
l .,
AppleGD MacTCP™ Programmer's Guide

-.• ----·--•-·•··•-~-~-~~-•• -----··•·•no.·-•·•••-• ··•·•• -•-••--·--·••·-··· ---·-------------

ti APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under the
copyright laws, this manual or
the software may not be copied,
in whole or in part, without
written consent of Apple, except
in the normal use of the software
or to make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies
to be made for others, whether or
not sold, but all of the material
purchased (with all backup
copies) may be sold, given,
or loaned to another person.
Under the law, copying includes
translating into another language
or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpa;e.

©Apple Computer, Inc., 1989
20525 Mariani Avenue
Cupertino, CA 95014
(400) 996-1010

Apple, the Apple logo, AppleTalk,
and Macintosh are registered
trademarks of Apple Computer,
Inc.

LocaJTalk, MacTCP, and MPW are
trademarks of Apple Computer,
Inc.

ITC Garamond is a registered
trademark of International
Typeface Capcntion.

Microsoft is a registered trade­
mark of Microsoft Corporation.

PostScript is a registered
trademark of Adobe Systems
Incorporated.

Simultaneously published in the
United States and Canada.

•

'

' (/ Contents

/

Figures and tables I vii

Preface I ix

What's in th~ guide I ix

Who should read ~guide I ix

Document conventions I ix

Related documents I x

1 Introduction I 1

Architectural overview I 2
Application, presentation, and session layers I 2
Transport layer I 3

User Datagram Protocol (UDP) I 3
Transmission Control Protocol O'CP) I 3

:\ Network layer I 3
Link access layer I 4
Physical layer I 4

2 The MacTCP Driver I S
The PBOpen call I 6
The PBControl call I 7
The PBOose call I 8
Implementation notes I 8

Breakpoints I 8
Fragmentation and reassembly I 8
Routing I 9

3 User Datagram Protocol I 11
Data structures I 12

Write Data Structures I 12
Receive buffer area I 13

Apple Confidential iii

- - -- - --- -------

•
Using UDP I 13
UDP routines I 14 ,

UDPCreate I 15
UDPRead I 16 '"
UDPBfrRetum I 17
UDPWrite I 18
UDPRelease I 19
UDPMTIJ I 20
UDP asynchronous notification routine I 21

C parameter block definitions I 23

4 Transmission Control Protocol I 25

Data struc.tures I 26
Read and Write Data Structures I 26
Receive buffer area I 'l'!

Using TCP I 'l'!
Streams and connections I 27
Asynchronous notification routine I 'l'!
Connection opening I 28
Receiving data I 28
Sending data I 28
Time-outs I 28
Pushed data I 29
Urgent mode I 29
Connection dosing I 30 ,,

Network management information I 30
Formatting MacTCP commands I 30

TCP routines I 31
TCPCJeate I 32
TCPJ>wiveOpen I 33
Ta> A<.ti.veOpen I 36
TCPSend /37
TCJ>NoCopyRcv I 38
Ta>BfrRetum I 40
TCPRcv /41
Ta>Oaie I 43
Ta> Abort I 44
TCPStatus I 45

iv Contents Apple Con[identfal

TCPRelea.5e I 47
TCPGlobalinfo I 48
TCP asynchronous notification routine I 50

C parameter block definitions I 54

5 Name-to-Address Resolution I 59
The Addres.sXlation.h header file I 60

The OpenResdver call I 60
The Stff oAddr call I 60
The AddrToStr call I 61
The F.numG1che call I 62
The Qa;eResolver call I 63
The AddrToName call I 63

Binding the DNR to the application I 64
DNR operation I 64

6 Miscellaneous Interfaces I 67
MacTCPCommontypes I 68

Result rodes I 68
Miscellaneous types I 70
Internet Control Mes.sage Protocol report structures I 71

GetMyIPAddr I 72

Appendix Constants I 73
Command codes I 74

Apple Confidential

UDP asynchronous event codes I 74
TCP asynchronous event codes I 7 4
Reasons for TCP termination I 75

Contents v

Figures and Tables

CHAPTER 1 Introduction I 1

Figure 1-1 MacTCP protocols and OSI network layers I 2

CH APT E R 3 User Datagram Protocol I 11

Figure 3-1 UDP Write Data Structure I 12
Table 3-1 UDP routines I 14

C HAP TE R 4 Transmission Control Protocol I 2S

Figure 4-1 TCP Read and Write Data Structures I 26
Table 4-1 TCP routines I 31

(,·
Apple Conftdenttal vii

Apple ConftdenttaJ

Preface

TH I S G U I D E D E S C R IB E S how to create application prograrm for

the MacTCPTll driver. MacTCP, Apple• Computer's implementation of the

protocol suite known as Trammission Control Protocol/Internet Protocol

(TCP/IP), increases the Macintosh• cornputets ability to interoperate in a

heterogeneous computer environment.

What's in this guide

This guide is divided into six chapters and one appendix that contain the
following information:

• Chapter 1, "Introduc.tion, • provides an overview of the MacTCP
architec.ture.

• Olapter 2, "Making MacTCP Calls," describes the PBOpen, PBControl, and
PBO<R calls.

• Chapter 3, "User Data Protocol," describes UDP routines.

• Chapter 4, "Transmission Control Protocol," describes TCP routines.

• Chapter 5, "Name-to-Address Resolution,• describes how textual names
are resolved to IP addresses.

• Chapter 6, "Miscellaneous Interfaces,• describes the types that are found
throughout the programmatic interfaces supplied with MacTCP.

• The Appendix, "Constants,• presents command codes, UDP
asynchronous event codes, TCP asynchronous event codes, and reasons
for TCP termination.

Who should read this guide

This guide is designed both for Macintosh programmers who are not familiar
with TCP/IP and for TCP/IP programmers who are not familiar with the
Macintosh programming environment.

Doc:umcntconvcntions
This document reflects the Macintosh Programmer's Workshop (MPW11')
conventions for types and sizes of variables and fields.

x Preface

Related documents
You might fmd the following reference materials useful.

• The MacTCP Admtnistrator's Gutt.le.

• Instr.le MactnlOSh, Volumes 1-V.

• Douglas Comer, Internetworklna WUh TCP/JP(Prentice-Hall, 1988).

• MacTCP implements protocols that conform to the following Request
For c.omments (RFC) and Military Standar~ (MIL-SID):

CJ RFC 791, 894; MIL-STD tm Onternet PrttocoO
CJ RFC 768 (User Datagram ProtocoO

CJ RFC 793; MIL-SID 1778 (Transmission Control Protocol)

CJ RFC 826 (Address Resolution Protoool)
CJ RFC 903 (Reverse Address Resolution Protocol)

CJ RFC 792 (Internet Control Message Prttocol)

CJ RFC 951, 1048 (Boastrap Protoco0

CJ IDEA004 (Routing Information Protocol)
CJ RFC 1034, 1035 (Domain Name Resolver)

a RFC 950 (Internet Subnetting)

CJ RFC 1010 (Internet Assigned Numbers)

Apple Conftdenttal

(Chapter 1 Introduction

Apple Confidential

MACTCPTlll IS A SOFTWARE DRIVER fortheMacintosh®

Operating System that allows developers to create Macintosh applications for

network environments that use the Transmission Control Protocol/Internet

Protocol (TCP/IP). TCP/IP is a widely used industry standard for connecting

multivendor computers. The TCP/IP protocol layers are fully compatible

across all implementations on different hardware platforms, allowing

different vendors' computers that run TCP/IP to interoperate and share data

and services.

This chapter provides an overview ri the MacTCP architecture. •

Architectural overview

MacTCP pr<XOcols partially conform to the International Standards Organization (ISO) Open
Syste~ Interconnection (OSI) layers of networking functionality. Figure 1-1 shows a comparison
of the OSI and MacTCP communications architecture.

• Figure 1-1 MacTCP protocols and OSI network layers

~I model

Applicatbn,
Presentation,
Session

Transport

Network

Data link

Physical

TCP/IP

FTP Telnet SMTP t-- Developer products

1--MacTCP

The TCP/IP protocols shown in Figure 1-1 are described in the following sections.

Application, presentation, and session layers

The services of TCP, the User Datagram Protocol (UDP), and IP are augmented by application
services in higher-level protocols such as the File Transfer Protocol (Fl'P), Telnet, and the Simple
Mail Transfer Protocol (SMI'P). These application services correspond to the application,
presentatioo, and session layers of the OSI model.

2 1 I Introduction Apple Confidential

(
Transport layer

The UDP and Ta> provide services at the transport layer of the OSI model.

User Datagram Protocol (UDP)

UDP provides unreliable transmission of data between processes. UDP's transport of data is
unreliable because, unlike TCP, it does not provide error checking, it does not acknowledge that data
has been successfully received, and it does not order incoming messages. UDP messages can be lost,
duplicated, or arrive out of order. Like Ta>, UDP messages are encapsulated in IP datagrams for
delivery.

The advantage of UDP is that the overhead wociated with establishing and maintaining an error­
free TCP session is avoided. Upper-layer protocols that don't require reliability use UDP to transmit
data. For instance, the domain name system uses UDP because reliability is ntt critical; if there is no
response to a domain name query, the resolver simply retransmits.

TransmJssfon Control Protocol (TCP)

TCP provides reliable transmission of data between processes. It ensures that data is delivered error­
free, without I~ or duplication, and in sequence.

Upper-layer protocols such as Telnet pass data to TCP for delivery to peer processes. TCP
encapsulates the data into segments and passes the segments to IP, which puts the segments into
datagrams and passes them acr~ the internet Ta> at the receiving end checks for errors,
acknowledges error-free segments, and reassembles the segments for delivery to upper-layer
protocols. If a segment is lost or damaged, it will not be acknowledged, and the sending process
will retransmit

TCP has a flow control mechanism so that computers cl different speeds and sizes can
communicate. When TCP at the receiving end sends an acknowledgment, it also advertises how
much data it is prepared to accept on the next transmission.

Network layer

The Internet Protocol (IP) provides services at the network layer cl the OSI model. IP is responsible
for sending data a~ multiple networks. IP accepts segments cl data from TCP or UDP, places
the data in packets called datagrams, and determines the correct path for the datagram to take. The
datagrams are sent across the internet, through as many gateways as needed, until they reach the
destination host.

JP provides an addressing mechanism that allows routing between networks. The header of an IP
datagram contains source and destination internet addresses so that any host in a network can
route a packet to a destination, either directly or through a gateway.

Apple Conftdenltal 1 I Introduction 3

IP has the ability to fragment a datagram as it is transmitted across a network. Since IP can be used
with many different physical network implementations that specify different sizes for physical
data frames, datagram.5 can be fragmented to fit into a small data frame. Fragments are
reassembled as they arrive at the destination.

IP is often referred to as an unreliable delivery system because it makes a best-effort attempt to
deliver all datagrams, but delivery is not guaranteed (TCP guarantees delivery). It is also called a
connectionless delivery system because it routes each datagram separately. When IP receives a
sequence of datagram.5 from TCP or UDP, it routes each datagram in the sequence individually and
each datagram may travel over a different path to the destination

Link access layer

The AppleTalk® Link Access Protocol (AI.AP) and Ethernet Link Access Protocol (ELAP) provide
services at the link access layer of the OSI model. AI.AP and El.AP provide best-effort delivery of
information between devices. They provide the basic service of packet transmission between
devices connected to a single physical network.

Physical layer

MacTCP operates networks in which the physical layer uses the LocalTatkn1 cable system or the
Ethernet networking standard.

4 1 I Introduction Apple Confidential

Chapter 2 The MacTCP Driver

Apple Conftdenttal

MACTCP IS A MACINTOSH OperatingSystemdriverthat

implements the Internet Protocol (IP), User Datagram Protocol (UDP), and

Transmission Control Protocol (TCP). A part of the Macinta5h Operating

System called the Device Manager handles communication between

applications and the MacTCP driver.

The MacTCP driver resides in the Macinta5h System Folder. At startup, the

MacTCP driver registers itself with the Device Manager as . IPP.

The MacTCP driver supports the following low-level Device Manager calls:

• PBOpen

• PBControl

• PBCla5e

5

The PBOpen call

Before the application can exchange information with the MacTCP driver, the driver must be
opened ming the Device Manager PBOpen call, which opens the driver and retwm its reference
number. All subsequent calls to the driver use this reference number.

On machines with 1 megabyte (MB) ci memory or more, the MacTCP driver uses the INIT-31
mechanism to automatically install itself in the device table and load itself into the system heap
each time the machine is restarted Al load time, all internal buffers needed by MacTCP are also
allocated on the system heap. These buffers are used (among other things) to hold incoming
fragments awaiting reassembly and outgoing fragments following fragmentation. The amount of
buffer space allocated is based on the amount of memory in the machine.

On machines with less than 1 MB of memory, MacTCP will not load itself at system startup; rather,
the driver must be installed in the System file using the provided Installer script. When the PBOpen
call is made, the driver is loaded into the application heap on a Macint~h 512K enhanced computer
by the Device Manager.

The MacTCP driver performs its initialization sequence at PBOpen time. The initialization sequence
includes initializing the local network handler, setting its local address and subnet mask, verifying
that this address is reasonable and unused, and starting up the internal TCP/IP/UDP protocol
machinery. PBOpen returns with an error code if any step in this process fails. In al~t all cases, if
PBOpen fails, the driver must be reconfigured and the system then restarted to clear the problem.
Very few circumstances exist where transitory problems cause PBOpen to fail.

The reference number returned from the PBOpen call should be used in all subsequent PBControl
calls to this drive. The ioCRefNum field should be assigned this value.

Because of the complexity of initializing MacTa>, PBOpen can return errors from many parts of the
system including the Resource Manager, Device Manager, File Manager, Sia Manager, and AppleTalk
driver.

6 2 I Making MacTCP calls Apple Confidential

(

The PBControl call
The Device Manager PBControl call sends control information in the following parameter block to
the driver:

struct CntrlParam {

struct QElem *qLink;

short qType;

short ioTrap;

Ptr ioCmdAddr;

ProcPtr ioCompletion;

OSErr ioResult;

char *ioNamePtr;

short ioVRefNum;

short ioCRefNum;

short csCode;

short csParam(ll];

The type of information sent is specified by csCode in this parameter block. The MacTCP driver
decides what to do based on the procedure number specified by the csCode (the Appendix lists
procedure numbers).

All UDP and TCP routines documented in this guide are implemented as Device Manager Control
calls. All MacTCP routines support both synchronous and asynchronous modes.

If a syndironous call is made, the application can't continue until the call is completed When
control is returned to the application, the result code in the parameter block is set indicating the
success or failure of the call.

If the call is asynchronous, the 1/0 request is placed on the driver I/O queue, and control is returned
to the calling program almost immediately. While requests are taken from the driver VO queue one
at a time and processed, the application is free to perform other tasks. The application has two
ways of knowing when the call has been completed:

• By polling the ioResult field in the parameter block. When this value changes from
commandlnProgress to some other value, the call has been completed.

• By specifying an VO completion routine to be called when the requested operation is complete.

The ioCompletion field in the parameter block contains a pointer to a completion routine to be
executed 2l the end c:i an asynchronous call. The ioCompletion field should be NIL for
asynchrooous calls with no completion routine, and is automatically set to NIL for all synchronous
calls.

The ioNamePtr and ioVRetNum fields are used internally by the driver.

Apple ConftdenttaJ 2 I Making MacTCP Calls 7

Each routine description includes a parameter block format The number next to each field name
indicates the byte offset <i the field from the start <i the paramerer block pointed to by AO. An
arrow Dell to each parameter name indicates whether it's an input, output, or input/output
parameter:

Arrow Mca1linl

-+ Parameter is passed to the routine.

+- Parameter is returned by the routine.

+-+ Parameter is passed to and returned by the routine.

All Device Manager Control calls return an integer resuk code of type OSErr in the ioResult field of
the VO parameter block. Each routine description lists all d the applicable result codes generated by
MacTCP, along with a short description of what the result code means.

The PBClose call

The application does not need to ~ue a PBOose call to MacTCP. Because the driver can be shared by
a variety of applicatiom, once initialized, it never stops operation until the machine is restarted.
PBClose returns an error code of closErr.

Implementation notes

This section describes internal algorithms and decisions made by MacTCP.

Breakpoints

The MacTCP driver contains several breakpoints that should never be encoontered if the application
is operating correctly. When one of these brcakpoilts occurs, it can be proceeded from and the text

string that is printed should give some indication d the programmer-level error.

Fragmentation and reassembly

The Internet Protocol OP) has the ability to fragmert a packet so that it can be sent a~ a
network with a small maximum tramfer unit (M'IU). The fragments are reassembled as they arrive
at the destination. Since the application developer must select the size of UDP datagrams (unlike
TCP, which negotiates packet size), you should be aware d implementation limitations imposed on
the size of these datagrams.

8 2 I Making MacTCP calls Apple Confidential

MacTCP internally allocates a buffer memory to temporarily hold all incoming fragments waiting to
be reassembled, and all outgoing framents waiting to be sent. The amount of space allocated varies
depending on whether 1, 2, or 4 megabytes (MB) ri memory is installed. The maximum size ri the
packet being fragmented or reassembled depenm solely on the available free space in this buffer.
Because the memory pool is shared by all MacTQ> users, the allowance for the maximum size of a
UDPWrit.e packet will vary, depending on competing demands on the memory pool. A given
destination can only guarantee the reassembly of a packet that is 576 bytes (including IP and UDP
headers); therefore, l is possible to send a packet from MacTCP that canna be reassembled by the
destination host.

Routing

MacTCP supports routing through the Routing Information Protocol (RIP). Because MacTCP is
internally listening to RIP broadcasts, attempting to create a stream on local port 520 will return a
duplicateSocket error.

A default gateway can be configured using the Control Panel.

Apple Conftdenttal 2 I Making MacTCP calls 9

Chapter 3 User Datagram Protocol

Apple ConftdenttaJ

TH E U S E R D AT AG RAM P R 0 T 0 C 0 L (UDP) provides a low­

overhead transaction service to allow upper-layer protocols (ULP) to send

datagrams between one another. UDP is datagram oriented with best-effort

delivery, but it does not use acknowledgments to make sure messages are

delivered to the destination, does not order incoming messages, and does not

provide feedback to control the rate at which information flows between

machines.

Like the Transmission Control Protocol (TCP), UDP uses port fields to specify

the source and destination processes d each tramaction. An optional

checksum is also used. •

11

Data structures

The UDP packet is composed d an 8-byte header, followed by up to 65,507 bytes of data. The UDP
header has the following structure:

source port word

destination port word

length word

checksum word

Write Data Structures

To send a UDP datagram, you must format a Write Data Structure (WDS), which has the format
shown in Figure 3-1. A WDS specifies a li.5t of buffers to write in a single operation.

• figure 3-1 UDP Write Data Struc.ture

• • •

length <:i first buffer

pointer to first buffer

length of last buffer

pointer to last buffer

zero(word)

• • •

The simplest \VDS describes a single buffer and is 8 bytes in length: a word length, a long pointer,
followed by a terminating word of O. The most complex \VDS that can be used to send a UDP
datagram describes 6 buffers and ~ 38 bytes in length.

12 3 I User Datagram Protocol Apple Confidential

•

Receive buffer area

The User Datagram Protocol (UDP) does not allocate memory for storing UDP stream databases or
for buffering received datagrams. Instead, you must pass UDP enough memory for these purposes
in the UDPCreate call. This has two advantages:

• 1be buffer memory can be allocated off the application heap instead d the system heap, which
is very limited.

• You have control over the buffering provided by UDP and can allocate the appropriate amount
d memory for the type d application and performance level desired.

This buffer area for incoming datagrams belongs to the MacTCP driver as long as the UDP stream is
opened. When UDPRelease is called, this memory is returned to you and you can then reuse it or
return it to the system.

Using UDP
To send or receive UDP datagrams, you must first call UDPCreate to create a UDP stream, creating
a port listener for the given UDP port and passing a memory block to the UDP driver to use in
buffering incoming datagrams. UDPCreate also registers a routine that UDP uses to notify you of
asynchronous events associated with this UDP stream. MacTCP can support 64 open UDP streams
simultaneously.

To receive a UDP datagram, call UDPRead. Then, when you finish with the buffer that holds the
received datagram, call UDPBfrRetum. To send a UDP datagram, call UDPWrite. When you finish
using a UDP port, call UDPRelease to close the UDP stream.

• Note: Use d link-level packets larger than the maximum transfer unit (MI'U) on LocalTalk
networks is not advised because there are several problems with these packets on Datagram
Delivery Protocol-Internet Protocol (DDP-IP) gateways. The packet MTU size should be
negotiated by upper-layer protocols.

Apple Conftdmttal 3 I User Datagram Protocol 13

UDP routines
This section describes calls to the UDP driver. The C parameter block definitiom are presented at
the end of the chapter. Table 3-1 lists each UDP routine and its function

• . Table 3-1 UDP routines

loudne

UDPCreate
UDPRead

UDPBfrReturn

UDPWrite

UDPReJease

UDPMTU

Opens a UDP stream
Retrieves a datagram received on a UDP stream

Returns a receive buffer to the UDP driver

Sends a datagram on a UDP stream

Ooses a UDP stream
Returns the maximum size of UDP data that can be sent in
a datagram without IP fragmentation

14 3 I User Datagram Protocol Apple Confidential

UDPCreate

(Parameter block

Resuh codes

Apple Confidential

~ ~ word csCode = UDPCreate

+- /B long stream pointer

~ 32 long pointer to receive buffer area

~ ~ long length of receive buff er area

~ «> long pointer to asynchronous nctification routine (ASR)

+-+ 44 word local UDP port
~ ~ long user data pointer

UDPCreate opens a UDP stream. It must be called before any UDP datagrams can be sent
or received on a particular UDP port. UDPCreate returns a stream pointer that must be
used in all subsequent UDP calls that operate on this UDP stream.

The receive buffer area is a block of memory that you must give to the UDP driver. UDP
uses this memory to buffer incoming datagrams. This block of memory belongs to UDP
while the stream is open; it cannot be modified or relocated until UDPRelease is called. The
minimum allowed size of the receive buff er area is 2048 bytes, but it should be at least 2N
+ 256 bytes in length, where N is the size in bytes of the largest UDP datagram you expect
to receive.

The ASR is called by UDP to notify the user d asynchronous events such as data arrival
and Internet Control Message Protocol (ICMP) messages. If the routine is 0, you are not
notified of asynchronous events. See the section •UDP Asynchronous Notification
Routine• later in this chapter for more information.

If the local port is 0, UDP assigns an unused local port.

The user data pointer is returned in all ASRs for the created UDP stream.

no Err

streamAlreadyOpen

invalidLength

invalidBufptr

duplicateSocket

insufficientResources

no error

there is already an open stream using this receive buffer area

the receive buff er area is too small

the receive buffer area pointer is 0

a stream is already open using this local UDP port

there are already 64 UDP ~ open

3 I User Datagram Protocol 15

UDPRead

Parameter block

Result coda

~ as word csCode • UDPRead
~ 28 long stream pointer
~ 32 word command time-out value in seconds (0 = infinite)
+- 34 long remote IP address
+- ~ word remote UDP port

+- «> long pointer to UDP data
+- 44 word length of UDP data
~ f; word reserved; must be set to O

~ 48 long user data pointer

UDPRead retrieves a datagram that has been received on the UDP stream defined by the
stream pointer. Some number d datagrams are buffered internally withm UDP even
when no UDPRead cornmand.5 are ootstanding, so it is not necessary to keep a UDPRead
command outstanding at all times. The exact number of datagrams that can be buffered
within MacTCP depend.5 on the size of the receive buffer area given to MacTCP in the
UDPCreate call and the size of datagrams received.

If a UDP datagram arrives on an open UDP stream and no UDPRead commands are
outstanding, you are given a data arrival notification as a hint that a UDPRead command
shoold be issued. See the section •UDP Asynchronoos Notification Routine• later in this
chapter for more information.

The command time-out period is specified in second.5. If no datagram arrives within the
time-out period, the UDPRead command is completed in error. The minimum allowed
value for the command time-out is 2 second.5. A zero command time-out means infinite;
the UDPRead command will not be completed until a datagram arrives.

The remote IP address and remote UDP port specify the source of the datagram.

UDPRead can return successfully even though the length of UDP data is 0. This happens
when a UDP packet arrives that has the passed-in value of the UDP stream's local UDP
port, but contains no data. Since the UDPSend command permits sending zero-length
UDP datagrams, the UDPRead command must pass up zere>-length datagrams for
symmetry.

For every UDPRead command that is completed successfully and returns a nonzero
amount of data, you must call UDPB&Retum with the same stream pointer and UDP
data pointer, to return the receive buffer to the UDP driver for reuse.

noF.rr

invalidStreamPtr

commandTimeout
connection Terminated

no error
the specified UDP stream w not open

no data arrived wkhin the specified period

the UDP stream was dosed by a UDPRelease command

16 3 I User Datagram Protocol Apple Conftdenttal

(:

(

UDPBfrReturn

Parameter block

llesuh codes

Apple Conftdenttal

-+ Ji word csCcxie • UDPBfrRetum

-+ 28 long stream pointer

-+ «> long pointer to UDP data

-+ 48 long user data pointer

UDPBfrRetum returns a receive ooffer to the UDP driver that had been passed to you
because of a successful UDPRead call that returned a nonzero amount of data.

no Err

invalidStreamPtr
invalidBurPtr

no error
the specified UDP stream is not open
the UDP receive ooffer is not owned by the user

3 I User Datagram Protocol 17

UDPWrite

Parameter block

•

Result codes

-+ 1i
-+ 28

-+ 34
-+ ~

-+ ~

-+ 44

word
long

long

word
long

byte

csc.ode. UDPWrite

stream pointer
remote IP address
remote UDP port

pointer to WDS

checksum flag

-+ .i) word reseived

-+ 48 long user data pointer

UDPWrite sends a datagram on a UDP stream.

The datagram's destination is specified by the remote IP address and remote UDP
parameter ports. The buffers described by the WDS must not be modified or relocated
until the command is completed. There can be up to 6 buffers desaibed by the WDS. The
total length of the UDP data described by the WDS must be between O and 8,192 inclusive.
If the Checksum flag is nonzero, UDP computes and transmits a checksum; otherwise,
the checksum is transmitted as 0. The reserved field must be set to 0.

In an Ethernet environment, the size of UDPWrite packets should be restricted to less
than or equal to 8, 192 bytes. Packets of this size can usually be reassembled by computers
operating in Ethernet environments. In a LocalTalk environment, the size rJ UDPWrite
packets should be restricted to less than or equal to 1,458 byteS because of Datagram
Delivery Protocol-Internet Protocol (DDP-IP) gateway performance considerations.

Note: Unless you have prior knowledge of the capabilities of the destination machine, the
UDPWrite size should be limited to the value returned by the UDPMTIJ call for maximum
interoperability.

no Err
invalidStreamPtr

invalidWDS

invalidl.ength

insuff"tcientResources

ipNoFragMemErr

ipRouteEJT

no error
the specified UDP stream is not open

too many buffers in WDS or WDS pointer is NIL

the total amount of data described by the WDS was greater than
65,535 bytes
too many datagrams are outstanding in the transmit queue

insufficient internal memory was available to fragment the
packet

unable to send the packet to an off-network destination ·
because all gateways are down

18 3 I User Datagram Protocol Apple Conftdenttal

UDPRelease

(Parameter block

•

Result codes

(
Apple ConfldenttaJ

~ 1) word csCode = UDPRelease

~ 28 long stream pointer

+- 32 long pointer to receive buffer area

+- ~ long length of receive buff er area
~ ~ long user data pointer

UDPRelease closes a UDP stream. Any outstanding commands on that stream are
terminated with an error. The ownership of the receive buffer area used to create the UDP
stream passes back to you.

Noli!: Before UDPRelease is called, you must make sure that all pending UDPWrite
commands have been completed. There is no way to abort a UDPWrite command in
progress.

no Err
invalidStreamPtr

no error
the specified UDP stream is not open

3 I User Datagram Protocol 19

UDPMTU

Parameter block

Kesuh codes

-+ ~ word csCode • UDPMaxMTUSize

+- 32 word maximum datagram size

-+ 34 long remorea~

-+ 38 long user data pointer

UDPM'IU returm the maximum size of UDP data that can be sent in a single datagram
without fragmentation This number does not include the IP and UDP headers. The value
is relative to the destination address. If the address w on the local network, the network
M11J size is returned; otherwise, a value of 548 is returned.

no Err no error

31 User Datagram Protocol Apple Conftdenttal

•

UDP asynchronous notification routine

The asynchronous notification routine (ASR), which was registered with UDP in the
UDPCreate call, is called by UDP to notify you of asynchronous events relevant to a
particular UDP stream.

Since this rootine is called from the interrupt level, you must not allocate or return
memory to the system. Also, yoo are ntt allowed to make fun.her synchronous MacTCP
calls from an ASR. The values of all registers must be preserved except registers A~A2 and
00-02.

The C description of the ASR is as follows:

pascal void UDPNotifyProc (StreamPtr udpStream,unsiqned short eventCode,
Ptr userDataPtr, struct ICMPReport *icmpMsq);

Event codes

Apple Confidential

NotifyProc is passed to the UDPCreale call for use on notification of data arrival and
ICMP message reception. If this method of notification is not desired, no procedure
should be passed to the UDPCreate call. Asynchronous notification will be used with the
UDPRead command only; all other commands are completed in a finite amount of time
and can be called synchronously.

At entry, AO contains the stream pointer, Al contains a pointer to the ICMP report
structure if the event code in DO is ICMP received, A2 contains the user data pointer, A5 is
already set up to point to application globals, and DO (word) contains an event code.

UDPDataArrival

UDPICMPReceived

a UDP datagram has arrived on this stream but no
UDPRead commands are outstanding

an ICMP has been received on this stream; register
Al points to the ICMP report

An ICMP message reports an error in the processing of a datagram that was sent on a
UDP stream. When an ICMP message is received, a data stru<.ture is passed up by UDP to
the client to describe the received message. This data stru<.ture, called an ICMP report, has
the following format:

O long

4 long

8

10

14

16
18
3)

word

long

word

word

word

long

stream pointer

local IP address of stream

local UDP port of stream

remote IP address (destination of original datagram)

remote UDP port

ICMP message type

optional additional information

optional additional information pointer

3 I User Datagram Protocol 21

The values for the ICMP message type are as follows:

0 net unreachable

1 host unreachable

2 prctocol unreachable

3 port unreachable

4 fragmentation required

5 source route failed

6 time exceeded

7 parameter problem

8 missing required option

Codes 0-3 are defined as follows:

• Net unreachable indicates that, according to the information in a gateway
routing table, the network specified in the IP destination field of a UDP
datagram is unreachable.

• Host unreachable indicates that a gateway determined that the host
specified in the IP destination field of a UDP datagram is unreachable.

• Protocol unreachable indicates that a UDP datagram was delivered to the
destination host, but UDP was not ready to receive any datagra~.

• Port unreachable indicates that a UDP datagram was delivered to the
destination host, but no UDP client was listening on that particular port.

These ICMP messages may be received occasionally when the topology of the internet
changes. A single destination unreachable message should not be taken too seriously;
however, if several successive UDPSend commands each result in an ICMP report
indicating that the destination is unreachable, the UDP client should assume that the
remote host has either crashed or is no longer accessible.

The remaining codes (4-8) indicate proble~ in the format of the IP header on a UDP
datagram. They are informational only. Since the UDP client has no access to the IP
header, you cannot correct the error.

3 I User Datagram Protocol Apple Confidential

(:

,j
·~

C parameter block definitions
The following C type definitions are used with parameter-block Device Manager calls to UDP:

tdefine UDPCreate
tdefine UDPRead

tdefine UDPBfrReturn

tdefine UDPWrite

tdef ine UDP Release

tdef ine UDPMaxMTUSize
#define UDPCtlMax

typedef enum UDPEventCode
UDPDataArrival • l,

UDPICMPReceived,

lastUDPEvent • 65535
) ;

20
21
22
23
24

25
29

typedef pascal void (*UDPNotifyProcl

StreamPtr udpStream,
unsigned short eventCode,

Ptr userDataPtr,
struct ICMPReport *icmpMsg);

typedef void (*UDP IOCompletionProc) (st ruct UDP iopb * iopb) ;

typedef unsigned short udp_port;

typedef struct UDPCreatePB { /* for create and release calls *I
Ptr
unsigned long

UDPNotifyProc
unsigned short

Ptr

UDPCreatePB;

rcvBuff;
rcvBuffLen;

notifyProc;

localPort;

userDataPtr;

typedef struct UDPSendPB {

unsigned short

ip_addr

udp_port

Ptr

Boolean
unsiqned short

Ptr

UDPSendPB;

Apple Conftdenttal

reserved;

remoteHost;

remotePort;

wdsPtr;

checksum;
sendLenqth;

userDataPtr;

3 I User Datagram Protocol

The following parameter block i.s used with the UDPRead and UDPBfrRetum commands:

typedef struct UDPReceivePB
unsigned short

ip_addr
udp_port
Ptr
unsigned short
unsigned short
Ptr

UDPReceivePB;

typedef struct UDPMTUPB

unsigned short
ip_addr
Ptr

UDPMTUPB;

timeout;

remoteHost;
remotePort;
rcvBuff;

rcvBuffLen;
secondTimeStamp;

userDataPtr;

mtuSize;
remoteHost;
userDataPtr;

typedef struct ODPiopb I

char
ODPIOCompletionProc
short

fill12[12];
ioCompletion;
ioResult;
*ioNamePtr;

ioVRefNum;

ioCRefNum;
csCode;

udpStream;

char
short

short

short
StreamPtr

union I
struct UDPCreatePB

struct ODPSendPB
struct UDPReceivePB

struct UDPMTUPB

csParam;
UDPiopb;

3 I User Datagram Protocol

create;

send;
receive;

mtu;

Apple Confidential

(

(

Chapter 4 Transmission Control Protocol

Apple Confidential

THE TRANSMISSION CONTROL PROTOCOL (TCP) i.sa

highly reliable, connection-oriented byte-stream protocol. It is designed to

operate over a wide variety of networks and to provide virtual circuit service

with orderly transmission of user data. TCP serves as the basi.5 for a reliable

interprocess communication mechanism on top of the IP layer where loss,

damage, duplication, delay, or misordering of packets can occur. •

25

Data structures

This sec.tion describes TCP Read and Write Data Structures and the buffer area.

Read and Write Data Structures

The MacTCP driver uses Read Data Structures and Write Data Structures (RDS!WDS) to pass data
between the user and TCP. These structures allow a single read or write operation to handle
multiple blocks of data; that is, they allow scatter-read and gather-write capability. Figure 4-1
shows TCP Read and Write Data Structures.

• Figure 4-1 TCP Read and Write Data Structures

length of first buffer

pointer to first buffer

• • • • • •

length of last buffer

pointer to last buffer

zero(word)

The simplest possible Read and Write Data Structures are 8 bytes in length: a word length, a long
pointer, and a terminating word of 0. No maximum number of buffers can be described by a
RDS/WDS used to transfer data between TCP and the user.

4 I Transmission Control Prctocol Apple Confidential

Receive buffer area

TCP does not allocate memory for storing TCP stream databases or for buffering received
datagram,,. Instead, you are required to pass TCP enough memory for these purpQ5CS in the
TCPCreate call. This has two advantages:

• The buffer memory can be allocated off the application heap instead d the system heap, which
is very limited.

• You have control over the buffering provided by TCP and can allocate the appropriate amount
d memory for the type d application and performance level desired.

This buffer area for incoming datagr.um belongs to the MacTCP driver as long as the TCP stream is
open. When TCPRelease is called, this memory is returned to you and you can then reuse it or return
it to the system.

Using TCP

This section describes how to send and receive TCP segments.

Streaim and connections

A TCP stream supports one connection at a time. But a TCP connection on a stream can be closed
and another connection opened without releasing the TCP stream. MacTCP can support 64 open
TCP streams simultaneously.

Asynchronous notification routine

When a TCP stream is created, a routine can be registered that TCP uses to notify you of
asynchronous events relevant to that TCP stream. This routine is called the asynchronous
notification routine (ASR).

Examples ri events that MacTCP communicates to the user by means of an ASR include Time-out
expired, Data arrived, and Connection tenninated Since the ASR is called from interrupt level, It
cannot allocate a release memory. In addition, synchronous MacTCP driver commands cannot be
issued from an ASR.

Apple Conftdenttal 4 I Transmission Control Protocol

Connection opening

To listen for an incoming connection, use the TCPPassiveOpen command. This command can be
used to specify whether any incoming connection will be accepted or only connections from a
particular remote IP address and TCP port.

To initiate outgoing connections, use the TCP ActiveOpen command.

Receiving data

Two methods are available for receiving data: a high-performance method and a simple method.
You can choose the method that best suits the application or combine the two methods if desired

Using the TCPNoCopyRcv routine is the high-performance method. Data is delivered to the user
directly from the internal TCP receive buffers and no copy is required. An RDS is formaned to allow
many received segments to be delivered to the user in one TQ>NoCopyRcv command.
TQ>BfrRetum must be called for every TCPNoCopyRcv that returns a nonzero amount of data in
order to return the internal receive buffers to the MacTCP driver.

Using the TCPRcv routine is the simple method of receiving data. Data is copied from the TCP
internal receive buffers into the user's buffer, which can be of arbitrary length and location. No RDS
is used and no TQ>BfrRetum call is required.

Sending data

To send data on a connection that is already established, use the TCPSend command.

Both commands use WDSs to implement a gather-write capability. This allows you to send several
noncontiguous chunks of data in one operation.

Time-outs

TCP normally provides some time-out services to the upper-layer protocol (ULP). This time-out
service is known as the ULP time-oul If there is data to send on·a connection, but for some
specified period <:J time either the data cannot be sent because the remote TCP is not set to receive .
any data or the data has been sent but the remote TCP has not acknowledged it, then the ULP
time-out expires.

When the ULP time-out expires, TCP executes the specified ULP time-out action. There are two
possible actioos: abort the connection or report the timer expiration by means of an ASR and restart
the timer.

In addition to this normal TCP timer, MacTCP provides command time-outs on commands that are
not subject to the ULP timer. These commands are TCPPassiveOpen, TCPNoCopyRcv, and TCPRcv.

4 I Transmission Control Protocol Apple Conftdenttal

A TCPPassiveOpen command instructs TCP to wait for an incoming coonection. The ULP timer is
not started until the first connection initiation segment arrives. To prevent a TCPPassiveOpen
command from waiting indefinitely for a connection initiation segment to arrive, a command time­
out is provided. If no cormection initiation segment is received within the specified time-out
period, the TCPPassiveOpen command is completed with an error code.

Similarly, the TCPNoCopyRcv and TCPRcv commanm are net protected by the ULP timer. In the
absence of command time-outs, both commanm could wait indefinitely for data to arrive. If a
command time-out is specified on a TCPNoCopyRcv or TCPRcv command, the command is always
completed within the specified time period. If no data has arrived at that point, the command is
completed with an error. If some data has arrived, the command is completed successfully,
retuming the data that has arrived so far.

Pushed data

Nonnally, TCP is allowed to collect data sent by means of TCPSend commanm and to send that
data in segments, as convenient. By setting the Push flag in the TCPSend command, TCP can be
instructed to send all unsent data at once.

Similarly, TCP is allowed to collect received data internally and deliver it with reasonable promptness
to the user. However, when pushed data arrives, TCP immediately delivers all received data to the
user.

Note that there is no necessary relationship between the Push flag in a TCPSend command and
segment boundaries. The push function does net provide a method of marking message
boundaries.

Urgent mode

TCP's urgent mechanism allows the sending user to prompt the receiving user to accept some
urgent data and permits the receiving TCP to indicate to the receiving user when all currently
known urgent data has been received.

TCP does na define what the user is required to do when in urgent mode, but the general practice
is that the receiving user takes action to process the arriving data quickly.

A receiving user can be put in urgent mode in two ways: by meam of an Urgent flag in a
TCPNoCopyRcv or TCPRcv command, or by an urgent ASR nttification. The user is always taken
out d urgent mode by a Marie flag in the TCPNoCopyRcv or TCPRcv command that contains the
last byte d urgent data.

To send data as urgent, you must set the Urgent flag in the TCPSend command.

Apple Conftdenttal 4 I Trammission Control Protocol

Connection closing

TCP d~ communications gracefully. All outstanding Send requests are transmitted and
acknowledged before the connection is allowed to close. You can ~ue several TCPSend commanw
followed by a TCPOose command and expect that all the data will be selt successfully to the
remote TCP.

A TCPOose conunand means "I have no more data to send,• but it does n<X mean "I will receive no
more data• or •shut down this connection inunediately.• A connection may remain open
indefinitely after a TCPClose conunand is completed as the rem<Xe TCP continues to send data.
When the remote TCP also issues a dose command-and only then-the connection is dosed. A
TCPRcv command should be issued after a TCPOose command is completed to make sure that all
the data is received

If the desired effect is to break the connection without any assurance that all data in transit is
delivered, use the TQ>Abort command.

Network management in.formation

TCP keeps two types of network management information: global TCP information and stream­
specific information, which is relevant only to a particular stream.

The TCPGloballnfo command makes global TCP information accessible. This command returns
pointers to the actual structures where TCP stores this infonnation. Thus, the user has read-write
access to this information.

The TCPStatus command makes stream-specific information accessible. Most stream-specific
information is copied into the TCPStatus VO parameter block, giving the user read-only acces.s. But
a direct pointer to the traffic statistics allows the user read-write access to those counters (see the
section .,.CPGloballnfo• later in this chapter).

Formatting MacTCP commands

In most cases, a O value for a parameter in an VO parameter block means that TCP should use its
default value. Thus, you could initialize VO parameter blocks and then fdl in the required parameters,
plus optional parameters.

4 I Transmission Control Pr<Xocol Apple Confidential

••
(

(

TCP routines
This section presents calls to the TCP driver. Table 4-1 lists each TCP routine and its function. The C
parameter-block definitions are presented at the end of the chapter.

• Table 4-1 TCP routines

Routine

TCPCreate
TCP~iveOpen

TCPActiveOpen

TCPSend
TCPNoCopyRcv

TCPBfrReturn

TCP Rev
TCPO~

TCPAbort

TCPStatus

TCP Release
TCPGloballnfo

Apple Confidential

Opens a TCP stream
Listens for an incoming connection

Initiates an outgoing call to a remote TCP

Sends specified data on a connection

Retrieves data that has been received on a connection

Returns a set of receive buffers to the TCP driver

Retrieves data that has been received on a connection
Signals that the user has no mae data to send on this
connection

Terminates the connection without trying to send
outstanding data or deliver received data

Extracts infonnation from TCP regarding a
particular connection

Closes a TCP stream

Allows the user access to global statistics and parameters
that affect the operation of TCP

4 I Transmission Control Protocol 31

•• TCPCreate

Parameter block

Result codes

-+ Ji word csCcxie = TCPCreate

+- 28 long stream pointer

-+ 32 long pointer to receive buffer area

-+ ~ long length of receive buffer area

-+ «> long pointer to ASR

-+ 44 long user data pointer

TCPCreate opens a TCP stream A TCP stream is not equivalent to a TCP connection.
MacTCP returns a pointer to a stream database. The stream pointer is an input parameter
in all subsequent commands affecting the stream.

The receive buffer area is a block of memory that TCP uses to buffer incoming segments.
Ownership of this block of memory passes to TCP. The memory-a minimum of 4096
bytes-Cannot be modified or relocated until TCPRelease is called. The size of the receive
window that TCP offers is based on the size of the receive buffer area passed to TCP in
the TCPCreate call. High-performance and block-oriented applications should provide TCP
with a large receive buffer area: 16 KB (kilobytes) is recommended and up to 128 KB can be
useful in certain applications. Character-oriented applications can use the minimum value
of 4096 bytes; however, at least 8192 bytes is recommended

An ASR may be provided The ASR is called by TCP to notify you of asynchronous events
such as Data arrival, Urgent data outstanding, and Connection terminated. If the routine
is 0, you are not notified of asynchronous events.

no Err no error

streamAlreadyOpen an open stream is already using this receive buff er area

invalidLength the receive buffer area is too small

invalidBufPtr the receive buffer area pointer is 0

insufficientResources there are already 64 TCP st.rearm open

32 4 I Transmission Control Protocol Apple Confidential

•• TCPPassiveOpen

Parameter block ~ :!) word csCode • TCPPas.siveOpen _

(~ 28 long stream pointer

~ 3Z byte ULP time-out value in seconds; O • use default
~ 33 byte ULP time-out action; O • report, nonzero .. abort
~ 34 byte validity bits for optional parameters
~ 35 byte command time-out in seconds; 0 • infinity

+-+ }i long remote IP address; can be 0

+-+ .i) word remote TCP port; can be 0
.__ 42 long local IP address

+-+ ~ word local TCP port; if 0, TCP assigns an unused port
~ 48 byte type of service

~ 4f) byte precedence
~ ~ byte don't fragment flag
~ 51 byte time to live
~ 52 byte security flag
~ 53 byte IP option count
~ 54 var. IP options
~ 94 long user data pointer

TCPPassiveOpen listens for an incoming coonection. The command is completed when a
connec.tion is established or when an error occurs.

'{ Several fields in the TCPPassiveOpen command are optional. To indicate whether the user I

'
is including these optional parameters, a set of validity bks is defined as follows:

bit 4 precedence parameter is valid
bit 5 type of service parameter is valid
bit 6 ULP time-out action parameter is valid
bit 7 ULP time-out value parameter is valid

For example, a value of OxCO would mean that the ULP time-out value and action
parameters are valid. If a validity bit is 0, TCP uses its default value for that parameter.

If the remote IP address and remcie TCP port are 0, a connection is accepted from any
remote TCP. If they are nonzero, a conneaion is accepted only from that particular
remote TCP. If the local TCP port is 0, TCP assigm an unused port value.

If a connection is partly established but cannot be completed within the ULP time-:aut
period after the fD"st connection opening segment arrives, the ULP action is taken. If the
ULP time-out action is abort (the default value), the connection is broken and the
TCPPassiveOpen command is completed in error. If the ULP time-out action is report, an
ASR call informs the ULP, and the ULP timer is restarted. The minimum value of the ULP
time-out is 2 seconds; O means that TCP should use its default value of 2 minutes.

(,
Apple Confidential 4 I Transmission C.OOtrol Protocol 33

•• If no connection opening packet arrives within the specified command time-out period
after the TCPPassiveOpen command is issued, the command is completed in error. The
minimum value of the command time-out is 2 seconds; O means infinite.

You have control over many fields in the IP header of all segments sent on this
connection. These fields can be set only when the connection is opened. They stay fixed
during the connection.

The type d service is a 3-bit field:

bl O set for low delay
bit 1 set for high throughput
bit 2 set for high reliability

For example, a valued 0x02 means high throughput The default value is 0.

Precedence has the following values:

O routine
1 priority
2 immediate
3 flash
4 flash-override
5 CRITIC/ECP
6 internetwork control
7 network control

The default value for precedence is 0.

If the Don't Fragment flag is nonzero, all segments sent on this connection are prohibited
from being fragmented by the local IP or any intermediate IP. If a segment cannot be
delivered without fragmentation, it is discarded.

The Time to live indicates the maximum time that segments on this connection are
allowed to remain in the internet system. This value is decreased by every IP module that
processes the segment; thus, it is effectively a maximum hop count (the number of times
a segment can pass through a module). The minimum value is 2; O means TCP should use
its default value (the default value is 60).

If the Security flag is nonzero, TCP inserts its configured default IP security option into
all segments sent on this connection. In addition, for all arriving segments that contain a
securky option, TCP verifies that the security matches the configured default security.
Note that this flag is relevant only if no security option is present in the user-specified IP
options.

Finally, you can specify additional IP optiom to be sent with every segment The option
count is the number of long words in the IP option field. Pad bytes of O should be
appended to the IP options so that the options are an integral number of long words. The
maximum valued the option count field is 10 unless the Security flag is also nonzero, in
which case the maximum value is 9.

4 I Transmission Control Protocol Apple Conftdenttal

••
(

Result codes

(Apple Confidential

TCP does not perfonn any verification on the user-specified IP options, but simply inserts
them into the IP header of every segment sent on the connection. If you specify an
invalid list of IP options, the result cannot be predicted. See Request for Comment (RFC)
894 for the proper format ci IP options.

no&r

invalidStreamPtr

connectionExists

duplicateSocket

commandTimeout

openFailed

noenor
the specified TCP stream is not open
this TCP stream already has an open connection

a connection already exists between this local IP address and TCP
port, and the specified remote IP address and TCP port

no connection attempt was received in the specified time-out
period
the connection came halfway up and then failed

4 I Transmission C.Ontrol Protocol 35

• TCPActiveOpen

Parameter block -+ :Ii word csCode • TCPAc:tiveOpen

-+ 28 long stream pointer

-+ 32 byte ULP time-out value in seconds; O • use default

-+ 33 byte ULP time-out ac.tion; 0 • report, 1 • abort

-+ 34 byte validity bits

-+ ~ long remote IP address; canna be o
-+ 4) word remote TCP port; cannot be 0

+- 42 long local IP adcir'eM

+-+ Iii word local TCP port; if 0, TCP assigns an unused port

-+ 48 byte type of service

-+ .e byte precedenre

-+ ~ byte don't fragment flag

-+ 51 byte time to live

-+ 52 byte security flag

-+ 53 byte IP option count

-+ 54 var. IP options

-+ 94 long user data pointer

TCPActiveOpen initiates an outgoing call to a remae TCP. The command is completed
when a connec.tion is establi5hed or when an error occurs.

TCPActiveOpen acceptS the same parameters as TCPPassiveOpen, except that the remote
--...... ·'

IP address and remote TCP port must be specified. In addition, no command time-out is
provided; if the connec.tion canna be established within the ULP time-out period, the
command is completed in error.

See TCPPassiveOpen for a desaiption of other parameters.

Result codes noFJT no error
invalidStreamPtr the specified TCP stream is not open
connec.tionExists this TCP stream already has an open connection

duplicateSocket a connection already eUt5 between this local IP address and TCP
port, and the specified remote IP address and TCP port

openFailed the connection came halfway up and then failed

4 I Transmission Q>ntrol Praocol Apple Confidential

.. •• TCP Send

(Parameter block

(

Result codes

(. Apple Conftdenttal

-+ :!) word csc.ode = TCPSend

-+ 28 long stream pointer

-+ 3Z byte UIP time-out value in seconds

-+ 33 byte UIP time-out ac.tion; 0 • abort, nonzero = report

-+ 34 byte validity bits
-+ 35 byte push flag

-+ ~ byte urgent flag

-+ ~ long WDS pointer

-+ 42 long reserved
-+ .fi word reserved

-+ 48 long user data pointer

TCPSend sends the specified data over the connection. The command is completed when
all data has been sent and acknowledged, or when an error occurs.

If all data cannot be sent and acknowledged within the UIP time-out period, then the
ULP action is taken. If the ULP ac.tion is abort, the connection is broken, all pending
commands are returned, and a terminate notification is given. If the ULP ac.tion is report, a
ULP time-out notification is given See TCPPassiveOpen for a desaiption of the validity
bits.

If the Push flag is nonzero, TCP sends the data immediately without waiting to see if
more TQ>Send commands are issued. If the Urgent flag is nonzero, TCP sends the data in
urgent mode. In this case, all data described by the WDS is assumed to be urgent data.

The WDS can be arbitrarily complex; that is, there is no limit to the number of buffers that
can be sent in a TCPSend command However, the total number of data bytes described
by the WDS must be between 1 and 65,535, inclusive. You must not modify or relocate the
WDS and the buffers it describes until the TCPSend command has been completed.

no Err
invalidStreamPtr

invalidLength

invalidWDS

no error
the specified TCP stream is not open
the total amount of data described by the WDS was either O or
greater than 65,535 bytes

the WDS pointer was O
connec.tionDoesntExist there is no open connec.tion on this TCP stream

connectionClosing a TCPOose command was already issued, so there is no more
data to send on this connec.tion

connectionTerminated the connec.tion went down; the reason will be given in a
terminate ASR

4 / Trammission Control Protocol

•• TCPNoCopyRcv

Paramcte1' block --+ ~ word csCode = TCPNoCopyRcv

--+ ~ long stream pointer

--+ 32 byte command time-out in seconds
+- 34 byte urgent flag

+- 35 byte mark flag

--+ 42 long RDS pointer; RDS is modified by TCP

--+ ~ word number ci entries in RDS excluding terminating O;
not modified by TCP

--+ 48 word reserved

--+ ~ long user data pointer

TCPNoCopyRcv retrieves data that has been received on a connection. Data is not copied
out of TCP's internal buffers; rather, an RDS is formatted to allow the user access to the
TCP data in place. This command offers significant performance improvements over
TCPRcv commands.

The command is completed when

• pushed data arrives

• urgent data is outstanding

• some reasonable period passes after the arrival ci nonpush, nonurgent data

• the RDS is full; that is, the received data is in more noncontiguous chunks than the
RDS can describe

• the amount of data received is greater than or equal to 25 percent ci the total receive
buffering for this stream

• the command time-out expires

You must allocate memory for the RDS, which can contain an unlimited number of
elements. The specified number ci entries in the RDS does not include the terminating 0.
For example, the simplest possible RDS has one element and is 8 bytes in length: a word
length field, a long pointer field, and a terminating word length field of 0.

TCP formats the RDS to point to the received TCP data. The RDS may not be completely
filled by TCP. For example, if you pass an RDS three entries, TCP may complete the
TCPNoCopyRcv command with the RDS describing only one buffer. TCP does not modify
the field in the TCPNoCopyRcv command that indicates the number of entries in th.e RDS;
rather, it places a terminating zero in the RDS itself.

4 I Transmission Control Protocol Apple Conftdenttai

!

Result codes

(Apple ConfulenttaJ

The command time-out period starts when the receive command is issued, not when the
first byte of data arrives. If no data arrives within this time-out period, the
TCPNoC.opyRev command is ccmpleted in error. If some data has arrived when the
command time-out expires, the TCPNoC.opyRcv command is completed successfully,
returning the data that has arrived so far. A command time-out of 0 indicates an infinite
time-out period In this case, the TCPNoCopyRev command is not completed until some
data has arrived.

If the Urgent flag is nonzero, the data returned by this command is the beginning of the
outstanding urgent data. This flag is one of two mechanisms that puts you in urgent
mode. The other mechanism is by means of an urgent ASR notification, which is used
when there are no outstanding TCPNoC.opyRev or TCPRev commands.

If the Mark flag is nonzero, the data returned by this command ends the urgent data.
Since TCP does not deliver urgent and nonurgem data together, the last byte of data
described by the RDS is the last byte of urgent data. The Mark flag is the only mechanism
for taking you out of urgent mode.

The Urgent flag is set only on the first TCPNoC.opy Rev or TCPRev command that
contains urgent data. The Mark flag will be set only on the last TCPNoC.opyRev or TCPRcv
command that contains urgent data. For example, if three TCPNoC.opy Rev or TCPRcv
commands are required to deliver all urgent data, the settings of the Urgent and Mark
flags will be as follows:

Urgent flag Mark flag

First TCPNoCopyRev!fCPRev command 1 0

Second TCPNoCopyRev !fCPRev command 0 0

Third TCPNoCopyRev!fCPRev command 0 1

Both the Urgent flag and the Mark flag can be set in a single TCPNoC.opyRev or TCPRcv
command if all outstanding urgent data can be delivered in a single command.

You are responsible for calling TCPBfrRetum after every TCPNoCopyRcv command that is
completed successfully, in order to return the receive buffers owned by the TCP driver.
The RDS must be returned unmodified so that the TCP driver can correctly recover the
appropriate receive buffers.

nofJr

invalidStreamPtr

no error

the specified TCP stream is not open

connectionDoesntExist this TCP stream has no open connection

invalidLength the RDS has O entries

invalidBfrPtr

commandTimeout

connectiondosing

the RDS pointer was 0

no data arrived within the specified time-out period

all data on this connection has already been delivered

connectionTerminated the connection went down; the reason will be given in a
terminate ASR

4 I Transmission Control Protocol

•• TCPBfrReturn

Parameter block ~ Ji word csCode • TCPBfrRetum

Result codes

~ 28 long stream pointer
~ 42 long RDS pointer
~ ~ long user data pointer

TCPBfrRetum returns to the TCP driver a set of receive buffers that a successfully
completed TCPNoCopyRcv command passed directly to the user. The RDS must be
identical to the RDS given to the user when the TCPNoCopyRcv command is completed.
TCPBfrRetum returns an error if you attempt to return a set of buffers more than once.

no Err
invalidStreamPtr

no error
the specified TCP sb'ealll is not open

connectionDoesntExist this TCP stream has no open connection
invalidButptr the RDS pointer 'W3S 0

invalidRDS the RDS refers to receive buffers not owned by the user

4 I Transmission Control Protocol Apple Confidential

•

.. • TCPRcv

Parameter block

(~ ..
Apple Confulenttal

-+ li word csCode • TCPRcv

-+ 28 long stream pointer

-+ 3'Z byte command time-out in seconds

+- 34 byte urgent flag

+- 35 byte mark flag

-+ ~ long receive buffer pointer
H .() word receive buffer length

-+ 48 word reserved

-+ ~ long user data pointer

TCPRcv retrieves data that has been received on a connect.ion. Data is copied out of the
TCP internal buffers into the user's buffer. The command is completed when

• enough data has arrived to fill the receive buffer

• pushed data arrives

• urgent data is outstanding

• some reasonable perkxi passes after the arrival of nonpushed, nonurgent
data

• the amount of data received is greater than or equal to 25 percent of the
total receive buffering for this stream

• the command time-out expires

The command time-out period starts when the receive command is issued, not when the
flJ'st byte of data arrives. If no data arrives within this command time-out period, the
TCPRcv command is completed in error. If some data has arrived when the command
time-out expires, the TCPRcv command is completed successfully. A command time-out
of 0 means infinite; the TCPRcv command will not be completed until some data has
arrived.

If the Urgent flag is nonzero, the data returned by this command is the beginning of the
outstanding urgent data. This flag is one of two mechanisms that puts you in urgent
mode. The other mechanism is by means of an urgent ASR notification, which is used
when there are no outstanding TCPNoCopyRcv or TCPRcv commands.

If the Marie flag is nonzero, the data returned by this command ends the urgent data.
Since TCP does not deliver urgent and nonurgent data together, the last byte of data
described by the RDS is the last byte of urgent data. The Marie flag is the only mechanism
for taking you out of urgent mode.

4 I Transmission Control Protocol 41

••

Resuh codes

The Urgent flag is set only on the first TCPNoCopyRcv or TCPRcv command that
contaim urgent data. The Mark flag is set only on the last TCPNoCopyRcv or TCPRcv
command that contaim urgent data. For example, if three TCPNoCopy Rev or TCPRcv
co~ are required to deliver all urgent data, the settin~ of the urgent and Mark
tla~ will be as follows:

Urgent flaa
First TCPNoCopyRcv/I'CPRcv command 1

Second TCPNoCopyRcv/I'CPRcv command O

Third TCPNoCopyRcv/I'CPRcv command 0

Mark flag

0

0

1

Both the Urgent flag and the Mark flag can be set in a single TCPNoCopyRcv or TCPRcv
command if all outstanding urgent data can be delivered in a single command.

If the TCPRcv command is completed in error, the receive buffer length is not modified
by TCP, but no data is returned.

noErr

invalidStreamPtr

invalidl.ength

no error
the specified TCP stream is not open

the receive buffer length was 0
invalidBufPtr the receive buffer pointer was O

commandTimeout no data arrived within the specified time-out period
connectionDoesntExist this TCP stream has no open connection
connectionClosing all data on this connection has already been delivered
connectionTerminated the connection went down; the reason will be given in a

terminate ASR

42 4 I Transmission Control Protocol Apple Confidential

,

•• TCPClose

Parameter block

Result codes

(

(_ : Apple Conftdenttal

-+ 1)

-+ 28

-+ 32
-+ 33
-+ 34

word
long

byte
byte

byte

csc.ode "'Ta>cbe
stream pointer

ULP time-out value in seconds
ULP time-out aaion; O • abort, nonzero = report

validity bits

-+ 35 long user data pointer

TCPO~ signals that the user has no more data to send on the connection. It does not
mean that the connection should be broken. The remote TCP must also issue a close
before the connection can be gracefully closed, so a connection may stay up an arbitrary
amount of time after you have issued a TCPCI~. To break a conneaion without
ensuring that all data has been sent and acknowledged, use the TCP Abort command.

The command is completed when the FIN flag has been sent and acknowledged If the
FIN is not acknowledged within the ULP time-out period, the ULP time-out action is
taken. If the ULP action is abort, the connection is broken, all pending commands are
returned, and a terminate ncxification is given. If the ULP action is report, a ULP time-out
ncxification is given. See TCPPassiveOpen for a description of the validity bits.

no Err

invalidStreamPtr

no error

the specified TCP stream is not open
conneaionDoesntExist this TCP stream has no open connection

connectionOosing one TCPO~ command was already issued for this connection

connectionTerminated the connection went down; the reason will be given in a
terminate ASR

4 I Transmission C.Ontrol Protocol 43

••
TCPAbort

Parameter block

Result codes

-+ 25 word csCode = TCP Abort

-+ ~ long stream pointer

-+ 32 long user data pointer

TCPAbort terminates the connection without attempting to send all outstanding data or
to deliver all received data. TCPAbort returns the TCP stream to its initial state. You are
also given a tenninate notification.

no Err no error
invalidStreamPtr the specified TCP stream is not open
connectionDoesntExist this TCP stream has no open connection

44 4 I Transmission Control Protocol Apple Confidential

•

' •• TCPStatus

{ Parameter block ._. as word csCode = TCPStatus
._. 28 long stream pointer
~ 32 byte ULP time-out value in seconds
~ 33 byte ULP time-out action; 0 • abort, nonzero .. report
~ ~ long remote IP address
~ 42 word remote TCP port
~ 44 long local IP address
~ ~ word local Ta> port

~ ~ byte type of service
~ 51 byte precedence
~ 52 byte TCP connection state
~ 54 word send window
~ ~ word receive window
~ 58 word amount of unacknowledged data
~ 00 word amount of unread data
~ 62 long security option pointer
~ (6 long send unacknowledged
~ iQ long send next
~ 74 long congestion window

1
~ 78 long receive next

~ 82 long smoothed round-trip time in milliseconds
~ a> long last round-trip time in milli.seconds

~ ~ long maximum segment size that can be sent

~ 94 long pointer to statistics block
._. ~ long user data pointer

TCPStatus allows you to extract information from TCP regarding a particular connection.

See the TCPPassiveOpen command for a description ci the usual open parameters (bytes
32-51).

The TCP connection state has the following values:

0 Qosed no connection exists on this stream

2 Listen listening for an incoming connection

4 SYN received incoming connection is being established

6 SYN sent outgoing connection is being established

8 Established connection is up

10 f1N Wait 1 connection is up; close has been issued

12 f1N Wait 2 connection is up; close has been completed

(~ Apple Confidential 4 I Transmission Control Protocol 45

, ••

Resuh codes

14

16

18

2)

dose Wait

Closing

last Ack

Time Wait

connection is up; close has been received

connection is up; close has been issued and received

connection is up; close has been issued and received

connection is going down

The send window is the amount ci data the remote TCP is currently willing to accept
from the local TCP. The receive window is the amount of data the local TCP is currently
willing to accept from the remote TCP.

The statistics block has the following structure:

0 long number of data segments received

4 long number of data segments sent

8 long number of data segments retransmitted

12 long number of data bytes received

16 long number of duplicate data bytes received
2) long number ci data bytes received beyond receive window

24 long number of data bytes sent

~ long number of data bytes retransmitted

32 struct size histogram of sent segments

The histogram is a variable-length structure of the following format:

O word number of size buckets

2 word value: smallest segment size

4 long counter number: number of segments sent between
this size and the next larger size

8 word value: second smallest segment size

10 long counter number: number of segments sent between
this size and the next larger size

You are free to update the statistics block. Only the counters in the segment-size
histogram should be modified The number of size buckets and the segment size value for
each bucket canncx be changed.

noFlr

invalidStreamPtr

no error
the specified TCP stream is not open

connectionDoesntExist this TCP stream has no open connection

4 I Transmission Control Prcxocol Apple Confidential

•• TCPRelease

Parameter block

Resuh codes

(

(~
Apple Confidential

-+ :as
-+ 28

+- 32
+- ~

word
long
long
long

csCode .. TQ>Release

stream pointer
pointer to receive buffer area
length d receive buff er area

TCPRelease closes a TCP stream. If there is an q>en connection on the stream, the
connection is first broken as though a TCP Abort command had been issued.

The receive buffer area passed to MacTQ> in the TCPCreate call is returned to the user. You
are now free to reuse or release this buffer area.

no Err
invalidStreamPtr

no error
the specified TQ> stream is not q>en

4 I Transmission C.Ontrol Protocol 47

•• TCPGloballnfo

Parameter block -+ Ji word csCode • TCPGIOOallnfo
~ 3Z long pointer to TCP parameters
~ ~ long pointer to TCP statistics
~ «> long pointer to CDB table
-+ 44 long user data pointer

The TCPGloballnfo command allows you access to

• parameters that affect the operation of TCP

• global statistics collected by TCP

You should nci modify the TCP parameters. The structure has the following format:

0 long pointer to Pascal string describing retransmission time-
out algorithm

4 long minimum value of retransmission time-out (ms)

8 long maximum value of retransmission time-out (ms)

12 long maximum segment size this TCP can receive

16 long maximum number of streams MacTCP can support
J) long maximum value of receive window MacTCP can offer

The TCP statistics are the sum of traffic information for all streams that have been
opened since system startup. The counters will wrap around to 0 when incremented past
their maximum value. You can modify these statistics. The TCP statistics structure has
the following format: ,, ;

0 long number of outgoing connections attempted

4 long number of outgoing connections opened

8 long number c:i incoming connections accepted

12 long number of connections that dosed gracefully

16 long number c:i connections that were aborted
J) long number of data bytes received

24 long number of data bytes sent

18 long number of duplicate data bytes received

3Z long number of data bytes retransmitted

~ long total number of segments received (includes
acknowledgments)

«> long total number c:i segments sent (includes
acknowledgments)

44 long number of segments received that contained all
duplicate data

4 I Transmission Control Pr<icxol Apple Confidential
/

48

•
48 long number of segments retransmitted

Result codes no Err no error

Apple Confidential 4 I Trammission Control Protocol 49

•• TCP asynchronous notification routine
The TCP asynchronous notification routine (ASR) is a user-supplied routine called by TCP
to notify you of asynchronous events relevant to a particular TCP stream. You register
this routine with TCP in the TCPCreate call.

Since this routine is called at interrupt level, it cannot release or allocate memory. In
addition, an ASR routine can issue additional asynchonrous MacTCP driver calls.

The C description of the ASR is as follows:

pascal void TCPNotifyProc (StreamPtr tcpStream, unsigned short

eventCode, Ptr userDataPtr, unsigned short terminReason,

struct ICMPReport '*icmpMsg);

Event codes

•

Register Al contains a pointer to the Internet Control Message Protocol (ICMP) report
structure if the event code in DO is ICMP received, A2 contains the user data pointer, A5 is
already set up to point to application globals, DO (word) contains an event code, and Dl
contains a reason for termination.

closing all data on this connection has been received and
delivered

ULP time-out no response from the remote TCP; reported only if TCP is
configured to report a time-out instead of aborting the
connection

terminate connec.tion no longer exists

data arrival data arrived, no receive commands outstanding

urgent data outstanding user should go into urgent mode

ICMP message received an Internet Control Message has been received on the stream;
register Al points to the ICMP report

For the terminate event, a reason for connection termination is given in Dl (word):

remote abort the remote TCP aborted the connection

network failure to be supplied in a later draft of this guide

security/precedence mismatch invalid security option or precedence level

ULP time-out

ULP abort

UIP close

service failure

the ULP time-out expired; ULP time-out action is abort

the user issued a TCP Abort command

the connection closed gracefully

unexpected connection initiation segment read

Note: Refer to the Appendix for the values of these types .

A closing notification means that the remote TCP has sent all the data it intends to send
on this connection and that all data has been delivered to the user. dosing notification
does not mean that the connection has been broken. You can continue to send data for an
arbitrary length of time after a closing notification is given. Only when you issue a
TCPClose command will the connection be terminated.

4 I Transmission Control Protocol Apple Confidential

{

Apple Confidential

The ULP time-out notification is given if the configured ULP time-out action for this
connection is report, and the local TCP canoot get some data sent or acknowledged (or
both), within the specified ULP time-out period. The ULP timer is restarted after
notification and expires again in another ULP time-out period if nothing changes.

For each connection, TCP issues exactly one terminate ootification when the connection is
broken. This rule applies both when the connettion cl~ gracefully and when the
connection tenninates in error.

Data arrival notification is given if a segment arrives and no receive commands are
outstanding. Even if more data arrives later, TCP does oot issue another data arrival
notification until a receive command has been issued and completed. In other words, a
data arrival notification is not given with every segment that arrives, but instead is
intended to prompt you to issue a receive command.

Urgent ootification is given only if no receive commands are outstanding when TCP
learns that there is outstanding urgent information on the connection. If there are
outstanding receive commands, they are completed with the Urgent flag set to get you
into urgent mode.

An ICMP message reports an error in the processing of a datagram that was sent on a TCP
stream. When an ICMP message is received, a data structure is passed up by TCP to the
client to describe the received message. This data structure, called an ICMP report, has the
following format:

0 word stream pointer

2 long local IP address of stream

6 word local TCP port of stream

8 long remote IP address (destination of original datagram)

u word remote TCP port

14 word ICMP message type

16 word optional additional infonnation

18 long optional additional infonnation pointer

The values for the ICMP message type are as follows:

0 net unreachable

1 h~ unreachable

2 protocol unreachable

3 port unreachable

4

5
6
7

8

fragmentation required

source route failed

time exceeded

parameter problem

missing required option

4 I Transmission C.OOtrol Protocol 51

••

52

Codes 0-3 are defined as follows:

• Net unreachable indicates that, according to the infonnation in a gateway
routing table, the network specified in the IP destination field of a TCP
segment is unreachable.

• Hoo unreachable indicates that a gateway detennined that the host
specified in the IP destination field of a TCP segmen1 ~ unreachable.

• Protocol unreachable indicates that a TCP segment was delivered to the
destination host, but there was no process on that boo that would
receive TCP segments.

• Port unreachable indicates that a TCP segment was delivered to the
destination host, but there was no dient of TCP listening on that
particular TCP port.

If the TCP stream is configured for the ULP abort time-out action, the TCP client need
not take any action in response to destination unreachable messages (they are
infonnational only).

TCP breaks the connection if there is data to send, but it is not acknowledged within the
ULP time-out period. If, however, this TCP stream has been configured for the ULP report
time-out action, then the TCP user has taken responsibility for deciding when and if the
remote host is no longer available, and the connection should be broken.

A single destination unreachable message should not be taken too seriously since such
messages may be received occasionally when the topology of the internet changes. But if
several successive TCPSend commands each result in an ICMP report indicating
destination unreachable, the TCP dient should assume that the remote host has either
crashed or is no longer accessible, and should break the connection.

Codes 4-8 are explained in the following paragraphs.

Fragmentation required indicates that the TCP user has set the Don't Fragment flag in a
TCPOpen command, yet a segment on that TCP connection could not be delivered to its
destination without fragmentation. To avoid this, don't set the Don't Fragment flag on
TCPOpen commands.

Source route failed indicates that the TCP user has specified the route this datagram
should take in the IP options but that particular route was not available.

Tune exceeded indicates that the Time to Llve specified in a TCPOpen command was too
short to allow a TCP segment on this TCP stream to be delivered through all the necessary
gateways on the way to its destination. A longer Time to Live value should be specified in
the TCPOpen command

Parameter problem indicates that the IP header used on a TCP segment was not
acceptable by either an intermediate gateway or the final destination. The additional
infonnation pointer in the ICMP report structure points to a static copy of the IP header
used for sending segments on this TCP connection. 1be additional information value

4 I Transmission Control Protocol Apple Confidential

' ' "-, ,I'

••

Apple Conftdenttal

indicates a byte offset in the IP header where the parameter problem exists. For example,
an offset of 1 indicates that the Type of Service field was invalid, and an offset of 20
indicates that the first option present is invalid.

Missing required option means that the remote TCP requires a specific IP option to be
present in the IP header. The IP option type code that is required by the remote TCP is

passed in the additional information field

Much of the information that asynchronous notifications pass to you is also available in
other ways. For example, you can tell that the remote TCP has dosed a connection either
by waiting for a closing notification or by submitting TCPRcv commands until one is
returned with a connectionClosing error.

4 I Transmission Control Protocol 53

•• typedef unsigned char byte;

enum { /* ValidityFlags */

) ;

timeoutValue = Ox80,

t imeoutAct ion = Ox4 0,

typeOfService = Ox20,

precedence = OxlO

en um /* TOSFlags */

) ;

lowDelay = OxOl,

throughPut = Ox02,

reliability = Ox04

typedef struct TCPCreatePB {

Ptr rcvBuff;

unsigned long rcvBuffLen;

TCPNotifyProc notifyProc;

Ptr userDataPtr;

)TCPCreatePB;

The following parameter block i.s used with the TCPPassiveOpen and TCPActiveOpen commands:

typedef struct TCPOpenPB {

byte ulpTimeoutValue;

byte ulpTimeoutAction;

byte validityFlags;

byte commandTimeoutValue;

ip addr remoteHost;

tcp_port remotePort;

ip_addr localHost;

tcp_port localPort;

byte tosFlags;

byte precedence;

Boolean dontFrag;

byte timeToLive;

byte security;

byte optionCnt;

byte options[40];

Ptr userDataPtr;

)TCPOpenPB;

typedef struct TCPSendPB {

byte ulpTimeoutValue;

byte ulpTimeoutAction;

.byte validityFlags;

Boolean pushFlag;

Boolean urgentFlag;

Ptr wdsPtr;

unsigned long sendFree;

unsigned short sendLength;

Ptr userDataPtr;

)TCPSendPB;

Apple Confidential 4 I Transmission Control Protocol 55

The following parameter block is used with the TCPRcv, TCPRcvBfrRetum, and TCPNoCopyRcv
commands:

typedef struct TCPReceivePB
byte commandTimeoutValue;

byte filler;
Boolean markFlag;
Boolean urgentF lag;
Ptr rcvBuff;
unsigned short rcvBuffLen;
Ptr rdsPtr;
unsigned short rdsLength;

unsigned short secondTimeStamp;
Ptr userDataPtr;

}TCPReceivePB;

typedef struct TCPClosePB
byte ulpTimeoutValue;
byte ulpTimeoutAction;

byte validi tyF lags;

Ptr userDataPtr;
}TCPClosePB;

typedef struct HistoBucket

unsigned short value;
unsigned long counter;

} ;

#define NumOfHistoBuckets 7

typedef struct TCPConnectionStats

unsigned long dataPktsRcvd;
unsigned long dataPktsSent;

unsigned long dataPktsResent;

unsigned long bytesRcvd;

unsigned long bytesRcvdDup;

unsigned long bytesRcvdPastWindow;

unsigned long bytes Sent;

unsigned long bytesResent;

unsigned short numHistoBuckets;

struct HistoBucket sentSizeHisto[NumOfHistoBuckets];

unsigned short lastRTT;

unsigned short tmrSRTT;

unsigned short rttVariance;

unsigned short tmrRTO;

byte sendTries;

byte sourchQuenchRcvd;

JTCPConnectionStats;

S6 4 I Transmis.sion Control Protocol Apple ConfuJential

''· /

••
(

typedef struct TCPStatusPB

byte ulpTimeoutValue;

byte ulpTimeoutAction;

long unused;

ip_addr remoteHost;

tcp_port remotePort;

ip_addr localHost;

tcp_port localPort;

byte tosFlags;

byte precedence;

byte connectionState;

unsigned short sendWindow;

unsigned short rcvWindow;

unsigned short amtUnackedData;

unsigned short amtUnreadData;

Ptr securityLevelPtr;

I* HEMS-HEMP stats */

unsigned long sendUnacked;

unsigned long sendNext;

unsigned long congestionWindow;

unsigned long rcvNext;

unsigned long srtt;

unsigned long lastRTT;

unsigned long sendMaxSegSize;

struct TCPConnectionStats *connStatPtr;

Ptr userDataPtr;

}TCPStatusPB;

typedef struct TCPAbortPB

Ptr userDataPtr;

}TCPAbortPB;

typedef struct TCPParam {

unsigned long tcpRtoA;

unsigned long tcpRtoMin;

unsigned long tcpRtoMax;

unsigned long tcpMaxSegSize;

unsigned long tcpMaxConn;

unsigned long tcpMaxWindow;

}TCPParam;

Apple Confidential 4 I Transmission Control Protocol

•• typedef struct TCPStats (

unsigned long tcpConnAttempts;

unsigned long tcpConnOpened;

unsigned long tcpConnAccepted;

unsigned long tcpConnClosed;
unsigned long tcpConnAborted;

unsigned long tcpOctetsin;

unsigned long tcpOctetsOut;

unsigned long tcpOctetsinDup;

unsigned long tcpOctetsRetrans;

unsigned long tcpinputPkts;

unsigned long tcpOutputPkts;

unsigned long tcpDupPkt s;

unsigned long tcpRetransPkts;

)TCPStats;

typedef struct TCPGlobalinfoPB {

struct TCPParam '*tcpParamPtr;

struct TCPStats '*tcpStatsPtr;

unsigned long '*tcpCDBTable;
Ptr userDataPtr;

)TCPGlobalinfoPB;

typedef struct TCPiopb

char

TCPIOCompletionProc

short

char

short

short

short

StreamPtr

union (

struct TCPCreatePB

st ruct TCPOpenPB

st ruct TCPSendPB

struct TCPReceivePB

st ruct TCPClosePB

struct TCPAbortPB

struct TCPStatusPB

struct TCPGlobalinfoPB

l csParam;

)TCPiopb;

58 4 I Transmi5.5ion Control Protocol

filll2 [12 J;
ioCompletion;

ioResult;

'* ioNamePt r;

ioVRefNum;

ioCRefNum;

csCode;

tcpStream;

create;

open;

send;

receive;

close;

abort;

status;

globalinfo;

Apple Confidential

Chapter 5 Name-to-Address Resolution

Apple Confidential

T E X T U A L N A M E S are resolved to IP addresses using internal caches

and the domain name server. The AddressXlation interface accomplishes this

task by searching an internal table originally derived from the static file Hosts,

queries made to domain name servers, and information found in the internal

cache of domain name server responses. •

••
The AddressXlation.h header ftle
The AddreMXlation.h interface supports the domain name resolver (DNR) function using the
procedure calls described in the following sections.

The OpenResolver call

extern OSErr OpenResolver (char *fileName);

The OpenResolver call must be made before any resolver queries are attempted. The full path name
of the default Hosts file must be passed in the fileName field. If the value NIL is passed, the
resolver uses the filename Hosts in the default start up folder, which is typically the System Folder.
The Hosts file is used to load the internal cache with name-t~address mappings and domain name
server values. The syntax of this file is outlined on page 33 of RFC1035.

Resuh codes
Error result codes can be returned by the Resource Manager

The SttToAddr call

#define NUM_ALT_ADDRS 4

typedef struct hostinfo

int rt nCode;

char cname[255];

unsigned long addr [NUM_ALT_ADDRS];

};

typedef pascal void (*ResultProcPtrl <

struct hostinfo *hostinfoPtr,

char *userDataPtr);

extern OSErr StrToAddr(

char *hostName,

struct hostinfo *hostinfoPtr,

ResultProcPtr ResultProc,

char *userOataPtrl;

The hostlnfo record is passed into the address translation routine in the StrToAddr call. The
rtnCocle indicates whether the result fields are valid for this call; a value of noErr indicates that the
call has been successful. The cname is the official name of the hostName that was specified. The
addr array is a list of addresses for the hostName specified. Multiple addresses are returned for
hosts that are multihomed.

SI Name-t~Address Resolution Apple Conftdenlial

(

:r.· ('

(

StrToAddr takes a string in one of two forms and translates it into a 32-bit IP address. The string
can be in IP dot notation (that is, W.X.Y.Z) or in a valid domain name syntax. The translated address
is returned immediately if the passed in host is in IP dot notation or if the matching address is
contained in the local cache. If the address is not contained in the local cache, the rtnCode is
cacheFault and the domain name server is contacted to resolve the address. When the response has
been returned from the domain name server or the domain name query has completed
unsuccessfully, the ResultProc is called with the appropriate rtnCode and return information. The
StrToAddr procedure can be called with a userDataPtr, which is user-defined and not modified by
the resolver. The userDataPtr is returned when the ResultProc is called. Domain names that contain
no domain name delimiters, that is, no dots(":), are tenninated with the domain name suffix
specified for the default domain name server in the Control Panel or a dot if no default is specified .

.Result codes
nameSyntaxErr

cacheFault

noResultProc

noNameServer

authNameErr

noAnsErr

dnrErr

outOfMemory

notOpenErr

The AddrToStr call

the hostName field had a syntax error

the name specified cannot be found in the cache

no result procedure is passed to the address translation
call when the resolver must be used to find the address

no name server can be found for the specified name
string

this domain name does not exist

none of the known name servers are responding

the domain name server has returned an error

not enough memory is available to issue the needed
DNR query or to build the DNR cache

the driver isn't open

extern OSErr AddrToStr(unsigned long addr, char *addrStrJ;

The AddrTo.5tr call takes an IP address and returns a string with the ASCII equivalent of the form
W.X.Y.Z where W, X, Y, and Z are decimal numbers. The application must provide the storage for the
return string. The string can have a maximum length of 16 bytes .

.Resuh codes
notOpenErr the driver isn't open

Apple Confidential 5 I Name-to-Address Resolution 61

••
The EnumCache call

typedef enum AddrClasses
A • 1,

NS,
CNAME • 5,

lastClass 65535
} ;

typedef struct cacheEntryRecord

char *cname;

} ;

unsigned short type;

en um AddrClasses class;
unsigned long ttl;

union {
char *name;
ip_addr *addr;

rdata;

typedef pascal void (*EnumResultProcPtr) (
struct cacheEntryRecord,*cacheEntryRecordPtr,

char *userOataPtr);

extern OSErr EnumCache(

EnumResultProcPtr enumResultProc,

char *userDataPtrl;

If the application wants to enumerate all the entries in the cache, EnumCache should be called. This
procedure returns no errors and has completed ennumerating the cache when it returns. For every
entry in the cache, enumResultProc is called with a pointer to a cache entry. The fields and values
returned in the CacheEntryRecord are as follows:

name

type

class

ttl

rdata

:Result codes

the name of the entry.

the type of the entry, where
CJ A (value• 1) is an address. The value of rdata is an addr.
o NS(value"' 2) is a name server. The value of rdata is a name.
o CNAME(value"' 5) is an alias for the canonical name (cname) found in the rdata

field

the class of the entry. The only class allowed is IN (value 1).

the time that the entry has to live in the cache relative to the current time
(GetCurrent).

the rdata field as detennined by the type of entry specified in the type field.

not Open Err the driver isn't open

62 5 I Name-to-Address Resolution Apple Confidential
~./

•• The OoseResolver call

extern OSErr CloseResolver ();

Before the application exits, the doseResolver call must be made to release memory structures and
terminate all outstanding domain name server calls. doseResolver should not be called until all
outstanding resolver calls have been completed

llesuh codes
notOpenErr the driver isn't open

The AddrToName call

extern OS Err AddrToName (ip_addr addr, st ruct host Info
*hostinfoPtr, ResultProcPtr ResultProc, char *userDataPtr);

The AddrToName call is used to acquire the canonical name d a host given its IP address. The
domain name server is queried using an IN-ADDR query. The application passes to the
AddrToName call the IP address of the host in question, a pointer to a hostlnfo record, the result
procedure to be notified with the result, and an optional user data pointer. The AddrToName call
always returns cacheFault It may return noNameServer if no name server can be found in the
internal name server lists that can resolve the DNR query. The passed-in result procedure is called
with the appropriate result code. If the result code is noErr, the cname field will contain the
canonical name for the IP address passed to the AddrToName call.

Result codes

Apple Confidential

cacheFault
noNameServer

authNameErr

noAnsErr

dnrErr

outOfMemory

notOpenErr

the name specified cannot be found in the cache

no name server can be found for the specified name
string

this domain name does not exist

none of the known name servers are responding

the domain name server has returned an error

not enough memory is available to issue the needed
DNR query or to build the DNR cache

the driver isn't open

5 I Name-to-Address Resolution 63

••
Binding the DNR to the application
The DNR in MacTCP is implemented as a code resource in the MacTCP driver file.

A file called DNR.c in the Libraries Folder of the MacTCP release disk provides a working example of
how to open the DNR This file should be compiled and linked to your application. Procedural access
to the DNR is provided by a file produced by MPW 2.0.2 called DNR.o in the Llbraries Folder of the
MacTCP release disk. Sources have also been provided if you need to port the functionality to

another development system.

To use the DNR, ~e application must first find the procedure pointers that are part of the DNR
resource. The DNR resource, named dnrp, is attached to the driver file, which is in the System Folder
of the startup disk. The resource can be opened using the Resource Manager routines in the
Toolbox. Once the resource is opened, the first long word ri the resource is a pointer to a procedure
that jumps to the correct DNR procedure. Calls to this procedure should be made using the
procedure index value as the first argument ri the call, followed by the arguments for the
procedure as they are specified in the AddressXlation.h interface. The procedure assignments are as
follows:

OpenResolver 1

CloseResolver 2

StrToAddr 3
AddrToStr 4

EnumCache 5
AddrToName 6

DNR operation
This seaion describes how the domain name server CONS) list is·used when making DNS queries.

If a default name extension and server are identified in the Control Panel, they are used for all
nonqualified requests. For instance, if the name homer is passed to the DNR and the default
extension is pundit. edu, the name homer.pundit. edu is used in the query; however, if the
name homer. drama.pundit . edu is passed to the DNR, the extension is not appended.

64 5 I Name-to-Address Resolution Apple Confidential

./

••

(

The extell.5ion of the name passed to the DNR determines which name servers are chosen. Servers
that match the full extension are found first, followed by servers that serve the ancestor of the full
extension (for example, for the name homer. drama.pundit. edu, the server that serves
drama . pundit . edu would be found ftrst followed by the server that serves
pundit . edu). If no servers are found, the default server is used If no default is set, the DNR
returll.5 noNameServer. In the MacTCP C.Ontrol Panel , you should enter a default domain and select
the Default button.

Once a list of servers that support the domain is found, those servers are queried in the order of
their distance from the querying host First servers on the local network are queried, followed by
servers on other networks. When you use the AddrToName query, you must select a default server.

Apple Confidential 5 I Name-to-Address Resolution 65

••
Chapter 6 Miscellaneous Interfaces

Apple Confidential

T H I S C H A P T E R describes typeS that are found throughout the

programmatic interfaces supplied with MacTCP. •

67

••
MacTCPCommontypes

This fde defines result code name-tcrnumber mapping, Internet Control Message Protocol (ICMP)
message report structures, and other miscellaneous types throughout MacTCP.

Result codes

The result codes in MacTCPCommontypes are described as follows. Chapters 3, 4, and 5 contain
specific occurrences of the result codes described in this section.

#define inProgress 1 When an IOPB is still pending, ioResult is set to
inProgress.

#define ipBadLapErr -23000 Unable to initialize the local network handler.

#define ipBadCnfgErr -23001 The manually set address is configured
improperly.

#define ipNoCnfgErr -23002 A configuration resource is missing.

#define ipLoadErr -23003 Not enough room in the application heap
(Macintosh 512K enhanced only).

#define ipBadAddr ·Z3004 Error in getting address from a server or the
address is already in use by another machine.

#define connectionClosing -23005 A TCPCla;e command was already issued so there
is no more data to send on this connection.

#define invalidLength -2.mi The total amount of data described by the WDS
was either O or greater than 65,535 bytes.

#define connectionExists -'Z?HJ7 The TCP or UDP stream already has an open
connection.

#define connectionDoesntExist -~ This TCP stream has no open connection.

#define insufficientResources -2YJY) There are already 64 TCP or UDP streams open.

#define invalidStreamPtr -2.3010 The specified TCP or UDP stream is not open.

#define streamAlreadyOpen -2.3011 An open stream is already using this receive
buffer area.

tdef ine connection Terminated -2.3012 The TCP connection went down; the reason will_
be given in a terminate ASR.

#define invalidBuf Ptr -2.3013 The receive buffer area pointer is 0.

tdef ine invalidRDS -2.3014 The RDS refers to receive buffers not owned by
the user.

6 I Miscellaneous Interfaces Apple Confidential

•• ifdefine invalidWDS -2.3014 The WDS pointer was 0.

tdefine openFailed -2.3015 The connection came up halfway and then failed.

(tdef ine commandTimeout -2.3016 The specified command action was not
completed in the specified time period.

tdef ine duplicateSocket -2.3017 A stream is already open using this local UDP port
or a TCP connection already exists between this
local IP address and TCP port, and the specified
remote IP address and TCP port.

#define ipDontFragErr -2.3032 The packet is too large to send without
fragmenting and the Don't Fragment flag is set.

#define ipDestDeadErr -2.3033 The destination host is not responding to address
resolution requests.

#define ipNoFragMemErr -2.3036 Insufficient internal driver buffers available to
fragment this packet on send.

#define ipRouteErr -2.30;? No gateway available to handle routing of
packets to off-network destinations.

tdef ine nameSyntaxErr -~1 The hostNarne field had a syntax error. The
address was given in dot notation (that is,
W.X.Y.Z) and did not confonn to the syntax for
an IP address.

fdef ine cacheFault -~2 The name specified cannot be found in the cache.
The domain name resolver will now query the

'~ domain name server and return the answer in the
call-back procedure.

#define noResultProc -~3 No result procedure is passed to the address
translation call when the resolver must be used to
find the addre~.

tdef ine noNameServer -~ No name server can be found for the specified
name string.

tdef ine authNameErr -~5 This domain name does not exist

tdef ine noAnsErr -~ None of the known name servers are responding.

#define dnrErr -~7 The domain name server has returned an error.

#define outOfMemory -2.3048 Not enough memory is available to issue the
needed DNR query or to build the DNR cache.

(Apple Confidential 6 I Miscellaneous Interfaces

••
MJscellaneous types

This section describes types that are common to all the programmatic interfaces in MacTCP.

#define BYTES_16WORD 2 /* bytes per

#define BYTES_32WORD 4 /* bytes per

#define BYTES_64WORD 8 /* bytes per

typedef unsigned char b_S; I* 8-bit quantity */
typedef unsigned short b_16; /* 16-bit quantity *I
typedef unsigned long b_32; /* 32-bit quantity */

typedef b_32 ip_addr;

typedef b 16 ip_port
/* IP address is 32-bits */

typedef struct ip_addrbytes

union

b_32 addr;

char byte [41 :
} a;

ip_addrbytes;

typedef struct wdsEntry

unsigned short length; /* length of buffer */

char * ptr;

} wdsEntry;

/* pointer to buffer */

16

32

64

typedef struct rdsEntry

unsigned short length; /* length of buffer */

char * ptr;
} rdsEntry;

/* pointer to buffer */

typedef unsigned long BufferPtr;

typedef unsigned long StreamPtr;

6 I Miscellaneous Interfaces

bit ip word */

bit ip word *I
bit ip word *I

Apple Confidential

. (Appendix Constants

(Apple Confldenttai 73

••
\,~_,.1

Command codes
UDPCreate 2)

UDPRead 21
UDPBfrRetum 1.2
UDPWrite 23
UDP Release 24
UDPMaxMTUSize 25
TCPCreate ~
TCPPas.siveOpen 31
TCP ActiveOpen 32
TCP Send 34
TCPNoCopyRcv 35
TCPBfrReturn ~
TCP Rev 'rt
TCPOase ~
TCPAbort ,;
TCPStatus «>
TCP Release 42
TCPGloballnfo 43

;

UDP asynchronous event codes
data arrival 1
ICMP message received 2

TCP asynchronous event codes
closing 1
ULP timeout 2
terminate 3
data aniV3) 4
urgent data outstanding 5
ICMP message received 6

74 Appendix I Constants Apple Confidential

•• Reasons for TCP termination
relllOle abort 2
network failure 3
security/precedence m~match 4
ULP timeout 5
ULP abort 6
ULPclose 7
service failure 8

(

Apple Conftdenttal Appendix I Comtants 75

••
Internet Control Message Protocol report structures

In TCP and UDP, the ASR routine can be called with an Internet Control Message Protocol (ICMP)
message. This se<.tion describes the types and stru<.tures of the ICMP messages.

typedef enum ICMPMsqType {

netOnreach, hostOnreach, protocolOnreach, portOnreach, fraqReqd,

sourceRouteFailed, timeExceeded, parmProblem, missinqOption,

last ICMPMsqType = 65535

} ICMPMsgType;

typedef struct ICMPReport

StreamPtr streamPtr;

ip_addr localHost;
ip_port localPort;

ip_addr remoteHost;

ip_port remotePort;

en um ICMPMsgType report Type;

unsigned short optionalAddlinfo;

unsigned long optionalAddlinfoPtr;

} ICMPReport;

Refer to the se<.tion "UDP Asynchronous Notification Routine• in Chapter 3 and -rCP
Asynchronous Notification Routine• in Chapter 4 for details on how the ICMP report structure is

used.

Apple Confulenttal 6 I Miscellaneous Interfaces 71

..

(

GetMyIPAddr

This se<.tion describes how an application obtains the IP address of the machine on which it is running.
GetMyIPAddr describes the parameter block that makes the PBControl call that returns the IP address and
subnet mask of the local host. The cs Code for this call is 15 and the driver reference number is returned from the
Open Driver call.

#define ipctlGetAddr 15 /* csCode to get our IP address */

#define ParamBlockHeader \

struct QElem *qLink: \

short qType: \

short ioTrap; \

Pt r ioCmdAddr: \

ProcPtr ioCompletion; \

OSErr ioResult: \

StringPtr ioNamePtr; \

short ioVRefNum; \

short ioCRefNum; \

short csCode

struct IPParamBlock

ParamBlockHeader; /* standard I/0 header *I
ip_addr ourAddress; /* our IP address */

long ourNetMask;

) :
I* our IP net mask *I

The IP address is returned in the field ourAddress and the subnet mask is returned in the field
ourNetMask.

6 I Miscellaneous Interfaces Apple Confidential

/

