
LANGUAGE SPECIFICATION

LISA PASCAL

19 February 1982

Rich Page / David Cas seres

{file pas:pO; date 2/19/82]

[file pas:pO; date 2/19/82]

DATE: 19 February 1982
TO: Lis t
FROM: Rich Page & David Cas seres
SUBJECT: Lisa Pascal Language Specification
-----------------,------
Here is the new Language Specification for Lisa Pascal. Please
direct your comments to Rich Page.

,This Language Specification attempts to describe both the
eventual definition of the Language and the current
implementation. Inevitably, there are a few places where the two
do not match. and these points are spelled out in the text.

{file pas:pO; date 2/19/82}

[file pas:pO; date 2/19/82]

CONTENTS

1. IN'!RODUCTION •••••••••• ~ ••••• 0 ••••••••••••••••••••••••••••• ••• 1
1.1 Product Name and Number ••••••••••••••••••••••••••••••••••• l
1.2 Related Documents •• ~ •••••••••••••••••••••••••••••••••••••• l
1.3 Novel or Unusual Features ••••••••••••••••••••••••••••••••• l
1.4 Relation to Other Products •••••••••••••••••••••••••••••••• 2
1.5 Use Environment ••• 2

1.5.1 Hardware Environment •••••••••••••••••••••••••••••••••• 2
1.5.2 Software Environment •••••••••••••••••••••••••••••••••• 2

2 DEFINITIONS ••• 3

3 METALA.NGUAGE •• 5

4 'LEXICAL TOKEN'S •••••••••••••••• 0 ••••••••••••••••••••••••••••••• 7
4.1 General ••• 7
4.2 Special Symbols ••• 7
4.3 Identifiers ••• 8
4.4 Directives •••••.•••••••••.•••••••••••••••••••••••••••.•.•• 8
4. 5 Numbe rs • 8
4.6 Labels •••••••••••.•••.••••••••••••••••••...•••.••••••••••• 9
4.7 Quoted String Constants ••••••••••••••••••••••••••••••••••• 9

4.7 •. 1 Character Constants ••••••••••••••••••••••••••••••••.•• 10
4.8 Comments. Spaces. and Ends of Lines •••••••••••••••••••••• 10

5. BLOCKS. LOCALITY, AND SCOPE •••••••••••••••••••••••• ~ •••••••• 13
5. 1 Block. •••••••••••••••••••••••••••••••.••.•••••••••.••••.•• 13
5.2 Scope •• 14

5.2.1 Defining Occurrence ••••••••••••••••••••••••••• : •••••• 14
5.2.2 Redefinition ••• 14
5.2.3 Position of Defining Occurrence •••••••••••••••••••••• 15

6 CONSTANT-DEFINITIONS •••••••••••••••••• ~ •••••••••••••••••••••• 17

7 TyPE-DEFINITIONS ••• 19
7.1 General •• 19
7.2 Simple-Types." •••••••••...••••••.•..••.•••••••.•.•.••.•••• 19

7.2.1 General •• l9
7.2.2 Standard Simple-Types •••••••••••••••••••••••••••••••• 20
7.2.3 Enumerated-Types ••••••••••••••••••••••••••••••••••••• 23
7.2.4 Subrange-Types ••••••••••••••••••••••••••••••••••••••• 23

(file pas:pO; date 2/19/82]

7.3 Structured-Types ••• 24
7.3.1 General .. 0 •• 24
7.3.2 Array-Types •• 25
7.3.3 Record-Types ••• 26
7.3.4 Set-Types •...•••••.••••••.................•....•....• 28
7.3.5 File-Types•.................................... 28

7.4 Pointer-Types •• 29
7.5 Identical and Compatible Types ••••••••••••••••••••••••••• 29

7.5.1 Type Identity •• 30
7.5.2 Compatibility of Types 31
7.5.3 Assignment-Compatibility ••••••••••••••••••••••••••••• 31

7.6 Example of a Type-Definition-Part •••••••••••••••••••••••• 33

8 DECLARING AND REFERENCING VARIABLES •••••••••••••••••••••••••• 35
8.1 Variable-Declarations ••••••••••• ~ •••••••••••••••••••••••• 35
8.2 Variable-Refe renc·es •••••••••••••••••••••••••••••••••••••• 35
8.3 Selectors and Components ••••••••••••••••••••••••••••••••• 36

8.3.1 General ••••••••••••••..•••••••••••••••••••••••.•••••• 36
8.3.2 Arrays. Strings, and Indexes ••••••••••••••••••••••••• 36
8.3.3 Records and Field-Designators •••••••••••••••••••••••• 37
8.3.4 File-Buffers ••• 37

8.4' Pointer-References ••••••••• ~ ••••••••••••••••••••••••••••• 38

9 PRO-CEDURES AND FUNCTIONS 39
9.1 Procedure-Declarations ••••••••••••••• ~ ••••••••.••••••••••• 39
9.2 Function-Declarations •••••••••••••••••••••••••••••••••••• 41
9.3 Parameters ••• 43

9.3.1 General ••••••••••••••••••••••••••••••••••••• ~ •••••••• 43
9.3.2 Value Parameters ••••••••••••••••••••••••••••••••••••• 45
9.3.3 Variable Parameters ••••••••••••.•••••••••••••••••••••• 45
9.3.4 Procedural Parameters •••••••••••••••••••••••••••••••• 45
9.3.5 Functional Parameters •••••••••••••••••••••••••• -•••••• 48
9.3.6 Parameter List Compatibility ••••••••••••••••••••••••• 48

10 EXPRESSIONS •••••••••••••••••••••••••••••••• -••••••••••••••••• 51
10.1 General ••• 51
10.2 Operators ••• 52

10 • 2. 1 S ynt ax. • 52
10.2.2 Arithmetic Operators •••••••••••••••••••••••••••••••• 52
10.2.3 Boolean Operators ••••••••••••••••••••••••••••••••••• 55
10.2.4 Set Operators ••••••••••••••••••••••••••••••••••••••• 55
10.2.5 Relational Operators •••••••••••••••••••••••••••••••• 56
10.2.6 @-operator •• 57

10.3 Function-Calls •• 59
10.4 Set-Constructors •• 60

[file pas:pO; date 2/19/82]

11 STATEJ1ENTS •• 61
11. 1 General ••• 61
11.2 Simple Statements ••••••••••••••••••••••••••••••••••••••• 61

11.2.1 General ••• 61
11.2.2 Assignment-Statements ••••••••••••••••••••••••••••••• 61
11.2.3 Procedure-Statements •••••••••••••••••••••••••••••••• 62
11.2.4 GOTO Statements ••••••••••••••••••••••••••••••••••••• 62

11.3 Structured-Statements ••••••••••••••••••••••••••••••••••• 63
11.3.1 General ••• ~ ••• 63
11.3.2 Compound-Statements ••••••••••••••••••••••••••••••••• 63
11.3.3 Conditlonal-Statements •••••••••••••••••••••••••••••• 63
11.3.4 Repetitive-Statements ••••••••••••••••••••••••••••••• 65
11.3.S WITH-Statements ••••••••••••••••••••••••••••••••••••• 69

12 TEXTFlLE INPUT AND OUTPUT ••••••••••••••••••••••••••••••••••• 71
12.1 Gener~l ••• 71
12.2 The READ Procedure •••••••••••••••••••••••••••••••••••••• 73
12.3 The READLN Procedure •••••••••••••••••••••••••••••••••••• 74
12.4 The WRITE Procedure ••••••••••••••••••••••••••••••••••••• 75
12.5 The WRITELN Procedure ••••••••••••••••••••••••••••••••••• 79
12.6 The EOLN Function ••••••••••••••••••••••••••••••••••••••• 79
12.7 The PAGE Procedure •••••••••••••••••••••••••••••••••••••• 79

13 PROGRAMS •••••••••••••• •.•••• " •••••••• ••.••• ~ •••••••••••••••••• • 81

14 UN ITS ••••••••••••••••••••••.•••••••••••••••••••••••••••••••• 83
1-4. 1 Regular-Uni ts ••••••••••••••••••••••••••••••••••• -•••••••• 83

14.1.1 Writing Regular-Units ••••••••••••••••••••••••••••••• 84
14.1.2 Using Regular-Units ••••••••••••••••••••••••••••••••• 85

14.2 Intrinsic-Unlts ••••••••••••••••••••••••••••••••••• ~ ••••• 86
14.2.1 Writing Intrinsic-Units ••••••••••••••••••••••••••••• 86
14.2.2 Using Intrinsic-Unlts ••••••••••••••••••••••••••••••• 87

14. 3 Nes ted Uni ts •••••••••••• ' •••••••••••••••••••••••••••••••• 87

15 THE LISA PASCAL COMPlLER •••••••••••••••••••••••••••••••••••• 89
15.1 Compiler Options •• 89
IS.2 Conditional Compilation ••••••••••••••••••••••••••••••••• 91

IS.2.1 ~ompile-Time Variables •••••••••••••••••••••••••••••• 91
15.2.2 Compile-Time Expressions •••••••••••••••••••••••••••• 92
15.2.3 The SETC
15.2.4 The IFC,

1S.3 Optimization

Option ••••••••••••••••••••••••••••••••••••• 93
ELS EC , and ENDC Op t io ns •••••••••••••••••••• 93
of IF Statement •••••••••••••••••••••••••••• 94

1S.4 Optimization of WHILE and REPEAT Statements ••••••••••••• 96
1S.5 Using CASE Statements for Efficiency •••••••••••••••••••• 96

[file pas:pO; date 2/19/82]

16 STANDARD PROCEDURES AND FUNCTIONS ••••••••••••••••••••••••••• 97
16.1 General ••• 97
16.2 Basic 1/0 ••• 97

16 • 2. 1 RESET ••• 97
16.2.2 REWRITE ••• 98
16.2.3 CLOSE ••• 98
16 • 2. 4 EOF ••• 99
16.2.5 EOLN •• 99
16.2.6 SEEK •• 99
16.2.7 PUT •• 100
16.2.8 GET •• 100
16.2.9 Control Characters With GET and PUT •••••••••••••••• 101
16.2.10 IORESULT •• 102
16.2.11 GOTOXY •• 102

16.3 Untyped File 1/0 ••••••••••••••••••••••••••••••••••••••• 102
16 • 3 • 1 B LOCKREAD. • •• 103
16.3.2 BLOCKWR1TE ••• 104

16.4 Device I/0 ••• 104
16 • 4. 1 UN ITREAD. • 105
16.4.2 UN1TWRITE •• 105
16.4.3 Device I/O Modes ••••••••••••••••••••••••••••••••••• 106
16.4.4 UNITCLEAR •• 107
16 • 4. 5 UN' ITB US Y ••• 107

16.5 EXIT a~d HALT Procedures t07
16.5.1 EXIT •••••••••••••••••••••••••••••••••••••.•••••••••• 107
16 • 5. 2 'HA.LT ••••••••••..••••••••••••••••••••••••••••••••••••• 108

16.6 Dynamic Allocation Procedures •••••••••••••••••••••••••• 108
16 • 6. 1 NEW •• : ••••••• 108
16.6.2 DISPOSE •• 109
16 • 6. 3 !1A.RK ••• 109
16.6.4 RELEASE •• 109
16.6.5 MEMAVAIL ••• 110

16.7 Transfer Procedures and Functions •••••••••••••••••••••• 110
16. 7.1 TRUNC •• 110
16.7.2 ROUND •• 110
16.7.3 ORD4 ••• 110
16. 7 • 4 POINTER •• 111

[file pas:pO; date 2/19/82]

16.8 Arithmetic Functions ••••••••••••••••••••••••••••••••••• l12
16.8.1 ODO •• 112
16 . 8. 2 .ABS... ... 112
16.8.3 SQR •• 112
16.8.4 SIN •• 112
16.8.5 COS •• 112
16 . 8 . 6 EXP.. 112 16 . 8. 7 LN.. ... 112
16 • 8. 8 S QRT ••• 112
16.8.9 AR.C'rAN ••• 113

16.9 Ordinal Functions •••••••••••••••••••••••••••••••••••••• 113
16 • 9. 1 ORD •• 113
16 • 9.2 CliR •• 113
16. 9. 3 SUCC ••• 114
16.9.4 P'RED ••• 114

16.10 String Procedures and Functions ••••••••••••••••••••••• 114
16 • 10. 1 LENGTH •• 114
16 • 10. 2 POS.. ••• 114
16 • 10. 3 CONCAT •• 115
16.10.4 COpY •• 11S
16 • 10. 5 DELETE •• 115
16. 10. 6 INS ERT ••• '. 115

16.11 Byte-Driented Procedures and Functions •••••••••••••••• 116
16.11.1 MOVELEFT •• 116
16.11.2· MOVERIGHT ••• 117
16.11.3 SIZEOF •• 117

16.12 Miscellaneous Procedures and Funct ions •••••••••••••••• 117
16.12.1 SCANEQ •• 117
16.12.2 SCANNE •• 118
16.12.3 FILLCllAR •• 118

Appendix A: LISA PASCAL AND crCSD PASCAL ••••••••••••••••••••••• 119
Appendix B: KNOWN ANOMALIES IN LISA PASCAL •••••••••••••••••••• 123
Appendix C: SYNTAX OF THE LANGUAGE •••••••••••••••••••••••••••• 127

[file pas:pO; date 2/19/82]

LISA PASCAL SPECIFICATION

Section 1

INTRODUCTION

1.1 Product Name and Number

Lisa Pascal, E112

1.2 Related Documents

- Pascal· User Manual and Report, Jensen and Wirth, 1975.
Original definition of Pascal.

- ISO Working Draft of Standard Pascal, 1979.
Redefinition of Pascal, used as standard for
implementation of Lisa Pascal.

Page 1

- Apple Pascal Language ReferenceManual,Casseres, 1980.
Describes differences between Apple II (UCSD) Pascal
and original definition in Jensen & Wirth.

- A le III Pascal Pro rammer's Manual, Casseres, 1981.
Complete description of Apple III UCSD) Pascal.

- Lisa Pascal Development System Manual, Schottstaedt,
1982.

- Pascal Development System Internal Documentation,
Schottstaedt, 1982.

- 68000· Pascal Comoiler Language Specification,
Glanville, 1980.

1.3 Novel oc Unusual Features

In addition to providing nearly all the features of standard
Pascal, as described in the Pascal User Manual and Report (Jensen
and Wirth), Lisa Pascal provides a variety of extensions. These
are summarized in Appendix A. They include 32 bit integers, an
OTHERWISE clause in CASE statements, procedural and functional
parameters with type-checked parameter lists, and the @ pointer
operator. The ceal arithmetic conforms to single-precision
aspects of the proposed IEEE standard.

-tfile pas:pl; date 2/19/82]

Page 2 LISA PASCAL SPECIFICATION

1.4 Relation to Other Products

Apple will maintain only one version of Pascal for the Lisa
computer. The language specified herein is reasonably compatible
with the UCSD Pascal used on Apple II and Apple III. See
Appendix A for a discussion of the differences between these
forms of Pascal.

1.5 Use Environment

1.5.1 Hardware Environment

The compiler operates in a standard ~nlmum Lisa configuration:
256K data/program memory and two floppy disk drives.

1.5.2 Software Environment

The compiler makes few assumptions ~bout its software
environment •. It can run on either the Operating System or the
Monitor. Note that the compiler requires a minimum of 128K to
compile a null program.

[file pas:p1; date 2/19/821

LISA PASCAL SPECIFICATION Page 3

Section 2

DEFINITIONS

For the purposes of this document the following definitions are
used:

- Error - A violation by a program of the requirements of
this specification such that detection normally
requires execution of the program.

- Scope - The text for which the declaration or
definition of an identifier or label is valid.

- Undefined - The value of a variable or function when
the variable does not necessarily have a meaningful
value of its type assigned to it.

- Unspecified - A value or action or effect that,
although possibly well-defined, is not specified and
may not be the same in all cases or for all versions or
configurations of the system. Any programming
construct that leads to an unspecified result or effect
is not supported.

[file pas:p2; date 2/19/82]

Page 4 LISA PASCAL SPECIFICATION

[file pas:p2; date 2/19/82]

LISA PASCAL SPECIFICATION Page 5

Sect io~ 3

HE TALANGUAGE

The metalanguage used in this document to specify the constructs
is based on Backus-Naur form. The notation has been modified
from the original to permit greater convenience of description
and to allow for iterative productions to replace recursive ones.
Table 1 lists the meanings of the various meta-symbols.

META-SYMBOL

-
[x]
{x}
(xlyl •• lz)
"xyz"
lower-ease-name

Table 1. Metalanguage Symbols

MEANING

is defined to be
alternatively
end of definition
o or 1 instance of x
o or more repetitions of x
grouping: anyone of XtYt •• Z

the terminal symbol xyz
.a non-terminal symbol

For increased readability,lower~case-names are hyphenated. The
juxtaposition of two meta-symbols in a production implies the
concatenation of the text they represent. Within Section 4 below
this concatenation is direct; no characters may interVene. In
all other parts of this document the concatenation is in
accordance with the rules set out in Section 4.

The characters required to form Pascal programs are those
implicitly required to form the symbols and separators defined in
Section 4.

(file pas :p3i d~~2/ 19/8.~

Page 6 LISA PASCAL SPECIFICATION

[file pas:p3; date 2/19/82]

LISA PASCAL SPECIFICATION Page 7

Section 4

LEXICAL TOKENS

4.1 General

The lexical tokens used to construct Pascal programs are
classified into special symbols. identifiers. numbers. labels and
quoted string constants.

NOTE: The syntax given in this sub-clause describes the
formation of these tokens from characters and their separation.
It therefore does not adhere to the same rules as the syntax in
the rest of this document.

letter - "A"I"B"I"C"I"D"I"E"I"F"I"G"I"H"I"I"I"J"I"K"
"L"I"M"I"N"I"O"I"P"I"Q"I"R"I"S"I"T"I"U"I"V"
"W"I"X"J"Y"I"Z"
"a"I"b"I"c"I"d"I"e"I"f"I"g"I"h"I"i"I"j"I"k"
"l"J"m"I"n"I"o"I"p"I"q"I"r"I"s"J"t"I"u"I"v"
"w"I"x"I"y"I"z"

digit - "0"1"1"1"2"1"3"1"4"1"5"1"6"1"7"1"8"1"9"

4.2 Special Symbols

The special symbols are tokens having a fixed meaning. .They are
used to specify the syntactic structures of the language.

special-symbol· "+"1"_"1"*"1"/"1"_"
"<"1">"1"["1"]"1"."1"("1")"
","I":"I";"I""'''I''@''I''$''
"<)"1"<_"1")_"1":_"1" •• "1 word-symbol

word-symbol" "AND" 1 "ARRAY" 1 "BEGIN" I "CASE" 1 "CONST"I "DIV"
"DOWNTO"I"DQ" 1 "ELSE" 1 "END" 1 "FILE" 1 "FOR"
"FUNCTION" IffGOTO" 1 "IFn

, "IMPLEMENTATION"
"IN" 1 "INTERFACE"I "INTRINSIC"I "LABEL" 1 "MOD"
"NIL" 1 "NOT" 1 "OF" 1 "OR" 1 "OTHERWISE" 1 "PACKED"
"PROCEDURE" I "PROGRAM" 1 "RECORD" 1 "REPEAT"
"SET" I "STRING" 1 "THEN" 1 "TO" 1 "TYPE" 1 "UNIT"
"UNTIL" 1 "USES" '''VAR'' 1 "WHILE" 1 "WITH"

[file pas:p4; date 2/19/82}

Page 8 LISA PASCAL SPECIFICATION

Hatching upper and lower case letters are equivalent in
word-symbols.

4.3 Identifiers

Identifiers serve to denote constants, types, variables,
procedures, functions, units and programs, and fields in records.
Identifiers can be of any length, but only the first 8 characters
are significant. Matching upper and lower case letters are
equivalent in identifiers.

identifier=- letter {(letter I digit I "_It)}

Examples:

x Rome gcd SUM

4.4 Directives

Directives can only occur immediately after a procedure-heading
or a function-heading.

directive =- "FORWARD" "EXTERNAL"

These directives are discussed in 9.1.

4.5 Numbers

The usual decimal notation is used for numbers that are constants
of the data types integer, longint, and real (see Section 7.2.2).
The letter E preceding the scale factor means "times ten to the
power of". In addition, a hexadecimal constant can be written by
using the $ character as a prefix.

[file pas:p4; date 2/19/82]

LISA PASCAL SPECIFICATION

digit-sequence = digit {digit}
hex-digit-sequence = hex-digit {hex-digit}
hex-digit = digitl"A"I"B"I"C"I"D"I"E"I"F"
unsigned-integer • digit-sequence
hex-integer -= "$" hex-digit-sequence
unsigned-real • digit-sequence "." digit-sequence

["E" scale-facto r]
digit-sequence "E" scale-factor

unsigned-number - unsigned-integer
I hex-integer
I unsigned-real

scale-factor - signed-integer

sign - "+"1 "_"
signed-integer - [sign] unsigned-integer
signed-number • [sign] unsigned-number

NOTE: Lower-case "e" is legal in place of upper-case "E".

Examples:

1 +100 -0.1 5E-3 87.35e+8 $A05D

4.6 Labels

Page 9

Labels are unsigned integers and are distinguished by-their
apparent integral values, which must be in the range 0 •• 9999.

label - unsigned-integer

If a statement is prefixed by a label, a goto statement can refer
to it.

4.7 Quoted String Constants

A quoted string constant is a sequence of zero or more characters
enclosed by apostrophes. Currently, the maximum number of
characters is 255. A quoted string constant with nothing
between the apostrophes denotes the null string.

If the quoted string constant is to contain an apostrophe, this
apostrophe must be written twice.

[file pas:p4; date 2/19/82]

Page 10 LISA PASCAL SPECIFICATION

quoted-string-constant • "'" {string-character} "'"
string-character - any ascii char except CR or "'"

II'" "'II

NOTE: The CR character (ASCII 13) cannot be used in a quoted
string cons tant.

Examples:

'Pascal'
'A'

'THIS IS A STRING'
, . ' , , , , , , Don' , t wo rry ! '

All string values have a length attribute (see Section 7.2.2.6).
In the case of a string constant value the length is fixed; it is
equal to the actual number of characters in the string value.

4.7.1 Character Constants

A character constant is simply a string constant whose length is
exactly 1. It is compatible with" any char-type or string-type.

4.8 Comments, Spaces, and Ends of Lines

The constructs:

"{" any-sequence-of-symbols-not-containing-right-brace "}"

n(*" any-sequence-not-containing star-right-paren "*)"

are called comments.

A compiler option is a comment that begins with a $ character
(immediately after the { or (* that begins the comment). The $
character is followed by the mnemonic of the compiler option (see
Section 15).

Apart from the effects of compiler options, the substitution of a
space for a comment does not alter the meaning of a program.

Comments, spaces, and ends of lines are considered token
separators. An arbitrary number of separators can occur between
any two consecutive tokens, or before the first token of a
program text. There must be at least one separator between any
consecutive pair of tokens made up of identifiers, word-symbols,

[file pas:p4; date 2/19/82]

LISA PASCAL SPECIFICATION Page 11

or numbers. Except for spaces in quoted string constants, no
separators can occur within tokens.

A comment cannot be nested within another comment formed with the
same kind of delimiters. However, a comment formed with { ••• }
delimiters can be nested within a comment formed with (* ••• *)
delimiters, and vice versa.· .

{file pas~p4; date 2/19/821

Page 12 LISA PASCAL SPECIFICATION

[file pas:p4; date 2/19/82J

LISA PASCAL SPECIFICATION Page 13

Section 5

BLOCKS, LOCALITY, AND SCOPE

5.1 Block

A block consists of the definitions, declarations, and
statement-part which together form a part of a
procedure-declaration, a function-declaration or a program. All
identifiers and labels with a defining occurrence in a particular
block are local to that block.

block - [label-declaration-part
[constant-definition-part

[type-definition-part]
[variable-declaration-part

[procedure-and-function-declaration-part
statement-part

The label-declaration-part specifies all labels that mark a
statement in the corresponding statement-part. Each label must
mark exactly one statement in the st~tement-part. The appearance
of a label in a label-declaration is the defining oC'currence for
the block in which the declaration occurs.

label-declaration-part =- "LABEL" label {"," label} ";"

The constant-definition-part contains all constant-definitions
local to the block.

cons tant-defini tion-part :. "CONST" cons tant-defini tion
{constant-definition ";"}

"." ,

The type-definition-par~ contains all type-definitions local to
the block.

type-definition-part - "TYPE" type-definition
{type-definition ";"}

"." ,

The variable-declaration-part contains all variable-declarations
local to the block.

variable-declaration-part -= "VAR" variable-declaration
{variable-declaration"; "}

[file pas:p5; date 2Lt9/82]

n ... ,

Page 14 LISA PASCAL SPECIFICATION

The procedure-and-function-declaration-part contains all
procedure and function declarations local to the block.

procedure-and-function-declaration-part =
{(procedure-declaration I function-declaration) "; If}

The statement-part specifies the algorithmic actions to be
executed upon an activation of the block.

statement-part - compound-statement

At run time. all variables have values that are unspecified upon
entry to the statement-part.

5.2 Scope

5.2.1 Defining Occurrence

Each identifier or label within a block of a Pascal program must
have a defining occurrence (declaration. constant definition.
procedure definition, or fun,ction definition) whose scope
encloses all corresponding occurrences of the identifier or label
in the program text.

This scope is the block that contains the defining occurrence.
and all blocks enclosed by that block. subject to the
requirements of 5.2.2.

5.2.2 Redefinition

If an identifier that has a defining occurrence for block A has a
further defining occurrence for some block B enclosed by A. block
B and all blocks enclosed by B are excluded from the scope of the
defining occurrence for block A. (See Appendix B.)

An identifier that is a field-identifier can be used as a
field-identifier within a field-designator in any block in which
a variable of the corresponding record-type is accessible.

[file pas:p5; date 2/19/82]

LISA PASCAL SPECIFICATION Page 15

5.2.3 POSition of Defining Occurrence

The defining occurrence of an identifier or label must precede
all corresponding occurrences of that identifier or label in the
program text with one exception: A type-identifier TYP that
specifies the domain of a pointer-type ATYP can have its defining
occurrence anywhere in the type-definition-part in which ATYP
occurs. (See Appendix B.)

An identifier or label cannot have more than one defining
occurrence for a particular block.

[file pas:p5; date 2/19/82}

Page 16 LISA PASCAL SPECIFICATION

[file pas:p5; date 2/19/82]

LISA PASCAL SPECIFICATION

Section 6

CONSTANT-DEFINITIONS

A constant-definition introduces an identifier to denote a
cons tant.

constant-definition -= identifier "III" constant
constant • constant-identifier

I signed-number
I quoted-string-constant

constant-identifier -= identifier

Page 17

The occurrence of an identifier on the left hand side of a
constant-definition is its defining occurrence as a
constant-identifier for the block in which the
constant-definition occurs. The scope of a constant-identifier
does not include its own definition.

A constant-identifier following a sign denotes a value of type
integer, longint, or real.

Page 18 LISA PASCAL SPECIFICATION

"[file pas:p6; date 2/19/82]

LISA PASCAL SPECIFICATION Page 19

Sect ion 7

TYPE-DEFINITIONS

7.1 General

A type determines the set of values which variables of that type
can assume; and the operations that can be performed upon them.
A type-definition associates an identifier with a type.

type-definition • identifier It-It type
type - simple-type

s tructu red -type
pointer-type

The occurrence of an identifier on the left hand side of a
type-definition is its defining occurrence as a type-identifier
for the block in which the type-definition occurs. The scope of
a type-identifier does not include its own definition, except for
pointer-types (see 5.2.3).

To help clarify the syntax description with some semantic hints,
the following terms are used to distinguish identifiers acco.rd1ng
to what they denote.

simple-type-identifier - type-identifier
structured-type-identifier = type-identifier
pointer-type-identifier - type-identifier
type-identifier • identifier

7.2 Simple-Types

7.2.1 General

All the simple types define ordered sets of values.

[file pas:p7; date 2/19/82]

Page 20

simple-type • ordinal-type
I real-type
I s tri ng-type

ordinal-type - enumerated-type
I subrange-type

LISA PASCAL SPECIFICATION

I ordinal-type-identifier
ordinal-type-identifier - type-identifier
real-type - real-type-identifier
real-type-identifier - type-identifier

The standard ordinal-types are integer, longint, char, and
boolean. Any other ordinal-type-identifier must be defined to
denote an ordinal-type. Any real-type-identifier other than real
must be defined to denote the standard type real. String-types
are discussed in 7.2.2.6 below.

7.2.2 Standard Simple-Types

A standard type is denoted by a predefined type-identifier. The
following types are standard:

7.2 .. 2.1 Integer·

The values are a subset of the whole numbers denoted as specified
in 4.5. The predefined integer constant maxint is defined to be
32767. Maxint defines the subset of the integers over which the
integer operations are defined. The range is the set of values:

-maxint, -maxint+l •••• -1, 0, 1, ••• maxint-l, maxint

These are 16-bit integers. Note that the type integer is not
equivalent to the subrange type -maxint •• maxint,the subrange
type implies range-checking, while the type integer implies that
values outside the range are truncated to 16 bits.

7.2.2.2 Longint

The values are a subset of the whole numbers denoted as specified
in 4.5. The range is the set of values from -(2**31-1) to
2**31-1, i.e., -2147483647 to 2147483647.

These are 32-bit integers.

[file pas:p7; date 2/19/82]

LISA PASCAL SPECIFICATION Page 21

NOTE: Integer arithmetic is done in both 16-bit and 32-bit
precision. Mixed sized operand expressions are evaluated in a
manner similar to the FORTRAN single/double precision floating
point arithmetic rules:

- All variables of type integer have 16-bit values. All
variables of type longint have 32-bit values.

- All integer constants in the range -maxint •• maxint are
considered to be 16-bit values. All integer constants
in the range of longint values but not in the range
-maxint •• maxint are considered to be 32-bit values.

- When both arguments to an operator (or the single
argument to a unary operator) are 16-bit or smaller
integer quantities, 16-bit operations are always
performed. Smaller values are converted to 16-bit
values prior to the operation.

- When one or more argument is a 32-bit value, all
operands are first converted to 32-bits, and a 32-bit
result is computed.

- The expression on the right of an assignment statement
is evaluated independently of the size of the variable
on the left. If necessary, the value of the expression
is truncated or extended to match the size of the
variable on the left.

Note that the ord4 function (see 16.7.3) can be used to convert a
16-bit integer value to a 32-bit value.

NOTE: There is a performance penalty for the use of longint
values. The penalty is essentially a factor of 2 for operations
other than division and multiplication; for division and
multiplication, the penalty is much worse than a factor of 2.

7.2.2.3 Real

The values are a subset of the real numbers denoted as specified
by 4.5.

(file pas:p7; date 2/19/821

Page 22 LISA PASCAL SPECIFICATION

7.2.2.4 Boolean

The values are truth values denoted by the identifiers false and
true, such that false is less than true. The function-call
ord(false) returns 0, and ord(true) returns 1.

7.2.2.5 Char

The values are extended 8-bit ASCII, represented by ordinal
values in the range 0 •• 255. The ordering properties of the
character values are defined by the ordering of these ordinal
values. i.e. the relationship between the character variables cl
and c2 is the same as the relationship between ord(cl) and
ord(c2) •

7.2.2.6 String

A string value is a sequence of characters that has a dynamic
length attribute. The length is the actual number of characters
i~ the sequence at any time during program execution. A string
type also has a static size attribute. The size is the maximum
limit on the length of the value. The current value of the
length attribute is returned by the standard function. LENGTH; the
size attribute of a string type is determined when the string
type is def i ned.

string-type • "STRING" u[n size attribute 1"

Do not confuse the size with the length.

where the size attribute is an unsigned number in the range
1 •• 255. The upper limit, 255, is for the current implementation.

Note that the size attribute of a string constant is equal to the
length of the string constant value, namely the number of
characters actually in the string.

All string-types are implicitly packed types. Do not make any
assumptions about the internal storage format of strings, as this
format may not be the same in all implementations.

(file pas:p7; dat~ 2/19/82]

LISA PASCAL SPECIFICATION Page 23

NOTE: Operators applicable to standard types are specified in
Section 10.

7.2.3· Enumerated-Types

An enumerated-type defines an ordered set of values by
enumeration of the identifiers which denote these values. The
ordering of these values is determined by the sequence in which
the constants are listed.

enumerated-type • "(" identifier-lis t ")"
identifier-lis t • identifier { "," identifier }

The occurrence of an identifier within the identifier-list of an
enumerated-type is its defining occurrence as a constant for the
block in which the enumerated-type occurs.

Examples:

(red,yellow,green,blue)
(club, dlamond , heart ,spade)
(married, divorced ,widowed , single)

7.2.4 Subrange-Types

The syntax for a subrange-type is

subrange-type • cons tant " •• " cons tant

Both constants must be of ordinal-type. Both constants must
either be of the same ordinal-type, or one must be of type
integer and the other of type longint. If both are of the same
ordinal-type, this type is called the host-type. If one is of
type integer and the other of type longint, the host-type is
longint.

Examples:

1 •• 100
-10 •• +10
red •• green

A variable of subrange-type possesses all the properties of
variables of the host type, with the restriction that its

(-i-lIe pas-:pJ j date 2/19/82]

Page 24 LISA PASCAL SPECIFICATION

run-time value must be in the specified closed interval.

NOTE: In the current implementation, subranges of the base-type
longint will not work correctly if run-time range-checking is
enabled. If range-checking is turned off, they work correctly.
Range-checking is controlled by the compiler options $R+ and $R­
'see Section 15).

7.3 Structured-Types

7.3.1 General

A structured-type is characterized by the type{s) of its
components and by its structuring method. If the component type
is itself structured, the resulting structured-type exhibits more
than one level of structuring. There is no specified limit on
the number of levels to which data-types can be structured.

structured-type - ["PACKED"] unpacked-structured-type
Is tructured-type-identifier .

unpacked-structured-type - array-type
set-type
file type
record type

The use of the prefix PACKED in the definition of a
structured-type indicates to the compiler that storage should be
economized, even if this causes an access to a component of a
variable of the type to be less efficient in terms of space or
time.

An occurrence of the PACKED prefix only affects the
representation of the level of the structured-type whose
definition it precedes. If a component is itself structured, the
component's representation is packed only if the PACKED prefix
also occurs in the definition of its type.

See the Pascal Development System Internal Documentation for
information on the implementation of pack.ing.

[file pas:p7; date 2/19/82]

LISA PASCAL SPECIFICATION Page 25

7.3.2 Array-Types

An array-type is a structured-type consisting of a fixed number
of components that are all of one type, called the
component-type. The number of elements is determined by one or
more index-types, one for each dimension of the array. There is
no specified limit on the number of dimensions. In each
dimension, the array can be indexed by any possible value of the
corresponding index-type, so the number of elements is the
product of the cardinalities of all the index-types.

aTray-type • "ARRAY" "{It index-type
"OF" component-type

index-type • ordinal-type
component-type • type

" " , index-type } "1"

In the current implementation, the index-type should not be
longint or a subrange of longint, and arrays should not contain
more tha~ 32767 bytes. In implementations that allow arrays of
more than 32767 bytes, there willI be a slight performance
penalty for accessing such arrays.

Examples:

ARRAY(1 •• 100] OF real
ARRAY[Boolean] OF color

If the component-type of an array-type is also an array-type, the
result is a single multi-dimensional array. In other words, the
declaration of an array whose component-type is itself an
array-type is equivalent to the declaration of a
multi-dimensional array, as illustrated by the following
examples.

ARRAY{Boolean] OF
ARRAY[l •• 101 OF ARRAY[size1 OF real

is equivalent to:

ARRAY[Boolean,1 •• 10,size] OF real

(file pas:pl; date 2/19/82J

Page 26 LISA PASCAL SPECIFICATION

and

PACKED ARRAY[1 •• 101 OF
PACKED ARRAY[1 •• 8] OF Boolean

is equivalent to:

PACKED ARRAY[1 •• 10.1 •• 8] OF Boolean

7.3.3 Record-Types

A record-type is a structured-type consisting of a fixed number
of components called fields. possibly of different types. For
each component. the record-type definition specifies the type of
the field and an identifier that denotes it.

The syntax shown below for a record-type permits the
specification of a variant-part. This enables different
variables. although of identical record-type. to exhibit
structures which differ in the number and/or types of their
c omp onent s •

Each variant is introduced by one or more case-constants. All
the case-constants must be distinct and must be of an
ordinal-type that is compatible with the tag-type (see 7.5. and
note that in the current implementation tags of type l:ongint do
not work correctly).

When a record is of a type that has a variant part. all fields of
all variants are accessible at all times. The variants "overlay"
each other in memory.

The variant-part provides for the specification of an optional
tag-field. The tag-field is an additional fixed field of the
record, and its value may be used by the program to indicate
which variant should be used at a given time.

NOTE: In a future edition, a more intelligible discussion of
variants will be provided.

[file pas:p7; date 2/19/82]

LISA PASCAL SPECIFICATION

record-type = "RECORD" [field-list ["j"l] "END"
field-lis t - fixed-part ["j It variant-part]

I variant-part
f ixed-part - record-sect ion { ";" record-sect ion }
record-section - identifier-list ":" type
variant-part III "CASE" [tag-field ":"] tag-type "OF"

variant { ";" variant }
tag-field • identifier
variant =- case-constant-list ":"

")"

Page 27

"(" [field-list ["j"]
tag-type = ordinal-type-identifier
case-constant-list =- case-constant {
case-constant • constant
field-identifier = identifier

" " J case-constant }

NOTE: In the current implementation, the type longint should not
be used as a tag-type as it will not work correctly.

Examples:

RECORD
year : integer;
month : 1 •• 12;
day : 1 •• 31

END

RECORD
name, firstname : string[80];
age: 0 •• 99;
CASE married : Boolean OF

END

true: (spousesname : string(801);
false : ()

RECORD
x,y : real;
area : real;
CASE s : shape OF

END

triangle : (side : real;
inclination, anglel, angle2

rectangle: (sidel, side2 real;
skew, angle3 : angle);

circle: (diameter: real);

[..file pas :p7j .date 2/19/8ZJ

angle) ;

Page 28 LISA PASCAL SPECIFICATION

The occurrence of an identifier as a tag-field or within the
identifier-list of a record-section is its defining occurrence as
a field-identifier for the record-type in which the tag-field or
record-section occurs.

7.3.4 Set-Types

A set-type defines the range of values which is the powerset of
its base-type.

set-type - "SET" "OF" base-type
base-type • ordinal-type (except longint) .

In the present implementation, the base-type must not have more
than 4088 possible values. If the base-type is a subrange of
integer, it must be within the limits 0 .• 4087. In the future,
this may be expanded to allow 64K possible values and to allow
the base-type to be integer or any subrange of integer.

Operators applicable to sets are specified in section 10.2.4.
Section 10.4 shows how set values are denoted in Pascal.

Sets with less than 32 possible values in the base-type can be
held in a register and offer the best performance. For sets
larger than this t there is a performance penalty that- is
essentially a linear function of the size of the base-type.

The empty set (see 10.2.4) belongs to every set-type.

7.3.5 File-Types

A file-type is a structured-type consisting of a sequence of
components that are all of one type (the component-type). The
component-type may be any type except a file-type, or any
structured-type that contains a file-type.

The component data is not in program-addressable memory but is
accessed via a peripheral device (it may be in a memory area that
is accessed like a peripheral device). The number of components
(i.e. the length of the file) is not fixed by the file-type
defini tion.

[file pas:p7; date 2/19/82]

LISA PASCAL SPECIFICATION

file-type =- "FILE" ["OF" type]
"TEXT"

Page 29

The type file (without the "OF type" construct) represents an
"untyped" file for use with the BLOCKREAD and BLOCKWRITE
functions (see Apple II Pascal Reference Manual or Apple III
Pascal Programmer's Manual).

The standard type text denotes a "textfile". In LISA Pascal, the
type text is distinct from the type file of char. Textfiles are
discussed in Section 12.

The type file of char is a file whose records are of type char,
containing char values that are not interpreted or converted in
any way during I/O operations. In a stored file of this type,
the char values are packed into bytes. Note that this type is
distinct from the type text (unlike UCSD Pascal).

In Lisa Pascal, files can be passed to procedures and functions
as variable parameters, as explained in 9.3.3.

7.4 Pointer-Types

A pointer-type consists of an unbounded set of values pointing to
variables of a specified type called the base-type.

Pointer values are created by the standard procedure new (see
16.6.1) by the @ operator (see H?2.6), and by the proce.dure
pointer (see 16.7.4).

pointer-type _ " ... " type-identifier I pointer-type-identifier

The pointer value NIL belongs to every pointer type. NIL does
not point to a variable. If you access memory via a NIL pointer
reference, the results are unspecified; there may not be any
error indication.

7.5 Identical and Compatible Types

As explained below, Lisa Pascal has stronger typing than UCSO
Pascal (in accordance with the proposed ISO standard). In Lisa
Pascal, two types mayor may not be identical, and identity is
required in some contexts but not in others. Even if not
identical. two types may still be compatible, and this is

(file pas:p7; date 2/19/82]

Page 30 LISA PASCAL SPECIFICATION

sufficient in contexts where identity is not required -- except
for assignment, where assignment-compatibility is required.

Identical types are required 'only in the following contexts:

- Variable parameters (see 9.3.3)~

- Result types of functional parameters (see 9.3.5).

- Value and variable parameters within parameter-lists of
procedural or tunctional parameters (see 9.3.6).

- One-dimensional packed arrays of char being compared
via a relational operator (see 10.2.5).

Compatibility is required in the majority of contexts where two
or more entities are used together, e.g. in expressions.

Assignment-compatibility is required whenever one entity is
assigned to another, either explicitly or implicitly (as in
passing value parameters). Assignment-compatibility is
"compatibility," as modified by implicit coercion of certain
types and by range-checking.

7.5.1 Type Identity

Types that are defined at two or more different places in the
program text are identical if the same type identifier is used at
these places, or if different identifiers are used which have
been defined to be equivalent to each other by type definitions
of the form Tl - T2;.

Note that

Tl • T2; T3 - Tl;

does not make Tl and T3 identical! Also note that

T4 • integer; T5 - integer;

does make T4 and TS identical, since both are defined by the same
type identifier. In general,

T6 - T7; T8 • T7;

[file pas:p7; date 2/19/82]

LISA PASCAL SPECIFICATION

does make T6 and T8 identical if T7 is a type-identifier.
However,

T9 --integer; T10 - -integer;

Page 31

does not make T9 and T10 identical since Ainteger is not a type
identifier but a "constructed type" consisting of the special
symbol "A" and a type identifier.

Finally, note that two variables declared in the same
declaration, as in

VARl, VAR2: Ainteger;

are of identical type. However, if the declarations are separate
then the definitions above apply. The declarations

VARl: "integer;
VAR2: "integer;
VAR.3: real;
VAR4: real;

imply that VAR3 and VAR4 are identical, but VARl and VAR2 are
not.

7.5.2 Compatibility of Types

Two types are compatible if any of the following are true:

- They are identical.

- One is a subrange of the other.

- Both are subranges of the same type.

Both are string types (the lengths and sizes may
dif fer).

- They are set-types of compatible base-types.

7.5.3 Assignment-Compatibility

The value of an expression EXPVAL of type EXPTYP is
assignment-compatible with a variable, parameter, or

{file pas:p7; date 2/19/82]

Page 32 LISA PASCAL SPECIFICATION

function-identifier of type VTYP if any of the seven statements
which follow is true.

VTYP and EXPTYP are identical and neither is a
file-type nor structured-type with a file component.

VTYP is a real-type and EXPTYP is integer or longint.

- VTYP and EXPTYP are compatible ordinal-types and EXPVAL
is in the closed interval specified by the type VTYP.

- VTYP and EXPTJP are compatible set-types and all the
members of EXPVAL are in the closed interval specified
by the base-type of VTYP.

- VTYP and EXPTYP are string types and the length of
EXPVAL is equal to or less than the size specified by
the type VTYP.

- VTYP is a string type or a char type and EXPVAL 1s a
one-character string constant.

- VTYPis a packed array of char with N elements and
EXPVAL is a string constant containing exactly N
characters. If the index-type of the packed array of
char is not I .. N, results are unspecified.

At any place where the rule of assignment-compatibility is used
and none of the above is true, either a compiler error or a
run-time error occurs.

[file pas:p7; date 2/19/821

LISA PASCAL SPECIFICATION

7.6 Example of a Type-Definition-Part

TYPE
count - integer;
range - integer;
colour • (red, yellow, green, blue);
sex - (male, female);
year - 1900 •• 1999;
shape • (triangle, rectangle, circle);
card - ARRAY[1 •• 801 OF char;
str z string[801;
polar - RECORD r : real; theta angle END;
person • Apersondetails;
persondetails - RECORD

name, firstname : str;
age : integer;
married : Boolean;
father, child, sibling : person;
CASE s : sex OF

E~;

male: (enlisted, bearded: Boolean);
female : (pregnant : Boolean)

tape = FILE OF persondetails;
intfile = FILE OF integer;

Page 33

NOTE: In the above examples 'count', 'range' and 'integer'
denote identical types. The type 'year' is compatible with, but
not identical to, the types 'range', 'count' and 'integer'.

(file pas:p7; date 2/19/82]

Page 34 LISA PASCAL SPECIFICATION

[file pas:p7; date 2/19/82]

LISA PASCAL SPECIFICATION Page 35

Section 8

DECLARING AND REFERENCING VARIABLES

8.1 Variable-Declarations

A variable declaration consists of a list of identifiers denoting
the new variables, followed by their type.

variable-declaration - identifier-list u:" type

The occurrence of an identifier within the identifier-list of a
variable-declaration is its defining occurrence as a
variable-identifier for the block in which the declaration
occurs. A variable declared 1n a variable-declaration exists
during the entire execution process of the block in which it is
declared, except as specified in 5.2.2.

Examples:

x,y,z: real;
i,j: integer;
k: 0 .• 9;
p, q, r: Boolean;
operator: (plus, minus, times);
a: ARRAY(0 •• 63) OF real;
c: color;
f: FILE OF char;
hue1,hue2: SET OF color;
p1,p2: person;
m,ml,m2 : ARRAY[1 •• 10,1 •• 101 OF real;
coord : polar;
pooltape : ARRAY(1 •• 4] OF tape;

8.2 Variable-References

A variable-reference denotes the value of a variable of
simple-type or pointer-type, or the collection of values
represented by a variable of structured-type. (Note that if the
variable is of simple-type or pointer-type, it may be a component
of another variable of structured-type.)

[file pas:p8; date 2/19/82]

Page 36 LISA PASCAL SPECIFICATION

variable-reference • variable-identifier
I file-buffer
I pointer-reference
I variable-reference selector

variable-identifier • identifier

Syntax for file-buffers, pointer-references, and selectors is
gi ven below.

8.3 Selectors· and Components

8.3.1 General

A component of an array or record is denoted by a
variable-reference that refers to the array or record, followed
by a selector that specifies the component.

selector • index I field-designator

If the variable is an array or a string, the selector is an
index. If the variable is a record, the selector is a
field-designator. Components of files are referenced via
file-buffers (see 8.3.4).

Note that a component of a set cannot be directly referenced.

8.3.2 Arrays, Strings, and Indexes

A component of a variable of array-type or string-type is denoted
by a variable-reference that refers to the array or string,
followed by an index.

index - "f" expression {"," expression} "]"

Examples:

m[i t j]
a[i+j]

Each expression ·in the index selects a component in the
corresponding dimension of the array. The number of expressions
must not exceed the number of index-types in the array
declaration, and the type of each expression must be

[file pas:p8; date 2/19/82]

LISA PASCAL SPECIFICATION Page 37

assignment-compatible with the corresponding index-type.

In indexing a multi-dimensional array, you can use either
multiple indexes or multiple expressions within an index. The
two forms are completely equivale·nt J as shown by the following
example.

m[i][j1
is equivalent to

m{i,j]

A string can be indexed by only one index expression, whose value
must be in the range 1 •• n where n is the dynamic length of the
string variable. For array variables. each index expression must
be assignment-compatible with the corresponding index-type
specified in the definition of the array-type.

8.3·.3 Records and Field-Designators

A component of a variable of record-type is denoted by a
variable-reference that refers to the structured record, followed
by a field-designator that specifies the component.

field-designator =- "." field-identifier
field-identifier • identifier

Example:

p2-.pregnant
coord. theta

8.3.4· File-Buffers

Although a file variable may have any number of components, only
one eomponent is accessible at any time. The position of the
current component in the file is called the "current file
position." See 16.2 for standard procedures that move the
current file position. Program access to the current component
is via a variable called a "file-buffer."

The file-buffer is implicitly declared when the file variable is
declared. If F is a file variable with components of type I, the
associated file-buffer is a variable of type T.

[file pas:p8; date 2/19/82]

Page 38 LISA PASCAL SPECIFICATION

The file-buffer associated with a particular file variable is
referenced by a variable-reference that refers to the file
variable, followed by an up-arrow. Thus the file-buffer of file
F is referenced by FA.

file-buffer - file-variable-reference up-arrow
file-variable-reference ~ variable-reference
up-arrow :I: ItAIt

Section 16.2 describes standard procedures that are used to move
the current file position within the file and to transfer data
between the file-buffer and the current file component.

8.4 Pointer-References

In addition to declared variables and file-buffers, Pascal
provides for dynamically allocated variables. A dynamically
allocated variable is created by the standard procedure new (see
16.6.1) which takes as its argument a pointer variable; this
pointer variable becomes a pointer to the dynamically allocated
variable.

Since a dynamically allocated variable has no identifier of its
own, it is referenced by a variable-reference that refers to its
pointer, followed by an up-arrow. Thus if P refers to a variable
of pointer-type, the variable that P points to is referenced by
PA. This is called a pointer-reference.

pointer-reference • pointer-variable up-arrow
pointer-variable - variable-reference
up-arrow _ "AU

Examples:

pI"
pIA. sibling"

[file pas:p8; date 2/19/82]

LISA PASCAL SPECIFICATION Page 39

Section 9

PROCEDURES AND FUNCTIONS

9.1· Procedure-Declarations

A procedure-declaration associates an identifier with part of a
program so that it can be activated by a procedure-statement.

procedure-declaration - procedure-heading
body • procedure-block

I "FORWARD"
I "EXTERNAL"

procedure-block - block

It ... , body

The procedure-heading specifies the identifier naming the
procedure, and the formal parameters (if any). The appearance of
an identifier in the procedure-heading of a procedure is its
defining occurrence as a procedure-identifier for the block in
which the procedure-declaration occurs.

procedure-heading =- "PROCEDURE" identifier
[formal-parameter-list

procedure-identifier - identifier

The syntax for a formal-paraMeter-list is given in 9~3.1.

The algorithmic actions to be executed upon activation of the
procedure by a procedure-statement are specified by the
statement-part of the procedure-block. The use of the
procedure-identifier in a procedure-statement within the
procedure-block implies recursive execution of the procedure.

[fi~~as:p9; date 2/12.L8~]

Page 40 LISA PASCAL SPECIFICATION

An example of a procedure declaration is:

PROCEDURE readinteger (VAR f: text; VAR x: integer)
VAR value,digitvalue: integer;
BEGIN

WHILE (fA = ' ') AND NOT eof(f) DO get(f);
value : - 0;
WHILE (fA IN ['0' •• '9']) AND NOT eof(f) DO

BEGIN digitvalue :- ord(fA) - ord('0');
value :- 10*value + digitvalue;
get (f)

END;
x :- value

END;

A procedure-declaration that has "FORWARD" instead of a
procedure-block is called a forward declaration. Somewhere after
the forward declaration, the procedure is actually defined by a
procedure-declaration that uses the same procedure-identifier,
omits the formal-parameter-list, and includes a procedure-block.
The forward declaration and the subsequent actual definition must
be local to the same block, but need not be contiguous; that is,
other procedures or functions can be ·declared between them and
can call the procedure that has been declared forward. This
permits mutual recursion.

The forward declaration and the subsequent procedure-declaration
that actually defines the procedure constitute a defining
occurrence at the place of the forward declaration.

A procedure-cieclaration that has "EXTERNAL" ins tead of a
procedure-block defines the Pascal interfa~e to a separately
assembled or compiled routine (a .PROC in the case of assembly
language). The external code must be linked with the compiled
Pascal host program before execution; see the
Lisa Pascal Development System manual for details.

An example of an external procedure definition is

PROCEDURE MAKESCREEN(INDEX: INTEGER);
EXTERNAL;

This means that MAKESCREEN is an external procedure that will be
linked to the host program before execution.

[file pas:p9; date 2/19/82]

LISA PASCAL SPECIFICATION Page 41

It is the programmer's responsibility to ensure that the external
procedure is compatible with the EXTERNAL definition in the
Pascal program; the current Linker does no checking.

This description of external procedures also applies to external
functions.

Note that Lisa Pascal (unlike UCSD Pascal) does not allow a
variable parameter of an external procedure or function to be
declared without a type. To obtain a similar effect, use a
formal-parameter of pointer-type, as in the following example:

TYPE BIGPAOC • PACKED ARRAY[0 •• 32767] OF CHAR;
BIGPAOCPTR • ABIGPAOC;

PROCEDURE WHATEVER (BYTEARRAY: BIGPAOCPTR);
EXTERNAL;

The actual-parameter can be any pointer value obtained via the
@-operator (see 10.2.6). For example, if DOTS is a packed array
of boolean, it can be passed to WHATEVER by writing

WHATEVER(@DOTS)

9.2 Function-Declarations

A function-declaration serves to define a part of the program
that computes a value of simple-type or a pointer value. A
function is activated by the evaluation of a function-call (see
10.3); function-calls appear as operands in expressions.

function-declaration - function-heading
body • function-block

I "FORWARD"
I "EXTERNAL"

function-block • block

It." , body

The function-heading specifies the identifier naming the
function, the formal parameters (if any), and the type of the
function result. The appearance of an identifier in the
function-heading of a function-declaration is its defining
occurrence as a function-identifier for the block in which the
function-declaration occurs.

{file pas:p9; date 2/19/82J

Page 42 LISA PASCAL SPECIFICATION

function-heading II: "FUNCTION" identifier
[formal-parameter-lis t] ":" result-type

function-identifier - identifier
result-type - simple-type-identifier

I pointer-type-identifier

The algorithmic actions to be executed upon activation of the
function by a function-call are specified by the statement-part
of the function-block. The function-block should normally
contain at least one assignment-statement that assigns a value to
the function-identifier. The result of the function is the las t
value assigned. If no such assignment-statement exists, or if it
exists but is not executed, the value returned by the function is
unspecified.

The syntax for a formal-parameter-list is given in 9.3.1.

The use of the function-identifier in a function-call within the
function-block implies recursive execution of the function.

A function-declaration that has "FORWARD" instead of a
function-block is called a forward declaration. Somewhere after
the forward declaration, the function is actually defined by a
function-declaration that uses the same function-identifier,
omits the formal-parameter-list and result-type, and includes a
function-block. The forward declaration and the subsequent
actual definition must be local to the same block, but. need not
be contiguous; that is, other procedures or functions can be
declared between them and can call the function that has been
declared forward. This permits mutual recursion.

The forward declaration and the subsequent function-declaration
that actually defines the function constitute a defining
occurrence at the place of the forward declaration.

Examples:

FUNCTION GCD(m,n integer) integer; forward;

[file pas:p9; date 2/19/82]

LISA PASCAL SPECIFICATION

FUNCTION max(a: vector; n: integer): real;
VAR x: real; i: integerj
BEGIN

x := a[l];
FOR i :- 2 TO n DO BEGIN

IF x < a[i] THEN x :a a[i]
END;
max :- x

END;

FUNCTION GCD; {which has been forward declared}
BEGIN

IF n-0 THEN GCD :- m ELSE GCD :- GCD(n,m MOD n)
END;

FUNCTION Power(x: real;y: integer): real
VAR w,z: real; i: integer;
BEGIN

w :a X; z :- 1; i := y;
WHILE i > 0 DO BEGIN

{z*(w**i) == x ** y }
IF odd(i) THEN z :- z*w;
i :- i div 2;
w :- sqr(w)

END;
{z - x**y }
Power :a z

END;

{ y >- 0}

Page 43

A function-declaration that has "EXTERNAL" ins tead of a .
function-block defines the Pascal interface to a separately
compiled or assembled external routine. See the explanation in
9.1 above.

9.3 Parameters

9.3.1 General

There are four kinds of parameters: value parameters, variable
parameters, procedural parameters, and functional parameters.

[file pas:p9; date 2/19/821

Page 44 LISA PASCAL SPECIFICATION

formal-parameter-list - "(" parameter-section
{It;" parameter-section} ")"

parameter-section - ["VAR"] parameter-group
procedure-heading
function-heading

parameter-group - identifier-list ":" type-identifier
parameter-identifier • identifier

A parameter-group preceded by "VAR" is a list of variable
parameters. A parameter-group without a preceding "VAR" is a
list of value parameters. A procedure-heading or function-heading
denotes a procedural or functional parameter; see 9.3.4 and 9.3.5
below.

The occurrence of an identifier within the identifier-list of a
parameter-group is its defining occurrence as a
parameter-identifier for the formal-parameter-list in which it
occurs and any corresponding procedure-block or function-block.

The occurrence of an identifier in a procedure-heading or
function-heading within a parameter-section (as the name of the
function or procedure) is its defining occurrence as a procedural
or functional parameter for the formal-parameter-list in which it
occurs and any corresponding procedure-block or function-block.

If the formal-parameter-list is part of the definition of a
procedural or functional parameter. there must be no
corresponding procedure-block or function-block.

Note that the types of formal-parameters are denoted by
type-identifiers. In other words, only a simple identifier can
be used to denote a type in a formal-parameter-list. To use a
type such as ARRAY(0 •• 255] OF CHAR as the type of a parameter,
you must declare a type-identifier for this type:

TYPECHARRAY - ARRAY 1 0 •• 255] OF CHAR;

The identifierCHARRAY can then be used in a
formal-parameter-list to denote the type.

NOTE: The identifier FILE (for an untyped file) is not allowed
as a parameter type. To use a parameter of this type, declare
some other identifier for the type FILE -- for example,

TYPE PHYLE - FILE;

[file pas:p9; date 2/19/82]

LISA PASCAL SPECIFICATION Page 45

The identifier PHYLE can then be used in a formal-paraMeter-list
to denote the type FILE.

9.3.2 Value Parameters

The actual-parameter (see 10.3 and 11.2.3) must be an expression,
and its value must not be of file-type. The formal parameter
denotes a variable local to the block. The current value of the
expression is assigned to the variable upon activation of the
block. The actual-parameter must be assignment-compatible with
the type of the formal parameter.

9.3.3 Variable· Parameters

The actual-parameter (see 10.3 and 11.2.3) must be a
variable-reference. The formal parameter denotes this actual
variable during the entire activation of the block. Any
operation within the block, involving the formal parameter, is
performed on the actual-parameter. The type of the actual
parameter must be identical to that of the formal parameter. If
the selection of this variable involves the indexing of an array,
or the de-referencing of a pointer, these actions are executed
before the activation of the block.

Components of variables of any packed type (including·
string-types) cannot be used as actual variable parameters.

9.3.4 Procedural Parameters

When the formal parameter is a procedure-heading, the
actual-parameter (see 10.3 and 11.2.3) must be a
procedure-identifier. The identifier given in the
procedure-beading represents the actual procedure during the
entire activation of the block as shown in the following example:

[file pas:p9; date 2/19/82]

Page 46 LISA PASCAL SPECIFICATION

PROGRAM Pass_Proc;
V AR i: INTEGER;

PROCEDURE a(PROCEDURE x) {x is a formal procedural
parameter.}

BEGIN
WRITE('About to call x');
x {call procedure passed as

END;

PROCEDURE b;
BEGIN

parameter}

WRITE(, In procedure b') .
END;

FUNCTION c(PROCEDURE x): INTEGER;
BEGIN

x;

c:-2
END;

BEGIN
a(b) ;
i:- c(b)

END.

{call procedure passed as
parameter}

{call a, passing b as parameter}
{call c, passing b as parameter}

The actual procedure and the formal procedure must have
compatible formal-parameter-lists (see 9.3.6). Regardless of the
formal-parameter-list of the actual procedure, only the
identifier of the actual procedure is passed as shown in the
following example:

[file pas:p9; date 2/19/821

LISA PASCAL SPECIFICATION

PROG~ Test;
VAR i: INTEGER;

PROCEDURE ~as_Par(y: INTEGER);
BEGIN

WRITELN('y.', y)
END;

PROCEDURE Call Proc(PROCEDURE x_again(z: INTEGER»;
V AR b: BOOLEAN j
BEGIN

b:- TRUE;
x again(l)

END;

BEGIN
i: -2;
Call P 0 (X_as_Par)

END. -

Page 47

If the procedural paramet~r, upon activation, accesses any
non-local entity (by identifier, pointer reference, or label),
the entity accessed must be one that was accessible to the
procedure when its procedure-identifier was passed as a
procedural parameter.

To see what this means, consider a procedure PP which> is known to
another procedure, FIRSTPASSER. Suppose that the following
sequence takes place:

- FIRSTPASSER is executing.

- FIRSTPASSER calls a procedure named RCVRl, passing PP
as a procedural parameter.

- RCVRI calls RCVR2, again passing PP as a procedural
parameter.

- RCVR2 calls PP (firs t execution of PP).

- RCVR2 calls RCVR3, again passing PP as a procedural
parameter.

- RCVR3 calls FIRSTPASSER (indirect recursion), and
passes PP to FIRSTPASSER as a procedural parameter.

{fileyas:p9j date 2/19/82]

Page 48 LISA PASCAL SPECIFICATION

- FIRSTPASSER (executing recursively) calls PP (second
execution of PP).

Thus the procedure PP is called first from RCVR2, and then from
the second (recursive) execution of FIRSTPASSER.

Suppose that PP accesses'an entity named XXX, which is not local
to PP; and suppose that each of the other procedures has a local
entity named XXX.

Each time PP is called, which XXX does it access? The answer is
that in" each case, PP accesses the XXX that is local to the first
execution-of FIRSTPASSER -- that is, the XXX that was accessible
when PP was originally passed as a procedural parameter.

9.3.5 Functional Parameters

When the formal parameter is a function-heading, the
actual-parameter (see 10.3 and 11.2.3) must be a
function-identifier. The identifier given in the
function-heading represents the actual function during the entire
activation of the block.

Functional parameters are exactly like procedural parameters,
with the additional rule that corresponding formal and actual
functions must have identical result-types.

9.3.6 Parameter List Compatibility

Parameter list compatibility is required of the parameter lists
of corresponding formal and actual procedural or functional
pa ramet e rs •

Two formal-parameter-lists are compatible if they contain the
same nu~ber of parameters and if the parameters in corresponding
po!;i tions .,atch. "'T,"n parameters match if:

- They are both value parameters of identical type;

- Or they are both variable parameters of identical type;

- Or they are both procedural parameters with compatible
pa ramet e r lis ts ;

(file pas:p9; date 2/19/82]

LISA PASCAL SPECIFICATION Page 49

- Or they are both functional parameters with compatible
parameter lists and identical result-types.

[file ~s: p9; date_~L19/82]

Page 50 LISA PASCAL SPECIFICATION

[file pa~:p9; date 2/19/82]

LISA PASCAL SPECIFICATION Page 51

Section 10

EXPRESSIONS

Ul. 1· General

Expressions consist of operators and operands, i.e. variables,
cons tants, set-values, and function calls. Operator precedence
is as follows: The ~-operator and the not-operator have the
highest procedence, followed by the multiplying-operators, then
the adding-operators and signs, and finally, with the lowest
precedence, the relational-operators. A left-to-right rule is
used to break ties between two or more operators of the same
precedence.

unsigned-constant • unsigned-number
quoted-string-constant
constant-identifier
"NIL"

factor - [@-operator] variable
I unsigned-constant
I function-call
I set-constructor
I U(It expression ")"
I not-operator factor

term - factor { multiplying-operator factor }
simple-expression - [sign 1 term { adding-operator term }
sign _ U+" I "_It
expression • simple-expression

[relational-operator simple-expression

Examples are:

(a) Factors:

(b) ~:

[file pas:plO; date 2/19/821

x
15
(x+y+z)
NOT p

x*y
i/(1-i)
P OR q
(x <- y) AND (y < z)

Page 52

(c) Simple expressions:

(d) Expressions:

x+y
-x
huel +
i*j + 1

x - 1.5
p <- q
p - q A
(i < j)
c IN huel

LISA PASCAL SPECIFICATION

A function-call activates a function, and denotes the value
returned by the function (see 10.3). A set-constructor denotes a
value of a set-type (see 10.4).

10 .. 2 Operators

10.2.1 Syntax

multiplying-operator - "*" I '~/" I "DIV" I "MOD" I "AND"
ad ding-ope ra tor - "+" I "_If I "OR"
relational-operator = "_" I H<>" I "<" I ">" I H<_"

@-operator .: "@"

not-operator - "NOT"

H>_" I "IN"

The order of evaluation of the operands of a binary operator is
unspecified.

10.2.2 Arithme·tic Operators

The types of operands and results for binary and unary operations
are as shown in tables 2 and 3 respectively.

[file pas:plO; date 2/19/82]

LISA PASCAL SPECIFICATION

operator

+

*

/

DIV

MOD

operator

+

NOT

@

Table 2·. Binary Operations

operation

addition

subtraction

type of operands

integer, real,
or longint

integer, real,
or longint

multiplication integer, real,
or longint

division integer, real,
or longint

division with integer
truncation or longint

modulo integer
or longint

Table 3. Unary Oper.ations

operation

identity

sign-inversion

negation

pointer
formation

type· of operand

integer, real,
or longint

integer, real,
or longint

boolean

variable,
procedure, or
function

Page 53

type of result

intege r, real,
or longint

integer, real,
or longint

integer, real,
or longint

real

integer
or longint

integer
'or longint

type of result

same

same

boolean

same as NIL

NOTE: The symbols +, - and * are also used as set operators (see
10.2.4).

Any operand whose type is SUaR, where SUaR is a subrange of some
ordinal-type ORDTYP, is treated as if it were of type ORDTYP.
Consequently an expression that consists of a single operand of
type SUBR is itself of type ORDTYP.

Jfile p~s:plOj dat~ __ 2/19/821

Page 54 LISA PASCAL SPECIFICATION

If both the operands of the addition, subtraction, or
multiplication operators are of the type integer or longint, the
result is of the type integer or longint as described in 7.2.2.2,
but if otherwise, the result is of the type real.

The result of the identity or sign-inversion operator is of the
same type as the operand.

The result of the @-operator is a pointer value of the same type
as NIL, i.e., it is compatible with any pointer-type.

The value of i DIV j is the mathematical quotient of i/j, rounded
toward zero. An error occurs if j-0.

The value of i MOD j is equal to the value of

i - (i DIV j)*j.

Note that the sign of the result of MOD is always the same as the
sign of i. An error occurs if j a 0.

The predefined constant maxint is of type integer. Its value is
32767. This value satisfies the following conditions:

- All integral values in the closed interval from -maxint
to +maxint are representable in the type integer.

Any unary operation performed on an integer value in
this interval will be correctly performed according to
the mathematical rules for integer arithmetic.

- Any binary integer operation on two integer values in
this same interval will be correctly performed
according to the mathematical rules for integer
arithmetic, provided that the result is also in this
interval. If the result is not in this interval, it is
truncated to 16 bits.

- Any relational operation on two integer values in this
same interval will be correctly performed according to
the mathematical rules for integer arithmetic.

[file pas:p10j date 2/19/82]

LISA PASCAL SPECIFICATION Page 55

10.2.3 Boolean Operators

The types of operands and results for Boolean operations are
shown in table 4.

Table 4. Boolean Operations

operator operation type of operands type· of result

OR logical "or" Boolean Boolean

AND logical "and" Boolean Boolean

NOT logical negation Boolean Boolean

Whether a Boolean expression is completely or partially evaluated
if its value can be determined by partial evaluation is
unspecified.

10.2.4. Set Operators

The types of operands and results for set operations are shown in
table S.

Table 5. Set Operations

operator operation

+ union

dif ference

* intersection

type of operands type" of result

compatible (see 10.2.4.1)
set-types

compatible
set-types

compatible
set-types

(see 10.2.4.1)

(see 10.2.4.1)

10.2.4.1 Result Type in Set Operations

The following rules govern the type of the result of a set
operation where one (or both) of the operands is a SET OF SUBR,
where ORDTYP represents any ordinal-type and SUBR represents a

[file pas:plO; date 2/19/82]

Page S6 LISA PASCAL SPECIFICATION

subrange of ORDTYP:

- If ORDTYP is not the type INTEGER, then the type of the
result is SET OF ORDTYP.

- If ORDTYP is the type INTEGER, then the type of the
result is SET OF 0 •• 4087 in the current implementation
(D .• 32767 in a future implementation). This rule
results from the limitations on set-types (see 7.3.4).

)

10.2.5· Relational Operators

The types of operands and results for relational operation are
shown in table 6.

Table 6. Relational Operations

operator type· of operands

- <> compatible set-,
simple-, or
poi nte r-types
(see note below)

< > any simple-type

<- >- any set-type or
simp le-type

IN left operand:
any ordinal-type Tj

right operand:
SET OF T

type of result

Boolean

'Boolean

Boolean

Boolean

NOTE: In addition to the operand types shown in the table, the -
and <> operators can also be used to compare a packed array{l •• N]
of char with ~ string constant containing exactly N characters,
or to compare two one-dimensional packed arrays of char of
identical type.

Except when applied to sets, the operators <> , <- , and >- stand
for 'not equal', 'less than or equal' and 'greater than or equal'
respectively. The operands of ., <>, <, >, >-, and <- must be
either of compatible type, or one operand must be real and the
other must be integer or longint. If u and v are set operands,

[file pas:plO; date 2/19/82]

LISA PASCAL SPECIFICATION

u <= v denotes the inclusion of u in v
u >= v denotes the inclusion of v in u

Page 57

If p and q are Boolean operands, p - q denotes thei"r equivalence
and p <- q denotes the implication of q by p, because false <
true. Similarly, p <> q denotes logical "exclusive-or." When
the relational operators • , <> , < , > , <- , and > are used to
compare strings (see 7.2.2.6), they denote lexicographic ordering
according to the ordering of the ASCII character set. The string
operands need not be of compatible type; any two string values
may be compared.

The Qperator IN yields the value true if the value of the operand
of ordinal-type is a member of the set; otherwise it yields the
value false.

10.2.6 @-operator

A pointer to a variable can be computed with the @-operator. @
is a unary operator taking a single variable, parameter,
procedure, or function as its operand and computing the value of
its pointer. The type of the value is equivalent to the type of
NIL, and consequently can be assigned to any pointer variable.

10.2.6.1 @-operator With a Variable

For an ordinary variable (not a parameter), the use of the
@-operator is straightforward. For example, if we have the
declarations

INT: integer;
TWOCHARPTR: Apacked array[0 •• 11 of char;

then the statement

TWOCHARPIR: -@INT

causes PIR to point to INT. Now TWOCHARPTR A is a
reinterpretation of the bit value of IN! as though it were a
packed array[0 •• 1] of char.

The operand of @ cannot be an element of a packed variable.

(f~~.e pas:plO; date 2/19/82J

Page 58 LISA PASCAL SPECIFICATION

10.2.6.2 @-Operator With a Value Parameter

When the @-operator is applied to a formal value parameter, the
result is a pointer to the stack locat.ion containing the actual
value. Suppose that FOO is a formal value parameter in a
procedure and FOOPTR is a pointer variable. If the procedure
executes the statement

FOOPTR: -@FOO

then FOOPTR A is a reference to the value of FOO. Note that if
the actual-parameter was a variable-reference, FOOPTR A is not a
reference to the variable itself; it is a reference to the value
taken from the variable and stored on the stack.

10.2.6.3.@-operator With a Variable Parameter

When the @-operator is applied to a formal variable parameter,
the result is a pointer to the actual-parameter (the pointer is
taken from the stack). Suppose that FUM is a formal variable
parameter of a procedure, FIE is a variable passed.to the
procedure as the actual-parameter for FUM, and FUMPTR is a
pointer variable. If the procedure executes the statement

FUMPTR : -@FUM

then FUMPTR is a pointer to FIE. FUMPTR A is a reference to FIE
itself.

10.2·.6.4 @-Operator With· a Procedure or Function

It is possible to apply the @-operator to a procedure or a
function, yielding a pointer to the entry-point. Note that
Pascal provides no mechanism for using such a pointer. Currently
the only use for a procedure pointer is to pass it to an
assembly-language routine, which can then JSR to that address.

If the procedure pointed to is in the l~cal segment, @ returns
the current address of the procedure's entry point. If the
procedure is in some other segment, however, the @-operator
returns the address of the jump table entry for the procedure.

[file pas:plOj date 2/19/82]

LISA PASCAL SPECIFICATION Page 59

In logical memory mapping (see
Lisa Pascal Development System Manual), the procedure pointer is
always valid.

In physical memory mapping, code swapping may change a
local-segment procedure address without warning, and the
procedure pointer can become invalid. If the procedure is not in
the local segment, the jump-table entry address will remain valid
despite swapping because the jump table is not moved.

10.3 Function-Calls

A function-call specifies the activation of the function denoted
by the function-identifier. If the corresponding
function-declaration contains a list of formal-parameters, then
the function-call must contain a corresponding list of
actual-parameters. Each actual-parameter is substituted for the
corresponding formal-parameter. The correspondence is
established by the positions of the parameters in the lists of
actual and formal parameters respectively. The number of
actual-parameters must be equal to the number of formal
pkrameters.

The order of evaluation and binding of the actual-parameters is
unspecified.

function-call = function identifier
[actual-parameter-list

function-identifier - identifier
actual-parameter-list • It(" actual-parameter

{ "," actual-parameter} ")"
actual-parameter - expresssion

variable-reference
procedure-identifier
function-identifier

Examples of function-calls:

Sum(a,63)
GCD(147,k)
sin(x+y)
eof(f)
ord(f'")

(file pas :pJO; date 2/19/82]

Page 60 LISA PASCAL SPECIFICATION

10.4· Set-Constructors

A set-constructor denotes a value of a set-type, and is formed by
writing expressions within [brackets].

set-constructor - "[" [member-group
{ "," membe r-group }] "]"

member-group - expression [" •• " expression]

The notation [] denotes the empty set, which belongs to every
set-type. Any member-group x •• y denotes as set members the range
of all values of the base-type in the closed interval x to y.

If x is greater than y, then x •• y denotes no members and [x •• y]
denotes the empty set.

All values designated in member-groups in a particular
set-constructor must be of the same ordinal-type. This
ordinal-type is the base-type of the resulting set. If an
integer value designated as a set member is outside the limits
given in 7.3.4 (0 •• 4087 in the current implementation), the
results are unspecified.

Examples of set-constructors:

[red, c, green]
[1, 5, 10 •• K MOD 12, 23]
['A' •• 'Z', 'a' •• 'z', chr(xcode)]

[file pas:pl0; date 2/19/82]

LISA PASCAL SPECIFICATION Page 61

Section 11

STATEMENTS

11.1 General

Statements denote algorithmic actions, and are executable. They
can be prefixed by labels, which can be referenced by goto
statements.

statement - [[label It:"] (simple-statement
I structured-statement)]

label • unsigned-integer

An unsigned-integer used as a label must be in the range 0 •• 9999.

11.2 Simple Statements

11.2.1 General

A simple-statement is a statement of which no part constitutes
another statement. An empty statement consists of no symbols and
denotes no action.

simple-statement = assignment-statement
procedure-statement
goto-statement

11.2.2 Assignment-Statements

The assignment-statement serves to replace the current value of a
variable by a new value specified as an expression.

assignment-statement • (variable I function-identifier)
It: ... expression

The expression must be assignment-compatible with the type of the
variable or function. If the selection of the variable involves
the indexing of an array or the de-referencing of a pointer, the
decision whether these actions precede or follow the evaluation
of the expression is unspecified.

{file pas:pl1j date 2/19/82]

Page 62

Examples:

x :- y+z;
p :z (1<=i) AND (i<100);
i :- sqr(k) - (i*j);

hue 1 :- [blue.succ(c)];

11.2.3 Procedure-Statements

LISA PASCAL SPECIFICATION

A procedure-statement serves to execute the procedure denoted by
the procedure-identifier. If the procedure has formal-parameters
(see 9.3.1), the procedure-statement must contain a list of
actual-parameters that are substituted in place of the
corresponding formal parameters. The correspondence is
established by the positions of the parameters in the lists of
actual and formal parameters respectively. The number of
actual-parameters must be equal to the number of formal
parameters. The order of evaluation and binding of the actual
parameters is unspecified.

procedure-statement = procedure-identifier
[actual~parameter-list

procedure-identifier • identifier

Examples:

printheadingj
transpose(a,n,m);
bisect{fct,-1.0,+1.0,x);

11.2.4 GOTO· Statements

A goto-statement serves to indicate that further processing 1s to
continue at another part of the program text, namely at the place
of the label.

goto-statement • "GOTO" label

The following restrictions govern the use of labels:

- A goto-statement cannot refer to a case-constant, since
a case-constant is not a label.

[file pas:p11; date 2/19/82]

LISA PASCAL SPECIFICATION

- The effect of a jump into a structured statement from
outside of the structured statement is unspecified.

Page 63

- The effect of a jump between the THEN part and the ELSE
part of an IF statement is unspecified.

- The effect of a jump between two different cases within
a CASE statement is unspecified.

11.3 Structured-Statements

11.3.1 General

Structured-statements are constructs composed of other statements
that must be executed either in sequence (compound-statement),
conditionally (conditional-statements), repeatedly
(repetitive-statements), or within an expanded scope
(with-statements).

structured-statement - compound-statement
conditional-statement
repetitive-statement
with-statement

11.3.2· Comoound-Statements

The compound-statement specifies that its component statements
are to be executed in the same sequence as they are written. The
symbols BEGIN and END act as statement brackets.

compound-statement == "BEGIN" [statement { ";" statement }]
"END"

Example:

BEGIN z :- x x :- y; y :- z END

11.3.3 Conditional-Statements

A conditional-statement selects for execution a single one of its
component statements.

[file pas:pll; date 2/19/82]

Page 64 LISA PASCAL SPECIFICATION

conditional-statement - if-statement
case-statement

11.3.3.1 IF-Statements

if-statement K "IF" expression "THEN" statement
[else-part

else-part K "ELSE" statement

The expression must yield a result of type Boolean. If the
expression yields the value true, the statement following the
THEN is executed. If the Boolean-expression yields false and the
else-part is present. the statement following the ELSE is
executed, otherwise an empty statement is executed.

The syntactic ambiguity arising from the construct:

IF e1 THEN IF e2 THEN s1 ELSE s2

is resolved by interpreting the construct as being equivalent to:

IF e1 THEN
BEGIN

IF e2 THEN sl ELSE s2
END

Examples:

IF x < 1.5 THEN z :- x+y ELSE z :- 1.5;
IF pI <> NIL THEN pI :- pIA.father;

11.3.3.2 CASE-Statements

The case-statement contains an expression (the selector) and a
list of statements. Each statement must be preceded by one or
more constants. All the case-constants must be distinct and must
be of an ordinal-type that is compatible with the type of the
selector. The case-statement specifies execution of the
statement whose case-constant is equal to the current value of
the selector. If no such case-constant exists and an
otherwise-part is present, the statement following the OTHERWISE
is executed; else nothing is executed and control passes to the
statement following the case-statement.

[file pas:p11; date 2/19/82]

LISA PASCAL SPECIFICATION

case-statement = "CASE" expression "OF"
case-list-element
{";" case-list-element }
[";" "OTHERWISE" statement
[";"1 "END"

case-lis t-element =- case-cons tant-lis t ": II statement
case-constant-list - constant' {"," constant}

Examples:

CASE operator OF
plus: x:=- x+yj
minus: x:- x-Yj'
times: x: - x *y

END

CASE i OF
1 : x :- sin(x) j
2: x :- cos (x) j
3,4,5: x :- exp(x) j
OTHERWISE x :- In(x)

END

Page 65

NOTE: In the current implementation, the cas'e-statement will not
work correctly if any case-constant is of type longint or the
value of the selector is of type longint.

11.3.4 Repetitive-Statements

Repetitive-statements specify that certain statements are to be
executed repeatedly.

repetitive-statement - while-statement
repeat-statement
for-statement

11.3.4.1 REPEAT-Statements

repeat-s tatement = "REPEAT" [s tatement {
"UNTIL" expression

If." , statement }]

The expression must yield a result of type Boolean. The
statements between the symbols REPEAT and UNTIL are repeatedly
executed until the expression yields the value true on completion

[file pas:pl+; date 2/19/82]

Page 66 LISA PASCAL SPECIFICATION

of the sequence of statements. The sequence of statements is
executed at least once, because the expression is evaluated after
execution of the sequence.

Examples:

REPEAT
k :- i MOD jj

i : - j;
j :- k

UNTIL j - 0

REPEAT
process(fA);
get(f)

UNTIL eof (f)

11.3.4.2 WHILE Statements

while-statement -= "WHILE" expression "DO" statement

The expression must'yield a result of type Boolean. The
statement is repeatedly executed while the expression yields the
value true. If its value is false at the. beginning, the
statement is not executed.

The while-statement:

WHILE b DO body

is equivalent to:

IF b THEN REPEAT
body

UNTIL NOT b

Examples:

WHILE ali] <> x DO i :- i+1

WHILE i>0 DO BEGIN
IF odd(i) THEN z :- z*x;
i : =- i DIV 2;
x :- sqr(x)

END

[file pas:p11; date 2/19/82]

LISA PASCAL SPECIFICATION

WHILE NOT eof(f) DO BEGIN
process(f'");
get (f)

END

11.3.4·.3 FOR-Statements

Page 67

The for-statement indicates that a statement is to be repeatedly
executed while a progression of values is assigned to a variable
which is called the control-variable of the for-statement.

for-statement=- "FOR" control-variable "::" initial-value
("TO I "DOWNTO") final-value
"DO" statement

control-variable - variable-identifier
initial-value - expression
final-value =- expression

The control-variable must be a variable-identifier (without
subscript or field-identifier). It must be local to the
innermost block containing the for-statement. and must not be a
variable parameter of that block. The control-variable must be
of ordinal-type, and the initial and final values must be of a
type compatible with this type. If the value of the
control-variable is altered by the repeated statement or by any
procedure or function activated by the repeated statement, the
effect is unspecified. After a for-statement is executed, the
value of the control-variable is unspecified, unless the·
for-statement was exited by a goto. Apart from these
restrictions, the for-statement:

FOR v := el TO e2 DO body

[file pas:pllj date 2/19/821

Page 68 LISA PASCAL SPECIFICATION

is

and

is

equivalent to:

BEGIN
tempI :- el;
temp2 :- e2;
IF tempI <- temp2 THEN BEGIN

v : - tempI;
body;
WHILE v <> temp2 DO BEGIN

v :- succ(v) ;
body

END
END

END

the for-statement:

FOR v :- el DOWNIO

equivalent to:

BEGIN
tempI :- el;
temp2 : - e2;

e2 00 body

IF tempI >- temp2 THEN BEGIN
v :- templ;
body;
WHILE v <> temp2 DO BEGIN

v :- pred(v);
body

END
END

END

where tempI and temp2 are auxiliary variables of the host type of
the variable v that do not occur elsewhere in the program.

Examples of for-statements are:

FOR i :- 2 TO 63 DO IF ali] > max THEN max := ali]

[file pas:pll; date 2/19/82]

LISA PASCAL SPECIFICATION Page 69

FOR i := 1 TO n DO FOR j := 1 TO n DO BEGIN
x ::a 0;
FOR k :z 1 TO n DO

x :- x + ml[i,k]*m2[k,j]j
m[i,j] :- x

END

FOR c :- red TO blue DO q(c)

11·.3.5 WITH-Statements

w1th-statement - "WITH" record-variable-list "DO"
statement

record-variable-list • record-variable
{ "," record-variable}

record-variable • variable-reference

The occurrence of a record-variable in the record-variable-list
is a defining occurrence of its field-identifiers as
variable-identifiers for the with-statement in which the
record-variable-list occurs.

The statement:

WITH vl,v2, •••• vn DO s

is equivalent to:

WITH vl DO
WITH v2 DO

WITH vn DO s

Example:

WITH date DO IF month • 12 THEN BEGIN
month : =- 1;
year :- year + 1

END
ELSE month :=- month + 1

[file pas:p1l; date 2/19/82]

Page 70

is equivalent to:

IF date. month - 12 THEN BEGIN
date.month :- 1;
date. year :- date.year+l

E~

ELSE date.month :- date.month+l

LISA PASCAL SPECIFICATION

If the selection of a variable in the record-variable-list
involves the indexing of an array or the de-referencing of a
pointer, these actions are executed before the component
statement is executed.

WARNING: If a variable in the record-variable-list is a
pointer-reference, the value of the pointer must not be altered
within the WITH statement. If the value of the pointer is
altered, the results are unspecified. Example:

WITH PPP- DO BEGIN

NEW(PPP); {Don't do this ••• }

PPP:-XXX; { ••• or this}

E~

[file pas:pll; date 2/f9/821

LISA PASCAL SPECIFICATION Page 71

Section 12

TEXTFILE INPUT AND OUTPUT

This section describes input and output with files of the
standard type TEXT. Note that in LISA Pascal, the type TEXT is
distinct from FILE OF CHAR (see 7.3.5).

12.1 General

Textfiles are a special kind of file. A textfile represents a
sequence of characters, usually formatted into lines by CR
characters (ASCII 13). The console keyboard and screen appear to
a Pascal program to be built-in textfiles named INPUT and OUTPUT
respectively. Other interactive devices can also be represented
in Pascal programs as files of type TEXT; when an interactive
device is acces.sed, a "lazy evaluation" method is, used f or gets,
puts, and references to the file buffer as described in 16.2.

When a textfile is stored (e.g. on diskette), it contains
information other than the actual seauence of characters
represented.The stored file is a seq~ence of 1024-byte "pages,"
each containing some number of complete lines of text and padded
with null characters. Two 512-byte "header blocks" may also be
present at the beginning of the file. Also, a sequence of spaces
in the text may be compressed into a two-byte code, namely a DLE
character (ASCII 10) followed by a byte containing 32 + the
number of spaces represented. All of this special formatting is
invisible to a Pascal program if the file is accessed via a file
variable of type TEXT (but visible via a file variable of type
FILE OF CHAR).

NOTE: The heade r blocks at the beginning of textf iles will be
abolished at some time in the future.

Certain things that can be done with a FILE OF CHAR are illegal
with a file variable of type TEXT:

- The SEEK procedure is illegal on a textfile.

- A textfile opened with RESET cannot be used for output,
and a textfile opened with REWRITE cannot be used for
input. Results are unspecified if either of these
opera tions is at tempted.

[file pas:p12; date 2/19/82]

Page 72 LISA PASCAL SPECIFICATION

In place of these capabilities, textfiles provide the following:

- Automatic conversion of each input CR character into a
space.

- The EOLN function to detect when the end of an input
line has been reached.

- The READ procedure. which can read not only char values
but also string values and numeric values (from textual
representations).

- The WRITE procedure, which can write not only char
values but also string values, numeric values, and
boolean values (as textual representations).

- Line-oriented reading and writing via the READLN and
WRITELN procedures.

- The PAGE procedure, which inserts a form-feed character
into an output textfile.

- Automatic conversion of input OLE-codes to the
sequences of spaces that' they represent. Note that
output sequences of spaces are not converted to
OLE-codes.

- Automatic skipping of header blocks and null characters
during input.

- Automatic generation of header blocks, and automatic
padding of text "pages" with null characters on output.

The GET and PUT procedures can also be used with textfiles,
although it is generally more convenient to use READ, READLN,
WRITE, and WRITELN. GET and PUT with a textfile perform input
and output of single characters, but they deal with the character
sequence represented by the formatted textfile, not necessarily
with the characters actually stored.

[file pas:p12; date 2/19/82]

LISA PASCAL SPECIFICATION

12.2 The READ Procedure

The syntax of the parameter lis t of READ is:

READ-parameter-list - "("(file-variable ","1
variable-reference

{"," variable-reference}")"
file-variable = variable-reference

Page 73

If the file-variable is omitted, the procedure is applied to the
standard file input.

In the following, f denotes a file of type TEXT and v1 •• vn denote
variables of the types char (or a subrange of char), integer,
subrange of integer, longint, string, or real:

a) READ(f,v1, ••• ,vn) is equivalent to:

. BEGIN READ(f, v 1); •• 0 ; READ(f, vn) END

b) If v is a variable of type char or subrange of char
READ(f,v) is equivalent to:

BEGIN v :- fA; get(f) END

c) If v is a variable of type integer, subrange of
integer, or longint, READ(f,v) implies the reading from
f of a sequence of characters that form a
signed-integer according to the syntax of 4.5. The
value read is assigned to v, if the value is
assignment-compatible with the type of v. Preceding
spaces and line-markers are skipped. Reading ceases as
soon as the file buffer variable fA contains a
character that does not form. part of a signed-integer.
An error occurs if the sequence of characters does not
form a signed-integer as specified in 4.5.

d) If v is a variable of type real, READ(f,v) implies the
reading from f of a sequence of characters that form a
signed-number according to the syntax of 4.5. The
value of the number is assigned to the variable v.
Preceding spaces and line-markers are skipped. Reading
ceases as soon as the file buffer variable fA contains
a character that does not form part of a signed-number.

[file pas:p12; date 2/19/82]

Page 74 LISA PASCAL SPECIFICATION

An error occurs if the sequence of characters does not
form a signed-number as specified in 4.5.

e) If v is a variable of type string. READ(f,v) implies
the reading from f of a sequence of characters up to
but not including the line separator. The resulting
character-string is assigned to v. An error occurs if
the number of characters read exceeds the size
attribute of v.

READ can also be used to read from a file f that is not a
textfile. In this case READ(f,x) is equivalent to:

BEGIN x :- fA; get(f) END

12.3 The READLN Procedure

The syntax of the parameter list of READLN is:

READLN-parameter-list - ["(" (file-variable
variable-reference)

{"," variable-reference} ")"1
file-variable - variable-reference

If the file-variable is omitted, the procedure is applied to the
standard file input.

If the lis t of variables (other than the file-variable) is
omitted, READLN causes a skip to the beginning of the next line
(if there is one, else to the end-of-file). Thus READLN(f) is
eq ui vale nt to:

BEGIN
WHILE NOT eoln(f) DO get(f);
IF NOT eof(f) THEN get(f)

END

READLN(f,~1, ••• ,vn) is equivalent to:

BEGIN READ(f,v1, ••• ,vn); READLN(f) END

{file pas:p12; date 2/19/82]

LISA PASCAL SPECIFICATION

12.4· The WRITE Procedure

The syntax of the parameter list of WRITE is:

write-parameter-list = "("[file-variable "."l
write-parameter

{"." write-parameter}")"
file-variable - variable-reference
write-parameter - expression [":" expression

[":" expres sion] 1

Page 75

In the following intolerable discussion, which will someday be
replaced by something a human being can comprehend. f denotes a
textfile, p1, •••• pn denote write-parameters, E denotes an
expreSSion, M and N denote expressions of type integer or
longint:

a) WRITE(f,pl, ••• ,pn) is equivalent to:

BEGIN WRITE(f,p1); ••• j WRITE(f,pn) END

b) The write-parameters p have the following forms:

E
E:M
E:M:N

where E is an expression whose value is to be written
on the file f. E can be numeric (integer, longint, or
real), char, Boolean, or a string. M and N are
expressions whose integer values are the field-width"
parameters. Their values should be greater than zero;
if they are not, the results are unspecified. Exactly
M characters are written (with an appropriate number of
spaces to the left of the representation of E), except
when E is a numeric value that requires more than M
characters for its representation; in such cases the
number of characters written is as small as is
consistent with the representation of E (see
requirements d and e).

WRITE(f, E) is equivalent to WRITE(f ,E:M), using a
default value for M that depends on the type of E (see
below) •

[file pas:p12; date 2/19/821

Page 76 LISA PASCAL SPECIFICATION

WRITE(f,E:M:N) is applicable only if E is of type real
(see requirement e).

c) If E is of type char, the default value for M is one.

d) If E is of type integer or longint, the decimal
representation of the number E is written on the file
f. The default value for M is 8. If pten is the
positive integer defined by:

IF E - 0
THEN pten :- 1
ELSE determine pten such that 10**(pten-l)

<- abs(E) < 10**pten

the representation consists of:

(1) if M >- pten + 1
(M-pten-1) spaces,
the sign character (tt_" if E<0, otherwise a

space) ,
pten digits.

(2) If M<pten+1, pten characters are written if E>=0,
(pten+1) if E<0.

e) If E is of type real, a decimal representation of- the
number E, rounded to the specified number of
significant figures or decimal places, is written on
the file f. The default value for M is 12.

WRITE(f,E:M) causes a floating-point representation of
E to be written. If edig is the number of digit
characters written in the exponent. and the
non-negative number er and the integer pten are defined
by:

[file pas:p12; date 2/19/82]

LISA PASCAL SPECIFICATION Page 77

IF E =- 0.0
THEN BEGIN er :- 0.0; pten := 1 END
ELSE
BEGIN

e r :. a bs (E) ;
determine pten such that

10**(pten-l) <- er < 10**pten;
er :- er + 0.5 * (10**(pten-M+edig+4»;
er is truncated to (M-edig-4) significant

decimal figures
END

the representation consists of:

(1) if M >- edig + 6:
the sign character

("-" if E<0 and er<>0, otherwise a space),
the leading digit of er,
the character ".",
the next (M-edig-5) digits of er,
the character "E",
the sign of (pten - 1) ("+" or "_It),
edig digits for (pten - 1)

(with leading zeros if necessary).

(2) If M<edig+6, (edig+6) characters are written,
including one digit after the decimal point.

WRITE(f, E:M:N) causes a fixed-point representation of
E to be written. If the non-negative number er and the
positive integer pten are defined by:

IF E • 0.0
THEN er :- 0.0
ELSE
BEGIN

er : - abs(E);
er :- er + 0.5 * 10**(-N);
er is truncated to N decimal places

END;
IF trunc(er) = 0

THEN pten :- 1
ELSE determine pten such that 10**(pten-1)

<- trunc(er) < 10**pten

[file pas:p12; date 2/19/82]

Page 78

the representation consists of:

(1) if M >- pten+N+2:
(M-pten-N-2) spaces,
the sign character

LISA PASCAL SPECIFICATION

("_It if E<0 and er<>0, otherwise a space),
the firs~ pten digits of er,
the character ".",
the next N digits of ere

(2) If M<pten+N+2, (pten+N+2) characters are written.

f) If E is of type Boolean, a representation of the word
true or the word false (as appropriate) is written on
the file f. This is equivalent to:

WRITE(f,' TRUE':M) or WRITE(f,'FALSE':M)

as appropriate. The default value of M is 5 (see "g"
below).

g) If E is of string type with length L, the default value
for M is L. The value of E is written on the file f
preceded by (M-L) spaces if M)-L. If M<L characters
one through M of the string are written.

WRITE can also be used to write out a packed array[l,.L] of char.
The effect is the s~me as writing a string whose length is L.

WRITE can also be used to write onto a file which is not a
textfile. In this case WRITE(f,x) is equivalent to:

BEGIN fA :- x; put(f) END

If the file-variable 1s omitted, the procedure is .applied to the
standard file output.

The value of the buffer variable fA is unspecified immediately
after WRITE(f).

[file pas:p12; date 2/19/82]

LISA PASCAL SPECIFICATION

12.5· The WRITELN Procedure

The syntax of the parameter list of WRITELN is:

writeln-parameter-list - ("(" (file-variable
I write-parameter)

{It, If wri te-paramete r}")" 1
file-variable - variable-reference
write-parameter • expression (n:" expression

[It: II expres s ion] 1

WRITELN(f ,p 1, ••• ,pn) is· eq ui valent to:

BEGIN WRITE(f,pl, ••• ,pn); WRITELN(f) END

WRITELN(f) appends a CR character to the file f.

If the file-variable or the parameter-list is omitted, the
procedure is applied to the standard file output.

12.6· The EOLN Function

Page 79

If a CR character is read from a textfile, the value of the
buffer variable fA becomes a space, and eoln(f) yields true. If
a READ or READLN is executed while eoln(f) is true, the next
character in the file is read, if there is a next character. If
there are no more characters in the file" then eof(f) becomes
true, eoln(f) remains true, and the value of fA is undefined.

Also, eoln(f) will return true whenever eof(f) is true.

12.7· The PAGE Procedure

Page(f) inserts text into the textfile f that will cause skipping
to the top of a new page when f is printed. Theactual-parameter
f cannot be omitted.

(file pas:p12; date 2/19/82]

Page 80 LISA PASCAL SPECIFICATION

(file pas:p12; date 2/19/82]

LISA PASCAL SPECIFICATION Page 81

Section 13

PROGRAMS

A Pascal program has the form of a procedure declaration except
for its headi.ng and an optional uses-clause.

program • program-heading "j" [uses-clause "j"] block
program-heading :I: "PROGRAM" identifier

["(" program-parameters ")"]
program-parameters • identifier-list
uses-clause - "USES" identifier-list
identifier-list • identifier {, identifier}

" " .

Currently, any program-parameters are purely decorative and are
totally ignored by the compiler. The uses-clause, if present,
identifies units that the program uses (see Section 14).

The code of a program's main body is always placed in a run-time
segment whose name is a string of blanks (the "blank segment").
Any other block can be placed in a different segment by using the
$S compiler option (see Appendix A). If no $S option is used in
the program, all code is placed in the blank segment. Code from
a program can be placed in the same segment with code from a
regular-unit, but it cannot be mixed with code from an
intrins ic-uni t (see Sect ion 14).

[file pas:pl3j date 2/19/82]

Page 82 LISA PASCAL SPECIFICATION

[file pas:p13; date 2/19/82]

LISA PASCAL SPECIFICATION Page 83

Section 14

UNITS

A unit is a separately compiled, non-executable object file which
can be linked with other object files to produce complete
programs. There are two kinds of units, called regular-units and
intrinsic-uni ts.

Each unit used by a program (or another unit) must be compiled,
and its object file must be accessible to the compiler, before
the program (or unit) can be compiled.

The syntax for a unit is!

unit • unit-heading "j"
[intrinsic-clause "j" 1
interface-part
implementation-part
"END" "."

unit-heading :II "UNIT" identifier
i ntrins ic-clause :II "INTRINSIC" ("SHARED" 1
interface-part :II "INTERFACE"

[uses-clause
[constant-definition-part
[type-definition-part]
(variable-declaration-part]
[procedure-and-function-declaration-part

implementation-part = "IMPLEMENTATION" .
[constant-definition-part]
[type-defintion-part]
[variable-declaration-part 1
[procedure-and-function-declaration-part

If an intrinsic-clause appears after the unit-heading, the unit
is an intrinsic-unitj if there is no intrinsic-clause, the unit
is a regular-unit.

14.1 Regular-Units

When a program uses a regular-unit, the Linker inserts compiled
code from the regular-unit into the host program's object file.
Regular-units can be used as a means of modularizing large
programs. A regular-unit can also be used as a means of making
code available for incorporation in various programs, without

[file pas:p14; date 2/19/82}

Page 84 LISA PASCAL SPECIFICATION

making the source available.

By default, the code of a regular-uni t is placed in the "blank
segment" (see Section 13). The code of the entire unit, or of
blocks within the unit, can be placed in one or more different
segments by using the $S compiler option (see Appendix. A). Code
from a regular-unit can be placed in the same segment with code
from a program, but it cannot be mixed with code from an
intrinsic-uni t.

14.1.1 Writing Regular-Units

The INTERFACE section declares constants, types, variables,
procedures, and functions that are public. The host program can
access these entities just as if they had been declared in the
host program. Procedures and functions declared in the INTERFACE
section are abbreviated to nothing but the procedure or function
name, parameter specifications, and function result-type.

Note that the INTERFACE section may contain a uses-clause. Thus
a unit can use another unit (see 14.3).

The IMPLEMENTATION section, which follows the last declaration in
the INTERFACE section, begins by declaring any local (private)
constants, types, variables, procedures, or functions.

The public procedures and functions are declared again in the
IMPLEMENTATION. The parameters and function result types are
omitted from these definitions, since they were declared in the
INTERFACE section; and the procedure and function blocks, omitted
in the INTERFACE, are included in the IMPLEMENTATION.

NOTE: There is no INITIALIZATION section in Lisa Pascal units
(unlike UCSD). Also note that global labels cannot be declared
in a unit.

A short example of a unit is:

[file pas:p14; date 2/19/82]

LISA PASCAL SPECIFICATION

UNIT Simple;
INTERFACE { public objects declared }

CONST FirstValue-l;
PROCEDURE AddOne(VAR Incr:INTEGER);
FUNCTION Addl(Incr:INTEGER):INTEGER;

IMPLEMENTATION
PROCEDURE AddOnej {note lack of parameters •••

BEGIN
Incr: -Incr+l

Page 85

END;
FUNCTION Addl; { .••• and lack of function result

type }

END.

BEGIN
Addl:-Incr+l

END;

14·.1.2 Using· Regular-Units

The syntax for a uses-clause is given above in Section 13. Note
that in a host program, the uses-clause (if any) must immediately
follow the program-heading. In a host unit, the uses-clause (if
any) immediately follows the symbol INTERFACE. Only one
uses-clause may appear in any host program or unit; it declares
all units used by the host program or unit.

See 14.3 for the case where a host uses a unit that uses another
unit.

It is necessary to specify the file to be searched for regular
units. The $U compiler option specifies this file. See Appendix
A f.or more details.

Assume that the example unit Simple (see above) is compiled to an
object file named APPL:SIMPLE.OBJ. The following is a short
program that uses Simple. It also uses another unit named Other,
which is in file APPL: OTHER. OBJ •

[file pas:p14; date 2/19/821

Page 86

PROGRAM CallSimplej
USES {$U APPL:SIMPLE.OBJ}

Simple.
{$U APPL:OTHER.OBJ}
Otherj

VAR i: INTEGER;
BEGIN

LISA PASCAL SPECIFICATION

{ call the unit given above}
{ file to search for units }
{ use unit Simple }
{ file to search for units
{ use unit Other}

i:-FirstValue; { FirstValue is from Simple}
WRITE('i+1 is ' .Add1{i»j { Add1 is defined in Simple}
WRITE(xyz(i» { xyz is defined in Other}

END.

14.2 Intrinsic-Units

Intrinsic-units provide a mechanism for Pascal programs to share
common code. with only one copy of the code in memory. A single
copy of the code is kept on disk. and when loaded into memory
this code can be executed by any program that declares the
intrinsic-unit (via a uses-clause. the same as for
regular-units). In addition. a SHARED intrinsic-unit provides
for the sharing of common data

The code of the entire unit. or of blocks within the unit. must
be placed in one or more named segments by using the $S compiler
option (see Appendix A). Code from a intrinsic-unit cannot be
placed in the same segment with code from a program or a
regular-uni t.

14.2.1 Writing Intrinsic-Units

An intrins ic-uni t has the same syntax as a regular-uni t. except
that it has an intrinsic-clause immediately after the heading:

(Note: for syntactic compatibility with UCSD Pascal. the keywords
"CODE" and "DATA" may appear in the unit-heading of an
intrinsic-unit. together with integer constants. These keywords
and constants are accepted but are ignored.)

lfthe keyword SHARED appears in the intrinsic-clause. the system
will contain only a single data area for the unit; the data is
shared among all programs that use this unit. If SHARED does not
appear in the intrinsic-clause. each program that uses the uni t
has its own data area for the unit.

[file pas:p14; date 2/19/82]

LISA PASCAL SPECIFICATION Page 87

If an intrinsic-unit contains a uses-clause, it can only use
other intrinsic-units; an intrinsic-unit cannot use a
regular-uni t.

Each unit used by a program (or another unit) must be compiled,
and its object file must be accessible to the compiler, before
the program (or unit) can be compiled.

A single copy of the code of an intrinsic-unit is available to
all programs in the system; therefore, intrinsic-units must be
coordina-ted as part of sys tem generation and sys tem maintenance
activities. Specifically, all intrinsic-units that have code in
the same run-time code segment must be linked together into an
intrinsic segment file, and the intrinsic segment file must be
referenced in the system intrinsics library, INTRINSIC. LIB. For
more information, see the Pascal Development System Manual.

14 .. 2-. 2 Using Intrinsic-Units

The syntax for a uses-clause is given above in Section 13. Note
that in a host program, the uses-cl~use (if any) must immediately
follow the program-heading. In a host unit, the uses-clause (if
any) immediately follows the symbol INTERFACE. Only one
uses-clause may appear in any host program or unit; it declares
all units used by the host program or unit.

See 14.3 for the case where a host uses a unit that uses-another
unit.

By default, the system looks up all units in the system
intrinsics library file, *INTRINSIC.LIB. All intrinsic units are
referenced in this library, so the$U compiler option is not
needed with intrinsic-units.

14 .. 3- Nested Units

When a host program (or host unit) uses a unit which uses another
unit (which perhaps uses still another unit, etc.), the units are
said to be nested. As explained above, the uses-clause in the
host must name all units that are used by the host. Here "used"
means that the host directly references something in the
I~ERFACE of the unit. Note that an intrinsic-unit cannot use a
regular-uni t.

(file pas:p14j date 2/19/82}

Page 88 LISA PASCAL SPECIFICATION

In· some cases, the uses-clause must also name a nested unit that
is not actually used by the host. This is required when a unit
(say UNITA) that is used by the host uses another unit (say
UNITB), and the INTERFACE of UNITA contains a reference to
something in the INTERFACE of UNITB. This occurs when some
public entity in UNITA is defined in terms of a public entity in
UNITB. The compiler must access both units; therefore, the
uses-clause in the host must name both UNITB and UNITA -- in that
order, the deepest nested unit first.

[file pas:p14; date ·~j19/82]

LISA PASCAL SPECIFICATION Page 89

Section 15

THE LISA PASCAL COMPILER

15.1 Compiler Options

The following compiler options are available:

$C+ or $C-

$0+ or $D-

$R+ or $R-

$5 segname

$X+ or $X-

$1 filename

Control of Code Generation

Turns code generation on (+) and off (-).
This is done on a procedure by procedure
basis. These options are intended to be
wri tten between procedures, not inside them.­
Default is $C+.

Turn the generation of procedure names in
object code (for debugging) on (+) and off
(-). These options are intended to be
written between procedures, not inside them.
Default is $0+.

Turn range checking on (+) and off (-). At
present, range checking is done in
assignment statements and array indexes and
for string value parameters. Default is $R+.

Start putting code modules into segment
'segname'. The default segment name is
, " in which the main program and
all built-in support code are always
linked. All other code can be placed
into any segment.

Turn automatic stack expansion on (+) and
off (-). Default is $X+.

Inout File Control

Include the file 'filename'. Filename
cannot begin with a "+" or a It_"

[file pas:pI5; date 2/19/82}

Page 90

$U filename

$DECL list

$ELSEC

$ENDC

$IFC

$SETC

LISA PASCAL SPECIFICATION

Search the file 'filename' for any subsequent
uni ts.

Conditional· ComEilation

(see 1S.2 below) •

(see 1S.2 below) •

(see 1S.2 below).

(see 1S.2 below) •

(see 1S.2 below) •

Listing Control

$E filename Starts making a listing of compiler errors
as they are encountered. Analogous to $L.

$L filename Start making a listing of the compilation
on file 'filename'. If a listing is being
made already, that file is closed and saved
prior to opening the new file.

$L+ or $L- The first + or - following the "$L" turns the
source listing on (+) or off (-) without
changing the list file. You must specify:
the lis ting file before using $L+.

$L++ or $L+- The second + or - following the "$L" turns
the listing of object code offsets on (+) or
off (-) without changing the list file. You
must specify the listing file before using
$L++ or $L+-.

$L+++ or $L++- The third + or - following the U$L" turns
the interlisting of machine code on (+)
and off (-) without changing the list file.
You must specify the listing file before
using $L++ or $L+-~

. [file ·pas:p1S; date 2/19/82]

LISA PASCAL SPECIFICATION Page 91

Miscellaneous

$%+ or $%- Allow the use of percent signs in
identifiers. Don't use this in application
programs. The default is $%-.

15.2 Conditional Compilation

Conditional compilation is controlled by the IFC, ELSEC. and ENDC
options, which are used to bracket sections of source text. The
DECL option is used to declare "compile-time variables." and the
SETC option is is used to assign values to them.

15.2.1 Compile-Time- Variables

IFC makes a decision based on the boolean value of a compile-time
expression (see below). The expression can contain compile-time
variables. These variables are completely independent of program
variables; even if a compile-time variable and a program variable
have the same identifier , they can never be confused by the
compiler.

A compile-time variable is declared when it appears in the
identifier list of a DECL option; for example~ the option

{$DECL LIBVERSION. PROGVERSION}

declares LIBVERSION and PROGVERSION as compile-time variables.
Notice that no types are specified; compile-time variables have
no types, although their values do (see below).

The option

{$SETC LIBVERSION :- 5}

assigns the value 5 to the compile-time variable LIBVERSION.
Since 5 is an INTEGER value. LIBVERSION is now a variable of type
INTEGER (the SEIe option is explained in detail below). Now
suppose that later in the compilation, the compiler finds

[file pas:p15j date 2/19/82]

Page 92

{$IFC PROGVERSION)= LIBVERSION}
K :- KVAL1(DATA+INDAT)j
{ $ELSEC}
K :- KVAL2(DAIA+CPINDAT A)j
{$ENDC}
WRITELN(K) j

LISA PASCAL SPECIFICATION

If the value of PROGVERSION is greater than or equal to 5 (the
value of LIBVERSION). then the statement K :- KVALl(DAIA+INDAT)
is compiled. and the statement K :- KVAL2(DATA+CPINDAT A

) is
skipped.

But if the value of PROGVERSION is not greater than the value of
LIBVERSION. then the first statement is skipped. and the second
statement is compiled.

In either case, the WRITELN(K) statement is compiled because the
conditional construction ends with the {$ENDe} option.

Note the following points. about compile-time variables:

- All compile-time variables must be declared before the
end of the declarations section of the main program.
In other words a DECL option that declares a new
compile-time variable must precede the main program's
procedure and function definitions (if any). The new
compile-time variable is then known throughout the
remainder of the compilation.

- At any point in the program, a compile-time variable
can have a new value assigned to it by a SETe option.

- The type of a compile-time variable is that of the most
recent value assigned to it in a SETC option. The only
possible types are INTEGER, BOOLEAN. and CHAR.

15.2.2 Compile-Time Expressions

Compile-time expressions appear in the SETC option and in the IFC
option. The only operands allowed in a compile-time expression
are compile-time variables and constants of the types INTEGER,
BOOLEAN, and CHAR.

[file pas:p15; date 2/19/82]

LISA PASCAL SPECIFICATION Page 93

All Pascal operators except IN and @ are allowed; the / operator
is automatically replaced by DIV. A compile-time expression is
evaluated by the compiler as soon as it is encountered in the
text.

15.2.3 The SETC Option

The keyword SETC cannot be abbreviated. The SETC option has the
form

{$SETC 10 :- EXPR}

where 10 is the identifier of a compile~time variable and EXPR is
a compile-time expression. EXPR is evaluated immediately. The
value EXPR is assigned to 10.

15.2.4 The IFC, ELSEC, and ENDC Options

The keywords IFC, ELSEC, and ENDC cannot be abbreviated. The
ELSEC and ENOC options take no arguments. The IFC option has the
form

{$IFC EXPR}

where EXPR is a compile-time expression with a boolean value.

These three options form constructions similar to the Pascal IF
statement, except that the ENDC option is always needed'at the
end of the IFe construction. ELSE is optional.

IFe constructions can be nested within each other to 10 levels.
Every IFe must have a matching ENDC.

When the compiler is skipping, all options are ignored except the
following:

ELSEC
ENDC
IFC (so that ENOC's can be matched properly)
INCLUDE (text is scanned'even if it being skipped,

in case it contains ELSEC, ENDC, or IFC
options) •

[file pas:p15; date 2/19/82}

Page 94 LISA PASCAL SPECIFICATION

All program text is ignored during skipping. If a listing is
produced t each source line that is skipped is marked with the
letter S as its "lex level."

15.3 Optimization of IF Statement

When the compiler finds an IF statement controlled by a boolean
constant, it may be unnecessary to compile the THEN part or the
ELSE part. For example, given the declarations

CONST ALWAYS • TRUE;
NEVER • FALSE;

then the statement

IF NEVER THEN <statement>

doesn't need to be compiled at all. In the statement

IF NEVER THEN <statement1> ELSE <statement2>

the THEN part is not compiled; only <statement2> is compiled.
Similarly, in the statement

IF ALWAYS THEN <statement1> ELSE <statement2>

only <statementl> is compiled.

The interaction between this optimization and conditional
compilation can be seen from the following program:

[file pas:p15; date 2/19/82]

LISA PASCAL SPECIFICATION

PROGRAM FOO j

{$SETC FLAG :- FALSE}

CONST PI • 3.1415926;
SIZE" 512;
{$IFe FLAG}
DEBUG • FALSE;
{$ENDC}

VAR I,J,K,L,M,N: INTEGER;
{$IFC NOT FLAG}
DEBUG: BOOLEAN;
{$ENDC}

{$IFC NOT FLAG}
PROCEDURE WHATMODEj

BEGIN
{interactive procedure to set
global boolean variable DEBUG}

END;
{$ENDC}

BEGIN {main}
{$IFC NOT FLAG}
WHATHODEj
{$ENDC}

IF DEBUG THEN BEGIN <statement1> END
ELSE BEGIN <statement2> END

END.

Page 9S

The way this is ~ompiled depends on the compile-time variable
FLAG. If FLAG is FALSE, then DEBUG is a boolean variable and the
WHATMODE procedure is compiled and called at the beginning of the
main program. The IF DEBUG statement is controlled by a boolean
variable and all of it is compiled, in the usual manner.

[file pas:p15j date 2/19/82]

Page 96 LISA PASCAL SPECIFICATION

But if the value of FLAG is changed to TRUE, then DEBUG is a
constant with the value FALSE, and WHATMODE' is neither compiled
nor called. The IF DEBUG statement is controlled by a constant,
so only its ELSE part, <s tatement 2> , is compiled.

15.4, Optimization of WHILE and REPEAT Statements

A WHILE or REPEAT statement controlled by a Boolean constant does
not generate any conditional branches.

15.5 Using CASE Statements for Efficiency

A sparse or small CASE statement will generate better code than
the corresponding sequence of IF/THEN/ELSE constructions.

[file pas:p15j date 2/19/82]

LISA PASCAL SPECIFICATION Page 97

Section 16

STANDARD PROCEDURES AND FUNCTIONS

16.1 General

Standard procedures and functions are pre-declared. Since all
pre-declared entities are declared in a range surrounding the program,
no conflict arises from a declaration redefining the same identifier
within the program block.

Standard procedures and functions cannot be used as actual procedural
and functional parameters.

16.2· Basic I/O

This section covers the. I/O procedures for all file types except the
type TEXT and "untyped" files. Files of type TEXT are covered in
Section 12.

"Untyped" files are variables of type FILE, used in conjunction with
the BLOCKREAD and BLOCKWRITE functions.

16.2·.1 RESET(f ,title)

The parameter f is a file variable. and the parameter title is a
string containing the filename.

Reset opens an existing external file and performs an implicit get(f).
Note that both parameters are required (unlike UCSD Pascal).

£of(f) becomes false if f is not empty; otherwise the value of f- is
unspecified, and eof(f) is true.

If the file is an interactive device, eof(f) is always false and the
implicit get(f) operates as described above.

If there is no existing external file with the specified filename, an
error occurs.

NOTE: This is a necessary initializing operation prior to accessing
an existing file with the specified filename.

[file pas:p16a,b; date 2/19/82]

Page 98 LISA PASCAL SPECIFICATION

16.2.2 REWRITE(f,title)

The parameter f is a file variable. and the parameter title is a
string containing the filename.

Rewrite creates and opens a new external file. Eof(f) becomes true
and the value of fA becomes unspecified. Title is a string containing
the filename. If this is the filename of an existing external file.
the existing file is discarded when the new file is closed with the
LOCK option (see 16.2.3).

NOTE: This is a necessary initializing operation prior to creating a
new external file with the specified filename.

Unspecified effects are caused if the current file position of a file
f is altered while the buffer variable fA is an actual variable
parameter. or an element of the record-variable-list of a
with-statement. or both.

NOTE: The standard procedures read. write. readln, writeln and page
are described in Section 12.

16.2.3 CLOSE(f,[option])

This procedure closes a file f which was previously opened with RESET
or REWRITE. The option identifier. if used. may be anyone of the
following predefined identifiers. If no option identifier is used.
the effect is the same as using the NORMAL option.

NORMAL -- A normal close is done. If the file was opened
uSing REWRITE and the external file is a disk file. it is
deleted from the directory.

LOCK -- If the external file is"a disk file and was opened
with REWRITE, it is made permanent in the directory;
otherwise a NORMAL close is done. If the file was opened
with a REWRITE and the pathname matches an existing disk
file, the old file is deleted.

[file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 99

PURGE -- If the external file is a disk file. it is deleted
from the directory (unless write-protected). In the special
case of a disk file that already exists and is opened with
REWRITE, the original file remains in the directory.
unchanged. If the external file is not a disk file. the
associated unit will go off-line.

CRUNCH -- This is like LOCK except that it locks the
end-of-file to the point of last access; i.e •• everything
after the last record accessed is thrown away.

All CLOSEs regardless of the option will mark the file closed and will
make the file buffer variable undefined. CLOSE on a closed file
causes no action.

If a program terminates with a file open (i.e •• if CLOSE is omitted),
the system automatically closes the file with the NORMAL option.

NOTE: If you open an existing file with RESET and modify the file with
any write operation, the contents are immediately changed no matter
what CLOSE option you specify.

16. 2. 4· EOF (f)

The parameter f is a file variable.

This indicates whether the associated buffer variable fA is positioned
at the end of the file f. If the actual parameter is omitted. the
function is applied to the standard file input.

16.2.5 EOLN(f)

The parameter f is a file variable.

This indicates whether the associated buffer variable fA is positioned
a t the end of a line in the textf ile f (see 12.1). If the actual
parameter is omitted, the function is applied to the standard file
input.

16.2.6· SEEK(f,n)

The SEEK procedure allows the program to access any specified record
in a file. The parameter f is the identifier of a file and n is an

(file pas:p16a,b; date 2/19/821

Page 100 LISA PASCAL SPECIFICATION

expression with an integer value that specifies a record number in the
file. Note that records in files are numbered from 0.

SEEK affects the action of the next GET or PUT from/to the file,
forcing it to access the specified file record instead of the "next"
record. SEEK does not affect the file's buffer variable.

The file should be a file on a disk or other block-structured device.
It should not be a character device, nor should it be declared as a
file of type TEXT.

A GET or PUT must be executed between SEEK calls since two SEEKs in a
row may cause unpredictable results. Immediately after a SEEK, EOF
will return false; a following GET or PUT will cause EOF. to return the
appropriate value.

NOTE: The record number specified in a SEEK call is not checked for
validity. If the number is not the number of a record in the file and
the program tries to GET the specified record, the value of the buffer
variable becomes undefined and EOF becomes true.

NOTE: If the file is a character device or is of the type TEXT, SEEK
does nothing •.

16.2.7 PUT(f)

The parameter f is a file variable.

If eof(f) is false, the value of the buffer variable fA is written to
the file f at the current file position and then the file position is
advanced to the next component. If the resulting file position is
beyond the end of the file, eof(f) becomes true, and the value of fA
becomes unspecified.

If eof(f) is true, the value of the buffer variable "fA is appended to
the end of the file f and eof(f) remains true.

If the file is an interactive device, eof(f) is always false, there is
no "current file position," and the value of fA is sent to the device.

16.2.8 GET(f)

The parameter f is a file variable.

[file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 101

If eof(f) is false, the current file position is advanced to the next
component, and the value of this component is assigned to the buffer
variable fA. If no next component exists, then eof(f) becomes true,
and the value of fA becomes unspecified.

If eof(f) is true when get(f) is called, then eof(f) remains true, and
the value of fA becomes unspecified.

If the file is an interactive device, eof(f) is always false, there is
no "current file position," and there mayor may not be a value ready
for input. In this case, a "lazy evaluation" method is used: get(f)
merely sets an internal flag to indicate that "a get is pending." A
subsequent reference to fA causes a value to be input from the device
and assigned to fA before the program retrieves it from fA; if ·no
value is ready for input, the system waits for a value.

16.2.9· Control· Characters· With GET and PUT

Files of type TEXT are usually accessed with the text I/O procedures
described in Section 12. When GET and PUT are used with files of type
TEXT or with character devices, there are some special considerations
for three special control characters, namely

CR, ASCII 13
OLE, ASCII 16
ETX, ASCII 3

The CR character is used in files of characters to mark the end of a
line. The special handling for CR is as follows:

- GET converts CR to a space (ASCII 32).

- PUT to a disk file: no special handling.

- PUT to a character device: an LF (ASCII 10) is written
immediately after the CR.

The OLE character may occur in textfiles as the first character of a
two-character code that represents a sequence of spaces anywhere on a
line. The special handling for OLE is as follows:

- GET from any file except the console: the OLE and the
following character are converted to a sequence of spaces
(the spaces are returned to the program by successive GETs).

[file pas":p16a,b; date 2/19/82]

Page 102 LISA PASCAL SPECIFICATION

- GET from the console: no special handling.

- PUT to a disk file: no special handling.

- PUT to a character device: the DLE and the following
character are converted into a sequence of spaces.

The ETX character is used with character devices as an "end-of-text"
indicator. The special handling is as follows:

- GET from a disk file: no special handling.

- GET from a character device: EIX is converted to a space.
EOF and EOLN will return TRUE.

- PUT: no special action.

16.2.10 IORESULT

This built-in function takes no parameters and returns an integer
value which reflects the status of the last completed I/O ~peration.
The codes are given in the Lisa Pascal Development System Manual.

16,,2.11· GOTOXY(x,y)

This procedure sends the screen cursor to the specified coordinates.

16.3 Untyped File· I/O

Untyped file I/O treats a file variable as a sequence of 512-byte
"blocks"; the bytes are not type-checked but considered as raw data.
This can be useful for applications where the data need not be
interpreted at all during I/O operations.

To use untyped file I/O, the file is declared with type FILE and no
component-type, and the BLOCKREAD and BLOCKWRITE functions are used
for input and output.

An untyped file has no buffer variable, and it cannot be used with
GET, PUT, or any of the text I/O procedures. It can only be used with
RESET, REWRITE,CLOSE, EOF, and the BLOCKREAD and BLOCK\o1RITE functions
described below.

{file pas:p16a,b; date 2/19/82)

LISA PASCAL SPECIFICATION Page 103

16.3.1 BLOCKREAD(fname,destvar,count[,startblock)

This function is used to transfer one or more S12-byte blocks of data
from art untyped file fname to a program variable destvar. The count
parameter specifies the number of blocks to be transferred, the
startblock parameter specifies the starting block number in the file,
and the integer value returned by blockread is the number of blocks
actually transferred. The parameters are as follows:

- fname must be the identifier of an open untyped file.

- destvar must be a variable-reference. It refers to the
variable into which the blocks of data will be read. The
size and type of this variable are not checked; if it is not
large enough to hold the data, other program data may be
overwritten and the results are unpredictable.

- count must be an integer value. It specifies the number of
blocks of data to be transferred. BLOCKREAD will read as
many blocks as it can, up to this limit; if the end of the
file is reached before the specified number of blocks are
read, then EOF will be true and the value returned by
BLOCKREAD indicates how many blocks were actually read.

- startblock must be an integer value. It specifies the
starting block number in the file (see below).

The blocks in a file are considered to be numbered seque-ntially
starting with 0. The system keeps track of the "current" block number
in each open untyped file; this is block 0 immediately after the file
is opened. Each time a block is read, the current block number is
incremented. If the blocknumber expression 1s omitted in a call to
BLOCKREAD, the transfer begins with the current block. Thus the
transfers are sequential if the blocknumber expression is never used;
if a blocknumber expression is used, it provides random access to
blocks.

After BLOCKREAD, EOF 1s true if the last block in the file was read.

{file pas:p16a,b; date 2/19/82}

Page 104 LISA PASCAL SPECIFICATION

16.3.2 BLOCKWRITE(fname,destvar,count[,startblock])

This function is used to transfer one or more S12-byte blocks of data
from a program variable destvar to an untyped file fname. The count
parameter specifies the number of blocks to be transferred, the
startblock parameter specifies the starting block number in the file.
and the integer value returned by blockread is the number of blocks
actually transferred. The parameters are as follows:

~ fname must be the identifier of an open untyped file.

- destvar must be a variable-reference. It refers to the
variable from which the blocks of data will be read. The
size and type of this variable are not checked.

- count must be an integer value. It specifies the number of
blocks of data to be transferred. BLOCKWRITE will write as
many blocks as it can. up to this limit; if disk space runs
out before the specified number of blocks are read, then EOF
will be true and the value returned by BLOCKWRITE indicates
how many blo~ks were actually written.

- startblock must be an integer value. It specifies the
starting block number in the file (see explanation under
BLOCKREAD above).

16.4· Device I/O

The system identifies each peripheral device by a unit number and a
unit name. The procedures described below can be used for direct
communication with any peripheral device.

Note that UNITREAD and UNITWRITE are not controlled in any way by the
format in which files are stored on a disk; they treat an entire disk
as one sequence of blocks.

(file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 105

16.4.1 UNITREAD(unitnum,destvar,count(,[startblock],[mode]])

The unitread procedure transfers one or more bytes from a specified
device to a program variable. The parameters are as follows:

unitnum must be an integer an integer value that is the unit
number of an I/O device.

destvar must be a variable-reference. It refers to the
variable into which the bytes of data will be read. The
size and type of this variable are not checked; if it is not
large enough to hold the data, other program data may be
overwritten and the results are unpredictable.

count must be an integer value. It specifies the number of
bytes of data to be transferred.

startblock must be an integer value. It is meaningful only
when using a disk drive and is the absolute block number at
which the transfer will start. If startblock is omitted and
the unit is a disk drive, the transfer will start at block
0.

mode must be an integer value. If it is omitted, the
default is 0. It controls options which are described below
in 16.4.3.

16.4.2· UNITWRITE(unitnum,destvar·,count[, (startblock], [mode]])

The unitwrite procedure transfers one or more bytes from a program
variable to a specified device. The parameters are as follows:

unitnum must be an integer an integer value that is the unit
number of an I/O device.

destvar must be a variable-reference. It refers to the
variable from which the bytes of data will be read. The
size and type of this variable are not checked.

count must be an integer value. It specifies the number of
bytes of data to be transferred.

(file pas:p16a,b; date 2/19/82]

Page 106 LISA PASCAL SPECIFICATJ

startblock must be an integer value. It is meaningful on~
when using a disk drive and is the absolute block number c

which the transfer will start. If startblock is omitted c
the uni t is a disk drive, the trans fe r will s tart at blod
0.

mode must be an integer value. If it is omitted, the
default is 0. It controls options which are described be:
in 16.4.3.

16.4.3 Device I/O Modes

The device I/O options are enabled by default. They are designed to
handle the special coding found in files of type text, and are
convenient when text is read from such a file with UNITREAD and then
output via UNITWRITE to a character device (see 16.2.9 for more
explanation) •

For UNITWRITE, the options apply only to character devices, not to
disks or other block-structured devices.

- Conversio.n of OLE-blank codes to output sequences of ~paces
is disabled by a "mode" value that has a one in Bit 2 (see
below).

- Automatic linefeeds after every CR are disabled by a "mode"
value that has a one in Bit 3 (see below).

For UNITREAD, the only option is ETX (CTRL-C) recognition (enabled by
default). When the EIX character (ASCII 3) is re-cognized by UNITREAD,
the effect is to terminate the input. Any bytes in the destination
variable that remain unused at this point are filled with 0's.

Only Bit 2 and Bit 3 of the mode value have any current significance.
The other bits are reserved for future use.

The following values can be used to control the options:

- Mode - 0 (the default value) enables all options.

- Mode • 4 disables DLE conversion and ETX recognition, and
enables automatic linefeeds.

- Mode - 8 disables automatic linefeeds and enables DLE
conversion and ETX recognition.

[file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 107

- Mode - 12 disables all options.

16.4·.4 UNITCLEAR(unitnum)

This procedure cancels all I/O operations to the specified unit and
resets the hardware to its power-up state. The unitnum parameter must
be an integer value that is the unit number of an I/O Qevice.

IORESULT is set to a non-zero value if the specified unit is not
present (you can use this to test whether or not a given unit is
present in the system). Note that UNITCLEAR (1) flushes the
type-ahead buffer for the console and resets certain keyboard and
screen parameters.

16.4,5 UNITBUSY(unitnum)

This function returns true if the specified device is·busy. The
unitnum parameter must be an integer value that is the unit number of
an I/O device.

16.5- EXIT and HALT Procedures

16.5,1· EXIT(identifier)

The EXIT procedure exits from a specified procedure or function, or
from the main program. Currently, the parameter must ~ the
identifier of a procedure or function (possibly the identifier of the
main program). If the parameter is an identifier defined in the
program, it must be in the scope of the EXIT call. Note that this is
more restricted than UCSD Pascal.

Eventually, the language will allow the parameter to be the predefined
identifier PROGRAM. This will cause an exit from the main program,
without the need to know the main program's identifier. This will
make it possible to exit the main program from within a unit. For
now, use HALT to exit the main program from a unit.

EXIT essentially causes a jump to the end of the named procedure.

(file pas:pI6a,b; date 2/19/82]

Page 108 LISA PASCAL SPECIFICATION

16.5 .. 2 HALT

The halt procedure takes no parameters. It causes immediate exit from
the main program, with an error message.

16.6 Dynamic Allocation Procedures

These procedures are used to manage the heap, a memory area that is
unallocated when the program starts running. As areas within the heap
area are allocated via the procedure new (see below), a free-list is
maintained which identifies unallocated areas within the heap.

One mechanism, the procedure new, is used for all allocation of heap
space by the program. Two distinct mechanisms are used to deallocate
heap space: one is the dispose procedure, which puts a particular
area on the free-list, and the other is the mark and release
procedures used together. Do not mix the two methods unless you are
sure of what you are doing.

This allocates a new variable v of the type that the pointer parameter
p is bound to, and assigns its pointer to p. If the ;ype of v is a
record type with variants, the form

new(p,tl, ••• tn)

allocates a variable with space for the variants specified by the tag
values tl, ••• ,tn (instead of enough space for the largest variants).
The tag values must be constants. They must be listed contiguously
and in the order of their declaration. Trailing tag values can be
omitted. The tag values are not assigned to the tag-fields by this
procedure.

WARNING: When a record variable is dynamically allocated with explicit
tag values as shown above, you should not make assignments to any
fields that are not selected by the tag values. Also, you should not
assign an entire record to this record. If you do either of these
things, other data can be overwritten without any error being detected
at compile time.

[file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 109

If there is no marked position in the heap (see 16.6.3 below), then
new allocates space by searching the free-list until it finds a large
enough area; space allocated by successive calls to new is not
necessarily contiguous in this case.

If there is a marked position in the heap, then successive calls to
new allocate contiguous areas beginning at the marked position.

The parameter p is of type pointer.

This indicates that the heap area occupied by the variable p'" is no
longer needed; it 1s placed on the free-list. The value of p 1s set
to NIL. and 1f another pointer pp was previously set equal to p. then
the value of pp'" becomes unspecified. If the second form of new was
used to allocate the variable. the following form of dispose must be
used with identical tag value constants:

dispose(p.tl •••• ,tn)

An error is caused if the value of p is NIL when dispose is called.

Unspecified effects are caused if a variable that is currently either
an actual variable parameter, or an element of the
record-variable-lis t of a with-statement. or both, is referred to by
the pointer parameter of dispose.

16.6.3 MARK(p)

The pointer parameter p is a variable parameter. The mark procedure
causes the pointer p (which may be of any pointer-type) to point to
the highest free area in the heap. The pointer p 1s also placed on a
stack-like list for subsequent use with the release procedure (see
below). If there 1s at least one pointer on this list, the new
procedure always allocates areas contiguously, starting at the
location pointed to by the most recent pointer on the list.

16.6.4 RELEASE(p)

The pointer p must be on the list created by the mark procedure;
otherwise an error occurs. The effect of release is to remove
pointers from the list, back to and including the pointer p. The

lfile pas:p16a,b; date 2/19/82]

Page 110 LISA PASCAL SPECIFICATION

corresponding heap areas are deallocated and placed on the free-list.

16.6,5 MEMAVAIL

The MEMAVAIL function takes no parameters. It returns the number of
words (not bytes) of memory available (heap and stack).

16,7 Transfer Procedures and Functions

The procedures pack and unpack, described by Jensen and Wirth, are not
supported.

16.7 .. -1 TRUNC(x)

From the real parameter x, this function returns an integer or longint
result that is the integral part of x (rounding toward 0). For
example:

trunc(3.7) yields 3
trunc(-3.7) yields -3

16.7.2· ROUND(x)

From the real parameter x, this function returns an integer or longint
result that is the value of x rounded to the nearest whole number. If
x is positive or zero, round(x) is equivalent to trunc(x+0.5). For
example:

round(3.5) yields 4
round(2.5) yields 3
round(3.7) yields 4 If x is negative,round(x) is equivalent to

trunc(x-0.5). For example:

round(-3.5) yields -4
round(-2.5) yields -3
round(-3.7) yields -4

16.7.3 ORD4(x)

The parameter x must be an expression of ordinal-type or pointer-type.
The result is always of type longint. If the parameter is of type

[file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 111

longint, the result is the same as the parameter.

If the parameter is of pointer-type, the result is the corresponding
physical address, of type longint.

If the parameter is of type integer, the result is the same numerical
value represented by the parameter, but of type longint. This is
useful in arithmetic expressions; for example consider the expression

abc*xyz

where both abc and xyz are of type integer. By the rules given in
7.2.2.2, the result of this multiplication is of type integer (16
bits). If the mathematical product of abc and xyz cannot be
represented in 16 bits, the result is truncated. To avoid this, the
expression can be written as

ord4(abc)*xyz

If the parameter is of an ordinal-type other than integer or longint,
the numerical value of the result is the ordinal number determined by
mapping the values of the type onto consecutive non-negative integers
start ing at zero.

16~7.4· POINTER(x)

From the integer or longint parameter x, this function returns a
pointer value that points to the physical address x •. This pointer is
of the same type as NIL and is assignment-compatible with any
pointer-type.

16~8 Arithmetic Functions

For all of the arithmetic functions (except odd), the type of the
actual-parameter x may be real, integer, or longint. For the abs
function the type of the result is the same as the type of the
parameter. For the sqr function, the result is real for a real
parameter, longint for a longint parameter, and either integer or
longint for an integer parameter. For the remaining arithmetic
functions, the type of the result is always real:

(file pas:p16a,b; date 2/19/821

Page 112 LISA PASCAL SPECIFICATION

16.8.1 ODD(x)

This yields true if the integer or longint expression x is odd;
otherwise it yields false.

16 .. 8.2 ABS(x)

This computes the absolute value of x.

16.8.3· SQR(x)

This computes the square of x.

16.8.4· SIN(x)

This computes the sine of x, where x is in radians.

16.8.5· COS(x)

This computes the cosine of x, where x is in radians.

16.8.6· EXP(x)

This computes the value of the base of natural logarithms raised to
the power x.

16.8.7·LN(x)

This computes the natural logarithm of x, if x is greater than zero.
If x is not greater than zero an error occurs.

16.8.8· SQRT(x)

This computes the positive square root of x, if x is not negative. If
x is negative an error occurs.

[file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 113

16 .. 8.9 ARCTAN(x)

This computes the principal value, in radians, of the arctangent of x.

16.9 Ordinal Functions

16.9.1· ORD(x)

The parameter x must be an expression of ordinal-type or pointer-type.
The result is of type integer or longint. If the parameter is of type
integer or longint, the result is the value of the parameter (with the
same type).

If the parameter is of pointer-type, the result is the corresponding
physical address, of type longint.

If the parameter is of another ordinal-type, the result is the ordinal
number determined by mapping the values of the type onto consecutive
non-negative whole numbers starting at zero.

Note that for a parameter of type char, the result is the
corresponding ASCII code. For booleans,

ord(false) yields 0
ord(true) yields 1

16.9 .. 2 CHR(x)

This yields the character value whose ordinal number (i.e., its ASCII
code) is equal to the value of the integer or longint expression x, if
such a character value exists. If x is not in the range 0 •. 255, the
value returned is not within the range of the type char, and any
attempt to assign it to a variable of type char will cause an error.

NOTE: For any character value, ch, the following is true:

chr(ord(ch» a ch

(file pas:p16a,b; date 2/19/82]

Page 114 LISA PASCAL SPECIFICATION

16 .. 9. 3· SUCC(x)

The parameter x must be an expression of ordinal-type. The result
will be of a type identical to that of the expression (see 10.1),
unless the value of x has the highest ordinality in the type of x.
The function yields a value whose ordinality is one greater than that
of x, if such a value exists. If such a value does not exist, the
value returned is not within the range of the type of x, and any
attempt to assign it to a variable of this type will cause an error.

16.9.4· PRED(x)

The parameter x must be an expression of ordinal-type. The result
will be of a type identical to that of the expression (see 10.1),
unles s the value of x has the lowes t ordinali ty in the type of x. The
function yields a value whose ordinality is one less than that of x,
if such a value exists. If such a value does not exist, the value
returned is not within the range of the type of x, and any attempt to
assign it to a variable of this type will cause an error.

16.10 String· Procedures and Functions

In the following descriptions, a "string value" means .a string
variable, a string constant, or any function or expression whose value
is a string. Unless otherwise stated all parameters are value
parameters.

NOTE: the string procedures and functions do not accept packed array
of char parameters, and ~hey do not accept indexed string parameters.

16.10.1· LENGTH(str)

The LENGTH function returns the (dynamic) length of its parameter,
which must be a string value.

16.10.2 POS(substr,str)

The POS function searches for a specified substring within a specified
string, and returns an integer value which is the index of the first
character of the substring within the string. Both parameters must be

[file pas:p16a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page IlS

string values.

If the substring is not found, POS returns zero.

16.10.3 CONCAI(list)

The CONCA! function concatenates strings and returns a string value.
CONCAT can take any practical number of actual parameters each of
which is a string value; the parameters are separated by commas.

CONCAT returns a string which is the concatenation of all the strings
passed to it. in the order in which they appear in the
actual-parameter-list.

16.10.4 COPY(source,index,count)

The COpy function returns a string value. The source parameter must
be a string value, and the index and count parameters must be
integers.

COpy returns a string containing count characters copied from source
starting at the index-th position in STRG.

16.10.5 DELETE(dest,index,count)

The DELETE procedure modifies the value of a string va~iable. The
dest parameter is a variable parameter of a string-type, and the index
and count parameters are integers. DELETE removes count characters
from dest starting at the index specified.

16.10.6.INSERT(source,dest,index)

The INSERT procedure modifies the value of a string variable,
inserting a substring into it. The source parameter must be a string
value, the dest parameter must be a variable parameter of string-type,
and the index parameter must be an integer.

INSERT inserts source into dest at the index-th position in dest.

[file pas:p16a,b; date 2/19/82]

Page 116 LISA PASCAL SPECIFICATION

16.11 Byte-Oriented Procedures and Functions

These features allow a program to treat a program variable as a
sequence of bytes, without regard to data types. The SIZEOF function
can be used to determine the number of bytes in a variable.

These procedures do no type checking on their "source" or "dest"
actual-parameters. However, since these are variable parameters they
cannot be subscripted if they are packed or if they are of a
string-type. If an unpacked "byte array" is desired, then the type

array [lo •• hi] of -128 •• 127

should be used for "source." or "des ttl. The elements in an array of
this type are stored in contiguous bytes, and since it is unpacked, an
array of this type can be used with an index as an actual-parameter
for these routines.

Note that currently an array with elements of the type 0 •• 255 or the
type char has its elements stored in words, not bytes.

16.11·.1 MOVELEFT(source·,dest ,length)

This procedure does a mass move of a specified number of bytes. The
parameters are as follows:

- source must be a variable reference. It may refer to a
variable of any type except a file-type, or a
~tructured-type that contains a file-type. The first byte
of this variable (lowest address) is the beginning of the
range of bytes whose values are copied.

- dest must be a variable reference. It may refer to a
variable of any type except a file type, or a
structured-type that contains a file-type. The first byte
of this variable (lowest address) is the beginning of the
range of bytes that the values are copied into.

- length must be an integer. It specifies the number of bytes
to be moved.

[file pas:pI6a,b; date 2/19/82]

LISA PASCAL SPECIFICATION Page 119

APPENDIX A

LISA PASCAL AND UCSD PASCAL

Introduction

This appendix contains a list of the major differences between the
Lisa Pascal language and the UCSD Pascal described in the Apple Pascal
Language Reference Manual and the Apple III Pascal Programmer's
Manual.

Extensions

The following features have been added to UCSD Pascal:

- @ Operator -- returns the pointer to its operand (see
10.2.6)

- Hexadecimal constants (see 4.5)

- Case OTHERWISE clause (same as Apple III Pascal; see
11.3.3.2)

- DISPOSE procedure (see 16.6.2)

- Global GOTOs(see 11.2.4)

- A "FILE OF CHAR" type that is distinct from the "TEXT" type
(see 7.3.5 and 12.1).

- Numerous compiler options (see 15.1)

- Procedural and functional parameters (see 9.3.1, 9.3.4, and
9.3.5)

- Stronger type-checking (see 7.5 and 9.3.6)

- ·POI~LER and ORD4 functions (see 16.7.3 and 16.7.4)

- SHARED keyword in Intrinsic units, to allow shared data
segments (see 14.2)

(file pas:appaj date 2/19/82J

Page 120 LISA PASCAL SPECIFICATION

Deletions

The following features of UCSD Pascal have not been included:

- Initialization block in a unit

- Declaration of CODE and DATA segment numbers in an Intrinsic
unit. The syntax allows these declarations but the compiler
ignores them. Segments are assigned automatically at run
time.

- INTERACTIVE file -type ("lazy evaluation" is used instead
wh.en input is from an interactive device)

- RESET procedure -- the syntax "RESET(f)", where f is a file
variable identifier, is not allowed. The required syntax is
"RESET(f, title)", where title is a string containing the
external filename.

- KEYBOARD file -- use UNITREAD of unit 2 to get keyboard
input without echoing

- PWROFTEN, TREESEARCH, BYTE STREAM , WORDS T REAM , UNITSTATUS

- EXIT(PROGRAM) -- The EXIT(identifier) form works., and the
identifier can be the program-identifier. EXIT(PROGRAM)
will be allowed eventually.

Extended comparisons (including comparison of a STRING with
a PACKED ARRAY OF CHAR)

- Bit-wise boolean operations

- SEGMENT keyword for procedures and functions (use the $S
option)

- Compiler options:

- $1 (No automatic I/O checking; program must use
IORESULT function)

- $G (SG+ is the assumption of LISA Pascal)

(file pas:appa; date 2/19/82]

LISA PASCAL SPECIFICATION Page 121

- $N and $R (for resident code segments)

- $P

- $Q

- $5+ and $5++ for swapping

- $U+ and $U- (for User Program)

- $V

Replacements .

The following UC5D features have been replaced with similar features:

- Long Integers -- LONGINT type (see 7.2.2.2)

- SCAN function -- SCANEQ and SCANNE (see 16.12.1 and 16.12.2)

- TURTLEGRAPHIC5 and APPLESTUFF -- LISAGRAF

- KEYPRESS -- use NOT UNITBUSY(2)

Other Differences

The following aspects of Lisa Pascal are not those of UCSD Pascal:

- STRING length must be explicitly declared (see 7.2.2.6).

- In UCSD Pascal, MOD and DIV are completely inconsistent.
Lisa Pascal truncates toward 0 (see 10.2.2).

- UCSD Pascal ignores underscores; Lisa Pascal does not (they
are legal characters 1n identifiers; see 4.3).

- A COTO statement cannot refer to a CASE constant in Lisa
Pascal (see 11.2.4)~

A program must begin with the word PROGRAM in Lisa Pascal
(see Section 13).

- TRUNC does not convert a long integer to integer type (this
is not necessary in Lisa Pascal; long integers are allowed

[file pas:appa; date 2/19/82]

Page 122 LISA PASCAL SPECIFICATION

in most places where integers are allowed).

- NEW, MARK, and RELEASE are subtly different (see 16.6).

- WRITE(b) where b is a boolean will write either' TRUE' or
'FALSE' in Lisa Pascal (see 12.4).

- Whether a file is a textfile does not depend on whether its
name ends with ".TEXT" when it is created. Instead, any
file opened with a file variable of type TEXT is treated as
a textfile, while a file opened with a file variable of type
FILE OF CHAR is not; it is treated as a "datafile" or
"asciifile", i.e. a straight file of records which are of
type char (see 7.3.5 and 12.1).

- Lisa Pascal does not let you pass an element of a packed
variable as a VAR parameter(see 9.3.3, 16.11, and 16.12).

- Limits on sets are different (see 7.3.4)

- The control variable of a FOR statement must be a local
variable (see 11.3.4.3)

- In a WRITE or WRITELN call, the default field lengths for
integers and reals are 8 and 12 respectively (see 12.4)

- HALT causes an orderly exit from the main program. (currently
via "Fatal Error 112"). It can be used to exit the main
program from within a unit.

- EXIT is more res tricted than in UCSD Pas-cal (see 16.5.1)

[file pas:appaj date 2/19/82]

LISA PASCAL SPECIFICATION Page 123

APPENDIX B

KNOWN ANOMALIES IN LISA PASCAL

Introduction

This appendix describes the known anomalies in the current
implementation of the Lisa Pascal language.

Scope· of Declared Constants

Consider the following program:

program cscope 1 j

cons t ten-10j

pr ocedure p j
const ten-ten; {THIS SHOULD BE AN ERROR}
begin

wri teln (ten)
end;

begin
p

end.

The constant declaration in procedure p should cause a compiler error,
because it is illegal to use an identifier within its own definition
(except for pointer identifiers). However, the error is not detected
by the compiler. The effect is that the value of the global constant
ten is used in defining the local constant ten, and the writeln
statement wri tes "10".

{file pas:appb; date 2/19/82]

Page 124 LISA PASCAL SPECIFICATION

A more serious anomaly of the same kind is illustrated by the
following program:

program cscope2;

cons t red-l;
violeta:2;

procedure p j
type a=array[red •• violet] of integer;

color-(violet,blue,green,yellow,orange,red);
var v:a;

c: color;
begin

v[l]:-lj
c:=red;
wri teln(ord(c»

end;

begin
p

end.

Within the procedure p, the global' constants red and violet are used
to define an array index type; the effect of "array[red •• violet]" is
equivalent to "array[l •• 2]". In the definition of the type color, the
constants red and violet are locally redefined; they are no longer
equal to 1 and 2 respectively -- instead they are constants of type
color with ordinalities 5 and 0 respectively. The writeln statement
wri tes "5".

The use of "red" in the definition of the type color should cause a
compiler error but does not.

Note the statement

v(l]:-l;

If this statement is replaced by

v(red]:-lj

a compiler error will result, as "red" is now an illegal index value
for v -- even though v is of type a and a is defined by
"ar ray (red •• violet]".

[file pas:appb; date 2/19/82]

LISA PASCAL SPECIFICATION

To avoid this kind of situation, avoid redefinition of
constant-identifiers in enumerated scalar types.

Scope of Base-Types for Pointers

Consider the following program:

program pscope 1 ;

type s-0 •• 7 j

procedure makecurrent;
type sptr· sj

s·record
ch:char;
bool:boolean

end;
var current:sj

ptrs:sptrj
begin

new(ptrs) j
ptrs : ·current

end;

begin
makecurrent

end.

Page 125

Here we have a global type s which is a subrange of integer, and a
local type s which is a record type. Within the procedure
makecurrent, the type sptr is defined as a pointer to a variable of
type s. The intention is that this should refer to the local type s,
defined on the next line of the program; unfortunately, however, the
compiler does not yet know about the local type s and uses the global
type $. Thus ptrs becomes a pointer to a variable of type ~ •• 7
instead of a pointer to a record. Consequently the statement

ptrs : ·current

causes a ~ompiler error since ptrs and current are of incompatible
types.

To avoid this kind of situation. avoid redefinition of identifiers
that are used as base-types for pointer-types.

[file pas:appb; date 2/19/84]_

Page 126 LISA PASCAL SPECIFICATION

[file pas:appb; date 2/19/82]

LISA PASCAL SPECIFICATION Page 127

APPENDIX C

SYNTAX OF THE LANGUAGE

Introduction

This appendix collects the BNF syntax specifications found in the
main sections of this manual. See Section 3 for a description of
the metalanguage.

Lexical Tokens (see Section· 4)

letter - "A"I"B"I"C"I"D"I"E"I"F"I"G"I"H"I"I"I"J"I"K"
"L"I"M"I"N"I"O"I"P"I"Q"I"R"I"S"I"T"I"U"I"V"
"W"I"X"I"Y"I"Z" .
"a"I"b"I"c"I"d"I"e"I"f"I"g"I"h"I"i"I"j"I"k"
"l"I"m"I"n"I"o"I"p"I"q"I"r"I"s"I"t"I"u"I"v"
"w"t"x"I"y"I"z"

digit K "0" 1"1"1"2"1"3"t"4" 1"5" ,"6" ,"7" I"Stf 1"9"

special-symbol _ "+"1"_"1"*"1"/"1"_"
"<"1">"1"["\"]"1"."1"("1")"
","I":"I"j"\" "I"@"I"$"
"<>"1"<-"1">-"1":="1" •• "1 word-symbol

"Nord-symbol - "AND" 1 "ARRAY" 1 "BEGIN" 1 "CASE" I "CONST" 1 "DIV"
"DOWNTO" 1 "DO" 1 "ELSE" 1 "END" I"FILE" 1 "FOR"
"FUNCTION" 1 "GOTO" I"IF" 1 "IMPLEMENTATION"

I "IN" I "INTERFACE" 1 "INTRINSIC" I "LABEL" I "MOD"
I· "NIL" t "NOT" 1 "OF" 1 "OR" 1 "OTHERWISE" I "PACKED"
1 "PROCEDURE" 1 "PROGRAM" 1 "RECORD" 1 "REPEAT"
I "SET"I"STRING"I"THEN"I"TO"I"TYPE"I"UNIT"
1 "UNTIL"I"USES"I"VAR"I"WHILE"I"WITH"

directive - "FORWARD" 1 "EXTERNAL"

(file pas:appc; date 2/19/82]

Page 128 LISA PASCAL SPECIFICATION

digit-sequence == digit {digit}
hex-digit-sequence - hex-digit {hex-digit}
hex-digit • digitl"A"J"B"I"C"I"D"I"E"I"F"
unsigned-integer = digit-sequence
hex-integer = "$" hex-digit-sequence
unsigned-real I: digit-sequence "E" scale-factor

digi t-seq uence "." digi t-sequence
["E" scale-factor]

unsigned-number == unsigned-integer
hex-integer
unsigned-real

scale-factor = signed-integer
sign I: "+" I ,,_It
signed-integer == [sign] unsigned-integer
signed-number • {sign] unsigned-number

label = unsigned-integer

quoted-string-constant == "'" {string-character} "'"
string-character = any ascii char except CR or "'"

I "'" "'"

Blocks (see- Section- 5)

block == [label-declaration-part
[constant-definition-part

[type-definition-part]
[variable-declaration-part

[procedure-and-function-declaration-part
statement-part

label-declaration-part • "LABEL" label {"," label} ";"
cons tant-defini tion-part = "CONST" cons tant-definition

{constant-definition ";n}
type-definition-part == "TYPE" type-definition ";"

{type-definition ";"}
variable-declaration-part == "VAR" variable-declaration

{variable-declaration ";"}
procedure-and-function-declaration-part =

{(procedure-declaration I function-declaration) "; n}
statement-part = compound-statement

[file pas:appc; date 2/19/82J

"." t

n ... ,

LISA PASCAL SPECIFICATION

Constant-Definitions (see- Section 6)

cons tant-defini tion • ident ifier "w" cons tant
constant • constant-identifier

I signed-numbe r
I quoted-string-constant

constant-identifier • identifier

Type-Definitions (see Section 7)

type-definition • identifier "." type
type • simple-type

structured-type
pointer-type

simple-type-identifier • type-identifier
structured-type-identifier - type-identifier
pointer-type-identifier • type-identifier
type-identifier • identifier

simp le-type. - 0 rdinal-type
I real-type
I string-type

ordinal-type = enumerated-type
I subrange-type
I ordinal-type-identifier

ordinal-type-identifier = type-identifier
real-type • real-type-identifier
real-type-identifier • type-identifier

string-type - "STRING" "[tf size-attribute -1"
size-attribute • unsigned-integer

enume rated-type • "(" ident ifier-lis t ")"
identifier-lis t • identifier { "," identifier }

subrange-type • cons tant It "cons tant

[file pas: appc j date 2./ 19/82]

Page 129

Page 130 LISA PASCAL SPECIFICATION

stru<;tured-type == ["PACKED" 1 unpacked-structured-type
I structured-type-identifier

unpacked-structured-type - array-type
set-type
file type
record type

array-type "ARRAY"" [" index-type {
"OF" component-type

index-type == ordinal-type
component-type - type

" " , index-type } "]"

record-type - "RECORD" [field-lis t ["; II 1 1 "END"
field-list • fixed-part [H;" variant-part]

I variant-part
fixed-part == record-section { ";" record-section}
record-section = identifier-list u:" type
identifier-list.: identifier { "," identifier}
variant-part .: "CASE" (tag-field ":U 1 tag-type "OF"

variant { ";" variant}
tag-field == identifier
variant = case-cons tant-lis t ":"

"(fI [field-list {"j"] ")"
tag-type == ordinal-type-ident"ifier
case-constant-list - case-constant { "," case-constant}
case-constant == constant
field-identifier =- identifier

set-type == "SET" "OF" base-type
base.-type =- ordinal-type (except longint)

file-type - "FILE" ("OF" type 1
"TEXT"

pointer-type - itA" type-identifier
pointer-type-identifier

[file pas:appcj date 2/19/82]

LISA PASCAL SPECIFICATION Page 131

Variable-Declarations and· Variable-References (see- Section· 8)

variable-declaration - identifier-lis t ":" type
ident ifier-lis t • ident ifier { ", II ident ifier }

variable-reference = variable-identifier
file-buffer
pointer-reference
variable-reference selector

variable-identifier • identifier
selector - index

I field-designator
index - "[" expression {"," expression} t11"
field-designator - "." field-identifier
field-identifier - identifier
file-buffer =- file-variable-reference up-arrow
file-variable-reference - variable-reference
up-arrow :: ",."
pointer-reference - pointer-variable up-arrow
pointer-variable - variable-reference

Procedure and Function Declarations (see Section 9)

procedure-declaration - procedure-heading
body • procedure-block

I "FORWARD"
I "EXTERNAL"

procedure-block - block

procedure-heading - "PROCEDURE" identifier

"." ,

[formal-parameter-list
procedure-identifier - identifier

body

function-declaration - function-heading
body - function-block

It ... , body

I "FORWARD"
I "EXTERNAL"

function-block - block

[file pas:appc; date 2719/82}

Page 132 LISA PASCAL SPECIFICATION

function-heading a "FUNCTION" ident ifier
[formal-parameter-list] ":" result-type

function-identifier - identifier
result-type = simple-type-identifier

I pointer-type-identifier

formal-parameter-list - "(" parameter-section
{";" parameter-section} tI)"

parameter-section a [nVAR"} parameter-group
procedure-heading
function-heading

parameter-group - identifier-list n:" type-identifier
identifier-list - identifier { "," identifier}
parameter-identifier - identifier

Expressions (see- Section- 10)

unsigned-constant = unsigned-number
I quoted-string-constant
I constant-identifier
I "NIL't

factor = [@-operator] variable
I unsigned-constant
I function-call
I set-constructor
I "(" expression ")"
I not-operator factor

term a factor { multiplying-operator factor }
simple-expression - [sign] term { adding-operator term }
sign _ ,,+tI I "_If
expression = simple-expression

[relational-operator simple-expression 1

multiplying-operator - "*" I "/" I "DIV" I "MOD" I "AND"
adding-operator a "+" I ,,_It I "OR"
relational-operator = It=n I n<>" I "<" I n>" I "<="

@-cperator I: u@u
not-operator = "NOT"

">-" I "IN"

[file pas:appc; date 2/19/82]

LISA PASCAL SPECIFICATION Page 133

function-call - function identifier
[actual-parameter-list

function-identifier - identifier
actual-parameter-list - "(" actual-parameter

{ "," actual-parameter} ")"
actual-parameter - expresssion

variable-reference
procedure-identifier
function-identifier

set-constructor • "[" (member-group
{ "," membe r-group } I "]"

member-group - expression [" •• " expression)

Statements· (see· Section 1·1)

statement • [[label ":" J (simple-s tatement
I structured-statement)]

label - unsigned-integer

simple-statement - assignment-statement
procedure-statement

I goto-statement
assignment-statement • (variable I function-identifier)

":-" expression
procedure-statement - procedure-identifier

[actual-parameter-list
procedure-identifier = identifier
goto-s tatement • "GOIO" label

s·tructured-s tatement = compound-s tatement
conditional-statement
repetitive-statement
with-statement

compound-s tatement • "BEGIN" [s tatement
"END"

condi tional-s tatement • if -s tatement
case-statement

"i" statement }]

if-s tatement - "IF" expression "TH&~" statement
[else-part

else-part = "ELSE" statement

[file pas:appc; date 2/19/82]

Page 134 LISA PASCAL SPECIFICATION

case-statement c: "CASE" expression "OF"
case-list-element
{"j" case-list-element }
[";" "OTHERWISE" statement
[";"] "END"

case-list-element - case-constant-list ":" statement
case-constant-list = constant {"," constant}

repetitive-statement:: repeat-statement
while-s tatement
for-s tatement

repeat-s tatement :: "REPEAT" [statement {
"UNTIL" expression'

"." , statement }]

while-s tatement - "w1iILE" expres sion "00" statement

for-statement &I: "FOR" control-variable ":-" initial-value
("TO I "DOWNTO") final-value
"00" statement

control-variable :: variable-identifier
initial-value - expression
final-value = expression

with-statement :: "WITH" record-variable-list liDO"
statement

record-variable-list :: record-variable
{ "," record-variable}

record-variable = variable-reference

Textfile I/O· (see- Section· 12)

READ-parameter-list - "("{file-variable ",It] variable-reference
{"," variable-reference}")"

file-variable = variable-reference

READLN-parameter-list &I: ["(tt (file-variable I variable-reference)
{"," variable-reference} It)"]

wri te-parameter-lis t :: It (" [file-variable ", "] wri te-parameter
{"," write-parameter}")"

write-parameter II: expression {":" expression
[":" expression]]

[file pas:appc; date 2/19/82]

LISA PASCAL SPECIFICATION

wri teln-parameter-lis t = ["(" (file-variable
I write-parameter)

{" J" write-parameter}")"]

Programs (see· Section· 13)

program = program-heading ";" [uses-clause ";"] block
program-heading :II "PROGRAM" identifier

["(" program-parameters ")"]
program-parameters • identifier-list
uses-clause:. "USES" identifier-list
identifier-list a identifier {J identifier}

Units (see· Section· 14)

uni t = uni t-heading ";"
[intrinsic-clause ";"]
i nte rface-part
implementation-part
"END" "."

unit-heading - "UNIT" identifier
intrinsic-clause =- "INTRINSIC" ["SHARED" I
interface-part = "INTERFACE"

[uses-clause
[constant-definition-part
[type-definition-part]
[variable-declaration-part]

Page 135

" " .

[procedure-and-function-declaration-part
implementation-part :II "IHPLEMENTATION"

[constant-definition-part]
[type-defintion-part]
[variable-declaration-part 1
[procedure-and-function-declaration-part

[file pas:appc; date 2/19/82]

Page 136 LISA PASCAL SPECIFICATION

[file pas:appc; date 2/19/82]

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136

