#. Apple. HyperTalk.
Beginner’s Guide

An Introduction
to Scripting

Previously titled
Scripting With HyperTalk

Confirmation Draft

Jody Larson
Customer Communications
February 21, 1989

Apple Confidential

@ APPLE COMPLTER, INC.

Copyright © 1989 by Apple Computer, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, mechanical, electronic, photocopying, recording, or
otherwise, without prior written permission of Apple Computer,
Inc. Printed in the United States of America.

© Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 950146299
(408) 996-1010

Apple, the Apple logo,
HyperCard, and Macintosh,
are registered trademarks of
Apple Computer, Inc.

HyperTalk is a trademark of
Apple Computer, Inc.

ITC Zapf Dingbats is a
registered trademark of
International Typeface
Corporation.

Linotronic is a registered
trademark of Linotype Co.

POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark, of Adobe Systems
Incorporated.

Varityper is a registered
trademark, and VTG00 is a
trademark, of AM
International, Inc.

Simultancously published in
the United States and Canada.

Preface

Chapter 1

Contents

About This Guide vii

What you need to know viii

How to use this guide viii
Conventons used in this guide ix
For more information x

Getting Started 1

Start up HyperCard 2
Set your user level 3
Create a practice stack 4
Set up the background 6
Putting a tide on the stack 7
Home, sweet Home 8
Making a button 9
Customizing the button 9
And now, a litle scripting 11
Trying it out 13
Buttons for traveling 14
Making two new buttons 14
Customizing the button on the right 15
Customizing the button on the left 15
Completing the scripts 16
Fill out the stack 17
Adding a label field 17
Typing a label 18
Adding five new cards 18
A script to label all cards 19
Add a button to the Home card 21
What you've done so far 22

ili

Chapter2 Special Ettects 25

Chapter 3

Contents

Some visual effects 26
Adding graphics 27
The Visual command 28
Adding effects to the arrow butions 28
Adding an effect to the Home bution 30
Adding the same effect to the button on the Home card 31
More experiments with visual effects 32
Barn Door 33
Dissolve 34
The syntax of the Visual command 35
Some sound effects 32
The syntax of the Play command 33
Specifying the notes 37
Dealing with long lines 39
What you've done in this chapter 39

More About Messages 41

Sending messages 42
Create a “Receiver” button 43
Send a message with the Message box 44
Create 2 “Sender” button 45
Action at a distance 43
Remove the handler from the button script 48
Move the handler to the card level 48
Move the handler to the background level 49
Change the handler 50 ‘
Confirming actions 53
A disappearing act 53
A command to put up an alert box 54
An additional action 56
If structures 51
Syntax summaries 59
Answer 59
Click 60
Hide 61
Send 61
Set 61
Show 62
Wait 62
What you've done in this chapter 63

Chapter4 Fields, “It," and Other Containers 65

Fields as conuiners 66
A simple calculation 67
Set up the fields 67
Crealting the first field 67
Copying and naming the other fields 68
Labeling the fields on the card 70
A calculating handler 71
Test the handler 73
The handler with comments 74
Other containers 75
The Message box 75
The selection 75
Variables 76
A few words about functions 77
Syntax summaries 78
The arithmetic commands 78
Get 78
Put 78
What you've done in this chapter 80

ChapterS Animation 81

Animation on a single card 82
Make something to animate 82
Drawing a circle 82
Drawing a smaller circle inside the first one 83
Filling in the smaller circle 84
W'rite a handler to use tools and menu commands 86
Finding the starting point 86
Finding the ending point 87
Making a button and completing the handler 87
Trying it out 88
Repeat structures 89
Animation using several cards 90
Set up the cards 90
Copying and pasting the image once 90
Adding more cards 91
Copying and pasting the image twice more 92
Write a handler to show the cards 93
Another way to control the spin 94
Some finishing touches 95
Syntax summaries 96
Choose 97
DoMenu 97

Contents

Vi

Contents

Chapter §

Appendix

Drag 97
Show Cards 98
What you've done in this chapter 98

Stacks You Can Bulld 101

A travel records stack 102
Creating the stack 103
The second background 105
The third background 106
How the stack would work 108
A flash card stack 109
Creating the stack 110
Features of the stack 111
The scripts 113
The stack script 113
The background script 114
The button scripts 114
How the stack would work 116
Where to go from here 116

HyperTalk Summary 117

Syntax statement notation 117
Commands 118

Functions 120

Keywords 123

Properties 123

Constants 125

System messages 125

Operators 126

Shortcuts. for seeing scripts 127
Synonyms and abbreviations 127

Glossary 129
Index xx
Quick Reference Card

Preface

About This Guide

Welcome to the HyperTalk Beginner's Guide. This guide provides
you with a starting point for exploring HyperTalk™, the language
used by the HyperCard® software. With HyperTalk, you can write
your own instructions, called scripts, for HyperCard to carry out.
Writing scripts is called scripting.

HyperCard allows you to create, customize, and personalize your
own stacks without your having to do any scripung. But HyperCard
is a extension of Apple Computer’s goal —to bring the power of
technology to the individual. Scripting takes you one step further
toward having power over what your computer does for you.

If writing scripts sounds a lot like programming to you, you're
right—they are very similar, however, you do not need any
previous experience with programming to be able to write scripts. If
you can read this paragraph, then you can write a scripl.

This guide introduces you to some basic scripting using a practice
stack you create yourself. In this stack, you'll learn how 0 write
scripts for traveling between cards, creating special effects,
simulating animation, performing calculations, and more. Later on
after you've completed this book, you can use your practice stack on
your own as a place [0 try out new scripls.

Vil

Viii

What you need to know to use this guide

To get the most out of this guide, you should already know the basics
of using your Macintosh® computer; for instance, how to use the
mouse and the screen windows. You should also be familiar with
how to get around in HyperCard. Specifically, you should know
about using buttons to get around in stacks and how to use the menus
and tools. You should have some working familiarity with
HyperCard objects: buttons, fields, cards, backgrounds, and
stacks. You should have looked through the Help system, browsed
through other stacks, and personalized some stack—for example,
used the Address stack to store some personal information. If you
have gone through the first three chapters of the HyperCard User's
Guide, you probably know all you need to know.

If you have experience with programming in another language, vou
might want to go directly to the HyperCard Script Language Guide,
which is geared for people with prior experience.

The intent of this guide is to help you get started and let you get a fcel
for scripting on your own. You won't find long, technical _
explanations of HyperTalk concepts here; but you will be able to sce
clearly how specific scripts work.

How to use this guide

Each chapter builds on what you've done in previous chaplers, so
it's important that you start at Chapter 1 and work through the book
sequentially. You should be able to go through an entire chapter in
a single session at your computer, but you can take a break any time
you like—or keep right on going, if it suits you.

O In Chapter 1, *Getting Started,” you'll create a practice stack with
which you'll work with scripting throughout this book. You'll
make bunons to use with the stack and complete their scripts.

In Chapter 2, *Special Effects,” you'll learn about visual and
sound effects in HyperTalk and add them to your stack.

8]

a

In Chapter 3, “More About Messages,” you'll explore how
buttons and other objects receive and send messages, and you'll
further increase your HyperTalk vocabulary.

8]

In Chapter 4, “Fields, ‘It,’ and Other Containers,” you'll get an
introduction to how HyperCard stores information and performs
calculations.

Preface: About This Guide

Sometmes defnitions of Cross-
references appear in the margin.

Important

In Chapter 5, “Animation,” you'll learn two ways to create
“moving pictures” with commands.

0

0

of useful stacks that you could create and script yourself, starung
with matenals available in the Idea Stacks that came with
HyperCard.

O The Appendix, “HyperTalk Summary,” contains a list of all
HyperTalk commands, functions, and other elements.

You'll also find a glossary of terms, an index, and a Quick Reference
Card containing the command and functions, which you can
remove from this book and keep handy.

Conventions used in this guide

When a new term is defined, you'll see the term in boldface. All
such terms and other, related terms are included in the glossary.

In Chapter 6, “Stacks You Can Build,” you'll look at two examples

Material set off like this is especially worth reading. Information
in these boxes advises you of noteworthy circumstances or
helps you avoid misfortune.

« By the way: Paragraphs like this one contain additional
information or interesting sidelights.

A special font (Courier) is used to show HyperTalk words and words
and statements you should type. It looks like this:

set userlevel to S

Sometimes commands are shown in a generalized form; for
example,

set property [of object] to value

Words in italic are simply placeholders. The square brackets ([])
are used to indicate optional parts; the brackets shouldn't be
included in an actual command.

For more information

ix

For more information

Because this guide is intended as an introduction for beginners, it is
not comprehensive. HyperTalk comprises many commands,
functions, keywords, and other elements that are not explained in
this book.

The HyperCard User’s Guide contains reference information for all
menus and tools available.

The HyperCard Help system provides on-line help while
HyperCard is running. The Help system contains a HyperTalk
reference section.

The HyperCard Script Language Guide, published by Addison-
Wesley Publishing Co. as part of the Apple Technical Library, is a
complete reference to HyperTalk. It's intended for those with some
programming Or scripling experience.

The HyperCard Stack Design Guidelines, also published by
Addison-Wesley, provides information on how to design and build
professional-quality stacks. Its focus is the presentational aspect of
stacks (for example, navigation methods and card layouts) rather
than the mechanics of scripts.

Other excellent books on HyperCard and on Hy perTalk scripting
can be found in almost any bookstore.

Preface: About This Guide

Chapter 1

Getting Started

Have you ever wanted to create your own softwarc—make an
application program that does things the way jou want, rather than
someone else’s way? That's what HyperCard® software allows you 1o
do.

This book takes you a step further into the power of HyperCard by
introducing you to scripting—the writing of sets of instructions,
called scripts, to customize HyperCard's actions. Everything that
happens in HyperCard is directed by a script.

HyperCard scripts are written in HyperTalk,™ a language very much
like the language people use in daily life. Believe it or not, you
probably already know how to “say” things in HyperTalk—things
that HyperCard would probably be able to understand and
perform.

You do not need any prior experience with computer languages 10
use this book. You should, however, be familiar with how to use
HyperCard and how to get around in HyperCard stacks.

In this book, you’ll practice scripting in a stack you'll build from
scratch. In this chapter, you'll create the practice stack and write
some simple scripts to control actions of buttons.

Start up HyperCard

This book is meant to be used with HyperCard “up and running” on
your Macintosh® system. You'll need to perform the steps as
directed in the sections that follow to get the most out of the
material.

Start up HyperCard following the instructions in the HyperCard
User's Guide. If you already have HyperCard running, go to the
Home card. You're ready to go on when you see the Home card on
your screen (Figure 1-1).

Chapter 1: Getting Started

é File Edit 6o

£ Home Card (®

Book Shelf

i

yperCale

ee 9

Quotatiens

L1987 dople Computer e,

Figure 1-1
The Home card

Set your user level

To work with scripts, your user level must be set at Scripting. Change
the user level on the User Preferences card of the Home stack
following these steps:

1. Click the left arrow at the boltom of the Home card to go to
the User Preferences card.

2. Click the Scripting button.

For now, thie check box options Text Arrows and Blind Typing
should be unchecked. You won't need the Power Keys option
either, but if you prefer to use Power Keys with the Paint tools you
may. Figure 1-2 shows the User Preferences card with Scripting
selected. (Earlier versions of HyperCard may not have the Text
Arrows option.)

Set your user level 3

é File Edit 6o Tools Objects

User Preferences

User Neme: Jody Bytheway Larson

User Level:
O Browsing
QO Typing O Text Arrows

O Painting O Power Keys
QO Ruthoring
@ scripting O elind Typing

Figure 1-2
The Scripting user level on the User Preferences card.

When the user level is set at Authoring or Scripting, a2 new menu
tile, Objects, appears in the menu bar. Commands in this menu
allow you to get information and change properties of HyperCard
objects—buttons, fields, cards, backgrounds, and stacks. (You'll
learn more about objects later on.) The user level must be set at
Scripting before you can look at, write, or change these objects’
scripts.

Create a practice stack

Now that you've set the user level to Scripting, the next task is to
create a stack where you can experiment with scripts. You can make
a new stack at any time from anywhere in HyperCard; you don't
have to go back to the Home card. Just follow these steps:

1. Choose New Stack from the File menu.

A dialog box appears in which you can name the stack and
specify its background.

Chapter 1: Gefting Started

2. Click the check box to remove the check mark from “Copy
current bockground.”
You don't want to copy the background for this practice stack, so
*uncheck” the box. The new background will be completely
blank.
3. Type @ name for the stack—for example, Practice
Stack
In this book, your practice stack is referred tc simply as that—but
you can name your stack anything you like; “Practice Stack,”
“Test Stack,” “Pilgrim's Progress,” or whatever. If you make an
error while typing the name, use the Backspace (Delete) key to
erase it and retype. The dialog box should look similar to the one
in Figure 1-3.
|3 HyperCard Folder |
NCh. 11253 < Hard Disk
DCh.312:°4
S Cn. 4124
D Ch. 51274
- (Corive)
& HyperCard
New stack name:
Practice Stack (Cancel)
O Copy current background
Figure 1-3

The New Stack dialog box

4. When you're ready, click New (or press Retum).

You should see a completely blank card on your screen with only
the menu bar showing along the top. This card is the first—and right
now, the only—card of your practice scripting stack. =~ =~

Create a practice stack

Set up the background

You can think of the background in HyperCard as a kind of
*holding area” for general elements. If a button, a field, or a picture
is in the background, then it appears on every card that shares that
background. Putting a button in the background, for example,
allows you to have that button constantly available throughout a
number of cards without having to re-create it on every card. So far,
the practice stack has only one background, so all cards you create
will share that background.

In this section you'll first create a title that will appear on all cards of
the stack. Then you'll put 2 Home button and some buttons for
traveling into the background, and you'll write scripts for the
buttons.

Before you go on,

s Press Command-8 fo work in the background.

(You could also choose Background from the Edit menu.)

The menu bar appears with striped lines top and bouom,
indicating that you're working in the background (Figure 1-4).

background

Figure 1-4
Working in the background

The steps you follow throughout this book make use of a number of

shortcuts for menu commands and for getting around in _
HyperCard. Some of these shortcuts may be new (o you at first, and
you'll have plenty-of opportunity to practice them. ’

é Chaopter 1: Gefting Started

Putting a titie on the stack

It's a good idea to include a visible tite or other identifier on each
card of a stack, so you can always tell which stack you're in. Put a tide
on your practice stack using the steps that follow.

& Are you in the background? You should see stripes in the menu
bar to indicate you're working in the background. If you don't see
stripes, press Command-B.

-—

. Choose the Paint Text tool from the Tools menu.

Q If you prefer to work with a palette, you can turn the Tools menu

- into a palene by dragging past its bottom edge to “tear” it off the
g ¢ ﬂ menu bar.

é g o~ 2. Press Command-T {o select the text style.

i

_g O (You could also choose Text Style from the Edit menu or double-

click the Paint Text tool on the Tools palette.)

HoO|O | P
mo 2 The Text Style dialog box appears as shown in Figure 1-5.

The Pgint Text tool

Style Chicago SRE (ok)
880!6 Courier 10 \ / A
Italic Genevea 12
Cl Underline |yojyetica 14
O shadow
O Condense
O Extend Times :‘e“i;ht
Rlign
Olert I 2+
@® Center
O Right 5l |Sample
Figure 1-§

Text Style diclog box

Set up the background 7

3. Choose ¢ font you like in a large, readable size—for instance,
New York 18.

4. Click the “Center” button in the lower-left corner of the box
so that your text will be centered as you type it.

$. Click OK.

You're ready to put the title on the stack.

6. Click In the center of the card near the top to set the
Insertion point and then type the name of your stack.

When you're finished, the screen should look something like
Figure 1-6. All you've added so far is the title.

& File Edit Go Tools Peaint Options Patterns

Practice Stack

N

Mt e e e

Figure 1-6
The practice stack with a title

Home, sweet Home

Whenever you see a small picture of a house in HyperCard, you can
be pretty sure that clicking it will-take you to the Home card. In the
following sections, you'll add 2 Home to your stack and complete its
script.

Chapter 1: Getting Started -

¢ By the way: In the HyperCard User's Guide you learned how to
copy and paste buttons with prewritten scripts, such as Home
buttons. In this book, you'll complete scripts yourself for
practice.

Making a button

You can always get a new button by choosing New Button from the
Objects menu. In this book, you'll use a keboard shortcut to make
buttons. Follow these steps:

1. Make sure you are working in the background.

You should see stripes in the menu bar. If you don't see stripes,
press Command-B.

2. Choose the Button tool from the Tools menu.

The Browse tool changes to the Button tool, which is an arrow
? ﬁ pointer.
ﬁ g . 3. With the pointer anywhere on the card, hold down the
. Command key.
_@ o Notice that the arrow pointer changes to a crosshair.
& O o 4. While holding down the Command key, drag to create o
A O = small square button.

Release the mouse button when the button is about half an inch
square. The new button is automatically selected so you can
move it or change its size—you can tell it's selected by the
moving dotied lines around its edges. (This effect is sometimes
referred to as *marching ants.”)

The Button tool

5. Move the bulion to the lower-left corner of the card.

Drag the button by its center. Because it's in the background, the
bution will appear in this position on every card.

Customizing the button

HyperCard buttons have a variety of styles and features from which
to choose. You customize a button’s appearance and actions
through the Button Info dialog box.

Set up the background

1. Double-click the button to see the Bution Info dialog box.
(You could also choose Button Info from the Obijects menu.)
Figure 1-7 shows this box.

| Button Name: ||

Bkgnd button number: 1 style:

O show name (O) opaque
i rectangle
hilite
L huto hilit Q shadow
QO round rect
Q check box

O radio button

)\ -
] m
AN /]

LinkTo...

Figure 1-7
- The Button Info diclog box

Notice that the insertion point is blinking in the Button Name box,
ready for you to type a name.

N

.Type Home (but don't press Return)

If you press Return prematurely, don't worry; just double-click
the button again to get back to the Info dialog box.

(2]

. Click "Auto hilite" to select it.

The “Auto hilite” option causes the button to become
highlighted when it's dlicked, which gives you a visual signal that
you've clicked it.

Leave the “Show name" option unchecked; you'll put an icon on
this button instead.

[

. Click the Icon button.

Another dialog box appears in whi‘ch you can select an icon for
the button.

10 Chapter 1: Getting Started

5. Choose one of the house icons.

ﬁ @ Scroll through the window unitil you find the house icons and click

the one you want.
Some house icons 6. Click OK.

All the dialog boxes disappear. Your new button now has the
house icon on it

Next, you'll write a script for this button.

And now, a littie scripting

Scripts are created and changed in a special box called the script
editor. To see the script for the new Home bution:

1. Double-click the Home bution.

You see the Button Info dialog box again.

2. Click the Script button.

You see a large dialog box with two lines of text already in the
window. This box is the script editor for the Home button. (See
Figure 1-8.)

Script of bkgnd dbuttonid | = "Home"
P On BouSeUD

lgentification ling ="

(3

end souselp

Lines Mat cppear automatically)
in button scnpts

-
1>

{ Fing) [Print) (o;]» (C;ncol]

Set up the background 1

Figure 1-8
The script editor

Notice that the top line identifies which the script this is: “Script of
bkgnd button id 1 = Home"—your new button. Notice also that two
lines of text appear already—on mouseUp and end
mouseUp—with the insertion point blinking in between. All scripts
for new buttons have the first line and last line filled in for you.

The next step is to type the statement that defines the action of the
button.

3.Type go Home

The new line should appear between the existing lines. If you
make a mistake, use the Backspace (Delete) key to erase and type
over.

The three lines constitute the completed script for the Home
button:

on mouseUp
go Home
end mouseUp

As you might guess, these instructions describe what should happen
when someone clicks the Home button. You have one more step
before you're finished, but first, here's a brief description of how
the script works:

Whenever you move the mouse, the Macintosh computer and
HyperCard software track the movement electronically. You sce the
movement as a change in the position of the pointer on the screen.
When you press and release the mouse bution, electrical signals are
sent, something like when you turn a switch on and off. The same
thing is true when you press different keys on the keyboard. The
HyperCard software interprets these signals from the system and
translates them into HyperTalk system messages.

12 Chapter 1. Getting Started

d - \

The Browse tool

MouseUp is a system message that means the mouse button has
been released; an on-screen HyperCard button receives this
message when someone dlicks it (that is, positions the Browse tool
on it and then presses and releases the mouse button). Actually, the
button receives both mouseDown (the mouse button is pressed)
and mouseUp (the button is released), but the mouse button must
be released before a click is complete, so mouseUp is more
frequendy used in scripts.

Whether something happens when the button receives the
mouseUp message depends on whether the button’s script contains
any instructions for that message.

The first line, on mouseUp, signals HyperCard that further
instructions exist. Any subsequent lines contain HyperTalk
statements that make up the instructions. The last line, end
mcuseUp, indicates the end of the instructions.

The word go is a HyperTalk command; it means what you might
expect. Go must be followed by a destination—a description of a
card or a stack. In this case, you used the name of the card. You
could also have typed a more elaborate description, such as

go to card 1 of stack "Home"
Translated into English, the instructions say

“When this button is clicked, go to the first card of the Home stack.
That’s all.”

To leave the script editor,

4. Click OK.

The script editor disappears, and you're back to the practice
stack. f you click Cancel the same thing will happen, but your
instructions won't be in the script.)

Trying it out
Now see if the Home button works as it's supposed to.
1. Choose the Browse tool from the Tools menu or palefte.

2. Click the Home button.

The next thing you see on the screen should be the Home card.
Welcome Home!

Set up the background 13

14

If that's not what happened, switch to the Button tool and double-
click the Home button to check the script. Make sure everything is
typed correctly. Then click OK and repeat the steps.

To get back to the practice stack:

1. Press Command-M fo see the Message box.
(You could also choose Message from the Go menu.)

The insertion point should be blinking inside the Message box,
ready for you to type.

If for any reason you previously typed something into the box,
the earlier entry would still be there. Just start typing and the old
text will be replaced.

2. Type
go to stack "Practice Stack"
(use the actual name of your stack in quotation marks).

3. Press Return,
You should now see your practice stack on the screen.

As you see, you can use the go command both in scripts and in

the Message box. Most HyperTalk commands work in both places;
you can communicate directly with HyperCard through the Message
box.

Buttons for traveling

Next you'll create two “travel buttons” to allow you to go back and
forth between cards in the stack. (Right now there's still only one
card, but you'll add more shortly.)

Making two new buttons

Use the same steps as you did for the Home button:

1. Make sure you are working in the background.

You should see stripes in the menu bar. If you don't see stripes,
press Command-B. - : .

Chapter 1: Getting Started

. Switch to the Bulton tool and use Command-drag to create

two new transparent buttons.

Make them about the same size as the Home button.

. Position these two buttons side-by-side ot the bottom of the

card, roughly in the center.

Drag each button by its center to move it as needed.

Customizing the button on the right

Make the button on the right into a “move forward” button:

1.

With the Bution tool slill selecied, double-click the button
on the right.

The Button Info dialog box appears.

. Nome the button Next
. Click the check box to select “Auto hilite.”
. Click the lcon button to see the available icons.

. Choose an icon that points to the right.

You can choose any size arrow or pointing finger. Click the one
you want.

. Click OK.

The boxes disappear. You should see the arrow or finger on the
button.

Customizing the button on the left

Repeat the steps for the remaining button:

1.

With the Button tool still selected, double-click the bution
on the left.

The Info dialog box appears.

Set up the bockground 15

16

2. Name the buiton Previous
3. Click the check box fo select “Auto hilite.”
4. Click the Icon button to see the available icons. A

§. Choose an icon that points to the left.
It's best to use the same icon as you chose for the first button, but
pointing the opposite way.

6. Click OK.

The two buttons should now have matching icons pointing away
from each other.

Compileting the scripts

You want the button on the right to take you to the next card in the
stack and the button on the left to take you to the previous card. Put
your instructions into the buttons’ scripts:

1. Hold down the Shift key and double-click the right-arrow
button to see the script editor.

(You could also double-click the button and then click Script in
the Info box. The Shifti-double-click shortcut doesn't work in
HyperCard versions earlier than 1.2)

2. Type
go to next card
between the existing lines.

3. Click OK.

The script editor disappears. Repeat the steps for the remaining
button.

4. Hold down the Shitt key and double-click the left-arrow
button to see the script editor.

5. Type
go to previous card
between the existing lines.

é. Click OK.

You have now completed both buttons’ scripts. The script for the
button on the right contains

Chapter 1: Gefting Started

.......

5
~
o
©
4

The Field tool

on mouseUp
go to next card
end mouseUp

For the button on the left, it's

on mouseUp
go to previous card
end mouseUp

These buttons can now be used to travel back and forth in the
practice stack, card by card. Moving 1o adjacent cards isn't the only
possiblity, of course; you can create other butions to take you to any
card of any stack you want by specifying in a script where you want to
g0.

% By the way: The LinkTo button in the Button Info box provides a
shortcut for linking a2 button to any destination without going 10
the button’s script HyperCard completes the script for you. See
the HyperCard User's Guide for details.

So far in this stack, there's nowhere else to go. It's time to add some
cards.

Fill out the stack

Before you add new cards, it's a good idea to label this card in some
way so that you know when you're at the first card. Later in this
chapter you'll learn a way to label other cards you add as well.

Adding a label field

First, create a text field in the background to hold the label. Follow
these steps:

1. Mcke sure you're still working in the background.

If you don't see stripes in the menu bar, press Command-B.

2. Choose the Fleld tool.

3. Hold down the Command key and drag o create a new
fleid.

Make the field a rectangle roughly a quarter inch high and an
inch and a half wide.

Fill out the stack

17

18

4. Move the field to the card’s upper right.

Drag it by its center, just as you did with the buttons.
5. Double-click the field to see its Info box.
é. Click “Rectangle” to set the field's style.

7. Click the Font button.
The Text Style dialog box appears.

8. Select a font and size:

Geneva 12, which may be already selected, is a good choice.

9. Click OK (or press Retum).
The Text Style dialog box closes, and you're back to the card.

Typing a label

The field you created will appear on every card because you put it in
the background. Text in the field, however, can be different on
every card. Type a label for this card into the field:

1. Choose the Browse tool.

Notice that when you choose the Browse tool, the stripes
disappear from the menu bar. You are no longer in the
background of the stack.

2. Click inside the field to set! the insertion point, and then type
the words “This is Card 1." (You don’t need to include
quotation marks.)

The text you just typed will appear only on this card; the field,
however, will appear on all cards, and you can type different text
into it.

Adding five new cards

At last, you're ready to add some cards to this slim stack.

Chapter 1. Getting Started

1. Press Command-N five times.

(You could also choose New Card from the Edit menu five
times.)

Although you haven't seen much happen on the screen, you've just
increased the size of your stack from one card to six cards. Notice
that the field in the upper-right corner is blank, indicating that you
are no longer on the first card.

2. Click the right-arrow button, and you should find yourself on
Card 1 again.

A script to label all cards

You could label all cards in your stack by going to each one and
typing its number into the field, just as you did for Card 1. Instead,
you can write a script telling HyperCard to do it for you. Here's
how:

1. Choose Stack Info from the Objects menu.

The Info dialog box for the stack appears

2. Click the Script button.

The script editor for the stack appears. Notice that, unlike the
script editor for the buttons you created, the script editor for the
stack does not contain the on mouseUp and end mouseUp
statements.

% Keyboard shortcut: Press Command-Option-S to go directly 10
the script editor for the current stack, without going to the Info
box. (This shortcut doesn’t work with HyperCard versions earlier
than 1.2.)

3. Type the script that follows exactly as written. Press Return
at the end of each line.

on openCard
put "This is Card" &é number cf this card intc fiela 1
end openCard

Be sure that you type two ampersands (&&) and that you include
the quotation marks.

A script to label all cards 19

20

When you press Return after the final statement, you'll notice that
the last line moves over to the left, but the middle line remains
indented. This automatic indenting helps you check your scripts.
Oon and end should always line up at the leftmost edge of the
script editor box after you press Return the final time; if they
don'’t, you might have left out something important and should
check the script again. Pressing the Tab key also checks the
formatting.

If everything looks correct,

4. Click OK.
The script editor disappears.

This script labels each card as you go to it by typing “This is Card”
and the card’s number into the field. Try it out:

§. Click the right-arow button to go to each card.

You should see the phrase appear in the field automatically as
you go, with the correct card number.

The openCard message is sent to the current card whenever you
gotoit. The put command does what you would expect—it puts
something where you want it to go.

The double ampersand (&&) connects two pieces, or strings, of
text together with a space in between. One piece of text is “This is
Card” and the other piece is the card’s number, which you specified
as number of this card If you wanted to join two strings of
text together without a space, you would use a single ampersand.

In English, the script says:

“When a card opens, put the phrase “This is Card” and the card’s
number with a space in between into field 1. That's all.”

All cards in the stack will be labeled by this script because it's a stack
script. A stack script can have an affect on all backgrounds, cards,
fields, and buttons belonging to that stack. You could have put the
script at the card level, but you would have had to copy it to every
card’s script or it wouldn't work for every card.

The advantage of using a script to label cards is that you won't have
to worry about labeling the cards yourself, even if you add or delete
cards. HyperCard will take ‘care of it for you. What's more, you can
lock the field to prevent anyone from typing into the field, but
HyperCard will still be able to change the text.

Chapter 1. Getting Started

Add a button to the Home card

Wouldn't it be convenient to have a button on the Home card that
would take you directy to your scripting practice stack? Create one
now:

1. Choose the Bution tool and create a new button.

Use Command-drag to create the button; make it fairly wide.
Move it to any open space you have on the Home card.

< By the way: The buttons already on the Home card are there
only for your convenience, and you can change their position
easily; just click them with the Button tool and drag them to a new
location. If you need more room, you can cut buttons that you
don't use often and paste them elsewhere; you could create a new
card in the Home stack to hold them.

2. Double-click the button to see its Info box.

You could also choose Button Info from the Objects menu.
3. Name the button My Stack
4. Click “Show _name"” and “Auto hilite” to select them.

5. Click “round rect” to make the button style o rounded
reciangle.

6. Click the Script button to see the script editor.

7. Type the command that will iake you to your practice stack.

Can you do it? Give it a try. Here's a hint: you typed this
command into the Message box earlier after testing your Home
button.

8. Click OK.

You should see the Home card with the new button. If the bution
is too small for the words, drag one of its corners to make it
larger.

9. Choose the Browse tool and click the My Stack butten. .
If you went to Card 1 of your practice stack, congratulations!

Add o button to the Home card 21

22

Important

If something else happened such as a message appearing on the
screen saying “Can’t understand . . .” then you might have
misspelled 2 word or left out a space. If you got a directory dialog
box asking where the stack is, you might have typed the name
incorrectly.

Any of these statements would work in the button’s script:
go to stack "Name"

go to "Name"

go "“Name"

go Name

The placeholder word Name stands for whatever you named your
stack in its Stack Info box. Be sure that you type the name exacuy as
itis in the box; for example, if you included the word Stack in your
stack’s name, you'll have to include it with the go command.

Although it's possible in many cases to omit the quotation
marks and still have a working statement, as a general rule it's
best to include the marks. Quotation marks remove any
ambiguity.

You should now be at Card 1 of your practice stack, ready to go on
Or, if you'd like to take a break, go ahead. In the next chapter you'll
write some more elaborate scripts.

What you've done so far

In this chapter you've created a stack in which you can practice
scripting in the rest of this book and on your own. You've
completed scripts for three background buttons using the
HyperCard script editor. Finally, you've created a background field
and written a script to label all cards by number in that field.

Here's a list of the HyperTalk words you have learned: .
Commands

go This command is used to move around in and
between stacks, The word go must be followed by
the name of a card or a stack. Go works in scripls
or in the Message box.

Chapter 1: Getting Started

put

Messages

mouseUp

mouseDown

openCard
Modifiers

next

previous

Miscellany
&

&&

end

on

to

As you might guess, this command takes something
and puts it somewhere. The word put must be
followed by the name of the thing you want 1o put
somewhere and the name of the place you want 10
putit.

A systemn message; when you click something, such
as a button, the system sends mouseUp when the
mouse button is released. (If the pointer is moved
off the button before the mouse button is released,
mouseUp is not sent.)

A system message sent when the mouse button is
pressed.

A system message sent to a card when it is opened.

This word means the same thing as the English
word.

Another word that means the same thing as the
English word; it can be abbreviated prev.

(Ampersand) This symbol joins two pieces, or
strings, of text together.

(Double ampersand) This combination symbol
joins two pieces of text with a space in between.

This word that signals the end of a set of
instructions. All HyperTalk scripts conclude with
an end statement.

This word that signals the beginning of a set of
instructions. It must be followed by the name of a
message, such as mouseUp.

The word to is used different ways in HyperTalk.
IU's optional with the go command; go to
stack "Scripting" meansthe same as go
stack "Scripting".

What you've done so far 23

oo

Chapter 2

Special Effects

25

26

Important

You might already know that buttons, fields, cards, backgrounds,
and stacks in HyperCard are called objects. More specifically,
objects are HyperCard elements that can

O receive and send messages
O act on messages according to instructions in their scripts

Not all elements in HyperCard are objects. Elements that are not
include any graphics or text you create with the Paint tools, the text
inside fields, any dialog boxes that appear, the menu bar at the top
of the screen, and the menus and palettes. The Message box is also
not an object, even though you can send messages with it.

When you copy (or cut) and paste any object, its script goes along
with it; thus, you don'’t have to build a button from scraich, as you
did with the buttons in Chapter 1, every ime you want one.

¢ By the way: The Button Ideas stack contains buttons with
prewritten scripts that you can copy into your own stacks.

In this chapter you'll create more buttons and add some special
effects to button scripts using new commands.

If you took a break and quit HyperCard at the end of Chapter 1, you
need to start up HyperCard again. Use the button you added to the
Home card to get to your practice stack. You're ready to go on when
you see Card 1 of your practice stack on the screen.

Some visual effects

HyperCard's visual effects make movement between cards and
stacks noticeable and visually interesting.

You add visual effects to scripts using the visual command. In
the sections that follow, you'll add visual effects to your stack’s
buttons.

Right now, the practice stack is pretty bare visually, so visual effects
won't be very effective. Let's add some graphics to the stack.

HyperCard visual effects aren’t visible with color or with multiple
groys selected. Use the Control Pane! (ovailable in the Apple
menu) to change the Monitors setting to “Black &
White/Grays” and the number of grays to 2.

Chapter 2: Special Effects

The Rounded Rectongle tool

The Line Size box

Adding graphics

For demonstration purposes, use the Paint tools to put a border on
all cards:

1.

Press Command-8 to work In the background.
The menu bar becomes striped.

Putting the border in the background means you'll have to draw it
only once.

. Choose the Rounded Rectangle tool from the Tools menu.

The Browse tool changes to the crossbar pointer.

. Choose Uine Size from the Options menu to see the Line Size

dialog box.

. Click the line size you want. Choose one of the wider sizes.

The Line Size box closes automatically when you select a size.

. If you want to make a patterned border, choose a patiem

trom the Pacfterns menu.

If you don't choose a patiern, the border will be a black line.

. Hold down the Option key, position the crossbar inside the

top-left comer of the card, and drag to the bottom-right
corner. Then release the mouse bution.

Using Option-drag draws the rectangle with the selected‘pmem.
If you didn't choose a pattern, you don't need to use the Option

key.
If you don't like the position of the rectangular border and want

to try again, press Command-Z to undo the drawing before
clicking anywhere else. :

. Press Command-B or choose the Browse tool 1o stop working

In the background

You can add some of your own graphics at the card level if you like;
however, leave cards 4, S, and 6 blank. You'll need to draw on them
later in this book. Figure 2-1 shows a sample of Card 1 with the
background border completed and some optional, whimsical
graphics added to the card.

Some visual effects 27

(@& File Edit Go Tools Objects

fitt 2L 3 L

Practice Stack [Thisis Card i

&

E& v wuw

& o

MR L O R B3 R

Figure 2-1
Sample Card 1 with graphics

The card border and other graphics you add to the pracuce stack
are only for the purpose of being able to see certain visual effects;
cards do not necessarily have to have borders. If you were creating 2
stack for some other purpose, you would want to consider the card
layout and inclusion of graphics carefully. For information on
designing stacks, see the HyperCard Stack Design Guidelines

The Visual command

Before you go on, go back to Card 1, if you arent there already, and
choose the Browse tool.

The most cémmon use of visual effects is during transition between
cards. In this section you'll add effects to the arrow buttons and the
buttons that take you back and forth from your stack to Home.

Adding effects to the arrow buttons

Follow these steps to add a visual effect to the right-arrow button:

28 Chapter 2: Special Effects

s,

o,
o

. With the Browse tool still selected, hold down the Option

and Command keys.

Pressing these two keys lets you see the outline of all buttons on
the card—even invisible (transparent) ones.

. Still holding down Option and Command, click the right-

arrow button,
The script editor appears showing the button’s script.

This shortcut allows you to go directly to the script without
switching to the Button tool first—a handy feature when you're
doing a lot of scripting. (In versions of HyperCard earlicr than
1.2, this shorntcut doesn't work. An alternative is to swilch to the
Button tool and Shifti—double-click the button.)

By the way: Even though you had to switch to the background
when you created this button, you do not have to switch to the
background to change its script.

. Click In front of the word go to place the insertion point.

. Type

visual effect scroll left
and press Retum.

The script should now look like this:

on mouseUp
visual effect scroll left
go next card

end mouseUp

. Click OK.

The script editor disappears. The Browse tool should still be
selected if you used the Command-Optuion-click shortcut.

To see how the visual effect works, click the button with the Browse
tool.

6.

Add the same effect, but going the opposite direction, to
the left-arrow button.

Follow the same steps as you did for the right-arrow button, but
type

visual effect scroll right

Some visuga! effects 2@

The scroll effect causes the entire screen image, including the
background elements, to appear to move in the direction
indicated. It's good for simulating pages turning.

¢ By the way: Notice that you use scroll left forthe right
arrow and scroll right for the left arrow to simulate page
turning in the English language, which is read right-to-left. In
other languages, pages might turn the opposite direction.

Adding on effect to the Home button

This time you'll use a different effect:

1. Press Command-Option and click the Home button.

(You could also use Shift—=double-click with the Button tool
selected.)

The script editor for the Home button appears.
2. Place the Insertion point in front of the go statment.

3. Type this line and press Return:
visual effect wipe left slowly
Remember to press Return so that the statement is on its own
line, but don't click OK to close the script editor yet.

4. Leave the script editor on the screen for now.

If you already closed the script editor, just open it again with
Command-Option-click.

The word slowly is a modifier that controls speed. You can
choose from four options:

very fast

fast

slow(ly])

very slow(ly])

(The -lyis optional with slow.)

If you don't choose any of these, the effect runs at "normal” speed.
The speed modifier should always follow the name of the effect.

30 Chapter 2: Special Effects

Adding the same effect to the button on the Home cord

Rather than type the command, you can just copy the command
from the script editor of the Home button.

If you happened to close the script editor for the Home button, use

Command-Option-click to open it again.

1. Drag ocross the line with the visual effect as you would ony
text line to select it

Make sure you select only the line with the visual effect.

2. Press Command-C fo copy the line.

The command statement is copied to the Clipboard.
3. Click OK to save the script and close the script editor.

4. Click the Home button with the Browse tool.

The Home card appears. Notice the visual effect during
transition—the wipe effect you just added. It's as though the first
card is “wiped off” the next one.

5. Command-Option-click the My Stack button to see the
button’s script editor.

6. Click in front of the go statement to ploce the insertion
point.

7. Press Command-V o pasie the visual effect.
You might also have to press Return to put the go command on
a separate line after you paste.

8. Click OK to save the script ond close the script editor.

9. Click the My Stack button with the Browse tool.

You should go back to Card 1 of the practice stack, seeing again
the wipe effec.

Being able to cut and paste scripts can save you a lot of typing. You
must use the keyboard shortcuts for Edit menu commands when
you're using the script editor, however; the Edit menu is not
available. Table 2-1 lists the script editor keyboard commands.

Some visual effects 31

Table 2-1

Script editor command summary

Key press Action

Command-A Select entire scri pt

Command-C Copy selection to Clipboard
Command-F Find text (same as Find button)
Command-G Find next occurrence of same text
Command-H Find current selection

Command-P Print selection or (if no selection) entire

script (same as Print button)
Command-period Close script without saving changes (same as
Cancel button)

Command-V Paste Clipboard contents at insertion point

Command-X Cut selection to Clipboard

Enter Close script and save changes (same as OK
bution)

Option-Return Wrap line without return character (“soft”

return—symbolized by — in scripts. Don't
use a “soft” return inside quotation marks.)

Return Return character—indicates end of HyperTalk
statement
Tab Format script

More experiments with visual effects

You can make some test buttons on Card 1 of your practice stack to
ury out some of the visual effects. These test butions will demonstrate
the effects without your having to move to another card.

Here’s a list of HyperCard visual effects:

barn door close (or open)
checkerboard

dissolve

iris close (or open)
plain (same as no effect)
scroll down (or up)
scroll left (or right)
venetian blinds

wipe down (or up) -

wipe left (or right)
zoom close (or open)
zoom in (or out)(same as zoom close)

32 Chapter 2: Special Effects

Some visual effects have a more noticeable effect than others,
depending on the context. For example, the scroll effect
creates a clearer transition than wipe does when only a few
elements change from one card to another. Wipe is most effective
when two cards have very different appearances. Checkerboard
and venetian blinds can have an entertaining or humorous
effect.

Barn Door

Make a button to see the barn door effect following these steps:

1.

Create a new button.

Choose the Button tool, hold down the Command key, and
drag. Make the button wider than it is high.

. Double-click the button to get to its Info box

The Button Info box for the new button appears. Notice that this
button is a card button, not a background button; it will appear
only on Card 1.

. Nome the button Barn Door

. Select these options: “Show name,” “Auto hilite,” and

“round rect.”

. Click the Script button to go to the script editor.

The insertion point is blinking at the beginning of the line
between on mouseUp and end mouseUp.

. Type these statments, pressing Return after the first two lines

(but not after the last line):

visual effect barn door close tc gray
visual effect barn door open to card
go to this card

By the way. The word effect is optional after visual. You
can leave it out and the command will still work.

. Click OK to close the script editor.

If the name is too big for the size of the button, drag'lhe corner of
the button to make it larger.

Some visual effects 33

8. Choose the Browse tool and try out the new button.

You should see gray “doors” close and then open. (This example
is only one way touse the barn door effect; you don't
necessarily have to pair the open and close versions.)

The visual command must be accompanied by a go
command—the statement go to this card satisfies the
requirement, even though it doesn’t take you anywhere. (More -
spedifically, it takes you to where you already are.)

The phrases to gray and to card determine the image
HyperCard uses during transition. You can use any of the following
words for the image:

black

card (the image of the destination card)
gray (or grey)

inverse (reverses the card image)
white

Dissolve

Create another button to test the dissolve effect:

1. Create a new button and name it “Dissolve.”
Follow the same steps and choose the same settings as you did for
the Barn Door button.

2. Click Script to see the script editor.

3. Type the following lines:

visual dissolve slowly to black
visual dissolve slowly to white
visual dissclve slowly to card

go to ihis card

4. Click OK, switch to the Browse tool, and try the bution.

You should see the image fade to black, fade to white, and then
fade to the card image.

The effects you've just created can be cut and pasted into scripts for
other buttons to travel between cards. ’

34 Chapter 2: Special Effects

Syntax is g description of the
way In which worgs are puJt
togerher 1o form meconingful
phrcses. All longucges—for
peopie ong for computers—haove
rules of syntcx

When creating a stack for your own use or for others, you can
combine a number of effects to give different visual impressions;
for example, zooming in on a subject, turning pages, or changing
the scene completely.

Create other test buttons on Card 1 as you like.

The syntax of the Visual command

You've seen several versions of the visual command. Each
version follows a certain general structure, with or without the
optional elements.

An expression of the general, underlying structure that a given
command must follow is called its syntax. Knowing a command's
syntax is as important as knowing its name and what it does;
however, you don't have to try to memorize syntax just now; you
can refer to this section whenever you need to.

Here's the syntax of the visual command:

visual [effect) effectName [speed] [to image)

Optional elements are shown enclosed by square brackets. (You do

not include the brackets in an actual command.) Words in italic are

placeholders: for example, in an actual command, you would
replace effectName with any of the actual effect names: barn

door, checkerboard, zoom andsoon. The same would apply

for speed and image.

A statement’s syntax shows you the correct order for elements in the

statement; for example, if you were to write this command:

visual fast dissolve

HyperCard would not be able to understand the command because

the speed element is in the wrong place. The correct order is

visual dissolve fast

Some visual effects

35

36

Important

HyperTalk syntax is much like English syntax, which makes
HyperTalk an easy language to use. You can't always be sure,
however, that a statement that makes sense irt English will make
sense in HyperTalk. Incorrect syntax will cause a “Can’t
understand” message; in such a case, check the statement’s syntax if
you find no spelling errors.

The Appendix and the Quick Reference Card both contain a list of
HyperTalk commands showing their syntax.

Some sound effects

Two HyperTalk commands cause sound: the beep command,
which causes the usual Macintosh system beep, and the play
command, for adding other sounds and music.

To hear sounds. you must have the Speaker Voiume in the
Control Panel set to o value greater than zero.

Touse the beep command with a button, you would write a script
like this:

on mouseUp
beep
end mouseUp

You can cause multiple beeps by adding a number after the
command, as in beep 3. If you don’t add a number, you get a
single beep. In Chapter 3 you'll use this command when you create
an alert box.

The play command lets you add music to scripts; you can specify
a number of notes with different pitches and time values and thus
have a melody play, or you can use digitized sounds (sounds
recorded in a digital format that computers can understand). Make -
a new bution to try out the play command:

1. Crecte a new button on Card 1 with the name “Sound.”

Use the Command-drag shortcut with the Button tool as usual.
Bring up the Button Info box by double-clicking the button, type
the name, and choose the “Auto hilite,” “Show name,” and
“round rect” options.

Chapter 2: Special Etfects

2. Click the Script button to see the script editor.

3. Complete the script by typing this line:
play "harpsichord™ "c c g g a a g"
Be sure to include the quotation marks with the instrument name
and the series of letters representing notes.

4. Click OK.

Now try the button with the Browse tool. You should hear the first
line of a familiar childhood tune.

The syntax of the Play command

The play command allows you to control pitch and tempo as well
as voice. Here’s the command'’s basic structure:

play "wvoice* [tempo tempoValue]l ["notes")

Voiceis either harpsichord or boing, which are included with
HyperCard, or voice could be the name of a digitized sound from
some outside source.

You can optionally set the tempo (speed of plav) by including the
word tempo followed by a number (tempoValue). The value 100 is
a medium speed; higher numbers play faster. If you don't specify a
tempo, tempo 100 is assumed.

Notes make up the melody sequence. Include quotation marks
around the voice and the notes. For example,

play "boing" tempo 200 "ed4g d ¢ d e e eh"
plays “Mary Had a Little Lamb.”

Specitying the notes

Use this section for reference when writing out melodies; you don't
have to try to memorize the information here.

The notes are represented by the letters A through G,
corresponding to Western music notation (capitalization makes no
difference). You can include further modifiers after the notes to
indicate sharps or flats, pitch range, and duration (or how long the
note lasts).

Sound effects 37

38

Use # forsharp or b for flat immediately after the note. A sharp
makes a note a half tone higher; for example, d# is the pitch
halfway between D and E. A flat makes a note a half tone lower.

Use a number following the note and any sharp or flat to specify the
pitch range. For example, g#4 would be the G-sharp note in the
middle range, or what musicians call the middle-C octave. Higher
numbers give higher ranges, and vice versa.

Use a letter code following the note, any sharp or flat, and any
range number to specify how many counts, or beats, to hold the
note before the next note sounds. The timing values are relative to
each other. Here are the codes for note duration:

whole note (four counts)
half (two counts)

quarter (one count)

eighth (one-half count)
16th (one-fourth count)
32nd (one-eighth count)
x 64th (one-sixteenth count)

[7 T | T o e S

As an example, Bb5q would mean the note B-flat in the high-C
range held as a quarter note.

A period (.) after the duration code means a value of half again as
much; thatis, w. would indicate six counts (four plus half of four).
A numeral 3 after the duration code means a triplet.

The codes for pitch range and duration carry over to subsequent
notes unless you change them; this feature saves you from having to
type numbers and letters over and over. (See “Mary Had a Litde
Lamb” shown earlier.)

< By the way: Even if you have no formal music training and all
these terms seem mystifying, you can still make melodies with the
play command. The best way to gain an understanding of how
to use the notes is to experiment on your own. Choose a short
tune you already know and try to write it out. You can use the
script for the Sound button you created earlier (o test and change
the tune until it sounds right to you.

Chapter 2: Special Effects

Dedling with long lines

You can put a long sequence of notes into a script; however, the
script editor doesn’t wrap lines or let you scroll 1o see lines that
extend beyond the window. You can press Return or Option-Return
to wrap a long line temporarily while you type the notes; however, if
you use this method you must eliminate the end-of-line breaks when
you're finished or the script won't work properly. The reason is that
HyperCard doesn't understand a line break of any sort occurring
inside quotation marks.

You can, however, wrap a long line permanently by adding closing
quotation marks and the double ampersand (&&) followed by an
Option-Return (=):
on mcuseUp

piay "harpsichord" "c c g g" &&=

na a gn

end mouselp

Notice that you must begin the wrapped line with a quotation mark.

What you’ve done in this chapter

In this chapter you've used HyperTalk commands to produce
special effects: visual effects and sound. You've also added to your
vocabulary list.

Commands

beep The command that produces the system beep. You
can cause multiple beeps by including a number:
beep 3.

play The command that causes notes to play. You

specify the sound and the sequence of notes.

visual [effect] The command that causes the visual effects
you specify. It must be followed by the go
command.

Names of sounds
"boing"
"harpsichord"
Names of effects

barn door

what you've done in this chapter 3Q

checkerboard

dissoclve

iris

plain (Same as no effect.)
scroll

venetian blinds

wipe

zoom

Miscellaneous

fast A modifier used with visual effects.

slow[ly) A modifier used with visual effect.

tempo A word that you use with the play command to
control the timing of the notes. '

very A modifier used with fast or slow; means “more.”

40 Chapter 2: Special Effects

g

Chapter 3

More About Messages

4)

Earlier you learned about HyperCard system
messages—information about system events such as clicks
(mouseUp), keyboard actions, and events in HyperCard
(openCard). System messages are sent constantly while HyperCard
is running. There’s even a2 message for when nothing is happening:
idle. (See the Appendix for a list of HyperCard sysiem messages.)

A script, as you've seen, can contain instructions to be carried out
when a particular message is recieved—in other words, the script
“handles” the message. Thus, a complete set of instructions dealing
with a message is called 2 message handler. Message handlers
always begin with the word on and end with the word end, and
both words are followed by the name of whatever message the
handler deals with; for example on mouseUp.

An object’s script might contain a number of handlers, each one
handling a different message. Strictly speaking, then, the word
script refers to everything that appears in the script editor for a
given object, and not just to a single handler.

% Bythe way: On and end belongto a group of HyperTalk
words called keywords. Keywords have predefined meanings
that can’t be changed.

In this chapter you'll write new handlers and explore the way
messages travel between objects.

Sending messages

When someone clicks a screen button, the action generates a
mouseUp sysitem message. The mouseUp message always goes
first to the button that was clicked. If that button’s script doesn'’t
have a handler for mouseUp, the message is passed to the card,
then to the background, then to the stack, then to the Home stack,
and finally to HyperCard itself. This sequence is called the
message-passing hierarchy or the object hierarchy; it's
illustrated in Figure 3-1

Chapter 3: More About Messages

MouseUp message sent
by mouse 10 button

=N

| SN ——

Buttons
and fields

Current

Backgrounds

Home stack

HyperCard

Figure 3-1
A message moving through the object hierarchy

You can place handlers at different levels; where you place a
handler has an effect on its availability. For example, when you
wrote the handler to label all cards of your practice stack, you
placed it in the stack script; that placement meant that the handler
was available for every card in the stack.

Messages can come from the system, from menus, from your
actions with the mouse, keyboard, or Message box, or even from
handlers themselves. You can write a handler that will send a
message or pass on a message to another object. In this section
you'll see how this feature works.

Create a “Receiver” Button

First, if you left HyperCard after the last chapter, start it up again
and go to the practice stack.

Create 2 new button with the steps that follow; you'll use this button
as a target for messages.
1. Go to Card 2 of your practice stack.

You can think of Card 1 as your special effects card. Card 2 can
be your message experiments card.

Sending messages 43

44

2. Create a new card button and name it Receiver

You don't need to switch to the background because this is a card
button.

Follow the procedure you've used in previous chapters: use the
Button tool and Command-drag to create a2 new button. Double-
click the button to see its Info box. Type the name in the field at
the top of the Info box.

3. Select “Show name,” "Auto hilite,” and “round rect.”
4. Click the Script button to see the script editor.

S. Type this line between on mouseUp and end
mouseUp:

play "boing" tempo 80 "c4 e g"
As you can see, this statement will cause three notes to play.

o

type this line in place of or in addition to the play statement to
see the effect of the handler:

flash 3

This command causes the entire screen image to flash rapidly
three times when the button is clicked. (The white parts of the
card switch to black and the black parts to white; then they
change back again.)

6. Click OK when you're finished.

The script editor closes and you're back to the card.

7. Change to the Browse tool and try the button.

Notice that the button becomes highlighted when you click it
(because of the “Auto hilite” setting) and the notes play
immediately. you'll use the “Auto hilite” feature to distinguish
between the sources of messages in this-chapter.

In the next section, you'll send mouseUp without clicking.

» Alternative for hearing impaired people: If you can't hear notes,

Send a message with the Message box

You can send the Receiver button a2 message using the Message box:

Chapter 3. More About Messages

1. Press Command-M to see the Messoge box.

2. Type this sentence into the Message box:

Send mouseUp to button "Receiver"

3. Press Return.

You should hear the notes play immediately; but notice that the
button does not become highlighted. (To send the message
again, just press Return.)

You selected “Auto hilite” when you created the bution. But “Auto
hilite” responds to mouseDown and mouseUp only when they
are sent by the system as system messages—that is, when the button
is actually clicked.

% Well, almost: You can “click” the button without a mouse using
the click command. The button will respond to this
command just as though it had been clicked manually. See the
“Syntax Summaries” section later on.

The mouseUp message you sent from the Message box isn't a
result of a click, so the button remains unhighlighted. The handler,
however, still responds, and the notes play.

4. Click the close box to hide the Message box again when
you're finished.

You can send messages from the Message box—and also from
handlers—using the send keyword.It's the only keyword that
works in the message box; it behaves a lot like a command does.
Messages sent with send go directly to whatever object you
specify, allowing you to bypass the usual hierarchy.

Create a “Sender” button

Follow these steps to make a button with which you'll practice

sending messages from inside a handler:

1. Create another card bution anywhere on the card and
name it Sender

Use Command-drag with the Button tool selected to make the
button, then double-click the button to see its Info box and type
the name.

Sending messages

45

You con think of properties as
chorocteristics of particulor
objects or of the HyperCara
environment as 0 whole. You set
values for properties with diaiog
boxes. palettes. check boxes.
and radio buttons—or you can
set them with scripts.

2. Select “Show name,” “Auto hilite,” and “round rect.”
3. Click the Script button to see the script editor.

4. Type these lines between on mouseUp and end
mouseUp:

send mouseUp to button "Receiver"

wait 2 seconds ’

set hilite of button "Receiver" to true
wait 1 second

set hilite of button "Receiver" to false

§. Press Tab to format the script if necessary.

On mouseUp and end mouseUp should line up at the left
edge of the window; all the other lines should be indented.

In English this script says

“When this button is clicked, send a mouseUp message 1o the
Receiver button. Wait two seconds, and then highlight the Receiver
button. Wait one second, and remove the highlighting. That's all.”

6. Click OK when you're finished.

7. Change to the Brose tool and click the Sender button.

You should hear the notes play; after a two-second delay, you
should see the Receiver button become highlighted. After one
second the highlighting disappears.

You use the set command to change cerain properties of
objects or of HyperCard in general. In this example, the hilite
property of the Receiver button is changed to true (button
highlighted) and then back to false. Examples of properties you
can change using set are the user level, the button style, the
name of any object, a pattern from the Patterns palette, and many
others. The Appendix contains a complete list of properties.

46 Chapter 3: More About Messages

The wait command allows you to insert a delay. In this case, you
used a two-second delay between when the bution became
highlighted and the notes started to play, and then a one-seocnd -
delay before removing the highlighting.

The butions-and handlers you've made in this scction demonstrate
sending a message in three different ways:

C As a system message: When you click the Receiver button,
mouseUp is sent as a system message. The Receiver button
becomes highlighted when you click it because of the “Auto
hilite” option. The notes play (or the screen flashes, if you used
that option) as indicated in the button’s handler.

(J

As a Message-box message: When you use the send command
in the Message box to send mouseUp to the Receiver button,
the notes play as indicated in the handler, but because the button
was not actually clicked, it doesn’t become highlighted.

From within a handler: When you use the send command in
the handler of the Sender button to send mouseUp 1o the
Receiver button, the button doesn’t become highlighted right
away because the button isn't actually dicked; but the notes play
as indicated. However, you can add multiple commands to a
handler to affect the Receiver button. In this case, you used the
set command to change its highlighting

1

Action at a distance

Where you place a handler in HyperCard affects its action. A
handler at the “top” level, namely, in a button script or a field
script, can respond only to a message received by that bution or
field. The same handler further “down” in the object hierarchy,
such as at the card, background, or stack level, can respond to the
message sent to any objects higher up, unless those objects
intercept the message with their own handlers.

What the message-passing hierarchy means to you is that you can
control whether your scripts act very locally, say, only for a
particular button, or more globally, for an entire card,
background, or stack.

In this section, you'll move the mouseUp handler of the Receiver
button to different levels in the object hierarchy to experience the
change in its response.

Action gt @ distance 47

Every object haos o script. even if
there’'s nothing in it. SCripts with
nothing in them are caiied
empty scripts.

Remove the handler from the button script

Follow these steps to cut the handler from the Receiver button’s

script, placing it on the Clipboard automatically:

1. Open the script editor for the Receiver button.
Use Command-Option-click with the Browse tool, or
Shift-double-click with the Button tool.

2. Press Command-A to select the handier.
Command-A selects the entire script, but in this case there’s only
one handler in the script.

3. Press Command-X to cul the handler and place it on the
Clipboard.
The script editor should now have nothing in it. If you still see the
handler there, try steps 2 and 3 again.

4. Click OK.
The script editor disappears and you're back to the card.

The script for the Receiver button is now empty. You can test it by
clicking the Sender button with the Browse tool. You should see the
Receiver button flash (because of “Auto hilite™), but hear no sound.

Move the handler to the card level

Paste the handler into the card’s script.
1. Choose Card Info from the Objects menu.

2. Click the Script bution in the Info box.

The top line of the script editor tells you that it's the script for the
card.

48 Chapter 3: More About Messages

% Keyboard shortcut: You can press Command-Option-C to scc
the script editor of the current card without having 10 go through
the Info box. (This shortcut doesn’t work with HyperCard
versions earlier than 1.2.)

3. When you see the script editor, press Command-V.to paste
the handler.

4. Click OK.

5. Test the effects.

Switch to the Browse tool. First, click the Receiver button; you
should see no difference in what happens: the button becomes
highlighted and the notes play. The mouseUp message passes
through the empty button script and goes on to the card script.

Now, click the Sender button. Again, you should hear the notes,
and then after two seconds see the button become highlighted
and then change back.

And now, click anywhere on the card (except on another button
or in the field). The notes play because whenever you click the
card, mouseUp goes directly to the card, which now has a
handler for mouseUp in s script.

Move the handier to the background level

Take the handler out of the card script and move it 1o the
Background script:

1. Open the script editor for the card again.

Choose Card Info from the Objects menu and click Script, or
simply press Command-Option-C.

2. Press Command-A to select the handier.

3. Press Command-X to cut the script and ploce it on the
Clipboard.

The card script should now be empty.

Action at o distance 49

4. Click OK.

5. Open the scrip! editor for the background by c-oosing
8kgnd Info from the Objects menu and clicking ine Script
button. :

< Keyboard shortcut: Press Command-Option-B.
6. Press Command-V to paste the handier.
7. Click OK.

8. Test the effects.

Using the Browse tool, click the Receiver button, the Sender button,
and the card, just as before. You should hear the notes play.

Now, move to any other card in the stack and click any area except a
button or field—you should still hear the notes play. The handler is
now available to any card sharing the background.

If you moved the handler to the script level, the same thing would
happen because this practice stack has only one background;
however, in cases where a stack has more than one background,
only a handler at the script level or above would be available to all
cards of all backgrounds.

* Other handlers intercept messages: The reason you don't hear
the notes if you click one of the travel buttons or other buttons
besides Sender and Receiver is that those buttons already contain
mouseUp handlers. Once a message is handled, it's not passed
on unless you specifically pass it using the pass keyword.

Change the handler

If you were to leave the mouseUp handler where it is, in the
background, you'd hear notes any time you happened to click
somewhere other than a button. You can do one of two things: take
the handler out of the background and move it back to the button;
or change the handler’s name from mouseUp to something
else—in other words, change the handler so that it no longer
responds to mouseUp, but to some other message. These steps
show you how to do the second alternative:

Chapter 3: More About Messages

1. Open the script editor for the background (Command-
Option-B).

Use Command-Option-B or choose Bkgnd Info from the Objects

menu and dlick Script.

2. Selec! the word mouseUp in the first line

Drag across the word as you would when selecting any text.

3. Replace it by typing the word playTune

PlayTune serves as the alternative name. You could use any
other word (except a HyperTalk keyword); this name seems
appropriate because it describes the action of the handler.

the notes, you could use a different name, such as
razzleDazzle orsomething more fitting (don't use flash

<+ By the way: If you are using the flash 3 alternative instead of

though). Be sure, however, that you use your alternative name in

the steps that follow.
4. Select the word mouseUp In the last line

5. Replace it also by ogain typing the word playTune
The name used after on must match the name after end.

You have now changed the handler from a mouseUp handlertoa
playTune handler. It will not longer respond to the mouseUp
message, but instead to the message playTune. But where does a
playTune message come from? ‘

The answer is that you'll put a2 new handler in the Receiver button’s
script that will send a playTune message:
6. Click OK to save the handler and close the script editor.

You're back to the card again.

7. Open the script editor for the Receiver button.

Use Option-Command-click with the Browse tool, or
Shifti-double-click with the Button tool.

You should see the on mouseUp and end mouseUp lines
already in the script editor. HyperCard always adds the linesto
“empty” button scripts.

Action at a distance

51

52

8. Type the following word between the two lines:
playTune
The completed handler should look like this:

on mouseUp
playTune
end mouseUp

8. Click OK o save the handier and close the script editor.

9. Test the effects.

Clicking the Receiver button or the Sender button should have
the same effect as they did before you moved the handler.
Sending mouseUp from the Message box to the Receiver button
should also work the same. But clicking anywhere else on the card
won't cause the notes to play, because the background handler
isn'ta mouseUp handler any more.

Now, when the Receiver button receives mouseUp, its handler in
turn sends the message playTune. That message goes down the
hierarchy until it's intercepted by the playTune handler in the
background script.

Try this: go to some other card, open the Message box (press
Command-M), type the word playTune and press Return. You'll
hear the notes because the Message box sends the word as a message
along the hierarchy.

(If you wanted to send playTune to some object not in the
hierarchy, you would use the send keyword in the handler to
specify the destination; otherwise, playTune alone is sufficient.)

What you've done in this section is essentially define a new
command, which is named playTune. That's really all there is 10
defining your own commands: think of what you want a command
to do, think- of a name for it, and write a handler that uses the name
after on and end, with the appropriate HyperTalk statements in
between. Then, to make the command work, send the name to the
object that has the handler in its script.

< By the way: It's probably best to avoid using the name of an
existing HyperTalk command or function as the name of a
command you create. See the HyperCard Script Language Guide
for details on naming commands. ‘

Chapter 3: More About Messages

Confirming actions

Sometimes it's useful to be able to put a message on the screen and
get a confirmation for an action someone has taken. For example,
most Macintosh applications give you a chance to change your
mind before erasing a disk by putting an alert box on the screen in
which you confirm your choice. You can make your own alert boxes
in HyperCard using a HyperTalk command. In this section you'll
learn how to doit.

A disappearing act

Goto Card 2 of your practice stack if you are not there already; then
follow the steps below.

1.

4.

5.

Create a new button on Card 2 and nome it “Disappear.”

Command-drag with the Button tool as before and double-click
1o see the Info box.

. Select the usual “Show nome.” “Auto hilite,” and “round

rect” options.

. Click Script to see the script editor and type this line

between the existing lines:

hide me

Me always refers to the object that contains the handler—in this
case, the button itself.

Click OK.

Switch to the Browse tool and click the Disappear button.

When you click this button with the Browse tool, it . . . disappears.

To get the button back again,

1.

Press Command-M fo see the Message box.

2. Type this statement ond press Return:

Show button "Disappear™

A discppearing act

53

54

¢ By the way. Once you've typed a statement into the Message
box, it stays there until you type something else—even if the box
is invisible. All you need to do to send the message to HyperCard
again is to press Return.

You can use the hide command to make a field, a button, a
window (such as the Message box), the menu bar, the background
picture, or the card picture invisible. (The card picture is any
graphics on the card that aren't on the background). The show
command does just the opposite.

Next, you'll create an alert box that will appear whenever you click
the Disappear button.

A command to put up an alert box

Suppose you wanted anyone using your stack to think twice about
making the button disappear. You can write 2 handler to make sure
that happens:
1. Open the script editor for the Disoppear button.
Use Command-Option-click with the Browse tool, or use
Shift-double-click with the Button tool.

2. Place the insertion point atter mouseUp In the first line
and then press Return to start a new line.

3. Type the foliowing lines:

beep
answer "Do you really mean that?" with "Yes" cr '"Ng¢"
if it is "Yes" then

4. Click in front of end mouseUp to reposition the insertion
point. :

5. Type this line and press Return:
end if

Here's what the complete handler should look like:

Chapter 3: More About Messages

//////

cn mouselp
beep
answer "Do you really mean it?" with "Yes" cr "No"
if it is "Yes" then
hide me
end if
end mouseUp

If you have extra lines, you can delete them, although they won't
make a difference in how the handler works. Press Tab to format the
script, if necessary (the lines indent automatically).

é. Click OK.

7. Click the Disappear button with the Browse tool.

When you click the Disappear button now, you should hear a
beep and then see the alert box shown in Figure 3-2.

—— —
— —

Do you really mean that?

Yes |

Figure 3-2
The aiert box you created with the Answer command

& Something else happened? If you get a “Can’t understand . . . "
message instead, go to the button’s script and check the typing.
Make sure no lines are left out and that the lines are in the correct
order. Then try again.

8. Click No so the button doesn't disappecr.

If you click Yes by mistake, just press Retum; your message to
show the button should still be in the Message boxj

A disappearing act [

In the alert box you have the choice of clicking a Yes button or a No
button. These buttons are labeled with whatever you specify in
quotation marks in the answer command statement. You can
have up to three choices. Whichever choice you put last in order
will be the button farthest to the right with the extra dark border; use
this place for the the *best” or “safest” choice—the choice that can
do no damage. This farthest-right button is also the one chosen by
pressing Return or Enter.

The handler includes directions for what HyperCard should do if
the Yes button is clicked:

if it is "Yes" then
hide me
end if

The word it refers to whatever button—Yes or No—you click.
(The word it has a specific identity in HyperTalk; you'll learn
more about it in the next chapter.)

If you click the No button, nothing is specified, so nothing happens;
the button won't disappear.

In English, the complete script says

“When this button is clicked, sound the system beep and let the user
answer the question ‘Do you really mean it?’ by clicking either a
button labeled ‘Yes' or a button labeled ‘No,’ with ‘No’ being the
emphasized choice. If the answer is ‘Yes,' then make this button
invisible. That’s it, and that’s all.”

You can use a handler like this anytime you want yourself or
someone else to have a second chance at something. For instance,
it would be nice to have an opportunity to change your mind before
deleting an important button or making some other potentially
disruptive change.

An additional action

You can include an action for each button in the dialog box. Add
one for the “No” choice:

Chapter 3: More About Messages

S

1. Go to the script editor for the Disappear button
2. Click to position the pointer in front of end i‘f.

3. Type the following lines (press Return after each line):

else
answer "Glad you reconsidered." with "No prcb.em"

The lines will automatically indent. When you press Return for the
final time, end mouseUp should line up at the leftmost margin.

When you have typed everything correctly,
4. Click OK.

5. Try the Disappear button.

Now, when you click the Disappear button with the Browse tool you
get the beep and the alert box just as before. Clicking Yes causes the
button to disappear. Clicking No makes another alert box appear
with a gratuitous comment and reply—ijust for fun.

Here's the completed handler in the Disappear button script:

on mcuselp
beep
answer "Do you really mean that?" with "Yes" c¢cr "Ncg©
if it is "Yes" then
h.ce me
else
arswer "Glad you reconsidered.” wiin "Nc prooie-"
erd if

enc mcuselp

If structures

If, then,and else are HyperTalk keywords that work together
in specific arrangements called if structures. If structures arc
used to test things and to take different actions, depending on the
results. You included an if structure in the handler for the
Disappear button to specify the action HyperCard should take when
someone clicks a button in the alert box resulting from the first
answer command.

A disgppearing act 7

I£ structures come in a few varieties; three of them are shown here.
In the examples that follow, the placeholder word condition stands
for something that can be tested as either true or false. Statement is
a HyperTalk command line, and statementList is a scries of
command lines.

if condition then statemen: (else Statement)

This structure is a single line in 2 handler. You can use a single line
as long as statement is a single HyperTalk command. (The
statement you would use following else would be different from
the one following then.)

if condition then
statementlist
(else
StaiemenilLisi)
end if
This version contains two lists of commands; one list following
then and another, of alternatives, following else. Each
statement must begin on a separate line. In this structure, you must o
include end if to signal the end of the statements. . /)

if condition then
Statementlist
lelse
if condition then
statementlList
(else *
if condition then
Statementlist
end if]
end if]
end if

This elaborate-looking structure contains several nested if
structures, each of which requires an end if. Nesled structures are
useful when you have a number of different possible conditions and
want to specify a number of different possible actions. -

Chapter 3: More About Messages ’

Nested means one inside
cnother, INside another, inside
another . . . for s many hmes as
you want. The limit in HyperCorg
for nesting 15 32 levels.

Anytime you use a several-line structure, you need to include end
if to complete the structure, making it clear to HyperCard that
you're finished. If you put too few (or 1oo many) end if
statements, HyperCard will put up a box like that in Figure 3-3 when
you try to run the script.

m

Not enough ends.

(seript) ((Cancer)

— — — —
— — —— w—

Figure 3-3
An glert box telling you to add one or more End statements

This feature of HyperCard is especially useful when you write nested
structures like the last one of the four syntax examples. The deeper
your nesting, the harder it can be to keep track of how many end
statements you need. HyperCard helps you out.

Syntax summaries

This section describes the syntax (most generalized form) of the
send keyword and each command you used in this chapter.

You don't have to try to memorize these statements; refer to them
as needed when writing your own handlers.

Answer
The basic structure for answer is this:

answer “question" {with "reply" [or "reply2" lor-reply3"}.;

Syntcx summaries §9

Question can be any statement you like—usually a question invitcs
the user to answer. Reply, reply2, and reply3 are the labels for
buttons representing the choices. The quotation marks are
required.

You can have as many as three different replies; if you don't put a
reply, HyperCard displays a single OK button in the box. The size
limit for a reply is 13 characters, depending on the width of the
characters.

The label of whatever button gets clicked is put into a special place
named it. You can write other commandstouse it orto
evaluate it. In the handler you wrote for the Disappear button, the
action of the if structure evaluated what it was. You'll learn
more about it in Chapter 4, “Fields, It, and Other Containers.”

Click

The click command has this general form:
click at location (with key), key2), key3i))

The click command has the same effect as clicking manually
with the mouse. Location is a description of a screen location; for
example, click at the location of card button 1.
Location could also be horizontal and vertical screen coordinates.
(In Chapter S you'll learn more about screen coordinates.)

Key, key2, and key3 are optional keys you can include with the
click. You can use only these key names: commandKey,
optionKey, and shiftKey. For example, a Shift-click would be
written as click at location with shiftKey.

Hide

Here are the four structures of the hide command:
hide menuBar

hide windowName

hide object

hide picture

MenuBar is, obviously, the HyperTalk name for the menu bar.
WindowName is the card window, one of the palettes (Tools or
Patterns), or the Message box:

Chapter 3: More About Messages

card window

tool window

pattern window

{the] message [box]

Obyject is the name or description of a button or field,; for examplc,
background button 1. Pictureis either card picture, for
all elements on the card level created with a Paint to0l, or
background picture, for graphic elements on the background
level. You can also use the form hide picture of description,
where description is the name or identifier of a card or background.

Send

The syntax of the send statement you used is
send "messageName" [to object)

The quotation marks around the name of the message aren't needed
if the message is a single word, like mouseUp. Opject s an identuficr
for an object, such as its number, ID, or name. The name must be
in quotation marks.

Send directs a message to any object in the current stack or to
another siack, but not to a specific object in another stack. The
send keyword sends a message directy to the specified object,
bypassing any other objects in the usual message-passing
hierarchy.

Set

The general structure of the set command is
set [the) property [of object] to value

Property stands for a changeable characteristic of the HyperCard
environment or of an object. For example, the user level is a
property of HyperCard;the statement set userlevel to 5
within a handler or typed into the message box would set the user
level to Scripting (value 5). Object is an identifier for an object, such
as its number, ID, or name.

What value is depends on the property; some properties, such as
hilite, have the values true or false, while others take
numerical values.

Syntax summaries 61

62

A complete description of properties is beyond the scope of this
book. The Appendix conuins a list of the properties.

Show

The show command also has four versions:
show menuBar

show windowName [at b, V)

show object [at b, V)

show picture

See the hide command, just previous, for a description of the
placeholders. In the optional phrase at b, v, the his a number
specifying horizontal location on the screen, and the v specifies
vertical location. The two numbers are separated by a comma. This
optional phrase lets you place the window or object wherever you
want. If you don't include it, the window or object appears wherever
it was before it was hidden.

Later on, in Chapter 5, you'll learn more about the horizontal and
vertical screen coordinates.

Wait

The wait command can have any of three forms, depending on
what you want it to do:

wait [for] number [seconds])

wait until condition

wait while condition

Number is a whole number. If you want seconds, you must add
seconds or the abbreviation sec or secs; otherwise,
HyperCard uses ticks, which have a value of % second. No other
measurements (such as minutes) can be used.

In the second and third forms, condition has to be some state that
can have either the value true or false. Inthe second form the
command waits until the condition has the value true. In the third
form, the command waits while the condition has the value true.

Chapter 3: More About Messoges

What you've done in this chapter

You've done a lot. You learned about HyperCard’s message-
passing hierarchy and saw how placement of handlers can affect the
range of their actions. You also used the if structure—a uscful
structure for taking action in a specific case or condition.

Here are the terms you've added to your vocabulary:

Commands

answer This command puts an alert box on the screen
containing a question and up to three response
buttons.

click The command that has the same effect as clicking
with the mouse button.

flash A command that causes the card image to flash. It's
an external command (sometimes called an
XCMD for short) included with HyperCard.
External commands are written in a language other
than HyperTalk.

hide A command that hides buttons, fields, windows,
and pictures.

set A command that changes the value of properues.

show A command that causes hidden buttons, fields,
windows, and pictures to appear.

wait A command that causes HyperCard to wait for
something to happen or for a certain length of
time.

Keywords

else A word used when you want to specify a second
alternative in an if structure.

end ' You first encountered this keyword in Chapter 1; it
signals the end of 2 handler.

end if The last statement of an if structure.

if The keyword that begins special structures called
if structures..

on You first encountered this keyword in Chapter 1.

All handlers begin with on.

What you've done in this chapter 63

64

send

then

Properties
hilite

Miscellaneous

it

secs

with

Chapter 3: More About Messages

Sends messages to objects directy. It works in the
Message box as well as in handlers.

A keyword used in if structures before the list of
statements to be carried out.

A button property; if its value is true the button
is highlighted.

The place where the answer command puts the
label of the button chosen.

An abbreviation for seconds.

A preposition; used in the answer command
and some other commands.

Chapter 4

Fields, “It,” and Other
Containers

65

In everyday life, a container is something you can put things into. In
HyperTalk, a container is a place in the computer’s memory where
you can put something of value, such as a text-or numbers. You can
then get whatever you have put into a container and use it elsewhere
as needed.

In this chapter you'll learn about different kinds of containers, and
you'll see how handlers can work with values in containers to do
such things as calculations.

As in previous chapters, if you took a break, start up HyperCard and
80 to the practice stack before you go on.

Fields as containers

Fields are objects—they can receive and send messages and can
have scripts. Fields are also containers. They usually contain text;
specifically, regular (field) text rather than Paint text.

You already used a field as a container in Chapter 1, when you wrote
the openCard handler to label the cards. Here's the handler (you
can also see it in the script editor by opening the stack scrip®:

on cpenCard

put "This 1is Card" &é number cf this carg intc fle.c L

ena openlarg

This handler uses background field 1 to hold a string of characters
made up of the text string “This is Card” and the card's number
Every time a card opens, this handler puts the same thing, but with a
new card number, into field 1.

If you place a field in the background, it appears on every card
sharing that background; but the text that field contains can be
different on every card. An interesting feature of HyperCard is that
even though a background field is the container for the text, the text
itself remains with the card. This feature allows you to have card-
specific text that appears in the same place and in the same style on
each card, even though its content changes.

66 Chapter 4: Fields, “It,” and Other Containers

v
A2~
i)| m]les)
Hlo|o

Ol

The Field tool

Important

Deleting o background field deletes all the text for that fieid on
all cards. even though the text “belongs” to the cords. Once
fhe text is gone. you can’t get it back.

HyperCard presents an clert box when you use the Cut or
Clear commands on @ background field so that you ¢a
reconsider. :

Although fields most often contain text, they can also hold
numerical values.

¢ By the way: Numerals can be interpreted either as numeric
values or as text strings, depending on what a handler does with
them.

A simple calculation

In this section you'll create some fields to hold numbers and then
write a handler to use those numbers to calculate simple interest on
a one-year loan. The handler then will put the results—amount of
interest, total amount of loan, and monthly payment—into other
fields. No expertise with mathematics is required on your part!

Set up the fields

You'll need five fields as containers for the numbers. You'll make
card fields instead of background fields because you don't nced the
fields to be on every card of your practice stack.

Credating the first field
Follow these steps:

1. Go to Card 3 of the practice stack.

You can use this card for your “field work.”
2. Choose the Field tool from the Tools menu.

3. Hoid down the Command key and drag to crecate a new
fleid.

Make the field about an inch wide and a quanter inch high.

A simple calculation 67

4. Move the field to the left of center on the card.

The location isn't too important now; later you can adjust it.

5. Double-click the field to see iis Info box.
Notice that this field is card field 1.

6. Name this fleld Amount and select “shadow” as the field’s
style.

7. Click the Font bution to see the Text Style dialog box.

8. Change the font size to 14.

This setting will make the numbers in the fields easier to read.
The Line Height setting automatically changes to 18.

9. Click OK.
The Field Info box closes; the first field should still be selected.

Copying and naming the other fields

Instead of creating new fields from scratch, you can just make
copies. Be sure you make the copies in the order specified so you
can keep track of which field is which.

1. Position the pointer in the middle of the selected field, hold
down the Option key, and drag to duplicate the fieid.

When you copy the field, HyperCard automatically identifics the
copy as card field 2. When you release the mouse button, the
second field is automatically selected.

2. Position the copied field below the first one.

You can drag the field by its center the same way you would a
button to get it in the right position.

3. Double-click the field to see its info box.

4. Nome the field Rate

All other settings are the same as the first field, which is just what
you want. oL : .

5. Click OK.
The Info box closes.

Chapter 4: Fields, “It,” and Other Containers

-,

Cord fieig "Amount’
Caro field “Rote”
Corg fieig “Interest”
Card field “Tetai

Corg field “Monrtnly”

"0,
oA
a \t"“) w(."‘

(‘ﬁ(,/

.‘._\\\Q(///

6. Repeact the Option-drag procedure on card field 2 to crecte
a third fieid.

7. Position the new field 3 on the right side of the card, with
some space In the middie between it and the first two fields.

You can adjust the spacing in a moment after you've made all the
fields.

8. Double-click the fieid to see its Info box and name it
Interest

9. Click OK.

10. Repeat the Option-drag procedure with fieid 3 to make o
new field 4 below It; nome this field Total

11. Repeat the Oplion-drag with field 4 to make a new field §
beiow fieid 4; name fieild 5 Monthly

Your screen should now look roughly like that in Figure 4-1. If you
want to adjust the position of your fields, go ahead. Leave some
room above each field so you can type a label. Don't be 100
concerned with precise placement—the important thing is the
scripng practice coming up after the next section.

(@ File £dit 6o Tools Objects

i oo O 4 1 i

1

!

Practice Stack [Trsis Carc 3

) Qo

%mmmumwnmmnmnmmmmuam

The five new card fieids

A simple caiculation 69

Labeling the fields on the card

Next, put Paint text labels above each field to help vou identify their
contents. Follow these steps:

1. Choose the Paint Text tool from the Toois menu.

2. Choose Text Style tfrom the Edit menu.

3. Select Geneva 12 and click OK.

4. Click just above the first new field to piace the insertion
point.

5. Type “Amount” (don't include quotation marks).

é. Click above card fleld 2, which should be the one below cord
The Paint Text tool fleid 1.

7. Type “interest Rate” (don't include quotation marks).

8. Add labels above the other fields as follows:

fleld 3 Interest
fleid 4 Totai Amount
fleid S Monthly Payments

Don't worry about getting the text lined up exactly—ijust get the
labels close enough for practice. The card should look something
like the one in Figure 4-2.

70 Chapter 4: Fields. “It.” and Other Containers

r

& File Edit Go Tools Objects

R BRI

] -

Practice Stack [Thisis Card 3
Interest
Amount
Tote! Amount
Rete

tMonthly Payment

r | @Q@o

A O Y A T

\\

Figure 4-2
Paint text lobels above the five fields

A calculating handier

Next, you'll create a Calculate button and put a handler into its
script to make use of the fields for the interest calculation:

1. Switch to the Button tool.

2. Command-drag fo crecte a new button.

You can put the button anywhere you like on the card. In the
middle with fields on each side is one possibility if vou have
room, but its placement won't affect its operation.

3. Double-click the button with the Bution tool.
The Button Info box appears.

A simple calculation YAl

72

4. Name the button Calculate and choose “Show name,”
“Auto hilite,” and “round rect.”

6. Click the Script bution and type these lines between the
existing lines:

set numberFormat to 0.00

get card field "Amount"

multiply it by card field "Rate"
divide it by 100

put it into card field "Interest"
add card field "Amount" to it

put it into card field "Total"
divide it by 12

put it into card field "Monthly"

7. Check your typing carefully, and then click OK.

The first thing this handler does is change the number format of
HyperCard to “dollars and cents” (two places to the right of the
decimal point). The number format is a HyperCard property aptly
named numberFormat. The set command gives this property
the value 0.00 (zeros, not letters), which specifies the standard
dollars-and-cents format.

The get command fetches a value from a container—in this case,
field 1, named “Amount”—and puts it into it. You first
encountered the word it in the last chapter; the answer
command alsouses it to store the label of a clicked button. (The
button’s label is treated as a value.)

It is a sort of ever-present container. Once a value isin it,
HyperCard can perform arithmetical operations. The result of an
operationon it always goes back into it, replacing what was
there before.

In English, the handler would say almost exactly the same thing as it
does now in HyperTalk. All the subsequent statement do is perform
operations on numbers from card fields using it and putthe
results into other card fields.

The handler as written is not the most elegant way to accomplish the
calculation. It's used as an example here because it shows each step
of the calculation separately.

Chapter 4: Fields, *it,” and Other Containers

Important

In HyperTalk you must use “card” or “cd” in front of “fieid” to
specify a card fleld. If you leave out “card.” HyperCard assumes
you mean a background field.

Conversely, you must use “background.” “bkgnd.” or “bg” in
front of “bufton® to specify a background button. otherwise
HyperCard assumes you mean a card button.

(The abbreviations “*cd” and “bg" are not available in
HyperCard versions earlier than 1.2.)

Test the handler

The best way to see how the handler works is to try it by typing some
values into the “Amount” and "Interest Rate” fields and clicking the
Calculate button.

Let's say you want to know what the interest, total amount, and
monthly payments would be for a one-year loan of $8,000 at 16.5
percent annual simple interest.

1. Choose the Browse fool.
2. Click inside field 1 o se! the insertion point.

3. Type 8000 for the amount $8,000.
Don't type the comma or the dollar sign—they will cause an
€rror.

4. Click in tield 2 and type 16.5 for the interest rate.

Don't include a percent symbol.

8. Click the Calculate button.

Almost instantly, you should see numbers appear in fields 3, 4, and
5. Those numbers should be

Interest 1320.00
Total Amount 9320.00
Monthly Payments 776.67

A simple calculation 73

& Something else happened? If you got different values, no values
atall, or an alert box, check the script. Make sure you haven't left
out a line and that the handler is free of typing errors. Check that
you have the fields labelled correctly (look at their Info boxes to
verify their names). Also be sure you haven’t put a2 comma or
dollar sign into field 1 or a percent symbol into field 2.

Try some other values for amount and interest. (You'll have 1o
select and type over the numbers already in fields 1 and 2.) Then
click the Calculate button to see the new results.

The handler with comments

The following version of the handler shows comments that describe
the action of the handler's statements. Comments are text lines
typed into a script that are not part of the instructions. In
HyperTalk, a comment must be preceded by two hyphens (--); the
double hyphen indicates to HyperCard that the text following is a
comment and should be ignored.

You do not have to type these comments into your own script; they
are shown for example only.

rformat to C.C0C
field "Amoun:t"

uitiply it py card field "Rate"

it into card field "Interest"

" to it

add card fielc "Amount
field "Total"

put it into carc

divide it by 12

put it into card field “Monthly"
end mouseUp

Dollars and cents.

The value in "Amount" gets put intc IT.

The result of the multipilcaiion
remains in It.

Because fieid "Rate" is a percent.

The amount of interest.

Note: The Put ccmmana puts cnly the VALUE
of It into cara fleid 3; It 110

contains the same val.e. The
command doesn't emply It.
Interest plus crigina: amcunt.
And the total amcunt is still in Iz,
To get monthly payments IOr cne year.
The final action.

As always.

Comments typed into the script editor would not look as neat as
those shown here. In this book, the comments have been formatted
for readability.

74 Chapter 4: Fields. "It,” and Other Containers

Although HyperCard ignores comments, other scripters generally
appreciate them. Adding complete comments to your scripts is an
excellent way to document what your scripts do. Comments not
only help other scripters understand what you've done, but also
help you remember, when you look at old scripts long after you've
written them.

Your comments don't have to be as elaborate as those in the
example. In fact, the more clean and elegant your handlers are, the
fewer comments you're likely to need.

Other containers

Other HyperTalk containers are the Message box, the selection,
and variables.

The Message box

You can see the Message box anytime by pressing Command-M.
You use the Message box to give a one-line command to HyperCard
and to search for text

The Message box is a single-line container. The put command
uses the Message box as its destination if you don't specify any other
container. For example, typing card field 5 inthe Message
box and pressing Return would cause the contents of card field 5 to
appear in the Message box; the same thing would happen if put
card field 5 wereina handler.

You can type a HyperCard function into the Message box and press
Return to see the value of that function. (See “A Few Words About
Functions” near the end of this chapter for an example.)

You can also use the Message box as a calculator by typing numbers
and arithmetic operators into it—say, 350 - €2. The answer,
288, appears in the Message box when you press Return.

The selection

Anytime you select regular text in a field by dragging across i, the
part that appears highlighted is put into a conainer called the
selection. The selection can be a destination for the put
command.

Other containers 75

76

Text located using the HyperTalk £ind command is not put into
selection. '

Variables

A variable is something that can have any value you choose to give
it. The values of variables change; by contrast, the values of
constants are always the same. For example, pi isa HyperTalk
constant having the value 3.14159265358979323846. You can name
variables anything you want. You create a variable simply by
naming it and using it with the put command. For example, in a
handler you might have

You can name variables anything you want. You create a variable
simply by naming it and using it with the put command. For
example, in a handler you might have

put 16 into Ham =-- "Ham" is the first variakle name.
put 2 into Eggs -- Likewise. The names are up to you.
put Ham+Eggs -- Puts 18 into the Message box.

The name of a variable must start with a letter and can contain any PR
combination of letters and numbers plus the underscore character ‘ }
(_), up to 29 characters maximum length. Operalors or special

characters can't be used.

You can use variables to streamline calculations by making them
more like formulas. Here’s the first part of the handler for the
Calculate button, using two variables, Amt and Rte, to figure the
interest rather than using the get command and it.

set numberFormat to 0.C0

put card field "Amount" into Amt

put card field "Rate" into Rte

put (Amt=Rate) /100 into card field “Interest"

Instead of using the multiply and divide commands, this
version uses the arithmetic symbols * and / to combine the
variables on a single line. (See the section “Syntax Summaries”
later in this chapter for more information on arithmetic
commands.)

It is a variable that's always available. Some HyperTalk
commands, such as answer and get, automatically put a value
into it. :

Chapter 4: Fields. "I1t.” and Other Containers

ki,

% Local versus global: The variables discussed here are local
variables; that is, they and their values exist only within the
handler in which they're created. HyperCard also has global
variables, whose values are available to all handlers everywhere.
Global variables aren't covered in this book. See the HyperCard
Script Language Guide.

A few words about functions

HyperTalk contains both commands and functions. A function

produces a value of some sort. You can use names of functions in

commands to get values, without having to figure out how to write

out the formula as part of your handler. A few examples of built-in
HyperTalk functions are

average (list) Finds the average of a list of values. The
values must be separated by commas.

compound (rate, periods) Finds the value of an
account bearing compound interest.

the date Gives the current date.

the diskSpace Gives the number of bytes of free space.

the mouseloc Provides the location of the pointer on
the screen.

the sound Gives the name of the sound currently
playing, or if no sound is playing, gives
“"done".

You can type a function into the Message box and get a value when
you press Return. Press Command-M to see the Message box and
type these functions:

the date

the time

the diskSpace

average (17,24,56,52) (The answer should be 37.25.)

You must include the word the with functions that require il.
Typing date by itself into the Message box won't work.

A thorough discussion of HyperTalk functions is beyond this book’s
scope. The Appendix and the Quick Reference Card contain a list of
all HyperTalk built-in functions.

A few words about functions 77

An operator is @ character of
group of cheracters that couse
an operation, such as addition or
subtraction. or an evalugtion,
such gs comparison of two
things. See Appendix A for g iist
of HyperTalk operators

Syntax summaries

This section contains syntax descriptions of the commands you
used in this chapter. Use this section for reference as needed.

The arithmetic commands

The arithmetic commands are add, subtract, multiply, and
divide.

add expression to destination
subtract expression from destination
multiply destination by expression
divide destination by expression

In all four commands, expression is something having a numerical
value. Destination is a container.

HyperTalk also contains arithmetic symbols, or operators, that
perform calculations: + (addition), - (subtraction), *
(multiplication), and / (division). For example,

put 3 into it
add 7 to it

does the same thing as
put 3 + 7 into it

In both cases the resultis 10in it.

Get
The syntax of the get command is
get expression

Expression is a description of something having a value; for
example,

78 Chapter 4. Fields, *It.,” and Other Containers

Ay,

get field 1

get the name of background button 3

get the userlevel -=- Puts the value of the
-- user level into It.

get 72+13 -- puts 85 into It.

Get puts the value of expressioninto it. In fact, these two
commands are identical:

get field 1
put field 1 into it

In fact, anything you might want to do with the get command can
probably be accomplished just as well with put. For example, the
lines

get the date
put it

do the same thing as

put the date

Put

The syntax of the put command is
put expression [preposition destination)

Expression is a description of something having a value; it can be a
text string or a number. Preposition is either into, before, or
after. Destination is a container, such as it, a field identifier, or
some other container. For example,

put 256 into card field 3

Into causes anything already in the destination container to be
replaced by the expression. Before places the expression at the
beginning of what's in the container (if anything), and after puts
the expression at the end.

If you don't specify a destination, the expression is put into the
Message box.

What you've done in this chapter 79

80

What you've done in this chapter

In this chapter you practiced using fields as containers for numbers
and wrote a handler to perform a calculation. You also learned
about other HyperTalk containers, such as the Message box, the
selection, and variables. You also saw how comments are added
to scripts using the double-hyphen (--).

Additions to your word list:
Commands

add

divide

get Fetches a value and puts it into the variable it.
multiply

subtract

Prepositions

after

before

into

Properties

numberFormat A property of the HyperCard environment.
You change it with the set command.

Containers

it An all-purpose variable container used as a
destination by some commands.

selection A continer that automatically holds whatever text
might be highlighted by dragging across it to select
it.

Chapter 4: Fields, “It.” oand Other Containers

Chapter 5

Animation

81

82

Chapter 5. Animation

With HyperTalk, you can write commands to change the images on
the screen rapidly, creating animation effects. Animation
combined with visual effects and sound can turn a presentation, a
demonstration, or a training stack into an exciting multimedia
production. In this chapter you'll explore two of the ways 1o animale
images.

The first kind of animation involves using HyperTalk commands to
manipulate graphics on a single card; the second kind uses
different images on a number of cards, which arc then shown in
rapid succession.

If you took a break after the last chapter, start HyperCard again and
80 to your scripling practice stack.

Animation on a single card

An amazing facet of HyperCard is that anything you can do in with a
menu command you can also do with a HyperTalk command in a
handler. You can achieve an animated effect by writing a handler 10
select a picture and cause it to move.

Make something to animate

The first step is to create a graphic image to animate. The one you'll
make next is simple to do using the Paint tools. You might want to
tear off the Tools menu and work with it as a palette so you can switch
tools more easily.

Drawing a circle

Circles are easy to make with the Paint tools. Follow these steps:

1. It the Message box is visible on the screen, close it by
pressing Command-M or clicking its close box.

If you continued on to this chapter from the last chapter, you
might still see the Message box. If not, you can just go on to the
next step.

2. Go to Card 4 of the Scripting Stack.

Your first animation effect will take place entirely on this card.

- e

3. Choose the Oval tool from the Toois menu (or palette).

You'll use this tool to draw a circle on the card. First, you'll need
to set the line width for the circle and set the Draw Centered '
option.

4. Choose Une Size from the Optlions menu.

A small box appears with line width choices.

5. Click the second width from the left.

>
0
R

The Line Size box closes automatically when you make the
selection.

The Oval tool
6. Choose Draw Centered trom the Options menu.

This option causes the circle to be drawn from the starting point
outward when you drag, which makes it easy 1o center the circle
on the card.

7. Position the crossbar pointer near the card's center, hold
down the Shift key, and drag until the circle is about three
Inches in diameter.

Holding down the Shift key makes a perfect circle.

8. Release the mouse button when the circle Is the right size.
(Relecse the Shift key aiso.)

If you're not satisfied with your first attempt, you can press
Command-Z t0 undo it and try again.

Make sure that the circle doesn’t overlap or crowd any other
pictures or decorations that you may have drawn on the card with
the Paint teols; erase any other graphics that come too close with
the Eraser tool.

Drawing a smalier circle inside the first one

Next, you'll make a smaller circle inside the large one and then
position it near the large circle’s edge.

1. Position the crossbar pointer inside the iarge circle, hold
down the Shift key, and drag until the circle is anywhere
from three-quarters to an inch in diameter.

Your small circle doesn't have to touch the edge of the large one
yet—you'll adjust its position next. Don't click anywhere else
when you're finished drawing it; go right on to the next step.

Animation on a single card 83

84

Chaopter 5: Animation

2. Immediately press Command-S.

Pressing Command-$ selects the last thing you drew; in this case,
the small circle. (You can tell it's selected because it's
‘shimmering.”) The crossbar pointer changes to the Lasso.

@ Didn't work? If the smaller circle didn't get selected, just use the
Lasso to encircle it—or switch to the Selection tool, drag across
the circle, and then press Command-S to tighten the selection.

3. Move the Lasso ool pointer 1o the edge of the selected
circle untll the tool changes to the arrow pointer.

4. With the arrow pointer on the edge of the small circle, hold
down the mouse button and drog the circie until it touches
the edge of the iarge circle.

See Figure S-1 for an example of how the graphic should look. It's
fine for your version to have the smaller circle in some other
location.

& File Edit Go Tools Objects

Practice Stack [This:s ez <

Figure §-1
The smalier circle inside the large one

Filling in the smailer circle
You can fill the circle with a pattern or with plain black.

The Bucket

1. Choose the Bucke! from the Tools menu or palette.

2. Choose o’pcﬂom from the Patterns menu, unless you just
want to use black.

Black is automatically selected.

3. Click Inside the smaller circle.

The small circle should fill with the patiern you chose, or with
black if you didn't choose a pauern.

© Evennthing changed? If the paint *leaked” out and filled other
areas besides the small circle, just press Command-Z to undo it.
Then you'll have to inspect the small circle using the FatBits
opton for “holes” where the paint could leak through. Close any
gaps using the Pencil, and then try using the Bucket again. See the
HyperCard User’s Guide for details on using the Paint tools

The finished graphic should look approximately like that in
Figure 5-2.

[& File Edit Go Tools Objects

Practice Stack TR

Figure 5-2
The finished graphic image

Animation on a single card 85

86

Chapter 5. Animation

Write a handiler to use tools and menu
commands

To cause this graphic to rotate, you could select it and choose
Rotate Left or Rotate Right from the Paint menu. However, that
action would rotate the image 90 degrees only once. To make it
spin, you'd have to continue to choose a Rotate command
repeatedly. You can have HyperCard perform this action with 2
HyperTalk handler.

You can select the image from a handler by using the choose
command to choose the Selection tool and then the drag
command to drag across the image. You'll do that in a moment;
first, you need to know the starting point and ending point for
dragging.

Finding the starting point

If you were going to drag across the graphic to select it, you would
position the pointer above and to the left of the image. That point
would be your starting point.

1. Press Command-M to see the Message box.

2. Choose the Button tool.

You’'ll make a button shortly; changing to the tool now allows vou
to use the arrow pointer, which is somewhat casicr 10 position,
for the next step.

3. Position the pointer to the upper left of the graphic image, as
you would If you were preparing to drag across it.
Be sure that the pointer is higher than the top of the image and
farther to the left than the left edge of the image.

4. Letting go of the mouse and leaving the pointer where it is,
type these words into the Message box:

the mouseloc

You must include the word the.

Pixel is short for picture
element, which 1s the smaliest
dot that you con draw on the
screen.

S. Press Return.

You should see two number in the Message box. The numbers
represent the horizontal and vertical position of the pointer on the
screen as measured from the top-left corner of the card window.
The distances are measured in pixels; the value of the top-left
corner of the screenis 0, 0.

The mouseloc is a2 HyperCard function that tells you the current
position of the pointer. As you learned in the last chapter, you can
type HyperCard functions into the Message box to get their values.

6. Make a note of these two numbers; you'll need to put them
into your animation hondier.

Finding the ending point

You use similar steps to find the ending point for dragging:

1. Position the pointer to the lower right of the graphic image.

Make sure the pointer is lower and farther right than the imagc.

2. With the pointer where it is, type into the Message box:
the mouseloc

Again, be sure to include the.
3. Press Return.

4. Make a note of the new numbers in the Message box. These
numbers will also go into your handier.

Making a-button and completing the handier

Next, create a button to hold the handler that will cause the
animation:

1. Create a new button and name it Spin

Choose the usual settings in the Info box.

Animation on a single card 87

2. Click the Script button in the Info box to go to the script
editor.

3. Type the following lines between the existing lines,
substituting the numbers you made note of in the previous
sections for the ones shown here:

choose select tool

drag from 125,73 to 361,281 with commandKey
repeat for 16

doMenu "rotate right"

end repeat

choose browse tool

Be sure to put in the numbers you got using the mouseloc in
the Message box: the first number goes first (the starting point for
the drag), and the second number last (the ending point).
Specifying with commandKey has the same effect as dragging
with the Selection tool while holding down the Command key:
the selection is tightened to the perimeter of the image.

DoMenu lets you choose any command from an available
HyperCard menu. The command name must be inside quotation
marks.

4. Press Tab to format the handler.

Here's how the handler should look:

cn mouselp
choose select tool
drag from 125,73 to 361,281 wit:n ccmrmancXey
repeat for 16
doMenu "rotate right"
end repeat
choose browse tool
end mocuseUp

If you have any extra blank lines, you can select them and delete
them. HyperCard just skips them, however, when the handler is
read. .

§. Click OK.

The script editor closes.

Trying it out

Switch to the Browse tool and click the Spin button.

88 Chapter 5. Animation

Important

You should see the graphic image turn through four complete
rotations; that's because the repeat statement specifies 16
repetitions of the 90-degree Rotate Right command. If you had not
specified 2 number, the image would just keep turning “forever.”

< By the way: You can press Command-period (.) to stop a
handler from running—a useful feature with “runaway” handlers.

In the Clip Art stack that came with HyperCard you'll find a picture
of an old car with a button labeled “Drive the car.” When you click
the button, the car rolls forward and back. The script for that bution
contains a handler that selects the image and drags it back and
forth, finally putting it back where it started. It's another example of
animation using the Paint tools in a handler. Feel free 10 look at the
button’s script on your own.

If you use Command-period to stop this kind of animation, you
could end up making the animation unusable. If an image were
left somewhere in mid-drag. the handler might not be able to
select it again, or might select only part of it.

Repeat structures

Repeat is a keyword that tells HyperCard perform a command or
series of commands over and over again without your having to type
them out. Like the if structures, repeat structures must be
inside handlers to work. They come in several varietes:

repeat [forever]

repeat [for] number [times)

repeat until condition

repeat while condition

repeat with variable = startValue to finishValue

When using any of these structures, you would follow the repeat
line with a statement or list of statements making up the commands
you wanted to have repeated. At the end, you must include end
repeat.

The repeat [for) mumber [times] version lets you specify
how many times HyperCard will go through the loop; you replace
number with the number of repetitions you want. You used this
version in the animation.

Animation on a single card 89

The prepositions until and while specify different ways of
looking at a situation. The condition is something like a property or
a value. For example, you could use repeat until the
mouseClick, which means *keep going until someone clicks the
mouse button,” or you could have just as easily use repeat
while the mouseClick is false, which means the same
thing.

The repeat with form allows repetition to continue until the
value of a variable changes from the starting value to the ending
value that you specify. For example,

repeat with count = 1 to 100 =-- "count" is the variarc.e.
doMenu "rotate right"
end repeat

HyperCard adds 1 to the value of count after each rotation. This
structure in the handler would cause the image to rotate 90 degrees
100 umes, or 25 complete rotations. (In this case, you could get the
same effect with repeat for 100 times; however, there could
be cases where the variable would not simply be counting the
number of times through the loop.)

Animation using several cards 3

Instead of changing the image on a single card, this next technique
involves putting different images on sequential cards and then
showing the cards rapidly. '

Set up the cards

You'll use the same image in this version of animation. To get set
up, you'll copy, paste, and turn the image on each of four cards.

Copying and pasting the image once

Follow these steps:

Chapter 5. Animation

PP

1. Go to Card 4, if you aren’t there aiready.

2. Choose the Selection tool from the Tools menu or palette.

O[0]0[R[9|0

0 g e L ..

T

3

Selection tool

3. Drog fo select the symbel on Card 4.

4. Press Command-$ to tighten the selection
This step makes sure that you copy only the image you want, and
not anything outside it.

5. Press Command-C to copy the image.

6. Go to Card 5.

You can press the Right Arrow key or you can switch to the Browsc
tool and click the night-arrow button.

& By the way: If pressing the Right Arrow key doesn’t work, try
Option—-Right Arrow. (You might have Text Arrows selected on
the User Preferences card.)

7. When Card § is on the screen, press Command-V to paste
the image.

Card 5 will be the first card of the four cards needed for this type
of animation.

Adding more cards

You have only one more card in the stack at this point, and you
need three more to use for animation:

Press Command-N two times.

You should see “This is Card 6" appear in the label field the first
time you press the keys, and “This is Card 7" the second time.
HyperCard insens each new card immediately after the card you
were on. The card that used to be Card 6 is now Card 8. Figure 5-3
illustrates the addition of new cards.

_ Animation using several cards 1

92

This new card becomes

the new number §
This new card becomes
number 7
7 This card’s number
6 / changes from 6 0 8
A1 1= This card's number
, 8 does not change
5 O
p) S
4 4
Sequence before Sequence after
inserting cards inserting cards

Chapter 5. Animation

Figure 5-3
New cards inserted after the current card

Copying and pasting the image twice more

Put rotated copies of the graphic image onto the remaining cards
following these steps:

1. Go back to Card §.
Press the Left Arrow key or click the left-arrow button.

2. Select the image and tighten the selection with Command-$

it it is not still selected.

If it’s still shimmering, you can just 8o on to the next step.
3. Press Command-C to copy the image.

4. Press the Right Arrow key to go to Card 6.

If pressing the Right Arrow key doesn't work, try Option-Right
Arrow. (You probably have Text Arrows checked on the User
Preferences card.) S

§. Press Command-V to paste the image on Card 6.

6. With the image stlli selected, choose Rotate Right from the
Paint menu.
Each image needs to be rotated 90 degrees from the previous one
to creale the animation effect.

7. Press Command-C fo copy the rolated image.
8. Go to Card 7 and press Command-V to paste the image.
9. Choose Rotate Right from the Point menu again.

10. Repeat steps 7, 8, and 9, but going to Card 8, to paste ond
rotate the image for the last time.

When you're finished putting the images on the cards, go back to
Card 5, where you'll create a button and write a handler to perform
the animation.

Write a handler to show the cards

The handler for the animation will again go into a butlon script.

1. Create a new button and name it Spin 2

Select the usual settings.
2. Click Script to see the script editor.

3. Type these lines between the existing ones:

repeat for 10
gc tc card 5
show 3 cards
end repeat

go to éatd E)

4. Press Tab to check the formatting of the handier.

Here's how the complete handler should look:

Animation using several cards @3

94

Chapter 5. Animation

on mouseUp
repeat for 10
go to card 5
show 3 cards
end repeat
go to card S
end mouseUp

§. Click OK.

6. Try the button.

Choose the Browse tool and click the Spin 2 button. The image
spins ten times and then stops. You'll see the Spin 2 button flash by
and the number in the card identification field flash by each ume
you get to Card 5 (you'll fix this shortly). When the handler is
finished, you should be on Card 5.

Notice that the animation is faster going card-to-card than it was
before on a single card. That's because in the first case HyperCard
must redraw the image each time through the loop, which takes
some time.

Here's a commented version of the handler explaining what each
line does:

cr mcuseUp

repeat for 10 -- The number c¢f .mes ¢ .ccro.
gc to card S -- Always star:t rnere.
show 3 cards -- Shows cards €, 7, ang 8,

end repeat
go to card § -- Back to the starting card.
end mouselUp

Another way to control the spin

You can add a “contingency plan” to your repeat structure to give
you another way to stop the image from spinning.

1. Go to the script editor for the button.

Use Command-Option-click.

2. Click to place the insertion point in front of the first
occurrence of go to card S.

That's the line just after repeat for 10.

3. Type this line and press Return:

if the mouse is down then exit repeat
4. Click OK.

5. Try the Spin 2 button agoin, and this time click the mouse
bution before the ten cycles have completed.

Now when you start the image spinning you can click anywhere to
stop it before it spins ten times.

Exit isanother keyword. Used with repeat, exit jumps to the
end of the repeat structure, ending the loop when a certain
condition is met (such as, in this case, the mouse being pressed).

Exit allows you to have two controlling conditions with repeat.
You canuse repeat for, repeat while, repeat until,
or repeat with and specify one condition, and you can also
have an if statement specifying a second condition and ending
with exit repeat. For example,

repeat until i = 100 =-- "i" is a variable
if the mouse is down then exit repeat
show all cards
add 1 to i

end repeat

This structure in a handler would cause HyperCard to continue
cvcling through all cards in a stack until either the vaniable i has
the value 100, or someone clicks the mouse button.

You could also use just plain repeat, which is the same as
repeat forever, Lo star an animation running indefinitely, 1o
be stopped only when some interested person clicked the mouse

Some finishing touches

Every time Card S appears during the animation, you see the Spin 2
button flash by and the numbers change in the label field, which
detract from the effect. Use the hide and show commands to
remove the button and field temporarily while the animation is
running:

1. Go to the script editor for the Spin 2 button.

Use Command-Option-click, or Shift-double-click with the
Button tool.

Animation using several cards 95

Q6

Chapter 5. Animation

2. Click in front of repeat on the second line.

You want to add new statements before the repeat structure.

w

. Type these statlements, pressing Retum after each line:

hide field 1
hide me

Me is the object containing the handler (the button itself) and
field 1 isbackground field 1 (the label field).

o

. Click to place the insertion point in front of end mouseUp.

You want to add the next new statements afier the repeat
structure.

"

. Type these stalements, pressing Return after each line:

show field 1
show me

The entire handler looks like this:

on mouseUp
hide field 1
hide me }
repeat for 10)
go to card $§
show 3 cards
end repeat
go to card 5
show field 1
show me
end mouselp

6.Click OK.

7. Try the Spin 2 bution.

Switch to the Browse tool and dlick the Spin 2 button. If there are no
other graphics on cards S through 8, the effect should now be
cleaner, showing only the turning symbol.

Syntax summaries

Refer to these descriptions of the syntax of commands you used in
this chapter as you need to.

The syntax of the Choose command
The choose command’s general structure is as follows:
choose t0oiName tool

ToolName is any one of the HyperCard tools from the Tools menu.
You must always use tool after the name. Here are the HyperTalk
names for the tools that you can use:

browse field reglular] polylgon]
brush lasso round rect{angle]
bucket line select

button oval spray

curve pencil text

eraser rect[angle)

The only tool you can't use is the Polygon tool.

You can use the choose command only with the user level set 10
Painting, Authoring, or Scripting. You can set and reset the
userlLevel property inside a handler with the set command, if
you don't want to change the user level permanenty in a stack.

The syntax of the DoMenu command
The doMenu command’s structure is simple:
doMenu menultem

Menultem can be the name of an accessory in the Apple menu or
the name of 2 menu command. Menuitem can also be the name of
a container holding a command name.

< By the way: Include three typed periods if that's how a particular
command is shown in the menu; for instance, “card
info...". You must fpethe three periods; don't use the
ellipsis character (Option-semicolon).

The syntax of the Drag command
The drag command’s syntax is

drag from start to fimish [with key[, key2[, key3])]

Syntax summaries Q7

Q8

Chapter 5: Animation

Start and finish are the points on the screen where the pointer starts
to drag and where it ends up. The points are expressed as
coordinates: two numbers representing horizontal and vertical
placement in pixels, separated by commas. As mentioned earlicr,
the top left corner of the card window is 0, 0.

You can determine the coordiantes of the pointer’s position using
the function the mouseloc.

Key, key2, and key3 are one or more of the following HyperTalk
key names, which must be separated by commas after with:
shiftKey, optionKey, or commandKey. Including more than
one key has the same effect as holding down more than one key
while dragging.

The syntax of the Show Cards command
Here are the general forms of show cards:

show [all] cards
show number cards

Number is the number of cards you want to show if you don’t want to
show all of them. The cards are shown in sequence.

What you've done in this chapter

You learned two ways to cause animation effects: by using Paint
tools and menu commands in a script and by using the show cards
command with a sequence of cards. You expcrimented with the
repeat structure, a way of performing a set of commands over
and over again. You also learned how to use the functions
mouseloc inthe Message box to find the screen coordinates of the
pointer.)

Commands

choose This command chooses a tool just as though it had
been chosen from the Tools menu.

doMenu Performs a menu command just as though you had
chosen it from the menu with the mouse.

drag Does the same thing as dragging using the mouse.

show cards A command. The cards to be shown (all or some
number) must be in sequence.

Keywords

commandKey The HyperTalk name for the Command key.
end repeat The laststatementof a repeat structure.
exit repeat An alternalive way outofa repeat structure.
repeat A keyword, it begins the repeat structure.
Functions

the mouse Has asa valueeither up or down, corresponding
to the state of the mouse button.

the mouseClick Either true (the mouse button has been
clicked) or f£alse (it hasn't).

the mouseloc Gives the location of the pointer on the
screen in horizontal and vertical coordinates.

Miscellaneous

from A preposition; used with the drag command and
some other commands.

What you've done in this chapter 99

Chapter 6

Stacks You Can Build

101

102

This chapter describes two stacks you could build and script on your
own, starting with materials already available in HyperCard.

This chapter is different from previous chapters in that you don't
have to try to build these hypothetical stacks as you go, although you
can if you like. The development of the stacks is discussed in a
general way rather than detailed step by step.

If the example stacks in this chapter don’t appeal to you, you arc

free to experiment. Browse through the Idea Stacks folder to look for
possibilities. For example, each card in the Stack 1deas stack comes
with prewritten handlers in its background script. You can create a
new stack from each of these “seed” cards using the New Stack
command and copying the background (the handlers are copied
automatically). You could then add to and modify the scripts (and,
for that matter, the appearance of the stack) to suit yourself.

% By the way: The HyperCard Stack Design Guidelines, available
through Addison-Wesley publishing company, describes
graphic, text, and instructional design principles as they apply to
stacks. '

A travel records stack

Suppose you wanted to computerize your records of vacations
travels or business trips so that you could updaic them casily. You
could create a stack in which to keep the important information

For the first card of this stack you could use a map of your country.
Transparent buttons placed over each state or province would allow
you to click a particular state to go to a card specific for that statc.
From each of the state-specific cards, you could have other buttons
to take you to cards for the cities or other localities you've visited.
Finally, the city cards would have fields to contain information-on
accommodations and restaurants, clients visited (for a business
stack), or points of interest (for a vacation travel stack).

Each time you visit a2 new state, you would add a new card for that
state and a new button to the country map to go to that card. Each
time you visit a new city or other location, you would add a new
button on that city’s state card, create a new city card, and fill in the
information.) :

Chapter 6: Stacks You Can Build

To build such a stack, you could use three backgrounds: one for the
country map, one for the states or provinces, and one for the cities
or locations. The different backgrounds would allow you to have
different common fields for each of the three levels. The next
sections describe how you might create this stack.

Creating the stack

You don't have to try to create this stack as you go. If you wantto do
so anyway for the practice, go ahead; be aware, however, that not
all steps are written out

The first thing you need is 2 map of some sort as a starling point.
The Card Ideas stack contains some maps of the Lnited States. (See
Figure 6-1.)

& File Edit 6o Tools Objects

Address File Clesed Book Phene buttens Certificate Emergency Bookshelf

US State map US 2wp coce map US Time zones

sohoiaifing:
Beckshelves

o’ *)
¢ “l"i
i 3
B —
Vewgnts & Mea Metric Equiv Statwenery Guide Baby sitter Lne art Office

Chick on small card pxcture te go to that coard

Figure 6-1
First card of the Card Ideas stack

You would click one of the small U.S. maps to go 10 a card with the
same map on it; the one labeled “US State map,” with state
abbreviations, is a reasonable choice (Figure 6-2).

A trave! records stock 103

& File Edit Go Tools Objects

va mr o
MN
R 10
vy so w vi MICH Ny
NV NE
ur ‘ ~n| O w0
CA co [§
d ™o KY va
‘ NC
Az L I oK - ™ "
Ms| o, \ 04
T LA
FL
Figure 6-2

A U.S. map showing state abbreviations

Check to see what elements of this card are background elements by
pressing command-B. Everything is in the background on this
card, which means that if you copied the background you would get
everything you see.

To create a stack with this card as your first card, you would choose
New Stack from the File menu. In the resulting dialog box, you'd
keep “Copy current background” checked and name the
stack—something like “My Travel Stack.”

Once you click New, you'll be in the new stack, even though the card
on the screen won't have changed. You can then name this first
background by choosing Bkgnd Info from the Objects menu and
typing a name—for instance, “Map Background.”

© Stack butlding tip: It's 2 good idea to name backgrounds because
you might for some reason want to create different backgrounds
that look very similar. You can confirm which one is which in
that case by checking their names.

You can also name this first card in the Card Info box; for example,
*Main Map.” You can then use.the card’'s name in any handlers you
write.

104 Chapter 6. Stacks You Can Build

As with your practice stack, you can add a Home button to the
background of this first card. You can copy a Home bution,
complete with script, from the Button Ideas stack or from any stack
with 2 working Home button. Make sure you are working in the
background before you paste the button.

You could also add a title to the stack (either regular text in a ficld or
as Paint text), such as “My Travel Stack.” It’s also a good idea to add
a line or two of instructions somewhere, in case anyone besides
yourself uses the stack; for example, “Click any state.”

Because this stack uses buttons for each individual state or city to
take you to the card you want, it's probably not necessary to add

arrow buttons for traveling. Rather than moving card-by-card,

you'll want to jump around.

The second background

The next information level would be the state level. To create a new,
blank background for the state cards in this same stack, simply
choose New Background from the Objects menu. HyperCard will
create a new card with the new, blank background. This card is the
second card in the stack.

You could give this background the name “States Background” using
the Background Info box

On each of the state cards, you want a map of the state, its name,
and perhaps some fields for relevant information. You'd probably
want to create a background field to hold the states’ names, because
putting the name in a field lets you search for the name with the Find
command.

You can create other background fields for other information that
you want to have on every card. Give each card the same name as
the state it represents, both in the name field and in the Card Info
box. Add some instructional Paint text to the background, such as
*Click any location.” (Paint text in the background will appear on
every card.)

Finally, you can add a background button to take you to the Home
card and one to take you back to the main map card. This latter
button’s script needs a mouseUp handler with the statement go
to card “main map" (or whatever name the card has). You
could also add visual effect iris close orsome other
visual effect before the go statement.

A travel records stack 105

Each state card can have as its card picture (not in the background)
an image of the state. One quick way to make a rough state outline is
to copy the small state image from the main map using the Lasso or
Selection tool. (You must be in the background to copy a
background picture.) You then go to the appropriate state card,
paste the image, and then stretch it to a larger size by using
Command-drag or Shift-Command-drag. You can refine the rough
outline further if you want. Another way to add a state ouline would
be to find a clip-art stack with pictures or maps in it and copy them
with the Import Paint command.

Figure 6-3 shows a background layout for a hypothetical state card
and a finished version.

T @ fite Lait 6o Toots 0Bjects @ FHe E@It Go Tools O8jects

—es : Montana
] 5 .

{ \ Cianrer

&

Nicknome B1g Sty Couatry Flower Bitterreot |

Necxagme omer!

moeesl kX . Motto Ore g Plate 8:rs western Mesgow!ors !

Figure 6-3
One possible layout for state cards: the background. showing
flelds. on the left, entire card on the right

The third background

The next information level would be the cities, towns, or localities
level, for which you can create another background by choosing
New Background again; you'll get another blank card. You can
name this third background *Local Background.”

106 Chapter é: Stacks You Can Build

Again, make background fields for information such as the locality
name, accommodations information, client addresses,
restaurants, and so on—whatever information you want. When
filling in the information, if you happen to have more information
than will fit into a particular field, you could add a second card for
the locality, including a card button or buttons to get to the second
card and back again. You could also use scrolling fields , which
allow you to add as much text as you want, regardless of the size of
the field on the screen. :

& Stack building tip: It's best not to use scrolling fields as a way of
putling an enormous amount of text into one card. If you expect
to have a great deal of text to fit into a small amount of space,
consider using several cards to hold the text rather than putting it
into a scrolling field.

Put the fields’ permanent labels in Paint text in the background
above each field—or you could create separate ficlds for the labels.
Remember that you can search for text in fields with the Find
command, but you can't search for Paint text.

Add a background button to go back to the main map; you can copy
it (and its handler, automatically) from the state card. Also include
a cardbutton to take you back to the state card. (You wouldn't want
to put this button into the background, because the destination for
the button’s handler would have to be different for different
localities.) You could add visual effects to these buttons’ handlers
also.

Figure 6-4 shows a background layout for the locality cards and a
finished version for a fictional city.

A travel records stack 107

{ 6 Fie Lot 6o Teois Objects

¢ fue E6it 6o Teols 00jects

1

108

(e Sugar City, MT (“stete ’@
—_
Lodging Restaurants Things to do
Ot OvIRm TR SUP NILURP 1 CITY mac, nes 0 :3t0cton of
236 renn et ong Sre 3t INPIRor A The 00y
203-:.-'”00 Nver oot fere g
ot o 00f plece St et N P4RKS DL Sint=a
st _erther Gesme 04004043 GRILL Hain gng LMien Sty
1 EENRIve Dut Wt very mxt g Pors n'Loep The only 30w 1+ ‘owh
clean Srest Iamp cheps . 1008
Fron aaasert «1th spmcrel of CuSTIR rONL=EN"
nn-lngm the eay Cutr-ae tow™ about § = ‘09
went 2% St oL
302:478- 4480 Gararei Cu3te” 3109908 eve
Closrer 1hen Overmier vt O 1he way 10 L'tle Brg e
ten tless 48 the frevvey Sewvantre 'we - coesns 10080
e eetie S3imy’ 30 hey
STaves-wml everaple for 6C = les
1S amine
202-478-1107
Seally Arm som 'i
Figure 6-4

A possible layout for locality cords; the background is on the
left, the entire card on the right.

How the stack would work

Here's a summary of how you would use this stack:

1. For each state you visit, create a transparent card button over the

image of the state on the main map. For some states, the button

may be difficult to size correctly because of the state’s shape. Try

to center the button over the state abbreviation.

On the eastern seaboard, where many small states are close
together, you might want to have a transparent button over the
whole area on the main map and create a second map card for
just that area. On the second map, enlarge the area by selecting
and stretching it If you copy the same background as the main
map, cover the background map before you paste the copied

graphic.

Chapter 6: Stacks You Can Build

Important

Always think twice before you erase or change any graphics in
the background. Any change you make in the background will
happen on every card sharing the background.

You can cover background graphics on a card by using the
Brush and painting with a pattem or by using the Command
key with the Eraser to "erase” with white (opagque) on the
card layer.

2. Create a new card using the second background for each state.
Name the card the same as the state name. Then write a handler
to link the transparent button on the main map to the respective
card using the go command. The zoom open visual effect
works well here.

3. Add cities or locations (such as national parks) to each state’s
map after you've visited them. Create a transparent button over
each location.

4. Add a new card using the third background for each location.
Name the card the same as the location. Link the button on the
state card to the respective card.

5. Fill in the information for each place you visit in the appropriate
fields.

6. When you plan to visit a locality again, or when you want
information for some other purpose, use your stack to get to the
information quickly. You can print each locality card if you need
a “hard copy” for some reason.

You could also include 2 mouseUp handler at the background or
card level of the main map that would use the answer command
to respond with an alert box when someone clicks a state that
doesn'’t yet have a button. Use a message such as “Thal state hasn't
been visited yet.” An OK button will appear automatically with the
message—or you can add any button label you like.

A flash card stack

Flash cards are useful study aids for questions and answers, for
vocabulary drill, or for any fact-memorization task. The idea is that
a word or a question is put on one side of a card, and the answer on
the other side. You try to match each answer as you go through the
cards.

A fiash card stack 109

A stack that acted like a set of flash cards could have the answers
contained in a hidden field, which would be shown when you type
the correct answer into another field and click a button, or when you
give up and ask for the answer by clicking another button.

A flash card stack would most likely need only a single background.
You might want to have the option of moving sequentially through
all cards, picking a card at random, or sorting cards into 2 new
random order (like shuffling). You would probably want to be able
to tell where you are in the stack by seeing the number of the current
card as well as the total number of cards.

Creating the stack

You can start by going to the Stack Ideas stack to look for some
possible staning points for building your stack (Figure 6-5).

@ Flis Edit Go Tools Objects

‘ STACK IDEAS ’

Adgross card | Address card 2 Address card 3 Address Beek Appt Book

CIEES DD E ES

To Do Today Daily List Daily Cal | Weekly Cal 2

=EED

Weekly Cal3 Menthiy Call Postiettes

Click on o picture to go to thet card l G

Figure 6-5
First card of the Stack ideas stack

Clicking any of the images takes you to a full-size card. These cards
contain prewritten handlers for navigation butions as well as other
ready-made scripts, often in their backgrounds. The card that looks
like 2 hand holding a note card might be 2 good choice for the flash
card stack (Figure 6-6).

110 Chaopter 6: Stacks You Can Build

& File Eg¢it 60 Tools Objects

¥ Royce,

Don't forget to give the sprocket info to
Richard Mann on Monday.

Figure 6-6
A card with a cord on it

You can check the background by pressing Command-B; you might
also want 1o look at the fields on the card; you'll see there's one

large transparent field in the background. You can change the sizc
of this field and duplicate it to make more fields if you want.

Again, to create a new stack from this card you would choosc New
Stack from the File menu. You'd copy the current background and
name the stack "My Test Stack,” or some such.

Features of the stack

Here is a description of the features needed to make a flash card
stack for Spanish-to-English vocabulary:

1. For each card you go to, you should be able to see the number of
the card and the ol number of cards in the stack. You could
make a field for each number and write a handler to put the
correct numbers into the fields automatically.

2. The Spanish word for which you are being tested needs to be in a
field. A background field would be best.

3. The insertion point should be placed automatically into another,
blank background field where you would type your answer.

A fiash card stack mm

4. The correct answer, in a third background field, should be
hidden when you go 10 a new card.

5. A bution should be available to check whether the English word
you type is correct.

6. A button should be available for “giving up” and showing the
hidden field. V

7. Something should happen if the guess is wrong—a message and a
chance to try again.

8. It would be nice to be able to choose random cards and to sort
the cards in random order.

The idea of this flash card stack is that the words or information on
the cards changes, but the shape and appearance of the cards
don't. You can put essentially all the fields, buttons, and labels into
the background. The test words and answers are typed into
background fields; everv card can have different text.

Figure 6-7 shows a completed version of this stack, a vocabulary
stack for Spanish. The card on the left shows the background,
including fields. The card on the right shows the entire image,
complete with a2 word, an answer, and the correct answer showing.

112

House, home

Type your saswer:
| house

Choct snswor

Figure 6-7 : - .
One possible layout for a flash card stack: background on the
left, entire image on the right

Chapter 6: Stacks You Can Build

Notice that the preexisting arrow buttons and Home button have
been moved and changed to rectangle buttons. You can move any
button anywhere you want it in HyperCard and change 1ts style as
you like; the button will still act the same way.

The single field on the original card in Stack Ideas has been
duplicated to create a total of five fields, all in the background: one
holds the word in Spanish; the second is where you type your answer
or guess; the third has the correct answer, which is hidden until you
get the right answer or give up; and four and five are the small fields
that tell you the card number and the total number of cards.

The scripts

This section shows the scripts for the objects the handlers that
accomplish the flash card stack’s actions. Notice that the handlers
have been placed where they work most effectively.

Some objects have empty scripts—that is, their scripts contain no
handlers—and so they are not listed here. The card level script is
empty and so are the scripts for all fields.

The stack script

The following handlers are placed at the stack level so that they are
availabe to every card in the stack automatically.

on openStack
hide message box
end openStack

This handler came with the stack.

cn operCard
put the number of this card into fie.d "cardNumoer"
put the number of last card into fieid "totaliNurber"
click at the loc of field "guess"

end openCard

This handler uses the click command to set the insertion point
into the field, so you're ready to type your answer immediately
when the card opens.

on closeCard

hide field "answer"

put empty into field "guess"
end clcseCard

A flash card stack 113

114

It's better to hide the Answer field and blank out the Guess field when
leaving a card (closeCard) rather than when going o it
(openCard) because otherwise you would see a “ghost” of the
answer when the new card appeared, spoiling the test.

The background script
The background script contains this handler:

on openBackground
push recent card
end openBackground

(This script came with the stack.)

The openBackground handler contains the statement push
recent card The “recent card” is whatever card you were on just
before you came to this stack, if any. This statement keeps track of
that card by “pushing” it onto a memory stack (different from a
HyperCard stack). The return-arrow button in the lower-right
corner of the card contains the reverse command, pop card.
When you click the return-arrow button, the card that had been
pushed is now “popped” out of the memory stack, and you go back
to it. You use the push and pop card commands to have
HyperCard keep track of where you've been so you can get back
automatically.

This handler could just as easily have been at the stack level. In a
stack with multiple backgrounds, it probably ought to be at the stack
level.

The button scripts

The scripts for the Home button and the right-arrow and left-arrow
buntons are what you would expect them to be from writing the
handlers in the earlier chapters.)

The return-arrow button script contains this handler, as mentioned
in the preceding section:

or mouseUp
pop card
end mouselUp

The *Check answer” button script contains this handler:

Chapter 6: Stacks You Can Build

on mouseUp
if field "guess" is in field "arswer" then
show field "answer" '
else
beep
arnswer "Oops. Select the word and try agair.®
end if
end mouseUp

The fields were given names in their Info boxes. The if statement
uses the phrase is in to compare the string of characters typed
into the Guess field with any string of characters in the Answer field,
allowing you to include several meanings for any word. In the
sample shown previously in Figure 6-7, home would also be a
correct answer.

The “Show answer” button has this handler:

on mouselp
show field "“answer"
end mouseUp

The 'Random Card” button has this handler:

on mouseUp
visual effect scroll dcwn
go to any card

end mouseUp

The “Shuffle” button script contains this handler:

on mouselp
sort numeric by randcm(the number c¢f cards)
end mouselp

The sort command puts all the cards in a stack in order, or in no
particular order. It can sort in ascending or descending order,
alphabetically (text) or numerically, and you can specify such
things as card name, card number, a field name, a2 word in a field,
and so on as the characteristic being sorted by. Here are some
examples:

sort ascending text by last word cof field "Name"

sort descending numeric by field 2

In the example stack, the random() function causes a sort into
random order. The parentheses must contain a number—in this
case, it's the number of cards in the stack. You could use the
random() function to pick a number from 1 to 10 by putting 10
inside the parentheses—for instance, as part of a game.

A flash card stack 15

116

How the stack would work
Once the stack is set up, its use is simple.
1. Add a new card for every new word.
. Type the word into field 1 (which is named Word).

2
3. Use the Message box to show the hidden Answer field and then
type the correct answer or answers into the ficld.

4. For review purposes, use the buttons to go through the stack and
to shuffle its order. Type your answer for each word into the
Guess field and click “Check answer.” If you can't make a gucss,
click “Show answer.”

< By the way: You can sort the cards into alphabcetical order frese.
the Message box with the statement

sort ascending text by field "wcrzad"

You could copy and modify the stack for other languages or

subjects. You could even reverse the action of the stack—that s,
make it English-to-Spanish rather than Spanish-to-tnglish—simply
by changing the handlers. Can you see how?

Where to go from here

Now that you're an experienced scripter, you can go on o cther
sources to learn more about HyperTalk and the possibilitics of usemg
HyperCard. Many people have written books on [yperCard and
scripting that you might find helpful. The HyperCard Scnp:
Language Guide contains complete descriptions of Hyper'lalk
elements. The HyperCard Help system is also a good reference o
consult while you're working.

Some of your most valuable scripting information is likely to come
from your own experimentation and experience. Think of ways vou
can change existing stacks to suit yourself—and then look at those
stacks’ scripts to see how they work and how you might maodify them.
Use your practice stack as a place to test handlers and as a repositon
for buttons with prewritten handlers and other scripts that you can
copy and paste when you want them. Talk to other HyperCard uscns
and scripters, and exchange tips and shortcuts. Most of all, ¢njoy
having a new tool to enhance your creauvity.

Chapter 6: Stacks You Can Build

Appendix

HyperTalk Summary

This appendix contains syntax statements for all HyperTalk built-in commands and
funcuons; lists of keywords, properties, constants, and system messages; a table of
operators and their order of precedence; keyboard shortcuts for seeing scripts; and
synonyms and abbreviations.

The Quick Reference Card contains the commands and functions, operators list,
script editor commands, and kevboard shortcuts.

Syntax statement notation

Svntax statements show the most general form of a command or function, with all
elements in the correct order. The syntax statements in this book use the following
tvpographic conventions: Words or phrases in this kind of type are Hyperalk
language elements that you type literally, exactly as shown. Square brackets ([1)
enclose optional elements that may be included if you need them. (Don't type the
square brackets.) In some cases, optional elements change what the command does;
in other cases they are helper words that have no effect except to make the command
more readable. Words in italic are placcholders describing general elements, not
specific names; you must replace them in an actual command. For example,
effectName stands for any of the HyperTalk visual effect names: barn door,
checkerboard, zoom, and so on.

It doesn’t matter whether you use uppercase or lowercase letters in HyperTalk, but
names that are formed from two words are shown in small letters with a capital in the
middle (1ikeThis) merely to make them more readable. The HyperTalk
prepositions of and in are interchangeable—the syntax statements use the one
that sounds more natural.

117

Commands

The following list includes all HyperTalk commands up to and including version 1.2.2.
A full description of the action of these commands is beyond this appendix’s scope.
The HyperCard Help system contains a HyperTalk reference section explaining the
use of the commands. The HyperCard Script Language Guide also contains complete
descriptions of HyperTalk commands, functions, and so on. Many other books on
HyperCard and scripting are also available.

add expression to destination

answer "“question" {with "“reply" [cr "reply2" {or “reply3"]])
arrcwkey keyName

asx [passwcrd) question [with defaultAnswer:
beep number

chccse toolName teol

click at location [with key!, key2|, key3)1)

clese file fileName

cicse printing

ccnvert conmlainer o format and format)

celete chunk icf coniainer!

dial expressiom [with modem [modemCommands))
divide destination oy expression

doMent menultem

drag from start tc finish with key|, key2|, key3]])
edit script cf object

find [chars] expression [in field fieldDesignator)

fing word) expressiom {in fieid fieldDesignator)
find strinc expression [in field fieldDesignator)
fincd whole expression [in field fieldDesignator)
&

crcticnkKey keyNumber

getl expression .

GO (:0) !stack) “stackName")

go ito] bkgndDescripior |of [stack] “stackName")
go to] cardDescriptor [of bkgndDescriptor] [of [stack] "stackName"]
help

hide menuBar

hide windowName

hide object

hide picture

lock screen

multiply destination ty expression

open [(document with) application

open file fileName

cper printing !with ciaicg!

118 Appendix: HyperTalk Summary .

clay "voice" [tempo lempoValue] [‘“noles")
piay stcp

pop card [preposition destination)

rint card

print expression caras

print cardDescriptor

print document wizh applicalion

push cardDescriptor

put expression |[preposition desltination;
read from file fileName until character

read frem file fileName for numberOfCharacters

reset paint

returnkey

select object

select !preposition. expression cf field
sekect [preposition: expression of msg
select [preposiuion! text cf field
select erpty

set {the] properly
shew [all] carcs

‘cf object; tc value

ncw number carcs

show menu3ar

now windowName [at b,

shcw object ‘at b, vl

shcw piclure

scrz (direction; !siyle! oy expression
ubirac:t expression frc- destination
tabKey

type expression . key, key2' , key3: .
urlcck screen [witn effectName.

visual leffect) effectName speed) {zc image:

wall [fcr. number 'secc-c
walt until condition

wait while condition

write source to file fileName

Commands

119

Functions

The following list includes all HyperTalk functions up to and including version 1.2.2.

When using functions in HyperTalk statements you must either use the word the
before the function name or add parentheses after it (both forms are shown in the list
that follows). The parenthescs are used to enclose values on which the function
operales, called parameters. If the function takes several parameters (for example,
the average function), the parameters must be separated by commas. See the
HyperCard Script Language Guide for a more complete discussion of functions and

parameters.

Factor is a single value, such as the number 5 or a container holding a value;
expression can be a single factor or a combination of several factors and operators

that results in a value, such as

(2+(field 1)).

The result or use of a function is shown on the right side of the page.

the abs of factor
abs (expression)

average (lisy
the charToNum c¢f faclor
charTlcNam(expression)

ne cl.cxH

o

he clickloc

clickilec ()

the clickV

ot

ne commarncXey

(8]

ommandKey ()
cmpound (rale, periods)
trhe ccs ¢f factor
os (expression)

the [modifier] date
the diskSpace
diskSpace ()

the exp of factor
exp (expression)

the expl of factor
expl (expression)
the exp2 of factor
exp2 (expression)

the foundText

0

Absolute value

Calculates an annuity
Arc tangent—radians

Calculates an average
Returns the ASCII value of a character

Gives horizontal coordinate of where the user last clicked
Tells where the user last clicked as a pair of coordinates

thw)

Gives vertical coordinate of where the uscr last clicked
Condition of the Command key: vo or ccwn

Calculates compound interest
Cosine—radians

Current date set in the Macintosh: long or shor
Amount of free space on the current disk

Mathematical exponential
1 less than mathematical exponential: exp () -1
The value of 2 raised to the power of facior

Returns characters found by the find command

120 Appendix: HyperTalk Summary

T

the fcundChunk
the foundline
the fcundField
the length of factor
length (expression)
the ln of factor
ln (expression)

the inl of factor
1nl (expression)
the log2 cf factor
log2 (expression)
max ([ist)

min (lisy)

“ne mocuse
mouse ()

the mcousellick
mousellick ()

the mcuseid
mouseH ()

the mouselcc
mouselcc ()

the mcuseV

mouseV ()

objects

{the! nu-mrer cf cards cf background

ez cf factor

numTlcChar (expression)
cifset (siningl, siring2)

The cpiicnKey

e param cf facior
r

a
param (expression)
o

I3

e paramCcunt
paramCount ()

the params
params ()

the random of factor
random (expression)
the result

result ()

£
{the] number cf chunks i factor

Retwurns a description of where the text is found
Tells which line the found text is in

Tells which field the found text is in

Number of characters in a text string

Natural logarithm—base-e

1 plus the natural logarithm: 1n(1+/facion
Base-2 logarithm

Returns the highest number value of a list
Returns the lowest number value of a list
Condition of the mouse button: vp or down
Returns true if the mouse button is clicked
Horizontal position of the pointer on the screen
Horizontal and vertical coordinates of the pointer
Vertical position of the pointer

Number of buttons/fields on current card or bg
Number of characters, words, lines, and so on

in text string

Number of cards in specified background
Returns the character corresponding to an ASCII
value

Gives number of characters between the beginnings of
WO strings

Condition of the Option key: up or down
Returns the value of a parameter in a list

The total number of parameters

The entire list of parameters

Gives a random integer from 1 to the value of factor

Returns a text string if £ind or go is unsuccessful

Functions

121

the round of factor

round (expression)
the screenRec:t

screenRect ()
the seconds

seconds ()
the selectedTex:t
the selectecChurnk

the selectedlLine

the selectecfield
the shiftKey
shiftxey()

the sin of factor
sin (expression)

the scund

sound()
the sgrt of factor

sgrt (expression)
the tan of factor
tan (expression)
the targe:
targez ()

the ticks

ticks ()
the modifier: tize
ire()

ct

he tccl

[ad

ccl ()

the trunc of faclor
trunc (expression)

the value of factor
value (expression)

the ([long)] version

(a}

versicn()

the version of stackDescriptor

HyperCard]

Rounds to nearest integer: an odd integer plus 0.5
rounds up; an even integer, down

The rectangle of the screen in which the menu bar
is displayed: left, top, right, bottom coordinates

Number of seconds between midnight January 1,
1904, and the current time in your Macintosh

Returns the text currently selected
Describes the location of the selected text
Tells which line the selected text is in
Tells which field the selected text is in
Condition of the Shift key: up or down

Sine—radians

Name of sound resource currently playing, or “gcre"
if none is playing

Square root of a posilive number—a negalive number
gives the result NAN(C01) meaning “not a number”

Tangent—radians
Identifies the original recipient of a message

Number of ticks (Y40 second) since the Macintosh
was turned on or restarted

Gives time as a text suing: long, short, abbreviated
Name of currently chosen tool
The integer part of a number in function
Gives the value of a string as an expression

Returns the version number of HyperCard
Tells version of HyperCard used to create, compact,

change since compacted, and make latest changes, plus
the date modified in seconds since January 1, 1904

122 Appendix: HyperTalk Summary

Keywords

The following list of HyperTalk keywords includes their syntax, where appropriate, or a
comment on their use. Kcywords are predefined; you can't redefined them—for
instance, you can't usc a keyword as a name of a variable.

Only send can be used in the Message box.

do dc expression
else -- used with "if" structures
end end functionName

end messageName

end 1if

end repeat
exit exit funcliionName
exit messageName
ex.t regea:t
exlt ¢ Hyperlard
cticn functionName | parameterlist)
iccal vanablelist

e -- begirs "“if" siruciires
rex: nex:t regea:
cn cn messageName
cass cass funclionName
rass messageName
repeat -- begins “repeat" structures
return rezurn expression
serc senc " messageName |parameterlisti" (to object)
then -- used in "if" structures
Properties

This section lists properties of the HyperCard environment and of objects up to and including
HyperCard version 1.2.2.

Global properties

blindTyping lockMessages textArrows
cursor lockRecent userlevel
dragSpeed lockScreen userModify
edit Bkgnc numberFormat

language powerkKeys

Properties

123

Window properties

loclation]
rect(angle]

the bottomRight of
the bottom cf

Painting properties

brush
centered
filled
grid
lineSize

Stack properties

cantlelete
cantModify

Background properties

cantlelete

-n
-

Card properties

cantlelete
I

Field properties

avtoTad

the bottcemRi
the Ddbecltem ©
the height ¢
D

the left of
lcciaticn)
lockText
name

Button properties

autoHilite

the bottomRight of
the bottom of

the height of
hilite

icen

script

1D

124 Appendix: HyperTalk Summary

tne height of
the left of
the right cof
the topleft of

co.ySices
texthlign

freesize

shcwlines
style
textAlign

textfont

loc(ation])
name

number

rect (angle]
the right of
textSize
shcwhName
style

the top of
the width of

textFont
textHeight
textSize
textStyle

script
size

script
showPict

script
snCwrPict

textHeight
textSize
textStyle

~he toplef:r of
the top of
visible
wideMargins
the width of

textAlign
textFont
textHeight

textStyle

the topleft of
the top of
visible

the width of

Constants

Constants are named values that never change. You can't use the name of a constant

as a variable name.

down

empty
false
fermFeed
.inefeec

The value of the key functions for Command, Option, and Shift keys and
for the mouse button when pressed

The string containing nothing (the null string)—same as "«

The oppositc of zrue

The form feed character, ASCII 12

The line feed character, ASCII 10

The value of pito 20 decimal places

The double quotation mark character

The return character, ASCII 13

The space character, ASCIl 32—same as " *

The horizontal 1ab character, ASCII 9

The opposite of false

The value of the key functions for Command, Option, and Shift keys and
for the mouse button when not currently pressed

The numbers 0 through 10

System messages

These messages are sent to the objects specified to inform them of system events.
Some messages are accompanied by a variable (var), the nature of which depends on
the message. For example, the arrowKey variable canbe left, right, up, or

down.

Messages sent to a button

new3utton

deleteButzcn

mcusedDown

mouseStillidown mouseWithin
mouselp mouseleave
mouseEnter

Messages sent to a field

newField
deleteField
opentield
closeFielid

mcuseDown mouseEnter
mouseStillDown mouseWithin
mouselp mouseleave
tabKey

System messages

125

Messages sent to the current card

newCard enterkKey newStack
deleteCard TapXey deleteStack
openCard arrowkKey var openStack
closeCard functionkKey war closeStack
mouseDown controlKey var help
mouseStillDown dcMenu war suspend
mouseUp newBackground resume
startUp deleteBackground quit

idle openBackground hide uwar
returnkey clcseBackground show war
Operators

The table below shows the order of precedence of HyperTalk operators. The order of
precedence determines which operation HyperCard performs first when evaluating an

expression. Operators are evaluated from

left to right, except for exponentiation,

which is from right to left. Parentheses force evaluation in a certain order; for
example, 2*3+5 yields 11, but 2*(3+5) yields 16.

Order Operators Tyce of operator
1 () Grouping
2 - Minus sign for numbers
not Logical negation for Boolean values
3 " Exponentiation for numbers
4 * / div mod Multiplication and division for numbers
5 + - Addition and subtraction for numbers
6 & &s Concatenation of text
7 > < <= >= < 2 Comparison for numbers or text
is in contains Comparison for text
is not in Comparison for text
8 = is is not <> % Comparison for numbers or text
9 and Logical for Boolean values
10 or Logical for Boolean values
126 Appendix: HyperTalk Summary

Shortcuts for seeing scripts

These shortcuts were introduced with HyperCard version 1.2.

Key combination

Effect

Command-Option

Shift-Command-Option

Command-Option-C
Command-Option-B
Command-Option-§

Display buttons; click a button with
keys down to edit its script
Display fields; click a field with keys
down to edit its script
Edit script of current card
Edit script of current background
Edit script of current stack

Synonyms and abbreviations

These synonyms and abbreviations include those introduced with HyperCard

version 1.2.

Synonym or
Term obbreviation
abbreviated abbr

abbrev
background bg

bkgnd
backgrounds bgs

bkgnds
button btn
buttons btns
card cd
cards cds
character char
characters chars
commandKey cmdKey
field fld
fields flds
gray grey
location loc .

Shortcuts for seeing scripts

127

message box

middle

picture

polygon
previous
rectangle
regular polygon
round rectangle
second (time unit)
second (ordinal)
spray can

ticks

message
msg box
msg
mid
pict
poly
prev
rect
reg poly

round rect

sec Or secs or seconds
sec or secs or seconds
spray

tick

128 Appendix: HyperTalk Summary

Glossary

algorithm: A step-bv-step procedure for solving
a problem or accomplishing a task. Writing
HyperTalk handlers or programs in other
languages ofien begins with figuring out a suitable
algorithm for a task.

ASCIIL: Acronym for American Standard Code
Sor Information Interchange, pronounced “ASK-
ee.” A standard that assigns a unique number to
each text character and control character. ASCII
code is used for representing text inside a
computer and for transmitting information
between computers and other devices.

background: A *holding area” where you can
place elements that you want a group of cards to
have in common. A background is an object and
thus has a script; you can place handlers in its
script that you want to be accessible to all cards in
a group.

background picture: The part of the screen
image that is common o all cards sharing a
background; that is, the part that's not card-
specific.

card pictﬁre: The part of the screen image thatis
specific to the card; that is, the part that's not on
the background level.

container: A place where you can store a value,
such as HyperCard fields, the Message box, and
variables.

comments: Descriptive lines of text in a script or
program that are not intended as instructions for
the computer but rather are explanations for
people to read. Comment lines are set off from
instructions by symbols called delimiters, which
vary from language to language. In HyperTalk, two
hyphens (-==) in front of a line marks itas a
comment.

constant: An entity having a fixed, unchanging
value. HyperTalk contains a number of constants,
such as true, false, up, down, and pi.
Compare variable.

delimiter: A character used to mark the
beginning or end of something, that is, to define
limits. For example, double quotation marks act as
delimiters for literals. Comments in HyperTalk
are set off with two hyphens at the beginning of the
comment and a return character at the end.

empty: (adj.) Said of scripts that contain no
handlers. Every HyperCard object has a script,
even if the script is empty.

ex-command or external command: Scc
XCMD.

global variable: A variable that is valid for all
handlers in which it is declared. You declare a
global variable by preceding its name by the
keyword global.Compare with local variable.
See also variable. - -

129

handler: A set of HvperTalk instructions specific
10 2 message. A handler must begin with the
keyword on and end with the keyword end Both
keywords must be followed by the name of the
message.

keyword: A HyperTalk word having a predefined
meaning that you cannot change. Some examples
of keywords are end, if, on, repeat, and
send.

literal: (n.) Something you want taken literally. In
HyperTalk you use quotation marks (* *) to set off
a string of characters as a literal, such as the name
of an object or a group of words you want treated as
a text string.

local variable: A variable that is valid only within
the handler in which it is used. Compare with
global variable. See also variable.

loop: A section of a handler that is repeated until a
limit or condition is met, such as ina repeat
structure. See loop.

message: A string of characiers sent to an object.
You can write handlers in the object’s script
containing instructions for HyperCard to carry out
when the message is reccived. Messages can come
from the system, from the Message box, or from
other handlers. See also handler, object
hierarchy.

message-passing hierarchy: See object
hierarchy.

metasymbol: Sce syntax.

nested: (adj.) Said of similar structures occurring
one inside the other; for example, an if
structure may itself contain an if structure, and
that one may contain another, and so on.

null: (adj.) Having no value at all, not even zero.
The HyperTalk constant empty is defined as a
string containing nothing, that is, a null string. A
string containing zero would notbe empty.

130 Glossary

-object: Any HyperCard element that has a script

associated with it and that can receive and send
messages. Objects are stacks, backgrounds, cards,
fields, and buttons.

object hierarchy: The order in which a message
is passed between objects. For example, 2 message
that goes first to a button, such as mouseUp,
would go next to the card, then the background,
then the stack, and finally to HyperCard itsclf,
unless intercepted and acted upon by a handler.

operator: A character or group of characters that
cause a particular calculation or comparison to
occur. Operators operate on values. For example,
the plus sign (+) is an arithmelic operator that
adds numerical values.

parameters: Values that accompany or are acted
upon by a function. Parameters in HyperTalk are
separated by commas.

pixel: Short for picture element; the smallest dot
you can draw on the screen. The position of the
pointer is often represented by a set of two
numbers separated by commas. These numbers
are horizontal and vertical distances of the pointer
from the top and left edges of the card window,
measured in pixels. The top-left corner of the
screen has the coordinates 0, 0.

properties: Characteristics of objects or of
HyperCard as a whole. For example, setting the
user level to Scripting changes the userlevel
property of HyperCard to the value S. Propertics
are often selected as options in dialog boxes or on
palettes, or they can be set from within handlers.

script: A collection of HyperTalk instructions
associated with a HyperCard object. You use the
object’s script editor to add to and revise its scripi.
Every object has a script, even though some
scripts are empty, that is, they contain nothing.
See also message handler, object.

o

script editor: A large dialog box containing a
window in which you can type and edit a script.
You get to the script editor by clicking the Script
button in an object’s Info box (the user level must
be set to Scripting). The top line of the script
editor box identifies the object to which the script
belongs. You use keystroke commands to eidt text
in the script editor. See also message handler,
object, script.

syntax: A description of the way in which
language elements fit together to form meaningful
phrases. A syntax statcment for a command shows
the command in its most gencralized form,
including placeholders (sometimes called
metasymbols) for elements you must fill in as well
as optional elements.

tick: One-sixtieth (o) of a second. The wait
command assumes a value in ticks unless you
specify seconds by adding secs or seconds.

values: Information on which HyperCard
operates. Values in HyperCard are essentially
strings of characters—they are not formally
separated into types. For cxample, a numeral
could be interpreted as being a number or as being
text, depending on what you do withitina
handler.

variable: An entity having a changing value. In
HyperTalk, a container you can create to hold
some value (either numbers or text) simply by
using a name in a statement. Compare with
constant.See also container, global variable,
local variable.

XCMD: Short for extermal command. A
command wrillen in a compuler language other
than HyperTalk but made availabe to HyperCard
to extend its built-in command set. Similarly, and
XFCN, or external function, is a function written in
another language.

Glossary

131

THE APPLE PUBLISHING SYSTEM .

This Apple® manual was written,

edited, and composed on a
desktop publishing system using
Apple Macintosh® computers
and Microsoft® Word. Proof
pages were created on the Apple
LaserWriter® printers; final pages
were printed on a Varityper®
VT600™. Line art was created
using Adobe Illustrator™ and
typeset on a Linotronic® 300.
Stack illustrations were created
with HyperCard® software.
POSTSCRIPT®, the LaserW'riter
page-description language, was
developed by Adobe Systems
Incorporated.

Text type and display type are
Apple’s corporate font, a
condensed version of Garamond.
Bullets are ITC Zapf Dingbats®.
Some elements, such as program
listings, are set in Apple Courier,
a fixed-width font.

N :
e

0 This sochim is b

bﬂ‘é —_- 4/«4:'/”-/7 ‘(ﬂa d'he ™ %vge
User's G e
HyperTalkm s

Quick Reference Card

The information in this Quick Reference Card pertains to
HyperCard version 1.2.2.

Script editor command summary

Key combination Effect

Command-A Select entire script

Command-C Copy selection to Clipboard

Command-F Find text (same as Find button)

Command-G Find next occurrence of same text

Command-H Find current selection

Command-P Print selection or (if no selection) entire
script (same as Print button)

Command-period Close script without saving changes (same as
Cancel button)

Command-V Paste Clipboard contents at insertion point

Command-X Cut selection to Clipboard

Enter Close script and save changes (same as
OK bunon)

Option-Return Wrap line without return character (“soft”

return—symbolized by - in scripts. Don't
use a “soft” return inside quotation marks.)

Return return character—indicates end of
HyperTalk statement

Tab Format script

Shortcuts for seeing scripts

Key combination Effect
Command-Option Display buttons; click a button with
keys down to edit its script
Shift-Command-Option Display fields; click a field with keys
down to edit its script
Command-Option-C Edit script of current card
Command-Option-B Edit script of current background
Command-Option-$ Edit script of current stack
Commands

In the statements listed below, square brackets ([]) enclose optional elements.
(Don't type the square brackels.) Words in italic are placeholders describing general
elements, not specific names; you must replace them in an actual command. It
doesn’'t matter whether you use uppercase or lowercase letters in HyperTalk; names
formed from two words are shown with an embedded capital letter (1ikeThis)
merely to make them more readable. The HyperTalk prepositions of and in are
interchangeable.

add expression tc destination

arswer "question" ‘witn "reply" jor "reply2" (or “reply3"}j]
arrcwkey keyName

ask [passwcrd) question 'with defaultAnswer)

ceec number ’

cncose ftoolName ool

cllck at location !with key', key2{, key3))}

cicse filie fileName

corvert conlainer to format jand format)

celete chunk [of container)

cdial expression [with modem [modemCommands))

divide destination by expression

doMenu menuliem

drag from start to finish [with key|, key2(, key3)))
edit script of object

enterkey

find (chars) expression [(in field fieldDesignator)
find [wcrd) expression {in field fieldDesignator)
find string expression [in field fieldDesignator)
find whole expression [in field fieldDesignator)

functicnKey keyNumber

get expression

gc {tc! ([stack) "stackName"

Go ito)] bkgndDescriptor ct (stack) "stackName")
gc [(to] cardDescripior [ct bkgndDescriptor] [(of [stack]
nelp

hide menuBar

hide windowName

hide object

hide picture

leck screen

multiply destination by expression

cpen {documen: with) application

coer file fileName

cpen printin {with dialog]

clay "voice" [terpo (empoValue) ["notes")

pley stcp

pco card [preposition destination)

print card

print expressiom cards

rint cardDescriptor

prirt document with application

cush cardDescriptor

FJt expression [preposition destination)

read from file fileName .ntil character
reac frcm file fileName fcr numberOfCharacters
reset paint

returnKey

select object

select |[preposition. expression cof field
seiect [preposiiion’ tex: cf field
select emply

set (the] property 'of object] o value
snow [all} cards

show mumber cards

show menuBar

show windowName (at b, v)

show object (at b, v)

show picture

scrt [(direction) [style] by expression
subtract expression from destination
tapkKey

type expressiom [with key(, key2({, key3)))
unlock screen [with effectName)
viscal {effect] effectName [speed) [to image)

“"stackName" |

wait [for] number [seccnds)
wait until condition
wait while condition
write source to filc fileName

Functions

In the statements listed below, square brackets ([]) enclose optional elements.
(Don't type the square brackets.) Words in italic are placeholders describing general
elements, not specific names; you must replace them in an actual command. It
doesn't matter whether you use uppercase or lowercase letters in HyperTalk; names
formed from two words are shown with an embedded capital letter (1ikeThis)
merely to make them more readable. The HyperTalk prepositions of and in are
interchangeable.

When using functions in HyperTalk statements you must either use the word the
before the function name or add parentheses after it. Both forms are shown in the list
that follows. Factor is a single value, such as the number 5 or a continer holding a
value; expression can be a single factor or a combination of several factors and
operators that results in a value, suchas (2+3) or (2+(field 1).Parametersina
list must be separated by commas.

the abs c¢f factor Absolute value

aos (expression)

annuity (rale, periods) Calculates an annuity

tne atan cf factor Arc uangent—radians

atan (expression)

average (lisn Calculates an average

ine charToNum cf faclor Returns the ASCII value of a character

cnaerTCNuUr (expression:

the clickhH

tne clicklec
cilickicel()

the clickV

the commandKey
commandKey ()
compound (rate, periods)
the cos of factor
cos (expression)

the [modifier] date
the diskSpace
diskSpace()

the exp of factor
exp (expression)

the expl cf facior

Gives horizontal coordinate of where the user last clicked
Tells where the user last clicked as a pair of coordinates (h,v)

Gives vertical coordinate of where the user last clicked
Condition of the Command key: up or down

Calculates compound interest
Cosine—radians

Current date set in the Macintosh: long or short
Amount of free space on the current disk

Mathematical exponential

1 less than mathematical exponential: exp() -1

.

exci (expression)
the exp2 of factor
exp2 (expression)
the foundText
the foundChunk
the foundline
the foundField
the length of factor
length (expression)
the ln of factor
ln (expression)

the 1lnl of factor
inl (expression)

the log2 of factor
lcg2 (expression)
max (list)

min (list)

~he mouse

meuse ()

the rnmouseClick
mousellick ()

the mcuseR
mcuseHt ()

the mouseloc
mouseloc ()

the mcuseV
mouseV ()

itne] number of objects
‘tne! number of chunks in facior

th
re

(R BN

numToChar (expression)
offset (simngl, siring2)

the optionkey
optionKey ()

the param of factor
param (expression)

the paramCount
paramCount ()

the params

params ()

the randem of factor

The value of 2 raised to the power of factor
Returns characters found by the find command
Returns a description of where the text is found
Tells which line the found text is in

Tells which field the found text is in

Number of characters in a text string

Natural logarithm—base-e

1 plus the natural logarithm: 1n(1+facton
Base-2 logarithm

Returns the highest number value of a list
Returns the lowest number value of a list
Condition of the mouse button: up or down
Returns true if the mouse button is clicked
Horizontal position of the pointer on the screen
Horizontal and venical coordinates of the pointer
Vertical position of the pointer

Number of buttons/fields on current card or bg

Number of characters, words, lines, and so on
in text string

e] rnumber of cards of background Number of cards in specified background
numToChar of factor

Returns the character corresponding to an ASCII
value

Gves number of characters between the beginnings of
two strings

Condition of the Option key: up or down

Returns the value of 2 parameter in a list

The total number of parameters

The entire list of parameters

Gives a random integer from 1 to the value of facior

rancem (expression)
the result
result ()

the round of factor

round (expression)
the screenRect

screenRect ()
the seconds

seconds ()
the selectedTex:
the selecteclhunc

the selectedlin

the selectecfielc
the shiftKey
shiftKey()

the sin cf factor
sin (expression)

the sound

scund ()
tne sgrt cf factor

sqgrt (expression)
trhe tan cf factor
tan (expression)
the target
target ()

the ticks

Ticks ()

the [modifier; time’
time()

the tool-

tool ()

the trunc of factor
trunc (expression)
the value of factor
value (expression)
the [(long) version
version()

[of HyperCard)

Returns a text string if find or go is unsuccessful

Rounds to nearest integer: an odd integer plus 0.5
rounds up; an even integer, down

The rectangle of the screen in which the menu bar
is displayed: left, top, right, bottom coordinates

Number of seconds between midnight January 1,
1904, and the current time in your Macintosh

Returns the text currently selected
Describes the location of the selected text
Tells which line the selected text is in
Tells which field the selected text is in
Condition of the Shift key: up or down

Sine—radians

Name of sound resource currently playing, or "dcne"
if none is playing

Square root of a positive number—a negative number
gives the result NAN(C0l) meaning “not a number”

Tangent—radians
Identifies the original recipient of a message

Number of ticks (Y0 second) since the Macintosh
was turned on or restarted

Gives time as a text string: long, short, abbreviated
Name of currently chosen tool

The integer part of a number in function

Gives the value of a string as an expression

Returns the version number of HyperCard

the versicn cf stackDescriptor Tells version of HyperCard used to create, compact,
change since compacted, and make latest changes, plus
the date modified in seconds since January 1, 1904

Operator precedence

Order Operators Type of operator
1 () Grouping
2 - Minus sign for numbers
not Logical negation for Boolean values
3 ” Exponentation for numbers
4 * / div med Multiplication and division for numbers
5 + - Addition and subtraction for numbers
6 & &6 Concatenation of text
7 > < <= >= £ 2 Comparison for numbers or text
is in contains Comparison for text
is not in Comparison for text
8 = is is not <> = Comparison for numbers or text
9 and Logical for Boolean values
10 or Logical for Boolean values

