
(

(

.~ Apple~ HyperTalkTM
Beginner's Guide
An Introduction
to Scripting

Previously titled
Scripting With HyperTalk

Confirmation Draft

Jody Larson
Customer Communications
February 21, 1989

Apple Confidential

It APPLE COMPLIER, INC

Copyright e 1989 by Apple Computer, Inc.

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, mechanical, electronic, photocopying, recording, or
otherwise, without prior written permission of Apple Computer,
Inc. Primed in the United States of America.

© Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 950]4-6299
(408) 996-1010

Apple, the Apple logo,
HyperCard, and Macintosh,
are registered uademarks of
Apple Computer, Inc.

HyperTalk is a trademark of
Apple Computer, Inc.

ITC Zapf Dingbats is a
registered trademark of
International Typeface
Corporation.

Linotronic is a registered
trademark of Linotype Co.

POSTSCRIPT is a registered
trademark, and Illustrator is a
trademark, of Adobe Systems
Incorpora ted.

Varityper is a registered
trademark, and VT600 is a
trademark, of AM
International, Inc.

Simultaneously published III

the Cniled Slates and Canada

or •

•

(

(

(

Contents

Preface About This Guide vii

Chapter 1

What you need to know viii
How to use this guide viii
Conventions used in this guide ix
For more information x

Getting Started 1

Start up HyperCard 2
Set your user level 3
Create a practice stack 4
Set up the background 6

Putting a title on the stack 7
Home, sweet Home 8

Making a button 9
Customizing the button 9

And now, a little scriptmg 11
Trying it out 13

Buttons for traveling 14
Making two new buttons 14
Customizing the button on the right 1 S
Customizing the button on the left 1 S
Completing the scripts 16

Fill out the stack 17
Adding a label field 17
Typing a label 18
Adding five new cards 18

A script to label all cards 19
Add a button to the Home card 21
What you've done so far 22

iii

iv Contents

Chapter 2 Special Effects 25

Some visual effects 26
Adding graphics 27
The Visual command 28

Adding effects to the arrow buttons 28
Adding an effect to the Home button 30
Adding the same effect to the button on the Home card 31

More experiments with visual effects 32
Barn Door 33
Dissolve 34

The syntax of the Visual command 35
Some sound effects 32

The syntax of the Play command 33
Specifying the notes 37
Dealing with long lines 39

\X'hat you've done in this chapter 39

Chapter 3 More About Message, 41

Sending messages 42
Create a "Receiver" button 43
Send a message with the Message box 44
Create a "Sender" button 45

Action at a distance 43
Remove the handler from the button script 48
Move the handler to the card level 48
Move the handler to the background level 49
Change the handler 50

Confirming actions 53
A disappearing act 53
A command to put up an alert box 54
An additional action 56
If structures 51

Syntax summaries 59
Answer 59
Click 60
Hide 61
Send 61
Set 61
Show 62
Wait 62

\X'hat you've done in this chapter 63

)

Chapter 4 Fields, -It: and Other Containers 6S

Fields as containers 66
A simple calculation 67

Set up the fields 67
Creating the first field 67
Copying and naming the other fields 68
Labeling the fields on the card 70

A calculating handler 71
Test the handler 73
The handler with comments 74

Other containers 75
The Message box 75
The selection 75
Variables 76

A few words about functions 77
Syntax summaries 78

The arithmetic commands 78
Get 78
Put 78

What you've done in this chapter 80

Chapter 5 Animation a 1

Animation on a single card 82
Make something to animate 82

DraWing a circle 82
Drawing a smaller circle inside the first one 83
Filling in the smaller circle 84

Write a handler to use tools and menu commands 86
Finding the staning point 86
Finding the ending point 87
Making a button and completing the handkr 8-
Trying it out 88

Repeat structures 89
Animation using several cards 90

Set up the cards 90
Copying and pasting the image once 90
Adding more cards 91
Copying and pasting the image twice more 92

Write a handler to show the cards 93
Another way to control the spin 94
Some finishing touches 95

Syntax summaries 96
Choose 97
DoMenu 97

Contents v

vi Contents

Drag 97
Show Cards 98

What you've done in this chapter 98

Chapter 6 Stocks You Can Build 101

A travel records stack 102
Creating the stack 103
The second background 105
The third background 106
How the stack would work 108

A flash card stack 109
Creating the stack 110
Features of the stack 111
The scripts 113

The stack script 113
The background script 114
The button scripts 114

How the stack would work 116
Where to go from here 116

Appendix HyperTalk Summary 117

Syntax statement notation 117
Commands 118
Functions 120
Keywords 123
Properties 123
Constants 125
System messages 125
Operators 126
Shortcuts. for seeing scripts 127
Synonyms and abbreviations 127

Glossary 129
Index xx
Quick Reference Card

)

(

Preface

About This Guide

Welcome to the HyperTalk Beginner's Guide. This guide provides
you with a staning point for exploring HyperTalkTM, the language
used by the HyperCard3 software. With HyperTalk, you can write
your own instructions, called scripts, for HyperCard to carry out.
Writing scripts is called scripting.

HyperCard allows you to create, customize, and personailze your
own stacks without your having to do any scnpung. But Hqx:rCard
is a extension of Apple Computer's goal-to bring the power of
technology to the individual. Scripting takes you one step fu nher
toward having power over what your computer dex::s for you.

If writing scripts sounds a lot like programming to you, you 're
right-they are very similar; however, you do not need any
previous experience with programming to be able to write scripts If
you can read this paragraph, then you can write a script.

This guide introduces you to some basic scripting using a practice
stack you create yourself. In this stack, you'll learn how to Wfile
scripts for traveling between cards, creating special effecb.
simulating animation, performing calculations, and more. Later on
after you've completed this book, you can use your practice stack on
your own as a place to try out new scripts.

vii

What you need to know to use this guide
To get the most out of this guide, you should already know the basics
of using your Macintosh- computer; for instance, how to use the
mouse and the screen windows. You should also be familiar with
how to get around in HyperCard. Specifically, you .should know
about using buttons to get around in stacks and how to use the menus
and tools. You should have some working familiarity with
HyperCard objects: buttons, fields, cards, backgrounds, and
stacks. You should have looked through the Help system, browsed
through other stacks, and personalized some stack-for example,
used the Address stack to store some personal information. If you
have gone through the first three chapters of the HyperCard User's
Guide, you probably know all you need to know.

If you have experience with programming in another language, you
might want to go directly to the HyperCard Script Language GUide,
which is geared for people with prior experience.

The intent of this guide is to help you get started and let you get a feel
for scripting on your own. You won't find long, technical
explanations of HyperTalk concepts here; but you will be ahle to sec
clearly how specific scripts work.

How to use this guide
Each chapter builds on what you've done in previous chapters, so
it's important that you start at Chapter 1 and work through the book
sequentially. You should be able to go through an entire chapter 10

a single session at your computer, but you can take a break any time
you like-or keep right on going, if it suits you.

D In Chapter I, -Getting Started,· you'll create a practice stack with
which you'll work with scripting throughout this book. You'll
make buttons to use with the stack and complete their scripts.

D In Chapter 2. ·Special Effects,· you'll learn about visual and
sound effects in HyperTalk and add them to your stack.

D In Chapter 3, -More About Messages,· you'll explore how
buttons and other objects receive and send messages, and you'll
further increase your HyperTalk vocabulary.

o In Chapter 4, uFields, 'It,' and Other Containers,' you'll get an
introduction to how HyperCard stores information and performs
calculations.

viii Preface: About This Guide

(

So~e~~~es def:iltlOrlS or cross­
references appear in The marg':i.

C In Chapter 5, "Animation," you'Bleam two ways to create
"moving pictures" with commands.

C In Chapter 6, "Stacks You Can Build," you'Ulook at two examples
of useful stacks that you could create and script yourself, starling
with materials available in the Idea Stacks that came with
HyperCard.

o The Appendix, "HyperTalk Summary," contains a list of all
HyperTalk commands, functions, and other elements

You'll also find a glossary of terms, an index, and a Quick Reference
Card containing the command and functions, which you can
remove from this book and keep handy.

Conventions used in this guide
'X'hen a new term is defined, you'll see the term in boldface. All
such terms and other, related terms are included in the glossary.

Importent Material set off like this is especially worth reading Information
in these boxes advises you of noteworthy Circumstances or
helps you avoid misfortune .

• :. By the way Paragraphs like this one contain additional
information or interesting sidelights.

A special font (Courier) is used to show HyperTalk words and words
and statements you should type. It looks like this

set userLevel to 5

Sometimes commands are shown in a generalized form; for
example,

set property [of object) to value

Words in italic are simply placeholders. The square brackets ([))
are used to indicate optional partS; the brackets shouldn't be
included in an actual command.

For more information ix

For more information
Because this guide is intended as an introduction for beginners, it is
not comprehensive. HyperTalk comprises many commands,
functions, keywords, and other elements that are not explained in
this book.

The Hypercard User's Guide contains reference information for a II
menus and tools available.

The HyperCard Help system provides on· line help while
HyperCard is running. The Help system contains a HyperTalk
reference section.

The Hypercard SCript Language GUIde, published by Addison­
Wesley Publishing Co. as part of the Apple Technical Library, is a
complete reference to HyperTalk. It's intended for those with some
programming or scripting experience.

The Hypercard Slack Design Gutdelines, also published by
Addison·Wesley, provides information on how to design and build
professional-quality stacks. Its focus is the presentational aspect of
stacks (for example, navigation methods and card layouts) rather
than the mechanics of scripts.

Other excellent books on HyperCard and on HyperTalk scripting
can be found in almost any bookstore.

x Preface: About This Guide

(

Chapter 1

Getting Started

Have you ever wanLed to create your own software-make an
application program that does things the way you want, rather than
someone else's way? That's what HyperCard~ software allows you to
do.

This book takes you a SLep further into the power of HyperCard by
introducing you to scripting-the writing of sets of instructions,
called scripts, to customize HyperCard's actions. Everything that
happens in HyperCard is directed by a script.

HyperCard scripts are written in HyperTalk,TM a language very mudl
like the language people use in daily life. Believe it or not, you
probably already know how to ·say· things in HyperTalk-things
that HyperCard would probably be able to understand and
perform.

You do not need any prior experience with computer languages to
use this book. You should, however, be familiar with how to use
HyperCard and how to get around in HyperCard stacks.

In this book, you'll practice scripting in a stack you'll build from
scratch. In this chapter, you'll create the practice stack and write
some simple scripts to control actions of buttons.

Start up HyperCard
This book is meant to be used with HyperCard "up and running" on
your Macintosh3 system. You'll need to perform the steps as
directed in the sections that follow to get the most out of the
material.

Start up HyperCard following the instructions in the HyperCard
User's GUide. If you already have HyperCard running, go to the
Home card. You're ready to go on when you see the Home card on
your screen (Figure 1-1).

2 Chapter 1: Getting Started

~ Home Card a!

W3 W1 G:l l!l Ll A
Intrl

.... - o-u Ft Sh.lf

• ~ riJj] [ffi] ~ • Tio. "" c. SlMt $lie ,.,C.1c

~ ~ I!iI ~ L1J .. "" "'1'". Clip An C lull ... '". SI.c' ICMII o..oh1,O"'

m; -- (Click Me Flrstl)

'III.

Flgur. 1·1
The Home cord

Set your user level
To work with scripts, your user level must be set at Scripting Change
the user level on the User Preferences card of the Home stack
following these steps:

1. Click the lett arrow at the bottom of the Home card to go to
the User Pref.rences card.

2. Click the Scripting button.

For now, the check box options Text Arrows and Blind Typing
should be unchecked. You won't need the Power Keys option
either, but if you prefer to use Power Keys with the Paint tools you
may. Figure 1-2 shows the User Preferences card with Scripting
selected. (Earlier versions of HyperCard may not have the Text
Arrows option.)

Set your user level 3

Ii
" il
" I
I
I

I
i: ,

Figure 1·2

U .. r Prefereocet

User Nlml: Jody 6ythewey Larson

User Leuel:
O'rowslng
o Typing
OPllnung
o Rutllortng
~ Scrtptlng

o TI .. t Irrows
o Power Keys

o Blind Typing

The Scripting user level on 1he User Preferences cord.

When the user level is set at Authoring or Scripting, a new menu
title, Objects, appears in the menu bar. Commands in this menu
allow you to get information and change properties of HyperCard
objects-buttons, fields, cards, backgrounds, and stacks. (You '11
learn more about ob;ects later on.) The user level must be set at
Scripting before you an look at, write, or change these objecLS'
sCripts.

Create a practice stack
Now that you've set the user level to Scripting, the next task is to
create a stack where you an experiment with scripts. You an make
a new stack at any time from anywhere in HyperCard; you don't
have to go back to the Home ,ard. Just follow these steps:

1. Choo .. New Stack from the File menu.

A dialog box appears in which you an name the stack and
specify its background.

4 Chapter 1: Getting Started

(

2. Click the check box to remove the check marX from ·Copy
current background.·

You don't want to copy the background for this practice stack, so
'uncheck" the box. The new background will be completely
blank.

3. Type a name 'or the atack-for example, Practice
Stack

In this book, your practice stack is referred tc simply as that-but
you can name your stack anything you like; ·Practice Stack,"
"Test Stack,· ·Pilgrim's Progress," or whatever. If you make an
error while typing the name, use the Backspace (Delete) key to
erase it and retype. The dialog box should look similar to the one
in Figure 1-3.

10 HyperCard Folder I

D Ch .. ~ 12':··'
t:-J C tL t1 11./'"
D Ct!. ~) 1 }: .•
D .lorrJ(~
~ .lml(~rC<lnl

New steck neme:

I Prectlce Stack

2 ~Herd Disk

((:j.~ I: 1

onue

(New

Cancel

o Copy current background

Figure 1·3
The New Stock dlolog box

A, When you'" ready. cUck New (or pre" Retum).

You should see a completely blank card on your screen with only
the menu bar showing along the top. This card is the first-and right
now, the only--card of your practice scripting stack. '. .

Creote 0 proctice stock 5

Striped lines indicating
baCkground

Set up the background
You can think of the background in HyperCard as a kind of
-holding area" for general elements. If a button, a field, or a picture
is in the background, then it appears on every card that shares that
background. Putting a button in the background, for example,
allows you to have that button constantly available throughout a
number of cards without having to re-create it on every card. So far,
the practice stack has only one background, so all cards you create
will share that background

In this section you'll flJ'St create a title that will appear on all cards of
the stack. Then you'll put a Home button and some buttons for
traveling into the background, and you'll write scripts for the
bunons.

Before you go on,

• Pr Commando' to work In the background.

(You could also choose Background from the Edit menu.)

The menu bar appears with striped lines top and bottom,
indicating that you're working in the background (Figure 1-4).

File Edit Go Tools 0 eets

Flgur.1·4
Working In the background

The steps you follow throughout this book make use of a number of
shortcuts for menu conunands and for getting around in
HyperCard. Some of these shortcuts may be new t<;l you at first .. and
you'll have plemyof opportunity to practice them.

6 Chapter 1: Getting Started

)

• •

(

(The Point Text tool

Putting 0 title on the stoe k
It's a good idea to include a visible title or other identifier on each
card of a stack, so you can always teU which stack you're in. Put a title
on your practice stack using the steps that follow .

• Are you in tbe badground1You should see stripes in the menu
bar to indicate you're working in the background. If you don't see
stripes, press Command-B.

1. ChOOM the Paint T.xt tool from the Tools m.nu.

If you prefer to work with a palette, you can turn the Tools menu
into a palette by dragging past its bouom edge to "tear" it off lhe
menu bar.

2. Pr.u Command-T 10 ct the t.xt .tyl •.

(You could also choose Text Style from the Edit menu or double­
click the Paint Text tool on the Tools palette.)

The Text Style dialog box appears as shown in Figure }-5.

Style
DBoid
o italic
o Underline o Outline
D Shadow
DConden.e
D [Htend

Rllgn
OLen
@Center
a Right

Flgur. l-S

Chicago
Courier
Geneua
Meluetlca
Moneco
...... ·11' VIII k

Times

Text Style dialog box

C!J
(Cancel) ~

line
Height

1_1124
I Sample

Set up the background 7

3. Choose a fonl you like In a large, readable size-for Instance,
New York 11 .

•. Click the ·Cent.,- button In the Iower·lett comer 0' the box
10 that your lext will be cenlered as you type It.

5. Click OK.

You're ready to put the title on the stack.

6. Click In the cent., of the card near the top to .. t the
Insertion point and then type the name of your stack.

When you're finished, the screen should look something like
Figure 1~. All you've added so far is the title.

• fill Edit Go Toots "tnt Options ""Ims

Practice Stack

Figure 1·6
The practice stack with a title

Home. swe.t Hom.
Whenever you see a small picture of a house in HyperCard, you can
be pretty sure that clicking it will-takeyou to the Home card. In the
following sections, you'll add a Home to your Slack and complete its
script.

8 Chapter 1: Getting Started

·' .

J

(

The Button tool

+ By tbe way: In the HyperCard User's Guttie you learned how to
copy and paste buttons with prewrinen scripts, such as Home
buttons. In this book, you'll complete scripts'yourself for
pra.ctice.

Making 0 button

You can always get a new button by choosing ~ew Butlon from the
Objects menu. In this book, you'll use a keboard shortcut to make
buttons. Follow these sleps:

1. Make lUre you are working In the background.

You should see stripes in the menu bar. If you don't see stripes.
press Command-B.

2. Choose the Button tool from the Tools menu.

The Browse tool changes to the Button tool, which is an arrow
pointer.

3. WIth the pointer anywhere on the card, hold down the
Command key.

:-Jotice thal the arrow pointer changes to a crosshalr

4. While holding down the Command key, drag to create a
small square button.

Release the mouse button when the button is about half an inch
square. The new button is automatically selecled so you can
move it or change its size-you can lell it's selected by the
moving dotted lines around its edges. (This effect is sometimes
referred to as -marching ants'-)

5. Move the button to the lower-left corner of the card.

Drag the button by its center. Because it's in the background, the
button will appear in this position on every card.

Customizing the button

HyperCard buttons have a variety of styles and features from which
to choose. You customize a button's appearance and actions
through the Button Info dialog box.

Set up the bock ground 9

10

1. Doubl.-cllck the button 10 ... the 8uHon Info dialog box.

(You could also choose Button Info from the Objects menu.)

Figure 1-7 shows this box.

Button Name: L,;.,II ________ __

Blegnd button number: 1

Blegnd button ID: 1

o Shaw name

o Auto hilite

style:

@ transparent
o opaque
o rectangle
o shadow
o round rect
o checle baH
o radio button

__ .a.le_rIIl (cancel)

Flgur. 1-7
. The Button Info dIalog box

Notice that the insertion point is blinking in the Button Name box,
ready for you to type a name.

2. TVp. Home (but don't pr ... R.turn)

If you press Return prematurely, don't worry; just double-click
the button again to get back to the Info dialog box.

3. Click -Auto hillt.- to •• Iect It.

The • Auto hilitea option causes the bunon to become
highlighted when it's clicked, which gives you a visual signal that
you've clicked iL

Leave the ·Show name- option unchecked; you'll put an icon on
this button instead .

•. Click the Icon buHon.

Another dialog box appears in which you can select an icon for
the button.

Chapter 1: Getting Started

(

(

Some house icons

l.Ines mat appear
in bunon senpts

-

oc<omot'COII, .if

5. Choose one 0' the house Icons.

Scroll through the window until you find the house icons and click
the one you want.

6. Cllc:k OK.

All the dialog boxes disappear. Your new bunon now has the
house icon on it

r-.:ext, you'll write a script for this button.

And now, a little scripting
Scripts are created and changed in a special box called the script
editor. To see the script for the new Home bunon:

1. Double-click the Home button.

You see the Button Info dialog box again.

2. Click the Script button.

f-

f-

You see a large dialog box with two lines of text already in the
window. This box is the script editor for the Home bUllon. (See
Figure 1-8.)

ScMpt of btgne! button lei I • ·Hom,·
0/\ .-.up

I
.tld _e4,Ip

~

ro
(Find) (PMnt) (OK) (canUI)

Set up the bockQround 11

\
\

)
/
I

Notice that the top line identifies which the script this is: "Script of
bkgnd button id 1 • Home"-your new button. ~otjce also that two
lines of text appear already-on mouseUp and end
mouseUp-with the insertion point blinking in between. All scripts
for new buttons have the nrst line and last line filled in for you.

The next step is to type the statement that defines the action of the
button.

3. Type qo Home

The new line should appear between the existing lines. If you
make a mistake, use the Backspace (Delete) key to erase and type
over.

The three lines constitute the completed script for the Home
button:

on mouseUp
go Home

end mouseUp

As you might guess, these instructions describe what should happen
when someone dicks the Home bunon. You have one more step
before you're finished, but first, here's a brief description of how
the script works:

Whenever you move the mouse, the Macintosh computer and
HyperCard software track the movement electronically. You see the
movement as a change in the pOSition of the pointer on the screen.
When you press and release the mouse button, electrical signals are
sent, something like when you turn a switch on and off. The same
thing is true when you press different keys on the keyboard. The
HyperCard software interprets these signals from the system and
translates them into HyperTalk system messages.

12 Chapter 1: Getting Started

(

The Srowse tool

(

MouseUp is a system message that means the mouse button has
been released; an on-screen HyperCard button receives this
message when someone clicks it (that is, positions the Browse tool
on it and then presses and releases the mouse button) Actually, the
button receives both mouseDown (the mouse button is pressed)
and mouseUp (the button is released), but the mouse button must
be released before a click is complete, so mouseUp is more
frequently used in sCripts.

Whether something happens when the button receives the
mouseUp message depends on whether the button's script contains
any instructions for that message.

The first line, on mouseUp, signals HyperCard that further
instructions exist. Any subsequent lines comain HyperTalk
statements that make up the instructions. The last line, end
mouseUp, indicates the end of the instructions.

The word go is a HyperTalk command; it means what you might
expect. Go must be followed by a destination-a description of a
card or a stack. In this case, you used the name of the card. You
could also have typed a more elaborate description, such as

go to card 1 of stack "Home"

Translated into English, the Instructions say

"\X'hen this button is clicked, go to lhe first card of the Home stack.
That'S all.·

To leave the script editor,

4. Click OK.

The script editor disappears, and you're back to the practice
stack. Of you dick Cancel the same thing will happen. but your
instructions won't be in the script.)

Trying it out

Now see if the Home button works as it's supposed to.

1. Choo .. the 'row .. tool from the ToolI menu or palette.

2. Click the Home button.

The next thing you see on the screen should be the Home card.
Welcome Home!

Set up the background 13

If that's not what happened, switch to the Dutton tool and doublc­
click the Home button to check the script Make sure evcrything is
typed correctly. Then click OK and repeat the' steps.

To get back to the practice Slack:

1. Pre .. Command-M to 1M the Message box.

(You could also choose Message from the Go menu.)

The insertion point should be blinking inside the Message box,
ready for you to type.

If for any reason you previously typed something into the box,
the earlier entry would still be there. Just start typing and the old
text will be replaced.

2. Type
9'0 to st.ack "Practice Stack"
(Ule the actual name 0' your stack in quotation marks).

3. Press Return.

You should now see your practice Slack on the screen.

As you see, you can use the go command both in scripts and in
the Message box. Most HyperTalk commands work in both places;
you can communicate directly with HyperCard through the Message
box.

Buttons for traveling
Next you'll create two -travel buttons" to allow you to go back and
forth between cards in the Slack. (Right now there's still only one
card, but you'll add more shortly.)

Making two new buttons

Use the same steps as you did for the Home bunon:

1. Make lure you are working In the background.

You should see stripes in the menu bar. If you don't see stripes,
press Command·B~ .

14 Chapter 1: Getting Started

,)

... "j

(
2. Switch to the Button tool and use Command-drag to create

two new transparent buttons.

Make them about the same size as the Home bunon.

3. Position the18 two buttons slde-by-slde at the bottom of the
card, roughly In the center.

Drag each bunon by its center to move it as needed

Customizing the button on the right

Make the button on the right into a "move forward" button:

1. With the Button tool still selected, double-click the button
on the right.

The Button Info dialog box appears.

2. Name the button Next

3. Click the cheek box to select -Auto hilite."

4. Click the leon button to see the available Icons.

5. Choose an leon that points to the right.

You can choose any size arrow or pointing finger. Click the one
you want.

6. Click OK.

The boxes disappear. You should see the arrow or tinger on the
button.

Customizing the button on the leff

Repeat the steps for the remaining bunon:

1. With the Button tool still selecttKi, double-click the button
on the lett.

The Info dialog box appears.

Set up the background 15

2. Name the button Previous

3. Click the check box to select -Auto hlllt

4. Click the Icon button to see the avallabl. Icons.

5. Choose an Icon that polntl to the lett.

It's best to use the same icon as you chose for the first button, but
pointing the opposite way.

6. Click OK.

The two bunons should now have matching icons painting away
from each other.

Completing the scripts

You want the button on the right to take you to the next card in the
stack and the button on the left to take you to the previous card. Put
your instructions into the buttons' scripts:

1. Hold down the Shift k.y and doubl.-click the right-arrow
button to se. the Icript .dltor.·

(You could also double-click the button and then click Script in
the Info box. The Shift-<louble-click shortcut doesn't work in
HyperCard versions earlier than 1.2.)

2. Typ.
go to next card
b.tw •• n the exlltlng IIn.s.

3. Click OK.

The script editor disappears. Repeat the steps for the remaining
button.

4. Hold down the Shltt key and doubl.-cllck the I.tt-arrow
button to see the ICript editor.

5. Type
go to previous card
between the exlltlng IIn.l.

6. Click OK.

You have now completed both buttons' scripts. The script for the
button on the right contains

16 Chapter 1: Getting Started

oa
The Field tool

(

on mouseUp
go to next card

end mouseUp

For the button on the left, it's

on mouseUp
go to previous card

end mouseUp

These buttons can now be used to travel back and forth in the
practice stack, card by card. Moving to adjacent cards isn't the only
possiblity, of course; you can create other bunons to take you to any
card of wy stack you want by specifying in a sCript where you want to
go.

~ By the way The LinkTo bunon in the Button Info box provides a
shortcut for linking a button to any destination without going to
the button's script HyperCard completes the script for you. See
the HyperCard User's Guide for details.

So far in this stack, there's nowhere else to go. It's time to add some
cards.

Fill out the stack
Before you add new cards, it's a good idea to label this card in some
way so that you know when you're at the rust card. Later in this
chapter you'llieam a way to label other cards you add as welL

Adding a label field
First, create a text field in the background to hold the labeL Follow
these steps:

1. Make lure you're It III working In the background.

If you don't see stripes in the menu bar, press Command·B.

2. ChOON the Field tool.

3. Hold down the Command key and drag to cr.ate. a new
fteld.

Make the field a rectangle roughly a quarter inch high and an
inch and a half wide.

Fill out the stock 17

4. Move the field to the card's upper right.

Drag it by its center, just as you did with the buttons.

5. Double-click the field to see It I Info box.

6. Click -Rectangle- to set the fleld'i Ityl •.

7. Click the Font button.

The Text Style dialog box appears.

8. Select a font and size:

Geneva 12, which may be already selected, is a good choice

9. Click OK (or pre" Refum).

The Text Style dialog box closes, and you're back to the card.

Typing a label
The field you created will appear on every card because you put it in
the background. Text in the field, however, can be difTerent on
every card. Type a label for this card into the field:

1. Choole the Browse tool.

Notice that when you choose the Browse tool, the stripes
disappear from the menu bar. You are no longer in the
background of the stack.

2. Click Inllde the field to Ie' the Inlertlon point, and then type
the wordl -Thll II Card 1: (You don" need to Include
quotation mark I.)

The text you just typed will appear only on this card; the field,­
however, will appear on all cards, and you can type different text
into it.

Adding five new cards
At last, you're ready to add some cards to this slim stack.

18 Chapter 1: Getting Started

1. Pre" Command·N five times.

(You could also choose New Card from the Edit menu five
times.)

Although you haven't seen much happen on the screen, you've just
increased the size of your stack from one card to six cards. :-':oLice
that the field in the upper-right corner is blank, indicating that you
are no longer on the first card.

2. Click the right-arrow button. and you should find yourself on
Card 1 again.

A script to label all cards
You could label aU cards in your stack by going to each one and
typing its number inca the field, just as you did for Card 1. Instead,
you can write a script telling HyperCard to do It for you. Here's
how:

1. Choose Stack Info from the Objects menu.

The Info dialog box for the stack appears

2. Click the Script button.

The script editor for the stack appears. Notice that, unlike the
script editor for the bunons you created, the script editor for the
stack does not contain the on mouseUp and end mouset:p
statements.

-:. Keyboard shortcut: Press Command-Option-S to go directly to
the script editor for the current stack, without going to the Info
box. (This shoncut doesn't work with HyperCard versions earlier
than 1.2.)

3. Type the scrfpt that follows exactly as written. Press Return
at the end of each line.

on 'openCard

put "This is Card" " number of this card into field

end openCard

Be sure that you type two ampersands (&&) and that you include
the quotation marks.

A script to label all cards 19

When you press Return after the final statement, you'll nolice that
the last line moves over to the left, but the middle line remains
indented. This automatic indenting helps you check your scripLS.
On and end should always line up at the lefLmost edge of the
script editor box after you press Return the final time; if they
don't, you might have left out something important and should
check the Script again. Pressing the Tab key also checks the
formatting.

If everything looks correct,

A. Click OK.

The script editor disappears.

This script labels each card as you go [0 it by typing "This is Card'
and the card's number into the field. Try it out:

5. Click the right-arrow button to go to each card.

You should see the phrase appear in the field automatically as
you go, with the correct card number.

The openCard message is sent to the current card whenever you
go to it. The put command does what you would expect-it pULS
something where you want it to go.

The double ampersand (& &) connecLS two pieces, or strings, of
text together with a space in berween. One piece of text is "This is
Card" and the other piece is the card's number, which you specified
as number of this card If you wanted to join rwo strings of
text together without a space, you would use a single ampersand.

In English, the script says:

"When a card opens, put the phrase "This is Card" and the card's
number with a space in berween into field 1. That's aiL»

All cards in the stack will be labeled by this script because it's a stack
script. A stack script can have an affect on all backgrounds, cards,
fields, and buttons belonging to that stack. You could have put the
script at the card level, but you would have had to copy it to every
card's sCript or it wouldn't work for every card.

The advantage of using a script to label cards is that you won't have
to worry about labeling the cards yourself, even if you add or delete
cards. HyperCard will take'care of it for you. What's more, you can
lock the field to prevent anyone from typing into the field, but
HyperCard will still be able to change the text.

20 Chapter 1: Getting Started

(

Add a button to the Home card
~Iouldn't it be convenient to have a button on the Home card that
would take you directly to your scripting practice stack? Create one
now:

1. Choose the Button tool and create a n.w button.

Use Command~rag to create the button; make it fairly wide.
Move it to any open space you have on the Home card.

+ By the way: The buttons already on the Home card are there
only for your convenience, and you can change their pOSition
easily; just click them with the Button tool and drag them to a new
location. If you need more room, you can cut buttons that you
don't use often and paste them elsewhere; you could create a new
card in the Home stack to hold them.

2. Double-click the button to s .. It I Info box.

You could also choose Button Info from the Objects menu.

3. Name the button My Stack

4. Click -Show.nam.- and -Auto hillte- to leleet them.

S. Click -round rect- to make the button style a rounded
rectangle.

6. Click the Script button to I •• the script editor.

7. Type the command that will take you to your practice Itack.

Can you do it? Give it a try. Here's a hint: you typed this
command into the Message box earlier after testing your Home
bunon.

e. Click OK.

You should see the Home card with the new button. If the bullon
is too small for the words, drag one of its corners to make it
larger.

9. Choose the Browse tool and click the My Stack ·button ..

If you went to Card 1 of your practice stack, congratulations!

Add 0 button to the Home cord 21

If something else happened such as a message appearing on the
screen saying ·Can't understand .. ." then you might have
misspeUed a word or left out a space. If you gm a dIrectory dialog
box asking where the stack is, you might have typed the name
incorrectly.

Any of these statements would work in the bunon's script:

go to stack "Name"

go to "Name"

go "Name"

go Name

The placeholder word Name stands for whatever you named your
stack in its Stack Info box. Be sure that you type the name exactly' as
it is in the box; for example, if you included the word Stack in your
stack's name, you'll have to include it with the go command.

Important Although It's possible In many cases to omit the quotation
marks and still hove a wor1<ing statement. as a general rule it's
best to include the marks. Quotation marks remove any
ambiguity.

You should now be at Card 1 of your practice stack, ready to go on
Or, if you'd like to take a break, go ahead. In the next chapter you'll
write some more elaborate scripts.

What you've done so far
In this chapter you've created a stack in which you can practice
scripting in the rest of this book and on your own. You've
completed scripts for three background bunons using the
HyperCard script editor. Finally, you've created a background field
and written a script to label all cards by number in that field.

Here's a list of the HyperTalk words you have learned:

Commands

go

22 Chapter 1: Getting Started

This command is used to move around in and
between stacks. The word go must be followed by
the name of a card or a stack. Go works in scripts
or in the Message ~ox.

(

(

(

put

Messages

rnouseUp

mouseDown

openCard

Modifiers

next

previous

Miscellany

&

&&

end

on

to

As you might guess, this command takes somelhing
and puts it somewhere. The word put must be
followed by the name of the thing you want to put
somewhere and the name of the place you want [0

put it

A system message; when you click something, such
as a button, the system sends mouseUp when the
mouse button is released. (If the pointer is moved
off the button before the mouse button is released,
mouseUp is not sent.)

A system message sent when the mouse button is
pressed.

A system message sent to a card when it is opened

This word means the same thing as the English
word.

Another word that means the same thing as the
English word; it can be abbreviated prevo

(Ampersand) This symbol joins [wO pieces, or
strings, of text together.

(Double ampersand) This combination symbol
joins two pieces of text with a space in between.

This word that Signals the end of a set of
instructions. All HyperTalk scripts conclude with
an end statement.

This word that signals the beginning of a set of
instructions. It must be followed by the name of a
message, such as mouseUp.

The word to is used different ways in HyperTalk.
It's optional with the go command; go to
stack: "Scripting" means the same as go
stack "Scripting".

What you've done so far 23

)

(

(

Chapter 2

Special Effects

25

You might already know that buttons, fields, cards, backgrounds,
and stacks in HyperCard are called objects. More specifically,
objects are HyperCard elements that can

:J receive and send messages

o act on messages according to instructions in their scripts

l'\ot a1l elements in HyperCard are objects. Elements that are not
include any graphics or text you create with the Paint tools, the text
inside fields, any dialog boxes that appear, the menu bar at the top
of the screen, and the menus and palettes. The Message box is also
not an object, even though you can send messages with it.

\X'hen you copy (or cut) and paste any object, its script goes along
with it; thus, you don't have to build a bunon from scratch, as you
did with the buttons in Chapter 1, every time you want one .

• :. By the way: The Button Ideas stack contains bunons with
prewrinen scripts that you can copy into your own stacks.

In this chapter you'll create more buttons and add some special
effects to button scripts using new commands.

If you took a break and quit HyperCard at the end of Cha pler I, you
need to start up HyperCard again. Cse the bunon you added to the
Home card to get to your practice stack. You're ready to go on when
you see Card 1 of your practice stack on the screen.

Some visual effects
HyperCard's visual effects make movement between cards and
stacks noticeable and visually interesting.

You add \'isua) effects to scripts using the visual command. In
the sections that follow, you'll add visual effects to your stack's
buttons.

Right now, the practice stack is pretty bare Visually, so visual effects
won't be very effective. Let's add some graphiCS to the stack.

Important HyperCard visual effects aren't visible with color or with multiple
grays selected, Use the Control Panel (available in the Apple
menu) to change the Monitors setting to "Black &
White/Grays' and the' number of grays to 2.

26 Chapter 2: Special Effects

,
, '

The I'<ounded I'<ectangle tool

I I I I I
The Line Size box

Adding graphics
For demonstration purposes, use the Paint tools to put a border on
all cards:

1. Pre" Command·. to work In the background.

The menu bar becomes striped.

Putting the border in the background means you'lI have to draw it
only once.

2. ChooM the Rounded Rectangle tool from the Tools menu.

The Browse tool changes to the crossbar pointer.

3. Choose Une Size from the Options menu to seethe Une Size
dialog box.

4. Click the line size you want. Choose one of the wider sizes.

The Line Size box doses automatically when you select 3 size.

5. If you want to make a patterned border, choose a pattern
from the Patterns menu.

If you don't ch~se a pattern, the border will be a black line.

6. Hold down the Option key. position the crossbar Inside the
top·'eft comer of the card. and drag to the bottom·rlght
corner. Then releaM the mOUM button.

t;sing Option-drag draws the rectangle with the selected pattern.
If you didn't choose a pattern, you don't need to use the Option
key.

If you don't like the position of the rectangular border and want
to try again, press Command-Z LO undo the drawing before
clicking anywhere else.

7. Preg Command·. or ChooM the .rowse tool to stop working
In the background

You can add some of your own graphics at the card level if you like;
however, leave cards 4,5, and 6 blank. You'll need to draw on them
later in riti.s book. Figure 2-1 shows a sample of Card 1 with the
background border completed and some optional, whimsical
graphics added to the card.

Some visual effects 27

.. file Edit Go Tools Objects

IThlS 15 Card I

•

Figure 2-1
Sample Cord 1 with graphics

The card border and other graphics you add to the practice stack
are only for the purpose of being able to see certain visual effects;
cards do not necessarily have to have borders. Ir you were crealing a
stack for some other purpose, you would want [0 consider the card
layout and inclusion of graphics carefully. For inrormation on
designing stacks, see the HyperCard Stacie Design Cuicielines

The Visual command
Before you go on, go back to Card I, if you aren't there already, and
choose the Browse tool.

The most common use of visual effects is during transition between
cards. In this section you'll add effects to the arrow buttons and the
bunons that tUe you back and forth from your stack to Home.

Adding effects to the arrow buttons

Follow these steps to add a visualefTect to the right-arrow bunon:

28 Chapter 2' Speclol Effects

)

(

1. With the Browse tool stili selected, hold down the Option
and Command keys.

Pressing these two keys lets you see the outline of all buttons on
the card-even invisible (transparent) ones.

2. Stili holding down Option and Command, click the right­
arrow button.

The Script editor appears showing the button's script.

This shortcut allows you to go directly to the script without
switching to the Button tool first-a handy feature when you're
doing a lot of scripting. (In versions of HyperCard earlier than
1.2, this shortcut doesn't work. An alternative is to SWllch lO lhe
Button tool and Shift-double-c1ick the button)

.:. By the way Even though you had to switch to the background
when you created this button, you do not have to switch to the
background to change its script.

3. Click In front at the word go to place the insertion point.

4. Type
visual effect scroll left
and press Retum.

The script should now look like this:

on mouseUp
visual effect scroll left
go next card

end mouseUp

5. Click OK.

The script editor disappears. The Browse tool should still be
selected if you used the Command-Optlon-click shortcut.

To see how the visual effed works, dick the button with the Bro';l,'se
tool.

6. Add the same effeet, but going the opposite direction, to
the left-arrow button.

Follow the same steps as you did for the ris.ht-arrow,buuon, ~ut
type

visual effect scroll right

Some visual effects 29

30

The scroll effect causes the entire screen image. including the
background elements, to appear to move in the direction
indicated. It's good for simulating pages turning .

.. By Ibe way: Notice that you use scroll left fort he right
arrow and scroll right for the left arrow to simulate page
turning in the English language, which is read right-to-left. In
other languages, pages might tum the opposite direction.

Adding an effect to the Home button

This time you'll use a different effect:

1. Press Command-Option and click the Home button.

(You could also use Shift-double-click with the nullOn tool
selected.)

The script editor for the Home button appears.

2. Place the Insertion point In front of the go statment.

3. Type this line and press Return:

visual effect wipe left slowly

Remember to press Return so that the statement is on its own
line, but don't click OK to close the script editor yet.

4. Leave the script editor on the screen for now.

If you already closed the script editor, just open it again with
Command-Option-click.

The word slowly is a modifier that controls speed. You can
choose from four options:

very fast
fast
slow[ly]
very slow[ly]
(The -ryis optional with slow.)

If you don't choose any of these, the effect runs at "normal" speed.
The speed modifier should always follow the nar:ne of the e~ccl.

Chapter 2: Special Effects

(

(

Adding the same effect to the button on the Home card

Rather than type the command, you can just copy the command
from the script editor of the Home button.

If you happened to close the script editor for the Home button, usc
Command-Option-click to open it again.

1. Drag across the line with the visual effect as you would any
text line to ,elect It.

Make sure you selea only the line with the visual effect.

2. Pre" Command-C to copy the line.

The command statement is copied to the Clipboard.

3. Click OK to save the script and close the script editor.

4. Click the Home button with the Browse tool.

The Home card appears. Notice the visual effect during
transition-the wipe effect you just added. It's as though the first
card is ·wiped off" the next one.

5. Command-Option-click the My Stock button to se. the
button's script editor.

6. Click In front of the go statement to place the insertion
point.

7. Pre" Command-V to paste the visual effect.

You might also have to press Return to put the go command on
a separate line after you paste.

e. Click OK to save the script and close the script ~Itor.

9. Click the My Stack button with the Browse tool.

You should go back to Card 1 of the practice stack, seeing again
the wipe effect.

Being able to cut and paste Scripts can save you a lot of typing. You
must use the keyboard shoncuts for Edit menu commands when
you're using the script editor, however; the ~dit menu is not
available. Table 2-1 lists the script editor keyboard commands.

Some visual effects 31

Tabl.2-1
Script editor command summary

Key press

Command-A
Command-C
Command-F
Command-G
Command-H
Command-P

Command-period

Command-V
Command-X
Enter

Option-Return

Return

Tab

Action

Select entire scri pt
Copy selection to Clipboard
Find text (same as Find bUllon)
Find next occurrence of same text
Find current selection
Print selection or (if no selection) entire
script (same as Print bunon)
Close script without saving changes (same as
Cancel button)
Paste Clipboard contents at insertion point
Cut selection to Clipboard
Close script and save changes (same as OK
bunon)
Wrap line without return character ("soft"
return-symbolized by, in scripts. Don't
use a "soft" return inside quotation marks)
Return character-indicates end of HyperTalk
statement

Format script

More experiments with visual effects
You can make some test bunons on Card 1 of your practice stack to
try out some of the visual effects. These test bunons will demonstrate
the effects without your having to move to another card.

Here's a list of HyperCard visual effects:

barn door close (or open)
checkerboard
dissolve
iris close (or open)
plain (same as noeffecO
scroll down (or up)
scroll left (or right)
venetian blinds
wipe down (or up)· .
wipe left (or right)
zoom close (or open)
zoom in (or out) (same as zoom close)

32 Chapter 2: Special Effects

(
Some visual effects have a more noticeable effect than others.
depending on the context. For example, the scroll effect
creates a clearer transition than wipe does when only a few
elements change from one card to another. Wipe is most efTective
when two cards have very different appearances. Chec ke rboa rd
and venetian blinds can have an entertaining or humorous
efTect.

Barn Door

Make a button to see the barn door effect following these steps:

1. Create a new button.

Choose the Button tool, hold down the Command key, and
drag. Make the button wider than it is high.

2. Double-click the buHon to get to Its Info box

The Button Info box for the new button appears. :'\otice that this
button is a card button, not a background button; it will appear
only on Card 1.

3. Name the button Barn Door

4. Select the ... options: ·Show name," "Auto hime," and
·round rect.·

5. Click the Script button to go to the script editor.

The insertion point is blinking at the beginning of the line
between on mouseUp and end rr,oi.lseUp.

6. Type the,e statments, pressing Return after the first two lines
(but not after the last line):

visual effect barn door close to gray
vinal effect barn door open to card

go to this card

~ By the way: The word effect is optional after visual. You
can leave it out and the command will still work.

7. Click OK to clo .. the script editor.

If the name is too big for the size oflhe bUllon, drag the corner of
the bunon to make it larger.

Some visual effects 33

8. Choose the Browse tool and try out the new bullon.

You should see gray -doors· close and then open. (This example
is only one way to use the barn door effect; you don't
necessarily have to pair the open and close verSions.)

The visual command must be accompanied by a go
command-the statement go to this card satisfies the
requirement, even though it doesn't take you anywhere. (More
spedfically, it takes you to where you already are.)

The phrases to gray and to card determine the image
HyperCard uses during transition. You can use any of the following
words for the image:

black
card (the image of the destination card)
gray (or grey)
inverse (reverses the card image)
white

Dissolve

Create another button to test the dissolve effect:

1. Creale a new button and name it MOissolve."

Follow the same steps and choose the same settings as you did for
the Barn Door bunon.

2. Click Script to see the script editor.

3. Type the following lines:

visual dissolve slowly to blaci(
visual dissolve slow~y to whi:e

vis'Jal dissolve slowly to card
go to this card

4. Click OK. Iwltch to the Browse tool. and try the buHon.

You should see the image fade to black, fade to white, and then
fade to the card image.

The effects you've just created can be cut and pasted into scripts for
other buttons to travel between cards.

34 Chapter 2; Special Effects

(

Syntax IS a descriptio~ of the
way In whiCh woras are put
togeTher to form mear,lngf,,1
phrcses All Icnguages-for
people and for comp,,~ers-hove
rules of sYrI!ax

'X'hen creating a stack for your own use or for others, you can
combine a number of effects to give different visual impressions;
for example, zooming in on a subject, rurning pages, or changing
the scene completely.

Create other test buttons on Card 1 as you like.

The syntax of the Visual command
You've seen several versions of the visual command. Each
version follows a certain general strucrure, with or without the
optional elements.

An expression of the general, underlying structure that a given
command must follow is called its syntax. Knowing a command's
syntax is as important as knowing its name and what it does;
however, you don't have to try to memorize syntax just now; you
can refer to this section whenever you need to.

Here's the syntax of the visual command

visual [effect) effectName [speed) [to image)

Optional elements are shown enclosed by square brackets. (You do
not include the brackets in an actual command.) Words in italic arc
placeholders: for example, in an actual command, you would
replace effectName with any of the actual effect names: ba rn
door, checkerboard, zoom, and so on. The same would apply
for speed and image.

A statement's syntax shows you the correct order for elements in the
statement; for example, if you were to write this command:

visual fast dissolve

HyperCard would not be able to understand the command because
the speed element is in the wrong place. The correct order is

visual dissolve fast

Some visual effects 35

HyperTalk syntax is much like English symax, which makes
HyperTalk an easy language to use. You can't always be sure,
however, that a statemem that makes sense in English will make
sense in HyperTalk. Incorrect syntax will cause a "Can't
understand" message; in such a case, check the statement's syntax if
you find no spelling errors.

The Appendix and the Quick Reference Card both comain a list of
HyperTalk commands showing their symax.

Some sound effects
Two HyperTalk commands cause sound: the beep command,
which causes the usual Macintosh system beep, and the play
command, for adding other sounds and music.

Important To hear sounds, you must hove the Speaker Volume in the
Control Panel set to a value greater than zero.

To use the beep command with a button, you would write a script
like this:

on rnouseUp

beep

end mouseUp

You can cause multiple beeps by adding a number after the
command, as in beep 3. If you don't add a number, you get a
single beep. In Chapter 3 you'll use this command when you create
an alert box.

The play command lets you add music to scripts; you can specify
a number of notes with differem pitChes and time values and thus
have a melody play, or you can use digitized sounds (sounds .
recorded in a digital format that computers can understand). Make·
a new button to try out the play command:

1. Create a new bu"on on Card 1 with the name ·Sound."

36 Chapter 2: Special Effects

Use the Command-drag shortcut with the Button tool as usual.
Bring up the Button Info box by double-clicking the bunon, type
the name, and choose the "Auto hilile,' "Show name," and
"round rectO options.

)

(

2. Click the Script button 10 lee the script editor.

3. Complete the script by typing this line:

play "harpsichord" "c egg a a g"

Be sure to include the quotation marks with the instrument name
and the series of letters representing notes.

4. Click OK.

Now try the button with the Browse tool. You should hear the first
line of a familiar childhood tune.

The syntax of the Play command
The play command allows you to control pitch and tempo as well
as voice. Here's the command's basic structure:

play "voice" [tempe tempo Value) ["notes")

Voice is either harpsichord or boing, which are included With
HyperCard, or voice could be the name of a digitized sound from
some outside source.

You can optionaJly set the tempo (speed of pIa\') by including the
word tempe followed by a number (tempo Value) The value 100 is
a medium speed; higher numbers play faster If you dont specif\' a
tempo, tempe 100 is assumed.

Notes make up the melody sequence. Include quotation marks
around the voice and the notes. For example,

play "being" tempo 200 "e4q d c dee eh"

plays "Mary Had a Little Lamb."

Specifying the notes

Use this section for reference when writing out melodies; you don't
have to try to memorize the information here.

The notes are represented by the letters A through G,
corresponding to Western music notation (capitalization makes no
difference). You can include further modifiers after the notes to
indicate sharps or flats, pitch range, and dura(lon (or how long the
note lasts).

Sound eHects 37

Cse j for sharp or b for flat immediately after !.he note. A sharp
makes a note a half tone higher; for example. djl is the pitch
halfway between D and E. A flat makes a note a half tone lower.

Use a number following the note and any sharp or flat to specify the
pitch range. For example, g.4 would be the G-sharp nOle in the
middle range, or what musicians call the middle-C octave. Higher
numbers give higher ranges, and vice versa.

Use a letter code following the note, any sharp or flat. and any
range number to specify how many counLS, or beaLS. to hold the
note before the next note sounds. The timing values are relative to
each other. Here are the codes for note duration:

w whole note (four counLS)
h half (two counLS)
q quarter (one count)
e eighth (one-half count)
s 16th (one-fourth count)
t 32nd (one-eighth count)
x 64th (one-sixteenth count)

As an example. Bb5q would mean the note B-nat in the high-C
range held as a quarter nOle.

A period (.) after the duration code means a value of half again as
much; that is, w. would indicate six counts (four plus half of four)
A numeral 3 after the duration code means a triplet.

The codes for pitch range and duration carry over to subsequent
notes unless you change them; this feature saves you from having to

type numbers and letters over and over. (See "Mary Had a LllUC
Lamb" shown earlier.)

-:. By tbe. way: Even if you have no formal music training and all
these terms seem mystifying. you can still make melodies wi!.h the
play command. The best way to gain an understanding of how
to use the notes is to experiment on your own. Choose a short
tune you already know and try to write it out. You can use the
script for the Sound button you created earlier to test and change
the tune until it sounds right to you.

38 Chopter 2: Speciol Effects

Dealing with long lines

You can put a long sequence of notes into a script; however, the
script editor doesn't wrap lines or let you scroll to see lines that
extend beyond the window. You can press Return or Option-Rerum
to wrap a long line temporarily while you type the notesj h09.'ever, if
you use this method you must eliminate the end-of-line breaks when
you're finished or the Script won't work properly. The reason is that
HyperCard doesn't understand a line break of any sort occurring
inside quotation marks.

You can, however, wrap a long line permanently by adding closing
quotation marks and the double ampersand (& &) followed by an
Option-Return (...,):

on mo\;seUp

p:"ay "r.arps ic!',ora" "c c 9 gOO • &~

lIa a gil

end mO\JseUp

Notice that you must begin the wrapped line with a quotation mark.

What you've done in this chapter
In this chapter you've used HyperTalk commands to produce
special effects: visual effects and sound. You've also added to your
vocabulary list.

Commands

beep The command that produces the system beep. You
can cause multiple beeps by including a number:
beep 3.

pI ay The command that causes notes to pJay. You
specify the sound and the sequence of notes.

vis ua 1 (e.f feet 1 The command that causes the visual effects
you speCify. It must be followed by the go
command.

Names of sounds

"boing"

"harpsichord"

Names of effects

barn door

What you've done in this chapter 39

checkerboard

dissolve

iris

plain

scroll

(Same as no effect.)

venetian blinds

wipe

zoom

Miscellaneous

fast

slow(ly)

tempo

very

40 Chapter 2 Special Effects

A modifier used wilh visual effects.

A modifier used wilh visual effect.

A word lhat you use wilh the play command to
control the timing of the notes.

A modifier used wilh fast or slow; means "more."

i(..

Chapter 3

More About Messages

(

41

Earlier you learned about HyperCard system
messages-information about system events such as clicks
(mouseUp), keyboard actions, and events in HyperCard
(openCard). System messages are sent constantly while HyperCard
is running. There's even a message for when nOlhing is happening:
idle. (See the Appendix for a list of HyperCard system messages.)

A script, as you've seen, can contain instructions to be carried out
when a particular message is recieved-in Olhcr words, the script
"handles" the message. Thus, a complete set of instructions dealing
with a message is called a message handler. Message handlers
always begin with the word on and end with the word end, and
both words are followed by the name of whatever message the
handler deals with; for example on mouseUp.

An object's script might contain a number of handlers, each one
handling a different message. Strictly speaking, then, the word
script refers to everything that appears in the script editor for a
given object, and not just to a single handler .

• :. By the way: On and end belong to a group of J-IyperTalk
words called keywords. Keywords have predefined meanings
that can't be changed.

In this chapter you'll write new handlers and explore the way
messages travel between objects.

Sending messages
\\'hen someone clicks a screen button, the action generates a
mouseUp system message. The mouseUp message always goes
first to the button that was clicked. If that button's script doesn't
have a handler for mouseUp, the message is passed to the card,
then to the background, then to the stack, then to the Home stack,
and finally to HyperCard itself. This sequence is called the
message-passing hierarchy or the object hierarchy; it's
illustrated in Figure 3-1

~2 Chapter 3: More About Messages

BUlIOns

and fields

Background5

Home staCk

HyperUrd

Figure 3·1

MouseUp !':leMage sent
by mouse to b\llton

A message moving through the object hierarchy

You can place handlers at different levels; where you place a
handler has an effect on its availability. For example, when you
wrote the handler to label all cards of your practice stack, you
placed it in the stack script; that placement meant that the handler
was available for every card in the stack.

Messages can come from the system, from menus, from your
actions with the mouse, keyboard, or Message box, or even from
handlers themselves. You can write a handler that will send a
message or pass on a message to another object. In this section
you'll see hGW this feature works.

Create a "Receiver" Button
First, if you left HyperCard after the last chapter, start it up again
and go to the practice stack.

Create a new button with the steps that follow; you'll use this button
as a target for messages.

1. Go to Card 2 of your practice stack.

You can think of Card 1 as your special effects card. Card 2 can
be your message experiments card.

Sending messages A3

2. Create a new c:ard button and name it Receiver

You don't need to switch to the background because this is a card
button.

Follow the procedure you've used in previous chapters: use the
Button tool and Command-drag to create a new bunon. Double­
click the button to see its Info box. Type the name in the field at
the top of the Info box.

4. Clic:k the Sc:rlpt button to see the sc:rlpt editor.

5. Type this line between on mouseUp and end
mouseUp:

play "boing" tempo 80 "c4 e g"

As you can see, this statement will cause three notes to play .

• :. Alternative for bearing impaired people. If you can't hear notes,
type this line in place of or in addition to the play statement to
see the effect of the handler:

flash 3

This command causes the entire screen image to flash rapidly
three times when the buaon is clicked. (The white parts of the
card switch to black and the black parts to white; then they
change back again.)

6. Cllc:k OK when you're finished.

The script editor closes and you're back to the card

7. Change to the Browse tool and try the button.

Notice that the button becomes highlighted when you click it
(because of the • Auto hilite" setting) and the notes pia y .
immediately. you'll use the "Auto hilite" feature to distinguish
berween the sources of messages in this·chapter.

In the next section, you'll send mouseUp without clicking.

Send a message with the Message box
You can send the Receiver button a message using the Message box:

44 Chapter 3: Mote About Messages

(

(

1. Press Command-M to see the Message box.

2. Type this sentence Into the Message box:

Send mouseUp to button "Receiver"

3. Presl Return.

You should hear the notes play immediatelYi but notice that the
button does not become highlighted. (To send the message
again, just press Return.)

You selected "Auto ruHle" when you created the bunon. nut "Auto
hilite" responds to mouseDown and mouseUp only when they
are sent by the system as system messages-that is, when the button
is actually clicked .

• :. Well, a/most: You can ·click" the button WithOut a mouse using
the click command. The bunon will respond to this
command just as though it had been clicked manually. See the
·Syntax Summaries" section later on.

The mouseUp message you sent from the Message box isn't a
result of a click, so the button remains unhighlighted. The handler.
however, still responds, and the notes play.

4. Click the close box to hide the Message box again when
you're finished.

You can send messages from the Message box-and also from
handlers-using the send keyword.It's the only key'Wo~d that
works in the message boXi it behaves a lot like a command does.
Messages sent with send go directly to whatever object you
specify, allowing you to bypass the usual hierarchy.

Create a "Sender" button
Follow theSe steps to make a button with which you'll practice
sending messages from inside a handler:

1. Create another card button anywhere on the card and
name It Sender

Use Command-drag with the Button tool selected to make the
button, then double-click the button to see its Info box and type
the name.

Sending messages 45

You can think of prop.rti.s as
characteristics of particular
objects or of the HyperCaro
enVIronment os a whole. You set
values for properties witl"\ dlolog
boxes. palettes. check boxes.
and radio buttons-or you can
set them with scripts

2. Select ·Show name," "Auto hIIite," and "round rect."

3. Click the Script button to see the script editor.

4. Type these line. between on mousetJp ond end
mou •• Op:

send mouseUp to button "Receiver"
wait 2 seconds
set hilite of button "Receiver" to true
wait 1 second
set hilite of button "Receiver" to false

S. PreIS Tab to fonnat the script if necessary.

On mouseUp and end mouseUp should line up at the left
edge of the window; all the other lines should be indented.

In English this script says

"When this button is clicked, send a mouseUp message to the
Receiver button. Wait two seconds, and then highlight the Receiver
button. Wait one second, and remove the highlighting. Tha['s all."

6. Click OK when you're finished.

7. Change to the Brose tool and click the Sender button.

You should hear the notes play; after a two-second delay, you
should see the Receiver button become highlighted. Mter one
second the highlighting disappears.

You use the set command to change celUin properties of
objects or of HyperCard in general. In this example, the hi': i te
property of the Receiver button is changed to true (button
highlighted) and then back to false. Examples of properties you
can change using set are the user level, the button style, the
name of any object, a pattern from the Patterns palette, and many
others. The Appendix contains a complete list of properties.

46 Chapter 3: More About Messages

(

('

The wait command allows you to insert a delay, In this case, you
used a two-second delay between when the button became
highlighted and the notes started to play, and then a onc·seocnd
delay before removing the highlighting,

The buttons and handlers you've made in this section demonstrate
sending a message in three different ways:

c As a system message: When you click the Receiver button,
mouseUp is sent as a system message. The Receiver button
becomes highlighted when you click it because of the" Auto
hiHte" option. The notes play (or the screen flashes, if you used
that option) as indicated in the button's handler.

::; As a Message-box message: When you use the send command
in the Message box to send mouseUp to the Receiver bunon,
the notes playas indicated in the handler, but because the bunon
was not actually clicked, it doesn't become highlighted,

.... From within a handler: When you use the send command in
the handler of the Sender button to send mouseUp to the
Receiver button, the bunon doesn't become highlighted right
away because the bunon isn't actually clicked; but the notes play
as indicated. However, you can add multiple commands to a
handler to affect the Receiver button. In this case, you used the
set command to change its highlighting,

Action at a distance
Where you place a handler in HyperCard affects its action. A
handler at the "top· level, namely, in a bunon script or a field
script, can respond only to a message received by that button or
field. The same handler further "down" in the object hierarchy,
such as at the card, background, or stack level, can respond to the
message sent to any objects higher up, unless those objects
intercept the message with their own handlers.

What the message-passing hierarchy means to you is that you can
control whether your scripts act very locally, say, only for a
particular button, or more globally, for an entire card,
background, or stack.

In this section, you'll move the mouseUp handler of the Receiver
button to different levels in the object hierarchy to experience the
change in its response.

Action at a distance 4;

Every object hos a scriot. even if
the'e's nottw'\g In It. Scripts With
nothing in them are colied
empty scripts.

Remove the handler from the button script
Follow these steps to cut the handler from the Receiver button's
script, placing it on the Clipboard automatically:

1. Open the script editor for the Receiver button.

Use Command-Option-c1ick with the Browse [001, or
Shift-double-click with the Button tool.

2. Pre" Command-A to select the handler.

Command-A selects the entire script, but in this case there's only
one handler in the script.

3. Press Command-X to cuI the handler and place it on the
Clipboard.

The script editor should now have nothing in iL If you still see tile
handler there, try steps 2 and 3 again.

4. Click OK.

The script editor disappears and you're back to the card.

The script for the Receiver bunon is now empty. You can test it by
clicking the Sender button with the Browse tool. You should see the
Receiver button flash (because of "Auto hilite"). but hear no sound

Move the handler to the card level
Paste the handler into the card's script.

1. Choose Card Info from the Objects menu.

2. Click the ScrIpt button In the Info box.

The top line of the script editor tells you that it's the script for the
card.

48 Chapter 3: More About Messages

,

.:. Keyboard sbortcut: You can press Command·Option·C to see
the script editor of the current card without having to go through
the Info box. (This shortcut doesn't work with HyperCard
versions earlier than 1.2.)

3. When you He the script editor. pre" Command·V to paste
the handler.

4. Click OK.

5. Te,t the effects.

Switch to the Browse tool. First, click the Receiver button; you
should see no difference in what happens: the bunon becomes
highlighted and the notes play. The rnouseTJp message passes
through the empty bunon script and goes on to the card script.

:'\ow, click the Sender button. Again. you should hear the notes.
and then after two seconds see the button become highlighted
and then change back.

And now, click anywhere on the card (except on another bunon
or in the field). The notes play because whenever you click the
card, rnouseUp goes directly to the card, which now has a
handler for rnouseUp In Its script.

Move the handler to the background level
Take the handler out of the card script and move it to the
Background script:

1. Open the script editor for the cord again.

Choose Card Info from the Objects menu and click Script, or
simply press Command-Oplion-C.

2. Pre" Command·A to Hlect the handler.

3. Pre" Command-X to cut the script and place It on the
Clipboard.

The card script should now be empty.

Action at a distance 49

4. Click OK.

S. Open the script editor for the background by c"'ooslng
Bkgnd Info from the Objects menu and clicking :ne Script
button •

• :- Keyboard shortcut: Press Command-Option-B.

6. Press Command-V to paste the handler.

7. Click OK.

e. Te.t the e"ect •.

Using the Browse tool, dick the Receiver button, the Sender button,
and the card, just as before. You should hear the notes play.

;\OW, move to any other card in the stack and click any area except a
button or field-you should still hear the notes play. The handler is
now available to any card sharing the background.

If you moved the handler to the script level, the same thing would
happen because this practice stack has only one background;
however, in cases where a stack has more than one background,
only a handler at the script level or above would be available to all
cards of all backgrounds .

• :. Other handlers intercept messages: The reason you don '[hear
the notes if you click one of the travel bunons or other buttons
besides Sender and Receiver is that those buttons already contain
mouseUp handlers. Once a message is handled, it's not passed
on unless you specifically pass it using the pa s s keyword.

Change the handler
If you were to leave the mouseUp handler where it is, in the
background, you'd hear notes any time you happened to click
somewhere other than a button. You can do one of two things: take
the handler out of the background and move it back to the button;
or change the handler'S name from mouseUp to something
else-in other words, change the handler so that it no longer
responds to mouseUp, but to some other message. These steps
show you how to do the second alternative:

so Chapter 3: More About Messages

•

(

(

(

1. Open the script editor for the background (Command­
Option-B).

Use Command-Option-B or choose Bkgnd Info from the Objects
menu and click Script.

2. Select the word mouseUp in the first line

Drag across the word as you would when selecting any text.

3. Replace It by typing the word playTune

P layTune serves as the alternative name. You could use any
other word (except a HyperTalk keyword); this name seems
appropriate because it describes the action of the handler .

• :. By the way If you are using the flash 3 alternative instead of
the notes, you could use a different name, such as
razzleDaz::le . or something more fitting (don't use flash
though). Be sure, however, that you use your alternative name in
the steps that follow.

4. Select the word mouseUp In the lost line

5. Replace It also by again typing the word playTune

The name used after on must match the name after end

You have now changed the handler from a mouseUp handler to a
playTune handler. It will not longer respond to the mouseUp
message, but instead to the message playTune. But where does a
pI ayTune message come from?

The answer is that you'll put a new handler in the Receiver bullon's
script that will send a playTune message:

6. Click OK to save the handler and close the script editor.

You're back to the card again.

7. Open the script editor for the Receiver button.

Use Option-Command-click with the Browse tool, or
Shift-<iouble-click with the Button tool.

You should see the on mouseUp and end mouseUp lines
already in the sCript editor. HyperCard always adds the lines·to
"empty· button scripts.

Action at a distance 51

a. Type the following word between the two lines:

playTune

The completed handler should look like this:

on mouseUp
playTune

end mouseUp

a. Click OK to save the handler and close the script editor.

9. Test the e"ects.

Clicking the Receiver button or the Sender button should have
the same effect as they did before you moved the handler.
Sending mouseUp from the Message box to the Receiver button
should also work the same. But clicking anY""here else on the c3rd
won't cause the notes to play, because the background handler
isn't a mouseUp handler any more.

~ow, when the Receiver bunon receives mouseUp, its handler in
turn sends the messageplayTune. That message goes down the
hierarchy until it's intercepted by the playTune handler in the
background script

Try this: go to some other card, open the Message box (press
Command-M), type the word playTune and press Return. You'll
hear the notes because the Message box sends the word as a message
along the hierarchy.

(If you wanted to send playTune to some object not in the
hierarchy, you would use the send keY""ord in the handler to
specify the destination; otherwise, playTune alone is sufficient)

What you've done in this section is essentially define a new
command, which is named playTune. That's really all there is to
defining your own commands: think of what you want a command
to do, think· of a name for it, and write a handler that uses the name
after on and end, with the appropriate HyperTalk statements in
between. Then, to make the command work, send the name to the
object that has the handler in its script.

.. By tbe way: It's probably best to avoid using the name of an
existing HyperTalk command or function as the name of a
command you create. See the HyperCard Script language GUide
for details on naming commands. .

52 Chapter 3: More About Messages

""

''-J)

(

(

Confirming actions
Sometimes it's useful to be able to put a message on the screen and
get a confirmation (or an action someone has taken. for example,
most Macintosh applications give you a chance to change your
mind before erasing a disk by putting an alert box on the screen in
which you confirm your choice. You can make your own alert boxes
in HyperCard using a HyperTalk command. In this section you'll
learn how to do it.

A disappearing act
Go to Card 2 of your practice stack if you are not there already; then
follow the steps below.

1. Create a new buHon on Card 2 and name it -Oisappear.­

Command-drag with the Button tool as before and double-click
to see the Info box.

2. Select the usual -Show name," -Auto hili!.," cnd Nround
reet" options.

3. Click Script to .. e the script editor and type this line
between the existing lines:

hide me

Me always refers to the object that contains the handler-in this
case, the button itself.

4. Click OK.

5. Switch to the Browse tool and click the Olsappear button.

"''hen you click this bunon with the Browse tool, it ... disappears.

To get the button back again,

1. Press Command·M to see the Message box.

2. Type this .tatement and pre" Return:

Show button "Disappear"

A disappearing oct 53

(e By the way: Once you've ryped a statement into the Message
box, it stays there until you rype something else-even if !.he box
is invisible. All you need to do to send the message to HyperCard
again is to press Return.

You can use the hide command to make a field. a button, a
window (such as the Message box), the menu bar, the background
picture, or the card picture invisible. (The card picture is any
graphics on the card that aren't on the background). The show
command does just the opposite.

Next, you'D create an alert box that will appear whenever you click
the Disappear button.

A command to put up an alert box
suppose you wanted anyone using your stack to think twice about
making the bunon disappear. You can write a handler to make sure
that happens:

1. Open the script editor for the Disappear button.

t:se Command-Option-click with the Browse tool, or use
Shift-double-c!ick with the Button tool.

2. Place the Insertion point after mouseUp in the first line
and then presl Return to start a new line.

3. Type the following lines:

beep
answer "00 you really mea!": :hat ,?If with II ':'es " ,.. "!'\C H

if it is "Yes" then

4. Click In front of end mousaUp to reposition the Insertion
point.

5~ Type this line and preIS Return:

end if

Here's what the complete handler should look like:

54 Chapter 3: More About Messages

(

o~. 1l'.o~set,;p

beep

answer "Do you really mean it?" with "':'es" or "~o"

if it is "res" tr,en

hlde me

end if
end mousetJp

If you have extra lines, you can delete them, although they won't
make a difference in how the handler works. Press Tab to format the
script, if necessary (the lines indent automatically).

6. Click OK.

7. Click the Oisap~ar button with the Brows. tool.

When you click the Disappear button now, you should hear a
beep and then see the alert box shown in Figure 3-2.

Do you really mean that?

(__ Y_e _$ __] ~I _iiiiliNOiiiiliiiiiliiiiIJ))

Figur.3-2
The alert box you created with the Answer command

0) SomethIng else happened? If you get a ·Can't understand ... "
message instead, go to the button's script and check the typing.
Make sure no lines are left out and that the lines are in the correct
order. Then try again.

a. Click No 10 the button doesn't disappear.

If you click Yes by mistake, just press Rerum; your message to
show the button should still be in the Messa.ge box.

A disappearing act 55

In the alert box you have the choice of clicking a Yes bunon or a :-\a
bunon. These buttons are labeled with whatever you specify in
quotation marks in the answer command statemenl. You can
have up to three choices. Whichever choice you put last in order
will be the button farthest to the right with the extra dark border; use
this place for the the "best" or ·safest" choice-the choice that can
do no damage. 1bis farthest-right button is also the one chosen by
pressing Return or Enter.

The handler includes directions for what HyperCard should do if
the Yes button is clicked:

if it is "Yes" then
hide me

end if

The word it refers to whatever button-Yes ar ;-':o--you click.
(The word it has a specific identity in HyperTalk; you'll learn
more about it in the next chapter.)

If you click the ~o button, nothing is specified, so nothing happens;
the bunon won't disappear.

In English, the complete sCript says

"When this button is clicked, sound the system beep and let the user
answer the question 'Do you really mean it?' by clicking either a
button labeled 'Yes' or a button labeled ';-':0,' with ':'\0' being the
emphasized choice. If the answer is 'Yes,' then make this button
inVIsIble. That's it, and that's all."

You can use a handler like this anytime you want yourself or
someone else to have a second chance at something. Far instance,
it would be nice to have an opportunity to change your mind before
deleting an important button or making some other potentially
disruptive change.

An additional action

You can include an action for each bUllen .in the dialog box. Add
one for the "No" choice:

56 Chapter 3: More About Messages

(

(

1. Go to the script editor for the Disappear button

2. Click to poslNon the pointer In front of end if.

3. Type the followln; lines (press Return otter each line):

else

answer "Glad you reconsidered." with "No prcb~e::,.'·

The lines will automatically indent. \X'hen you press Rerum for the
final time, end mouseUp should line up at the leftmost margin.

\X'hen you have typed everything correctly,

4. Click OK.

5. Try the Disappear button.

Now, when you click the Disappear button with the Browse tool you
get the beep and the alert box just as before. Clicking Yes causes the
bunon to disappear. Clicking No makes another alert box appear
with a gratuitous comment and reply-just for fun.

Here's the completed handler in the Disappear button script:

on rr.c~ se:.;p

beep

ar.s~e!' 11:;0 you rea:ly :'!"tea:-: : a:.:" "'':':'!": "~es"

::..~ i~ :s "Yes" then

~:ce me

e:"se
ar.s\JWe: "Glad you reconsidered. It ::.r. .. ~c F':cc:e- II

e:-.ci if

If structures
If, then, and else are HyperTalk ke)"W'ords that work together
in specific arrangements called if structures. If strucrures arc
used to test things and to take different actions, depending on the
results. You included an if structure in the handler for the
Disappear bunon to specify the action HyperCard should take when
someone clicks a button in the alert box resulting from the first
answer command.

A disappearing act 57

I f structures come in a few varieties; three of them are shown here.
In the examples that follow, the placeholder word condition stands
for something that can be tested as either true or false. Statement is
a HyperTalk command line, and statementList is a series of
command lines.

if condition then slal4menl [else stal4menl]

This structure is a single line in a handler. You can use a single linc
as long as statement is a single HyperTalk command. (The
statement you would use following else would be different from
the one following then.)

if condition then

slatementLisl
;else

stalementLtsl]
e::d if

This version contains two lists of commands; one list following
then and another, of alternatives, following else. Each
statement must begin on a separate line. In this structure, you must
include end if to signal the end of the statements

i: condlilon then

statementLisl
[else

:if condition then

statementLtst
(else'

if condition then

slat~mentList

end if]

end if]

end if

This elaborate-looking structure contains several nested if
structures, each of which requires an end if. ~estcd structures arc
useful when you have a number of different possible conditions and
want to specify a number of different possible actions.·

58 Chapter 3: More About Messages

(

Nested means one irl$lde
enomer, InSloe enomer, In5Ide
anomer ... tor as many times as
you wont The limit in HyperCorCi
tor nesting IS 32 leve!s

Anytime you use a several-line structure, you need to include end
if to complete the structure, making it clear to HyperCard that
you're finished. If you put too few (or too many) end if
statements, HyperCard will put up a box like that in Figure 3-3 when
you try to run the script

Not enough ends.

(Script) I(Cancel))

Figur.3-3
An alert box telling you to add one or more End stotements

This feature of HyperCard is especially useful when you write nested
structures like the last one of the four syntax examples The deeper
your nesting, the harder it can be to keep track of how many end
statements you need. HyperCard helps you out.

Syntax summaries
This section describes the syntax (most generalized form) of the
send keyword and each command you used in this chapter.

You don't have to try to memorize these statementsj refer to them
as needed when writing your own handlers.

Answer
The basic structure for answer is this;

ans er "q~stJon" [.... it.h "reply" [or "reply2" lor··r.eply3" 1 ;;

Syntax summaries S9

Question can be any statement you like-usually a question invites
the user to answer. Reply, reply2, and reply3 are the labels for
buttons representing the choices. The quotation marks are
required.

You can have as many as three different replies; if you don't put a
reply, HyperCard displays a single OK buuon in the box. The size
limit for a reply is 13 characters, depending on the width of the
characters.

The label of whatever button gets clicked is put into a special place
named it. You can write other commands to use it or to
evaluate it. In the handler you wrote for the Disappear button, the
action of the if structure evaluated what it was. You'll learn
more about it in Chapter 4, -Fields, Il, and Other Containers."

Click
The click command has this general form:

click at location [with key), key2) , key3j J J

The click command has the same effect as clicking manually
with the mouse. Location is a description of a screen location; for
example, click at the location of card button l.
Location could also be horizontal and ven.ical screen coordinates.
(In Chapter 5 you'll learn more about screen coordinates.)

Key, key2, and key3 are optional keys you can include with the
click. You can use only these key names: commandKey,
optionKey, and shiftKey. For example, a Shift-click would be
written as click at location with shiftKey.

Hide
Here are the four structures of the hide command:

hide menuBar

hide windowName

hide object

hide picture'

MenuBar is, obviously, the HyperTalk name for the menu bar.
WindowNameis the card window, one of the paleues (Tools or
Patterns), or the Message box:

60 Chapter 3: More About Messages

(

(

card window

tool window

pattern window

[the; message [box]

Object is the name or description of a button or field; for example,
background button 1. Picture is either card picture,for
all elements on the card level created with a Paint lool, or
background picture, for graphic elements on the background
level. You can also use the form hide picture of descrIption,
where descriptiOn is the name or identifier of a card or background.

Send
The syntax of the send statement you used is

send "messageName" [to object]

The quotation marks around the name of the mess3ge aren't needed
if the message is a single word, like mouseUp. Ob;ecils an identifier
for an object, such as its number, ID, or name. The name must be
in quotation marks.

Send directs a message to any object in the Current stack or to
another stack, but not to a specific object in another stack. The
send keyword sends a message directly to the specified object,
bypassing any other objects in the usual message-passing
hierarchy.

Set
The general structure of the set command is

set [the) property [of object) to value

Property stands for a changeable characteristic of the HyperCard
environment or of an object. For example, the user level is a
property of HyperCard;the statement set userLevel to 5
within a handler or typed into the message box would set the user
level to Scripting (value 5). Object is an identifier for an object, such
as its number, ID, or name.

What vaiue is depends on the property; some 'properties, such as
hilite, have the values true or false, while others lake
numerical values.

Syntax summaries 61

A complete description of properties is beyond the scope of thiS
book. The Appendix contains a list of the propenies.

Show
The show command also has four versions:

show menuBar

show windowName [at b, vJ

show object [at b, v)

show picture

See the hide command, just previous, for a description of the
placeholders. In the optional phrase at b, v, the b is a number
specifying horizontal location on the screen, and the v specifies
vertical location. The two numbers are separated by a comma. ThiS
optional phrase lets you place the window or object wherever you
want. If you don't include it, the window or objcct aprx;;w, whcrClcr
it was before it was hidden.

Later on, in Chapter 5, you'll learn more about the horizontal and
venical screen coordinates.

Wait
The wait command can have any of three forms, depending on
what you want it to do:

wait [for] number [seconds]

wai t until condition

wai t while condition

Numberis a whole number. If you want seconds. you must add
seconds or the abbreviation sec or seCSj otherwise.
HyperCard uses tJcks, which have a value' of Y60 second. :\0 other
measurements (such as minutes) can be used.

In the second and third forms. condition has to be some state that
can have either the value true or false. In the second form the
command waits until the conaition has the value t rue. In the third
form. the command waits while the condition has the value true.

62 Chapter 3: More About Messages

(

(

(

What you've done in this chapter
You've done a lot. You learned about HyperCard's message­
passing hierarchy and saw how placement of handlers can affect the
range of their actions. You also used the if structure-a useful
structure for taking action in a specific case or condition.

Here are the terms you've added to your vocabulary:

Commands

answer

click

flash

hide

set

show

wait

Keywords

else

end

end if

if

on

This command puts an alert box on the screen
containing a question and up to three response
buttons.

The command that has the same effect as clicking
with the mouse button.

A command that causes the card image to flash. It's
an external command (sometimes called an
XOfD for short) included with HyperCard.
External commands are written in a language other
than HyperTalk.

A command that hides buttons, fields, windmvs,
and pictures.

A command that changes the value of propcrtJes.

A command that causes hidden buttons. fields.
windows, and pictures to appear.

A command that causes HyperCard to wait for
something to happen or for a certain length of
time.

A word used when you want to speafy a second
alternative in an if structure.

You first encountered this keyword in Chapter 1; it
signals the end of a handler.

The last statement of an if structure.

The keyword that begins special structures called
if structures ..

You first encountered this keyword in Chapter 1.
All handlers begin with on.

What you've done in this chapter 63

send Sends messages to objects directly. It works in the
Message box as well as in handlers.

then A keyword used in if structures before the list of
statements to be carried out.

Properties

hilite

Miscellaneous

it

secs

with

Chapter 3: More About Messages

A button property; if its value is t rue the button
is highlighted.

The place where the answer command puts the
label of the bulton chosen.

An abbreviation for seconds.

A preposition; used in the answer command
and some other commands.

'.

)

(

Chapter 4

Fields, "It." and Other
Containers

65

In everyday life, a container is something YOU can put things into. In
HyperTalk, a contaJner is a place in the computer's memory where
you can put something of value, such as a text· or numbers. You can
then get whatever you have put into a container and use it elsewhere
as needed.

In this chapter you'll learn about different kinds of containers, and
you'll see how handlers can work with values in containers to do
such things as calculations.

As in previous chapters, if you took a break, start up HyperCard and
go to the praaice stack before you go on.

Fields as containers
Fields are objects-they can receive and send messages and can
have scripts. Fields are also containers. They usually contain text;
specifically, regular (field) text rather than Paint text.

You already used a field as a container in Chapter 1, when you wrote
the openCard handler to label the cards. Here's the handler (you
can also see it in the script editor by opening the stack script);

o~ openCa::d

put "7hi.s is Card" &, n~mbe!" cf :r,is ca:o ::-.:c ! :e_c

e~a openCa::a

This handler uses background field 1 to hold a string of characters
made up of the text string "This is Card" and the card's number
Every time a card opens, this handler puts the same thing, but wilh a
new card number, into field 1.

If you place a field in the background, it appears on every card
sharing that background; but the text that field contains can be
different on every card. An interesting feature of HyperCard is that
even though a background field is the container for the text, the text
itself remains with the card. This feature allows you to have card­
specific text that appears in the same place and in the same style on
each card, even though its content changes.

66 Chapter A Fields, "It: and Other Containers

(

(The Field tool

Important Deleting a background field deletes 011 the text for thot field on
all cords, even though the text ·belongs· to the cords. Once
the text is gone. you can't get it bock

HyperCard presents on olert box when you use the Cut or
Cleor commands on a background field so thot you con
reconsider,

Although fields most often contain text, they can also hold
numerical values .

• By tbe way: Numerals can be interpreted either as numeric
values or as text strings, depending on what a handler does with
them.

A simple calculation
In this section you'll create some fields to hold numbers and then
write a nandler to use those numbers to calculate simple interest on
a one· year loan. The handler then will put the results-amount of
interest, total amount of loan, and monthly payment-into other
fields. ~o expertise with mathematics is required on your part'

Set up the fields
You'll need five fields as containers for the numbers You'll make
card fields instead of background fields because you don't need the
fields to be on every card of your practice Slack.

Creating tn. first fteld

Follow these steps:

1. Qo to Card 3 ot the pracHce stack.

You can use this card for your -field work.'

2. Choos. the Field tool trom the Tooll menu.

3. Hold down the Command key and dra9 to crttate a new
field.

Make the field about an inch wide and a quarter inch high.

A simple calculotion 67

4. Move the field to the left of center on the card.

The location isn't too important now; later you can adjust it.

5. Double-click the field to s .. Its Info box.

Notice that this field is card field 1.

6. Name this field Amount and select -shadow" as the field's
"yle.

7. Click the Font button to see the Text Style dialog box.

e. Change the font .'ze to 14.

This sening will make the numbers in the fields easier to read.
The Line Height setting automatically changes to 18.

9. Click OK.

The Field Info box closes; the first field should still be selected.

Copying and naming the other fields

Instead of creating new fields from scratch, you can just make
copies. Be sure you make the copies in the order specified so you
can keep track of which field is which.

1. PoslHon the pointer In the middle of the selected field. hold
down the Option key. and drag to duplicate the field.

When you copy the field, HyperCard automatically identities the
copy as card field 2. When you release the mouse bunon, the
second field is automatically selected.

2. POIIHon the copied field below the first one.

You can drag the field by its center the same way you wou!d a
bunon to get it in the right position.

3. Double-click the field to 1M Its tnfo box.

4. Name the field llate

All other settings are the same as the first field, which is just what
you want ..

S. Click OK.

The Info box closes.

68 Chapter 4: Fields. "It: and Other Containers

)

(

Cord field • Amount"

Coro field 'Rote'

Coro field 'Interest'

Coro field 'Totol'

Cord field 'Montnly"

6. Repeat the Option-drag procedure on card field 2 to create
a third field.

7. 'oslHon the new field 3 on the right Iide of the card, with
some lpace In the middle betwHn It and the first two fleldl.

You can adjust the spacing in a moment after you've made all the
fields.

t. Double-click the fteld to 1M It I Info box and name It
Intere.t

9. Click OK.

10. Repeat the OpHon-drog procedure with field 3 to make a
new field ~ below It: name thll field 'rotal

11. Repeat the OpHon-drag with field ~ to make a new field 5
below field 4; name field 5 Monthly

Your screen should now look roughly like that in Figure ".1. If vou
want to adjust the position of your fields, go ahead. Leave some
room above each field so you can type a label. Don't be lOO
concerned with precise placement--the important thing is lhe
Scripting practice cOming up after the next section.

• file Edit &0 Tools Objects

Practice Stack IThlS is Cerd 3

rlVW • I

The ftve new cord ftelds

A simple calculation 09

ilommmmmmmmll
..n....,..-..~
~"i '-' ~ . ~ ,

l!,U"-.
!:B DO

~O<::?
marl

The Paint Text tool

Labeling the fields on the card

l"ext, put Paint text labels above each field to help you identify their
contents. Follow these steps:

1. Choose the Paint Text tool 'rom the Tools menu.

2. Choose Text Style 'rom the Edit menu.

3. Select Geneva 12 and click OK.

4. Click IUlt above the first new field to place the Insertion
point.

5. Type -Amount- (don't Include quotation marks).

6. Click above card field 2, which should be the one below card
field 1.

7. Type -Intere.t Rate- (don't Include quotation marks).

8. Add labels above the other fields as follows:

field 3
field 4
field 5

Intere.t
Total Amount
Monthly Payments

Don't worry about getting the text lined up exactly-just gel the
labels close enough for practice. The card should look something
like the one in Figure 4·2.

70 Chapter 4: Fields. Oft: and 01tler Containers

(

• Fill Edit Go Tool. Objects

!~:ii"l';:l:I';!i:t;!:!l~!:~r,::r,mIllr.r.KWlj!;~mim:::;:iiHH:!H:!:;::!!!'in!',::,!,·;:;;::,.: ,'.',' .,,;.;'" '.'

ilil Practice Stack jTh15 15 Card 3

Interest

Amount

Totel Amount

Ret.
Monthly Peym.nt

I I

FIgure '-2
Point text labels above the five fields

A calculating handler
Next, you'll create a Calculate button and put a handler into its
script to make use of me fields for the interest calculation

1. Switch to the Button tool.

2. Command-drag to create a new button.

You can put the button anywhere you like on the card In the
middle with fields on each side is one possibility if YOU have
room, but its placement won't affect its operation.

3. Double-click the button with the Button tool.

The Button Info box appears.

A simple calculation 71

4. Name the buHon Calculate and choos. uShow nam
-Auto hlllte,- and ·round rect ..

6. Click the Script buHon and type th.s. lines betw.en the
existing lines:

set numberFormat to 0.00

get card field "Amount"

multiply it by card field "Rate"

divide it by 100

put it into card field "Interest"

add card field "Amount" to it

put it into card field "Total"

divide it by 12

put it into card field "Monthly"

7. Cheek your typing caretully, and th.n click OK.

The first thing this handler does is change the number format of
HyperCard to "dollars and cents" (two places to the right of the
decimal POlOt). The number format is a HyperCard property aptly
named numberFormat. The set command gives this property
the value 0.00 (zeros, not letters), which speCifics the standard
dollars-and-cents format.

The get command fetches a value from a container-in this case,
field 1, named "Amount"-and puts it into it. You first
encountered the word it in the last chapter; the answer
command also uses it to store the label of a clicked button. (The
button'S label is treated as a value.)

It is a sort of ever-present container. Once a value is in it,
HyperCard can perform arithmetical operations. The result of an
operation on it always goes back into it, replacing what was
there before.

In English, the handler would say almost exactly the same thing as it
does now in HyperTalk. All the subsequent statement do is perform
operations on numbers from card fields using it and put the
results into other card fields.

The handler as written is not the most elegant way to accomplish the
calculation. It's used as an example here because it shows each step
of the calculation separately.

72 Chapter 4: Fields. "It: and Other Containers

(

Important In HyperTalk you must use 'card" or ·cd· in front of "field· to
specify a card field. If you leave out 'card: HyperCard assumes
you mean a bockQround field.

Conversely, you must use 'backQround: 'bkgnd: or ·bg· in
front of ·button· to specify a background button. otherwise
HyperCard assumes you mean a card button.

(The abbreviations "cd· and "bg· are not available in
HyperCard versions earlier than 1.2.)

Test the handler
The best way to see how the handler works is to try it by typing some
values into the "Amount" and "Interest Rate" fields and clicking the
Calculate button.

Let's say you want to know what the interest, total amount, and
monthly payments would be for a one-year loan of 58,000 at 165
percent annual simple interest.

1. Choose the Browse tool.

2. Click Inside field 1 to set the insertion point.

3. Type 8000 for the amount $8,000.

Don't type the comma or the dollar Sign-they will cause an
error.

4. Click in field 2 and type 16. 5 for the interest rat •.

Don't include a percent symbol.

5. Click the Calculate button.

Almost instantly, you should see numbers appear in fields 3. 4, and
5. Those numbers should be

Interest 1320.00

Total Amount 9320.00

Monthly Payments 776.67

A simple calculotion 73

set :"':-..;:"",be:ro:~,a: t.o c. c:
get. ca.:d fie:d uA!"'lo'...lr.:"

.:. Something else happened? If you got different values, no values
at all, or an alert box, check the script. Make sure you havcn'lleft
out a line and that the handler is free of typing errors. Check that
you have the fields labelled correctly aook at their Info boxes to
verify their names). Also be sure you haven't put a comma or
dollar Sign into field 1 or a percent symbol into field 2.

Try some other values for·amount and interest. (You'll have LO

select and type over the numbers already in fields 1 and 2.) 111cn
click the Calculate button to see the new results.

The handler with comments
The following version of the handler shows comments that describe
the action of the handler's statements. Comments are text lines
typed into a script that are not part of the instructions. In
HyperTalk, a comment must be preceded by two hyphens (- -); the
double hyphen indicates to HyperCard that the text following is a
comment and should be ignored.

You do not have to type these comments into your own script; lhey
are shown for example only.

Dollars and cent s.

~:';':'::':'F':'Y it oy card fie':d "Rate"

The value in "A:r,o ... n:" ge::s PI::: ;:'~.:c

The result of the rr::tipl.:.ca:.:.on

d:"vide :t by lee

~'..:t i: ':';:to card fie':d "I:::erest"

remains in It.
Because field "Ra:e" is a pe!'ce~,:.

The amount of ir.terest.

Note: The Pl:t cc~~ano p~ts on':'y :~,e ';A:;:-:'

of It into cara ~ie:"d 3; :: s::':':

contains the sa~e va:~e. :~e ?~:

command doesn':: e~?:y :::.

add ca:-c ~ie:d HAT.o~n:." to it In':.erest plus or:ginai a~c~n:.

And the ~otal a~c"wnt. is s~ill i:'i p~t it into care field "Total"

di-vide it by 12

put it into card field "Monthly"
end mouseUp

To get monthly pay:!le~::s ~or C:1e yea:.

The final action.

As always.

Comments typed into the'script editor would not look as neat as
those shown here. In this book, the comments have been formatted
for readability.

74 Chapter 4: Fields, 'It: and Other Containers

J

(

(

Although HyperCard ignores comments, other scripters generally
appreciate them. Adding complete comments to your scripts is an
excellent way to document what your scripts do. Comments not
only help other scripters understand what you've done, but also
help}Ou remember, when you look at old scripts long after you've
written them.

Your comments don't have to be as elaborate as those in the
example. In fact, the more clean and elegant your handlers are, the
fewer comments you're likely to need.

Other containers
Other HyperTalk containers are the Message box, the selection,
and variables.

The Message box
You can see the Message box anytime by pressing Command-;\1.
You use the Message box to give a one-line command to HyperCard
and to search for text

The Message box is a single-line container. The put command
uses the Message box as its destination if you don't specify any other
container. For example, typing card field 5 in the Message
box and pressing Retum would cause the contents of card field 5 to
appear in the Message box; the same thing would happen if put.
card field 5 were in a handler.

You can type a HyperCard function into the Message box and press
Return to see the value of that function. (See "A Few Words About
Functions" near the end of this chapter for an example.)

You can also use the Message box as a calculator by typing numbers
and arithmetic operators into it-say, 350 - 62. The answer,
288, appears in the Message box when you press Return.

The selection
Anytime you select regular text in a field by dragging across it, the
part that appears highlighted is put into a container called the
selection. The selection can be a destination for the put
command.

Other containers 75

Text located using the HyperTalk find command is not put into
selection.

Variables

A variable is something that can have any value you choose to give
it. The values of variables change; by contrast, the values of
constants are always the same. For example, pi is a HyperTalk
constant having the value 3.14159265358979323846. You can name
variables anything you want You create a variable simply by
naming it and using it with the put command. For example, in a
handler you might have

You can name variables anything you want. You create a variable
simply by naming it and using it with the put command. For
example, in a handler you might have

put 16 into Ham

PL:t 2 into Eggs

put Ham+Eggs

"Ham" is the first variab:e name.

Likewise. The names are up to yo\,;.

Puts 18 into the Message box.

The name ofa variable must start with a leller and can comain any
combination of letters and numbers plus the underscore character
(_), up to 29 characters maximum length. Operators or s peClal
characters can't be used,

You can use variables to streamline calculations by making them
more like formulas. Here's the first parr of the handler for the
Calculate button, using two variables, Amt and Rte, to figure the
interest rather than using the get command and it,

set numberFormat to 0.00

put card field "Amount" into Amt

put card field "Rate" into Rte

put (Amt;'Ratel/100 into card field "Interest"

Instead of using the multiply and divide commands, this
version uses the arithmetic symbols * and / to combine the
variables on a single line. (See the section ·Syntax Summaries"
later in this chapter for more information on arithmetic
commands.)

It is a variable that's always available, Some HyperTalk
commands, such as answer and get, automatically put a value
into it.

76 Chapter 4: Fields. "It: and Other Containers

... ~

(

-:. Local versus slobal: The variables discussed here are local
variables; that is, they and their values exist only within thc
handler in which they're created. HyperCard also has global
variables. whose values are available to all handlers everywhere.
Global variables aren't covered in this book. See the HyperCard
Script lansuase Guide.

A few words about functions
HyperTalk contains both commands and functions. A function
produces a value of some sort. You can use names of functions in
commands LO gel values, without having to figure out how to writc
out the formula as part of your handler. A few examples of built-in
HyperTalk functions are

average (list) Finds the average of a list of values. The
values must be separated by commas.

compound (rate, periods) Finds the value of an

the date

the diskSpace

the mouseLoc

the sound

account bearing compound Interest.

Gives the current date.

Gives the number of bytes of free space.

Provides the location of the pointer on
the screen.

Gives the name of the sound currently
playing, or if no sound is playing, gives
"done".

You can type a function into the Message box and get a value when
you press Rerurn. Press Command-M to see the Message box and
type these functions:

the date

the time

the diskSpace

ave rage (17,24, 56,52) (The answer should be 37.25.)

You must include the word the with functions that require it.
Typing date by itself into the Message box 'won't work.' .

A thorough discussion of HyperTalk functions is beyond this book's
scope. The Appendix and the Quick Reference Card contain a list of
all HyperTalk built-in functions.

A few words about functions 77

An op.rator is a character or
group Of characters tnot couse
on operation. such as aOOl!iOn or
subtraction. or an evaluotlon.
such os comporlson of two
tr"lings. See AppenOlx A for a :ist
ot HvperTaik operators

Syntax summaries
This section contains syntax descriptions of the commands you
used in this chapter. Use this section for reference as needed.

The arithmetic commands
The arithmetic commands are add, subtract, multiply, and
divide.

add expression to destination

subtract expression from destination

mul tiply destination by expression

di v i de destination by expression

In all four commands, expression is something having a numerical
value. Destination is a container.

HyperTalk also contains arithmetic symbols, or operators. that
perform calculations: + (addition), - (subtraction), *
(multiplication), and I (division). For example,

put 3 into it
add 7 ttl it

does the same thing as

put 3 + 7 into it

In both cases the result is lOin it.

Get
The syntax of the qet command is

qet expression

Expression is a description of something having a value; for
example,

78 Chapter 4: Fields. "It: and Other ContaIners

(

get field 1
get the name of background button 3
get the userLevel -- Puts the value of the

user level into It.
get 72+13 puts 85 into It.

Get puts lhe value of expression into it. In fact, lhese IWO

commands are identical:

get field 1

put field 1 into it

In fact, anything you might want to do with the get command can
probably be accomplished just as well with put. For example, the
lines

get the date
put it

do the same thing as

put the date

Put
The syntax of the pu t command is

pu t expression [preposition tiestination J

Expression is a description of somelhing having a value; it can be a
text string or a number. Preposition is either into, before, or
after. Destination is a container, such as it, a field identifier, or
some olher container. For example,

put 256 into card field 3

Into causes anything already in the destination container to be
replaced by the expression. Before places the expression at the
beginning of what's in the container (if anything), and after puts
the expression at the end.

If you don't spedfy a destination, the expression is put into the
Message box.

What you've done in this chapter 79

What you've done in this chapter
In this chapter you practiced using fields as containers for numbers
and wrote a handler to perform a calculation. You also learned
about other HyperTalk containers, such as the Message box, the
selection, and variables. You also saw how comments are add(:d
to scripts using the double-hyphen (- -).

Additions to your word list:

Commands

add

divide

get

multiply

subtract

Prepositions

after

before

into

Properties

Fetches a value and pu ts it into the variable it.

nurnberFormat A property of the HyperCard environment.

Containers

it

selection

You change it with the set command.

An all-purpose variable container used as a
destination by some commands

A container that au[Omatically holds whatever text
might be highlighted by dragging across it to select
it.

80 Chapter A: Fields, ·It: and Other Containers

(

Chapter 5

Animation

(

81

(

82 Chapter 5: Animation

With HyperTalk, you can write commands to change the images on
the screen rapidly, creating animation effects. Animation
combined with visual effects and sound can turn a presentation, a
demonstration, or a training stack into an exciting multimedia
production. In this chapter you'll explore two of the ways to animate
images.

The first kind of animation involves using HyperTalk commands to
manipulate graphics on a single card; the second kind uses
different images on a number of cards, which arc then shown in
rapid succession.

If you lOok a break after the last chapter, start HyperCard again and
go to your scripting practice stack.

Animation on a single card
An amazing facet of HyperCard is that anything you can do in with a
menu command you can also do with a HyperTalk command in a
handler. You can achieve an animated effect by writing a handler to
select a picture and cause it to move.

Make something to animate
The first step is to create a graphic image to animate. The one you'll
make next is simple to do using the Paint tools. You might want to
tear off the Tools menu and work with it as a palette so you can switch
tools more easily.

Drawing a circle

Circles are easy to make with the Paint tools. Follow lhese steps:

1. It the Message box Is visible on the screen, clos. It by
pressing Command-M or clicking Its clos. box.

If you continued on to this chapter from the last chapter, you
might still see the Message box. If not, you can just go on to the
next step.

2. Go to Card .. 0' the ScriptIng Stack.

Your first animation effect will tak~ place entirely on this card.

)

The Oval tool

(

(

3. Choose the Oval tool from the Tools menu (or palette).

You'll use this tool to draw a circle on the card. First, you'll need
to set the line width for the circle and set the Draw Centered
option.

A. ChOOM Une Size from the Opnonl menu.

A small box appears with line width choices.

5. Click the second width from the leH.

The une Size box closes automatically when you make the
selection.

6. Choose Draw Centered trom the Options menu.

TIlls option causes the circle to be drawn from [he starting point
outward when you drag. which makes it easy to center the cirde
on the card.

7. Position the crossbar pointer near the card's center, hold
down the ShiH key. and drag until the cirele is about three
Inche, in diameter.

Holding down the Shift key makes a perfect circle.

e. Release the moUN button when the Circle Is the right lize.
(Release 'he Shfft key also.)

If you're not satisfied with your first attempt, you can press
Command-Z to undo it and try again.

Make sure that the circle doesn't overlap or crowd any other
pictures or decorations that you may have drawn on the card with
the Paint tools; erase any other graphiCS that come tOO dose with
the Eraser tool.

Drawing a smatler circle inside the first one

Next, you'll make a smaller circle inside the large one and then
poSition it near the large circle's edge.

1. POlinon the crossbar pointe, Inlide the large circle. hold
down the Shin key. and drag until the circle II anywhere
from three-quarters '0 an Inch In dlame)er.

Your small circle doesn't have to touch the edge of the large one
yet-you'll adjust its position next. Don'[click anywhere else
when you're finished drawing it; go right on to the next step.

Animation on a single cord 83

84 Chapter 5: Animation

2. 'mmedlat.,y pr ... Command·S.

Pressing Command·S selects the last thing you drew; in this case,
the small circle. (You can cell ie's selected because it's
·shimmering.") TIle crossbar pointer changes to the Lasso .

.. Didn't worll? If the smaller circle didn't get selected, just use the
Lasso to encircle it-or switch to the Selection tool, drag across
the circle, and then press Command·S to tighten the selection.

3. Mov. the LaIIo tool polnt.r to the edge or the •• 'ect.d
circle untU the tool chang •• to the arrow polnt.r.

4. WIth the arrow polnt.r on the .dg. of the small clrcl., hold
down the mouse button and drag the circle until It touches
the .dg. of the larg. clrcl •.

See Figure 5·1 for an example of how Uie graphic should look. It's
nne for your version to have the smaller circle in some oUier
location.

.. File Edit Go Tools Objects

Practice Stack I TnlS :S :i.'l!'"::: .::

i'
I

1,
i:

i
I

l~"
Flgur. S-l
The smeller circle inside the large one

Filing In the smaller circle

You can fill the circle with a pattern or with plain black.

The Bucket

(

1. Choose the lucket from the Tools menu or palette.

2. Choose a paHem from the 'oHems menu, unless you lust
want to u .. block.

Black is automatically seleaed.

3. Click lnaicle the smaller circle.

The small circle should fill with the pattern you chose, or with
black if you didn't choose a paaern .

.. Everythtng changed? If the paint -leaked" out and filled other
areas besides the small circle, just press Command-Z to undo it.
Then you'll have to inspect the small circle using the FatBits
option for "holes· where the paint could leak through. Close any
gaps using the Pendl, and then try using the Bucket again. See the
HjperCard User's GUitU for details on using the Paint tools.

I··

The finished graphic should look approximately like that in
Figure 5-2.

'* rlle Edit Go Tools Objects
.. ; ;.'.:",

Practice Stack

l···· ~,
Figure 5-2
The finished graphic Image

Animation on a single cord 85

86 Chapter 5: Animation

Write a handler to use tools and menu
commands
To cause this graphic to rotate, you could select it and choose
Rotate Left or Rotate Right from the Paint menu. However, that
action would rotate the image 90 degrees only once. To make it
spin, you'd have to continue to choose a Rotate command
repeatedly. You can have HyperCard perform this action with a
HyperTalk handler.

You can select the image from a handler by using the choose
command to choose the Selection tool and then the drag
command to drag across the image. You'll do that in a moment;
first, you need to know the starting point and ending point for
dragging.

Finding the starting point

If you were going to drag across the graphic to select it, you would
position the pointer above and to the left of the image. That point
would be your staning point.

1. Press Command-M to s .. the Message box.

2. Choose the Button tool.

You'll make a button shortly; changing to the tool now allows \'ou
to use the arrow pointer, which is somewhat easier to pOSition,
for the next step.

3. Position the pointer to the upper lett of the graphic Image, as
you would If you were preparing to drag across it.

Be sure that the pointer is higher than the top of the image and
farther to the left than the left edge of the image.

4. Letting go of the mouse and leaving the pointer where It is,
type these words Into the Message box:

the mouseLoc

You must include the word the.

(

(

Pix.' is short tor picture
element. whict'1 IS the smallest
dot tnat you can draw on the
screen.

5. Press Return.

You should see [WO number in the Message box. The numbers
represent the horizontal and vertical position of the pointer on the
screen as measured (rom the top-left corner of the card window.
The distances are measured in pixels; the value of the top-left
corner of the screen is 0, O.

The mouseLoc is a HyperCard function that tells you the current
position of the pointer. As you learned in the last chapter, you can
type HyperCard functions into the Message box to get their values.

6. Make a not. of th.se two numbers; you'll need to put them
Into your animation handler.

Finding the ending point

You use similar steps to find the ending point for dragging:

1. Position the pointer to the lower right of the graphic image.

Make sure the pointer is lower and farther right than the Image.

2. With the polnt.r wh.r. It Is, type Into the Message box:

the mouseLoc

Again, be sure to include the.

3. Press Return.

4. Make a note of the new numbers In the Message box. These
numbers will also go Into your handler.

Making a· button and completing the handler

Next, create a button to hold the handler that will cause the
animation:

1. Create a new buHon and name It Spin

Choose the usual settings in the Info box.

Animation on a single card 87

88 Chapter 5: Animation

2. Click the Script buHon In the Info box 10 go 10 the script
editor.

3. Type the following line, between the existing lines,
substituting the numbe,. you made note of In the previous
section, for the one, shown here:

choose select tool

drag from 125,73 to 361,281 with com:r.andKey

repeat for 16

doMenu "rotate right"

end repeat

choose browse tool

Be sure to put in the numbers you got using the mouseLoc in
the Message box: the first number goes first (the starting point for
the drag), and the second number last (the ending point).
Specifying with commandKey has the same effect as dragging
with the Selection tool while holding down the Command key:
the selection is tightened to the perimeter of the image.

DoMenu lets you choose any command from an available
HyperCard menu. The command name must be inside quotation
marks.

4. Press Tab to tormat the handler.

Here's how the handler should look:

on rr,ouse'-lp

choose select tool
drag from 125,73 to 36~,28: w:::~, c::!':"!':"a~c;<,ey

repeat for 16

doMenu "rotate right"

end repeat

choose browse tool

end mou seUp

If you have any extra blank lines, you can select them and delete
them. HyperCard just skips them. however. when the handler is
read.

S. Click OK.

The script editor closes.

Trying it out

Switch to the Browse tool and click the Spin button

)

)

Important

You should see the graphic image turn through four complete
rotations; that's because the repeat statement specifics 16
repetitions of the 9O~egree Rotate Right command. If you had not
specified a number, the image would just keep turning "forever."

.c. By the way: You can press Command-period (.) to stop a
handler from running-a useful feature with "runaway" handlers.

In the Clip Art stack that came with HyperCard you'll find a picrure
of an old car with a button labeled "Drive the ca r." When you click
the button, the car rolls forward and back. The script for that bUllon
contains a handler that selects the image and drags it back and
fOM, finally putting it back where it started. It's another example of
animation using the Paint tools in a handler. Feel free [0 look at the
bunon's script on your own.

If you use Command-period to stop this kind of animation. you
could end up making the animation unusable. If an image were
lett somewhere In mld-drag. the handler might not be able to
select It again. or might select only part of it.

Repeat structures
Repeat is a keyword that tells HyperCard perform a command or
series of commands over and over again without your having to lype
them out. Like the if structures, repeat Structures must be
inside handlers to work. They come in several varieties:

repeat [forever]

repeat [for) numb~ (times]

repeat until condition

repeat while cond"~n

repeat with variable - startValue to !inishValue

When using any of these structures, you would follow the repea t
line with a statement or list of statements making up the commands
you wanted to have repeated. At the end, you must include end
repeat.

The repeat [for] number [times] ·version iets you specify
how many times HyperCud will go through the loop; you replace
number-with the number of repetitions you want. You used this
version in the animation.

Animation on a single card 89

90 Chapter 5: Animation

The prepositions until and while specify different ways of
looking at a situation. The condition is something like a property or
a value. For example, you could use repeat until the
mouseClick, which means -keep going until someone clicks the
mouse button,· or you could have just as easily use repeat
while the mouseClick is false, which means the same
thing.

The repeat with form allows repetition to continue until the
value of a variable changes from the starting value to the ending
value that you specify. For example,

:-epeat with count • 1 to 100 -- "cot;nt" is the va: iac:e.

doMeou "rotate right"

end repeat

HyperCard adds 1 to the value of count after each rotation. This
struaure in the handler would cause the image to rotate 90 degrees
100 times, or 25 complete rotations. (In this case, you could get the
same effect with repeat for 100 times; however, there could
be cases where the variable would not simply be counLJng the
number of times through the loop.)

Animation using several cards
Instead of changing the image on a single card, this next technique
involves putting different images on sequential cards and then
showing the cards rapidly.

Set up the cords
You'll use the same image in this version of animation. To get set
up, you'll copy, paste, and turn the image on each of four cards.

Copying and pasting the image once

Follow these steps:

The Selection tool

(

'0,

"

1. Go to Card 4, It you aren't there already.

2. Choo .. the Selection tool from the Toois'menu or palette.

3. Drag to select the symbol on Card 4.

4. Pre .. CommandoS to tighten the selection

This step makes sure that you copy only the image you want, and
not anything outside it.

5. Pre .. Command-C to copy the Image.

6. Go to Card 5.

You can press the Right Arrow key or you can switch to the Browse
tool and dick the right-arrow bunon.

<0> By the way: If pressing the Right Arrow key doesn '[work, try
Option-Right Arrow. (You might have Text Arrows selected on
the User Preferences carel.)

7. When Card 5 I. on the screen, pre .. Command-V to paste
the Image.

Card 5 will be the flJ'St card of the four cards needed for this type
of animation.

Adding more cards

You have only one more card in the stack at this point, and you
need three more to use for animation:

Pre .. Command-N two "m ...

You should see -ntis is Card 6- appear in the label field the first
time you press the keys, and -This is Card 7· the second time.
HyperCard inserts each new card immediately after the card you
were on. The card that used to be Card 6 is now Card 8. Figure 5-3
illustrates the addition of new cards.

Animation using several cords 91

I

,---- This new ard becomes
the new nuniler 6

,..--- This new card becomes
nlllttler 7

This card's number
chanres from 6 to 8

This card's number
does nOl: change

~...-.1--..,6
1""'...-.1---,5

~ -
Sequence before
inserting c:ard$

Sequence after
inserting c:ard$

92 Chapter 5: Animation

Figure 5-3
New cards inserted after the current card

Copying and pasting the image twiee more

Put rotated copies of the graphic image onto the remaining cards
following these steps:

1. Go bock to Card 5.

Press the Left Arrow key or click the left-arrow button.

2. Select the Image and Ughten the .. Iectlon with CommandoS
11 It II not stili ..tee ted.

If it's still shimmering, you can just go on to the next step ..

3. Pre .. Command-C to copy the Image.

4. Pre .. the Right Arrow key to go to Card 6.

If pressing the Right Arrow key doesn't work, try Option-Right
Arrow. (You probably have Text Arrows checked on the User
Preferences card.)

(
5. Press Command·V to paste the Image on Card 6.

6. With the Image .tlll .elected, choose Rotate Right from the
Paint menu.

Each image needs to be rotated 90 degrees from the previous one
to create the animation effect.

7. P,ell Cornmand·C to copy the rotated Image.

I. Go to Card 7 and prell Command·V to paste the Image.

9. Choose Rotate Right from the Paint menu again.

10. Repeat .tep. 7, I, and 9, but going to Card 8. to paste and
rotate the Image for the last time.

When you're finished putting the images on the cards, go back to
Card S, where you'll create a bulton and write a handler to perform
the animation.

Write a handler to show the cards
The handler for the animation will again go into a button script.

1. Create a new buHon and name it Spin 2

Select the usual .settings.

2. Click Script to .. e the script editor.

3. Type the .. line. between the existing ones:

repeat. for 10
go :0 card 5

show 3 cards
end repeat
go to card 5

4. Prell Tab to check the formatting of the handler.

Here's how the complete handler should look:

Animation using several cords 93

94 Chopter 5: Animation

on mouseUp

repeat for 10

go to card 5

show 3 cards
end repeat
go to card 5

end mouseUp

5. Click OK.

6. Try the buHon.

Choose the Browse tool and click the Spin 2 bulton. The image
spins ten times and then stops. You'll see the Spin 2 bunon nash by
and the number in the card identification field nash by each time
you get to Card; (you'll flX this shortly). When the handler is
finished, you should be on Card 5.

Notice that the animation is faster going card-to-card than it was
before on a single card. Tha['s because in the first case HyperCard
must redraw the image each time through the loop, which takes
some time.

Here's a commented version of the handler explaining what each
line does:

or. !!.o~seUp

repeat for 10

go to card 5

show 3 cards
end repeat
go to card 5

end mouseUp

11",e n"mber 0: ~.:.~es ~c ::::c~.

Always s~ar~ ~e:e.

Shows cards 6, 7, ar::i 8.

Back to the start~ng card.

Another way to control the spin
You can add a ·contingency plan" [0 your repeat structure to give
you another way to stop the image from spinning.

1. Go to the script editor for the button.

Use Command-Option-click.

2. Click to place the Insertion 'polnt In front of the first
occurrence of 90 to caz:cl S.

That's the line just after repeat for 10.

)

(
3. Type this line and press Return:

if the mouse is down then exit repeat

4. Click OK.

5. Try the Spin 2 button again. and this time click the mouse
button before the ten cycles have completed.

Now when you stan the image spinning you can click anywhere to
stop it before it spins ten times.

Exit is another keyword. Used with repeat. exit jumps to the
end of the repeat structure. ending the loop when a certain
condition is met (such as, in this case, the mouse being pressed).

Exi t allows you to have two controlling conditions with repea t.
You can use repeat for, repeat while, repeat until.
or repeat with and specify one condition, and you can also
have an if statement specifying a second condition and ending
with exit repeat. For example,

repeat until i - 100 -- "i" is a variable
if the mouse is down then exit repeat
show all cards
add 1 to i

end repeat

This structure in a handler would cause HyperCard to continue
cycling through all cards in a stack until either the vanable i has
the value 100, or someone clicks the mouse bUllon.

You could also use just plain repeat, which IS the same as
repeat forever, to start an animation running indefinitely, to

be stopped only when some interested person clicked the mouse

Some finishing touches
Every time Card 5 appears during the animation, you see the Spin 2
bunon flash by and the numbers change in the label field, which
detract from the effect. Use the hide and show commands to
remove the bUllon and field temporarily while the animation is
running:

1. Go to the script editor for the Spin 2 button.

Use Command-Option-click, or Shift-double-c1ick with the
Button tool.

Animation using several cords 95

96 Chapter 5: Animation

2. Click In front of repeat on the .econd line.

You want to add new statements before the repeat SlIUcrure.

3. Type the ... tatements, pre .. lng Retum after each line:

hide field 1
hide me

Me is the object containing the handler (the button itself) and
field 1 is background field 1 (the label field).

4. Click to place the In.ertlon point In front of end mouseUp.

You want to add the next new statements after the repeat
structure.

5; Type the.e .tatement., pre .. ing Refurn atter each line:

show field 1
show me

The entire handler looks like this:

on mou setlp

hide field 1
hide me

repeao:. ! or 10

go to card 5

show 3 cards

end repeat

go to card 5

show field 1

show me
end rr.ouseUp

6.Cllck OK.

7. Try the Spin 2 buHon.

Switch to the Browse tool and click the Spin 2 button. If there arc np
other graphics on cards 5 through 8, the effect should now be
cleaner, showingonJy the rurning symbol.

Syntax summaries
Refer to these descriptions of the syntax of commands you used in
this chapter as you need to.

,/")
"-...... .

(

(

(

The syntax of the Choose command
The choose command's genera) structure is as follo9.'s:

choose toolName tool

ToolName is anyone of the HypeJCard tools from the Tools menu.
You must always use tool after the name. Here are the HyperTalk
names for the tools thac you can use:

browse field reg[ular] poly[gon]
brush lasso round rect[angle)
bucket line select
button oval spray
curve pencil text
eraser rect[angle]

The only tool you can't use is the Polygon tool.

You can use the choose command only with the user level set [0

Painting. Authoring, or Scripting. You can set and reset the
use rLevel property inside a handler with the set command. if
you don't want to change the user level permanently in a stack.

The syntax of the DoMenu command
The doMenu command's structure is simple:

doMen u menultem

Menultem can be the name of an accessory in the Apple menu or
the name of a menu command. Menuitem can also be the name of
a container holding a command name.

<- By the way: Include three typed periods if that's how a particular
command is shown in the menu; for instance, "card
info ... ". You must I}Pethe three periods; don't use the
ellipsis character (Option-semicolon).

The syntax of the Drag command
The drag command's syntax is

drag from start to finish [wi thkey[, key2[, key3)) J

Syntax summaries 97

98 Chopter 5: Animation

Start and finish are the points on the screen where the pointer starts
to drag and where it ends up. The points are expressed as
coordinates: two numbers representing horizontal and vertical
placement in pixels, separated by commas. As mentioned earlier,
the top left comer of the card window is 0, O.

You can determine the coordiantes of the pointer's position using
the function the mouseLoc.

Key, key2, and key3 are one or more of the following HyperTalk
key names, which must be separated by commas after wit h:
shiftKey, optionKey, or commandl<ey. Including more than
one key has the same effect as holding down more than one key
while dragging.

The syntax of the Show Cards command
Here are the general forms of show cards:

show (all] cards
show number cards

Number is the number of cards you want to show if you don't want to
show all of them. The cards are shown in sequence.

What you've done in this chapter
You learned two ways to cause animation effects: by using Paint
tools and menu commands in a script and by using the show cards
command with a sequence of cards. You expcnmcntc.:d WIth th<.:
repeat structure, a way of performing a set of commands over
and over again. You also learned how to use the functions
mouseLoc in the Message box to find the screen coordinates of the
pointer.

Commands

choose This command chooses a tool just as though it had
been chosen from the Tools menu.

doMenu Performs a menu command just as though you had
chosen i.t f~om. the menu with the mouse.

drag Does the same thing as dragging using the mouse.

show cards A command. The cards to be shown (all or some
number) must be in sequence.

)

(

Keywords

commandKey The HyperTalk name for the Command key.

end repeat The last statement of a repeat structure.

exi t repeat An alternative way out of a repeat structure.

repeat

Functions

A keyword; it begins the repeat structure.

the mouse Has as a value either up or down, corresponding
to the state of the mouse button.

the mouseClick Either true (the mouse button has been
clicked) or false (it hasn't).

the mouseLoc Gives the location of the pointer on the
screen in horizontal and vertical coordInates.

Miscellaneous

from A preposition; used with the drag command and
some other commands.

What you've done in this chapter 99

)

)

/i

(

Chapter 6

Stacks You Can Build

101

This chapter describes two stacks you could build and script on your
own, staning with materials already available in HyperCard

This chapter is different from previous chaplcrs in that you don't
have to try to build these hypothetical stacks as you go, although you
can if you like. The development of the stacks is discussed in a
general way rather than detailed step by step.

If the example stacks in this chapter don't appeal to you, you arc
free to experiment. Browse through the Idea Stacks folder to look for
possibilities. For example, each card in the Slack Ideas stack comes
with prewritten handlers in its background script. You can create a
new stack from each of these "seed" cards using the New Stack
command and copying the background (the handlers are copied
automatically). You could then add to and modify the scripts (and,
for that matter, the appearance of the stack) to suit yourself.

-:. By tbe way. The HyperCard Stack Design Guidelznes, available
through Addison-Wesley publishing company, describes
graphic, text, and instructional design principles as they apply to

stacks.

A travel records stack
Suppose you wanted to computerize your records of vacations
lravels or business trips so that you could updale them easily. You
could create a stack in which to keep the important Information

For the first card of this stack you cou Id use a ma p of vou r cou nt!y

Transparent buttons placed over each state or province would allow
you to click a particular state to go to a card specific for thal Slale.
From each of the state-specific cards, you could have olher buttons
to take you to cards for the cities or other localilies rou've visited.
Finally, the city cards would have fields to contain information-on
accommodations and restaurants, clients visited (for a business
stack), or points of interest (for a vacation travel stack).

Each time you visit a new state, you would add a new card for that
state and a new button to the country map to go to that card. Each
time you visit a new city or other location, you would add a new
button on that city's state card, create a new city card, and fill in the
information. .

102 Chapter 6: Stocks You Can Build

(

To build such a stack, you could use three backgrounds: one for lhe
country map, one for the states or provinces, and one for the cities
or locations. The different backgrounds would allow you to have
different common fields for each of the three levels. The next
sections describe how you might create this stack.

Creating the stack
You don't have to try to create this stack as you go. If you want to do
so anyway for the practice, go ahead; be aware, however, that not
all steps are written out

The fU'st thing you need is a map of some son as a starling point.
The Card Ideas stack contains some maps of the t.:nited States. (See
Figure 6·1.)

Figure 6-1
First cord of the Cord Ideas stock

You would click one of the small U.S. maps to go to a card with the
same map on it; the one labeled ·US State map,· with state
abbreviations, is a reasonable chOice (Figure 6·2).

A trovel records stock 103

Flgur.6·2
A U.S. mop showing state abbreviations

Check [0 see what elements of this card are background elements by
pressing command·B. Everything is in the background on this
card, which means that if you copied the background you would get
everything you see.

To create a stack with this card as your first card, you would choose
New Stack from the File menu. In the resulting dialog box, you'd
keep ·Copy current background" checked and name the
stack-something like "My Travel Stack. "

Once you click New, you'll be in the new stack, even though the card
on the screen won't have changed. You can then name this first
background by choosing Bkgnd Info from the Objects menu and
typing a name-for instance, "Map Background."

• Slack buildtng tip: It's a good idea to name backgrounds because
you might for some reason want to create different backgrounds
that look very similar. You can confirm which one is which in
that case by checking their names.

You can also name this first card in the Card Info box; for example,
"Main Map." You can then ~e.the card's name in any handlers you
write.

104 Chapter 6: Stocks You Can Build

..

(

As with your practice stack, you can add a Home button to the
background of this first card. You can copy a Home button,
complete with script, from the Button Ideas stack or from any stack
with a working Home bunon. Make sure you are working in the
background before you paste the button.

You could also add a title to the stack (either regular text in a field or
as Paint text), such as "My Travel Stack.' It's also a good idea to add
a line or two of instructions somewhere, in case anyone besides
yourself uses the stack; for example, ·Click any state.'

Because this stack uses bunons for each individual state or city to
take you to the card you want, it's probably not necessary to add
arrow buttons for traveling. Rather than moving card-by-card,
you'll want to jump around.

The second background
The next information level would be the state level. To create a ne"",
blank background for the state cards in this same stack, simply
choose New Background from the Objects menu. HyperCard will
create a new card with the new, blank background. This card is the
second card in the stack.

You could give Chis background the name "States Background" using
the Background Info box

On each of the state cards, you want a map of the stale, its name,
and perhaps some fields for relevant information. You'd probabl~'
want to create a background field to hold the Stalcs' names, because
putting the name in a field lets you search for the name \\'ith thc find
command.

You can create other background fields for other information that
you want to have on every card. Give each card the same name as
the state it represents, both in the name field and in the Card Info
box. Add some instructional Paint text to the background, such as
·Click any iocation .• (paint text in the background will appear on
every card.)

Finally, you can add a background button to take you to the Home
card and one to take you back to the main map card. This latter
button's script needs a mouseUp handler with the statement go
to card "main map" (or whatever name the card has).You
could also add visual effect iris close or some other
visual effect before the go statement.

A trove I records stock 105

Each state card can have as its card picture (not in the background)
an image of the state. One quick 'Way to make a rough state ou!.line is
to copy the small state image from the main map using the Lasso or
Selection tool. (You must be in the background to copy a
background picture.) You then go to the appropriate state card,
paste the image, and then stretch it to a larger size by using
Command-drag or Shift-Command-drag. You can refine the rough
ouiline funher if you want Another way to add a state ou!.line would
be to find a clip-an stack with pictures or maps in it and copy them
with the Impon Paint command.

Figure 6-3 shows a background layout for a hypothetical state card
and a finished version.

i/' ;':'~~'t~~'~' U?}r~~~:~~:i~~~t;:~/(>~~nE
, .• :-:."-:-:." '"-:::::':'. • •. .. : : :':':"':'~': ":":" . ,", 1

\ff' ~:~,........... ~
....

..
('.'

..

:::::.

...
......... ..

. .

..
......

,) .. '

.

.,_,elt, ::::

:....&J: .

t{~:t~\:: .. :_ ,., .. ",..' '.:
- l

~:l·~l:[[:~~[l~~::\~r'!".::!"!"!'::::::_:-:::_:::::._.-:::_ .. -... --. -. -... -. - :'" =1£)1
,..., 1""\.).: ====='::;!l'f'.r~l ======

".\\:! ; -:!
11, .. _ II. I.V t_t", "owor Illur ... t

",Ito,", .1"010 ai'll .0.10", "O"O.'ort

i
:

Flgur.6·3
One possible layout for stote cords; the background. showing
fields. on the left. entire cord on the right

The third background
The next information level would be the cities, towns, or localities
level, for which you can create another background by choosing
New Background again; you'll get another blank card. You can
name this third background "Local ~ackground.·

106 Chapter 6: Stocks You Con Build

)

(
Again, make background fields for information such as the locality
name, accommodations information, client addresses,
restaurants, and so on--whatever information you want. When
filling in the information, if you happen to have more information
than will fit into a particular field, you could add a second card for
the locality, including a card button or buttons to get to the second
card and back again. You could also use scrolling fields, which
allow you to add as much text as you want, regardless of the size of
the field on the screen.

+ Slack buUdi"8 tip: It's best not to use scrolling fields as a way of
putting an enormous amount of text into one card. If you expect
to have a great deal of text to fit into a small amount of space,
consider using several cards to hold the text rather than putting it
into a scrolling field.

Put the fields' permanent labels in Paint text in the background
above each fiel~r you could create separate fields for the labels.
Remember that you can search for text in fields with the Find
command, but you can't search for Paint text.

Add a background bunon to go back to the main map; you can copy
it (and its handler, automatically) from the state card. Also include
a card button to take you back to the state card. (You wouldn't want
to put this button into the background, because the destination for
the button's handler would have to be different for different
localities.) You could add visual effects to these buttons' handlers
also.

Figure 6-4 shows a background layout for the locality cards and a
finished version for a fictional city.

A trove I records stock 107

• , .. i"i"'Mi .. ~.i· -----_ --. _. --.• -.- • ,lie III ••• ,

.. ,

e-: -...:;:~---- ..
-.--.. -- .. - ---.-... f-

~ - .. ----- -.-- ._- -
C·----:--

Flgur.6-.

Sugl .. CiLy. MT
LOa,ift,
..,T(" ""''''11 U
102· ... • ~'1_ •. , ... "
,_ItfIIt\Pt r. e_
"H".'LDDe,
","Z."
102·".·
CI '.o..rMltr till
.. tI_ • ,. 'fOWWIf

".,·.· \.1
'1.1-
201-"'-110' "11,,"' __

... t-...tl
S __ '·~UI' ...,,.", ,~'"
... t ,,'\, ..

:"' ... 1 ••• ' .. "

,' •• _" "lflfl'IIIC"I,f' I" ••

CED(:!!)I
Tlu"" to ao !
tlf" - , """",. If I :;,:: ':.,;.:". I
... Ul fIIl_St,

''''~'''IIIew'''·hr •
CWS'U","\,I-''''
CV",. 'I .. III ... ,,' , .' ". fit,·"
Cit.,.,1 C",I,,, .t "W""
1"11 •• ,,,11 .. "':"""''1
"""""'''' 'wt·"- ,
I ••• ··!. :.:.,', ...••
.... ,"I. f."" ... ·1 ••

A poSSible layout for locality cords: the background is on the
left. the entire cord on the right.

How the stack would work
Here's a sununary of how you would use this stack:

1 . For each state you visit, create a transparent card button over the
image of the state on the main map. For some states, the button
may be difficult to size correctly because of the state's shape. Try
to center the bu[[on over the state abbreviation.

On the eastern seaboard, where many small states are close
together, you might want to have a transparent button over tt1e
whole area on the main map and create a second map card for
just that area. On the second map. enlarge the area by selecting
and stretching it If you copy the same background as the main
map, cover the background map before you paste the copied
graphic.

108 Chapter 6: Stocks You Can Build

(

Important Always think twice before you erase or change any graphics in
the background. Any change you make in the background will
happen on every card shoring the background.

You can cover background graphics on a card by using the
Brush and painting with a pattem or by using the Command
key with the Eraser to "erase" with white (opaque) on the
cord layer.

2. Create a new card using the second background for each SlalC.
Name the card the same as the state name. Then write a handler
to link the transparent button on the main map to the respective
card using the go command. The zoom open visual effect
works well here.

3. Add cities or locations (such as national parks) to each state's
map after you've visited them. Create a transparent bunon over
each location.

4. Add a new card using the third background for each location.
Name the card the same as the location. Link the bunon on the
state card to the respective card.

S. Fill in the information for each place you visit in the appropriate
fields.

6. When you plan to visit a locality again, or when you want
information for some other purpose, use your stack to get to the
information quickly. You can print each locality card if you need
a "hard copy· for some reason.

You could also include a mouseUp handler at the background or
card level of the main map that would use the answer command
to respond with an alert box when someone clicks a state that
doesn't yet have a button. Use a me~sage such as "That Slale hasn't
been viSited yet." An OK button will appear automatically wtth the
message-or you can add any buuon label you hkc.

A flash card stack
flash cards are useful study aids for questions and answers, for
vocabulary drill, or for any fact-memorization task. The idea is that
a word or a question is put on one side of a card, and the answer on
the other side. You try to match each answer is you go through thc
cards.

A flash card stock 109

A stack that acted like a set of flash cards could have the answers
contained in a hidden field, which would be shown when you type
the correa answer into another faeld and click a bunon, or when you
give up and ask for the answer by clicking another button.

A flash card stack would most likely need only a single background.
You might want to have the option of moving sequentially through
all cards, picking a card at random, or sorting cards into a new
random order Oike shutrung). You would probably want to be able
to lell where you are in the stack by seeing the number of the current
card as well as the total number of cards.

Creating the stack
You can start by going to the Stack Ideas stack to look for some
possible starting points for building your stack (Figure 6·5).

~.::::::::::: [!]:. I§I .. :::::::::: t:JI]::::::) . II-~" 5] ,...... .. "........ . _'"'''' '''''''''. _. II!! . ,,' ~ ..
T. 0. T..... 01'''' LWt 01'''' Ctl , Ol,."el' 2 " el" ly e,l 2

Click "'I ,ictllr. t. r t. tlllt clr. Ill"

Figure 6-5
First card of the Stac:k Ideas stac:k

Clicking any of the images takes you to a full-Size card. These cards
contain prewritten handlers for .navigation bunons as well as other
ready-made Scripts, olien in their backgrounds. The card that looks
like a hand holding a note card might be a good choice for the flash
card stack (Figure 6-6).

110 Chapter 6: Stacks You Can Build

)

(

Don't forg~t to g;v~ th~ sprocket Info to
Richerd Menn on Mondey

Flgur.6·6
A cord with a cord on It

You can check the background by pressing Command-B; you rn:g!'ll

also want to look at the fields on the card; you'll see lhere's one
large transparent field in the background. You can change lhc~lI(:
of thiS field and duplicate it to make more fields if vou Wlnt.

Again, to create a new stack from this card you would choose :-':C<;\'

Stack from the File menu. You'd copy the current background and
name the stack aMy Test Stack,' or some such.

Features of the stack
Here is a desaiption of the features needed to make a flash card
stack for Spanish-to-English vocabulary:

1 . For each card you go to, you should be able to see the number of
the card and the total number of cards in the stack. You could
make a field for each number and write a handler to put the
correct numbers into the fields automatically.

2. The Spanish word for which you are being tested needs to be in a
field. A background field would be best.

3. The insertion point should be placed automatically into another,
blank background field where you would type your answer.

A flash cord stock 111

4. The correct answer, in a third background field. should be
hidden when you go to a new c:azd.

5. A bunon should be available to check whether the English word
you type is correa.

6. A bunon should be available for Mgiving up' and showing the
hidden field.

7. Something should happen i(the guess is wrong-~ message and a
chance to try again.

S. It would be nice to be able to choose random cards and to sort
the cards in random order.

The idea of this flash card stack is that the words or information on
the cards changes, but the shape and appearance of the cards
don't. You can put essentially all the fields, buttons, and labels into
the background. The rest words and answers are typed into
background fields; ev<"!'Y card can have different text.

Figure 6-7 shows a completed version of this stack. a vocabulary
stack for Spanish. The card on the left shows the baCkground,
including fields. The card on the right shows the entire image,
complete with a word, an answer, and the correct answer showing.

.... _ - ._ .. _._-"-'\

t. --
' -.. -.
k··-

House, home
' -.
I hou ••

Figure 6·7· . .
One possible layout tor a flash card stack; background on the
left. entire Image on the right

112 Chapter 6: Stocks You Can Build

)

/)

(

!'\otice that the preexisting arrow bunons and Home bunon have
been moved and changed to rectangle bunons. You can move any
button anywhere you want it in HyperCard and change ILS style as
you like; the button will still act the same way.

The single field on the original card in Stack Ideas has been
duplicated to create a total of five fields, all in the background: one
holds the word in Spanish; the second is where you type your answer
or guess; the third has the correct answer, which is hidden until you
get the right answer or give up; and four and five are the small fields
that tell you the card number and the total number of cards.

The scripts
This section shows the scripLS for the objecLS the handlers that
accomplish the flash card stack's actions. Notice that the handlers
have been placed where they work most effectively.

Some objects have empty scripts-that is, their scripLS contain no
handlers-and so they are not listed here. The card level script is
empty and so are the scripts for all fields.

The stack script

The following handlers are placed at the stack level so that they are
avail abe to every card in the stack automatically

on openStack.

hide message box

end openStack.

This handler came with the stack.

on openCard
put :he number of this card into fie:d "cardS~~oer"

put the number of last card into fie}.o "totall';;~be:-"

click at the loc of field "guess"

end openCard

This handler uses the click command to set the insertion point
into the field, so you're ready to type your answer immediately
when the card opens.

on closeCard

hide field "answer"

put empty into field "guess"
end closeCard

A flash card stack 113

It's bener to hide the Answer field and blank out the Guess field when
leaving a card (closeCard) rather than when going to it
(openCard) because otherwise you would see a "ghost" of the
answer when the new card appeared, spoiling the test.

The background script

The background script contains this handler:

on openBacicgro1Jnd

p1Jsh recent card

end openBackgro1Jnd

(This script came with the stack.)

The openBackground handler contains the statement push
recent card The "recent card" is whatever card you were on just
before you came to this stack, if any. This statement keeps track of
that card by ·pushing" it onto a memory stack (different from a
HyperCard stack). The return-arrow button in the lower-right
corner of the card contains the reverse command, pop card
When you click the rerum-arrow button, the card that had been
pushed is now • popped " out of the memory stack, and you go back
to it. You use the push and pop card commands to have
HyperCard keep track of where you've been so you can get back
automatically.

This handler could just as easily have been at the stack level. In a
stack with multiple backgrounds, it probably ought to be at the stack
level.

The button scripts

The scripts for the Home bunon and the right-arrow and left-arrow
bunons are what you would expect them to be from writing the
handlers in the earlier chapters.

The rerurn-arrow button script contains this handler, as mentioned
in the preceding section:

on mouseUp

pop card

end m01JseUp

The ·Check answer" button script contains this handler:

114 Chapter 6: Stocks You Can Build

)

(

on mouseUp

if field "guess" is in field "ar.swer" !:~en

show field "answer"

else
beep

answer "Oops. Select the word and try agair,,"
end it

end mouseUp

The fields were given names in their Info boxes. The if statement
uses the phrase i~ in to compare the string of characters typed
into the Guess field with any string of characters in the Answer field,
allowing you to include several meanings for any word. In lhe
sample shown previously in Figure 6-7, home would also be a
correct answer.

The ·Show answer" button has this handler:

on mouseLJp

show field "ar.swer"
end mouseUp

The "Random Card" button has this handler:

on mouseUp

vis;;al effec: scroll dewn

go :0 any card
end mouseUp

The ·Shuffle" button script contains this handler

or. mouseUp

sort numeric by randem (':.r.e '-... lrr.be: ef cards I
er.d mouseUp

The ~ort command puts all the cards in a stack in order, or in no
particular order. It can sort in ascending or descending order,
alphabetically (text) or numerically, and you can specify such
things as card name, card number, a field name, a word in a field,
and so on as the characteristic being sorted by. Here are some
examples:

sort ascending text by last word of f :e:d "r-;ame"

sort descending numeric by field 2

In the example stack, the random () functi9n causes a sort imo
random order. The parentheses must contain a number-in this
case, it's the number of cards in the stack. You could use the
random () function to pick a number from 1 to 10 by putting 10
inside the parentheses-for instance, as part of a game.

A flash card stack 115

How the stack would work

Once the s[3ck is set up, its use is simple.

1 . Add a new card for every new \"ord.

2. Type the word into field 1 (which is named \·furd).

3. Cse the Message box to show the hiddcn :\ns\\cr field and tll"n
type the correct answer or answers into the ficld.

4. For review purposes, use the buttons to go through the stack.and!
to shuffie its order. Type your answer for each word into the
Guess field and click ·Check answer.· If you can't make a guess,
click ·Show answer."

.:. By the way You can sort the cards into alphabelical ordc:r ercr.;".

the ~lessage box With the statement

sort ascending text by field ""c=j"

You could copy and modify the stack for other bngu.l;<L·.~ or
sub,ects. You could even reverse the aClion of the .~t3ck-th.1l I':;.

make it English-lO-Spanish rather than Span1.~h-t()-Lr:;,;llsh-sin:;!r!Y
by changing the handlers. Can you see howi

Where to go from here
:\ow that you're an experienced scripter, you can go on to other
sources to learn more about HyperTalk and the pm~ibdll1es of U';I:t;.;

HyperCard. ~lany people have written books on [l\per(3rd :mj
scripting that you might find helpful. The l-I)pj,!rCard Sen!)!
Language Guide contains complcte deSCriptions of I [~'perTJlk
elements. The HyperCard Help system is also a good rcferen..:cto;
consult while you're working.

Some of your most valuable scripting information is likely to corm:
from your own experimentation and experience. Think of W3\'S \,(il.ll

can change existing stacks to suit yourself-and then look at those
5[300' scripts to see how they work and how you might modify then'
Cse your practice s[3ck as a place to test handlers and as a rep')~Itrm'
for buttons with prewritten handlers and other scripts that you Cit)

copy and paste when you want Lhem. Talk lO olher Ilyp::rC3ld U:>L:h

and scripters, and eXl!ha.nge tips and shortcuts \10~l of all, c;nJD\
having a new tool to enhance your creativity.

116 Chapter 6 Stocks You Can Build

(

Appendix

HyperTalk Summary

This appendix contains syntax statements for all HyperTalk built-in commands and
functions; lisLS of keywords, properties, constants, and system messages; a table of
operators and their order of precedence; keyboard shortcuts for seeing scripts; and
synonyms and abbrc\·iations.

The Quick Referencc Card contain!; the commands and functions, operators list,
scnpt editor commands, and keyboard shortcuts.

Syntax statement notation
Syntax statements show the most general form of a command or function, with all
elements in the correct order. The syntax statements in this book use the following
typographic conventions: \X'ords or phrases in this kind of type are Hypertalk
language elements that you type literally, exas:t1y as shown. Square brackets ([])
enclose optional elements that may be included if you need them. (Don't cype the
square brackets.) In some cases. optional elements change what the command does;
in other cases they are helper words that have no effect except to make the command
more readable. Words in italic are placeholders describing general elements. not
specific names; you must replace them in an actual command. For example,
effect.\'ame stands for any of the HyperTalk visual effect names: barn door,
checkerboard, zoom, and so on.

It doesn't matter whether you use uppercase or lowercase leners in HyperTalk. but
names that are formed from two words are shown in smallieaers with a capital in the
middle (likeThis) merely to make them more readable. The HyperTalk
prepositions of and in are interchangeable-the syntax statements use the one
that sounds more natural.

117

Commands
The following list includes all HyperTalk commands up to and including version 122.
A full description of the action of these commands is beyond this appendix's scope.
The HyperCard Help system contains a HyperTalk reference section explaining the
use of the commands. The HyperCard Script Language GUide also contains complete
descriptiOns of HypcrTalk commands, functions, and so on. Many Olher books on
HyperCard and scripting are also available.

add expression to destination

answer "question" [with "reply [or "reply2" lor "reply3"J J J
a:-rowl<ey leey!l/ame
asi([pass ord; question iw:'':.h defaultAnswer:
beep number
chcose toolName tool

clic K a':. locauon [w i t h leey r , leey2[, leey3 J ; J

close file flle.\Tame
close pri:1ting
conver':. contalner:o format :a~d forman
oe let e chunle ; c f container:
dial expression !w:.':.~ ~.oderr. [modemCommands] J

oi vi. de des/malton oy expression
do~e."\;; menu/tem
drag !ro~ start to finish :with key[,leey2[,leey3JJJ
ed:': scr:p: cf object
e~.:erKey

fi~d :c:-.a:,s j expression : :.~. fie:d fieldDesignalorJ
fi~d :wcro: expreSSion {in field fieldDesignatorJ
:::10 s:r::-:g expreSSion iin field fieldDesignatorJ
::":1C whole expreSSIon ::.~ fie:d fieldDesignatorJ
f.;~.c::'cnKey leey;\"umher
ge: expresSIon
go : :0) : s:ac~ 1 "slacIeName"
go ,toJ blegndDescnplor [of [stackJ "slacItName"J
go ;toJ ~ardDescriplor [of bkgndDescriplorl [of [stack] "stacItName"J
help

hide menuBar

hide windowName
hide object
hide picture
lock screen

multiply destination by expreSSion
open [document wi.::1J application
open file fileName

118 Appendix: HyperTalk Summary.

)

J

(

p:'ay "t;OJce" (te~po lempoVaJue} ~"noles";

play stop

pop card [preposition destination]
print card

pr int expression ca :-ds

print cardDeSCriptor
print document wi::: appllcation
Pll s h cardDescriptor
Pllt expression [preposition destination;
read from !i:e jiJcl\'ame \;:-:til character
read from file jik.Vame for numberOjCharacters
reset pain:

returr.l<ey

selec':. object
select [preposition: expressIon of field
sekect :preposition: expressIon of msg
select [preposition) -;;ext cf field
selec':. e~,p:y

set [t he] property 'o! object; to value
show [a::] cards

sr.cw number ca~cs
s!iow ~er,:.;=ar

sr.o .. window/I.·ame : at

shew object : at h. v:
s ~.o ... · piclure

l... 'I' r;/, ...

sor: : direction; :sty/e' bv expression
s:.;b:ract expressl'on !r::~ destination
t.abl<ey

type expreSSIon ;w:::-. key:.key2:.key3:::
\;r.~ec~ scree~ [... i:". effect,Vamc.
v:s:.;a: :e! !ec':.: effcctSame :specd) [tc Image:
.... a:'.t : !cr: number 'secc"os

lOa:'.: ~~ti: condilion
wa:'.: while condition
write source to file jlleName

Commands 119

Functions
The following list includes all HypcrTalk functions up to and including version 1.2.2.

When using functions in HyperTalk statements you must either use the word the
before the function name or add parentheses after it (both forms are shown in the list
that follows). The parentheses are used to enclose values on which the function
operates, called parameters. If the function Lakes several parameters (for example,
the average function), the parameters must be separated by commas. See the
HyperCard SCript Language GUide for a more complete discussion of functions and
parameters.

Factor is a single value, such as the number 5 or a conLainer holding a value;
expression can be a single factor or a combination of severa) factors and operators
that results in a value, such as (2+ 3) or (2+ (f ield 1)).

The result or use of a function is shown on the right side of the page.

the abs of faclor

abs (cxpressIon)
an r. ,-,:.: 'j (rare, periods;
:~,e a:ar c~ faClor
a:a:'. i expressIon)

ave:a::;e I lis I)
:~,e c:-:a::o~ ~~. o~ faclOr
c::a::o~~m I expressIon)
:::e c:.;.c~:;

:he c::'c~:'cc

c: :ci< :'cc I)

:::e c':'':'ci<V

: re cc:,:,.:,:,.a~.:::;<e'j

co~:rar.dKe'j I)

c c~~o ~~. d I rarc, pen ods)
:r.e ccs c! faClor
cos (expreSSion)

tr.e [modifier) date

the diskSpace

diskSpacel)

the exp of factor
ex p (expressio")
the expl of factor

expl (expressio")
the exp2 of factor
ex p:2 (expressIon)

the fourd:ext

Absolute value

Calculates an annUity

Arc tangent-radians

Calculates an average
Returns the ASCII value of a character

Gives horizontal coordinate of where the user last clicked
Tells where the user last clicked as a pair of coordinates
(h,v)

Gives venical coordinate of where the user last clicked

('-enditlon of the Command key: l;p or cc·,,~.

Calculates compound interest

Cosine-radians

Current date set in the Macintosh: long or shon

Amount of free space on the current disk

Mathematical exponential

1 less than mathematical exponential; ex p (). -1

The value of 2 raised to the power of faclor

Returns characters found by the ! i nd command

120 Appendix: HyperTalk Summary

)

(

ti'.e foundLi.ne

the foundField

the lengt!\ of factor
length (expreSSion)
the In of factor
1 n (expression)

tne .!.r.l of faclor
1 n 1 (expression)
the 10g2 e! faclor
log 2 (expression)
",ax (list)

m!.. n (lisl)
::1e ~,ouse

~.ouse()

the ~c'.,;seC'~ick

1'1oJse:: ()

the ~;o\.;se:"cc

:'!",ouse!..oc ()

t.he :'I",c seV

it he J

r. ~~.::e:

r.;;~.be:

c ~ obJecls
0: chunks i~ faclor

Returns a de$Criplionof ... ,here the text is found
Tells which line the found text is in

Tells which field the found text is in

Number of characters in a text string

Natural logarithm-base-e

1 plus the naturallogarilhm: In (1 "faclor;

Base·2 logarithm

Heturns the highest number value of a list
Returns the lowest number value of a list
Condition of the mouse button: up or dewn

Returns true if the mouse button is clicked

Horizontal position of the pointer on the screen

Horizontal and venical coordinates of the pointer

Vertical poSition of the pointer

"umber of buttons/fields on current card or bg
"umber of characters, words, lines, and so on
in text string

background Number of cards in specified background
:!\e :"l;;~;:c:::~.a::: 0: faclor

nu~.:cC~.a::: (expression)

c: fsec (slnngl, slnng2)

:.".e op:~onKey

cp::'o.~Key ()

c:1e paral"\ of fClclOr
pa r a", I expresSion)
:!\e paramCount

paramCour:t ()

the params

params()

the random of factor
random (expreSSion)

t!\e result

result ()

Returns the character corresponding to an ASCII
value

Gives number of characters between the beginnings of

two strings

Condition of the Option key ;,;p or dow~.

Returns the value of a parameter in a list

The total number of parameters

The entire list of parameters

Gives a random integer from 1 to the value of factor

Returns a text string if find or go is un~uccessful

Functions 121

the ro ... nd of faclor

round (expression)
the screenRect

screenRect ()
the seconds

seconds ()

the selected:-ex:
the selectedC~.-.;~i<

the selected:"ine

the selee:ecfiel::i

tr.e shif:Key
shi~t!<ey()

:l'.e si~ of faclor
sin (expression)
the sO\.ind

so ... ~d ()

::he sqrt of faclor

s q r: (expression)
tr.e tan of faclor
:: a:1 (expression)
t:-.e :arge:

targe: ()

::-.e : leks

tie!<s ()

:!'le : modifier; :::re
t:"~e ()

the :~O:

tool ()

tl".e tr'~ne of faclor
t run e (expression)
the value of factor
va 1 t:e (expression)
the [long] version rot HyperCard)

version()

the version of stackDescriplor

Rounds to nearest integer: an odd integer plus 05
rounds up; an even integer, down

The recungle of the screen in which the menu bar
is displayed: left, top, right, bottom coordinates

l"umber of seconds between midnight January I,
1904, and the current time in your MaCintosh

Returns the text currently selected

Describes the location of the selected text

Tells which line the selected text is in

Tells which field the selected text is in
Condition of the Shift key: p or down

Sine-radians

~ame of sound resource currently playing. or "do~e"

If none is playing

Square root of a positive number-a negalive number

gives the result NAN (001) meaning "not a number"

Tangent-radians

Identifies the original recipient of a message

~umber of ticks (~ second) since the Macintosh

was turned on or restarted

Gives time as a text string: long, short, abbreviated

~ame of currently chosen 1001

The integer part of a number in funclion

Gives the value of a string as an expression

Returns the version number of HyperCard

Tells version of HyperCard used 10 create, compact,

Change since compacted, and make latest changes, plus

the date modified in seconds since January I, 1901

122 Appendix: HyperTalk Summary

(

Keywords
The following list of HyperTalk keywords includes their syntax, where appropriate, or a
comment on their use. Keywords are predefined; you can't redefined them-for
instance, you can't usc a kcy,vord as a name of a variable,

Only send can be used in the Message box,

do

else
end

exi:

~:":;;:::lcr.

c.ex:

pass

repeat

ret":,,

se r. =

Properties

do expression
-- used w;'th "if" structures
end junclionName
e" d messagcName
e r.d i!

e~.d repeat

exi t jUl1cllon.'\'ame
ex;' t messageSa me
ex:.: repeat

ex:: :c C:ype:Caro

~~~.:::~c~ jUl1clionSame :parameterList; 
g:c:;a: ~·anablcLlsl 

,.ex: repeat 

c, mcssa[?eSamc 
pass juncllon;\'ame 
pass message:Vame 
-- beg:":'"'.s lI:epea:" str\,;ctures 

r e:~ r,~ expreSSlol1 
send "messageName lparamelerLutj" ['to object] 

This section lists properties of the HyperCard environment and of objects up to and including 
HyperCard version 1.2.2. . 

Global properties 

b:ir::!7yping 
cursor 
dragSpeed 
edit Bkgnc 
lang'Jage 

lockMessages 
lockRecen't 
10ckScreen 
nurr,berForrr-.at 

power Keys 

textArrows 
userLevel 
userModify 

Properties 123 



Window properties 

loc[ation) 
rect(angle) 

:he height of 
the :eft of 

the bottomRight of :he right of 
the bottom of the top:'eft of 

Painting properties 

brush 
cen-.:ered 
filled 
grid 
lir:esize 

Stack properties 

cant!)e!ete 
can-.:Modify 

Background properlies 

can:!)ele-.:e 
:D 

Card properties 

cd:".-.:!)ele:e 
D 

Field properties 

!'1\.11t:';:>le 
:"l~:t:.space 

pilt :C:-:". 

po~ySices 

textA: igr, 

frees:ze 

:",,;;:- ce:-

:: _ :-.oe: 

a~:o:ab n;;~oe= 

-.:he bot-.:cr.:R':'gh: c~ rect' a ng le] 
t.he .oc~tc~ of 

the :e!t of 
lce[aticn] 
loci<7ext 
name 

Button properties 

t.~.e ::'gh: of 

s e: :. pt 
sere:l 
s~,e\oi:'ir:es 

s:y:e 
textAlign 
textF'ont 

autoHilite loc(ation] 
the bottomRight of name 
the bottom of nU!r\ber 
the height of rect (angle] 
hilite tr.e right of 
icon textSize 
script s~cw~ame 

ID style 

124 Appendix: HyperTalk Summary 

the top of 
the width of 

textront 
text Height 
textsize 
text Style 

script 
size 

script 
showPict 

5 c::: i pt 
S1"lCw?i.c~ 

text Height 
textsize 
text Style 
the top:'eft of 
the top of 
visible 
wideMarg':'ns 
the width of 

textAliqn 
textront 
text Height 
text Style 
the topLeft of 
the top of 
visible 
the width of 

• 

) 



• 

( 

( 

Constants 
Constants are named values that never change. You can't use the name of a constant 
as a variable name. 

down 

empty 
false 
forrr,Feed 
::'~e'eec 

~i. 

q-.; o't e 

re:~::"! 

space 
:ab 
:r~e 

ze::: .. ten 

The value of the key functions for Command, Option, and Shift keys and 
for the mouse button when pressed 
The string containing nothing (the null string)-same as .... 

The opposite or :. r ..; e 

The form feed character, ASClI 12 

The line feed character, ASClI 10 

The .... alue of pi to 20 decimal places 
The double quotation mark character 

The return character, ASCII 13 

The space character, ASCII 32-same as 
The horizontal tab character, ASOI 9 
The oppOSite of false 
The value of the key functions for Command, Option, and Shift keys and 
for the mouse bUllon when not currently pressed 
The numbers 0 through 10 

System messages 
These messages are sent to the objects specified to inform them of system events. 
Some messages are accompanied by a variable (liar), the nature of which depends on 
the message. For example, the arrowKey variable can be left, right, up, or 
down. 

Messages sent to a button 

ne .... S~tton 
oeleteBu::.on 
mcuse:)own 

~ouseStil:';)own 

mouseLlp 
mouseEnter 

Messages sent to a fleld 

newField 
deleteField 
ope~Field 

closeFie':'d 

mcuseDown 
mouseStillDown 
mouseLlp 
tabKey 

mouseWithin 
mouseLeave 

mouseEnter 
mouseWithin 
mouseLeave 

System messages 125 



Messages sent to the current card 

newCard 
deleteCard 
openCard 
closeCard 
mouseDown 
mouseStillDown 
mouseUp 
startUp 
idle 
returnKey 

Operators 

en:-.e:Key 

:".aoKey 
arrowKey liar 

functionKey tar 

controlKey liar 

doMenu tar 

newBackground 
deleteBackground 
openBackgrou!ld 
clcseSackground 

newStaci< 
deleteStack 
openStack 
closeStack 
help 
suspend 
resume 
quit 
hide uar 
show tar 

The table below shows the order of precedence of HyperTalk operators. The order of 
precedence determines which operation HyperCard performs first when evaluating an 
expression. Operators are evaluated from left to right, except for exponentiation, 
which is from right to left. Parentheses force evaluation in a certain order; for 
example, 2* 3+5 yields 11, but 2* (3+5) yields 16. 

Order Operctors 

( ) 

2 
not 

3 
4 * / div mod 
5 + -
6 & && 
7 > < <= >= :; ~ 

is in cont.ains 
is not in 

8 - is is not <> 
9 and 
10 or 

;t 

Grouping 
Minus sign for numbers 
Logical negation for Boolean values 
Exponentiation for numbers 
Multiplication and division for numbers 
Adqition and subtraction for numbers 
Concatenation of text 
Comparison for numbers or text 
Comparison for text 
Comparison for text 
Comparison for numbers or text 
Logical for Boolean values 
Logical for Boolean values 

126 Appendix: HyperT olk Summory 

... 



• 

( 

" ( 

( 

Shortcuts for seeing scripts 
These shortcuts were introduced with HyperCard version 1.2. 

Key combination 

Command-Option 

Shift-Command-Option 

Command-Option-C 
Command-Option-D 
Command-Option-S 

Display bunons; click a bunon with 
keys down to edit its script 

Display fields; click a field with keys 
down to edit its script 
Edit script of currem card 
Edit script of currem background 
Edit script of current stack 

Synonyms and abbreviations 
These synonyms and abbreviations include those introduced with HyperCard 
version 12. 

Synonym or 
rerm abbreviation 

abbreviated abbr 
abbrev 

background bg 
bkgnd 

backgrounds bgs 
bkgnds 

button btn 
buttons btns 
card cd 
cards cds 
character char 
characters chars 
commandKey cmdKey 
field fld 
fields flds 
gray grey 
location loc 

Shortcuts tor seeing scripts 127 



• 

) 

message box message 
msg box 
msg 

middle mid 
picture pict 
polygon poly 
previou5 prev 
rectangle rect 
regular polygon reg poly 
round rectangle round rect 
second (time unit) sec or secs or seconds 
second (ordinal) sec or secs or seconds 
spray can spray 
ticks tick 

128 Appendix: HyperTalk Summary 



.. 

( 

Glossary 

algorithm: A stcp-bv-step procedure for solving 
a problem or accomplishing a l..3sk. Writing 
HyperTalk handlers or programs in other 
languages often begins with figuring out a suitable 
algorithm for a task. 

ASCII: Acronym for A merican Standard Code 
for Information Interchange, pronou need • ASK­
ee.· A standard that assigns a unique number to 
each text character and control character. ASCII 
code is used for representing text inside a 
computer and for transmitting information 
between computers and other devices. 

background: A "holding area" where you can 
place elements that you want a group of cards to 
have in common, A background is an object and 
thus has a script; you can place handlers in its 
script that you want to be accessible to all cards in 
a group. 

background picture: The part of the screen 
image that is common to all cards sharing a 
background; that is, the part that's not card­
specific, 

card picture: The part of the screen image that'is 
specific to the card; that is, the part that's not on 
the backgrou nd level. 

container: A place where you can store a value, 
such as HyperCard fields, the Message box, and 
variables. 

comments: Descriptive lines of text in a scnpl ur 
program that are not intcnded as instructions for 
the computer but rather are explanations for 
people to read. Comment lincs arc set orf from 
instructions by sv.mbols callcd delimiters. which 
vary from language to language. In HyperTalk, two 
hyphens ( - - ) in front of a line marks it as a 
comment. 

constant: An entity having a fixed, unchanging 
value. HyperTalk contains a number of constants, 
such as true, false, up, down, and pi. 
Compare variable. 

deUmiter: A character used to mark the 
beginning or end of something, that is, to define 
limits. For example, double quotation marks act as 
delimiters for literals. Comments in HyperTalk 
are set ofT with two hyphens at the beginning of the 
comment and a return character at the end. 

empty: (adj.) Said of scripts that contain no 
handlers. Every HyperCard object has a script, 
even if the script is empty, 

ex-command or external command: Sec 
XCMD. 

global variable: A variable that is valid for all 
handlers in which it is declared, You declare a 
global variable by preceding its name by the 
keyword global. Compare with local variable. 
See also variable. 

129 



handler: A set of HyperTalk instructions specific 
to a message. A handler must begin with the 
keyword on and end with the keyword end Both 
keywords must be followed by the name of the 
message. 

keyword: A HyperTalk word having a predefined 
meaning that you cannot change. Some examples 
of keywords are end, if, on, repeat, and 
send. 

literal: Cn.) Something you want taken literally. In 
HyperTalk you use quotation marks (" ") to set off 
a string of characters as a literal, such as the name 
of an object or a grou p of words you want treated as 
a text string. 

local variable: A variable that is valid only within 
the handler in which it is used. Compare with 
global variable. See also variable. 

loop: A section of a handler that is repeated until a 
limit or condition is mct, such as in a repeat 
structure. See loop. 

message: A string of characters sent to an object. 
You can write handlers in the object's script 
containing instructions for HyperCard to carry out 
\>.hen the message is received \1essages can come 
from the system, from the !\1essage box, or from 
other handlers. See also handler, object 
hierarchy. 

message-passing hierarchy: See object 
hierarchy_ 

metasymbol: See syntax. 

nested: (adj.) Said of similar structures occurring 
one inside the other; for example, an if 
structure may itself contain an if structure, and 
that one may contain another, and so on. 

nuli: (adj.) Having no value at all, not even zero. 
The HyperTalk constant empty is defined as a 
string containing nothing, that is, a null string. A 
string containing zero would not be empty. 

130 Glossary 

.. 

object: Any HyperCard element that has a script 
associated with it and that can receive and send 
messages. Objects are stacks, backgrounds, cards, 
fields, and buttons. 

object hJerarcby: The order in which a message 
is passed between objects. for example, a message 
that goes first to a button, such as mouseUp, 
would go next to the card, then the background, 
then the stack, and finally to HyperCard itself, 
unless intercepted and acted upon by a handler. 

operator: A character or group of characters that 
cause a particular calculation or comparison to 
occur. Operators operate on values. For example, 
the plus Sign (+) is an arithmetic operator that 
adds numerical values. 

parameters: Values that accompany or are acted 
upon by a function. Parameters in HypcrTalk arc 
separated by commas. 

pixel: Short for picture element, the smallest dOl 
you can draw on the screen. The position of the 
pointer is often represented by a set of two 
numbers separated by commas. These numbcr~ 
are horizontal and vertical distances of the pointer 
from the top and left edges of the card window, 
measured in pixels. The top-left corner of the 
screen has the coordinates 0, 0, 

properties: Characteristics of objects or of 
HyperCard as a whole. For exa mple, setting the 
user level to Scripting changes the userLevel 
property of HyperCard to the value 5. Prorcrtic~ 
are often selected as options in dialog boxes or on 
palettes, or they can be set from within handlers. 

script: A collection of HyperTalk instruClions 
associated with a HyperCard object. You usc the 
object's script editor to add to and revise its script. 
Every object has a Script, even though some 
scripts are empty; that is, they contain nothing. 
See also message handler, object. 

) 



( 

( 

( 

script editor: A large dialog box containing a 
window in which you can type and edit a script. 
You get to the script editor by clicking the Script 
button in an object's Info box (the user level must 
be set to Scripting). The top line of the script 
editor box identifies the object to which the script 
belongs. You use keystroke commands to eidt text 
in the script editor. See also message handler, 
object, script. 

syntax: A description of the way in which 
language elements fit together to form meaningful 
phrases. A syntax statement for a command shows 
the command in its most generalized form, 
including placeholders (sometimes called 
metasymbols) for elements you must fill in as well 
as optional elements. 

tick: One-sixtieth (1,160) of a second. The wait 
command assumes a value in ticks unless you 
specify seconds by adding sees or seconds. 

values: Information on which HyperCard 
operates. \'alues in H\'perCard are essentially 
strings of characters-they are not formally 
separated into types. for example, a numeral 
could be interpreted as being a number or as being 
text, depending on what you do with it in a 
handler. 

variable: An entity having a changing value. In 
HyperTalk, a container you can create to hold 
some value (either numbers or text) simply by 
using a name in a statement. Compare with 
constanLSee also container, global variable, 
local variable. 

XCMD: Short for external command. A 
command wriuen in a compuler language other 
than HyperTalk but made availabe to HyperCard 
to extend its built-in command set. Similarly. and 
XFeN. or extemaJ !unction, is a function written in 
another language. 

Glossary 13' 



THE APPLE PL"BLISHI:'\G SYSTE:I-1 

This Apple~ manual was written, 
edited, and composed on a 
desktop publishing system using 
Apple Macintosh~ computers 
and Microsoft~ Word. Proof 
pages were created on the Apple 
LaserWriter~ printers; final pages 
were printed on a Varityper~ 
VT600™. Line art was crealed 
using Adobe IIIustratorT !14 and 
typeset on a Linotronic~ 300. 
Stack illustrations were crealed 
with HyperCard~ software. 
POSTSCRlPT~, the Laser'\X'riter 
page-description language, was 
developed by Adobe Systems 
Incorporated. 

Text type and display type are 
.\pple's corporate font, a 
condensed version of Garamond. 
Bullets are ITC Zapf Dingbats$. 
Some elements, such as program 
listings, are set in Apple Courier, 
a fixed-width fonl. 

\II' '" 



.. 

f 

( 

HyperTalkTM 
Quick Reference Card 

The information in this Quick Reference Card pertains to 
HyperCard version 1.2.2. 

Script editor command summary 
Key combination Effect 

Command-A Select entire script 
Command-C Copy selection to Clipboard 
Command-F Find text (same as Find button) 
Command-G Find next occurrence of same text 
Command-H Find current selection 
Command-P Print selection or (if no selection) entire 

script (same as Prim button) 
Command-period Close script without saving changes (same as 

Cancel button) 
Command-V Paste Clipboard contents at insertion point 
Command-X Cut selection to Clipboard 
Enter Close script and save changes (same as 

OK bunon) 
Option-Return Wrap line without return character ("soft" 

rerum-symbolized by'" in scripts. Don't 
use a Msoft- rerum inside quotation marks.) 

Return return character-indicates end of 
HyperTalk statement 

Tab Format script 



Shortcuts for seeing scripts 
Key combination 

Command-Option 

Shifl-Command-Oplion 

Command-Option-C 
Command-Option-a 
Command-Option-S 

Commands 

Effect 

Display bunons; click a button with 
keys down to edit its script 

Display fields; click a field with kt!ys 
down to edit its script 
Edit script of current card 
Edit script of current background 
Edit script of current stack 

In lhe statements listed below, square brackets ([ ) enclose optional elements. 
(Don't lype the square brackets.) Words in italic are placeholders describing general 
elements, not specific names; you must replace them in an acrual command. It 
doesn't matter whether you use uppercase or lowercase letters in HyperTalk; names 
formed from two words are shown with an embedded capital letter (likeThis) 
merely to make them more readable. The HyperTalk prepositions of and in are 
interchangeable. 

add expression :0 destination 

ar.swer "queSllon" :w~:~. "reply" lor "reply2" [or "reply3"] j J 

a:rcwKey key:\'ame 
asi< [passwcrd; quesllon :w::~ dejawilAnswerj 
ceep number 
c::cose looJName :00: 
c::c~ a: Jocallon ! .... i:': key:, key21, key3]]] 
c:cse !:~e fileName 

cc:-ve:: conlainer:o format [and formal] 
oele:e chunk lof container] 
dial expression {with modern [modemCommandsJ J 
divide destination by expression 
doMenu menultem 
drag- from start to jinish [with keyl.key21.Uj'3]]] 
edi: script of object 
enterKey 

find {chars] expression lin field jieJdDesignator] 
find [werd; expression i in field jieJdDesignatorj 
t:.r.d so: r :ng expreSSIon I in field jieJdDesignatorJ 
!:r.d whole expression [ir. !:eld jieJdDesignatorJ 

) 



• 

( 

( 

( 

f ~~, ct ic ~Key /ceyNumber 
ge t expresSion 
go [tel [stack) "stacIeName" 
go ito] bJegndDescnplOr :e~ [s-:.ack] "stac/CNaWUl"] 
ge [to) cardDescnptor :o! blegndDescriptor] [of [stack) "stacIeName"j 
ne':'p 

hide menuBar 

h:de windowName 
hide object 
hide picture 
leek screen 

:r.:.:l -:.iply destination by expression 
epen [document with] application 
e;:>e ~ f:': e fileName 
::?e~ pr:':-:,:.:.:;g [wi:~ cial.ogl 

~~ay "voice" [-:.e~pe lempoValueJ ["notes"] 
p:ay stop 

~op card :prepositlon destmation] 
p::::nt card 

p::: ~ .. ~t expression cards 

p=:'r-.t cardDescriptor 
P= H·t document W1-:':-. application 
p~ s r. cardDescriptor 
pJt expression :preposltlon destination) 
read fro~, !::':e fileName ;;,~:L. character 
=eac !:::c~ !::':e fl1cSame ~C~ numberOfCharacters 
rese-:. pa':'~,t 

,e::;,~i'(ey 

se:ec-:. obJect 
s e: e::: : prepOSition: expression 0 f field 
se~ec-:. :prcpoSUlon: -:.ex: c! field 
se:ect e~pty 

se-:. : the) property ;0: object] to value 
s~.ow [all J cards 
show number cards 

show menuBar 

show windowName [at h. v] 
show object [at h. v] 
show picture 
sort [direction] [ style] by expression 
subtract expression from destination 
taol<ey 

type expression [with /cey[ .leey2[ ./cey3]] ] 
'.;n10cl<. screen [w':'th effect,~'ame] 

vis:.;al lef fec:] effeclName [speed] [to image] 



wai: [fo:] number [secor.os) 
wai:: until condition 
wait while condition 
· ... :i:e source ':.0 r::<: fileName 

Functions 
In the statements listed below, square brackets ([ J) enclose optional elements. 
(Don't type the square brackets.) Words in italic are placeholders describing general 
elements, not specific names; you must replace them in an actual command. It 
doesn't matter whether you use uppercase or lowercase leners in HyperTalk; names 
formed from two words are shown with an embedded capital letter (likeThis) 
merely to make them more readable. The HyperTalk prepositions of and in are 
interchangeable. 

\1I;'hen using functions in HyperTalk statements you must either use the word the 
before the function name or add parentheses after it. Both forms are shown in the list 
that follows. Factor is a single value, such as the number 5 or a container holding a 
value; expression can be a single factor or a combination of several factors and 
operators that results in a value, such as (2+3) or (2+ (field 1). Parameters in a 
list must be separated by commas. 

:he abs c~ factor 
aDs (expression) 
a ~ ~ u i t y (rate, periodsi 

::-.e a:a~ o~ faclor 
a:a~ (expresSIOn) 
ave:age (list! 

::-.e c~.ar:c~:.::- o! faclor 
C:-:il::O:\-';:- (expressIon! 
,::-.e clickH 

:;.e c2.ici<!.oc 
c:"':'c/<;"oc () 
the clickV 
the commandKey 
commandKey () 
compound (rale, periods) 
the cos of factor 
cos (expression) 
::he [modifierl date 
the diskSpace 
diskSpace() 
the exp of factor 
ex p ( expression) 
:he exp1 o~ factor 

Absolute value 

Calculates an annuity 
Arc t.1ngent-radians 

Calculates an average 
Returns the ASCII value of a character 

Giv~s horizontal coordinate of where the user last clicked 
Tells where the user last clicked as a pair of coordinates (h.Y) 

Gives 'venical coordinate of where the user last clicked 
Condition of the Command key: up or down 

Calculates compound interest 
Cosine-radians 

Current date set in the Macintosh: long or shon 
Amount of free space on the current disk 

Mathematical exponential 

1 less than mathematical exponential: exp () -1 



• 

( 

ex c 1 (expression) 

the exp2 of factor 
exp2 (c:xpreSSlon) 

the foundText 
the foundChunl< 
the foundLine 
the foundfield 
the length of factor 
length (expresSion) 
the 1.n of factor 
In (expression) 

:he In1 of factor 
.:. n 1 (expression) 

:he 10g2 of factor 
10g2 (expression) 
max (list) 

m ~ n ( list) 

: he :r,0'J se 

~.o~se() 

:: he r',ouseC.,icl< 

rr.o"..!seC~ic~ I) 

:o'c'Jse!i () 
:: he :nol,;se:'oc 

~o~se:'oc () 

::he mOl,;seV 

mOl,;seV() 

:::~e; number o~ objects 

The value of 2 raised to the power of factor 

Returns characters found by the find command 
Returns a description of where the text is found 
Tells which line the found text is in 
Tells which field the found text is in 
Number of characters in a text string 

Natural logarithm-base-e 

1 plus the natural logarithm: In (1 +factor'l 

Base-2 logarithm 

Returns the highest number value of a list 
Returns the lowest number value of a list 
Condition of the mouse button: up or down 

Retums true if the mouse button is clicked 

Horizontal position of the pointer on the screen 

Horizontal and venlcal coordinates of the pointer 

Venlcal position of the pointer 

:::r.e: r.'~m,oer o~ chunks i~ factor 
Number of buttons/fields on current card or bg 
Number of characters, words, lines, and so on 

:::he; r.~mber of cards of 
:r.e n~mToChar o! faclor 

nurr,'::oChar (expresSion) 

o! fset (string!. string2) 

the optionl<ey 
op::ionKey () 
the param of faClor 
param (expresSion) 
the paramCount 
paramCount() 
the params 
params() 
the random, of factor 

in text string 
background Number of cards in specified background 

Returns the character corresponding to an ASCI I 
value 

Gves number of characters between the beginnings of 
two strings 
Condition of the Option key; up or down 

Returns the value of a parameter in a list 

The total number of parameters 

The entire list of parameters 

Gives a random snteger from 1 to the value of faclor 



rar:com (expresSion) 
the result 
result () 
the round of factor 

round (expression) 
the screenRect 

screenReet () 
the seconds 

seconds () 
the selectedText 
:he selected::!':'.,;:" . ..; 

tr.e selected:'.i~.e 

t!;e selec~edF ':'e:'o 

the shiftKey 
s~.:'~:Key() 

t~e sin of factor 
s :. :-: ( expression) 
the sound 

so~nd () 
:ne sqrt o! factor 

sqr: (expression) 
t!'.e tan o! factor 
:: an ( expression) 
the target 
target () 
:~.e tici<s 

: :ci<s () 

the [modi/ierj time 

time () 
the tool, 
tool () 
the trunc of factor 
tr:.;nc (expresSion) 
the value of factor 
va 1 ue (expression) 
the [longJ version [of HyperCardJ 
version () 

Returns a text string if find or go is unsuccessful 

Rounds to nearest integer: an odd integer plus 0.5 
rounds up; an even integer, down 

The rectangle or the screen in which the menu bar 
is displayed: left, top, right, bottom coordinates 

Number of seconds between midnight January 1, 
1904, and the current time in your Macintosh 

Returns Ihe text currently selected 
Describes the location of the selected telCl 
Tells which line Ihe selected text is in 
Tells which field the selected text is in 
Condition of the Shift key: up or down 

Sine-radians 

l"ame of sound resource currently playing, or "cc:'!e" 

if none is playing 

Square root of a positive number-a negative number 
gives the result NAN (CO 1) meaning "not a number" 

Tangent-radians 

Identifies the original recipient of a message 

Number of ticks (~ second) since the MaCintosh 
was turned on or restaned 

Gives time as a text string: long, shon, abbreviated 

Name of currently chosen tool 

The integer pan of a number in function 

Gives the value or a string as an expression 

Returns the version number of HyperCard 

.. .. 

) 



'!II.. • 

~he version of staclcDescriptor 

Operator precedence 
Order Operators 

1 ( ) 

2 
not 

3 
4 * / div mod 
5 . -
6 & && 

7 > < <- >= S ~ 

is in cont.ains 
is not in 

8 • is is not <> 'It 

9 and 
10 or 

(~ .. 

Tells version of HyperCard used to creale, compact, 
chanse since compacted, and make latest changes, plus 
the date modified in seconds since January I, 1904 

type of operator 

Grouping 
Minus sign for numbers 
Logical negation for Boolean values 
Exponentiation €or numbers 
Multiplication and division for numbers 
Addition and subtraction for numbers 
Concatenation of text 
Comparison for numbers or text 
Comparison for text 
Comparison for text 
Comparison for numbers or text 
Logical for Boolean values 
Logical for Boolean values 



.. .. .... 


