see a display similar to:

name #calls %cycles cycles %s-cycles s-cycles s-cycles/call
AAA 1 97.88 16809 2.69 452 452.00
s 1 95.25 16357 56.02 9417 9417.00
BG 1 40.41 6940 11.98 2013 2013.00
U 1 28.69 4927 29.31 4927 4927.00

where the column headings have the meanings detailed

below:
name The name of a routine in the DAP program under scrutiny.
$#calls The number of times this routine is called during the execution of the
program,
%cycles The percentage of all machine cycles spent in this routine, including cycles

spent in routines called by this routine.

cycles The total number of machine cycles spent in all calls to this routine,
including cycles spent in routines called by this routine.

$s-cycles The percentage of all ‘self-cycles’ spent in this routine - that is, excluding
machine cycles spent in routines called by this routine.

s-cycles The total number of all ‘self-cycles’ spent in this routine - that is, excluding
machine cycles spent in routines called by this routine.

s-cycles/call The number of self-cycles’ spent in this routine per call to the routine - that
is, excluding machine cycles spent in routines called by this routine.

The output from dapprof is sorted in descending numerical
order on the %cycles field by default. You can specify an
output sorted in descending numerical order on the
s-cycles field by specifying the ~s flag to dapprof, as
perhaps:

[dapprof -s progtest

figures include overeheads Note that system overheads in calling routines —and returning
from them - are included in the above figures, but the time

DAP Series: Program Development under UNIX man003.04 55

56

56

Chapter 3: Running DAP programs

taken by the profiler itself to extract and process the profiling
information is not included in the figures.

man003.04 AMT

Chapter 4

Program testing

4.1 Introduction

57

This chapter describes the facilities available to you for testing
your DAP programs, whether written in FORTRAN-PLUS or
APAL code, or in both.

4.2 Overview of program testing

4.2.1 On-line facilities

DAP Series: Program Development under UNIX

When a DAP program is running, various program events can
suspend execution and pass control back to the DAP run-time
diagnostic system running on the host. These events include,
amongst others, DAP run-time errors and pause statements
in your DAP program.

The run-time diagnostic system then outputs a suitable report,
and takes whatever action is specified in your most recent
invocation of dapopt, the DAP run-time options program. By
default, control passes to psam, the program state analysis
mode sub-system (the on-line debugger). For more details of
dapopt, see section 3.4 on page 42.

One of the options available in dapopt, and one of the
commands in psam, lets you take a dump of the DAP state -
the array store part of your DAP program block. You can then
examine the dump, using dapdb, a post-mortem dump
analysis program similar in function to psam .

This chapter describe these on-line debugging and
post-mortem analysis facilities in detall. It also describes other
DAP diagnostic facilities.

psam, the interactive debugger, is a major diagnostic tool. It
is entered by default when execution of your DAP program
stops prematurely, and control passes to the run-time
diagnostic system.

Once in psam, you can look at your source code and the
values of variables in your code, and display the contents of
your part of the array store. You can insert breakpoints in the
code, single-step your way through the code, or continue
normal program execution. These facilities that allow you to
single-step or continue execution of your program actually
transfer control back from psam to the run-time support
system. Execution then continues for one or more instructions

man003.04 57

58 Chapter 4: Program testing

or until apause, breakpoint or run-time error is reached, after
which control returns to psam . If there are no pauses,
breakpoints or errors in the rest of the program, execution will
continue to the end of the program, and control will return to
the host command line in the normal way.

The pause or breakpoint that returns control to psam can be
the next encountered, or next but one or more ~ that is, control
passing over a mixture of (n-1) pauses and breakpoints.

A macro facility lets you execute psam commands from a file.
You can also take dumps of the DAP state for later use by the
post-mortem dump analyser, dapdb .

psam, with its breakpoints facility, offers the same control over
program flow that is offered by the pause statement, with the
advantage that program re-compilation or re-assembly is not
necessary.

Another diagnostic facility is provided by trace. trace
statements embedded in your source code will output the
values of nominated variables during program execution, but
without passing control to psam . trace facilities are much
simpler than those available in psam, but they do let you test
a DAP program in batch mode, sending any diagnostic output
to a file as execution proceeds.

a psam session ‘A psam session’ is a convenient expression to describe a
session in which you use psam to debug your DAP program
on-line; the expression ~ or just ‘session’ — is used in this
chapter to describe this type of interactive DAP program
debugging.

4.2.2 Post-mortem facilities Most of the functionality available in psam is also available in
the post-mortem dump analyser, dapdb. Although you
cannot execute any code from within dapdb, you can look at
your source code and the values of variables in array store.

4.2.3 Summary of psam and dapdb Listed below are all the commands available in either psam

commands or dapdb; a few commands are only available in one or other
and are noted accordingly.

Command Its functionality

alias Creates alternative name(s) for psam or dapdb command(s).

array Displays the contents of an area of array store.

attributes Displays the attributes of variable(s).

backtrack Displays details of the procedure(s) currently on the stack.

breakpoints Displays the current breakpoint settings (psam only).

clear Clears breakpoint(s) (psam only).

code Disassembles and displays APAL object code from the current code section
(psam only).

continue Continues execution of the DAP program (psam only), possibly ignoring a number of
pauses and breakpoints.

core Changes the current dump file to the one specified (dapdb only).

58 man003.04 AMT

4.2: Overview of program lesting 59

Command

date
disable
display

down

dump
echo
enable
errors
file
help
history
list
macro
map

masks
message
next

print
procedure
quit
registers

save

select
set
status
step

stepi
stop at
stop in

stopi at
stopi in
time

top
unalias
undisplay
unset

up

lts functionality

Displays the current time and date.

Disables breakpaint(s) (psam only).

Sets up a list of FORTRAN-PLUS variable(s) whose contents are to be displayed
onentrytopsam.

Changes the current procedure to that procedure which is next lower on
the stack.

Dumps the current DAP state to a file (psam only).

Displays its own arguments.

Enables breakpoint(s) (psam only).

Displays the positions of FORTRAN-PLUS computational errors.

Changes the current file to the one specified.

Displays help information on psam and dapdb commands.

Displays the commands used earlier in a psam or dapdb session.

Lists from the current file.

Executes psam or dapdb commands from a file.

Displays map(s) of your program’s occupancy of code store (MCU or co-processor)
or array store, or some combination of all three.

Displays user-defined error interrupt masks.

Repeats the information displayed on entry to psam or dapdb .

Steps program execution through one or more FORTRAN-PLUS source statements,
starting with the next statement and treating any procedure calls
as single statements (psam only).

Displays the contents of the specified FORTRAN-PLUS variable(s).

Changes the current procedure to that specified.

Quits a psam or dapdb session.

Displays any or all of the MCU, edge and PE registers, the carry and overflow flags in APAL,

and the hardware DO loop iteration number.

Saves the current settings of psam or dapdb environment variables
to file . defaults in your home directory.

Changes the current DAP state dump to the one specified (dapdb only).

Sets psam or dapdb environment variable(s).

Displays the current breakpoints in command format (psam only).

Steps program execution through one or more FORTRAN-PLUS source
statements, starting with the next statement and treating each statement in
a procedure call as one statement (psam only).

Steps program execution to the next APAL instruction (psam only).

Sets a breakpoint at the start of a FORTRAN-PLUS source statement (psam only).

Sets a breakpoint on the first executable line of a FORTRAN-PLUS procedure
(psam only).

Sets a breakpoint at a given offset in an APAL procedure (psam only).

Sets a breakpoint at the start of an APAL procedure (psam only).

Displays total execution time, and time since last time command was issued.

Changes the current procedure to the procedure at the top of the stack.

Deletes alternative name(s) for psam or dapdb commands.

Clears the list of variables to be displayed on entry to psam .

Unsets the values of psam or dapdb environment variables.

Changes the current procedure to that procedure which is next higher in
the stack.

See section 4.3 below for more details of the psam
commands; see section 4.4 on page 72 for more details of

DAP Series: Program Development under UNIX man003.04 59

60

4.3
4.3.1

60

Chapter 4: Program testing

dapdb. See section 4.7, starting on page 80, for the formal
specification of psam and dapdb commands.

Program state analysis mode (psam)

Introduction

files used in psam examples

breakpoint edit mode

When a run-time error or similar interrupt occurs in a DAP
program, the system generates a diagnostic report
(described in detail in section 4.6 on page 75) and control
then passes to the run-time diagnostic system. What happens
next depends on the parameter specified for the ~e option in
dapopt (see section 3.4.3 on page 45 for more details). If
psam has been selected (the default), then program state
analysis mode is entered, and you are presented on your host
screen with the psanm prompt:

psam:

In the discussion that follows in this chapter, the displays
output by the various psam commands are shown, all
generated as a result of exploring in psam a simple DAP
program. The program consists of a short entry subroutine
(entdap) held in file esdap.df. entdap calls a function
(add3), which is held in file fadd3.df. The simple host
program(exhost) heldinfile hostex. £ is also shown. The
listings of the three files are shown in figure 4.1 opposite:

The two FORTRAN-PLUS files were compiled with the
command:
dapf -g -o dapobj esdap.df fadd3.df
The host FORTRAN file was compiled using the command:
£77 -0 hostobj hostex.f -ldap
The dapopt utility was run with the command:
dapopt -bl -sl dapobj

For more details of the dapopt flags, see section 3.4.7 on
page 52.

DAP program execution was initiated on the simulator in the
normal way, with the cornmand:

hostobj

One of dapopt's options is ~b. If you specify -b1, then every
time the DAP program is entered (that is, every time dapent
is called from your associated host program), control passes
directly to psam, in breakpoint edit mode, without execution
starting.

Having run dapopt with flag ~bl, when you start DAP
program execution (with hostob3 in our example) you would
get the display shown in figure 4.2 opposite.

man003.04 AMT

4.3: Program state analysis mode (psam)

61

entry subroutine entdap

integer mvar(*2,*3),msum
external function add3
integer add3(*, *)

mvar=4

msum=sum (mvar*add3 (mvar))
pause 2

return

end

P O oo ud whe

o

function add3(im)

add3=(im+3)
pause 1
return

end

~S oW

program exhost

integer ires, dapcon

ires = dapcon(’dapobi’)

if (ires .eq. 0) then
call dapent (‘entdap’)
call daprel

endif

stop

end

H O 00 J0y U b W

integer add3(*size(im,1l),*size(im,2)),im(*, *)

FORTRAN-PLUS

entry subroutine entdap
in source file esdap . df,
and in DOF file dapobj

FORTRAN-PLUS
function add3 in source
file £add3.df, and
also in DOF file dapobj

FORTRAN host

program exhost in
source file hostex. £,
and object file hostobj

\Figure 4.1 Example DAP and host source files used in psam example displays

Like all dapopt options, the value of the b option is held in
the DOF file, so it keeps its value from session to session and
until you change it in another call to dapopt. Having
specified -bl in one call to dapopt, if you later specify ~b0
in another call to dapopt, subsequent DAP program
execution will startimmediately dapent is called. The default
is -b0.

(" hosts hostobj
Entering Breakpoint Edit Mode

File ./esdap.df

6> mvar=4
End of Report
psam:

FORTRAN-PLUS Subroutine ENTDAP at Line 6 in File esdap.df

_ Figure 4.2 psam display when dapopt s -b1 flag is in force, and program execution has just started)

DAP Series: Program Development under UNIX

man003.04 61

62

62

displaying output

psam - a window

intime...

Chapter 4: Program testing

If you are in breakpoint edit mode, execution of the DAP
program has not yet started, but you can insert breakpoints in
your DAP program. The full set of psam commands are
supported in breakpoint edit mode, although the output you
get from some commands might not be helpful, as program
execution has not started!

One of the features of psam is that you can re-direct the output
generated by any psam command from the screen (the
default) to a nominated file.

Hence:
print var > results

will re-direct the contents of the variable var to the file
results, and:

stop at 25 > details

will set up a breakpoint at line 25 in the current
FORTRAN-PLUS source file, and will re-direct the message
(describing the breakpoint the command has just set up) from
the screen to file details. The verb ‘display’ will normally
be used in this chapter to mean that the output is usually
displayed on the screen, but can be re-directed to a
nominated file.

Note: There is a display command in psam, that doesn't
display anything! It sets up or changes a list of variables to be
displayed on the next entry to psam. See page 85 for more
details.

psam is essentially a window on the state of your DAP
program, and its associated files; a window that you can move
around at will.

Because psam lets you set breakpoints in your DAP program,
it lets you suspend execution at any point in your code, and
examine a ‘snapshot’ of the DAP state. Having examined the
DAP state, you can choose either to quit the DAP program,
or to continue (restart) it, in which case psam will be
re-entered if and when control is transferred back to the
run-time diagnostic system. You can also dump the DAP state
to afile for later analysis by dapdb.

As an alternative to continue, commands step and
stepi let you restart your DAP program, and then
automatically re-enter psam after a specified number of
FORTRAN-PLUS statements or APAL instructions have been
executed, at which point you can then examine the new DAP
state.

man003.04 AMT

4.3: Program state analysis mode (psam)

.. and In store

psam’s current file, line,
procedure and instruction

psam's active procedures

psam does not affect program
outcome

4.3.2 Interface with dapdb

4.3.3 Examining variables

DAP Series: Program Development under UNIX

63

When psam is entered, psam's current procedure is the
procedure holding the FORTRAN-PLUS statement that was
currently executing or the last APAL instruction to be
executed. (The term procedure covers any FORTRAN-PLUS
subroutine or function, or APAL code section.) The file holding
the FORTRAN-PLUS source code is psam’s current file, and
the line holding the statement that was currently executing is
the current line. (The information psam relies on to label a file
as current is only kept if the program was compiled with the
-D option to dapf£ set to 1 or more —the defaultis 2.) For APAL
procedures, when psam is entered, its current instruction is
the instruction that will be executed if the program is restarted.

A DAP program usually contains many procedures. When
program execution is suspended, control might have entered
several procedures, but not yet left them; these are psam's
aclive procedures.

Many of psam's facilities operate on the current file, line,
procedure or instruction, and psam commands let you
change these from the ones applicable when execution was
suspended, to others. psam lets you examine all variables in
active procedures, but only has information on common or
static variables for non-active procedures.

If execution resumes and subsequently psam is entered
again, the active procedures and the current file, line,
procedure and instruction are those relevant to the new DAP
state.

psam is a window on the DAP state, and although its
breakpoints and single-stepping let you control how your
program runs, it does not affect any program data, and will not
affect the final outcome of the program - unless you type
quit.

All the features available to you in psam are described briefly
below; full details are givenin section 4.7, starting on page 80.

psam is an on-line debugger. You use dapdb off-line: from
within psam you can dump the DAP state (the contents of the
array store) to a file for later examination by dapdb.

Psan lets you print any FORTRAN-PLUS common or static
variables, and FORTRAN-PLUS local variables in active
procedures.

In the example program listed on page 61, if you have issued
a step 3 command after the program state shown in
figure 4.2 on page 61, you would see the display at the top of
the next page.

man003.04 63

64

64

Chapter 4: Program testing

/ psam: step 3
Stepped to FORTRAN-PLUS Function ADD3 at line 5 in File fadd3.df

File ./fadd3.df
5> : pause 1
psam:

KFigure 4.3 psam display after a step command has been issued

J

If you then issued the command print im you would get
the display:

/'psam: print im
Integer Matrix Parameter IM in 32 bits -~
dimensions: (*2,*3)

(1:2,1:3) 4 (* 6)

psam:

Figure 4.4 psam display when all components of a matrix variable are printed
N

\

/

For variables with more than one component, you can display
all or only some of the components of the variables. Hence
you could examine the values held in a complete array of
matrix variables, or in just one component of a single vector.
For example, you could print out the single component
im (1, 2) with the command print im(1, 2), and get the
display:

/ psam: print im(1,2)
Integer Matrix Parameter IM in 32 bits -
dimensions: (*2,*3)

(1, 2 4

psam:

\Figure 4.5 psam display when one component of a matrix variable is printed

\

You can display the attributes of a variable (its type,
mode, shape, size, address, and so on), in im's case with the
command attributes im, and get the display shown at
the top of the next page.

You can use attribute information in conjunction with the
array command to examine the contents of array store
where FORTRAN-PLUS variables are located.

The display command sets up (or adds to) a list of variables
whose contents are to be output every time psam is entered;
the command undisplay removes all variables from that
list.

man003.04 AMT

4.3: Program state analysis mode (psam)

65

(psam: attributes im

dimensions: (*2,%*3)

psam:

Integer Matrix Parameter IM in 32 bits -
addressed by Pointer on Stack at offset 0..64

current address of Pointer: 194.0.0
current contents of Pointer: 160.0.0

Y Figure 4.6 psam display of the attributes of a variable

4.3.4 Breakpoints

The errors command displays the positions of
FORTRAN-PLUS computational errors; masks displays any
user-defined error interrupt masks that are current.

psam lets you set breakpoints in your FORTRAN-PLUS and
APAL programs. So, while you are in psam you can specify
points at which subsequent execution of the code is to be
suspended. These points can be either at the start of a
specified procedure, or at a specified statement or instruction
inthe code. The breakpoints are lost when you end your psam
session, although you can save them to a file for future use.

For example, if you were at the psam prompt in the example
program dapob3j, and you issued:

stop in add3
you would then get the display:

psam: stop in add3

Ref: File Name Line Procedure Ofst Activity Command

1: fadd3.df 4 ADD3
psan:

#27 enabled

Figure 4.7 psam display when a breakpoint is set up

DAP Series: Program Development under UNIX

In a FORTRAN-PLUS program, stop in sets a breakpoint
at the first executable statement of a specified procedure,
stop at sets a breakpoint on a specified line in the current
file. Commands stopi at and stopi in have a similar
effectin an APAL program: stopi in sets a breakpoint at
offset 1 (the normal entry point) in a procedure:; stopi at
sets a breakpoint at a given offset in the current procedure.
Once psam has accepted a stop or stopi command, it
issues a breakpoint reference number, which you can use later
in the current psam session to refer to that breakpoint.

A useful feature in psam is that you can attach a command to
a breakpoint specification, perhaps as:

stop in test "print a* >> results"

man003.04 65

66

Chapter 4: Program testing

which would insert a breakpoint at the start of the
FORTRAN-PLUS procedure test. When the breakpoint is
reached, execution is suspended and the command print
a* >> results is executed. (See section 4.3.11 on
page 71 for a discussion of why you need quotes in the
stopi command.)

You can disable, enable and clear existing
breakpoints. The command breakpoints on its own
displays the current breakpoints. status displays the
breakpoint information in command format; you can redirect
the status output to a file to save the information, so that
you can use it in a later session.

In our example program, you could disable the breakpoint you
set earlier with:

disable 1

If you then wanted to set another breakpoint at line 6 say in
the current procedure add3, you would issue:

stop at 6

and you would get a display similar to figure 4.7 above. If you
now issued the breakpoints command you would get the
display:

(rpsam: breakpoints
Ref: File Name

1: fadd3.df
2: fadd3.df
psam:

Line Procedure Ofst Activity Command
4 ADD3 #27 disabled
6 ADD3 #7e enabled

\Figure 4.8 Display of the breakpoints ina psam session

4.3.5 Program control

66

Note that you can add to or change the breakpoints in any
procedure in the program simply by using the procedure
command to change the current procedure to the one whose
breakpoints you want to alter. If the procedure is not an active
one you will be warned to that effect, but you can still alter its
breakpoints.

You can control the flow of execution of a DAP program from
within psam: step lets you execute 1 or more
FORTRAN-PLUS statements; next does the same, except
that it treats a procedure call as a single statement; stepi
steps through APAL instructions.

For step or next to work, when you compile your
FORTRAN-PLUS source your invocation of dapf has to
include the -g flag.

step, next or continue will let you start (or restart)
execution and quit will let you exit back to the host command

man003.04 AMT

4.3: Program state analysis mode (psam)

-g flag slows down normal
program execution

4.3.6 Access to source code

67

line. continue n lets you continue execution, bypassing all
pauses and breakpoints, until a total of (n— 1) pauses and
breakpoints have been passed. The total can consist of all
pauses or all breakpoints, or any mixture of the two.

One side effect of the ~g flag and its option to single-step
through FORTRAN-PLUS programs is that normal program
execution is slowed down slightly; AMT recommends that you
recompile your FORTRAN-PLUS program without the -g
option when you have finished program development.

You can 1ist the whole of the current file of FORTRAN-PLUS
source statements from within psam, as well as display the
current line, the line at which execution is suspended, or a
range of lines.

Inthe example program, if you are in procedure add3 - where
we were when we added another breakpoint ~issuinga 1ist
would give you the display:

/" psam: list

File ./fadd3.df
1 : function add3(im)
2
3 : integer add3(*size(im,1),*size(im,2)),im(*,*)
4 bl : add3=(im+3)
5> : pause 1
6 B2 : return
7 : end

psam:

_ Figure 4.9 psam display from the 1ist command

Caution

DAP Series: Program Development under UNIX

Here B2 shows the breakpoint that we added earlier, and b1
shows the breakpoint that was added, then disabled. If we
enabled the first breakpoint, it would be shown in a 1ist as
Bl. The > shows where execution has halted, after the
step 3 comand that we issued earlier.

You can list only part of a file by specifying start or end points
to list. For example 1ist 3, would list from line 3 to the
end, 1ist 3,5 wouldlistiines3,4and5, 1ist , . would
list from start of file (line 1) to the current list line, and 1ist
. would iist only the current list line.

Note that 1ist has its own idea of the current line. The first
time you use 1ist once execution has halted, the current list
line is the current line. After that, the current list line is the last
line 1ist listed. If you explore the active procedures in a
program with top, up, down or procedure (see later), the
initial current list line is the most recently executed line in the
procedure. If you change files with £ile, then initially the
current list line is the first line in the file.

man003.04 67

68 Chapter 4: Program testing

f£ilelets youchange the current source file, lettingyou 1ist
included and other source files. In fact £ile will let you
change the current file to any file. Hence, you can 1ist the
contents of other kinds of file, such as macro files, files
containing details of breakpoints, and so on.

If you use procedure, top, up or down (discussed later),
the current file will change automatically to the one holding
your newly-selected procedure, and the current list line will
change too. However, the current line will not change, and will
stay at the line at which execution will start again if you step,
next or continue.

4.3.7 Machine-level commands stepi lets you step through APAL instructions. code lets you
disassemble and display APAL code, giving an APAL
equivalent to what 1ist offers for FORTRAN-PLUS code.
registers lets you inspect MCU, edge or PE registers,
carry and overflow flags in APAL, and the hardware DO loop
iteration number. array lets you examine data in the array
store. If you are debugging APAL code, when control passes
to psam no current file is selected, although you can use
filetoselectand 1list afile.

4.3.8 Stack examination Once control has passed to psam, you can examine the stack
in detail, to display FORTRAN-PLUS variables belonging to
the different active procedures. top, up, and down let you
change the current procedure (FORTRAN-PLUS or APAL) to
a different procedure on the stack (that is, to a different active
procedure). As mentioned above, procedure lets you
change the current procedure to a non-active procedure as
well as to an active procedure. backtrack displays details
of all the procedures on the stack.

Inthe example program where execution had stopped atline 5
in add3, if you issued a backtrack you would get the

/psam: backtrack \
Stack Listing - current level first
> FORTRAN~PLUS Function ADD3 at Line 5 in File fadd3.df
FORTRAN-PLUS Subroutine ENTDAP at Line 7 in File esdap.df
System Procedure AMTSXCODE601V33

psam:

_ Figure 4.10 psam display after abacktrack command

display:

If the current procedure is active, it is shown on the backtrack,
and its entry is flagged by a > .

68 man003.04 AMT

4.3: Program state analysis mode (psam)

69

If you then issued a down, the current procedure would
change to entdap, and the backtrack display would
change to:

(psam: backtrack

psam:

Stack Listing - current level first
FORTRAN-PLUS Function ADD3 at Line 5 in File fadd3.df

> FORTRAN-PLUS Subroutine ENTDAP at Line 7 in File esdap.df
System Procedure AMT5XCODE601V33

_ Figure 4.11 psam display after another backtrack command

4.3.9 Environment variables

environment variables

Alias_file

More

As mentioned above if you use procedure, up, down or
top, in a FORTRAN-PLUS program the current file and the
current list line will change (but not the current line).

Just as £ile is a psam command that lets you change the
file that you can examine in psam, but has no effect on
program execution, so psam's procedure and
backtrack, top, up and down have no effect on program
execution if and when you restart your DAP program.

You can use environment variables to control certain aspects
of psam's and dapdb's operation. Note that these variables
are notthe same as the UNIX environment variables, such as
DAPSIZE or DAPCPS.

You change the values of the psam environment variables
using the set and unset commands. The save command
saves the current values of the variables to the file
.defaults in your home directory. These values then
become the defaults each time you start a debugging session
- or until you change and save them again. You can also
change the defaults by editing the . defaults file, usingthe
SunView® tool DefaultsEdit®".

Detalls of the environment variables are:

= Alias file givesthe name of afile (or names of files,
separated from each other by at least one space) holding
aliases for psam commands. These aliases take effect at
the start of each psam session.

= More setto true specifies that output to screen is to be
displayed a screen at a time, using the UNIX more filter.
With More set to true, if you press the space bar the
display will scroll up a screenful. If you press <RETURN>,
the display will scroll up 1 line, and if you press <Q> you
will return to the psam prompt.

1 SunView and DefaultsEdit are registered trademarks of Sun Microsystems Inc

DAP Series: Program Development under UNIX

man003.04 69

70

70

Order

Pattern mode

Source_path

Term collection

Chapter 4: Program testing

Nearly all the other features of the UNIX more are
available at the More prompt; use <H> to see More's
help screen for details.

Oxder is a list of integers which specifies the order in
which the dimensions of an array should be printed, with
the first in the list cycled the fastest.

The default for Ordexr depends on the mode of the array
being printed:

o A FORTRAN-PLUS matrix variable is printed with the
second dimension (the column) cycling fastest,
followed by the first, and if there are any other
dimensions, the third, the fourth, and so on until all
dimensions are printed. For FORTRAN-PLUS matrix
variables Order = (2 1) gives the same effect
as the default.

The result is to print the first row of the matrix, followed
by the second row, and so on until the whole matrix is
printed. For matrix arrays, subsequent matrices are
printed in the same way; the printing order of the
dimensions being as discussed in the paragraph
immediately above.

o All other arrays are printed with the first dimension
cycling fastest, followed by the second, then if there
are any other dimensions, the third, the fourth, and so
on until the whole array is printed. For non matrix
arrays Order = (1) gives the same effect as the
default.

Pattern_mode set o 1 or 2 specifies that logical and
characters & arrays are to be displayed as 1-dimensional
or 2 dimensional grids respectively, instead of like terms
being collected.

Source_path specifies the path name (or path names,
separated from each other by at least one space) of the
directories to be searched for macro files,
Alias_files (see above) and for files specified in the
£ile command (see section 4.3.6 on page 67).

Term collection specifies the number of
dimensions of a variable in which like terms are to be
collected when you print the variable.

For the screen dump in figure 44 on page 64
Term collection was set to its default, but you
could change it to show all the components of variable
im separately, by using:

set term collection=0

Once you have done that, if you move the current
procedure back to add3 with an up, you can then see
the difference, by issuing a print im, which would give the
display:

man003.04 AMT

4.3: Program state analysis mode (psam) 71

4 psam: set Term collection=0

psam: print im

Integer Matrix Parameter IM in 32 bits -~
dimensions: (*2,*3)

(1,1:3) 4, 4, 4
(2,1:3) 4, 4, 4
psam:

_ Figure 4.12 psam display from the 1ist command

Window_width » Window_width specifies the width in characters of the
display of the contents of variables.

4.3.10 Miscellaneous commands You can put a list of psam commands in a file, and execute
them using the macro command; echo and date can be
used to echo arguments and the date to the screen (useful in
macro files); you can access comprehensive help facilities;
you can re-display the initial diagnostic message on entry to
psan.

4.3.11 Command line interpreter psam applies a consistent command line interpretation to
commands typed in at the psam prompt and to commands in
a macro file - with one exception: the history commands (see
below) are not available in macros.

The command line facilities available are:

> and >> to redirect Many psam and dapdb commands generate output, which is normally

screen output to a file displayed on the host screen. psam and dapdb have a UNIX-like
redirection-of-output facility, letting you re-direct the output to a file {>), or
append it to the end of a file (>>).

When you use the construct:
command > file-narne

the output of command command is redirected to the file file-name. If the
destination file already exists its contents will be overwritten by the psam

output.
command You can truncate any psam command, so long as the shortened form is
truncation unambiguous.
H You can have several psam commands on one line, provided they are

separated by semi-colons.

Any line starting with a # is treated as a comment. If psam finds a # in the
middle of a line, it treats it as a hexadecimal prefix for a number which it
expects to follow the # .

allases A UNIX-like alias facility is available in psam; you can create aliases for
use in the current session, and can save them to an Alias _file for
future sessions. You can also unalias existing aliases.

DAP Series: Program Development under UNIX man003.04 71

72

4.4

72

history
commands

quoted
commands

Chapter 4: Program testing

Some C-shell-like history commands can be used in psam, although the
commands cannot be used in a macro. history displays a numbered
list of the commands used so far in the current session.

You can issue a psam command within a pair of s, to stop unwanted
re-direction or history substitution.

For example, suppose you want to insert a breakpoint at line number 5 in
the current file, and save the value of variable im to file resultfile. If
you type the command:

stop at 5 print im > resultfile

then the redirection operator > would take precedence, the command line
interpreter would redirect the output of stop at 5 print imto
resultfile, and the screen message you normally get when you issue
a stop command would be sent to file result £ile instead. To get the
result you want you need to surround the psam command to be executed
after the breakpoint is reached with » .

The command:
stop at 5 "print im > resultfile"
will give you what you want.

Analysing dump files (dapdb)

All the commands discussed briefly in section 4.3 above are
available in both psam and dapdb, except that those
concerned with program flow are only available in psam.
Commands affected are those that set and use
breakpoints and step and continue; code, the APAL
disassembly command, is only available in psam.

difference between psam and The essential difference between psam and dapdb is that

dapdb

take a dump with dump or
<CONTROL-\>

Psan is an on-line debugger, while dapdb is for analysing
dump files at a later date. dapdb is entirely confined to the
host, and examines a dump taken of the DAP state, the dump
being held in host filestore. dapdb does not use any DAP
resources. psam, however, although it also runs on the host,
does use DAP resources, in that your DAP program's
allocation of array and code store are not released when
program execution halts and control is passed to psam.

You can take dumps for later dapdb analysis either with the
dump command from within psam, or by typing
<CONTROL-A> while a DAP program is running. If you do
type <CONTROL-\>, then you will normally also get a core
dump of your host program.

In addition, dumps are created automatically when a run-time
error occurs and the dapopt -~e option is set to d or dc.
See section 3.4.3 on page 45 for more information on
dapopt options.

Dump files created when you type <CONTROL-\> are named
dapcore. Dump files created automatically or from within

man003.04 AMT

4.4: Analysing dump files (dapdb) 73

Ppsam are named dof-file-name . dr. Here dof-file-name is the
name of your DOF file that was executing when the dump was
taken.

The first dump in a psam session will overwrite the contents
of the target dump file if it exists already. Second and
subsequent dumps in the same session are, however,
appended to the same file.

4.4.1 Entering dapdb You enter dapdb by typing at the host prompt:
host % dapdb core-file-name

where core-file-name is the name of a file that contains one or
more dumps of the DAP state. If you do not provide a
core-file-name, dapdb will prompt you for one. If you do not
supply a dump file name, dapdb will continue to prompt you
for it; to escape back to the host command line, type
<CONTROL-C>.

Once it has a dump file name dapdb loads the file, selects
the most recently dumped DAP state from the file, and tells
you how many DAP dumps are in the file.

Suppose you took a dump of the example program from within
psam, using the command dump. To explore the dump, you
would first quit from psam, then enter dapdb with a
command (in this case) of:

dapdb entdap.dr

Your screen display might then look like the display:

(rhost% dapdb entdap.dr

Dump 1 [of 1] selected

Stack Listing - current level first

> FORTRAN-PLUS Function ADD3 at Line 5 in File fadd3.df
FORTRAN-PLUS Subroutine ENTDAP at Line 7 in File esdap.df
System Procedure AMTS5XCODE601V33

File ./fadd3.df

5> : pause 1
End of Report
dapdb:

\F/gure 4.13 Initial display on entering dapdb

You could then explore the dump with print, array,
backtrack, and so on - much as you could have explored
the DAP state from within psam .

4.4.2 dapdb-only commands There are two commands that are only available from within
dapdb. core lets you select a dump file for examination,
select lets you select from several DAP dumps that might
be in the current dump file.

DAP Series: Program Development under UNIX man003.04 73

74

45 trace

4.5.1 Introduction

4.5.2 FORTRAN-PLUS trace

Chapter 4: Program testing

Section 4.7 , starting on page 80, has the details of all the
dapdb and psam commands.

Both APAL and FORTRAN-PLUS have language-defined
trace facilities, which output at run time the values of
specified data items. AMT does not recommend that you use
trace as a standard output facility, since it involves the
time-consuming overhead of returning control to the host until
the output is complete. When output from a trace is
complete, execution of the DAP program starts again, at the
statement or instruction immediately after the trace.

Not all trace statements in a DAP program are necessarily
executed; there are two stages of ‘filtering out’ — at compile or
assembly time, and at run time. All t race statements include
a trace level number. Options to dapf (the FORTRAN-PLUS
compiler) and dapa (the APAL assembiler), and to dapopt
(the run-time options program) interact with the trace level
number to produce trace output only when requested.

The FORTRAN-PLUS trace statement is of the form:

trace trace-level-number (variable-name1, ... variable-name;j, .. variable-namen)

effect of the -D option to dapf

effect of the -t option to dapf

effect of the - £ option to dapopt

74

where trace-level-numberis an integer in the range 1to0 5, and
specifies the level of the t race statement; variable-name; is
the variable whose value is to be output when the trace
statement is executed (see chapter 15 of DAP Series:
FORTRAN-PLUS enhanced, [2], for more details).

The value of the ~D option to dapf£ is important if you have
any trace statements in your source. If you do not specify
-D when you run dap£, or if you specify -D2, then trace
statements are compiled and executed, subject to the
restrictions discussed below. If you specify a -D0 or -D1
option to dap£, your DAP program is still compiled. However,
if the -t option is also used, with a value greater than 0, a
warning message is displayed telling you that the =D2 option
is necessary if trace is to be used, and that -D2 was
assumed for the compilation. (This change to full diagnostics
will apply to all procedures compiled in that invocation of
dapf))

During compilation, only those trace statements with a
trace-level-number less than or equal to the value of the -t
option to dapf will be compiled in. The -t default is O,
meaning that by default no FORTRAN-PLUS trace
statements are compiled.

Once your DAP program has been compiled, before you run
the program, you can specify a run-time trace level in a call
to dapopt. Any compiled trace statements with a

man003.04 AMT

4.6: Diagnostic reports

4.5.3 APAL trace

75

trace-level-number less than or equal to the value of the - £
option to dapopt will generate a display. The -£ default is 5,
meaning that by default all compiled FORTRAN-PLUS trace
statements are executed.

The form of the FORTRAN-PLUS trace diagnostic report is
discussed in section 4.6.1 below.

The APAL trace instruction is of the form:

trace trace-number [registers-trace-item)] level trace-level-number|array-store-trace-itern)

effect of the -t option to dapa

effect of the -a option to dapopt

4.6 Diagnostic reports

DAP Series: Program Development under UNIX

where frace-level-number is an integer in the range 1 to 15,
and specifies the level of t raceing to be assembled in to the
DAP program. For further details, see section 8.1.2 of DAP
Series: APAL Language, [3].

During assembly, only those trace instructions with a
trace-level-number less than or equal to the value of the -t
option to dapa will be assembled. The -t default is 0,
meaning that by default no APAL trace statements are
assembled.

Once your DAP program has been assembled, before you run
the program, you can specify a run-time trace level in a call
to dapopt. Any assembled trace instructions with a
trace-level-number less than or equal to the value of the -a
option to dapopt will generate a display. The default is 15,
meaning that by default all assembled APAL trace
statements are executed.

The form of the APAL trace diagnostic report is discussed
in section 4.6.2 below.

Diagnostic reports are displayed on the host screen (or
re-directed to a file) when, during program execution:

= A run-time error occurs

s A stop or ‘active’ pause statement is executed.
s Atrace statement or instruction is executed

® An ‘active’ psam breakpoint is reached

= The target of a next, step or stepi command is
reached

Note that if you have issued a continue n command (see
page 84 for details of continue), then execution does not
stop until the total number of pause statements and
breakpoints encountered since continue was issued
exceeds n - or a run-time error is encountered, or control
reaches the end of the program first! All pause statements
and breakpoints are 'active’ unless they are skipped over by
acontinue n.

manQ003.04 75

76

4.6.1

76

Chapter 4: Program testing

Many psam commands also generate diagnostic information,
as do commands in dapdb.

Reports from in FORTRAN-PLUS programs, for most types of report, the

FORTRAN-PLUS code level of detail in a particular report depends on what leve! of
detail was specified for the ~D and ~d options when dap£f
and dapopt were run (see section 2.7 on page 32 and
section 3.4.7 on page 52, respectively for more details).

For example, if you stepped the example program entdap
used earlier in the chapter, you should get a display like:

¢/ psam: step I
User-Defined Pause: Number 1
FORTRAN-PLUS Subroutine ADD3 at Line 5 in File fadd3.df
Stack Listing - current level first

> FORTRAN-PLUS Function ADD3 at Line 5 in File fadd3.df
FORTRAN-PLUS Subroutine ENTDAP at Line 7 in File esdap.df
System Procedure AMTS5XCODE601V33
File ./fadd3.df
5> : pause 1
End of Report
psam:

\ngre 4.14 Typical FORTRAN-PLUS diagnostic report Y,
In general, most FORTRAN-PLUS diagnostic reports will
contain one or more of the following items:

(" event-details N
FORTRAN-PLUS proc-type proc-name at Line line-number in File source-file-name
stack-backirack
errors
line or procedure variables
display-values
source-line
End of Report

- P J

where:

» event-delails gives details of the event that caused the
output of the diagnostic report. A typical entry might be:

Run-Time Error: emor-delails
User-Defined Pause: Number n

Breakpoint n

» proc-type is Subroutine or Function.
m proc-name is the name of the current procedure.

man003.04 AMT

4.6: Diagnostic reports _ 77

s line-number is the line number (in the FORTRAN-PLUS
source file) on which execution has stopped (line details
are only displayed if the -D option to dapf£ that was in
force was 1 or 2; default is 2).

s source-file-name is the filename of the current
FORTRAN-PLUS source file (file details are only
displayed if the =D option to dap¥ that was in force was
1 or 2 -the default is 2 - and dap £ was run under DAP
basic software release 3.2 or later).

= stack-backtrack starts with:

L Stack Listing - current level first j

and is a list of all the active procedures.

= errors displays, if a computational error has occurred,
the positions of the components causing the last
unsuppressed FORTRAN-PLUS computational error (see
errors, page 88).

» lJine or procedure variables displays the values of
variables if a computational error occurs and if the
parameter to the -d option to dapopt that was in force
was not O (the default is 0). The variables displayed are
those on the failing line (~d1) or in the failing subprogram
as well (-d2).

® display-values is a list of the values of all the variables
requested by the psam command display .

®» source-code-line is the line of source code on which
execution has halted.

stop statement Reports output by the stop command are of the form:
[User-defined Stop: Number number at Location offset]
where:

® number is the number associated with the stop in your
FORTRAN-PLUS source code.

m offset is the instruction offset of the stop instruction in
hexadecimal (in DAP words, of 32 bits) from the start of
the object code version of your program.

This feature is not of much interest to FORTRAN-PLUS
programmers, but is valuable for APAL programmers.

If a STOP statement is executed, program execution stops,
and control returns to the host. DAP and host programs are
abandoned and psam is not invoked. See DAP Series:
FORTRAN-PLUS enhanced, [2], for more details of stop.

DAP Series: Program Development under UNIX man003.04 77

78

4.6.2

78

FORTRAN-PLUS trace statement

Chapter 4: Program testing

The conditions under which a diagnostic report is produced
for a FORTRAN-PLUS trace statement are discussed in
section 4.5.2 above. The report is of the form:

FORTRAN-PLUS Trace

FORTRAN-PLUS proc-type proc-name at Line line-number in File source-file-name
values-of-variables-requested-in-trace-statement

End of Report

Reports from APAL code

where:

proc-type is the procedure type, either Subroutine or
Function.

proc-name is the name of the procedure containing the
trace statement.

line-number is the line number in the FORTRAN-PLUS
source file of the trace statement.

values-of-variables-requested-in-trace-statement are
the values of the variables specified in the trace
statement.

source-file-name is the name of the file containing the
trace statements (no file details are available if dapf
was run under DAP basic software release 3.1 or earlier).

All components of specified vectors, matrices and arrays are
displayed; you cannot trace any subset of a matrix, vector
or array. The FORTRAN-PLUS storage mode appropriate to
each variable is assumed by the system, and spurious values
will be printed for any variable which is held in incorrect
storage mode.

In the APAL assembler dapa, there is no comparable option
to -D in dapf£, and all diagnostic reports contain the same
level of detalil.

APAL diagnostic reports will contain one or more of the
following items:

event-details

Procedure proc-name + offset-value
stack-backtrack

instructions

End of Report

where:

event-details gives details of the event that caused the
output of the diagnostic report. A typical entry might be:

man003.04 AMT

4.6: Diagnostic reports

79

Run-Time Error: erordetails
User-Defined Pause: Number n

Breakpoint n.

Qe

proc-name is the name of the current APAL code section.

offset-value is the offset in hexadecimal (from the start of
the code section) of the last instruction to be executed
before processing halted.

stack-backtrack starts with:

[Stack Listing - current level first

APAL trace statement

and is a list of all the active procedures on the stack.

instructions are the last APAL instruction to be executed
before processing was halted, and the instruction that will
be executed when processing is re-started. If the cause
of the halt was a breakpoint, then only the second
instruction is displayed.

The conditions under which a diagnostic report is produced
foran APAL trace statement were discussed in section 45.3
above. The report is of the form:

APAL Trace
Trace number lrace-number
Procedure proc-name + offset-value

contents-of-registers-requested-in-trace-instruction
values-of-array-store-items-requested-in-trace-instruction

End of Report

DAP Series: Program Development under UNIX

where:

trace-number is the value of the number specified in the
trace instruction in your code.

proc-name is the name of the procedure containing the
trace instruction.

offset is the word offset (in hexadecimal) of the trace
instruction, from the start of the procedure.

contents-of-registers-requested-in-trace-instruction are

the contents of the requested MCU, edge and PE
registers.

values-of-array-store-items-requested-in-

lrace-instruction
are the contents of the requested array store items.

man003.04 79

80

Chapter 4: Program testing

4.7 Full specification of psam and dapdb commands

This section is designed for reference, so some information is
repeated briefly where appropriate.

The psam and dapdb on-line help facility gives
comprehensive details of all commands. The commands are,
in alphabetical order:

alias [alternative-command-name command-line]

Create the name alternative-command-name as an alias for the command(s) given in
command-line.

A simple form of parameter substitution using $ is available: you can have one or more
$sin command-linewhen you define its alias; when you call alternative-command-name,
if it has any parameters attached, then all the parameters are used to replace each
occurence of § in command-line when it is executed. If no parameters are supplied with
alternative-command-name, then command-line is executed, with the §s replaced by
null strings. If you supply parameters to alternative-command-name when no $s are
used in command-line, then the parameters are added to the end of command-line
before it is executed. See below for examples.

If no parameters are supplied with alias, a list of all the current aliases is displayed.
unalias lets you delete an alias from the list of current aliases.

saving If youissue alias > alias-file-name at the psam prompt, all the current aliases will be
aliases written to a file. If you set alias-file-name as the value of the psam environment variable
Alias file (see section 4.3.9 on page 69), all the aliases in the file will be instated
at the start of subsequent psam sessions.
Examples of aliases are:
The command setting up the alias An example of ... and its ‘meaning’
the use of the alias
alias s step s 10 step 10
alias fp "file; procedure" fp file thenprocedure
alias plane array $ v i8 plane 100 array 100 v i8
alias spec "echo §; list -§, +$v spec 3 echo 3thenlist -3, 43
alias fred list fred 10,20 list 10,20

[w]
array address{ x [/ start bit] }

80

Note the second and fourth examples above. If you want to alias multiple commands
you will have to enclose these commands in double quotes or the second, and any
subsequent, commands will be treated as commands separate from alias.

[size] | [*count]
v [rows] [cols]

e oue

Display the contents of the array store; starting at the specified address and assume
that the data is stored in wordpack (the default), rowpack or vertical format.

man003.04 AMT

4.7: Full specification of psam and dapdb commands 81

name [+ plane.row.word]

plane.row.word [m n]
plane.row.word specifies an optional offset or an absolute address, and nis in the range
1 1o 7, and selects the corresponding register as an optional address modifier.

Here addressis , where nameis the name of a data section,

In vertical format rows specifies the range to display, in the form:
firstrow — lastrow

and cols specifies the column range to be displayed in the form:
firstcol | lastcol

If you omit either firstrow or firstcol, then the start of the row or column is assumed. If you
omit either lastrow or lastcol, then the end of the row or column is assumed. The default
for both is that all rows and all columns are displayed.

You can display the data in address format, or as type bit, character, real (e for
exponential), hexadecimal (the default) or integer. If you specify the type, you can also
specify the size in bits in the range 1 - 64, with a default of 32. Real and character sizes
have to be a multiple of 8 (for reals the minimum is 24 bits). Size, if you specify it, is
ignored when the store is diplayed in address format.

You can display either one (the default) or count data items starting at the specified item.
examples array 400.3 prints one 32-bit hex vaue from plane 400, row 3. -
array ..4000 il7 *10 prints ten 17-bit integers starting at word 4000.

array mydata+.25 r bl2 /5 prints one 12-bit binary value starting at bit 5
in row 25 of mydata.

array 0(m5) v e24 27- prints out (ES-27) * ES 24-bit real values stored
vertically from row 27 to the last row, starting at the plane whose address is 0 modifed
by the contents of MCU register 5.

array 20 v bl prints plane 20 as a grid of 1s and 0s - a special case of vertical
format know as pattern format.

attributes variable-expression| variable-expression ...]

Display the attributes of the specified FORTRAN-PLUS variable(s) in the current
procedure whose name matches variable-expression.

Note that information on local variables is only available for those variables in active
procedures.

variable-expression can include wild cards:
* Matches zero or more alphanumeric characters
? Matches one alphanumeric character
[string] Matches any one character from the alphanumeric string

[c1—c2] Matches any one ASCII character that lies in the range c1-c2 inclusive,
where cyand czare actual characters, not ASCl| values.

DAP Series: Program Development under UNIX man003.04 81

82 Chapter 4: Program testing
Examples of possible attributes commands are:
attributes * Give the attributes of all variables in the current
procedure.
attributes [ABC]? Give the attributes of all variables in the current
procedure whose names are two characters long
and which start with A, Bor C.
attributes [a-g]?* Give the attributes of all variables in the current
procedure whose names are two or more characters
long and which start with any letter in the range A to
G.
Note that there is no case signifcance in
FORTRAN-PLUS variable names; they are mapped
to upper case. If you type in variable names in lower
case, they are converted to upper case before any
ASCII comparisons are made.
attributes V[1-f] Give the attributes of all variables in the current
procedure whose names are two characters long,
start with v, and whose second character is in the
ASCIl sequence from 1 to F.
backtrack Display a list of the procedures on the stack.
The entry in the list for each procedure gives you the name of the procedure, the line
number or instruction offset at which execution was halted or control passed to another
procedure, and for FORTRAN-PLUS procedures the name of the file in which the
procedure is held. The current procedure is marked with a > beside its entry in the
display.
breakpoints (psam only)
Display details of all breakpoints which have been set (with the stop and stopi
commands) but not yet deleted (with the c1ear command).
All breakpoints have a unique reference number, which is displayed, along with the
procedure, offset and activity (enabled or disabled) of the breakpoints. In addition,
for FORTRAN-PLUS breakpoints, the file name and line number of the breakpoint
locations are displayed.
clear {breakpomt—refirence—number} (psam only)
Delete the specified breakpoint, or all breakpoints.
WARNING The reference number for a cleared breakpoint is available for re-use by the system.
82 man003.04 AMT

4.7: Fuil specification of psam and dapdb commands 83

instruction-offset instruction-offset

code {;} number-of-instructions , {:_} number-of-instructions

Disassemble and display some or all of the current procedure.

You can only disassemble user-written APAL procedures. The default is that
disassembly starts at offset O and continues to the end of the procedure. Alternatively,
you can specify the extent of the disassembly by giving as an argument to code the
instruction offsets (either upper offset or lower offset or both). These offsets can be
relative either to the current instruction (number-of-instructions above) or to the start of
the code section (instruction-offset above). The current instruction is represented using
a'.'

You can use hexadecimal offsets or numbers of instructions, but they have to be
preceded by #, 0X or 0x.

Examples of possible code commands are:

code Disassemble and display the whole of the current code
section.

code 3 Disassemble and display the instruction at offset 3
(decimal).

code 3, Disassemble and display from the instruction at offset 3

{decimal) to the end of the current code section.

code 3, 10 Disassemble and display from instruction at offset 3
{(decimal) to the instruction at offset 10{decimal).

code , . Disassemble and display from the start of the current code
section to the current instruction.

code -#10,+#20 Disassemble and display from the instruction that is
10 (hexadecimal) instructions before, to the instruction that
is 20 (hexadecimal) instructions after, the current instruction

When control passes to psam, the current instruction is the one that would be executed
if and when program execution were restarted. After that, whenever you issue a
procedure, up, down or top command, the current instruction changes to the last
instruction executed in the new procedure. The current instruction also changes when
you use the code command, when the current instruction becomes the last one you
specified to be disassembled. If disassembly includes the current instruction when
psam was entered, it is indicated by a ~~> character.

Output from the command code #6C, #74 might be as shown at the top of the next
page.

DAP Series: Program Development under UNIX man003.04 83

84 Chapter 4: Program testing

(" 6c 0006¢c: £d000304 DO 5 TIMES N
6d 0006d: ce001c01 AQ Q0 E P 1
6e 0006e: 2e678000 RX ME 0.0 (ml) (+4)
6f ~--> 00006£ 39688000 CPQRNO ME
70 00070: b0d20900 sIc 0 (M2)
71 00071; 0212000 Qs 0 (M2)
12 b2 00072: ca000c01 QQ N P 1
73 00073: 88520000 SQ 0 (M2)
_ 74 00074: 6362001f XR M3 0.31 (M2) -

The format of each dis-assembled line of code is:

o] |

offset efc- pc binary-code mnemonic
info

where:

» offset is the offset of the instruction (in hexadecimal) from the start of the current
code section (6¢ in the first line in the display above).

» breakpoint-etc-info points to the current instruction (at offset #6F above), and any
enabled or disabled breakpoints there are (the only breakpoint above is b2, is at
offset #72, and is disabled).

» pc is the offset of the instruction (in hexadecimal) from the start of the whole loaded
program - the program counter value (000 6c in the first line in the display above).

» binary-code is the binary form of the instruction (£d000304 in the first line in the
display above).

s mneronic is the dis-assembled form of the instruction (DO 5 TIMES in the first
line in the display above).

continue [n] Continue execution of the DAP program. If an argument nis (psam only)
given, continue execution, bypassing all pauses and break-
points, until a total of (n-1) pauses and breakpoints have been passed. The
total can consist of all pauses or all breakpoints, or any mixture of the two.

core core-file-name (dapdb only)

Change the file to be examined by dapdb from the curreﬁt one to core-file-name.

date Display the current time and date.

Re-direction to a specified file allows you to time-and-date stamp an output file.

84 man003.04 AMT

4.7: Full specification of psam and dapdb commands 85

(psam only)

disable {breakpo:nt‘reference—number}

*

Disable the specified breakpoint or all breakpoints.

Disabled breakpoints don't halt DAP program execution. However, they still appear in
the list of breakpoints produced bybreakpoint s and status. Disabled breakpoints
also appear in the listings produced by 1ist and code, where they are shown as ‘bn’,
where n is the breakpoint reference number. You can re-enable disabled breakpoints
using the enable command, see page 87.

The example of code output on page 84 includes a disabled breakpoint, marked as
b2.

display variable-name [(subscripts)]

Display the contents of the specified FORTRAN-PLUS variable (or, optionally, the
contents of the subscript-selected components of the specified variable) in the current
procedure every time psam is entered. If no parameter is specified, show the list of
variables to be displayed.

Every time you call display with the name of a variable as argument, the variable you
give is added to the list to be displayed. You can clear the whole list (but not part of it)
with undisplay.

Every time psam is entered display passes the list of variables to be displayed to
the print command. The only variables whose contents will be displayed are in the
procedure in which execution halted; any other variables in the display list — whether
local, static or COMMON variables - will not be printed, but will cause output of an error
message.

display provides you with a convenient means to monitor the values of variables
when, for example, you step through a program.

In subscripted references to multi-dimensional variables you can use one or more
subscripts to define the range of data to be displayed, much as you do in
FORTRAN-PLUS.

For example, suppose a variable amat in your program is declared as:
amat (*20,*30,4,5)

If, every time your program halts, you want all the components of element
amat (,, 2, 2) to be displayed, then you can specify in psam:

display amat(,,2,2)
If your interest was only in amat (10,1, 2, 2) then you could specify:
display amat (10,1,2,2,)

If you wanted psam to output elements amat {(,,2,2), amat(,,3,2) and
amat (, , 4, 2), then psam lets you specify:

display amat(,,2:4,2)
a form of selection not currently valid in FORTRAN-PLUS.

DAP Series: Program Development under UNIX man003.04 85

86 Chapter 4: Program testing

Similarly, if you were interested in components:

amat (10,1, 2,2), amat (11,1,2,2) and amat (12,1, 2, 2);
amat (10,2, 2, 3), amat(11,1,2,3) and amat (12,1, 2, 3); and
amat (10,1,2,4), amat(11,1,2,4) and amat (12,1,2,4).

you could specify:
display amat (10:12,1,2,2:4)

In general, in referring to sub-items of a variable, you use subscripts to define the range
of data of interest, and separate your subscripts with commas.

Each subscript takes one of the following forms:
low-index:high-index

or:
index

where these indices specify that only the items (that is, elements or components)
between low-index and high-indexinclusive, or only the item index should be displayed
for the corresponding dimension of the variable. Note that the default values for
low-index and high-index are the first or last item in the given dimension respectively;
thus, 20: displays all items from 20 upwards whilst : 20 displays all items up to and
inctuding 20.

You can replace variable-name by a variable-expression in which the following wild
cards can be used:

* Matches zero or more alphanumeric characters.

? Matches one alphanumeric character.
[string] Matches any one character from the alphanumeric string string.

[cr-c2] Matches any one character in the ASCII character set that lies in the range
cr-czinclusive, where cyand czare actual characters, not ASCII values.

examples The following display commands adds all elements and components of the variables
as noted, to the list of variables that are be printed when psam is next entered:

display * Add all variables to the list.

display [ABC]? Add to the list all variables whose names are two
characters iong and which start with A, B or C.

display [a-g]?* Add to the list all variables whose names are two or

more characters long and which start with any letter
inthe range Ato G.

Note that there is no case signifcance in
FORTRAN-PLUS variable names; they are mapped
to upper case. If you type in variable names in lower
case, they are converted to upper case before any
ASCIl comparisons are made.

display VI[1-f] Add to the list all variables whose names are two
characters long, start with v, and whose second
character is in the ASCIl sequence from 1 to F.

86 man003.04 AMT

4.7: Full specification of psam and dapdb commands 87

You could specify:
display a?* (1:3,3,3,3)

which would specify that you wanted to have displayed all variables in the then current
procedure whose names were at least 2 characters long and started with an a, and that
you only wanted components (1, 3, 3, 3), (2,3, 3,3) and (3, 3, 3, 3) fromeach
selected variable.

If the procedure included variables declared as:

amat (*20,*30,4,5)
avector (*50, 3, 3, 3)
as(4,3,6,4)
asvec(*10,4,4)
apple(*10,*10,2,2, 2)

then when psam was next entered you would see the 3 components you had specified
in display, but only from the first 3 variables: amat, avec and as. Since the
dimensions of asvec and apple do not match those in the display statement, you
would get 2 Invalid subscripts error messages instead of any values from
asvec and apple.

down Move down the stack by one procedure, if possible.

If the current procedure is already at the bottom of the stack, or not on the stack, down
outputs an error message, but otherwise has no effect.

dump {(psam only)

Copy the DAP state (the whole of the array store part of your DAP program block) to file
dof-file-name.dx, appending to any existing dump(s) created in the current psam
session. dof-file-name is the name of the file containing the DAP object format code
being debugged by psam . If dof-file-name. dr is not empty when the psam session
starts, its contents will be deleted.

echo [argument ...]

Display the list of specified arguments terminated by a line feed. (As usual with all
commands that produce a display on the host screen, you can re-direct output to a
specified file.)

(psam only)

*

enable {breakpomt—reference~number}

Enable the specified breakpoint, or all breakpoints. Newly created breakpoints are
enabled automatically.

Enabled breakpoints halt DAP program execution when control reaches them, and then

return control to psam; any psam commands associated with the breakpoints are then
executed.

Enabled breakpoints appear in the listings produced by 1ist and code, where they
are shown as ‘Bn’, where n is the breakpoint reference number. The examples of code

DAP Series: Program Development under UNIX man003.04 87

88

88

errors

Chapter 4: Program testing

output on page 84 and of 1ist on page 67 include enabled and disabled breakpoints,
marked as ‘B and ‘bn’ respectively.

Display of error information of two kinds:

» User-recorded errors - give the contents of any user-defined error recording
variables. Use the same display format as would be used by print.

Note thatprint would be controlled by the current values of the psam environment
variables relevant to a display of logical data of the same mode(s) as the
error-recording variables.

Locations in which errors have occurred correspond to T values. If you have not
nominated any user-defined variables you will see the display:

(No user-defined error recording variables

s Any errors - which will indicate whether there have been any uncleared
computational error(s) in the current program.

This display is of a single character: T is reported if there has been an uncleared
computational error in the current program, otherwise F is displayed. Any errors
information applies to all computational errors, whether or not you have nominated
error recording variables or error interruptiuon masks.

When a computational error occurs in your program, execution stops and psam is
entered. The initial psam display gives you information about the mode and location of
that error. If, before you start your program running again, you want to see a repeat of
that information, use message.

file [file-name]

Change the current file to the specified file-name ; if no name is specified, print the name
of the current file.

The system looks for file-namein the list of directories specified by the psam environment
variable Search_path.

help [topic-name]

history

Display help information on the specified command or topic.

Help information is held on all the psam and dapdb commands; you can see a short
introduction to the command line interpreter by typing help interpreter. If you
don't specify any topic-narme, a list of all the entries in the help database is displayed.

Display a numbered list of all the commands used so far in the current psam or dapdb
session.

The commands and their effects are:

t Repeat the previous command
'n Repeat the n " command issued in the current session
ten Repeat the command issued n commands ago

man003.04 AMT

4.7: Full specification of psam and dapdb commands 89

Vstr Repeat the most recent command which started with sir

'$ Repeat the last argument used in the previous command

R Repeat all arguments used in the prevous command

1A Repeat the first argument used in the previous command
~strirstr2 Repeat the previous command, replacing str1 by str2

You can also use the following modifiers with the above commands:

P Display but do not execute the command
:s/str1/str2/ Replace str1in the command by str2

examples Hence, if your previous psam command had been help 1list, then
'1:8/1ist/code would have the same effect ashelp code.

line-number line-number

list {;} number-of-lines | | | :_ number-of-lines

Display part or all of the contents of the current file.

The default is that the entire file is listed. Alternatively, you can specify the extent of the
listing by giving either or both of the upper and lower line offsets as an argument to
1ist. These offsets can be either relative to the current list line (number-of-lines above)
or relative to the start of a specified line (/ine-numberabove). You specify the current list
fine byusinga“.’.

You can use hexadecimal line numbers or numbers of lines, but they have to be
preceded by #,0X or 0x.

examples Examples of possible 1ist commands are:
list List all lines in the file
list 35 List line 35
list 91,100 List from lines 91 to 100 inclusive
list -3,. List from 3 lines before the current list line, to the current list line
list +3, List from 3 lines after the current list line to the end of file

list 12,420 List from line 12 to the line 20 lines after the current list line

list is normally used to list FORTRAN-PLUS source files, but it can be used to list any
file selected by £ile. This way you can look at files containing perhaps macros,
breakpaints or environment variables.

When control passes to psam the current line is the line on which execution was
suspended. After that, whenever you issue aprocedure, up, down or t op command,
the current line changes to a line in the new procedure. If the new procedure is active,
then that line is the one that was being executed when execution was suspended,
otherwise the line is line 1. If you use £ile to change the current file, then the new
current line is always line 1.

The current line also changes when you use 1ist, when it becomes the last line you
requested to be displayed.

DAP Series: Program Development under UNIX man003.04 89

g0

90

Chapter 4: Program testing

[macro] macro-file-name

map |k

MCU and
co-processor
code store
maps

example

Execute the psam or dapdb commands held in the specified file.

Nesting of macros up to 10 levels is possible; if an error occurs while a macro is being
interpreted, execution stops and the psam or dapdb prompt returns, You cannot use
history substitution in macros.

If your macro contains commands in which control passes from psam or dapdb back
to your program, once the first such command has been executed, the rest of the macro
will be ignored. Such commands include step, continue or quit.

If macro-file-name contains breakpoint information generated by the status
command, then after you have issued macxro macro-file-name, the current file and
procedure will be those relevant to the last breakpoint in macro-file-name.

Display maps of the occupancy of the MCU and co-processor code stores and the array
store of the current DAP program.

Without any parameter the map command displays a map of MCU code store
occupancy followed by a map of array store occupancy. If the current program includes
co-processor code, then an occupancy map of the co-processor code store is included,
between the MCU code store and array store maps.

If you supply parameter a or ¢ then a map of array store occupancy only or MCU code
store occupancy only is displayed, respectively.

If you supply parameter k and your program includes co-processor code, you will see
a map of co-processor store occupancy; if you specify k, but your program does not
include co-processor code, nothing will be displayed.

Examples of the two types of map are shown below.

The MCU code store map and co-processor code store map have the same layout. Each
consists of four columns, with one line for each system or user code section. The first
column gives the name of the code section. The second and third columns give the start
address and size of the code section. Both address and size are in DAP words (32 bits)
and given in hexadecimal units. The start addresses are relative to the start of the code
store block assigned to the current user program. The fourth column gives the language
of user-written code sections.

The screen dump at the top of the next page shows you the sort of output you might get
if you were debugging the simple FORTRAN-PLUS program esdap listed in figure 4.1
on page 61 and you issued amap ¢ comand:

man003.04 AMT

4.7: Full specification of psam and dapdb commands g1

_ psam:

/" psam: map c
Code store map:-
Name Start Size Language
ENTDAP #0 #6f FORTRAN-PLUS
ADD3 #6f #59 FORTRAN-PLUS
AMT5XCODE601V33 #c8 #13 -
AMTVAPSUMMI32CODE #db #b0 -~
AMTSSCODE103sv32v0l #18b #16d -
AMTS5SADDMS32ICODE #2£8 #22 -~
AMT5SCODE602V33 #3la #13a -
AMT5SCODE429BV01 #454 #cd4 -
AMT5SADDMM32ICODE #518 $23 -
Total Code Store Occupancy : #1000 Words

/

array store
map

example

For FORTRAN-PLUS the fourth column distinguishes between different versions of the
FORTRAN-PLUS compiler. Procedures compiled with an earlier FORTRAN-PLUS
compiler have their language displayed as fortran-plus, otherwise
FORTRAN-PLUS is displayed to indicate a FORTRAN-PLUS enhanced compiler.

The array store map consists of four columns, with one line for each area. The first column
gives the name of the area. The second and third columns give the start address and
size of the area. Both address and size are in planes, and the start addresses are relative
to the start of the array store block assigned to the current user program. The fourth
column gives the access mode of areas corresponding to APAL or FORTRAN-PLUS data
sections, or FORTRAN-PLUS literals areas.

The screen dump below shows the array store map you would get with amap a forthe
same esdap FORTRAN-PLUS program:

/" psam: map a

Name
AMTS5AWORK
AMTSACONTROL
AMTS5ALITS

' ROWSCOLS
AMTSPATTERNS
! SYSDAT
'VERSION

' TRACEMESG
AMTSASTACK

_ psam:

Array store map:-

Start Size Mode

0 120 -
120 8 -
128 1 -
129 8 READ ONLY
137 8 READ ONLY
145 2 READ WRITE
147 1 READ WRITE
148 8 READ WRITE
156 375 -

Total Array Store Occupancy : 768 Planes

DAP Series: Program Development under UNIX man003.04 g1

g2

92

masks

example

Chapter 4: Program testing

Display the user-defined FORTRAN-PLUS error interrupt masks.

masks prints the masks in the same way that print displays logical data of the
corresponding mode - that is, as specified by the environment variable
Pattern_mode (see Set for more details). From your DAP program, you can set
locations in your mask(s) to .FALSE., which switches off any error interrupts at
locations in variables corresponding to those locations you have marked .FALSE.
your mask(s).

Note: Although you can declare a matrix to be, say, mat (*9000, *6000), the DAP
processes an ES? sheet of components of mat at a time. If, while the DAP is processing
a particular sheet of components, an error occurs that is not suppressed by an error
interrupt mask you have nominated, then all processing will stop and control will pass
to psam. If you have nominated an appropriate error recording mask, that mask will
record all errors that have occurred in that sheet, but unless you use psam's contine
command, you cannot be sure that no other errors will occur in the others sheets of mat
still to be processed. For a fuller discussion of FORTRAN-PLUS's error management
facilities, see chapter 15 in [2], DAP Series: FORTRAN-PLUS enhanced.

Suppose you have declared a variable asEIM (*5, *5) , and have set the mask to be
.TRUE. only for components on the leading diagonal, using the FORTRAN-PLUS
procedure PAT UNIT DIAG(n).

You then nominated the variable as an error interrupt mask by calling the
FORTRAN-PLUS routine:

CALL NOM EMSK (EIM)

If EIM is the only error interrupt mask in place, and PATTERN_MODE is set to 2 (the
default), when you issue the mask command you would get the response:

4 psam: masks I
User-defined matrix error interrrupt mask -
(1,1:5) .
(2,1:5) .T...
(3,1:5) R
(4,1:5) R
(5,1:5) ..T
\ psam: /
message Display the psam or dapdb entry message first displayed at the start of the current
session.
message will make current the file, procedure and line or instruction where execution
halted.
next [number-of-steps] : (psam only)

Execute the specified number of FORTRAN-PLUS source statements and then return
control to psam,; if no number is specified, execute one statement. If any procedures
are encountered, the whole of each procedure counts as one step.

next only works in procedures compiled with the -g option to dap£.

man003.04 AMT

4.7: Full specification of psam and dapdb commands 93

If a next command is in force, and another interrupt occurs which passes control to
psan, the effect of the next command is cancelled.

Note: next nis executed as ninstances of next, each instance involving host-DAP
communications. As a consequence the time taken to execute a next ncommand is
greater than the time taken to continue between two breakpoints the same n
statements apart.

print variable-name [(subscripts) 1]

Display the contents of the specified FORTRAN-PLUS variable in the current procedure,
optionally limiting the display of a multi-element or component variable to one or more
elements or components.

In subscripted references to multi-dimensional variables you can use one or more
subscripts to define the range of data to be displayed, much as you do in
FORTRAN-PLUS.

For example, suppose a variable amat in your program is declared as:
amat (*20,*30,4,5)

If you are in psam and want to display all the components of element amat (,,2,2),
then you can specify:

print amat(,,2,2)
If your interest was only in amat (10, 1, 2, 2) then you could specify:

pPrint amat(10,1,2,2,)

If you wanted psam to display elements amat (,,2,2), amat (,,3,2) and
amat (, , 4, 2), then psam lets you specify:

print amat (,,2:4,2)

a form of indexing not currently valid in FORTRAN-PLUS. Similarly, if you were interested
in components:

amat (10,1,2,2),amat (11,1, 2,2) and amat (12,1, 2, 2);
amat (10, 2,2, 3), amat (11,1, 2,3) and amat (12,1, 2, 3):;
amat (10,1,2,4),amat (11,1, 2,4) and amat (12,1, 2,4)

you could specify:
print amat (10:12,1,2,2:4)

In general, if you want to refer to elements or components of a variable, you use
subscripts to define the range of data of interest, and separate your subscripts with
commas.

Each subscript takes the following form:
low-index:high-index

or:
index

where these indices specify that only the items (that is, elements or components)
between low-index and high-index, or only the item index should be displayed for the

DAP Series: Program Development under UNIX man003.04 93

94

examples

Chapter 4: Program testing

corresponding dimension of the variable. Note that the default values for low-index and
high-index are the first or last item in the given dimension respectively. Hence, 20: -
displays all items from 20 upwards whilst : 20 displays all items up to and including 20.

You can replace variable-name by a variable-expression in which the following wild
cards can be used:

* Matches zero or more alphanumeric characters
? Matches one alphanumeric character
[string] Matches any one character from the alphanurmeric string

[c1—c2] Matches any one ASCII character that lies in the range c1-c2 inclusive,
where c7ard czare actual characters, not ASCll values.

The way in which print displays array variables is fixed b, te environrent variables
Order, Pattern mode, Term collection and Window_width. In logicel
arrays, components the: are .TRUE. are displayed as T; .FALSE. values are
displayed as F if Pattern_mode is 0, and . otherwise.

If you specify to be printed any variable that does not ex's: in the curre~: procedure.
or any non-existent e.ement or component of a varzble you wl get a No
information for these variables or an Iavalid subscripts
message.

Some examples of print:

print * Prints all variables in the current procedure.

print V[0-F] Prints all elements or co—oonents of a1y variable in
the current procedure w-ase name is V0, V1, ...,
VE, VF.

print VEC1(7) Prints the 7 componen: of vector VEC1.

print VEC1l (16:24) Prints components 16 to 24 of the vec:or VECL.

print vecl(8:) Prints from component 8 o the last component of
vector VEC1 . '

Note that there is no case signifcance in FORTRAN-PLUS variable nares: they are
mapped to upper case. ! you type in variable names in lows- case, they &-e converted
to upper case before any further processing.

ifavariable is declared asmat (*3, *4) and psam’s environment variab ss have their
default values, then print mat might produce the display

(1,1:4)
(2,1:4)
(3,1:4)

_ psam:

4 psam: print mat
Integer Matrix Parameter MAT in 32 bits -~
dimensions: (*3,*4)

1, 2, 3,
5, 6, 71
9, 10, 11, -

RTINS

94

man003.04 AMT

4.7: Full specification of psam and dapdb commands g5

procedure procedure-name

quit

registers

save

Change the current procedure to the one specified; if no argument is supplied, display
the name of the current procedure.

The procedure to be selected does not need to be an active procedure; you can select
any procedure in any part of the DAP program and make it current. If you do select a
non-active procedure, no local variables can be printed nor their attributes displayed,
and a warning message is output.

Quit psam and return control to the host operating system, abandoning host and DAP
programs.

Display the contents of some or all of the PE register planes,
MCU and edge registers; the carry and overflow flags; and
the hardware DO loop iteration number.

1
”

QHhaowe

You can limit the display to a specified PE register plane (a,
¢, q), or the carry and overflow flags (£), or the hardware DO
loop iteration number (d), or a specified MCU register (mn), or
the edge register (me), or all MCU and edge registers (m*).

> [size)

YO obw

ol

If you specify MCU or edge registers explicitly, you can specify the form in which the
data is displayed - in the form of an address, a bit pattern, characters, a real (e for
exponential), a hexadecimal or an integer, with the default of hexadecimal. Optionally,
you can specify the size of the displayed data item(s): 24 to 64 bits in steps of 8 for reals,
110 64 in steps of 1 for integers or hexadecimals; default size is 32 bits, or ES for the
edge register. If you do specify size, it has to be less than or equal to the size of the
register(s).

You can specify registers on its own, in which case you will get a display of all the
PE , MCU and edge registers, the carry and overflow flags, and the hardware DO loop
iteration number. the format of the regsiters display will be hexadecimal, with a size of
32 bits, and ES for the edge register.

Note: A hardware DO loop is used in APAL programs, it is not the same as a
FORTRAN-PLUS DO loop.

Save the current values of the psam environment variables to the file . defaults in
your home directory.

select [dump-number] {(dapdb only)

Select the dump-number” DAP dump in the current core-file for examination by dapdb.

If you don't give an argument, dapdb will tell you which dump is already selected.

DAP Series: Program Development under UNIX man003.04 95

96 Chapter 4: Program testing

boolean-name Change the contents of the specified psam environment
set | numeric-narme = value variable. If no arguments are supplied, list the current values
list-name = (list) of all the environment variables.

The names of the variables, their type, possible and default values are:

Name Type Range Default
Alias file list Any list of file names {)

More boolean TRUE, FALSE TRUE
Order list The list has to consist of all default

integers in the range 1to n,
in any order, where n has
any positive value

Pattern mode numeric 0-2 2
Source path list Any list of directory names (.)
Term collection numeric 0-7 7
Window_width numeric 45-132 80

Names of enviroment variables are not case-sensitive, and may be abbreviated as long
as they remain unambiguous.

Some examples of the use of set:

Command Effect

set Alias_file = (~/myfile) Installs the psam command aliases held in the file myfile in your
home directory at the start of a subsequent psam session. You write
the aliases to myfile when you issue the save command.

set More Sends screen output through the UNIX filter more .

set Order = (2 1) When arrays of rank 2 or more are being printed, the second
dimension will vary fastest, followed by the first, the third, the fourth,
and so on, until components from all the dimensions have been
printed.

The default for Order for printing FORTRAN-PLUS matrices is
(2 1); for all other arrays the defaultis (1 2).

set Pattern mode = 1 Print logical and character arrays as 1-dimensional patterns.

set Source_path = (. ~/fred) Searches for macro files, Alias_£ile files and current files, first
in the current directory, then in the directory fred in your home
directory.

set Term collection = 4 When displaying multi-component variables, collectterms only inthe

first four dimensions being printed.

set Window_width = 60 When displaying variables, use a maximum text width of
60 characters.

status Display the current breakpoints in command format. (psamonly)

The output from this command is normally redirected to a file, so that you can re-instate
the current breakpoints during another psam session by executing that file using the

96 " man003.04 AMT

4.7: Full specification of pgam and dapdb commands 97

macro command. When in a subsequent psam session you re-instate such
breakpoints, psam’s current file and procedure are those relevant to the last breakpoint
you re-instate.

Note that status > filename records the existence of breakpoints, but not whether
they are enabled or disabled. A call in a subsequent psam session tomacro filename
(or simply to filename) will install as enabled all the breakpoints in filename.

step [number-of-steps] (psam only)

Execute the specified number of FORTRAN-PLUS statements and then return control to
psam; if no number is specified, execute one statement. If any procedures are
encountered, each executable statement of each procedure counts as one step.

step only works in procedures compiled with the -g option to dapf. If a step
command is in force, and another interrupt occurs which passes control to psam, then
the effect of the step command is cancelled.

Note: step nis executed as ninstances of step, each instance involving host-DAP
communications. As a consequence the time to execute a step n command is greater
than the time to continue between two breakpoints the same n statements apart.

stepi [number-of-instructions] (psam only)

Execute the specified number of APAL instructions and then return control to psam; if
no number of instructions is specified, execute one instruction.

It a stepi command is in force, and another interrupt occurs which passes control to
psam, then the effect of the stepi command is cancelled.

Note: stepi nis executed as ninstances of stepi, each instance involving host-DAP
communications. As a consequence the time to execute a stepi ncommand is greater
than the time to cont inue between two breakpoints the same n instructions apart.

stop at line-number [command] {(psam only)

Insert a breakpoint in the current FORTRAN-PLUS source file at the specified
line-number. If command is specified, when the breakpoint is reached and control is
passed by the run-time diagnostic system to psam, execute command.

stop in procedure [command] (psam only)

Insert a breakpoint on the first executable line of the specified FORTRAN-PLUS
procedure. If command is specified, when the breakpoint is reached and control is
passed by the run-time diagnostic system to psam, execute command.

stopi at code-offset[command)] {(psam only)

Insert a breakpoint at the specified code-offset in the current APAL procedure. If
command is specified, when the breakpoint is reached and control is passed by the
run-time diagnostic system to psam, execute command.

DAP Series: Program Development under UNIX man003.04 97

Chapter 4: Program testing

stopi in procedure [cormmand] (psam only)

Insert a breakpoint at offset 1 (the normal entry point) in the specified APAL procedure.
If command is specified, when the breakpoint is reached and control is passed by the
run-time diagnostic system to psam, execute the command.

Display execution time and execution time difference in units of machine cycles, for the
current program.

Execution time gives the number of cycles used so far by the current program. The value
is not incremented when the program is not executing. Execution time includes cycles
used by the system in suspending and restarting the program — for example in order to
re-enter psam. The number of cycles used to suspend and restart is zero on the simulator
and has an indeterminate value (about 150) on the hardware.

Execution time difference is the difference in cycles between the value of the current
execution time and its value when you last used the time command. If, however, you use
time again without having tried to restart your program, execution time and execution
time difference are displayed unchanged.

Make the procedure at the top of the stack the current procedure.

top changes the current procedure, and line or instruction, and, for FORTRAN-PLUS
programs, the current file.

unalias [alternate-command-name]

Delete alternate-command-name from the list of aliases in the current session. If no
parameter is supplied, display a list of all the aliases in the current session.

Remove all variables from the list of variables to be displayed on entering psam. An
individual variable cannot be undisplayed.

unset [variable-name]

98
time
top
undisplay
Command

unset Alias file

unset More
unset Order

98

Change the value of the specified boolean environment variable to FALSE, or change
the value of the specified variable toits system default value. If no variables are specified,
display the current values of all the environment variables.

Names of enviroment variables are not case-sensitive, and can be abbreviated as long
as they are unique.

Some examples of the use of unset:

Effect

No file of alias commands is actioned at the start of a subsequent psam
session.

Screen output is not sent through the UNIX filter more .

Resets Order to default, after which FORTRAN-PLUS matrices are
printed by cycling the second dimension fastest, then the first, then the

man003.04 AMT

4.7: Full specification of psam and dapdb commands 99

third, then the fourth, and so on. All other arrays are printed by cycling the
first dimension fastest, then the second, then the third, and so on.

unset Pattern mode Logical and character arrays are printed as 2-dimensional grids.
unset Source path Macro files, Alias_file files and current files are searched for
in the current directory only.
unset Term collection When multi-component variables are displayed, termsin all dimensions are
collected.
unset Window_width When variables are displayed, uses a maximum text width of 80 characters.
up Move up the stack by one procedure, if possible.

It the current procedure is already at the top of the stack, or not on the stack, up outputs
an error message, but otherwise has no effect. up changes the current procedure, and
line or instruction, and for FORTRAN-PLUS programs, the current file.

DAP Series: Program Development under UNIX man003.04 g9

100

100 man003.04 AMT

101

Chapter 5

CIF file and library maintenance

5.1 Multi-module CIF files

The FORTRAN-PLUS compiler and the APAL assembler
produce consolidator input format (CIF) files. There is usually
one CIF file produced for each input source file. Each APAL
module or FORTRAN-PLUS subroutine or function in the input
source file produces a separate CIF module, so a CIF file can
contain several CIF modules. A CIF file containing more than
one module is called a multi-module CIF file. A concatenation
of two or more multi-module CIF files is itself a valid
multi-module CIF file.

For simplicity, most of the examples in this chapter assume
that the CIF files only contain one module, so the phrase
‘module a. dc’ should really be ‘the single module in the CIF
file a.dc’. Such a CIF file is just a special case of a
multi-module CIF file.

consolidator links individual and The consolidator will link both individual CIF modules and

multi module files multi-module CIF files. However in the latter case, the entire
contents of the file (which might contain many CIF modules)
is linked into the DAP object format (DOF) file even if some
modules are not required.

For example, if the multi-module CIF file all.dc is a
concatenation of individual CIF files a.de, b.dc and ¢.dc
then the command:

dapf x.dc all.dc

will link the CIF file x.de with a. de,b.dc and c. de. If only
b.dc was actually needed then the resulting DOF file will be
unnecessarily large and will not be identical to the file
generated by:

dapf =x.dc b.dc

The solution to this inefficient use of DAP memory is to hold
CIF modules in a CIF library, and only to link those modules
that are needed for a particular program. daplib, the CIF
library maintenance utility, is used to build and maintain CIF
libraries, with the help of index tables it maintains of all the
modules in each library.

DAP Series: Program Development under UNIX man003.04 101

102

5.2

5.2.1

102

The daplib command

Caution

Creating a CIF library

Chapter 5: CIF file and library maintenance

Hence CIF library files can be used to hold suites of
subroutines, without generating redundant code in DOF files.

CIF library maintenance is carried out by the program
daplib, which you can use to create libraries, add or remove
modules and synonyms, and list the contents of libraries. If
you want to use the CIF modules on any other than a DAP 500
series machine, you,need to set the environment variable
DAPSIZE to the edge-size of the DAP your programis to run
on. Note that the variable is DAPSIZE not dapsize.

For example:

setenv DAPSIZE 64

will cause daplib to produce a DAP 600 CIF library file. You
cannot put CIF modules for different size DAPs in the same
CIF library file.

The command:

setenv
will print the current environment variables.
The command:

unsetenv DAPSIZE

will clear the DAPSIZE variable, leaving the default value of
32in place.

If you are using multiple windows on your host, DAPSI ZE will
only affect the windows in which it has been set; for other
windows the default value will apply.

You can input to daplib individual CIF module files,
multi-module CIF files or CIF library files. By default a new CIF
library file is created with name daplib.dl (.dl being the
standard extension for CIF libraries). You can send output to
a different file by using the -o flag.

For example, you could create a CIF library file dapobj.dl
to hold the 2 modules generated from the simple DAP program
used in chapter 4:

daplib -o dapobj.dl esdap.dc fadd3.dc

that is, dapobj.dl would contain the 2 CIF modules
esdap.dc, and fadd3.dec.

You can add further CIF modules to an existing CIF library by
specifying the library as one of the input parameters.

man003.04 AMT

5.2: The daplib command

5.2.2 Including and excluding CIF
modules

-m to include

- £ to exclude

For Expression

example: .
’ [aeiou] *s’

'*r e[a-f]7?’

DAP Series: Program Development under UNIX

103

Hence:

daplib -o dapobj.dl dapobj.dl
ftimes2.dc

wouldadd £times2 . dc tothe modulesin the existing library
dapobj.dl. Note that if you omit dapob3j . d1 as one of the
input parameters, the existing library would be overwritten.

That is:
daplib -o dapobj.dl ftimes2.dc

would result in the library dapob3j.dl1 containing only the
module ftimes2 . dc. Note also that if you specify an output
filename that does not end with . d1 daplib will create a file
with .d1 added to the end.

When you use the daplib command, not all the modules in
an input multi-module CIF file or library need be included in
the output library.

You can use the -m flag to include only those modules you
specify —and you can use the - £ flag to specify input modules
you want to exclude from the output library. You can specify
input modules explicitly, or you can use wild cards and regular
expressions in the module specification for -m and -£, and
you can refer to a selected module by any of its synonyms.

You can use any of the following wild card characters and
regular expressions:

s The wild card * matches zero or more characters.
» The wild card ? matches any single character.

= The regular exprerssion [string] matches any single
character in string. For example, [abc123] matches a,
b, c 1 203

» The regular expression [cs-c2] matches any single
character in the range specified. For example, [p-s]
matches p, q, r or s, and [2-4] matches 2, 3 or 4.

If you use a wild card to specify a range within a regular
expression, daplib will issue a warning, and will not match
any synonyms. If you use a wild card as one of a string of
characters within a regular expression, the wild card is
ignored.

Match No match
AMTS5PROGS DAPSCREENS
EMPTYSETS INITDAP
FREDA FRED
BTREE1 NREVN

As with all dap1ib options, the module matching is applied
to each input file or library in turn.

man003.04 103

104

Chapter 5: CIF file and library maintenance

You can match modules against more than one expression in
a single daplib command by repeated use of the -m flag.
In this case all the modules matched by each expression are
candidates for inclusion in the output library.

For example:

[hosté daplib -m ’ [a-c]?2??' -m

' *graphics’ fred.dc bill.dl

using -£

matches those modules in fred.dc and bill.dl which
have a synonym which either starts with A, B or C and has 5
characters in all, or ends with the string GRAPHICS. Note the
use of quotes surrounding wild card expressions, to prevent
the UNIX shell trying to match them with filenames. The
selected modules are included in the default output library
daplib.dl.

You can use the -£ flag in a similar way, to exclude input
modules from the output file. Hence:

[host daplib -f ’red*.dc’ oldcif.dl -0 newcif.dl bluewing.dc

5.2.3 Synonyms

in FORTRAN-PLUS

in APAL

104

will create an output libray newcif.dl, which will include
module bluewing.dc, and all modules from the library
oldcif. dl except those wheih have a synonym that starts
with red and ends with .dc.

You can give one or more aliases for the name of a CIF module.
Together the module name and its associated aliases formthe
synonyms of the module. To add a synonym to a module, you
use the -D flag to daplib. For example,

daplib -o dapobj.dl dapobj.dl
~D maths=add3

would add the synonym maths for the CIF module add3 in
the CIF library dapobj.dl.

In fact, FORTRAN-PLUS users will not normally need to use
synonyms in a CIF library. This is because each
FORTRAN-PLUS subroutine or function is converted to a
single CIF module having the same name as the subroutine
or function.

An APAL module often has several aliases associated with it.
These aliases normally have the same names as the entry
points into the module. If the name of an entry point is not also
a synoynm of a module in the CIF library, the consolidator will
not be able to find the module. So, by adding synonyms to
APAL modules held in CIF library format, you can make the
different entry points in the module accessible to other APAL
code section.

You can remove syonyms by using the -x flag, and you can
use the same wild card and regular expressions that you can
use with -m and ~£ - for more details see section 5.2.2 on

man003.04 AMT

5.2: The daplib command

5.2.4 Listing CIF library contents

DAP Series: Program Development under UNIX

106

page 103. The synonym(s) given after the flag, or that match
the given expression, do not appear in the output library - if a
synonym is the only synonym of a particular module, then that
module is deleted from the library — and you are given a
warning message on the host screen.

Synonyms have to be unique within a CIF library. If daplib
encounters a duplicated synonym it will normally treat it as an
error and not produce an output file. You can use the -k flag
to force daplib to remove any synonyms from a module you
want to add to a library, if that synonym already exists in the
library. Once again, you can use the same wild cards and
regular expressions that -m and ~£ can use to specify the
synonyms to be removed. If a synonym is the only one a
particular module has, then the module is not included in the
output file - and you see a warning message on your host
screen.

The -L flag requests daplib to display synonyms and
module names of either the input files or the output library, or
both. The parameter after the L flag has to be an integer in
the range 1 to 3, specifying the listing required. The effect of
the different values is that:

» 1 Lists the output library only.
» 2 Lists the input files only.
» 3 Lists the input files and output library.

An example of a level 3 listing and the command that
generated it is shown on the next page.

man003.04 105

106 Chapter 5: CIF file and library maintenance

/" host% daplib -o dapobj.dl esdap.dc fadd3.dc -D maths=add3 -L 3 ™\
DAP Library Utility 4.0S (c) Copyright AMT 1987 Fri Nov 16 15:54:52 1990
Maintaining libraries for DAP 500 series

** INPUT FILES **
Synonym
Module L v Creation date
CIF File: esdap.dc
ENTDAP
ENTDAP F 4.08 Fri Nov 16 15:43:00 1990
CIF File: fadd3.dc
ADD3
ADD3 F 4.05 Fri Nov 16 15:43:00 1990
** OUTPUT LIBRARY **
Synonym
Module L v Creation date
ADD3
ADD3 F 4.05 Fri Nov 16 15:43:00 1930
ENTDAP
ENTDAP F 4.0 Fri Nov 16 15:43:00 1990
MATHS
ADD3 F 4.08 Fri Nov 16 15:43:00 1990
\\7CIF library created : dapobj.dl 4}

Every synonym in the multi-module file or library being listed
is given together with the name of the corresponding module,
the source language (F for FORTRAN-PLUS, A for APAL), the
version number of the compiler or assembler which created it
and the creation date and time. These listings are sent to the
standard output stream - usually your host screen. If there are
any diagnostics (comments, warnings or errors), then
explanatory messages are included. A one line summary of
all diagnostics is also sent to the standard error stream —again
usually the host screen.

The -y flag suppresses the generation of the output library;
you can use it in conjunction with the ~L flag if you want to list
the contents of a library, but not to change it. For example:

daplib -y -L2 dapobj.dl

would list the synonyms and modules of dapob3j . d1 without
changing it.

106 man003.04 AMT

5.3: daplib flags

5.25

5.3

107

Interaction of daplib’s -m, You can use any or all of the -m, ~£, =D and ~£ flags any
-£, -d and -x options number of times. Regardless of the position of the options on

your command line, the -m, - £, ~D and -x options are always
applied in the order:

-m -f -D -x

Some modules you have selected using the -m flag might not
be included in the output library, since they might be filtered
out later by the - £ option. Again some modules might lose all
their synonyms after the -x option is applied - although
daplib will warn you that those 'no-synonym’ modules have
not been included in the output library.

daplib flags

This section contains a summary of all the daplib flags.

-D syr=name Define an additional synonym syn for an existing module with the synonym name .

-£ syn-exp

-m Syn-exp

-0 name

-X Ssyn-exp

Y

Filter out from the input files any module with a synonym matching syn-exp, and do not
place itin the output library. The filter is applied to each input file in turn.

syn-exp can include one or more specific synonym names, and can include a
combination of wild cards and regular expressions — for details, see section 5.2.2 on
page 103.

Kill (remove) any second or subsequent occurrences of any synonyms in the input files.
If a removed synoymis the only synonym of an input module, that module is not included
in the output library, and a warning message is sent to standard output.

Generate a daplib listing of the level specified by n. Valid values of n and the effects
they have are:

1 Lists the output library only.

2 Lists each input file only.

3 Lists both input files and the output library.
Only copy a module from an input file to the output library if the module has a synonym
matching syn-exp.

syn-exp can include one or more specific synonym names, and can include a
combination of wild cards and regular expressions - for details, see section 5.2.2 on
page 103.

Generate an output library called name . d1 instead of the default name daplib.dl.
If name ends with . d1, do not add a further .d1 .

Delete any synonym matching syn-exp from the output library. If syn-exp matches the
only synonym of an input module, that module is not included in the output library, and
a warning message is sent to standard output.

syn-exp can include one or more specific synonym names, and can include a
combination of wild cards and regular expressions - for details, see section 5.2.2 on
page 103.

Inhibit the production of an output library.

DAP Series: Program Development under UNIX man003.04 107

108

5.4 Linking with CIF libraries

The main advantage of using CIF libraries instead of
multi-module CIF files is that the consolidator will extract only
the modules actually required from a library. To do this the
consolidator scans the library index to locate missing external
references. The order in which the libraries and other CIF files
are specified is significant as the consolidator uses a rigid
search algorithm when looking for unsatisfied external
references (UERs).

UERs The consolidator maintains a list of UERs and tries to resolve
them when each new input file is read, in the following way:

m |f the file is a (multi-module) CIF file, all procedures in it
are available to resolve references (since all modules in
the file are linked in)

® |f the file is a CIF library any module in it which satisfies
a UER is linked in

Obviously either of the above can introduce new UERS and in
this case the current input file is rescanned in an attempt to
resolve them. This process is repeated until no new UERs are
introduced. The next input file is then read, and the process
repeated.

For example, suppose dapfort.de references a module
¢ .dcwhichinturnreferences a module £. de, which are both
in the CIF library daplib.dl. Thatis:

Hence, during the search process:

daplib.dl
the consolidator starts at the beginning of the index of daplib. d1 and steps a.dc
throughtill it finds module ¢ .de. ¢.dcreferences £ . de, sothe consolidator b.dc
restarts at the beginning of daplib.dl’s index and steps through again c.dc
looking for £. de, and so on. d.dc

e.dc

f.de

The consolidator loops round and round in this way trying to
satisfy all the UERs. When the CIF library file has been
searched for each UER the consolidator moves on.

Once the consolidator has finished scanning a CIF library it
will not return to it. This makes the file order very important.
For example, if you want to compile and link two files
dapfortl.df and dapfort2.df, each of which
references a CIF modules such that:

108 man003.04 AMT

5.4: Linking with CIF libraries 109

dapfortl.df - - - - > b.dc
dapfort2.df - - - -~ > ¢.dc
and the modules b.de and ¢.dc are contained in two CIF
libraries:
daplibl.dl daplib2.dl

which contain modules:

b.dc c.dc

then the command:
dapf dapfortl.df daplib2.dl dapfort2.df daplibl.dl
results in a DOF file d. out, which contains modules:

dapfortl.dc
dapfort2.dc
b.de

Module ¢. de is missing from the DOF file d. out.

An analysis of the actions of the consolidator shows why. The
consolidator:

» Links dapfortl.dc, having one UER, to module
b.dc.

® Searches file daplib2.d1 trying to satisfy the UER to
module b.dec. Having failed to find b.de the
consolidator moves to file dapfort2.dc .

» Linksdapfort2.dc, andnowhastwoUERsb.dc and
c.de.

» Searches file daplibl.d1 trying to satisfy both UERs.

®» Finds module b. dc and links it, fails to find ¢ . de and
ends.

This shows that the action of the consoalidator is an one-way
process; once it has exhaustively searched a CIF library and
moved on, it does not re-open the same CIF library again.
However, the consolidator does try to satisfy any UERs
generated by earlier CIF files, at each stage of the process.

If the above example was replaced by:
dapf dapfortl.df daplibl.dl dapfort2.df daplib2.dl
then bothb.de and ¢. de would be found.
Alternatively:
dapf dapfortl.df dapfort2.df daplibl.dl daplib2.dl

would also be successful.

DAP Series: Program Development under UNIX man003.04 109

110 Chapter 5: CIF file and library maintenance

Note that a CIF library should never be the first filename in a
dapa or dapf command, because at that stage the
consolidator has no external references to satisfy. It is
important that CIF libraries are named in the correct order,
particularly if there are several versions of the same module
in different libraries and a specific version is required.

110 man003.04 AMT

Chapter 6

111

APAL assembly system

The process of generating a DAP object format (DOF) file,
which can be loaded and run on the DAP, from one or more
APAL source files is carried out by the APAL assembly system.

6.1 Producing APAL programs for various DAP models

The APAL assembly system can produce object code for
DAP 500 or 600 series machines, with or without
co-processors. Two environment variables, DAPSIZE and
DAPCP8, let you specify what DAP model you want to
generate object code for. You set environment variables using
the command setenv, and delete them using unsetenv.
For example:

(setenv FRED xyz

)

sets the value of the environment variable FRED to xyz, and:

[unsetenv FRED

deletes FRED from the environment. setenwv on its own:

(setenv

lists all the current environment variables, and their values.

DAP SIZE lets you specify whether you want to generate code
for a DAP 500 or DAP 600 machine, and takes the value 32
or 64 (the DAP edge size).

DAPCPS, if it has the value yes, specifies that you want code
for a DAP with co-processors.

So the commands:

setenv DAPSIZE 64
setenv DAPCP8 yes

DAP Series: Program Development under UNIX

tell the APAL assembly system that you want to generate code
for a DAP 600C series machine.

If neither DAPSIZE or DAPCP8 are set to a recognised value
- or you have not given them a value —then the default action
is to generate code for a DAP 500 without co-processor.

man003.04 111

112 Chapter 6: APAL assembly system

APAL source code files

dapa

APAL
source pre-processor

#include files

pre-processed source code files

assembler
user CIF files
user CIF files —— consolidator }———— system CIF files
(linker)
DOF fite
DAP program

Figure 6.1 APAL assembly system

112 man003.04 AMT

6.2: Components of the APAL assembly system

113

You cannot mix code for different DAP edge sizes in the same
DAP program. However, you can mix code for DAPs with and
without co-processor, but the resultant DAP program will only
run on a DAP with co-processors, and the code compiled for
a DAP without co-processors will not use the co-processors.

6.2 Components of the APAL assembly system

6.3 APAL preprocessor

6.3.1 Tab characters

DAP Series: Program Development under UNIX

The APAL assembly process can be divided into 3 phases:

s Preprocessing
® Assembling
» Consolidating (linking)

The structure of the system is shown in figure 6.1 opposite.
The command dapa controls all 3 phases and in the simplest
case a single APAL source file is preprocessed, assembled
and linked to form an executable DOF file. For example the
command:

dapa testprog.da

assembles the APAL source file and generates a DOF file with
default name d. out.

The preprocessor phase expands tab characters, caters for
any included files in the APAL source files and lets source lines
be selected or ignored depending on the edge-size of the
target DAP. The assembly phase generates output files in
consolidator input format (CIF files), one CIF file for each input
file. The CIF files are then passed to the consolidator, and
linked together to form a DOF file. Options in the APAL
assembly system are controlled by flags to the dapa
command, as described in later sections,

The APAL preprocessor takes the source files you input, and
produces one continuous stream of output, which is passed
to the assembler. It interprets directives in the source files,
modifies tab characters and lets the assembler report errors
by filename and line number. A directive always has a # in
column one, and can be one of the following:

. #ing:lude
x #iforfendif

APAL source files can contain tab characters. Each tab
character is replaced by the necessary number of spaces to
make sure that the next character after the tab occurs in a
column whose number is a multiple of 8, the first column being
numbered 0. The expanded source code lines should not be
longer than 80 characters; if it is an asembler error occurs,
and you'll get a ‘Line too long' message.

man003.04 113

114

6.3.2

6.3.3

6.3.4

6.4
6.4.1

114

#include directive

#if and #endif directives

Preprocessor errors

APAL assembler

Assembler input and output

suppressing the linking phase

Chapter 6: APAL assembly system

The APAL preprocessor can handle source files containing
one or more included files. The rules governing the use of the
#include directive are the same as those for
FORTRAN-PLUS (see section 2.3.2 page 10).

You can select or ignore lines from the source code files by
using the pair of directives #if and #endif. The form and
working of the #i £ and #endi £ directives is the same as in
the FORTRAN-PLUS preprocessor (see section 2.3.3, on
page 14).

The APAL preprocessor, dapapp, outputs diagnostic
messages on the standard error stream. The error messages
are self-explanatory.

The APAL assembler is called automatically after the
preprocessing phase, and generates output in consolidator
input format. By default one CIF file is created for each input
source file. The output file has the same name as the input file
but with the file extension . dc instead of . da. You can have
all the CIF files combined into a single file by using the -5 fiag.
For example:

dapa =~j cif a.da b.da

would combine the CIF output normally placed in a.dc and
b.dcintoonefile cif. dc. The DOF file created by the above
command will have the default name d.out, but you can
change the name using the -o flag. Hence:

dapa =-o dof a.da

would create the CIF file a . de and link it to produce the DOF
file dof.

You can suppress the linking phase by specifying the ~c flag.
In this case the CIF files are produced but no DOF file is
generated. You can link the CIF files to form a DOF file at a
later time by using another flag to dapa, specifying the CIF
files themselves as input. This means that if the APAL source
is in several files, only those which have changed need to be
reassembled. For example, if a program consists of two APAL
source files,a.da andb.da, and if a. dc has been created
earlier, then the command:

dapa b.da a.dc

would assemble b.da (to generate b.de) and then link
a.dcandb.dc to produce d.out.

In fact, you don't need to specify any APAL source files when
using dapa. If all input files are CIF files, then the assembler

man003.04 AMT

6.4: APAL assembler

6.4.2 Assembler listing and
messages

6.4.2.1 Source listings

parts of each line in the listing

sequence numbers

line type

line number

DAP Series: Program Development under UNIX

115

is not invoked and the consolidator is entered immediately to
link all the CIF files into a DOF file. For example:

dapa a.dc b.dc

will simply link the files a. dc and b . dc into the default DOF
file d.out.

By default the APAL assembler will not generate any assembly
listings. However, you can use the -1 flag to produce a brief,
standard, or full source listing, according to its argument:

1 Brief
2 Standard
3 Full

You can also use the -a flag to obtain a cross-reference and
attribute listing, and the ~e flag to obtain an external reference
and section listing. In all cases the listing is sent to standard
output

A source listing contains a line marking the start of each
source file and a line reporting the creation of each CIF file (if
appropriate). At the end of each module is a summary of the
number of original source lines assembled. This number does
not include those for macro expansion lines or lines input via
#include directives.

A standard source listing is given in figure 6.2 on the next
page.

Each line of the source listing occupies up to 112 columns and
is divided into a number of fields, as discussed below:.

s Sequence number - lined up under the word source in
the third line of the listing below.

Each line of APAL source code which is listed by the
assembler is given a sequence number. This sequence
number begins at one for each module and is used for
cross reference purposes.

= Line type — none shown in the listing below, but would
appear lined up under the space between source and
files in the third line.

The line type can take one of three forms depending on
the origin of the source line:

o A line produced as the result of macro expansion has
the characterm .

o Aline produced as the result of a substitution has the
character s .

o All other lines have a space character.

s Line number - lined up under the word £1ile in the third
line of the listing below.

man003.04 115

116 Chapter 6: APAL assembly system

/,7DAP Assembler 4.0S (c) Copyright AMT 1987 Tue Nov 20 14:26:00 1990)
Assembly for DAP 500 series
Source file: "lowlev.da"
1 1 module low_level set_a check_pos
2 2 !
3 3 data priv_data
4 4 Border:
5 5 0000.00 fEfffffff $EEEELESE
6 6 0000.01 80000001 30*#80000001
7 Repeat 29
8 7 0000.1f fEfffffff #ELEEEEES
9 8 end
10 9 !
11 10 code set a dap
12 11 !
13 12 0 27e00000 rapl m7 Border
14 13 1 04170000 as 0 (m7)
15 14 2 £3000000 exit
16 15 3 £0000235 end
17 16 !
18 17 code check _pos dap
19 18 !
20 19 0 £8200000 skip m2.0 t
21 20 1 £3000000 exit
22 21 2 £1000000 jesl abandon
23 22 3 ££000000 null
24 23 4 £0000235 end
25 24 !
26 25 end _module low_level
25 lines assembled
CIF file created: "lowlev.dc"
kf—"lgure 6.2 An example of a standard source listing

J

The line number can be derived in one of two ways,
depending on the origin of the source line:

o Eachsource line read by the assembler is given aline
number, beginning at one for the first record in each
file (irrespective of whether or not the line is
subsequently listed).

The line number can therefore be used for editing
purposes.

o During the expansion of a macro, each line of the
macro body (irrespective of whether or not it is listed)

116 man003.04 AMT

6.4: APAL assembler

address

value

repeated data items

DAP Series: Program Development under UNIX

117

is given a line number, beginning at one for the first
line in the macro.

Such a line number identifies the line relative to the
start of the corresponding macro definition. For
nested macro calls, the line number begins again at
one for each macro and assumes its original value on
exit from each macro.

As there were no macros in the code listed above, all the
line numbers form a single continuous sequence.

Address - lined up under DAP 500 in the second line
of the listing above.

The address is given, relative to the start of the
corresponding data or code section, of each line that
generates binary output (for example, a data declaration
or an APAL instruction). The address can take one of the
forms:

o pppp.ww ~as shown in lines 5, 6 and 7 of the listing
above.

For data values, where pppp s the plane address and
ww is the word address; both values are in
hexadecimal. This form of address only occurs with
source for DAP 500 programs.

o pppp.rrw-no examples in the listing above.

For data values, where pppp is the plane address, rr
is the row address and w is the word address: the
values are in hexadecimal. This form only occurs in
programs for target DAPs of edge-size larger than 32,
such as the DAP 600.

o wwwww — as shown in lines 12 - 15, and 198 - 23 of
the listing above.

For instructions, where wwwww is the word
displacement of the instruction from the start of the
code section (in hexadecimal).

Value ~ lined up under Series in the second line of the
listing above.

Each line that generates binary output has the value of
the binary printed in hexadecimal.

If a data declaration consists of one of the directives
WORD, ROW, ALIGN or PLANE the value field contains:

p0.8.0.6.0.0.04

It a data declaration specifies more than one data item,
the value of each item is listed on a separate line together
with its address. If a repeated data item is declared, as is
the case on lines 6 and 7 in the listing above, the value is
listed once, and the address and value field of the
following line contains Repeat n, where n+1 is the value
of the repeat count.

man003.04 117

118 Chapter 6: APAL assembly systemn

Had the data items constituted a structured sequence,
and been declared with a repeat count, again only one
instance of the structure would have been listed, and as
before would have been followed by a line withRepeat n
in the address and value field, where n+1 would have
been the value of the repeat count. Additonally, the
sequence would have been preceded by a line
containing:

structured sequence of
repeated data Items

Begin level m
and followed by a line containing:
End level m

where mwould have been an integer denoting the level
of nesting of the structured sequence. These Begin and
End lines would have been indented, so as to reflect the
nesting of the structured sequence.

generating a literal If an APAL instruction generates a literal value (for
example, the instruction r1it where the valueis toolong
to be loaded into the instructionsitself byanrh or rhn
instruction), the generated literal is printed in the value
field on the following line, with a blank address field. The
instruction address, the binary value generated by the

instruction, and so on are given as usual.

source line » Source line - lined up under Copyright AMT ... on
line 1 of the listing above.
The source line as input to the assembler, subject to the
listing level currently in force, and detailed below:
Assembler listing effect
Type of statement
Full Standard Brief
Statement in the Macro definition Listed Listed Listed
main body of the
source code Macro call line Listed before, Listed before and Listed after
during and after after substitutions substitutions
substitutions
APAL source Listed before, Listed before and Listed after
during and after after substitutions substitutions
substitutions
Assembly directive | Listed before, Listed before and Not listed
during and after after substitutions
substitutions
118 man003.04 AMT

6.4: APAL assembler 119

Assembler listing effect
Type of statement
Full Standard Brief
Statement Macro definition Listed Listed Not listed
generated by a
macro call Macro call line Listed before, Not listed ~ | Not listed
during and after
substitutions
APAL source Listed before, Listed after Not listed
during and after substitutions
substitutions
Assembly directive | Listed before, Not listed Not listed
during and after
substitutions

You can also control the listing leve! (brief, standard or full), by
using the APAL LIST statement; see [3], the AMT publication
DAP Series: APAL Language. The values NONE, SHORT,
SOURCE and FULL correspond to dapa's default, brief,
standard and full listing levels respectively.

If assembly of the module produced diagnostics, you are also
given:

® A record of the number of comments, warnings and
errors.

= A list of the line numbers which generate diagnostics.
This list uses the listing sequence numbers described
above.

The name of the file containing the offending line(s) is
displayed before the line(s) concerned. The rough place of an
error in the line is shown by a * character. Whenever
diagnostic messages are generated, a one line summary of
the number of comments, warnings and errors is sent to the
standard error stream. You can suppress the reporting of
comments by specifying the -qflag to dapa.

6.4.2.2 Cross reference and attribute A cross reference listing consists of information on each name
listing declared or referenced in a module.

There are separate alphabetical lists for assembly-time
variable names, macro names, and any other names. The
names of macros declared outside the module are listed only
if the name is referenced within the module. Macro variable
names do not appear in the cross reference listing.

Figure 6.3 at the top of the next page gives an example of a
cross reference and attribute listing.

DAP Series: Program Development under UNIX man003.04 119

120 Chapter 6: APAL assembly system

\
DAP Assembler 4.0S {(c) Copyright AMT 1987 Tue Nov 20 14:26:17 1990
Assembly for DAP 500 series
25 lines assembled
** Cross-reference listing **
Line Name Type
*%%k k% ABANDON Code Section
21
4 BORDER Data Label
12
17 CHECKPOS Code Section
Unused
**% %% CHECKPOS Alias
Unused
1 LOWLEVEL Module Name
Unused
3 PRIVDATA Data Section
Unused
10 SETA Code Section
Unused
*k%kk SETA Alias
Unused
_ Figure 6.3 An example of a cross reference and attribute listing Y,

Each line of a cross reference listing has the fields:

8 The line number of the line in which the name is declared.
If a name is an alias or is not declared within the module,
this field is asterisk filled. The field is unused for macro
names.

Notice in figure 6.3 that the names for the two code
sections appear twice — once as aliases for the module
name (in line 1 of the code), and once when they are
declared.

s The name of the item.
» The type of the name, which can be any of:

Data section
Code section
Data label
Code label
Identity
Module name
Alias

Entry

Macro name
ATV

120 man003.04 AMT

6.4: APAL assembler 121

= A list of line numbers of the lines in which the name is
referenced, excluding the declaring reference.

If you ask for a source listing as well as a cross reference and
attribute listing, the module summary lines (just the one line -
25 lines assembled - in the example listing opposite)
that are included in the source listing are not included in the
cross reference and attribute listing. In addition, lines are
referred to by their sequence numbers, rather than their line
numbers. Any generated lines will make the line and sequence
numbers differ; in the cross reference and attribute listing
without a source listing, if any generated line is referred to, the
line number of the last input source line is used.

6.4.2.3 External reference and An external reference and section listing is an alphabetical list
section listing of all the sections in a module, with their sizes and attributes,
followed by an alphabetical list of all the references in the

module assumed to be external.

Figure 6.4 below gives a example of an external reference and
section listing.

4 DAP Assembler 4.0S (c) Copyright AMT 1987 Tue Nov 20 14:26:31 1990)

Assembly for DAP 500 series

25 lines assembled

** Section list **

Name Properties

ABANDON Code External

CHECKPOS Code Size: 5 words DAP
PRIVDATA Data Size: 32 rows Private
SETA Code Size: 4 words DAP

** External referencesg **

ABANDON

g Figure 6.4 An example of an external reference and section listing

J

If you ask for a source listing as well as a cross reference and
attribute listing, the module summary lines (just the one line -
25 lines assembled - in the example listing opposite)
that are included in the source listing are not included in the
cross reference and attribute listing. In addition, lines are
referred to by their sequence numbers, rather than their line

DAP Series: Program Development under UNIX man003.04 121

122

6.4.2.4 Assembly diagnostics

6.4.2.5 Defining assembly-time
variables

6.4.2.6 Profiling APAL programs

122

Chapter 6: APAL assembly system

numbers. Any generated lines will make the line and sequence
numbers differ; in the cross reference and attribute listing
without a source listing, if any generated line is referred to, the
line number of the last input source line is used.

Assembler diagnostic messages are classified according to
their severity ievel.

There are four severity levels:

1 Comment

2 Warning

3 Eror

4 Terminal error

These error messages are similar in meaning to those
specified for the FORTRAN-PLUS compiler; see
section 2.4.2.5 on page 19. The assembler error messages
are self explanatory.

The -V flag to dapa lets you define and initialise
assembly-time variables for use in the APAL source. The form
of the flag is:

-V varname=var-value

You can have up to 10 -V flags in each invocation of dapa.

Having such flags is equivalent to having at the start of each
APAL source file the statement:

VAR var-name=var-value

For details of how to use assembly time variables, see
chapter 11 of the APAL manual.

When an APAL program is executing, profiling information is
generated, provided that you assembled the APAL source
using the ~p flag to dapa, and that you #included the AMT
system macros in file amtmacs . da in every APAL module.

Most APAL programs make use of the AMT system macros,
which used to be held in file usrmacs.da. usrmacs.da
is still available, but AMT has upgraded the macros and put
them in amtmacs. da, and it is these upgraded macros that
are needed when profiling information is generated.

If you don't already use the sytem macros in your APAL code,
then profiling information will be generated for every module
that has at its start the statement:

#include amtmacs.da

You will also need to adopt the entry and exit conventions
described in [3], DAP Series: APAL Language.

man003.04 AMT

6.5: Mixing FORTRAN-PLUS and APAL routines 123

If you already have #include usrmacs.da inyour code,
all you need to do is to change the usermacs.da to
amtmacs.da.

Profiling information is also generated for FORTRAN-PLUS
program, provided you use the -p flag to dap £ when you are
compiling them. Mixed programs (see section 6.5 below) will
generate profiling information, provided the different sections
were assembled or compiled as described above.

The profiling information is stored in file dmon . out in your
current directory when the program is run. You can use the
utility dapprof£ to analyse the file; dapprof is described in
section 3.5 on page 54. When you don't need the profiling
information anymore, you should re-assemble or re-compile
without the -p flag.

6.4.3 Assembly of APAL trace All APAL trace statements have an associated level number
statements which you can use to control their execution at run-time (see
section 3.4.1 on page 44). The level number is also used to
control the conditional assembly of the trace statements.
The -t flag specifies the maximum level number of trace
statements which are to be assembled. -t can take any value
fromOto 15, 15 meaning all t race statements are assembled
and zero meaning no trace statements are assembled.

For example:

dapa -t2 a.da

will assemble all trace statements at levels 1 and 2. The
default value for the -t flag is zero.

6.5 Mixing FORTRAN-PLUS and APAL routines

You might sometimes want to create a DAP program which is
a mixture of both FORTRAN-PLUS and APAL routines. To do
this is straightforward because the format of the consolidator
input files is independent of the source language, and the
linking phase of dap£ is identical to that of dapa. Therefore
CIF files created by dap£ can be used as input to dapa and
vice versa.

As an example consider a program consisting of the
FORTRAN-PLUS file £.df and the APAL file a.da. To
assemble and link these together the following commands
could be used:

dapf -c £.df
dapa f.dc a.da

Alternatively, the commands:

dapa -c a.da
dapf a.dc ¥f.df

DAP Series: Program Development under UNIX man003.04 123

124

6.6

6.7

124

Chapter 6: APAL assembly system

could be used. Note the use of the -¢ flag in the first command
to suppress the linking phase after the generation of the CIF
files.

For details of the requirements for an APAL code section that
is to communicate with a FORTRAN-PLUS procedure, see
chapter 9 of [3], DAP Series: APAL Language.

The dapa command invokes the APAL consolidator (linker)
as the last phase of the assembly process. In fact there is no
difference between the APAL consolidator and the
FORTRAN-PLUS consolidator, and so you can refer to
section 2.5 on page 24 on the FORTRAN-PLUS consolidator
for details of linking in CIF library files, consolidator maps,
messages and diagnostics, and for examples.

This section contains a summary of all the flags available with
dapa. dapa flags and filenames can appear in any order, but
the consolidator searches files and CIF libraries in the
sequence specified and this can be significant (see
section 5.4 on page 108).

Generate a cross reference and attribute listing.

Generate an external reference and section listing.

Modify search paths for #include files. This option instructs the preprocessor to add
dirname to the search path for #include files whose names do not begin witha / .

Join all CIF into one file called name. dc .

Pass the CIF library associated with the package name to the consolidator.

Generate a source listing to the level specified by n. Valid values for n are:

Generate a consolidator map to the level specified by n. Valid values for n are:

Generate a DOF file called filename instead of the default name d. out .

APAL linking
dapa flags
-a
-c Do not link.
-e
-1 dirname
-3 name
-1 name
-Ln
1 brief listing
2 standard listing
3 full listing
-mn
1 brief map
2 standard map
3 full map
-o filename
-P

Generate profiling information for every module for which amtmacs.da is

#included.

man003.04 AMT

6.7: dapa flags

125

Suppress assembler comment messages.
Set DOF stack record to n planes.
Set DOF stack record to n planes plus the consolidator estimate.

Assemble source trace statements which have a level less than or equal to n. Valid
values for nare 0 to 15 inclusive. The default value is 0.

-V var-name=var-value

Y

Define the assembly-time variable var-name with value var-value

Inhibit the production of CIF files. The consolidator is not run. This option is in effect a
syntax checker.

Other flags are ignored and a warning message is produced.
If conflicting options are specified (such as ~L2 =-L3), the
last one is used and the previous ones ignored.

DAP Series: Program Development under UNIX man003.04 125

126

126 man003.04 AMT

127

Chapter 7

Controlling multi-programming on the DAP

7.1 Introduction

All models of the DAP are capable of running up to 29 user
programs at the same time. The actual number loaded at any
one time depends on each program'’s store requirements.

Programs resident in the DAP are run on a round-robin basis,
with a change in the current process occuring after an
adjustable time period, or when the current process is
suspended for any reason. As far as the DAP is concerned,
each program running in the machine constitutes one
process.

Users need take no action to use this multi-programming
facility, and do not need to know how many other processes
are running on the DAP at the same time as theirs. Currently
there are nointer-process communication facilties on the DAP.
However, facilities exist on the DAP to let people with suitable
host system privileges control the flow of work in the machine.
This chapter describes those faciltiies.

7.1.1 Definition of terms The following terms are used in this chapter:
DAP Process ID = A DAP programis ailocated a DAP Process 1D when you
try to load it.

The owner of a DAP process is that user whose user id
was effective when DAPCON was called in the associated
host program.

slot time ®= The slot time, a measure of the maximum time for which
a particular DAP program can run without system
interruption when it is the active process, is set by the
product of the 3 factors:

timeslice a The current value of timeslice, the same for all DAP
processes running in the machine at a given time. It
is the ‘unit’ of processing time or milltime that is
allocated to user processes —the larger the value, the
greater the slot time for each process.

priority o The process priorily, the priority given to a particular
process; the higher the value of priority, the higher the
priority of the process. You can vary each process's
priority and hence its slot time, and so allocate to

DAP Series: Program Development under UNIX man003.04 127

128

7.2

7.3

128

Controlling DAP programs

Monitoring usage

Chapter 7: Controlling multi-programming on the DAP

different processes a different proportion of the DAP
time available.

o A factor dependent on the version of DAP software in
use.

Since up to 29 programs can be resident in the DAP at any
one time, you might want some way of controlling the running
of DAP processes remotely. For example, you might want to
suspend all but one process temporarily in order to run a
demonstration.

To satisfy such requirements, two files are supplied with the
DAP basic software. One file contains:

u A library of compiled low-level subroutines which pass
process control messages to and from the DAP. You are
able to link your own command line interpreter to this
library, as a front-end tailored to your requirements.

The other file contains:

= A fully compiled program which has a very simple
example interpreter built onto the library, giving you a
guide to what is required from an interpreter.

Arecord is kept in a file on the host of all programs submitted
to the DAP, along with details of their execution times. This file,
/usr/adm/dapsyslog, is opened and written to by the
dapboot process, and entries are made in it each time a
program is unioaded from the DAP.

The following information is recorded in the file:

» The user name

® The DAP program name

u The time the system loaded the program

= The time the system unloaded the program
= The total DAP milltime used by the program

= The priority that was current when the program was
unloaded

Inaddition, entries are also made in the file whenever the value
of timeslice is changed.

Allusers have read access tothis file and each time dapboot
isinvoked it opens the file in append mode. If you are a system
manager, you may find it useful to reduce the size of the file
periodically by editing out some of the earlier entries, to save
disk space.

man003.04 AMT

7.3: Monitoring usage

7.3.1 Facilities available

7.3.2 Specification of the routines

DAP Series: Program Development under UNIX

129

The low-level library supplied with the DAP basic software
provides the system manager and users with routines to:

s Suspend a DAP process.
m Restart a DAP process.

= Print information about one particular DAP process, or
about all DAP processes.

= Kill a DAP process.
m Set the priority of a DAP process.
m Set the value of the system timeslice.

The routines use a reserved channel to communicate with the
DAP, sothere is no danger of their being unable to gain access
to the DAP, even when the DAP is being heavily used. You
access these routines via a suitable interface that you can
tailor to your own requirements; dapoip is a program which
includes a simple example of an AMT-written interface, and is
described in section 7.3.3 on page 131.

Any number of interface programs using these routines can
be running at the same time, but an error will be reported if the
dapboot process is not already running when a routine is
called.

The low-level routines provided for you to control your
multi-programming environment are held in the file
/usr/lib/dap/dapcontrol.o.

The specifications of the routines are:

® void priority(proc-id, prior)
short proc-id, prior;

The priority of process proc-idis set to prior, providing the
current effective user (as defined by normal UNIX
practice) is either the owner of proc-id, or is root .

s void timeslice/(Is)
int ts;

If ts = 0, then the current value of the timeslice is sent to
your standard output channel (usually the host screen);
otherwise the timeslice is setto Is .

= void list (proc-id)
short proc-id;

If proc-id = O, then information on all DAP processes is
sent to standard output, otherwise information on process
proc-idis sent. The current value of the system timeslice
is also sent.

man003.04 129

130

130

DAPID -
HPID -
Dev -

Status -

Pri'ty -
Milltime -

S_state -

Username -

Dofname -

Chapter 7: Controlling muiti-programming on the DAP

The information is given under the following headings:

The DAP process ID

The associated host process ID

The minor device number the process has open
Oneof :

Idle

Queued

Loading

Sus’d (for suspended)
Running

Unloading

Unloaded

The priority of the process

The total DAP milltime used by the process, in
milliseconds

If the process is suspended (or if it will be as soon as it
is fully loaded), S_state will be some combination of:

- returned to the host program

- paused (or is in some diagnostic mode)

- halted and dumping after a signal

- suspended by root

- suspended by the owner

- awaiting the next timeslice

opening a host file

- seeking within a host file

- establishing current position within a host file
- transferring data to or from a host file

- closing a host file

- using the fast input and output channel (1/0)
— using the VME

Only when nothing is set in this S_state field is a
program actually executing

<HHAadF S0y
|

The owner of the process

The name of the DOF file containing the DAP program

s void dapkill (proc-id)
short proc-id;

If the current effective user either is the owner of DAP
process proc-id, or is root, then that process and its
associated host program are killed.

man003.04 AMT

7.3: Monitoring usage 131

= void suspend (proc-id)
short proc-id;

If the current effective user either is the owner of DAP
process proc-id, or is root, then that process will
become suspended by the owner or by root
respectively.

» void restart (proc-id)
short proc-id;

If the current effective user either is the owner of DAP
process proc-id, or is root, and that process has been
suspended by that user, then the suspension is lifted.

7.3.3 Example interface The command dapoip invokes a simple example interface
built onto the routines described above. Once invoked, it
continually asks for commands by displaying its prompt:

dapoip:

The commands available are:

h Print this help text.
kn Kill process n .
1 [n] List the status of process n, or of all DAP processes if nis absent.
PN m Set priority of process nto m. The command is only valid if it is issued by the owner of
the DAP process n (who can set priority to a value within the range 1-5), or root (who
can set priority within the range 1-10).
Leave dapoip .
ron Resume process n .
s n Suspend process n.
t [n] Set system timeslice to n. If nis 0 or absent, show the current value of timeslice. t can
only be changed by root, who can set it to a value in the range 1-255.
To illustrate the sort of display you might get, the simple
example program used in chapter 4 was run on DAP hardware
(on which two other DAP programs were already running), and
dapoip started. The display produced was:
7~ host% \
dapoip: 1
DAPID HPID Dev Status Pri’ty Milltime S_state Username Dofname
510 26209 3 Sus’d 5 299633 RW dih rippledap
517 26233 2 Queued 5 0 sjh testmat?
518 26291 4 Sus’d 5 0 PW asb dapobj

Timeslice: 10

_ dapoip: J

DAP Series: Program Development under UNIX man003.04 131

132

132 man003.04 AMT

A.1

133

Appendix A

Command specification

dapa

-a
~-C
-e

-I dirname

-j name
-1 name

~Ln

-0 filename

This section contains a summary of all the flags available with
dapa. dapa flags and filenames can appear in any order, but
the consolidator searches files and CIF libraries in the
sequence specified and this might be significant (see
section 5.4 on page 108).

Generate a cross reference and attribute listing.
Do not link.
Generate an external reference and section listing.

Modify search paths for #include files. This option instructs the preprocessor to add
dirname to the search path for #include files whose names do not begin witha / .

Join all CIF into one file called name. dc .
Pass the CIF library associated with the package name to the consolidator.

Generate a source listing to the level specified by n. Valid values for n are:

1 Dbrieflisting
2 standard listing
3 fulllisting

Generate a consolidator map to the level specified by n. Valid values for n are:

1 Briefmap
2 Standard map
3 Fullmap

Generate a DOF file called filename instead of the default name d.. out .
Generate profiling information when the program is run.

Suppress assembler comment messages.

Set DOF stack record to n planes.

Set DOF stack record to n planes plus the consolidator estimate.

Assemble source trace statements which have a level less than or equal to n. Valid
values for n are 0 to 15 inclusive. The default value is O.

DAP Series: Program Development under UNIX man003.04 133

134 Appendix A: Command specification

-V var-name=var-value

Define the assembly-time variable var-name with value var-value

-y Inhibit the production of CIF files. The consolidator is not run. This option is in effect a
syntax checker.

Other flags are ignored and a warning message is produced.
If conflicting options are specified (such as -L2 ~L3), the
last one is used and the previous ones ignored.

134 man003.04 AMT

A.2: daped

A.2 daped

d [section-name]

£ [DOF-file-name |

i [section-name]

135

This section summarises all the daped commands. daped's
main use is to adust the size of the stack for your DAP program,
but it has other uses.

Delete the named inserted data section.

If you don't supply a section-name, daped will prompt you for one.

Inserted data sections are specially marked in DOF files, so you can delete
sections inserted in previous runs of daped .

Select the named new DOF file.

If you don't supply a DOF-file-name, daped will prompt you for one.

If you have made changes to the current file since you last saved it (with a w)
you will see a warning when you issue an £, and your requested DOF file is
not selected. If you then issue another £ before you make any more changes,
the requested DOF file is selected, and any changes you made to the current
file since you last saved it will be lost.

Print a brief help text.

Insert the named new data section.

If you don't supply a section-name, daped will prompt you for one. In either
case you are then prompted for the required size of the section.

Creates a new array store section just before the stack section. There is no
way of initialising the newly-created section of store. One use of such a section
is as a buffer area in MCUCP (the MCU control program) for device drivers.

List the contents of the currently-selected DOF file.

The listing is of the current state of the file, after any editing you have carried
out, and whether or not you have saved the file since changes were made. The
outputis similar to a consolidator map or to that provided by the map command
inpsam .

Leave daped.

If you have made changes to the current file since you last saved it (with a w)
you will see a warning when you issue a q, and you will not exit daped. If you
then issue another q before you make any more changes, you will exit daped
and any changes you made to the current file since you last saved it will be
lost.

DAP Series: Program Development under UNIX man003.04 136

136 Appendix A: Cornmand specification

r Restore the original array store map.

This command restores the current DOF file to the state as originally created
by the consolidator: inserted data sections are removed and the stack
allocation reverts to its original size.

s[n] Adjust the size of the stack section to be nDAP planes. If you omit n, the current
size is displayed, in planes, and you are prompted for the required new size.

w [DOF-file-name] Save the current DOF file to the file DOF-file-name.

If you don’t supply DOF-file-name, then the name of the current file is used.

136 man003.04 AMT

A.3:dapf

A3 dapf

-a

-C

-e
-g

-I dirname

-3j name
-1 name

~Ln

-0 filename

137

This section contains a summary of all the flags available with
dapf. dapf flags and filenames can appear in any order, but
the consolidator searches files and CIF libraries in the
sequence you specify — and the order can be significant (see
section 5.4 on page 108). ‘

Generate a cross reference and attribute listing
Do not link

Generate various levels of diagnostic information that might be used in the event of
run-time errors or by dapdb. Valid values for nare 0 to 2 inclusive; it controls the extent
of available information:

Value of n Effect

0 Subprogram names only are available.

1 As for O, plus line numbers.

2 As for 1, plus names and values of all variables in common areas.

or currently on the stack..
The default value is 2.

Generate an external reference listing
Allow single-stepping (execution of one line of source code) from within psam.

Modify search paths for #include files. This option instructs the preprocessor to add
dirname to the search path for #include files whose names do not begin with / .

Join all CIF files into one file called name. de
Pass the CIF library associated with the software called name to the consolidator.

Generate a source listing of the level specified by n. Valid values for n are:

Value of n Effect
1 Brief listing
2 Full listing

By default, no listing is given.
Generate a consolidator map of the leve! specified by n. Valid values for n are:

Value of n Effect

1 Brief map
2 Standard map
3 Full map

By default, no map is given.

Generate an executable DAP program file called filename instead of the default name
d.out .

DAP Series: Program Development under UNIX man003.04 137

138

P
-q

138

Appendix A: Command specification

Carry out the optimisations specified by n. Valid values for n are:

Value of n Effect
0 No optimisation.
1 MCU registers and co-processor memory are optimised using

simple cacheing.
2 As 1, plus expression analysis, to optimise co-processor usage.

If nis omitted, the highest level of optimisation available in the release of the compiler
being used is selected.

By default, no optimisations are carried out.
Generate profiling information when the program is run.
Suppress compiler comment messages.

Suppress run-time checks in the program according to the value of x. Valid values for x
are:

Value of x Effect

c No checking for the shape of operands in expressions for
conformance.

d No checking whether the value of the do loop increment is zero.

n No checking of real data for normalisation before floating point

operations are carried out.
o No checking for overflow.

No checking if formal and actual parameters to routines conform in
type, data-length, shape and mode.

s No checking if subscripts are in range.

None of the above-mentioned checks are applied - that is, no
run-time checks are applied.

By default, no checks are suppressed.

Checkif formal and actual parameters to routines match in their non-parallel dimensions.
Set DOF stack record to n planes.

Set DOF stack record to n planes plus the consolidator estimate.

Compile source trace statements which have a level less than or equal to n. Valid
values for nare 0 to 5 inclusive. The default value is 0.

Inhibit the production of CIF files. The consolidator is not run. This option is in effect a
syntax checker.

Other flags are ignored and a warning message is produced.
If conflicting options are specified (such as -L1 ~I.2)the last
one is used and the previous ones ignored.

man003.04 AMT

A.4:daplib

A4 daplidb

139

This section contains a summary of all the daplib flags.

=D syn=name Define an additional synonym syn for an existing module with the synonym name .

-£ syn-exp

-m Syn-exp

-0

-X

Y

name

syn-exp

Filter out from the input files any module with a synonym matching syn-exp, and do not
place it in the output library. The filter is applied to each input file in turn.

syn-exp can include one or more specific synonym names, and can include a
combination of wild cards and regular expressions - for details, see section 5.2.2 on
page 103.

Kill (remove) any second or subsequent occurrences of any synonyms in the input files.
If a removed synoym s the only synonym of an input module, that module is not included
in the output library, and a warning message is sent to standard output.

Generate a daplib listing of the level specified by n. Valid values of n and the effects
they have are:

1 Lists the output library only.
2 Lists each input file only.
3 Lists both input files and the output library.

Only copy a module from an input file to the output library if the module has a synonym
matching syn-exp.

syn-exp can include one or more specific synonym names, and can include a
combination of wild cards and regular expressions — for details, see section 5.2.2 on
page 103.

Generate an output library called name . d1 instead of the default name daplib.dl.
If name ends with . d1, do not add a further .d1 .

Delete any synonym matching syn-exp from the output library. If syn-exp matches the
only synonym of an input module, that module is not included in the output library, and
a warning message is sent to standard output.

syn-exp can include one or more specific synonym names, and can include a
combination of wild cards and regular expressions - for details, see section 5.2.2 on
page 103.

Inhibit the production of an output library.

DAP Series: Program Development under UNIX man003.04 139

140

A5

140

-0 name

-q

-S name

Appendix A: Command specification

This section contains a summary of all the dapopt flags.

Ignore assembled APAL TRACE statements of level greater than n, where nis in the
range 0 to 15, and has a default value of 15.

When the DAP program is entered, take the action specified by n:

0 Start execution of the program.
1 Do not start execution of the program, but enter psam directly.

Set the runtime diagnostics level to n, where nis in the range 0 to 2, and has a default
value of 0.

Send diagnostics to file name .
Send diagnostics to the standard error channel.

If a run-time error occurs, take the action specified by x. Valid values of x, and the
resultant action:

a Abort.

c Continue.

p Enterpsam.

dc or cd Dump and continue.

The default is x=p — drop into psam .

Ignore compiled FORTRAN-PLUS TRACE statements of level greater than n, where nis
in the range 0 to 5, and has a default value of 5.

Generate a histogram based on a ‘slice’ of ninstructions required {only affects simulator).
Do not generate a histogram.

Set the histogram lower code address limit to n {in decimal, octal [prefix 0] or
hexadecimal [prefix 0X]) (only affects simulator).

Generate a list of file options and send it to standard output.
Send the output DOF to file name .

Suppress dapopt comments output.

Send statistics to file name (simulator only).

Send statistics to standard output.

Run the DAP program on the DAP simulator.

Run the DAP program on DAP hardware.

man003.04 AMT

-X

Y

141

Generate the specified timing information (simulator only). Valid values for n, and the
information generated:

0 None
1 Standard
2 Full

Set the histogram upper code address limit to n (in decimal, octal [prefix 0] or
hexadecimal [prefix 0X]) (only affects simulator).

Reset all options to default values and ignore previous flags (if any).

Do not generate any DOF output.

DAP Series: Program Development under UNIX manQ003.04 141

142

Appendix A: Command specification

A.6 Summary of psam and dapdb commands

Command psam dapdb
alias Create alternative name(s) for psam or dapdb commands.
array Display the contents of an area of array store.
attributes Display the attributes of a variable.
backtrack Display details of the procedure(s) currently on the stack.
breakpoints Display the current breakpoint settings. No such command.
clear Clear breakpoints. No such command.
code Disassemble and display APAL object | No such command.
code from the current code section.
continue Exit psam and run the DAP program past | No such command.
the specified numer of breakpoints or
PAUSE statements.
core No such command. Change the current dump file to the one
specified.
date Display the current time and date.
disable Disable breakpoint(s). No such command. '
display Display the contents of the specified FORTRAN-PLUS variables on entry to psam .
down Change the current procedure to the procedure which is one lower on the stack.
dump ﬁopy the current DAP state to the dump | No such command.
ile.
echo Display the arguments to this command.
enable Enable the specified breakpoint(s). No such command.
errors Display the positions of the cumulative errors in vectors and matrices of the same shape
as any user-declared error recording masks; also display whether or not there have been
any errors in variables of any shape.
file Change the current file to the one specified.
help Display a summary of the psam and dapdb commands.
history Display the commands used earlier in the current psam or dapdb session.
list Display part or all of the contents of the curent file.
142 manQ03.04 AMT

A.6: Summary of psam and dapdb commands

143

Command psam dapdb
macro Execute psam or dapdb commands from the specified file.
map Display an occupancy map of either of the code or array stores, or both.
masks Display the current FORTRAN-PLUS user-defined error interrupt mask(s).
message Repeat the information displayed on entry to psam or dapdb .
next Step program execution through the | No such command.
specified number of FORTRAN-PLUS
source statements, starting with the next
statement, and treating any procedure
calls as a single statement (cf step).
Print Display the contents of the specified FORTRAN-PLUS variable(s) or component(s) from
variable(s).
procedure Change the current procedure to the one specified.
quit Quit the current psam or dapdb session.
registers Display one or more of the MCU, edge and PE registers, the APAL carry and overflow
flags, and the hardware DO loop iteration number.
save Save the current settings of psam or dapdb environment variables to file . defaults
in the user’s home directory.
select No such command. Change the current DAP state dump to the
one specified {(which must be from the
same dump file).
set Set the specified psam or dapdb environment variable to the given value.
status Display the current breakpoint(s) in | No such command.
command format.
step Step program execution through the | No such command.
specified number of FORTRAN-PLUS
source statements, starting with the next
statement and treating each statement in
a procedure call as one statement (cf
next).
stepi Step program execution to the next APAL | No such command.
instruction.
stop at Set a breakpoint at the start of a | Nosuch command.
FORTRAN-PLUS source statement.

DAP Series: Program Development under UNIX

man003.04 143

144 Appendix A: Command specification

Command psam dapdb

stop in Seta breakpoint onthe first executable line | No such command.
of a FORTRAN-PLUS procedure.

stopi at Set a breakpoint at a given offset in an | No such command.
APAL procedure.
stopi in Set a breakpoint at the start of an APAL | No such command.
procedure.
top Change the current procedure to the procedure at the top of the stack.
time Display total execution time since the start of the DAP program, and execution time

difference since the time command was last issued.

unalias Delete the specified alternate command name(s).

unset Unset the value of (that is, set to default) the specified psam or dapdb environment
variable.

up Change the current procedure to the procedure which is one higher on the stack.

144 man003.04 AMT

145

Appendix B

Messages from the run-time system

All the messages are preceded by:
Run-time Error:
The messages are:
Array store full
Possible cause: The program requires more stack space than is available on the DAP.

Action: Reduce the amount of space needed (for example, use fewer local variables,
use equivalence, use lower precision, and so on), try consolidating with
fewer stack planes (for details, see section 2.5.2.1 on page 25), or use daped
(see section 2.5.2.2 on page 27).

Attempted access outside array store datum or limit

Possible cause: The program requires more stack. You will normally get this message when
you are running an APAL program, but it can sometimes occur with small
FORTRAN-PLUS programs. (An APAL program which attempts addressing
with an MCU register containing an invalid address might also receive this

message).

Action: Request more stack with the -s flag when consolidating (for detalils, see
section 2.5.2.1 on page 25), or use daped (for details, see section 2.5.2.2 on
page 27).

Attempted access outside code store datum or limit
Possible cause: The DOF file is probably corrupt.

Action: Reconsolidate the program.

Cannot open file name

Possible cause: The program does not have the required read or write access to the specified
file.
Action: Check the file access permissions (set appropriate permissions with chmod

n filename).

Code and array store full
Possible cause: The program is too big for the DAP, both in array and code store requirements.

Action: Reduce array store requirements by lowering stack request and make sure
that redundant routines are not consolidated.

DAP Series: Program Development under UNIX man003.04 145

146

146

Appendix B: Messages from the run-time system

Code store full
Possible cause: The code of the DAP program is too large for the available code store.

Action: Reduce the program code size or install more code store; check that redundant
routines are not being consolidated (use -m 3 with dap¥f or dapa) - if so try
using CIF libraries (for more details, see chapter 5, starting on page 101).

Coprocessor store full
Possible cause: The program is too large to fit into the co-processor store.

Action: Reduce the size of your program if possible.

Data section name unrecognised by dapsen or daprec
Possible cause: A non-existent common block name has been passed to dapsen or daprec.

Action: Check the spelling of name.

DOF file does not match edge-size of DAP.
Possible cause: DOF file has been compiled/assembled for the wrong size of DAP,

Action: Set environment variable DAPS I ZE correctly (for more details, see section 2.1
on page 7) and then recompile or re-assemble the DOF file.

DOF file requires DAP with co-processor

Possible cause: You compiled and/or linked your program with DAPCP8 set to yes, but the
DAP you are trying to run your program on does not have co-processors.

Action: Use unsetenv DAPCPS8, then compile and link your program again.

Entry point name unrecognised by dapent

Possible cause: The name passed to dapent is not an entry subroutine name in the DOF file
loaded by dapcon.

Action: Check the correct DOF file is loaded, the spelling of name and the declaration
in the DAP program.

Illegal instruction in DO loop
Possible cause: The DOF file is corrupt.

Action: Relink the program.

Illegal or undefined instruction
Possible cause: The DOF file is corrupt.

Action: Relink the program.

Load failed
Possible cause: This message normally appears after a previous error.

Action: Refer to previous error for further information.

man003.04 AMT

Appendix B: Messages from the run-time system 147

Not a DOF file
Possible cause: The file specified to dapcon does not contain valid DOF.

Action: Relink the DAP program; check the name given to dapcon is correct.

Not connected to any DAP process

Possible cause: Acalltodapent, dapsen or daprec has been made after a call to dapcon

failed.
Action: Check the response from dapcon (for more details, see section 3.4.1 on
page 37).
Htherof:
Privileged instruction in user code or
Using MP in user mode
Possible cause: These errors should not occur.
Action: Contact your AMT representative.

Transfer request too large for data section name when executing
dapsen or daprec

Possible cause: The number of bytes requested in dapsen or daprec is greater than the
space allocated in the common block.

Action: Check the size requested matches the data declarations.

Unable to read from DOF file

Possible cause: dapcon does not have read access to the DOF file.
Action: Change the permissions to include read (to change permissions, use chmod
n filename).

The following messages are preceded by:
Warning:
No free DAP resources
Possible cause: dapcon failed due to the DAP being fully used already.

Action: Check the response from dapcon in the host program and try again.

No dump taken program still loading

Possible cause: The key combination <CONTROL-> was pressed (to get a dump of the DAP
state) when the DAP program was still loading.

Action: Let the loading of the DAP program complete before you press <CONTROL-A\>
to get a dump of the DAP state.

DAP Series: Program Development under UNIX man003.04 147

148

bther of:

Unable to create diagnostics file or
Unable to create statistics file

Possible cause: Either:

The program does not have write access in the directory where the
diagnostics or statistics files are to be created.

or
There are too many files open already.

Action: Check the access permissions to the current directory (using 1s -1, and

change them if necessary (using chmod n); close files as soon as they are
no longer needed.

Unable to open process log file

Possible cause: Either:

The program does not have write access in the directory where the log
file is to be created.

or:
There are too many files open already.

Action: Check the access permissions to the current directory (using 1s -1) and

change them if necessary (using chmod); close files as soon as they are no
longer needed.

148 man003.04 AMT

C.1

C.2

149

Appendix C

System error messages

Systemn error messages are preceded by one of two initial
messages, either:

DAP System Error:
or:

System Error:

DAP system error messages

If any messages preceded by DAP System Error:
occurr, try re-running the program. If the error persists contact
your AMT representative.

System error messages

If you get an error message preceded by System Error:,
unless you get one of the error messages detailed below, you
should re-run your program. If the error persists contact your
AMT representative.

Either of:
Attempted access to segment 0 by loader, or
DAP areas fragmented incorrectly when writing process log file
Possible cause: Some sort of system error.
Action: Try re-running the program. If it fails again, contact your AMT representative.

DOF file record structure invalid at offset n
Possible cause: The DOF file has been changed since consolidation.

Action: Relink.

Exec system call failed

Possible cause: There are too many processes runing on your Sun.
Action: Quit any unnecessary windows, stop any unnecessary processes, and try
again!

DAP Series: Program Development under UNIX man003.04 149

1650 Appendix C: System error messages

Bther of:

Failure reading plog records from loader, or
Failure to open DOF file in loader

Possible cause: The DOF file has been deleted (or moved) during the program execution, or
is corrupt.

Action: Restore the DOF file.

Failure to open system message file

Possible cause: The system message file /usr/lib/dap/dap_msg_1lib does not exist
or is not readable by the program.

Action: Check the permissions and reset to give everyone read access (set
permissions with chmod 1 system-message-filename. If the file does not
exist contact your AMT representative.

Any of:

Failure when performing link driver ioctl, or
Failure when reading DOF file, or
Failure when reading common area records, or
Failure when reading diagnostic records, or
Failure when reading entry point or common area records, or
Failure when reading file, or
Failure when reading from array store, or
Failure when reading from support, or
Failure when reading line records, or
Failure when reading load reply from DAP, or
Failure when reading message from DAP, or
Failure when reading message from host, or
Failure when reading name attribute records, or
Failure when reading name records, or
Failure when reading process log file, or
Failure when reading section detail records, or
Failure when reading section table records, or
Failure when reading use of name records, or
Failure when writing down pipe, or
Failure when writing file, or
Failure when writing load abandon message to DAP, or
Failure when writing load complete message to DAP, or
Failure when writing load request to DAP, : or
Failure when writing message to host, or
Failure when writing message to the DAP or
Failure when writing process log file, or
Failure when writing process log file data, or
Failure when writing process information to host, or
Failure when writing to support, or

Fork system call failed

150 man003.04 AMT

C.2: System error messages 151

Possible cause: The host computer has run out of virtual memory, or an internal error has
occured.
Action: Reduce the number of processes and delete as many windows as possible.

FORTRAN-PLUS trace request from APAL code section
Possible cause: An internal error has occured.

Action: Try re-running the program. If it fails again, contact your AMT representative.

Invalid fixup format in DOF file
Possible cause: The DOF file has changed while the program is running.

Action: Check that no other processes (for example, linking) are still active when you
are running the DAP program.

Aryof

Invalid trace request SVC hex received, or
Loader internal message number n out of range, or
Loader message number n from the DAP out of range

Possible cause: An internal error has occured.

Action: Try re-running the program. If it fails again, contact your AMT representative.
Etherot:

Malloc system call failed, or
Pipe system call failed

Possible cause: The host computer has run out of virtual memory, or an internal error has

occured.

Action: Reduce the number of processes and delete as many windows as possible.
Segment 0 received by loader in load reply, or
Trace request instruction is not in a code section

Possible cause: An internal error has occured.

Action: Try re-running the program. If it fails again, contact your AMT representative.
Aryof
Transfer failure when executing dapsen or daprec, or
Transfer failure when reading SCA, or
Transfer failure when reading UPCA, or
Transfer failure when reading array store data, or
Transfer failure when reading file, or
Transfer failure when reading trace data block, or

DAP Series: Program Development under UNIX man003.04 151

152 Appendix C: System error messages

Transfer failure when writing DAP program, or
Transfer failure when writing file

Possible cause: The DAP has been disconnected during operation.

Action: Contact your system manager.

Unable to restart program due to fatal error

Possible cause: An attempt to restart the DAP program has occurred after an error, but
restarting is impossible.

You might get this message if you specify the ¢ option (continue) for the ~e

flag in dapopt .

Action: Correct your program; the error message displayed immediately before this
‘Unable ..." message should give you a clue to the cause of the original
problem.

Ether of:
Unassigned error message, or
Unexpected EOF from DAP

Possible cause: The DAP is turned off or has been disconnected during operation.

Action: Contact your system manager.

Unrecognised CALL instruction hex received

Possible cause: An internal error has occured, or the program has become corrupt.

Action: Try re-running the program. If it fails again, contact your AMT representative.
Either of:
Unrecognised dapopt record read, or
Unexpected EOF when reading DOF options

Possible cause: The DOF file has changed while the program is running.

Action: Check that no other processes (for example, linking) are still active when you

are running the DAP program.

Anyof:
Unexpected message from dapsupport in Breakpoint Edit Mode, or
Unrecognised message received from support, or

Unrecognised or incomprehensible message received by support
from host

Possible cause: An internal error has occured, or the program has become corrupt.

Action: Try re-running the program. If it fails again, contact your AMT representative.

152 man003.04 AMT

163

Appendix D

Messages from psam and dapdb

psam and dapdb give out three classes of messages: error
messages, internal error messages, and warning messages.

D.1 Error messages

Error messages are preceded by:
Error:
The messages are:
Address not specified
Possible cause: You have used the array command, but have not specified any address.

Action: Specify the address whose contents you want to print (for more details, see
array, on page 80.

Attempt to select non-existent stack frame

Possible cause: You have used one of the stack navigation commands up or down, when the
current procedure was at the top or bottom of the stack respectively.

Action: Use thebacktrack command to check the position of the current procedure
on the stack.

Cannot open process log file
Possible cause: The program cannot create the dumpfile DOF-file-name . dr or dapcore.

Action: Change the permissions on the directory if necessary (using chmod nnn
log-file-name).

Column specified out of range

Possible cause: Inthe array command, you specified the columns parameter incorrectly (for
more details, see array, on page 80).

Action: Make sure that any column limits you specify are in the range O to (ES-1) ,
where ES is the DAP edge-size.

DAP Series: Program Development under UNIX man003.04 153

154 Appendix D: Messages from psam and dapdb

Count too large
Possible cause: You specified a count field for the array command that was too large.

Action: Reduce the size of the count field.

Data section or area name not recognised

Possible cause: The name you gave to the array command for a data section or area is
unknown.
Action: Check the spelling of the data section name, and the consolidation map (use

the —m option to dapf or dapa).

File does not contain requested dump

Possible cause: The dump number you gave to the select command is greater than the
largest dump in the dump file.

Action: Select a different dump or possibly a different file.

File is not a process log file

Possible cause: The file you specified in the core command or as a parameter to dapdb is
not a process log file.

Action: Check the spelling of the filename you gave.

First row or column larger than last row or column

Possible cause: A column limit you specified for the firstcol or lastcol parameter for the vertical
format option of the the array command is out of range (for further details,
see array, on page 80.

Action: Specify a correct limit. Note: the first column specified must be less than or
equal to the last column specified.

Illegal character
Possible cause: There is an illegal character in the array command.

Action: Retype the complete array command line.

Illegal modifier
Possible cause: The syntax for a modifier is incorrect.

Action: The syntax is (mn), where n is in the range 11to 7; that is, is one of (m1) to
(m7).

154 man003.04 AMT

D.1: Error messages 155

Incompatible APAL trace parameters

Possible cause: The parameters you specifed to the array command are invalid.

Action: Look at the entry for the array command, on page 80.

Integer or real precision specified is too large
Possible cause: You specifed incorrectly the size field to the array command.

Action: Specify the field correctly. Note: the size field has to be between 1 and 64 for
integers, and either 24, 32, 40, 48, 56 or 64 for reals.

Item repeat count too large
Possible cause: You specifed too large a * count field in the array command.

Action: Reduce the size of the *count field.

Item repeat count too small
Possible cause: You specified a negative *count field in the array command.

Action: Make the * count field greater than O.

Missing modifier

Possible cause: When you specified a modifier to the address field in the array command,
you did not specify a modifier register.

Action: Repeat the array command, and either removethe (mn) altogether, orinsert
a correct medifier register.

Missing start-bit

Possible cause: You specified an array command with rowpack format, but you specified a
/ start-bit field without specifying a value for start bit.

Action: Insert a value after the /.

Missing count

Possible cause: You specified an array command with a * count field, but did not specify a
value for count.

Action: Insert a value after the *.

DAP Series: Program Development under UNIX man003.04 155

156 Appendix D: Messages from psam and dapdb

Missing offset

Possible cause: You have specified an offset to the address field in the array command,
but either you gave no offset value, or you gave an incorrect value.

Action: Insert a suitable value for the offset (for more details, see array, on page 80.

Name missing from command

Possible cause: You have omitted an obligatory parameter in a call to a command (for example,
you issued the the macro command, but gave no name after it).

Action: Check the command syntax (for more details, see section 4.7, on page 80.)

No FORTRAN-PLUS procedure selected

Possible cause: You have issued the print command, but a FORTRAN-PLUS procedure has
not been selected.

Action: Use the backtrack command to check what the selected procedure is, then
select the desired FORTRAN-PLUS routine with the procedure command
or with the stack navigation commands (up, down, top)

No active procedure selected

Possible cause: You have issued a stack navigation command (up, down, top), but there is
no current active procedure.

Action: Select an active procedure using the procedure command or one of the
stack navigation commands (up, down, top).

No dump selected
Possible cause: The dump file is corrupt.

Action: Rerun the program and retake dumps as required.

No process log file selected

Possible cause: You have issued a command to dapdb before you have selected a dump file.

Action: Use the core command to select a file.

Number missing from command

Possible cause: You have specified the select command, but have not specified the dump
number required.

Action: Always specify the dump number.

156 man003.04 AMT

D.1: Error messages 157

Number not recognised

Possible cause: You have used an illegal character where a number was expected (for
example, select 5s).

Action: Numbers have to be positive integers (hex numbers start Ox, octal numbers
start O, all others are decimal).

Precision for data format used illegal
Possible cause: You have specified the size field incorrectly to the array command.

Action: The size field has to be between 1 and 64 for integers; one of 24, 32, 40, 48,
56 or 64 for reals; 8 to ES (and a multiple of 8) for characters; and 1 to ESfor
hex and bit format.

Procedure name not recognised

Possible cause: You have give an unknown procedure name as a parameter to the
procedure command - or have entered a non-command name on the
command line when a non-FORTRAN-PLUS procedure is selected.

Action: Use the backtrack command to find out the active procedures, or look at

the map you get with the -m3 option to dapf or dapa to find the names of
procedures in the program.

Row specified out of range

Possible cause: You specified incorrect row limit(s) (firstrow or lastrow) for the vertical format
for the array command (for more details, see array, on page 80).
Action: Specify row limits in the range 0 to (ES-1).
Either of:
Separator needed, or
Startbit only available in rowpack format
Possible cause: You specified / start-bitfor the array command, but did not specify rowpack
format.
Action: Select rowpack format (using) - for more details, see array, on page 80.
Stack top pointer (M6) invalid, or
Possible cause: The stack has been corrupted — which is normally because you tried to take a

dump before control has passed to the DAP, or because in APAL you had used
non-standard DAP-calling conventions.

Action: Make sure you only take dumps after a call to DAPENT or (if you are using
APAL) use the standard calling conventions (for more details, see [2], DAP
Series: APAL Language, section 9.2)

DAP Series: Program Development under UNIX man003.04 157

158

D.2

D.3

158

Appendix D: Messages from psam and dapdb

Startbit too large, last bit exceeds row

Possible cause: You have specified an array command in which the sum of start-bit and the
size of the data item you want to print is greater than DAP edge-size.
Action: Reduce start-bit or the size of the data item.
Bther o
System stack base pointer invalid, or

System stack top pointer (LNB) invalid

Possible cause: The stack has been corrupted — which is normally because you tried to take a
dump before control has passed to the DAP, or because in APAL you had used
non-standard DAP-calling conventions.

Action: Make sure you only take dumps after a call to DAPENT or (if you are using
APAL) use the standard calling conventions (for more details, see [2], DAP
Series: APAL Language, section 9.2).

Too many address components

Possible cause: You specified address for the array command incorrectly.
Action: Specify the array command correctly (for more details, see array, on
page 80.

Internal error messages

Internal error messages are those messages which indicate
that an inconsistency has been detected in the debugger’'s
tables. All such messages are preceded by

Internal error:
Any of:
Illegal type specified, or

Illegal size specified, or
Message number out of range

Possible cause: You should not see any of these messages.

Action: Contact your AMT representative.

Warning messages

Some problems are not considered, by psam or dapdb, to
be classed as errors - in which case a warning message is
sent to standard output (usually your host screen). Warning
messages are preceded by

Warning:

man003.04 AMT

D.3: Warning messages 159

The messages are:

File opened but has no dumps

Possible cause: The process log file is corrupt.
Action: Rerun the program and retake dumps as required.
Ether of:
Ignoring modifier number, or

Ignoring row/word offset

Possible cause: You have specified a non-plane-aligned address for the array command with
vertical format.

Action; psam and dapdb will take the address as that of the start of the plane
containing the given address. If you want to specify an offset from the start of
this plane, you should use the firstrow and firstcol directives (for more details,
see array, on page 80).

Ignoring word offset

Possible cause: You have specified a non-row-aligned address for the array command with
rowpack format.
Action: psam and dapdb will take the address as that of the start of the row containing

the given address. If you want to specify an offset from the start of this row,
you should use the /start_bit directive (for more details, see array, on
page 80).

No information for these variables
‘ Possible causes: Either:

You have used the print command to request information either on a
variable that is in a FORTRAN-PLUS procedure that is not active.

or:

When you compiled your program, you did not specify that diagnostic
information on variables was to be collected - you specified a parameter
of less than 2 to the -D flag to dapf (the default is to assume a value
of 2 for -D). For more details, see section 2.7, on page 32.

or:

You have entered a command or name that psam or dapdb does not
recognise.

Action: Check that the variable is in an active routine, and has been assigned value(s).

Check that when you compiled your program, you either accepted the default
for diagnostic information collection, or that you specified -2 for the -D flag.

Check (with psam's history command) that you issued a valid psam
command.

DAP Series: Program Development under UNIX man003.04 159

160

Appendix D: Messages frompsam anddapdb

No user-defined error interrupt masks

Possible cause:

Action:

You have issued the masks command, but have not yet defined any error
interrupt masks.

Check your DAP program.

Not a FORTRAN-PLUS procedure

Possible cause:

Action:

Your current procedure is an APAL code section, and you have issued a psam
command - such as print - that is only valid when a FORTRAN-PLUS
procedure is current.

Check which procedure is current (using the backtrack command),
selecting a FORTRAN-PLUS procedure if appropriate (using the procedure,
up, down or top command).

Not an active procedure - no stack frame selected

Possible cause:

Action:

You have issued a command which is only valid when an active procedure is
selected (for example, print or attributes), but the current procedure
is not an active one.

Select an active procedure (using the backt rack command to find out which
procedures are active).

Stack frame associated with non-Code address

Possible cause:

Action:

The stack is corrupt —which is normally because you have tried to take a dump
of your DAP state (with a <CONTROL-\>) before you called dapent, or
because you have used non-standard DAP calling conventions in your APAL
program.

Make sure that you only take dumps after you have called dapent:, and (if
you are writing APAL) you use the standard calling convention (for more details,
see [3), DAP Series: APAL Language section 9.2).

Using M6 as stack top pointer (ILNB invalid)

Possible cause:

Action:

160

The standard copy of the LNB address is invalid (the standard copy is usually
a copy of register M6). The problem usually happens when you write or use
APAL programs which do not follow the standard calling conventions.

Use the standard entry and exit macros (’ prologue and ’ epilogue) for
subroutine calls (see [3], DAP Series : APAL Language, section 9.2).

man003.04 AMT

161

Appendix E

DAP interface routines

E.1 C language routines

NAMES dapcon, dapent, daprec, daprel, dapsen - DAP interface subroutines and
functions

SYNOPSES int dapcon (dap-prog-name)
char *dap-prog-name;

void dapent (dap-entry-name)
char *dap-entry-name;

void daprec (dap-common-name, word-aligned-data-area, size)
char *dap-common-name;

int *word-aligned-data-area;

int size;

void daprel ()

void dapsen (dap-common-name, word-aligned-data-area, size)
char *dap-common-name;
- int *word-aligned-data-area;

int size;

DESCRIPTION

dapcon requests access to the DAP, waits until permission is given and then the DOF
file whose name is pointed to by dap-prog-name is either loaded into the DAP or into
the simulator. dapcon returns an integer value indicating success or failure (see
Diagnostics below). The DAP connection is released by calling the interface routine
daprel.

dapent transfers control from the host C program to the DAP and returns control when
a return statement in the DAP entry subroutine is executed. dap-entry-name is a
pointer to the name of the DAP entry point to which execution is to be transferred.

daprec reads data from the DAP. dapsen sends data to the DAP and waits for the
data to be transferred. They both take the same parameters. dap-common-name is a
pointer to the name of a DAP common block from or to which data is to be transferred.
word-aligned-data-area is a pointer to the start location of the block into which the data
is to be read (daprec) or from which it is to be sent (dapsen).

WARNING The data area must be word-aligned. If necessary, it should be unioned to a word-aligned
variable or placed in a word-aligned structure.

DAP Series: Program Development under UNIX man003.04 161

162 Appendix E: DAP interface routines

sizeis an integer variable specitying the number of DAP words (32 bits) to be transterred.

daprel has no parameters and releases control of the DAP, making it available to other
users or programs. If a host program which is not connected to a DAP calls daprel
no action is taken.

DIAGNOSTICS
Return codes from dapcon are as follows:

Resuit returned by dapcon Meaning of result

0 Success
1 Unable to open DOF file
2 Unable to read DOF file
3 Not a DOF file
4 Unable to open channel to DAP
5 DAP load failed
NOTES You link these subroutines in a C host program by using the -1 flag with dap as its
argument.

For example, to compile program hostprog. ¢ and call the output filte hostprog,
you could issue:

cc -o hostprog hostprog.c -ldap

E.2 FORTRAN language routines

NAMES dapcon, dapent, daprec, daprel, dapsen -- DAP interface functions and
subroutines

SYNOPSES integer function dapcon (dap-prog-name)
character *(*) dap-prog-name

subroutine dapent (dap-entry-name)
character *(*) dap-enlry-name

subroutine dapsen (dap-common-name, word-aligned-data-area, size)
character * (*) dap-common-name

integer (*) word-aligned-dala-area

integer size

subroutine daprec (dap-common-name, word-aligned-data-area, size)
character *(*) dap-com-name

integer (*) word-aligned-dala-area

integer size

subroutine daprel

162 man003.04 AMT

E.2: FORTRAN language routines 163

DESCRIPTION

dapcon requests access to the DAP, waits until permission is given and then the DOF
file dap-prog-name is either loaded into the DAP or into the simulator. dapcon returns
an integer value indicating success or failure (see Diagnostics below). The DAP
connection is released by calling the interface routine daprel.

dapent transfers control from the host FORTRAN program to the DAP and returns
control when a return instruction in the DAP entry subroutine is executed.
dap-entry-name is the name of the DAP entry point to which execution is to be
transferred.

daprec reads data from the DAP. dapsen sends data to the DAP and waits for the
data to be transferred. They both take the same parameters. dap-common-name is the
name of a DAP common block from or to which data is to be transferred.
word-aligned-data-area is the name of the host data area into which data is to be
received (daprec) or from which data is to be sent (dapsen).

sizeis an integer variable specifying the number of DAP words (32 bits) to be transferred.

WARNING The data area must be word-aligned. If necessary, it should be equivalenced toa
word-aligned variable or placed at the start of a common block.

DIAGNOSTICS
Return codes from dapcon are as follows:
Result returned by dapcon Meaning of result
0 Success
1 Unable to open DOF file
2 Unable to read DOF file
3 Not a DOF file
4 Unable to open channel to hardware DAP
5 DAP load failed

NOTES You link these subroutines in a FORTRAN host program by using the -1 flag with dap
as its argument.

For example, to compile programmyprog . £ and call the output filemyprog, you could
issue:

£77 -o myprog myprog.f -ldap

DAP Series: Program Development under UNIX man003.04 163

164

164

man003.04

AMT

Index

165

psam commands (such as array) are listed in this index under their own names, not under psam.

An entry such as #include is listed u
non-alphabetic entries to the index are gro!

introduction.
!

[1. meaningof v
..., meaningof v
<> ,meaningof v
{}, meaning of v

A

alias 80
Aliases 104
Analysing dump files 72-73
APAL
assembler 114-122
assembly system 111-125
linking 124
preprocessor 113
trace 75 -
Areas of the DAP program block 28
array 80
Array store 25
Assembler

external reference and section listing 121

inputand output 114
listing and messages 115
source listings 115
Assembly
diagnostics 122
of APAL trace statements 123
attributes 81

B

backtrack 82
Breakpoints 65, 82
C

C host program 42

C language interface routines 161
Cautions — general note iv
CiIFfile 4

DAP Series: Program Development under UNIX

nder its first alphabetic character, i in this case. All other
uped together under the 1 heading immediately below this

CIF file and library maintenance 101 - 107,
109 - 110
CIF library 24
clear 82
Code
area 29
sections 31
store 25
code 83
Command
specification 133- 144
syntax conventions v
Comment form 169
Compilation
diagnostics 19
system 7-34
Compiler
brief listing 16
brief map 28
control of run-time diagnostics 21
external reference listing 19
full listing 17
full map 31
listing and messages 16
standard map 29
Components of the
APAL assembly system 113
FORTRAN-PLUS compilation system 8
Consolidator diagnostics 32
continue 84
Controlling
DAP programs 128
multi-programming on the DAP 127 - 131
Conventions
syntax v
typographical iv
Co-processor 35, 90, 111
core 84
Creating a CIF library 102
Cross reference and attribute listing 17, 119

man003.04 165

166

166

D

DAP process id 127
DAP program
block 25
production 2
running 35 - 56
DAP system error messages 149
DAP-host interface routines 37-38
dapa 111-125
flags 124-125,133- 134
dapapp 114
dapcon 37
C language interface routines 161
FORTRAN language interface routines 162
dapcontrol.o 129
papcp8 7,111
dapdb
analysing dump files 72-73
differences frompsam 72
full specification of commands 80-99
summary of commands 58, 142 - 144
daped 27,135- 136
dapent 39
C language interface routines 161
FORTRAN language interface routines . 162
dapf 8, 137- 138
examples of the use of 32
flags 32-34, 137 -138
using the execution profiler 54 - 56

- daplib 102- 106, 139

flags 107,139
interaction of flags 107
dapoip 129, 131
dapopt 42-53, 140 - 141
flags 52, 140 - 141
restoring default options 52
dapprof 23,55
daprec
C language interface routines 161
FORTRAN language interface routines 162
daprel 38
C language interface routines 161
FORTRAN languare interface routines 162
dapsen
C language interface routines 161
FORTRAN language interface routines 162
DAPSIZE 7,102 111
dapsyslog 128
date 84

man003.04

Index

Device drivers 135
Diagnostic reports 75-76,78-79
APAL code 78
FORTRAN-PLUS 76
Differences between psam and dapdb 72
Directive 10, 113
#endif 14,113
#$if 14,113
#include 113
$pat 15
disable 85
display 85
dmon.out 23,54
DOF 3
down 87

dump 87

E

echo 87
enable 87
#endif directive 14, 114
Entering dapdb 73
Entry points 28
Environment variables
papcp8 7,111
DAPSIZE 7,111
for psam and dapdb 69
Error messages
DAP system error messages 148
messages from psam and dapdb 153 - 160
messages from the run-time system 145 -147
system error messages 149 - 162
errors 88
ES - edge size 1
Examining dapoptoptions 46
Example DAP program 40
Example of running a DAP program 39 - 41
Excluding modules from a CiF library 103
Execution
histogram 50
profiing 23, 50

Filename conventions 4-5
FORTRAN language interface routines
162 - 163

AMT

Index

FORTRAN-PLUS
compilation system 7-34
linking 24 -31
optimising 23
preprocessor 8- 14
trace 21,74

H

help 88

Histogram 50

history 88

Host program production 2

#if directive 14, 114
#include directive 10, 114
Including

files 10

modules in a CIF library 103
interface between dapdb and psam 63
Interface routines, DAP-host 37 - 38

L

Language interface routines 161 - 163
Linker messages and link map 25
Linking with CIF libraries 108 - 110
list 89

Listing CIF library contents 105

M

macro 90,97

map 90

masks 92

MCUCP 135

message 92

Messages from
psam and dapdb 153 - 160
the run time system 145 - 147

Milltime 127

Mixing FORTRAN-PLUS and APAL routines

54,123
Muiti-module CIF files 101

Multi-programming on the DAP 37, 127 - 131

DAP Series: Program Development under UNIX

167

next 92

o)

On-line facilities 57
Optimising FORTRAN-PLUS code 23
Overview of program testing 57 - 59

P

Parallel Data Transform 15
#pdt directive 15
Post-mortem faciliies 58
Preprocessor errors 15, 114
print 93
Priority 127
procedure 95
Producing executable programs 2
Program profiling 50
in APAL programs 54
in FORTRAN-PLUS programs 54
Programtesting 57 -62,64-76,78-99
psam 60-62,64-71
breakpoints 65
command line interpreter 71
diagnostic reports 75-76, 78 - 79
differences from dapdb 72
environment variables 69
examining variables 63
full specification of commands 80 -99
machine-level commands in 68
miscellaneous commands 71
post-mortem facilities 58
program contro! from within 66
stack examination 68
summary of commands 58, 142 - 144

quit 85

R

Read and write data areas 29
Read and write host common area 29

man003.04 167

168

Reader comment form 169 FORTRAN-PLUS 74
References iii Trace execution control 44
registers 95 Typographical conventions iv
Restoring dapopt default options 52
Run-time U

checks 22 UER 108

diagnostic facilities 3
diagnostic information 22
diagnostics 44

error action 45

unalias 98
undisplay 98
Unsatisfied external references 108

system, error messages 145 - 147 E:s:; o8
Running DAP programs 35 - 56 User comment form 169
Using
S daped to change stack 27
the high-level execution profiler 54 - 56
save 95
select 95 w
set 96

Simulator options 46 WARNINGS and cautions — general note iv

Single-stepping 23
Slottime 127
Source files 2
Specifying
#include directives 10
a dapopt statistics file 52
run-time options 42 -53
Stack estimate 27
status 96
step 97
stepi 97
stop 97
stop in 97
stopi at 97
stopi in 98
Summary of psam and dapdb commands
58, 142 - 144
Synonyms 104
Syntax conventions v
System error messages 149 - 152

T

Tab characters 10, 113
time 98
Timeslice 127
Timing onthe DAP 46
top 98
trace 74

APAL 75

168 man003.04 AMT

Reader comment form AMT

Reading, UK

Any comments you care to make, whether reporting bugs in the manual or making more general comment,
about this or any AMT publications will help us improve their quality and usefulness. To report bugs, if you have
the time, the ideal way from our point of view is to send us a photo-copy of the relevant page, with the bug
marked on it. If you are in the UK, please use our FREEPOST address to send us the copy.

It you also can spare the time to fill in the mini-questionnaire below that would be doubly useful to us. To send
us this form, please fold it as indicated, and post it - postage is pre-paid for the UK.

Comments

Title of publication: DAP Serles: Program Development under UNIX (man003.04) / other - please specify:

My name and job title:
My department:
My company:

My company address:

My telephone number—country: number
| used the publication: | found the contents:
True Partly true Not true
[0 Asanintroduction to the subject Helpful O O |
O Toteach myself Accurate O a O
[0 Toteachothers Written clearly O O O
[0 Asareference manual Well illustrated O a O
[0 Other- please specify Well indexed 0 O 0
Other - please specity [O O

Thank you for your help. 23 May 89

DAP Series: Program Development under UNIX man003.04 169

piojisdl{ —

pioyisi4 —— ~

Tuck into third fold

Fourth fold

wopbury payun

Hd} 9DY adlysyisg

Buipeay

(9ev 1 DY) 1S0d33H

p11 ABojouyoa) Alowsy aAlloy
labeuepy suonedlgng

Fourth fold

"anjeA [ew.ou o} sdwejs 3ans asesaid ‘M episino Bugsod §
“MN ey ul Bunsod soj papasu abejsod oN

Third fold

Third fold

— +—— PIoj puodsg

*A'tl! PJO} puodaeg

