AMT

DAP Series

Engineering Test
Software

DAPET

(man008.04)

Publications Manager

Active Memory Technology [.td
65 Sultons Park Avenue
Reading

Berks, RG6 1AZ, UK

1o
Tel: {+44}734 661 111

AMT endeavours to ensure that the information in this document is correct, but does not
accep! responsibility for any error or omission.

Any procedure described in this document for operating AMT equipment should be read
and understood by the operator before the equipment is used. To ensure that AMT
equipment functions without risk to safety or health, such procedures should be strictly
observed by the operator.

The development of AMT products and services is continuous and published information
may not be up lo date. Any particular issue of a product may contain part only of the
facilities described in this document or may contain facilities not described here. 1t is
important to check the current position with AMT.

Specifications and statements as to performance in this document are AMT estimates
intended for general guidance. They may require adjustrment in particular circumstances
and are therefore not formal offers or undertakings.

Statements in this docurment are not part of a contract or program product licence save
inso far as they are incorporated into a contract or licence by express reference. Issue of
this document does not entitle the recipient to access to or use of the products described,
and such access or use may be subject te separate contracts or licences.

Technical publication man008.04
{AMT filenames: asb\pubs\det\ed04\..)

First edition January 1988
Second edition February 1988
Third edition 27 June 1988

Fourth edition 23 May 1989
1989 by Active Memory Technology

No part of this publication may be reproduced in any form without written permission from
Active Memory Technology.

AMT will be pleased to receive readers’ views on the conlents, organisation, etc of this
publication. Please make contact at either of the addresses below.

Pubiications Manager

Active Memory Technology Inc
16802 Aston St Suite 103
irvine, California, 92714,

USA

Tel: (+1) (714) 261 8901

man008.04 AMT

i

PrefaCe dapet is the DAP engineers' test software - a suite of

programs designed for users and support engineers.

dapet runs in the host system, and runs on both the types of
host currently supported by AMT: that is, Sun workstations
running under UNIX, and DEC VAX and MicroVAX workstations
running under VAX/VMS. You use dapet in a similar way
whichever host system you are using; the differences in usage
are detailed in the relevant sections of this manual.

The manual is divided into two sections:

® Section | : tells you how to run the diagnostic test software
supplied by AMT with your basic DAP-Series software.
The diagnostic software lets you carry out a confidence
check on your DAP, whether it is a DAP 500 or DAP 600
machine; it also lets you carry out fault diagnosis to board
level

a Section Il : contains more information for those users who
build or maintain their own DAP systems and who need
more facilities

If you have not used dapet before, then it is important that
you read chapters 1 and 2 in section | first.

References

DAP Series: Engineering Service Guide AMT man008
DAP Series: System Management under UNIX AMT . man019
DAP Series: System Management under VAX/VMS AMT man020
Typographical conventions The following typographical conventions are used in this

manual:

m Names of variable, commands, functions, subroutines
and files mentioned in the text are shown in bold type
face

= Computer screen or hard copy output is shown in a box:

[This is an example of screen output

= Any input that you would type is shown in bold type
face. -

DAP Series: Engineering Test Software man008.0 i

Preface

Occasionally, what you have to type in is boxed, as well
as being shown inbold typeface

= Text that would be replaced by other text in what you type
in or what the computer outputs is shown in jtalics.

For example, you might be asked to type the command:
save name

When you came to type the command you would replace
name with the name of the file into which you wanted to
save whatever was involved.

Similarly, a host screen display might be shown as:

Version nm with SCSI HCU link
MCU code size 512 Kbytes, array size 4 Mobytes

DAPET>
whereas, in what you would actually see on your screen,
n.m would replaced by a number combination, such as
3.1

= |fyou are asked to press a particular key on the keyboard,
that key will printed in capital letters and will be enclosed
in angled brackets. For example:
<RETURN>
is asking you to press the Return key
= |f you are asked to press one key whilst holding down
another key, both keys will be enclosed in angled
brackets, with the to-be-held-down key given first and the
keys joined by a '-'. For example:
<CONTROL-Z>
is asking you to hold down the Control key and press the
'Z' key.
Similarly:
<CONTROL-SHIFT-Q>
is asking you to press and hold down the Control key, then
press and hold down the Shift key (either Shift key if there
are two), and then press the ‘Q’ key
command syntax ® The syntax for a command specifies optional and

alternative sub-items in the command as:

[1 The item(s) enclosed in-square brackets are optional.
If included one and only one may be present

{} Oneandonlyoneofthe items enclosed in braces must
be specified

. The item preceding the ellipsis may be repeated zero
or more times; that is, the item may occur one or more
times

man008.04 ' AMT

Preface v

For example, a command might be specified as:

a .
option }
d { :} [o]{ £ [option] filename

Possible variations of the command include:
da
dao
da option
dao option
daf filename
daof filename
daf option filename
daof option filename
dc

and so on, where option and filename would be defined
as appropriate to the command.

DAP Series: Engineering Test Software man008.0 %

vi

vi

man008.04

AMT

vif

Table of Contents

Preface T [11
Section | Using dapet to run test programs 1
Chapter1 dapet general commands 3
1.1 Introduction o 3
1.2 Establishing the test environment 3
1.3 Welcoming message and screen format 4
1.4 Help facilities 5
15 Saving a session log 5
151 Quitting dapet 6
Chapter2 dapet basic user commands 7
2.1 Introduction 7
2.2 The test menu 7
2.3 Test organisation . 7
24 Running tests automatically 8
25 Loading a single test 8
26 Running a single test 9
27 Halting a test 9
2.8 Types of error 10
29 Test execution errors 11
Chapter3 dapet advancedusercommands 15
3.1 Introduction R |
3.2 Options/qualifiers available when dapet is called R
3.2.1 Under UNIX T 1
322 Under VAX/VMS e 1
3.3 Defining the start and end-point of a testsequence 17
34 . Running one test element R b
35 Changing the effect of error detection R £
36 Running a test sequencé repeatedly 18
37 Running the automatic test sequence O I
3.8 Changing the master PE bank T e
Chapter4 ContactingAMT2

DAP Series: Engineering Test Software man(008.04 vii

vili Contents

Section |l Using dapet to diagnose faults e 1
Chapter 5 dapet engineer'scommands 25
51 Introduction 1o}
511 Image store and memory map oL 2s
512 Groups of commands o5
513 Syntax conventionsused 25
514 Input of numeric values to commands 2B
5.2 Image store write and display commands Y 4
521 dia, dic, dif, dih, dim - 4
522 wia, wic, wif, wih, wim o7
53 PE and array write and display commands Y 4
5.3.1 Use with DAP 500 and DAP 600 ... 28
532 Row read - dax, dcx, dax, dsx R~ o
533 Row write - wax, wex, wgx, wsx o8
534 Plane read - da, dc, dq, ds, dao, dco, dgo, dso, daf, dcf,
dgf, dsf, daof, dcof, dgof, dsof 29
535 Plane write - wa, wc, wqg, ws, waf, wef, waf, wsf 29
536 Inhibit read afterwrite30
54 Use of absolute addresses A
541 dm, wm S
55 Display and alteration of system registers < A
551 regs e 124
5562 mreg e 121
553 rreg .)
554 redg — DAP 600 only e X
555 wedg-DAP600only 33
5586 asstate ~ DAP 600 only a3
557 jlog T X
558 pestate .
5.6 MCU control commands 33
5.6.1 mstop 33
56.2 mstart 33
5.6.3 eint 7
5.6.4 dint ...
565 setstore T - 7
57 Specifying the FIO coupler P

vilf man008.04 AMT

Contents

5.8
58.1
58.2
5.8.3
5.8.4
5.8.5
5.8.6
58.7
58.8
58.9
59
59.1
59.2
59.3
5.10

Chapter 6
6.1
6.2
6.3

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
65
6.6

Appendix A
A1
A2

HCU task control commands
Loading VRTX tasks
vrun
VSUS
vres
vdei
vstat
ving
vpri
qclr
Altering test element parameters
setp
clrp
swoo.
Cycling a test element

dapet macro commands
Introduction e
The engineering test macro environment
User-accessible macro commands

Load and store commands

Arithmetic and logical commands

Compare and jump commands

Looping and labels

Display commands

Program control commands .
Macro commands available at command level
The auto macro
A typical dapet macro

dapet commands and macro commands
dapet commands
dapet macro comimands

DAP Series: Engineering Test Software man(008.04

35
35
35
36
36
36
36
36
37
37
37
37
37
38
38

39
39
39
41
41
44
45
45
46
46
47
47
48

. 51

51
55

Appendix B
B.1
B.2
B.3
B.4
B.5
B.6
B.7

Appendix C
CA

C.11
c.1.2
C13
C.14
C2

C.21
czaz2
c.23
C24
C.25

Index

Description of the test programs
MCUTESTH

MCUTEST2

MCUTEST3

MCUTEST4

ARRAYTEST

STORETEST

DISTURB

Locating suspect components
DAP 500

Layout of the DAP 500 backplane

Layout of the PE chips on an array board

Location of the array memory boards

Calculating faulty memory board locations
DAP 600 o

Board layout in a DAP 600

Array board numbering

Array board layout

Memory board layout

Calculating faulty memory board locations

Reader comment form

man008.04

Contents

59
59
61

66
72
73
92
93

95
85

96

97

98
. 99
. 100
. 100
. 102
. 102
. 102
. 102

. 105

111

AMT

Section |

Using dapet to run test programs

DAP Series: Engineering Test Software man(008.04

man008.04 AMT

Chapter 1

dapet general commands

1.1 Introduction

under UNIX and VAX/VMS — and
upper and lower case

dapet is designed to check the operation of both
DAP 500-series and DAP 600-series machines. It is easily
accessible to all users, and meets a variety of needs. The
confidence-checking and board-level diagnosis use of the test
software, described in section | of this manual, is backed up
by the in-depth testing facilities also available in dapet and
described in section | of the manual.

This chapter describes how to enter the dapet environment,
and how to keep a dapet session log; it also describes the
help faciiities that exist within dapet.

dapet runs almost identically on Sun and DEC VAXNVMS
systems; any differences are noted in the relevant parts of the
manual. One of the differences concerns the use of upper and
lower case when you are typing commands or filenames. On
VAXNMS systems, you can name files and type commands in
upper and lower case (or a mixture of both!), as VMS is not
case-sensitive. By convention upper case is used on
VAX/VMS, and this convention is followed in this manual for any
commands you would only use in the VAX/NVMS environment.

However, UNIX systems are case sensitive, so you must get
the case right - at least for UNIX commands and filenames.
dapet is not case-sensitive, so once you have entered
dapet on either system, you can use upper or lower case for
commands. For consistency, lower case is used for all
non-specifically-VAX/VMS commands throughout this manual.

1.2 Establishing the test environment

under UNIX

WARNING!

If you are running under UNIX, you should type:
dapet

UNIX does not stop you from running dapet, if dapboot is
still running. If you try, you will get the message:

[Warning, DAPBOOT is still active

)

DAP Series: Engineering Test Software

and are likely to corrupt any user programs that are still running.
Be warned!

man008.04 3

4 Chapter 1: dapet general commands

For details of how to stop dapboot, see AMT's DAP Series:
System Management under UNIX

under VAX/VMS If you are running under VMS, you should not use dapet if
the DAPMONITOR program is running, as dapet will
corrupt any user program in the DAP.

So before you try to run dapet, stop DAPMONITOR, by
typing the command:

$ DAPBOOT STOP

Torun dapet, first you should introduce dapet as a foreign
command, by typing:

S DAPET := $DAPETNH

* where n is 5 (if you want run dapet on a DAP 500) or 6 (if
you want to run dapet on a DAP 600). You can then invoke
dapet by typing:

S DAPET

Note that you need operator (OPER) and WO RLD privileges
torun dapet.

if the DAPMONITOR program is running, you will see the
warning mesage:

[7Warning: DAPMONITOR is running .]

If in addition one or more DAP process are running, you will
see a second message on your VAX screen:

[,Warning: Other processes using the DAP]

You should stop DAPMONITOR with the DAPROOT STOP
command, as described above - having closed down any
active DAP processes.

1.3 Welcoming message and screen format

Once dapet is invoked the system will output a message on
the host VDU screen telling you the version of dapet thatis
installed on your system, and the DAP code store and array
memory size. A typical message might be:

Version 3.1 with SCSI HCU link
MCU code size 512 KBytes, array size 4 MBytes
DAPET>

The prompt DAPET> tells you that the utility is readyto accept -
a command.)

As noted above, you can issue any dapet command by
typing upper.or lower case letters, or any combination of the

4 man008.04 ' AMT

1.4: Help facilities

1.4 Help facilities

exiting from help ~ only under VMS

1.5 Saving a session log

saving the log under UNIX

saving the log under VMS

under UNIX-and VMS

DAP Series: Engineering Test Software

two. If you are running under UNIX, don't forget that when you
come to specity filenames, you need to specify the case of
filenames exactly.

When you are in dapet you can get help on a command, by
typing at the DAPET> prompt:

help name

where name is a dapet command name, or an allied DAP
topic. If you type help on its own, you will get outline
information on the entire set of dapet commands, and on the
allied topics. You can then select any of those topic or
command names to get further information.

Help information is fairly limited, but it can give you some idea
of the scope of a command and its typical syntax and usage.

Only if you are running under VMS: when you want to exit from
help, press the RETURN key, or type <CONTROL-Z>.

You can keep a record on the host file system of your

subsequent activity within a dapet session by issuing the
command:

save filename

If you are running under UNIX, filename can be the name
either of:

= Anexisting file to be overwritten
= A new file to be created in the current directory

Under VMS, filename can be the name either of:

= An existing file, in which case VMS will create a new
version of that file

= Anew file to be created in the current directory. If you do
not supply a file-type, VMS will add . LOG to £ilename

Once you have issued the save command, all commands,
prompts and messages that are displayed on the host screen
will be logged to the file, until you terminate the log by using
the command:

saveoff
Note that any log file you have opened but not closed will be
closed automatically by the system once you leave dapet, so

saving the record of all your activity in the test session-since
you opened the file.

man008.04 5

6 Chapter 1. dapet gene‘ral commands

1.5.1 Quitting dapet You can leave dapet whenever a DAPET> prompt appears
on the host screen, by issuing either of the commands:

quit
or
9
quitting ~ under VMS only Only if you are running under VMS: you can also quit dapet

by typing <CONTROL-Z>.

6 man008.04 ' AMT

Chapter 2

dapet basic user commands

2.1 Introduction

2.2 The test menu

This chapter describes the syntax for the basic user
commands in dapet; advanced user commands are
described in chapter 3.

Once you have entered dapet you can run the tests either
individually, or all in sequence automatically.

The menu of tests available is displayed when you type:

menu

A typical menu is shown below:

4 Test no. Testname Test location Test description
1 MCUTEST1 HOST \ MCU host based test
2 MCUTESTZ2 MCU . MCU based MCU test part I
3 MCUTEST3 MCU MCU based MCU test part IT
4 MCUTEST4 MCU MCU based MCU test part III
5 ARRAYTEST MCU Processor Element Array test
6 STORETEST MCU Array Memory test

_ 7 DISTURB MCU Disturbance Test

J

2.3 Test organisation

DAP Series: Engineering Test Software

Tests are subdivided internally into subtests and then further
subdivided into elements. An element consists of a dapet
software fragment which can be used to test a DAP instruction
or a machine hardware feature. Subtests are groups of
elements which, taken together, test a complete range of DAP
features. Tests are groups of subtests which, taken together,

- test all the features of the selected part of the DAP.

Generally, the tests are designed to be run sequentially, with
the lowest number test checking the most basic function of the
machine. If you use the automatic test run feature, the basic
features of the machine are checked for correct working,
before the more advanced features are tested.

The first test - MCUTEST1 - is 'host based'; it carries out some
basic hardware tests on the DAP by accessing control

manQ08.04 7

8 Chapter 2: dapet basic user commands

locations in the DAP from the host. All the other tests are ‘MCU
based’; they work by running programs in the DAP. and
checking the output against the expected output.

Appendix B on page 59 describes all the tests, subtests and
elements within dapet.

2.4 Running tests automatically
The command you issue to run ail the tests in sequence is:
auto

All tests will run to completion with no further input from you,
unless one of the tests fails. Successful completion of the test
run is shown on the host screen as:

(**%* END OF AUTOMATIC CONFIDENCE RUN ***]

If one of the tests fails, the run will be halted, and an error
message will be output to the host screen, followed by the auto
prompt:

= B

The system is now waiting for you to take some action. The
options available are:

= To continue with the current test, by using the command
cont

» To go on to the next test, by using the command next

= To quit the auto test sequence, by using the command
exit. You can also use <CONTROL-C> to stop a running
test immediately .

Sections 2.8 and 2.9 in this chapter give you some guidance
on the types of error that can occur, and what you can do to
get tests on your DAP running again. If your testing has
uncovered a problem with your DAP that you cannot resolve,
chapter 4 on page 21 tells you how to contact AMT to seek
more help.

2.5 Loading a single test

You can load a specific test by using the command:

test_name
test_num

where test name or test num identifies one of fhe tests on the
test menu (see page 7).

8 man008.04 AMT

2.6: Running a single test g

For example:

lo 1
will load the test MCUTEST1;
lo MCUTEST1
will load the same test.
possible problem with 1o A point to note:

= The space between lo and the name or number is
important. If you leave it out you will get an error message

Once you have issued the 1o command, the system will output

a message. If you had selected the MCUTESTL1 test, the
message might be:

Initialising codestore
Loading MCU component "MCUTEST1"
Software version - 3.1.

No.of elements - 35.

2.6 Running a single test

Once you have selected and loaded a test, you can run it by
typing:
go

You can specify the start and end points of a test exactly, using
numeric arguments after the go. See page 17 (in chapter 3),
or the on-line help information, for more detaiis.

As each element in a test is run, a message is output on the
host screen of the form

[Running subtest 2 element 8 -]

If the element has passed, then the message is increased to:

[Running subtest 2 element 8 - element passed]

Individual tests should run to completion without stopping.
However, should dapet detect a fault while it is running a test
element, test execution will stop, and. one or more error
messages will be displayed.

When the whole test has fini'shed, the DAPET> input prompt
returns to the host screen.

2.7 Halting a test

You can halt a running test by typing <CONTROL-C>, which
will halt test execution immediately. The DAPET> prompt will
then appear, allowing you to enter ancther command.

DAP Series: Engineering Test Software man008.04 g

10 Chapter 2: dapet basic user commands

If you want to restart test execution where you stopped it, or
where the system stopped it because an error was detected,
use the command cont.

2.8 Types of error

Error messages are displayed on the host screen by the system
whenever a problem is detected. Three different types of errors
can occur.

command entry errors » Command entry errors

dapet will only recognise commands with the correct
syntax, and will not try to execute wrongly-spelt or
non-existent commands. If you enter an incorrect
command, the system will respond with an error message,
and the DAPET> prompt will re-appear to allow you to
re-enter the command. You can check the correct syntax
in appendix A, the command reference section of this
manual (page 51), or by using on-line help.

under UNIX Since a usual command entry error is to mistype a
command name, a typical error mesage might be, if you
are running under UNIX:

[Cannot open file "ato.DM" j

You typed ato instead of auto, the system knew of no
command ato, assumed it was a macro you had written,
but couldn't find the file ato.DM containing the macro
(see chapter 6 for more on macros).

under VMS If you are running under VMS, macro file extensions are
. DMS5 (for DAP 500) or . DM6 (for DAP 6 00), so if you are
using a DAP 500 and you type ato instead of auto, you
would get the message:

[Cannot open file "ATO.DM5" j

command execution errors s Command execution errors

Command execution errors occur if dapet has not been
able to execute a command. Entering 1o 27 would cause
such an error; although nothing is syntactically wrong with
the command, an error is reported since there are only 7
tests in the test menu (see page 7). An error message is
output by the system, and the DAPET> prompt
re-appears.

The error message you would get if you entered 1o 27
would be:.

[There is nb Test for number 27 j

10 man008.04 AMT

2.9: Test execution errors

test execution errors

2.9 Test execution errors

11

= Jest execution errors

Test execution errors occur if a test element runs
incorrectly, and show that there is something wrong with
the DAP. Two types of error report can be generated here,
FATAL and ERROR,; they are described in detail below.

FATAL ERRCRs are caused by the DAP failing and stopping
the test element functioning correctly. dapet detects this DAP
malfunction, and outputs an appropriate message. The error
message is terse, since the problem is bad enough to stop
correct basic DAP function. A typical fatal error sequence is:

Running subtest 3 element 2 - Element terminated - FATAL ERROR

1. Element terminated OK, incorrect return.
-Suspect test element codestore write.
~Suspect MCU interrupt generation / HCU interrupt transfer.

DAP Series: Engineering Test Software

ERRORS are caused by the test element detecting an error in
the DAP function it is testing. The diagnostic error message
output will give details of the fault that has been found. Usually
the error message ends by stating which DAP board is
suspect; if there is an array error you will usually also be told
which processor element chip is suspect.

Certain errors in the DAP will cause a single test element to
output more than one error message sequence; this multiple
reporting usually only happens when you are running an array
test.

A typical diagnostic sequence is shown on the next page.

man008.04 11

Chapter 2: dapet basic user commands

Running subtest 16 element 2 - Element finished - ERROR)

Message number = 217

ERROR IN TESTING MASTER~SLAVE ON THE PE STORE PINS

After setting a discrepancy between master and slave, there was
an unexpected status shown in the slave bank in the board where
the error was expected.

This occurred first when the unique 1 was in
column 24 row O.

Board 0 showed an unexpected error status of #00000020
when the expected status was #00000022.

Bank A was the master, and bank A was reset to create the
discrepancy

There were a total of 2 errors of this type.

Suspect Arréy board(s) 0 and PE chip(s) 1.

G J

The numbering of array boards and PE chips is explained in
appendix C.

In many cases you will find it useful to have confirmation of
which board is faulty by continuing the testing, and seeing what
other fauits are detected by the tests. You can continue with
the testing after a non-fatal error has been reported, either by
typing cont, or by setting the error trapping to trap fatal
before you start running the tests — see page 18 (in chapter 3)
for more details of trap.

ERROR reports often point to the suspected failing hardware
element(s). See appendix C for details of the physical positions
of the various array chips in the DAP, and of how to locate a
suspect board from the information dapet gives .

If you get an error message suggesting that all PE chips are
suspect, for example:

[Suspect Array board(s) 0 and PE chip(s) all]

then the fault is more likely to be on the array board than in an
individual PE chip.

Similarly, if all array boards are reported as faulty:

[Suspect Array board(s) All and PE chip(s) 3]

the actual fault is most likely to be in the distribution of signalé

to the array boards, implicating perhaps an MCU board or the
back plane.

man008.04 AMT

2.9: Test execution errors

13

If two array boards or chips are faulty then you will see the
reference numbers of both failing items reported in the
message. if more than two boards or chips are faulty, you will
get a message like:

[Suspect array board(s) MAP #AA00 and PE chip(s) 2

LEDs on the boards

all green LEDs should be on

no red LEDs should be on

DAP Series: Engineering Test Software

This example was from a DAP 600. The hex number (#AA00 in
this case) is to be interpreted as a bit pattern (1010 1010 0000
0000 in this case) representing the failing boards, with a ‘1’
representing a failing board, and the most significant bit
representing board 0. In the example, boards 0, 2, 4 and 6 are
suspect (or more likely, some signal that serves all these
boards is suspect).

Each of the circuit boards in the DAP has a green and a red
LED mounted on it. During the diagnostic tests carried out
when the DAP is switched on, the lights flash to indicate the
progress of the tests. If the DAP passes these power-up tests,
the red and green LEDs go out on all boards, except the green
LED on the HCU board, which stays on. Under normal
conditions, when user programs are being run, no red or green
LEDs should come on, apart from the green HCU LED, which
should stay on.

When dapet: starts running each element, the green LEDs on
all boards are turned on. During certain elements - in particular
the Array tests - if any boards are suspect, the relevant green
LEDs are turned off. In the example at the top of the previous
page the green LED on array board zero would be turned off.

The LEDs do not give any additional information to that
presented on the screen; however, the suspect board(s) are
highlighted by the absence of lit green LEDs, so physical
identification of the boards is made easier.

Control of the green LEDs is available to any priviledged
software; control of the red LEDs is only available at the
micro-code level. If you notice that any of the red LEDs come
on, you will also probably get a FATAL ERROR message, as
discussed at the start of this section.

man008.04 13

14

14

man008.04

AMT

Chapter 3

15

dapet advanced user commands

3.1 Introduction

This chapter describes the syntax for the advanced user
commands in dapet. These commands will normally only be
used by field engineers, but users who do their own
maintenance may find them of value.

The chapter also describes the advanced features of dapet,

which allow you a wider control over the calling of dapet and
the running of tests.

The commands listed in this chapter change the way in which
the DAP tests are run; any of the commands can be used
whenever the command prompt DAPET> appears. Before
you use any of the functions described in this chapter, you must
first load a test by using the 1o command (see page 8 for
details).

3.2 Options/qualifiers available when dapet is called

3.2.1 Under UNIX

select comms line

specify which version of dapet
to be loaded

specify that codestore not to be
initialised for every test

DAP Series: Engineering Test Software

The options introduced in version 3.1 of dapet allow you to:

® Switch to a 9600 baud serial line for DAP-host
communication, instead of using the normal SCSI
interface, if you suspect the interface to be faulty

® Specify which version of dapet is to be loaded. Versions
of dapet for DAP 500 and DAP 600 are held by the host;
if you issue a call to dapet the host loads the appropriate
version, referring to a suitable MCU address location to
find the edge size of the DAP. If the MCU has a serious
fault the wrong version of dapet might be loaded - the
welcoming message you see on the host screen once
dapet is loaded tells you which version is active. This
option gives a manual over-ride to the automatic selection
of the dapet version

» Specify that the DAP codestore is not to be initialised every
time a dapet test is loaded, to reduce the time needed
to load a test when a serial line is to be used for DAP-host
communication. Codestore is initialised from the host. The
time to initialise the codestore using SCSI communication
is a few seconds at most; with serial line communication,
it is more than 7 minutes, even for a 512 Kbyte codestore

man008.04 15

16

full call to dapet

use the options with care!

WARNING —
using /SERIAL slows dapet greatly

3.2.2 Under VAX/VMS

select comms line

16

Chapter 3: dapet advanced user comands

The full specification for a call to dapet is now:

dapet [-s] [-t dap_type] [-N]

where:

-s specifies that a 9600 baud serial line is to be used for
DAP-host communication. The default is that the SCSI
interface is used. If -s is not specified, but the SCS|
interface is not working, the host will try to use the serial
line, if there is one

-t dap-type specifies which version of the dapet
software is to be loaded, over-riding whatever would have
been loaded by default; dap-type can take either of the
values 5 or 6

-N specifies that the DAP codestore is not to be initialised
before a dapet test is loaded; the default is that
codestore is initialised before each test

You should only use these options with care; you will seldom
need to use any of them. Points to note are:

= If you specify ~N, you may find that dapet reports
FATAL errors incorrectly

= You should only use the ~t option if the wrong version of
dapet is announced in the dapet welcome message as
having been loaded. If the wrong version is loaded,
please let AMT know as soon as possible

Every time you load a dapet test, the host initialises the whole
of DAP codestore, via the DAP-host communication link
currently in use. If the parallel interface is used, this initialisation
takes a few seconds at most. If a serial line is being used for
DAP-host communication, the initialisation will take more than
7 minutes, even for a 512 Kbyte codestore.

You can now invoke dapet using one qualifier, which allows
you to: ’ :

® Switch to a 9600 baud serial line for DAP-host
communication, instead of using the normal parallel
interface, if you suspect the interface to be faulty

Set up the foreign command symbol dapet by typing at the
$ prompt:

S DAPET := S$DAPEThH

where n is 5 if you want to use dapet on a DAP 500, or 6 if
you want to use it on a DAP 600.

You can then invoke dapet with the command DAPET. Its full
specification is:

$ DAPET [/SERIAL]

man008.04 AMT

3.3: Defining the start and end-point of a test sequence 17

WARNING —
using /SERIAL slows dapet greatly

where /SERIAL specifies that a 9600 baud serial line is to be
used for DAP-host communications. The default is that the
parallel interface is used.

Before you invoke DAPET /SERIAL you must specify the
9600 baud serial line you want to use - by defining the logical

name DAP _SERIAL as the name of the serial device you want
to use.

Hence, if you want to invoke DAPET using device TTA2: as
a serial line, you would type:

$ DEFINE DAP_SERIAL TTA2:
$ DAPET /SERIAL

If you don't specify /SERIAL, the host will try to use the
parallel interface, but if that interface is not working, the host
will then try to use a serial line, if there is one.

You should only use the option with care; you will seldom need
to use it.

Every time you load a dapet test, the host initialises the whole
of DAP codestore, via the DAP-host communication link
currently in use. If the parallel interface is used, this initialisation
takes a few seconds at most. If a serial line is being used for
DAP-host communication, the initialisation will take more than
7 minutes, even for a 512 Kbyte codestore.

3.3 Defining thé start and end-point of a test sequence

3.4 Running one test element

DAP Series: Engineering Test Software

The command go defined in the last chapter, takes zero, one
or more parameters. The various forms of go are:

subtest_num

subtest_num element_num

start_sublest num start element_num
end_subtest num end_elerment_num

where the specified subtest and element numbers exist in the
test-you have loaded.

go on its own starts the test sequence from the first element of
the first subtest and works its way through all the subtests and
elements to the last element in the last subtest in the test. Other
forms of the command allow you to specify the start subtest

- and element, or both the start and end subtests and elements.

You can run just one test element, by issuing the command:
run subtest_num element_num

which runs only the subtest and element defined in the
command. As in all commands concerning test execution,

man008.04 17

18 Chapter 3: dapet advanced user cormnands

before you run part of a test you must first have loaded the
whole test (see 1o on page 8).

If either the subtest or element you invoke does not exist, then
the system would return an error message similar to:

subtest 3,element 66 not found.
Invalid arguments given for command "RUN" ;

3.5 Changing the effect of error detection

Normally when a fault is detected test execution stops and
control is returned to you, which is what you usually want.

However there are times when you might find it useful for the
testing to continue, perhaps when you are running a test where
many elements fail. You might also want to run through the
whole test, saving any error messages into a file you have set
up with a save filename command (see page 5 for details).

The command you would use is :
trap parameter
where parameter can take one of four values:

parameters to trap = all -~ the default option, active whenever you enter
dapet. If all is active, any error stops the execution of
the current test element, and returns control to you

» fatal - stops the testing only when a fatal error
occurs. If this option is in force only serious problems will
stop the testing

B none - no error stops test execution

= ? - displays the current trap status, giving a message
such as:

[Trap option is : FATAL T j

Note that all error messages are displayed on the host screen,
whichever option is in force.

3.6 Running a test sequence repeatedly

Sometimes you might need an element, a sub-test, or an entire
test to be executed repeatedly, for example when you suspect
that there is an intermittent fault in the DAP. To carry out this
test repetition you would use the command rep. You can use
Zero, one or two parameters to the basic command:

subtest_num
r subtest_num element_ num}

18 man008.04 AMT

3.7: Running the automatic test sequence

19

Execution stops only when you type <CONTROL-C>, or if an
error specified by the trap command occurs. rep with no
parameters runs the entire loaded test repeatedly. If you
specily a subtest_num, the selected subtest is executed

repeatedly. If you specify both parameters, the selected
element is executed repeatedly.

3.7 Running the automatic test sequence

You can run the automatic test sequence repeatedly, by issuing
the command:

autocycle

Execution will continue until you type <CONTROL-C>, or a
trap-specified type of error occurs. You can also use the
commands next, exit and cont; they act in the same way
as when used with auto (see page 8 for details).

3.8 Changing the master PE bank

DAP Series: Engineering Test Software

The DAP PE array has two identical processor banks, A and
B, either of which you can set as the master bank, the other
bank being the slave. Most of the array test elements exercise
only the master bank, so unless you test the slave bank you
may not detect a fault init. dapet has a command which lets
you specifiy which bank is to be master, letting you test both
banks. The command is:

master bank_name

where bank_name may be either A or B. Bank A is the master
when the test environment is entered.

You only need to test both banks when you are running a test
involving the array; currently only test 5 on the menu (see
page 7 for details of the menu). When you use the auto or
autocycle commands (see pages 8and 19 for details) array
testing is done twice automatically, first with bank A, then with
bank B.

man008.04 19

20

20

man008.04

AMT

Chapter 4
Contacting AMT

DAP Series: Engineering Test Software

21

If the test software reveals a problem with the DAP that you
cannot resolve, you may wish to contact AMT.

Your contact point with AMT will be your local AMT Service
Desk. At the moment AMT Service Desks, and the areas they
serve are:

United States of America:

Active Memory Technology Inc
16802 Aston St Suite 103
Irvine

California, 92714

USA

Telephone:

+1 714 2618801 (for international callers)
(714) 2618801 (for callers in the US)
1 800 2884268 (toll-free, outside California)

Contact
Customer Services Manager

Europe and the rest of the world:

Active Memory Technology Ltd
65 Suttons Park Avenue
Reading

Berkshire RG6 1AZ

UK

Telephone:

+44734 661111 (fdr international callers)
0 734 661111 (for callers in the UK)

Contact.
AMT Service Manager

When you contact AMT, the fault resolution process will be
speeded up if you have the following information to hand:

= A completed DAP PROBLEM report (copies were
supplied with your DAP; extra copies are available from
your local AMT Service Desk)

= The name and exact location of your site

» The nature and urgency of your DAP problem

= A printout of the failing test run (see save on page 5)
= Any other information relevant to the problem

man0Q08.04 21

22

22

man008.04

AMT

Section |l

Using dapet to diagnose faults

23

24

Chapter 5

25

dapet engineer’s commands

51 Introduction

5.1.1 Image store
and memory map

byte and word address 0
HCU h
MCU control
array control

tt s

code memory \. Lr{:)arge

spare
fast I/O control
s;?are y

Pt

«— array memory

t

spare

This chapter describes the syntax of the engineer's commands
in dapet. You are assumed to be familiar with the internal
workings of the DAP, and with the terminology used to describe
it. Appendix C to this manual gives the physical locations of
the various array boards and array memory boards, and some
of their chips, so that you can interpret the hardware diagnostic
information dapet gives you.

The engineer's commands allow you to access and control
every part of the DAP, including all control and data registers,
and all of the system’s memory. They are powerful commands,
and should be used with care!

Although it is unlikely that you would damage the DAP
hardware by using these commands, you could alter system
configuration registers and stop the machine” from working
properly. If this happens, turn off the DAP, switch it back on
again and execute dapet. The problem should now be
cleared.

The DAP hardware includes many control and data locations
(for the HCU, MCU, array, and fast |O) which you can access
via dapet as you would normal memory. These locations,
together with the code memory, are referred to here as image
store, to distinguish them from the data memory associated
with the DAP array - the array memory. The sketch in the margin
gives you a rough not-to-scale picture of the memory map of
a typical DAP. To use the industry-standard jargon, the DAP is
a memory-mapped computer.

Word length in the DAP is 32 bits, and both word addresses
and byte addresses can be used when accessing memory.
Usually, when you are dealing with a particular part of the
image store, say for MCU control, you specify addresses
relative to the start of the MCU control part of memory, for which
word addresses are used. Occasionally there is a need to use
absolute addresses, which are given in bytes.

Access to image store is always to a single word (32 bits);

«— maximum possible byte address 2721 2CCESS to array store is either to a complete row (one word

word address”

2*-1 on DAP 500, two words on DAP 600), or to a complete

plane.

5.1.2 Groups of commands

PE and array plane commands

image store commands

5.1.3 Syntax conventions used

5.1.4 Input of numeric values to
commands

Many of the commands in dapet fall into groups. For example,
the commands wax, wex, wgx and wsx are cases of the
command wnx; dia, dic, dif, dih and dim are cases of
the command din. The groups of commands are discussed
in the sections that follow.

The meaning of the different possible values for nand inin
the various commands are:

= |fn= a, the command is concerned with the ‘A’ plane
s [fn= ¢, the command is concerned with the ‘C’ plane
» [fn= q, the command is concerned with the 'Q’ plane

s |f n= s, the command is concerned with an array
memory plane

® |fin= ia, the command is concerned with the array
control part of image store

s Ifin = ic, the command is concerned with the code
memory part of image store

w |fin=if, the command is concerned with the fast |/O
control part of image store

m {fin= ih, the command is concerned with the HCU
control and data part of image store

s |f in = im, the command is concerned with the MCU
control part of image store

The following syntax conventions are used in this chapter (and
elsewhere in the manual):

[} The item(s) enclosed in square brackets are optional.
If included one and only one may be present

{ } One and only one of the items enclosed in braces must
be specified

The item preceding the eHipsis‘ may be repeated zero
or more times; that is, the item may occur one or more
times

Uniess otherwise stated in the sections that follow, any numeric

values you input to dapet commands can only be expressed
in hexadecimal notation. A hexadecimal prefix should not be

. used.

Some commands expect input values in a specific range; for
example, some will expect as input a row address, or a value
to be held in a row or word. In some cases the range they will
accept depends on the DAP edge size. If you try to input a
value greater than the relevant fimit you will get an error
message.

5.2 Image store write and display commands

Two groups of dapet commands allow you to write to or
display the contents of various parts of image store.

To access part of the memory, you specify an address relative
to the start of the section of memory you are concerned with.
For example, if you want to access part of code memory, then
the address you supply is relative to the start of code memory.

Inthe caseof dif and wif, the addresses are relative to the
image store address associated with the fast 10 coupler
specified by the most recent sfio command (see
section 5.7 on page 34 for more details), or to coupler 0 if no
such command was issued. '

5.21 dia, dic, dif, dih, dim dia,diec, dif, dih, and dim display the contents of image
store. The usage is :

di addr [count]

=2 T I]

m

where addr is the word address of the start of the area to be
displayed; count words are displayed, each with its
corresponding address. If count is not specified only the word
at location addr is displayed.)

5.22 wia, wic, wif, wih, wim wia, wic, wif, wih, and wimwrite toimage store. The usage
is:
a
o]
wi £ addr val [count]
h

m

where adar is the word address of the memory location t6 be
written. If count is a valid hexadecimal number, then val will
be written count times in consecutive word locations. If count
is not a valid hex number, or is not given, then val is written at
adadr only.

5.3 PE and array write and display commands

In a DAP program you can both read from and write to any of
the 3 processor element planes A, C and Q, although the DAP
instruction set only caters for accessing a complete plane ata
time. '

WARNING! For dapet to operate on such a plane, it copies across the
whole of the relevant plane into a work area in array memory,

PE plane access only indirect ... then carries out your instructions on that copy. If you specified
a write - either to a single row, or to the whole plane - the
relevant part of the copy plane is changed, and the whole copy
plane copied back to the processor element plane.

The work area is 3 planes deep, and by default sits at the high
address end of the array memory, although the setstore
command (see page 34 for details) allows you to move the work
area to another location in the array memory.

_DA[-’ 600 edge register access also Similarly, on DAP 600 dapet can only access the edge
indirect ... register by copying itinto a row in the work area, and operating
on the relevant row in that plane.

... SO you might see misleading One point to note is that when you issue an access-PE plane
effects command, you are not accessing the required plane, but a
copy of it. A hardware fault in the work area in array memory,
orin the DAP instruction decode circuitry could make you think
that there was a hardware fault in a PE plane, or — only in a
DAP 600 - in the edge register. Make sure that you have run
the dapet auto test suite before you try to access PE planes
or the DAP 800 edge register.

5.3.1 Use with DAP 500 and Although the array row lengths in DAP 500 and DAP 600 are
DAP 600 different, the only difference between the row write to and read
commands for the two rarges of machine is the maximum size

of the arguments to the commands. The only groups of dapet

commands affected by this difference are those coveredin the

two sections immediately following this one: sections 5.3.2 and

533
5.3.2 Rowread - dax, dex, dgx, dax, dex, dgx, and dsx display processor element plane or
dsx array memory rows. The usage is :
a
d /] ¢ | x row_num
q

dsx plane_addr row_num

where row_num and plane_addr are. appropriately-sized
hexadecimal values, expressed without a hexadecimal prefix.

DAP 500 On DAP 500 row_num should lie between 0 and 1F
DAP 600 On DAP 600 row_num should lie between 0 and 3F

dsx displays row row_num of an array merﬁory plane with
plane address plane_adar.

5.3.3 Row write —~ wax, WCX, WqX, wax, wex, wax, and wsx write to pfocessor element plane
wSX - rows or array memory rows. The usage is as given at the top
of the next page.

DAP 500

DAP 600

5.3.4 Planeread -da, dc, dq, ds,
dao, dco, dqo, dso, daf,
- dcf, dgf, dsf, daof, dcof,
dgof, dsof

5.3.5 Plane write — wa, wc, wg, ws,
waf, wcf, wqf, wsf

a
w c x row_num val
q

wsx plane_addr row_num val

where row_num and val are appropriately-sized hexadecimal
values, expressed without a hexadecimal prefix.

On DAP 500 row_num should lie betwen 0 and 1F; val is -
stored as a 32-bit number.

On DAP 600 row_num should lie betwen 0 and 3F; val is
stored as a 64-bit number.

wsx writes value val to row row_num of an array memory
plane with plane address plane_addr.

da, dc, dq ds, dao, dco, dqo, dso, daf, dcf, dqf, dsf,
daof, dcof, dgof, and dsof display processor element
planes or array memory planes. The usage is:

d c (o] option]

£ [option] filename

ds[o] { plane_addr [option] }
£ plane_addr [option] filename

where an option selection of ' or ‘B’ will display the plane
contents in binary. ds will display the array memory plane at
address plane_addr. Tne o option in the command name
specifies the planes to be displayed orthogonally (that is, each
line of data on the screen contains one collmn of data from the
memory).

The £ option specifies that the displayed plane’s contents are
also to be saved to a file in the current directory with name
filename. Under VMS, unless you specify a file extension,
. LIS will be added to your supplied filename. These files of
the contents of planes can be used as input to the commands
waf and so on, described in the next section, or as input to

various dapet macro commands (see chapter 6 on dapet
macros, starting on page 39).

wa, wc, wq, ws, waf, wef, wgf, and ws£ write to processor
element planes or array store planes.

The usage is as given on the next page.

under VMS: default file type

5.3.6 Inhibit read after write

54

Use of absolute addresses

a
val
v € {f filename}
q

s plane_addr val
£ plane_addr filename

If option £ is specified, then data is read from the file filename
in the current directory, the first ‘row’ in the file to the first row
in the plane, second row to second row, and so on until either
all the rows have been written or the data is exhausted - a ‘row'
in afile is the same as a row in array memory: two words {each
of 32-bits) for DAP 600, one word for DAP 500. The contents
of any array memory row not written to are unaffected.

Under VMS, if you do not supply a file type with filename, VMS
will look for filename with type . DP5 (if used on a DAP 500) or
.DP 6 (on a DAP 600).

If £ is not specified, val is written to every row of the specified
plane. The information being written to the plane is also
displayed on the host screen.

Normally when you specify a write command - such as wim -

dapet reads what it has just written, and sends the result back
to your screen, allowing you visually to verify your write.

On occasions you may not want the read-after-write — for
example, when you are synchronising an oscilloscope to the
write, and don't want the display to be corrupted by the effects
of the read. . '

The disp command allows you to switch off this read. The
usage is:

e 1

where 0 specifies read-after-write (the default), 1 specifies
inhibit read-after-write. '

As suggested in the introduction to this chapter, the commands
insections 5.2 and 5.3 above all use addresses that are relative
to the start of some area of DAP data or control memory. You
will find that these commands are enough for most of your
needs. Occasionally you may want to use absolute memory
addresses, for which you would use commands dm and wm.

Different parts of the DAP hardware have different views of the
DAP memory. The format for dm and wm is as seen by the HCU
(thatis, as seen by the host); byte addresses are used with dm
and wm .

5.4.1 dm, wm dm displays the contents of image store at specified absolute
addresses. The normal use of the command is to display HCU
or MCU memory locations. The usage is

dm addr [count]

where the starting location is addr, specified in bytes. if no
count is specified, then one word (4 bytes) is displayed. If a
count is specified, then count words are displayed. addr
should be a multiple of 4, so as to specify an address starting
at a word boundary. The system will let you specify a
non-multiple-of-4 addr, but the result may not be meaningful.

wm writes to image store at specified absolute addresses. The
normal use of the command is to write to HCU or MCU memory
locations. The usage is :

w addr vall [val2]. . .

which writes the hex values val1, val2 and so on, to memory
locations as words starting from hex adar, specified in bytes.
Value val1 is written to location addr; if val2 is specified, it is
written to location (addr+4), and so on, until the list of values
is exhausted.

As with dm, addr should be a multiple of 4, so as to specify
an address starting at a word boundary. The system will let you
write to a non-multiple-of-4 addr, but the result may be
unpredictable.

5.5 Display and alteration of system registers

There are many hardware registers in the DAP MCU, 25 of
which are available to you to inspect and change. The names
and hex numbers by which these 25 registers are known are:

MO 0
M1 1
Mi3 D
MP F
CDATUM 10
CLIMIT 11
ADATUM 14
ALIMIT 15
DOSTART ' 16
DOCOUNT 17
DOITER 18
DOLEN .19
DOLOC 1A
PC 1B

JLOG 1E

edge register ME - different on
DAP 500 and DAP 600

on the '500
on the '600
5.5.1 regs
552 mreg
55.3 rreg

Apart from the edge register ME, the registers missing from the
list, for example registers 12, and 1C, are either reserved or
as yet undefined.

The edge register is in a special category, in that it is
implemented differently on the DAP 500 and DAP 600.

On the DAP 500, ME is located on one of the MCU boards, and
can be accessed just like any of the 25 registers mentioned
above, with a hex reference number of E:

ME E

The commands regs, mreg and rreg (see below for
details) allow you to access ME in the same way as you access
the 25 MCU registers listed above.

On the DAP 600, ME is not located in the MCU and cannot be
accessed in the same way as the MCU registers; commands

wedg and redg (see below) give you access to ME on the
DAP 600.

You can inspect the contents of the 25 MCU registers (and ME
on a DAP 500) with the regs command; it takes no arguments.
Use redg to read a DAP 600 ME.

mregq allows you to alter one of the 25 MCU registers (and ME
on a DAP 500). The usage is:

val

mreg { reg__name}

reg. num

which writes the value val (interpreted as a hex number) to
MCU register reg_name, where reg_name is one of the 25
names (26 on DAP 500) given above. reg_num may also be
used to identify the selected register; the value you input is
interpreted as a hex number. Use wedg to write to the DAP 600
ME (see below).

For mregq to have any predictable effect, the MCU should be’
in an idle state (see mstop on page 33) before you issue
mregq; if the MCU is not idle when mreg is issued, then the
effect on the selected register, and on the work the MCU is
doing, is unpredictable.

rreg reads a specified MCU register. The usage is:

reg_name }

rmg{ reg_num

which displays the value in the specified register. The usage
of reg_name or reg_num is the same as in mreg (see
section 5.5.2 above). To have a predictable effect, the MCU

should be in anidle state (seemstop on the next page) before
you issue rreg. Use redg to read a DAP 600 ME.

5.5.4 redg- DAP 600 only redg lets you read the contents of the DAP 600 edge register,
and displays its contents as a 16-digit hexadecimal number.’
The usage is:

redg

It takes no arguments. Note that the command uses indirect
access to the register (see section 5.3 on page 28) and may
not work correctly if there are faults with MCU instructions in

group 2 (raw, rax, rsfo], rw[o], rx[o]) or group 6 (sx[n],
xr(n)], wrin]).

5.5.5 wedg- DAP 600 only wedg lets you write a 64-bit value to the DAP 600 edge register.
The usage is:

wedg val

where val is a value expressed, without hexadecimal prefix, in
up to 16 hexadecimal digits.

Note that the command uses indirect access to the register
(see section 5.3 on page 28) and may not work correctly if there
are faults with MCU instructions in group 2 (raw, rax, rs[o],
rw(o], rx[o]) or group 6 (sx[n], xx(n], wr[n]).

5.5.6 asstate — DAP 600 only The hardware Array Support unit, only present in the DAP 600,
has various reflect and status registers, and dapet lets you

inspect their contents, using the asstate command. The
usage is:

asstate .

It takes no arguments.

5.5.7 Jjlog jlogdisplays the most recent 32 entries in the MCU jump log;
the command takes no arguments.

5.5.8 pestate In additon to the MCU and array support registers discussed
above, you can inspect the contents of control registers
associated with the array. pestate displays the MCU reflect
registers, the PE master-slave error status registers, and the
PE parity status registers; the command takes no arguments.

5.6 MCU control commands

5.6.1 mstop mstop stops the MCU and puts it in an idle state; the
command takes no arguments.

5.6.2 mstart . mstart starts the MCU; the command takes no arguments.
Execution starts at the program counter value and machine
state defined by the register PC (listed in section 5.5 above).

5.6.3

5.6.4

5.6.5

5.7

eint

dint

eint sets the interrupt enable flag. Each test element checks
the flag at the start of element execution; if the flag is set, all
interrupts are enabled while the element is running. Interrupts
are disabled by default, and are disabled at the end of each
element. The command takes no arguments.

Some elements that test interrupt handling enable interrupts
regardless of the state of this software interrupt enable flag.

dint resets the interrupt enable flag to its default disabled
state. The flag is read at the start of each test element
execution; if the flag has been reset to zero no interrupts are
enabled. The command takes no arguments.

When you enter dapet the interrupt enable flag is disabled.

- When you use the auto or autocycle commands,

setstore

Specifying the FIO coupler

the sfio command

interrupts are enabled at the start and disabled at the end of
the auto sequence. There is no automatic enabling of interrupts

when you load and run tests individually; you can choose
whether or not you use eint.

setstore sets processor elementaccess planes. The usage
is:

setstore plane_addr

In order to access PE planes for writing and reading, 3 array
store planes are used as work areas. By default, these work
areas are set to the last 3 planes in array store. See section 5.3
on page 28 for a discussion on the use of these planes.

The setstore command allows you to change the location
of the first of these working planes to the address plane_addr.

The sf£io command lets you specify which fast 10 coupler is
to be selected for testing. The default is that coupler O is
selected.

dapet commands and programs that operate on the
sfio-specified coupler include:

s dif and wif commands (see sections 5.2.1 and 5.2.2
on page 27)

» Test programs that exercise FIO couplers
The usage is:
sfio fio_coupler_number

where fio_coupler_number is a value in the range 0 to 3, or is
the symbol ?. If a value in the range O to 3 is used, the
corresponding FIO coupler is selected; if ? is used, the

5.8

5.8.1

5.8.2

command returns the number of the coupler already selected
- whether by use of sfio or by default.

sfio causes bits 28 and 29 of the switch word (see
section 5.9.3 on page 38) to be loaded with the specified
coupler number, so individual dapet test elements can read
the selected coupler number, and so use the appropriate
image store address to access the coupler.

HCU task control commands

Loading VRTX tasks

Under UNIX
Under VAX'VMS

loading VRTX tasks

vun

VRTX is the multi-tasking environment which runs on the HCU,,
and controls all the system and user-generated tasks run by
the HCU. The commands discussed in this section give you
some control over both user-generated and system tasks.

You use the same command to load VRTX tasks as you do to
load a dapet test:

lo task_name

loads the task in file task_name, where the specified file name
includes, as usual, as much of its full path name as is needed
to locate the file.

Under UNIX the file must have an extension of . heu, but you
must not specify one in task_narne.

Under VMS, you can specify a file-type in task_name. If you
don't supply one, VMS will look for a file with file-type of . BCU.

Once loaded, the system assigns the task a VRTX task number,
task_id. Although the task is then known to the HCU as both
task_id and task_name, you get better control if you refer to it
by its task_name; you also get more information fromthe report
commands ving and vstat if you use task_name. If you do
use fask_id, then the system will not carry out any error
checking.

In all the commands that follow in this section only task_name
is used, although task_id will evoke a similar response.

A task's initia) status is DORMANT

vrun runs a user-generated dormant VRTX task. The usage
is:

vrun fask_name

where task_name is the name by which you identified the task
to the HCU. If vrun is successful, the task’s status is changed
to RUNNING.

5.8.3 wsus vsus suspends a running user-generated or system VRTX
task. The usage is:

vsus f(ask_name

where task_name is the name by which you identified the task
to the HCU.

The status of the task must be RUNNING for the command to
have any effect, in which case the task’s status is changed to
SUSPENDED.

5.8.4 vres vresresumes a user-generated or system VRTX task after you
have suspended it. The usage is:
vres lask_name

where task_name is the name by which you identified the task
to the HCU.

The status of the task must be SUSPENDED for the command
to have any effect, in which case the task's status is changed
to RUNNING.

5.85 wvdel vdel deletes a user-generated VRTX task from the
system-held list. The usage is:
vdel task_name

where task_name is the name by which you identified the task
to the HCU.

If the task’s status is RUNNING or SUSPENDED, then the HCU
task is deleted, and system knowledge of the task is removed.

If the specified task’s status is DORMANT, the command has
no effect.

5.8.6 wvstat vstat displays the current status of all the user-generated
HCU tasks loaded in the current session. Also listed for each
task are the task name, id and priority; and the load address,
size and entry point. The usage is:

vstat

It takes no arguments. Note that vstat only knows about
items loaded in the current session. Tables within dapet are
. searched, but the HCU is not interrogated by this command.

5.8.7 ving ‘ ving requests the status of a user-generated or system task
from the VRTX executive. The usage is:

ving task_name

where task_name is the name by which you identified the task
to the HCU.

ving will give a more accurate and detailed status of a
particular task than will vstat.

588 wvpri vpri changes the priority of a user-generated VRTX task. The
usage is:

vpri task_name priority

where fask_name is the name by which you identified the task
to the HCU.

vpri will alter the priority of a VRTX task to priority, where
priority is an integer in the range O to 255. Task priority
increases as the value in priority decreases.

5.89 qclr : gelrx clears one of the message queues controlled by VRTX.
The usage is: .

qclr gid

which clears the specified VRTX message queue qid.

5.9 Altering test element parameters

The design of dapet allows you to supply run-time
parameters to a test element, although no elements that accept
parameters have yet been released. The rest of this section
documents the way you will be able to change the parameters
for these yet-to-be-announced tests. More detalls of the way
these parameters will be used will be released later.

59.1 setp The user-modifiable tests refer to a 64-word internal parameter
table for their detailed control. The default contents of the table
is all-zeros, but you are able to use the command to insert your
own values in 63 of the words in the table, or to inspect the
contents of any of the words.

The usage is:

address value
setp { }

?

setp address value writes value to the table at location
address. Both value and address must be expressed in
hexadgcimal; address must be in the range 1 to 3f.

setp ? displays the contents of all 64 words in the table.

59.2 clrp . You are able to clear words 1 to 63 in the table by using the
command:

clrp.
Word O is not affected.

593 sw

altering switch word bits

5.10 Cycling a test element

Word O in the parameter table is used as a switch word. You
have access to the first 24 bits of that word, to allow you to pass
information to the test, information which the test can use to
control its execution.

The-command:

SwW

displays the contents of the switch word. Only bits 0 to 23 are
displayed; the others are reserved for system use and are not
accessible to you via the sw command.

The command:
on bit position

sets the specified bit position in the switch word to binary 1;
the bit position must be expressed in decimal and must be in
the range 0 to 23.

The command:
off bit position

sets the specified bit position in the switch word to binary 0;
the bit position must be expressed in decimal and must be in
the range O to 23.

The commands autocycle and rep described in
section 3.7 (page 19) and section 3.6 (page 18) run the full
test sequence or individual test elements repeatedly, and will
output an error message whenever an error occurs.

If you are carrying out hardware fault analysis using an
oscilloscope or logic analyser, you will sometimes need to run
a specific element continuously, and to have all error messages
suppressed. dapet provides this facility for any DAP based
test element with the command:

cycle subtest num element_num

where subtest_num and element_num are the subtest and
element number of the element you want to cycle.

Only a <CONTROL-C> will stop this command:; if you try to
cycle a host-based test, an error will be flagged.

6.1

6.2

39

Chapter 6

dapet macro commands

Introduction

This chapter describes the syntax for the macro commands in
dapet.

dapet macros are much the same as macros in other
command languages. You can write your own macros to carry
out specialised tests, using commands which are described
in this chapter, or using system commands, or using both;
system-defined commands are those described in chapters 2,
3and 5.

The commands described in this chapter aliow you to load,
store, compare, branch, jump, display, and carry out various
logical functions. :

Once you have written a macro, you store it away as an ordinary
ASCl! file. The macro can then be used in the same way as any

other dapet command. A user-written macro can call other
user-written macros.

The macro language is interpretive; detailed constraints on
macros are given below.

The engineering test macro environment

Detailed features of dapet macros and the way they are used
are:

» Macros are assumed to be in the current directory
= There are two ways of calling a macro:

o Atthe DAPET> prompt, type the name of the macro,
followed by the values of any macro parameters the
macro might need. For example:

L DAPET> mymacroname [any_macrb) parameters |

would call macro mymacroname, using any
parameters that might be specified in the call

o At the DAPET> prompt, type the command ma;
followed by the name of the macro and any
parameters the macro might need. For example:

[DAPET> ma mymacroname [any _macro_parameters]

DAP Series: Engineering Test Software man008.04 39

40 Chapter 6: dapet macro commands

The way in which you specify a macro name varies with
the host operating system.

calling macros under VMS Under VMS, dapet will accept a filename complete with
file-type, butif you do not specify one, . DM5 (for DAP 500)
or .DMé6 (for DAP 600) is assumed by default.

under UNIX Under UNIX, you must not specify any extension, as . DM5
(for DAP 500) or .DM6 (for DAP 600) is added after
whatever you type. For example, if you are on a DAP 600
and you type frieda.dm6, dapet will look for file

frieda.dm6.DM6, and will report an error if it cannot
find it!

32-bit holding registers, ho to h7 » 8 internal 32-bit holding registers (variables) are defined
and are allocated the names h0 to h7. hO is a special
read-only register and always contains the result of the last
row read from DAP array memory

8 holding planes, po to p7 s 8internal holding planes are defined and are allocated the
names p0 to p7. Holding planes contain a copy of one
plane of the array. On DAP 500 these holding planes are
organised as 32 rows, each of one 32-bit word: on
DAP 600 they are organised as 64 rows, each of two 32-bit
words. You can load a holding plane from a file. You can
also load a holding plane from an array memory plane,
and vice versa, but cannot write to a file from a holding
plane (except via an array memory plane). The only test
you can specify on holding planes is an equality test. p0
is a special read-only plane and always contains the result
of the last read from a DAP array plane

labels » For control purposes within a macro you can have up to
10 labels; they may be used in any part of the macro.
Execution passed by a jump instruction will start on the
line immediately after the label. See section 6.3.3
(page 45) and section 6.3.4 (page 45) for details of how
labels are used.

There is an extra label, ERRLAB; system control jumps to
ERRLAB whenever an error occurs in 3 complex macro ’
commands (wrtsti, wrtste, andmechk), so if you use
any of these 3 commands you should have some code
starting at ERRLAB to handle any errors. If you are not
using any of these commands, you can use ERRLAB as
a gereral purpose label

loop variables = There are 10 independent loop variables, which you can
use in the normal way, to carry out a set of instructions
several times. You can nest loops to the full depth of 10.
See section 6.3.4 (page 45) for details of how loop
variables are used

macro nesting » You can nest macros to a depth of 5; if you try to nest them
beyond 5, execution of all the macros will stop, and you
will be returned to command level

40 man008.04 AMT

6.3: User-accessible macro commands ‘ 41

= All variables (holding registers, holding planes, loop
variables, and labels) are specific to the current level of
macro

s You can use up to 3 parameters to a macro command; if
they are used, holding registers hl, h2 and h3 are
initialised at the beginning of the macro to the actual
parameter values. You can use these parameters to
specify how the macro is to run, or perhaps for how long
it is to run

user-written macro names = User-written macro names can be up to 12 characters
long. Because each macrois stored in a file with the same
name as the macro itself, your host operating system
defines which alpha-numeric characters you can use in
the name.

You are advised not to give a macro the same name as a
dapet command or macro command (listed in this
chapter, and in appendix A starting on page 51). If you do
use such a name, then you must use the ma command to
call the macro (see section 6.2 on page 39)

» You can only have one command per line of macro text.
Blank lines are ignored, as will lines beginning with a *!".
~ You can use these ! lines for comments - as in:

I this is is comment

An example of a typical macro is given at the end of this
chapter.

6.3 User-accessible macro commands

The dapet macro command language uses symbolic names
for the system macro commands; a typical command might
be:

ld p3 pé6

which loads into holding plane p3 the contents of holding
plane p6. '

All numeric values are assumed by the macro command
interpreter to be hexadecimal, unless stated otherwise below.

6.3.1 Load and store commands In the following description of the commands, hn, hn7and hnz2
represent any of the holding registers hl to h7, and hm, hm1
and hmzrepresent any of the registers h0 to h7; pn represents
any of the holding planes p1 to p7, and pm, pm1 and pm2
represent any of the planes p0 to p7.

1d-load) 1d hn hm
hn val

load into register hn the contents of register hm, or the value
val. .

DAP Series: Engineering Test Software manQ08.04 41

42

filenames under VAX/VMS

filenames under UNIX

Id and Idii/ldic specify their argu-
ments differently

st — store

clx - clear all registers/planes

st co - store 4 instructions

42

Chapter 6: dapet macro commands

14 [P Pm
pn file
load into plane pn the contents of plane pm, or the contents o

file file. ’

Under VMS, the default file type for fileis . DP5 (on DAP 500),

or .DP6 (on DAP 600), although you can supply any file type
you like.

Under UNIX, you must not supply an extension to file, as UNIX
will add .dp5 (on DAP 500) or .dp6 (on DAP 600) to
whatever you specify in the command.

1dii hp1 hn2

load into register hn2 from the part of image store pointed to.
by register hn1.

ldic hn1 hn2

load into register hnz from the part of code memory pointed to
by register hn1.

Note the order of arguments in both 1dii and ldic: the
receiving register is specified in the second argument; in Id the
receiving register is specified first.

hn1 hn2 }

stii { hn1 val

store in the part of image store pointed to by register hn1 the
contents of register hnz or the value val.

hnt hnz}

stic { Fnt val

store in the part of code memory pointed to by register hp 1 the-

contents of register hnz or the value val.

clrh

clear all holding registers, that is, including register hO.

clrpl

clear all holding planes, that is, including plane p0.

stco hn vall val2 val3 vald

man008.04 AMT

6.3: User-accessible macro commands

write-and-test commands

mset - set all MCU registers

on DAP 500 only

mchk — check a register

DAP Series: Engineering Test Software

43

write 4 instructions whose machine code values are vall, val2,
val3 and val4 into DAP code memory, starting at the location
pointed to by register hn.

wrtsti hm val

write value val to image store location pointed to by register
hm (using code similar to that used in st ii), read that location
(using code similar to that used in 1di i), check if the result of
the read is the same as the input to the write, if not jump to label
ERRLARB.

wrtste hm val

write value val to code store location pointed to by register hm
(using code similar to that used in stic), read that location
(using code similar to that used in 1dic), check if the result of
the read is the same as the input to the write, if not jump to label
ERRLAB.

mset

set into each mcu register (m0 to m13, mp; me on DAP 500
only) an appropriate bit pattern. (You would use command
wedg to set the DAP 600 edge register - see page 33).

The registers and the bit patterns in each of the registers after
mset has been run are:

m0 . AOAQACAQ
ml ATATA1A1
m2 A2A2A2A2
ml3 ADADADAD
me AEAEAEAE
mp AFAFAFAF

h
mchk { m }

val

check the bit pattern in the specified MCU register against the
bit pattern that should be loaded into the register by the mset
command; the register is specified by the contents of hmor the

value val, jump to label ERRLAB if the bit patterns are not the
same. :

You can use mchk to check the DAP 500 edge register; you
would use command redg to read the DAP 600 edge register
(see page 33).

manQ08.04 ‘ 43

44

6.3.2

44

Arithmetic and logical
commands

add

sub

shl

shr

Xor

and

or

not

Chapter 6: dapet macro commands

hn hm
add{ hn val }

add the contents of register hmor the value val to the contents
of register hp and put the result back in hn.

hn h
sub{nm}

hn val

subtract the contents of register hm or the value val from the
contents of register hn, and put the result back in hn.

hn hm
shl {hn val }

planar shift left s times the contents of register hn, where sis
the contents of register hm or the value val.

Note, dapet has no cyclic shift left command.

hn hm
shr{ hn val }
planar shift right s times the contents of register hn, where s is

the contents of register h- or the value val. .

Note, dapet has no cyclic shift right command.

hn hm
xor{ hn val

EXCLUSIVE-OR the contents of register h, with the contents
of register hm or the value val, and put the result back in hn.

hn hm
and { hn va/}
AND the contents of register hn with the contents of register
hm or the value val, and put the result back in hp.

hn bm
or hn val
OR the contents of register hn with the contents of register hm
or the value val, and put the result back in hp.

not hn

carry out a one's complement on the contents of register fp
and put the result back in hp.

man008.04 AMT

6.3: User-accessible macro commands

6.3.3 Compare and jump
commands

Jmp

jeq

jpa

jne

j1t

jgt

6.3.4 Looping and labels

label

errlab

setloop

DAP Series: Engineering Test Software

45

jp /ab
jump unconditionally to label /ab.

. hm1 hme lab
Jeq { hm1 val lab }

jump to label fab if the contents of register hmy are the same
as the contents of register hmz or the value val.

jpqa pmi pm2 lab

jump to label /ab if the contents of plane pm7 are the same as
the contents of plane pmg.

. hm1 hmz lab
jne hmi val lab

jump to label /ab if the contents of register hm7 are not the
same as the contents of register hmz or the value val.

. hm1 hmz lab
jlt{ hm1 val lab }

jump to label /ab if the contents of register Amy are less than
the contents of register hmz or the value val.

. hm1 hma lab
gt {hmyval lab }

jump tolabel /ab if the contents of register hm1are greater than
the contents of register hmz or the value val.

label /ab

insert label lab.

errlab
insert label ERRLAB,

loop h
setloop {/ZZZ v:/}

set the /oop”’ loop variable with the contents of register Am, or
with the value val (value expressed in decimal). '

man008.04 45

46 Chapte(6: dapet macro commands

decijnz decijnz loop lab

decrement the /oop”’ loop variable by 1, and jump to label lab
if the loop variable is not zero.

6.3.5 Display commands

dsh dsh hm

display the contents of register hm.

dsp dsp pm

display the contents of plane pm.

msg msqg text
print the text string text.

After text is dislayed, execution of the macro is suspended
and the prompt:

MACRO>

is displayed. You can resume execution by typing cont, then
pressing the RETURN key. instead you can abandon macro
execution and return control to dapet, by typing
<CONTROL-C> (or <CONTROL-Z, on VAX/VMS hosts only).

text text fext
display the text string text.

6.3.6 Program control commands

pause pause

pause in the execution of the macro.

When pause is obeyed, the macro execution is suspended
and the prompt:

MACRO>

“is displayed. You can resume execution of the macro by typing
cont, then pressing the RETURN key. Instead you can
abandon macro execution and return control to dapet, by
typing <CONTROL-C> (or <CONTROL-Z>, on VAX/VMS hosts
only).

46 ' man008.04 AMT

6.4: Macro commands available at command level 47

exm

debug

deboff

mdir

under UNIX

under VMS

exm

exit the macro, and return to the next higher level of macro, or
to the command level.

debug

turn debug on (displays all macro statements before they are
executed).

deboff
turn debug off.

mdir
under UNIX, display the names of all accessible macros in the
current directory.

mdir(typ]

under VMS, display the names of all accessible macros in the
current default directory with file-type typ (default of . DMS on
DAP 500, .DM6 on DAP 600)

6.4 Macro commands available at command level

6.5 The auto macro

location of file containing auto:

under UNIX

under VMS

DAP Series: Engineering Test Software

Between the execution of one macro and the next, the contents
of the holding registers and planes are preserved, so you can
examine them to check correct operation of the macro.

You can use the following macro commands to check
operation:

dsh, dsp, debug, deboff, mdir

None of the other macro commands discussed in this chapter
will be recognised in the dapet environment when the
DAPET> prompt appears.

The auto command (discussed on page 8, and not itself a
macro command) works by executing a special macro, which

- is stored in a text file.

Under UNIX, the auto macro for use on a DAP 500 is stored
in file AUTOSEQUENCES, for use on a DAP 600 in file
AUTOSEQUENCES6; both flies are keptin the directory in which
dapet resides.

Under VMS, the aut o macrois not stored in the same directory
as dapet; for use on a DAP 500, it is stored in file

man008.04 47

48

6.6

48

Chapter 6: dapat macro commands

SYSSCOMMON:; [SYSMAINT.DAP] AUTOSEQUENCES. : in
meSYSSCOMMON:[SYSMAINT.DAP]AUTOSEQUENCEG.
for use on a DAP 600 .

A typical dapet macro

The macro listed below s a typical macro; it carries out a similar
function to subtest 5 element 1 in the host-based test

MCUTEST1, validating the NULL instuction, and checking that
the instruction is completely ignored.

This test validates the NULL instruction, checking it is completely ignored

! hl code store, h2 mcu control, h3 data access register

1d hl 00000000
1d h2 00000000
1d h3 00000001

set up code store (null, interrupt, halt, halt)

stco hl ££000000 fe000000 £6000000 £6000000

! set MO - M15 with own address pattern

mset

! set PC c0000000 and start MCU

mreg PC c0000000
mstart

set up data access reg to access PC
stii h2 dd

load PC into h4 from data access register

1dii h3 h4

! check PC ,error if it isnt the right value

ine h4 c0000003 2

! check Mregs - h4 is now the MCU register index

d h4 0
setloop 1 16
man008.04 AMT

6.6: A lypical dapet macro

‘label 1

mchk h4
add h4 1
decinz 1 1

! if we get to here the test has passed OK

text Test passed.
jmp 3

! error message section

errlab

text Test failed.

text The M register with the following index has been corrupted :
dsh ho

jmp 3

label 2

text An invalid PC value was found after the test
text The PC value expected = c0000003
text Actual PC value = :

dsh h4

label 3

exm

DAP Series: Engineering Test Software man008.04

50

50

man008.04

AMT

Appendix A

51

dapet commands and macro commands

A.1 dapet commands

commands for DAP 500 or DAP 600
only?

asstate (on DAP 600 only)
auto

~autocycle

clrp

cont

cycle subtest_.num element_num

deboff

debug

di addr {count]

HD®mwoow

DAP Series: Engineer/'ng Test Software

This section lists all the dapet commands and their possible
parameters, and the pages in the manual where the
commands are described.

in general all dapet commands can be used on DAP 500 and
DAP 800 systems, although there are a few that can only be
used on one system; these are marked accordingly.

Where a command is described in more than one place in the
manual, all places are listed here. The first place usually
describes a simple use of the command, later places a more
complex use.

The commands are:

display the contents of the registers in the Array Support Unit
(page 33)

load and run all the test programs in sequence (pages 8, 19)

load and run repeatedly the sequence of all the test programs
(pages 19, 19)

clear the whole of contents of the test parameter table to zeros
(page 37)

continue at the start of the next test element of a test or series
of tests that have been stopped (pages 8, 10, 12, 19, 46)

cycle repeatedly through the specified MCU-based
subtest element (page 38)

turn debug off (page 47)

turn debug on (page 47)

display the contents of the image store, starting atthe specified
word address (page 27)

man008.04 51

52

52

Appendix A: dapet and macro commands

dint reset the interrupt enable flag to its default state (page 34)
di 0 turn on (disp 0) or off (disp 1) read-after-writing when
1Sp 1 writing to the image store (page 30)
a)
dle l (o] option ‘ _ display, optionally in binary, the contents of the specified
q £ [option] filename PE plane, saving the display to a file if required(page v)
plane_addr [option | display, optionally in binary, the contents of the
ds[o] : ; specified array store, saving the display to a file if
f plane_addr [option] filename P Y ' g piay
required (page 29)
a
dlel x row num display the contents of the specified PE plane row (page 28)
q
dsx plane_addr row_num display the contents of the specified array store row (page 28)
dm addr [count] display the contents of the image store, starting at the specified
absolute byte address (page 31)
eint - set the interrupt enable flag (page 34)
exit , exit from the auto test sequence (pages 8, 19)
subtest start execution of a test, subtest or element, or range
go | subtest_num element_num of subtests and elements that is already loaded
start_subtest_num start_element_num (pages 9, 17)
end_subtest num end_element_num
help name offer on-line help on the specified command or topic (page 5)
jlog display the MCU jump log (page 33)
test_name load the specified test-or VRTX task (pages 8, 35)
lo < test_num
task_name|
ma macro_name [parameter_list] run the macro macro_name, using the given parameters
(page 39)
master bahk_name set the processor master bank to the specified bank (page 19)

man008.04 AMT

A. 1. dapet commands

mreg { reg._num

menu
mstart
mstop
next

off bit_position
on Dbit_position
pestate

qelr qgid

quit (or g)

redg (on DAP 600 only)

regs

reg_name }

rreg { reg_num

subtest num’

rep [subtest_num element_num

run Subfest.num element_num

DAP Series: Engineering Test Software

reg_name } /

53

write val to a specified MCU register (page 32)

list the tests available in dapet (page 7)

start (or re-start) the MCU (page 33)
stop the MCU, putting it into idle (page 33)
restart test execution at the next test (pages 8, 19)

reset the specified bit in the switch word associated with the
test element parameter table, to binary O (page 38)

set the specified bit in the switch word associated with the test
element parameter table, to binary 1 (page 38)

display the contents of the MCU reflect and parity status
registers (page 33)

clear the specified VRTX message queue (page 37)
quit dapet (page 6)
display the contents of the edge register (page 33)

display the contents of 25 (26 in a DAP 500) of the MCU
registers (page 32)

display the contents of the specified register (page 32)

repeat indefinitely the whole of the already-loaded
test, or selected subtest, or selected element

(page 18)

run the selected element (page 17)

man008.04) 53

54

54

save filename

saveoff

setp addr val

setp ?

setstore addr

sfio fio_coupler_number

sfio ?

sw
all
fatal

trap none
?

vdel (ask_name

ving (task_name

vpri task_namé priority

vres lask_name

Appendix A: dapet and macro commands

open a file in which to save the log of a dapet session
(page 5) (under VMS, the file is created with default file-type
. LOG, unless you specify a file-type; under UNIX, there is no
extension to file name unless you specify it)

close the already-opened file into which the dapet session
log is being saved (page 5)

write a value to the specified address in the test element
parameter table (page 37)

display the contents of all 64 words in the test element

" parameter table (page 37)

change the starting location of the 3 array store planes used
as work space from that of the last 3 planes in the array store
(page 34)

select the specified FIO coupler for testing (page 34)
display the selected FIO coupler number (page 34) _

display the contents of the first 24 bits of the switch word
associated with the test element parameter table (page 38)

specify which type of error should stop a dapet test
sequence, or (for ?)dnsplay the current t rap status (page 18)

delete the specified user-generated VRTX task from the system
list (page 36)

. display the status of the specified active VRTX task (page 36)

change the priority of the spemf;ed user-generated active
VRTX task (page 37)

resume the specified user-generated or system VRTX task after
it has been suspended (page 36)

man008.04 _ AMT

A.2: dapet macro commands

vrun [ask_name

vstat

vsus [aSk_name
w : val
{ £ fi/ename}
9 .

plane_addr val
{ £ plane_adadr fi/ename}

a
w {c } x row_num val
q

wedg va/l (on DAP 600 only)
wsx plane_addr row_num val
a

wi addr val [count]

8 9 m o

wm addr vall [val2] ..

A2 dapet macro commands

hn val
hn hm
and {hn val }

DAP Series: Engineering Test Software

55

run the specified VRTX task (page 35)

display the current status of all user-generated HCU tasks
loaded in the current dapet session (page 36)

suspend the specified VRTX task (page 36)

write to the specified PE plane, optionally reading the data from
a file (page 30)

write to the specified array memory plane, optionally reading
the data from a file (page 30)

write to the specified PE plane row (page 28)

write to the edge register (page 33)

write to the specified array memory row (page 29)

write to image store, starting at the specified word address
(page 27)

write to image store, starting at thé specified absolute byte
address (page 31)

This section of the appendix lists in alphabetical order all the
macro commands available in dapet, and discussed in section
6.3 starting on page 33. The information here repeats that in
section 6.3, so no references to section 6.3 are given.

The macro commands are:

add hm or val to hn and put result in Ap

AND hm or val with hy and put the resuilt in An

man008.04 55

56

56

clrh
clrpl
deboff
debug

decinz Joop lab

dsh hm

dsp DPm
errlab

exm

. hmi1 hmz lab
Jeq {hm val lab }

Jgt{h,m val lab

hm] hm2 lab
hm1 val lab }

hm1 hm2 lab }

jmp lab

hm7 hm2 /ab}

Jne { hmt val lab

jpq Pmt1 Pmz lab
label /ab

P b
1d { hn val }

Pn Pm
d { pn file }

ldic hp1 hn2

1dii hn1 hnz

val
mchk{ Fim }

mdir [typ] (under VAXNVMS)

mdir (under UNIX)

Appendix A: dapet and macro commands

clear all holding registers
clear all holding planes
turn debug off

turn debug on

decrement the loop”’ loop variable by 1, and jump to label /ab
if the loop variable is not zero

display the contents of register hm
display the contents of plane pm
insert label ERRLAB

exit the macro, and return to the next higher level of macro if
there is one, otherwise return to the command level

jump to label /ab if the contents of register hm7 are the same
as the contents of register hm2 or the value val

jJumptolabel lab if the contents of register hm7are greater than
the contents of register hmz or the value val

jump to label /ab if the contents of register Am7 are less than
the contents of register hmz or the value val

jump to label lab

jump to label /ab if the contents of register hmy are not equal
to the contents of register hm2 or to the value val

jump to label /ab if the contents of plane pm17 are the same as
the contents of plane pm2

insert label lab

load into register hp the contents of register hm or the value val

load into plane pp the contents of plané pm or the contents of
file file

load into register Anz from the part of MCU code memory
pointed to by register hpy

load into register hnz from the part of DAP image store pointed
to by register hnt

“check the bit pattern in MCU register hm or val against the bit

pattern loaded into the register by command mset; jump to
label ERRLAB if the bit patterns are not the same

display the names of all accessible macros on the current
default directory with file-type typ (default . DM5 on DAP 500,
.DM6 on DAP 600)

display the names of all accessible macros on the current
directory

man008.04 AMT

A.2: dapet macro commands

mset

(on DAP 500 onily)

msg lext

not hp

hn hm
1 hn val
pause

setloop{ o0p- Am }

locp val

hn hm
Shl{ hn val }

hn hm
shr { hn va/}

57

set all MCU registers with appropriate bit patterns. The
patterns are:

m0 ACAQACAO
ml ATATATAT
m2 JVICIVY.
ml3 ADADADAD
me AEAEAEAE
mp AFAFAFAF

print text string text and pause in the execution (type cont to
continue)

carry out one's complement on the contents of register An and
put the contents back in hn

OR contents of register hn with the contents of register hm or
with the value val, and put the contents back in hn

pause in the execution (type cont to continue)

set the /oop”’ variable with the contents of register hm or the
value val (expressed in decimal)

planar shift left s times the contents of register hp, where s is
the contents of register hm or the value val

planar shiftright s times the contents of register hn, where s is
the contents of register hm or the value val

stco hn vall val2 val3 val4 store 4 instructions whose binary code values are val7,

stic fn1 n2
{hm val
.. [hn1 hn2
stii { Fn1 val}
hn hm
sub { hp val }
text text
wedg val

wrtste h, val

DAP Series: Engineering Test Software

val2, val3 and val4 in DAP code memory, starting at
location pointed to by register hn

store in a location in code memory pointed to by register fint
the contents of register hnz or the value val

store in a location in image store pointed to by register hpt the
contents of register hnz or the value val

subtract the contents of register hm or the value val from the
contents of register hn, and put the result back in An

print the text string fext and continue execution
write into the edge register (DAP 600)
write using st.ic, read using 1dic; check if the result of the

read is the same as the input to the write, if not jump to label
ERRLAB (see page 34 for more details)

man008.04 57

58 Appendix A: dapet and macro commands

wrtsti hp val write using stii, read using 1dii; check if the result of the
read is the same as the input to the write, if not jump to label
ERRLAB (see page 34 for more details)

hn bm } EXCLUSIVE-OR the contents of register hn with the contents'of

xoxr { hn val register hm or the value val, and put the result back in hn

58 man008.04 AMT

Appendix C

95

Locating suspect components

suspect PE chip or array board

suspect memory location

C.1 DAP 500

DAP Series: Engineering Test Software

When a dapet test element fails, it usually tells you which
board is suspect - see page 11 for a typical diagnostic report.
Because the DAP 500 and DAP 600 are quite different in
physical layout, this appendix is split into two different parts,
one part for each type of machine.

If a PE chip is suspect, dapet identifies that chip and the array
board on which the chip is fitted. If more than one PE chip is
implicated, then the fault could be in any one of the suspect
chips, or on the array board that contains the suspect chips.

As suggested earlier in this manual, if dapet reports a fault,
itis useful to continue the whole suite of dapet tests, as you
will often get confirmation of the fault in the output from other
test elements. If dapet reports more than one array board as
suspect, then the fault could be in any one of the identified
boards, or if all array boards are implicated, the fault may well
be in one of the MCU boards.

If a memory location is suspect, then the absolute address of
that location is given.

This appendix gives you the physical locations of the various
array boards and their daughter memory boards, and telis you
how to work out from the suspect memory location which
memory board is suspect. ’

Figure C.1.1 on the next page shows you the location of the
various boards on the machine's backplane. There are four
identical array boards in a DAP 500, which on the machine are
numbered 0, 1, 2 and 3, according to the array rows they
service. Note though, as figure C.1.1 shows, the boards are
not in consecutive physical locations on the backplane.

For more details of the physical {ayout of a DAP 500 and of its
technical functioning see AMT's DAP 500: Engineering Service
Guide {man008). ‘

man008.04 g5

96 Appendix C: Locating suspect components

C.1.1 Layout of the DAP 500 backplane

FAL I3 BN |
[rr
ARERN
7 4w s bbb
I =1 =] %
i) 12 4 A a0 o Jt
o e P e Y om FF e e
= |l
—~]] o] & f]
M~ ¢ At .
3] F
o Bl lo| € I;|
2l 8] \2] | N
sl gl lel|e L
- N Py)
gl | |8 |8
P p - Pe p—
«© 5] © ©
o [=2] o o
c]IS L€
K] Q1 18| @
RS
3188118 lelel | D1 T
ool S| o] =] | R
Re} el i} §*} kel ge) L o
slallslisl |5 (B [E](5 £”SI’|!’
cliollello ol lo| ol ie 22[= l
alalloial lal |8l le] |8 ol2l3| L L
alelelel el el ielle 23T
CIREIREIRE
[o] Q [o] [o]
0 O 0 Nl
-3 > > 3
IS IE||E M
< <C | | |]"l
o] I;
i) Le) e | LII
O O : 2 o~ O.Sv o™ O O

Figure C.1.1: Layout of the IO, array, MCU and HCU boards on the backplane of a DAP 500,
looking from the front of the card cage

Note: dapet identifies faulty array boards as board 0, 1, 2, or 3; the correlation between these dapet
numbers and the sockets into which the boards are plugged is as folows:

dapet board number Backplane socket number Array rows on the board
0 J7 ‘ 0o - 7
1 J6 8 - 15
2 J5 16 ~ 23
3 : J4 24 - 31

g6 man008.04 AMT

C.1.2: DAP 500 - Layout of the PE chips on an array board , 97

C.1.2 Layout of the PE chips on an array board

bank B bank A
_]
|) l

0 0

front of board to backplane

——————————gr

Note:

Each array board holds the
PEs associated with 8 rows of
the array.

Each PE chip contains 64
PEs, and each PE chip is
associated with 8 columns in
the array.

-

Figure C.1.2: Layout of PE chips on an array board, showing the dapet reference numbers

dapet reports a faulty PE chip as being 0, 1, 2 or 3; the correlation between these dapet numbers and
the physical chip numbers (as recorded on the boards and in the engineering documentation) is as

follows:
dapet PE chip number Columns in array Physical PE chip reference:
in bank A in bank B
0 0 - 7 U4 us
1 8 - 15 uz - ue
2 16 - 23 u3 u7
3 24 - 31 U1 us

Generally, you should suspect a'PE chip in the bank currently specified as master, except for a few test
elements that perform their own bank selection, and which give explicit messages about the PE chip
bank under test.

Note that bank A is used by default, both for dapet and for normal DAP programs.

DAP Series: Engineering Test Software man008.04 97

98 Appendix C: Locating suspect components

C.1.3 Location of the array memory boards
Each array board has four memory boards piggy-backing on it, as shown below:

row numbers
within each board

— 0

and

—1

to backplane front of board

[

Apss————

and

[

Figure C.1.3: Location of the array memory boards on the back of a DAP array board, showing the PE
array row numbers associated with each memory board

Note: In some DAP machines the array memory boards are not fully populated; the layout of memory
components on the memory boards may differ in detail from that shown above.

g8 man008.04 AMT

C.1.4: DAP 500 - Calculating faulty memory board locations 99

C14

Calculating faulty memory board locations

If dapet suspects a memory chip is malfunctioning, it reports an error at an absolute memory address,
given in words (not bytes). From that address you can work out which row of memory chips mounted on
which array board is suspect, and hence which array memory board is suspect. .

On DAP 500 the dapet-reported address is interpreted as follows:

l Lss

XKKXX XHKX XXXKX XHXKXX XXXX XXXX

I NN R N
it row number on
bit-plane address array board number array board

The number of relevant bit-plane address bits depends on the size of your DAP's array memory. If you
have 4 Mbytes of array memory, for example, then 15 bit-plane address bits are relevant.

The method of calculating the faulty board is detailed below, taking as an example a dapet-reported
suspect memory location of F392A;

» Fromthe address of the suspect memory location, extract the 5 least-significant bits (the array board
and row numbers of the suspect location).
Example: address - F392A, 5 least significant bits - 0 1010

® The top 2 bits of those 5 least significant bits give the array board on which the suspect memory
chip resides.

Example: address - F392A, suspect array board - 1

= The bottom 3 bits of those 5 least significant bits give the row on the array memory board holding
the suspect memory chip.

- Example: address - F392A, row holding the suspectchip - 2

DAP Series: Engineering Test Software man008.04 g9

100 Appendix C: Localing suspect components

C.2 DAPG600

In DAP 800 half of the possible 24 boards are plugged in from
the front of the cabinet, and the rest from the back. A single
double-sided backplane in the centre of the cabinet is used for
both sets of boards.

C.2.1 Board layoutin a DAP 600 Figures C.2.1 and C.2.2 below gives you views of a DAP 600
card cage looking into the cabinet from the front and from the
back.

fn the front view (figure C.2.1) you can see, looking from left to
right, array boards 8 to 15; the ASU, the two MCU, and the HCU

J12 Jt1t J5 Jd J3 J2 Jt
Array board 8
I
Array board 8
Array board 15

ASU board
_______________ l
~ MCU board 2

MCU board 1
! HCU board

Figure C.2.1: A view from the front of the cabinet of a populated DAP 600 card cage, with the
backplane slot numbers superimposed on the drawing for easy reference

J24a J23 Ja22 Jat Jao J14 J13
1O board 0 H
10 board 1
{0 board 2
10 board 3
Array board 6
Amay board 0
Array board 7

Figure C.2.2: A view from the back of the cabinet of a fully-populated DAP 600 card cage, with the
backplane slot numbers superimposed on the drawing for easy reference

100 man008.04 AMT

C.2.1: DAP 600 - Board layout in a DAP 600 101

boards. The back view (figure C.2.2) is of a fully populated
cardcage. On the left are four 1O coupler boards (not all the
board may be present in your DAP — depending on your DAP's
configuration). Next to these board are array board 0, array
board 1, and so on, with array board 7 on the right of the cage.

The backplane slot numbers (J1, J2, and so on) which are
normally covered by the boards, are also shown on the figures
for easy reference.

depopulated backplane Figure C.2.3 below shows a view from the front of the cabinet
of a fully de-populated backplane. The board slots shown as
solid rectangles are for boards that plug in from the front (those
shown in figure C.2.1); the dotted rectangles are for those
boards that plug in from the back (those shown in figure C.2.2).
If you look into a de-populated cabinet from the front, you can
see the back of the connectors associated with the boards that
plug in from the back — and if you look in from the back, you
can see the back of the connectors for the front-plug-in
boards.

J13 J14 Jao J2t J22 J23 J24
J12 J 11 J5 Jé J3 J2 J1
VAN S I Y I FY I FOY B R Key:
. IA8: S Lo Do s Lo
L] e T Y I Y R A N o
A9 Y I A I O I T I Array board n
N Do Do - : ASU
Array Support Unit
HCU
Host Control Unit
1/On
Input/output coupler n
Y T N FRES I O I S Jn
aol b Slot number, marked
A15° - M Lo on the backplane
: 103 - . - MCUn
I\ I I RS I P Master Control Unit n
102 N
. MCU2 !

Figure C.2.3: View of an empty DAP 600 back plane from the front of the cabinet, showing the
locations of the boards that plug in from the front (shown as full rectangles) and
from the back (shown as dotted rectangles)

DAP Series: Engineering Test Software man008.04 101

102 Appendix C: Locating suspecyt components

C.2.2 Array board numbering Each array board deals with a section of the array of logical
size 32 columns by 8 rows. The even-numbered boards deal
with the more significant halves of 8 consecutive rows, and the
odd numbered boards deal with the less significant halves. The
table below details the relationship between array board
numbers and the PE array rows and columns they ‘provide’.

Board 0 Rows 0 - 7 Board 1 Row 0o - 7
Columns 0 - 3t Columns 32 - 63
Board 2 Rows 8 - 15 Board 3 Rows 8 - 15
Columns 0 - 31 Columns 32 -~ &3
Board 4 Rows 16 - 23 Board 5 Rows 16 - 23
Columns 0 - 31 Columns 32 -~ 63
Board 6 Rows 24 - 31 Board 7 Rows 24 - 31
Columns 0 - 31 Columns 32 -~ 63
Board 8 Rows 32 - 39 Board 9 Rows 32 - 39
Columns 0 - 31 Columns 32 - 863
Board 10 Rows 40 -~ 47 Board 11 Rows 40 - 47
Columns 0O - 31 Columns 32 -~ @63
Board 12 Rows 48 -~ B55 Board 13 = Rows 48 -~ 55
Columns “ 0 - 31 Columns 32 - 83
Board 14 Rows 5 -~ 63 Board 15 Rows 5 - 63
Columns 0 - 3% Columns 32 - 63

Table C.2.1: Array board numbers and the PE array rows and columns they provide

C.2.3 Array board layout The array boards in a DAP 600 are identical to those in a
DAP 500; see figure C.1.2 for details of that layout.

All the general coments in section C.1.2 apply to the DAP 600
also, except that PE chip O (as reported by dapet) refers
either to array columns 0 - 7 or 32 ~ 39, depending on whether
itis in an even or odd numbered array board respectively.
Corresponding comments apply to other PE chips.

C.2.4 Memory board layout Again, memory boards for the DAP 600 are identical to those
for the DAP 500; see figure C.1.3 for details of that layout. A
particular memory board provides the memory for the more
significant halves of two rows, or the less significant halves of
two rows, depending on whether the board is piggy-backed
on an even or an odd numbered array board respectively.

C.25 Calculating faulty memory board locations

If dapet suspects a memory chip is malfunctioning, it reports an error at an absolute memory address,
given in words (not bytes). From that address you can work out which row of memory chips mounted on
which array board is suspect, and hence which array memory board is suspect.

102 man008.04 AMT

C.2.5: DAP 600 - Calculating fauity memory board locations 103

On DAP 600 the dapet-reported address is interpreted as follows:

l L8
XXX XXXX XXXX XXXX XXXX KXXX
S R RIS
bit-plane address array board number !aor\r';;ut"gab:; on

Note that the least significant bit of the array board number is separated from the board's other address
bits.

The number of relevant bit-plane address bits depends on the size of your DAP's array memory. If you
have 16 Mbytes of array memory, for example, then 15 bit-plane address bits are relevant.

The method of calculating the faulty board is detailed below, taking as an example a dapet-reported
suspect memory location of D4216:

= Fromthe address of the suspect memory location, extract the 7 least-significant bits (the array board
and row number of the suspect location).
Example: address ~ D4216, 7 least significant bits - 0010110

® The top 3 bits and the bottom bit of those 7 least significant bits give the number of the array board
on which the suspect memory chip resides.
Example: address - D4216, suspect array board - 2

» The remaining 3 bits of those 7 least significant bits gives the row on the array memory boards
holding the suspect memory chip.
Example: address - D4216, row holding the suspectchip - 3

DAP Series: Engineering Test Software man008.04 103

104

104 man008.04 AMT

105

Index

This index lists all the commands and their associated parameters available to youin dapet; they are shown
inbold type. All non-alphabetic entries to the index are grouped together under the ! heading immediately
below this introduction.

! B
[]1.meaningof v, 26 Backplane 12
{ } meaningof v, 26 DAP500 96
..., meaning of v, 26 DAP&00 101
<>, meaning of v Bank A/B 19
9600 baud serial comms under UNIX 15 Binary display for PE plane read commands 29
9600 baud serial comms under VAX/VMS 16
c
Calculating faulty memory board location
DAP500 99
A DAPB0C 102
CDATUM 31
ADATUM 31
add 44 55 Changing the effect of error detection 18
Address N Clearing VRTX message queue 37
absolute 25, 31 CLIMIT 31 ‘
byte 25,30 clrh 42,56
use of absolute 30 clrp 37, 51
word 25 clrpl 42,56
ALIMIT 31 Codestore 15 - 16, 43
Altering switch word bits 38 Command entry errors 10
Altering test element parameters 37 Command execution errors 10
and 44 Command syntax conventions iv
Array board numbering Commands
DAP500 96 array plane 26
DAPB0O 102 image store 26
Array memory 25 PE 26
calculating faulty board location - DAP500 g9~ Commentform = 111
calculating faulty board location - DAP 600 Comments (ina macro) ~ 41
102 - 103 cont 8, 10, 19, 46, 51
location of boards - DAP 500 & 600 98 Contacting AMT 21
Array Support Unit 33 Convennons.
Array tests, running 11 syntax Iv
asstate 33,51 typographical i
ASU 33) Coupler number (fastI0) 34-35
auto 8, 19, 34, 51 cycle 38 51

Cyclic shift left and right (not available) 44

ro 47 i
auto macro Cycling a test element 38

AUTO> prompt 8

. autocycle 19, 34,38, 51
Automatic testing 8, 19 D
AUTOSEQUENCES/6 47 -48

da 2952
daf 20, 52

dao 29,52

DAP Series: Engineering Test Software man(008.04 105

106

106

daof 29,652
DAP 500
59, 95
array board numbering 96
backplane layout 96
board layout 95, 97, 99

calculating faulty memory board location

memory board layout 98
DAP 600
40, 47, 59, 95
array board numbering
Array Support Unit 33

backplane layout 101

102

calculating faulty memory board location

edge register 28, 32- 33
DAP word length 25
DAP_SERIAL logical name
dapboot 4
dapet

list of all commands 51

advanced user commands 15-19

basic user commands 7 -13

commands and macro commands

engineer's commands 25 -38

full specification of call 16

general commands 3-6

macro commands 39 - 49, 55, 57

options/qualifiers in dapet call 15

screenoutput 4,7,9,11-12

welcoming message 4
DAPET> prompt 4, 39
DAPMONITOR 4

17

dax 28,52
dc 29,52
dcf 29,52
dco 29,52
dcof 29,52
dex 28,52

deboff 47, 51,56
debug 47,51,56
decjnz 46, 56
Default file-type
.DM5/6 10, 40, 47
.bP5/6 30
.HCUO 35
LIS 29
.LOG 5
Defining start and end of test sequence
Description of the test programs 59 - 93
ARRAYTEST 73-91
DISTURB 93

fii, 10, 156 - 186, 25, 30, 32, 40, 47,

99

iii, 10, 13, 15 - 16, 25, 28, 30, 32,

102

51

MCUTESTH
MCUTEST2
MCUTEST3 66-71
MCUTEST4 72
STORETEST 92
dia 27, 51
dic 27,51
dif 27, 34,51
dih 27, 51
dim 27,51
dint 34,52
disp 30,52
Display and alteration of system registers
dm 31,52
.DM5/6 10, 40, 47
DOCOUNT 31
DOITER 31
DOLEN 31
DOLOC 31
DORMANT - VRTX task
DOSTART 31
.DP5/6 30
dgq 29,52
dgf 29,52
dgqo 29,652 .
dgof 29,52
dgx 28,52
ds 29,52
dsf 28,52
dsh 46, 56
dso 29, 52
dsof 29,52
dsp 46,56

59 - 60
61-65

35-36

dsx 28,52

E

eint 34,52
Element 7

. ERRLAB 40, 45, 56

17

man008.04

Error trapping 12
Errors

command entry 10
command execution
fatal 11

test execution 11
typesof 10
Establishing the test environment 3
Exclusive-OR 44

10

Index

31

AMT

Index

exit 8,19, 52

exm 47,56
F
FastiO 25

Fast {O coupler 27, 34
Fatal errors 11, 18
FIO coupler 27,34

G
go 9 17,52

H

Haltingatest 9
Hardware registers 31
.heu 35

HCU 25,30

memory locations 31
HCU board 13

HCU task control commands 35
help 5,652
Hexadecimal input 26
Holding planes 40, 42
Holding registers 40, 42
Host-based tests 38, 59

Idie state, of MCU 32-33
Image store 25, 42 - 43
contents 31
write and display commands 27
Inhibit read after write 30
input of numeric values 26
Interrupt enable flag 34
IO Board location (on the backplane)
DAP500 96
DAPB00 100

J

jeq 45,656

jgt 45,56
JLOG 31,33,52
jlt 45,56

Jmp 45,56

jne 45,56

jpg 45,56
Jumplog 33

DAP Series: Engineering Test Software

L

label 45,56
Layout

array memory board - DAP 500 & 600 38

DAP 500 backplane 96
DAP 600 backplane 101

107

PE chips on array board - DAP 500 & 600 97

1d 41,56

ldic 42,56

ldii 42 56

LEDs, error indicators on boards 13
LIS 29

lo 8,15 34,52

lofor VRTX tasks 35

Loading a single test 8

Loading VRTX tasks 35

Locating suspect components 95 - 96, 98,

100, 102
.LOG 5
Logical name, DAP SERIAL 17
Loop variables 40

M

MO 31,43
M1 31,43
M13 31,43
M2 43

ma 39 52
Macro

list of all commands 51
arithmetic and logical commands 44
auto macro 47

commands at command level 47
compare and jump commands 45
display commands 46

display text 46

example of a typical 48

exit 47

label 40

load and store commands 41
loop variable 40

loop variables 45 - 46

looping and labels 45

name 41

nesting 40

parameter 39, 41

program control commands 46
write-and-test commands 43
MACRO> prompt 46
master 19, 52

man008.04

107

108

108

Master bank 19
mchk 43, 56
MCU 12, 15,25,31-32
jumplog 33
memory locations 31
register 43
MCU control commands 33
MCUTEST1 7,9,48
mdir 47,56
ME 32,43
DAPB0OO 32
Memory
array 25
code 25,42
HCU locations 31
map 25
MCU locations 31
menu 7,53
MP 31,43
mreg 32,53
mset 43,57
msg 46,57
mstart 33 53
mstop 33,53

N

Nesting macros 40

next 8, 19,53

not 44,57

NULL 48

Numeric values, inputof 26

o)
off 38,53
on 38,53

OPERator privilege (VAX/VMS) 4
Option/qualifiers when dapet is called 15
or 44,57

Orthogonal display for PE plane read commands

29

P

Parameters

‘for macros 39, 41
for test elements 37
pause 46,57

PC 31,33 ’

man008.04

PE

array 19
bank, AB 19
chip 12

chip, suspect 85
master bank 19
planes 27,634

Index

PE and array write and display commands 27

pestate 33, 53
Planar shift left 44
Planar shift right 44
Plane read 29
Plane write 29
Priority of VRTX task 37
Prompt
AUTO> 8
DAPET> 4,39
MACRO> 46

Q

q 6
gqclr 37,53
quit 6,53

R

Read command

PE plane 34
plane 29

row 28

Reader comment form 111
redg 33,53
Reflect register 33
Register

error 33

MCU 43

parity 33

reflect 33

status 33
system, display and alteration
regs 32,53

rep 18, 38,53
Row

read command 28
write command 28
rreg 32,53

run 17, 34,53

31

AMT

Index 108

Running T
asingletest 9
a test sequence repeatedly 18 Test element parameter 37
anarray test 11 Test execution errors 11
one test element 17 . Thetestmenu 7
tests automatically 8 Test organisation 7
the automatic test sequence 19 text 46,57
RUNNING - VRTX task 35 -136 The engineering test macro environment 39
trap 12, 18,54
S Types of error 10
Typical dapet diagnostics 12
save 5, 18,54 Typical macro 48
saveoff 5 54 Typographical conventions i
Saving a sessionlog 5
Screenoutput 4,7,9, 11-12 . U
SCSI 15-16
/SERIAL 16 UNIX
setloop 45,57 9600 baud DAP-Sunlink 15
setp 9754 :uft o! r??cm o 40, 42
efault file extension ,
ST differences from VAXVMS 3, 5, 10, 15, 35, 40,
: 42, 47
shl 44,57 . .
shr 44 57 options in a dapet call 15

Use of absolute addresses 30
User comment form 111
User-generated task

Slave bank 19
Specifying the FIO coupler 34

Status of
H 36
HCU task 36 Vg’]gx 35
VRTX task 36
Status register 33
stco 42,57 v
stic 42,57 VAX/VMS
stii 42,57 9600 baud DAP-VAXlink 16
Store auto macro 47
f:ode 15- 16, 43 default file-type 5, 10, 35, 40, 42, 47
image 25, 42 differences from UNIX 3,5 -8, 10, 16, 29, 35,
memory map 25 40, 42, 46 o
sub 44,57 OPERator privilege 4
Subtest 7 qualifiers in a dapet call 15
Suspect WORLD privilege 4
array board 95 vdel 36,54
memory location 95 ving 35-36,54
PEchip 95 ; '
vpri 37,54
SUSPENDED - VRTX task 36
vres 36,54
sw 38,54 VRTX 35 »
Switchword 35,38 VRTX task number 35
Syntax conventions v VRTX task state

_System configuration registers 25

DORMANT - 36
System registers, display and alteration 31 %-3

RUNNING 35-36
SUSPENDED 36

DAP Series: Engineering Test Software ' man008.04 109

110 Index

vrun . 35, 55

vstat 55

vsus 36,55

w

wa 29,55

waf 29,55

wax 28,55

wc 29,55

wcf 29,55

wcx 28,55

wedg 33,55

Welcoming message and screen format 4
wia 27,55 '
wic 27,55

wif 27,34,55

wih 27,55

wim 27,55

wm 31,55

Word length (DAP) 25
Work area (for PE planes) 28
WORLD privilege (VAX/VMS) 4
wg 29,55
wgf 29,55
wgx 28,55
Write command

PE plane 34

plane 29

row 28
Write-and test-command 43
wrtste 43,57
wrtsti 43,58
ws 29,55
wsf 29,55
wsx 28,55

X
xor 44,58

110 manQ008.04 AMT

Reader comment form AMT

Reading, LK

Any comments you care to make, whether reporting bugs in the manual or making more general comment,
about this or any AMT publications will help us improve their quality and usefulness. To report bugs, if you have
the time, the ideal way from our point of view is to send us a photo-copy of the relevant page, with the bug
marked on it. If you are in the UK, please use our FREEPOST address to send us the copy.

If you also can spare the time to fill in the mini-questionnaire below that would be doubly useful to us. To send
us this form, please fold it as indicated, and post it - postage is pre-paid for the UK.

Comments

Title of publication: Engineering Test Software (man008.04) / other - please specify:

My name and job title:
My department:
My company:

My company address:

My telephone number —country: number
| found the contents:
I used the publication: :
. True Partly true Not true
O Asanintroduction to the subject Helpful a a a
(3 Toteach myself ' Accurate a O
[0 Toteach others Written clearly a a a
O] Asareference manual Well illustrated O a O
O Other- please specify Well indexed O a |
- Other — please specify O O O
Thank you for your help. 23 May 89

DAP Series: Engineering Test Software man008.04 4 111

plojsi4 — *

pioj1sl4 — -

Fourth fold

Third fold

Tuck into third fold

wopbury pajyun

Hd | 99Y adiysyieg

Buipray

(9t | DY) 1SOd3IHS

pi7 ABojouyoa] Aiowapy aAnoy
labeuepyy suoneolgng

Fourth fold

‘anfeA [ewllou o} sdwiels s ases|d 'y apisino Bunsod §|
' N 8y ul Bunsod 1oj pspasu abeisod oN

Third fold

— +—— plo} PUOD3

ﬁ +—— ploj puooag

