
(
For ResEdit 2.0b2

••
ResEdit Reference

•• Draft

Developer Technical Publications
@ Apple Computer, Inc. 1990

" APPLE COMPUl'ER, INC.

This manual is copyrighted by Apple or
by Apple's suppliers, with all rights
reserved. Under the copyright laws, this
manual may not be copied, in whole or
in part, without the written consent of
Apple Computer, Inc. This exception
does 00: allow copies to be made for
others, whether or n<i sold, but all of
the material purchased may be sold,
given, or lent to aoother person. Under
the law, copying includes translating
into another language.

The Apple logo is a registered
trademark of Apple Computer, Inc. Use
of the "keyboard- Apple logo (Option­
Shift-K) for commercial purposes
without the prior written consent of
Apple may constitute trademark
infringement and unfair competition in
violation of federal and state laws.

e Apple Computer, Inc., 1990
20525 Mariani Avenue
Cupertino, CA 95014-6299
(408) 996"1010

Apple, the Apple logo, AIUX,
HyperCard, MacApp,
LaserWriter, and Macintosh
are registered trademarks of
Apple Computer, Inc.

APDA, MPW, MultiFinder, and Switcher
are trademarks of
Apple Computer, Inc.

ITC ZapfDingbats is a registered
trademark of Imemational Typeface
Corporation.

POSTSCRIPT is a registered trademark,
and illustrator is a trademark, of Adobe
Systems Incorporated.

Simultaneously published in the United
States and Canada.

IJmited Warranty on MedJa and
Beplacemem

If you discover physical defects in the
manual or in the media on which a
software product is distributed,
APDA will replace the media or
manual at no charge to you provided
you return the item to be replaced
with proof of purchase to APDA.

AIl.1MPIlED WAlUlANTIFS ON
THIS MANUAL, INCLUDING
IMPIlED WARRANTIFS OF
MERCHANTABIUl'Y AND Fll'NESS
FORA PAmCUlAR ptJRPQSE, ARE
LIMrI'ED IN DURAnON TO N1NE1Y
(90) DAYS FROM THE DATE OF
THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCl'.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR
REPRESENTAnON, EII'HER
EXPRFSS OR IMPIlED, wrm
RFSPECl'TO THIS MANUAL, D'S
QUAUlY, ACCURACY,

. MERCHANTABIUl'Y, OR Fll'NESS
FORA PAmCUlAR PURPOSE. AS
ABFSULT, THIS MANUALm SOlD
-AS m,· AND YOU, THE
PURCHASER, ARE ASSUMlNG THE
ENTIRE RISK AS TO D'S QUAUlY
AND ACCURACY.

IN NO EVENT WlLLAPPU BE
UABlE FOR DIRECT, INDIRECT,
SPECIAL, lNaDENTAL, OR
CONSEQUEN11AL DAMAGES
BESULTING FROM ANY DEFECT
OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SEl' FOKTH ABOVE ARE
EX~IVEAND IN LIEU OF AIl.
OTHERS, ORAL OR WRIl1'EN,
EXPRFSS OR IMPIlED. No Apple
dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this
warranty.

Some states do not allow the
exclusion or limitation of implied
warranties or liability for incidental or
consequential damages, so the above
limiration or exclusion may not apply
to you. This warranty gives you
SpecifIC legal rights, and you may also
have other rights which vary from
state to state.

(

Contents

Figures and tables / vii

Preface / xi
Prerequisites / xii
What this manual contains / xii
How to use this manual/xii
Conventions used in this book / xiii
Graphics / xiii
Where to get information / xiv

About APDA / xiv
About Developer Programs / xiv

1 ResEdit Overview / 1
Resources / 2

New and changed resource types supported by ResEdit 2.0 / 3
Resource categories in ResEdit / 3
Uses / 4
Extensibility / 4
The resource development cycle / 5

2 Getting Started / 7
Invoking ResEdit / 8
Working with flIes / 9

Resource checking / 9
Opening a me / 10

Menus in ResEdit / 13
The File menu / 13
The Edit menu / 17
The Resource menu / 18
The Wmdow menu / 22
The View menu / 23

Resource ID numbers / 25

ill

3 Editing Individual Resources / 27
Starting an Editor / 28
Bit editolS / 28

Monochrome editors / 28
Color editors / 29

Using the hexadecimal editor / 30
'WIND' resources· / 30
'ALRT' and 'DLOG' resources / 32
'Dm' resources / 35
'BNDL' resources / 38
Editing'den'resources / 42

Tools /42
The Tl3I1Sform menu / 43
Creating new color icons / 44

'CURS' resources / 46
Finder icons / 47

Tools / 48
The Transform menu / 48

'ICON' resou~ / 50
'ICN#' resources / 51
'SIeN' resources / 53
'FONT resources / 54

Editing 'FONT resources / 55
'PAT' resources / 58
'PAT#' resources / 59
'INfL' 'itIO' and 'itI1' resources / 60 , ,
'KCHR' resources / 62

The main 'KCHR' editor / 62
The character chart / 63
The table chart / 63
The virtual keycode chart / 64
The keyboard region / 64
The information region / 64

Editing dead keys / 65
The dead-key editor / 65

Iv ResEdit 2.0 Reference

The character chart / 65
The nomatch character / 66
The completion and substitution character pair list / 66

/

(The Trash / 66
The information region / 66

The menus / 66
The KCHR menu / 66
The Font menu / 68
The Size menu / 68

MENU' resources / 70

4 Using ResEdit Templates / 75
Template Characteristics / 76
Editing / 77

PICf' editing / 77

5 Creating ResEdlt Templates / 79
Template Example / 80

6 ResEdit Tips / 85
Hints and kinks / 86

" The 'LAYO' resource / 89
\ KCHR' questions and answers / 94

7 The Programmatic Interface / 97
Pickers and editors / 98
Code-containing resources in the ResEdit release / 98

Samples / 99
Sample editor / 99
Sample picker / 99
Sample LDEF / 100

Building the examples / 100
Using ResEd / 100
Writing a ResEdit extension / 101

ResEdit 2.0 changes / 102
ResEd changes for the 2.0 release / 102
Required routines / 104

EditBirth / 104
PickBirth / 104
DoEvent / lOS

(" ,~'

Contents v

DoInfoUpdate / 105
'~' DoMenu / 105

UsingcustomLDEFs / 106
The ResEd interface / 107

Data structures / 107
The parent record / 108
The picker record / 108

Other routines / 109
launching routines / 109
Infonnation-passing routines / 110
Wmdow management routines / 110
Resource utilities / 113
Miscellaneous utilities / 116
Internal routines / 124
Obsolete routines / 127

A The 'KOIR' Resource / 129
Basic theory of keyboard operation / 130

Generating the virtual keycode / 130
Exceptions to the rule / 130

Generating the character code / 130 '"",/
Dead keys / 131

The structure of a 'KCHR' resource / 132

B The 'BNDL' Resource / 135
The structure of a 'BNDL' resource / 136

Definitions of the 'BNDL' and 'FREF resources / 138

C The Resource Types Defined for Rez and ResEdit / 141

D The Macintosh Character Set / 147

Index / 151

vi ResEdit 2.0 Reference

(

Figures and tables

2 Getting Started / 7

Figure 2-1 Splash screen / 8
Figure 2-2 ResEdit fde open dialog / 9
Figure 2-3 Add resource fork alert / 10
Figure 2-4 A ResEdit 2.0 fde window / 11
Figure 2-5 File menu / 13
Figure 2-6 Open Special dialog box / 15
Figure 2-7 A File Info window / 15
Figure 2-8 A Folder Info window / 16
Figure 2-9 Preferences dialog box / 16
Figure 2-10 Edit menu / 17
Figure 2-11 The Resource menu for 'BNDL' / 18
Figure 2-12 The Resource menu with a picker open / 19

Ii Figure 2-13 There is no template for 'CODE' resources / 19
\\~ Figure 2-14 An 'ICN#' Get Info window / 20

Figure 2-15 A resource type window (with custoQ1 picker) / 21
Figure 2-16 The Wmdow menu / 22
Figure 2-17 The View menu and a ResEdit 2.0 file window / 23
Figure 2-18 The View rrenu and a resource type window / 24
Figure 2-19 Showing type attributes / 24

3 Editing Individual Resources / 27

Figure 3-1 Editing a 'WIND' resource / 31
Figure 3-2 'WIND' resource displayed as text / 31
Figure 3-3 Editing an 'ALRT' resource / 33
Figure 3-4 Special parameter strings / 33
Figure 3-5 'ALRT' resource text view / 34
Figure 3-6 Editing a 'om' resource / 36
Figure 3-7 Ommenu /36
Figure 3-8 Editing the 'BNDL' resource, simple view / 38
Figure 3-9 The Icon chooser / 39
Figure 3-10 Extended view in the 'BNDL' editor / 41
Figure 3-11 Color icon editing / 43
Figure 3-12 Color icon editor with Transform rrenu / 44

(~'~'

Figures and tables vii

Figure 3-13 The Color menu / 45
Figure 3-14 Editing a 'CURS' resource / 46
Figure 3-15 Editing Finder icons / 47
Figure 3-16 Finder icon editor with Transform menu / 49
Figure 3-17 Editing an 'ICON' resource / 50
Figure 3-18 Editing an 'ICNI' resource / 51
Figure 3-19 Editing a 'SICN' resource / 53
Figure 3-20 Editing a 'FONT resource / 55
Figure 3-21 Editing a 'PAT' resource / 58
Figure 3-22 Editing a 'PAT#' resource / 59
Figure 3-23 Editing an 'itIO' resource / 60
Figure 3-24 Editing an 'itIl' resource / 61
Figure 3-25 Editing a 'KCRR' resource / 62
Figure 3-26 Editing a dead key / 65
Figure 3-27 The KCHR menu / 67
Figure 3-28 Editing a 'MENU' resource / 70
Figure 3-29 'MENU' line item edit / 71
Figure 3-30 'MENU' mark pop-up / 72
Figure 3-31 'MENU' Icon chooser / 72
Figure 3-32 'cmnu' editing / 73
Figure 3-33 'MENU' ID dialog / 74

4 Using ResEdit Templates / 75

Figure 4-1 The template editor for 'PIer / 78

5 Creating ResEdit Templates I 79

Figure 5-1 'TMPL' deftnition for type 'STRI' / 80
Figure 5-2 'STR#' template in use / 81

6 ResEdit Tips I 85

Figure 6-1 'IA YO' template, view 1 / 89
Figure 6-2 'IA YO' template, view 2 / 90
Figure 6-3 'IA YO' template, view 3 / 91
Figure 6-4 'IA YO' template, view 4 / 92
Figure 6-5 'IA YO' template, view 5 / 93

A The 'KOIR' Resource I 127

Figure A-I Modifier flag high byte / 133

B The 'BNDL' Resource / 135

viii ResEdit 2.0 Reference

Figure B-1 Six resources and their relationships / 137

C The Resource Types Defined for Rez and ResEdit / 141

Table C-1 Resource types defined for Rez and ResEdit / 142

D The Madntosh Character Set / 147

Figure 0-1 Macintosh character set / 149

Figures and tables Ix

(

Preface

ResEditll., an extensible standalone resource editor for the Madntosh~ computer, is a
powerful tool you can use to speed your software .development process and to
create icons, menus, and other resources for Macintosh programs and meso This
manual is a complete reference to ResEdit that includes introductions to the various
resource type editors included in the program, and a discussion of the framework
that is provided so that you can extend the capabilities of the program by adding
your own resource pickers and editors.

xi

Prerequisites

To run ResEdit 2.0, the system you use must have at least 128 KB of ROM and at least 1
megabyte of Iremory.;

ResEdit 2.0 works with system software version 5.0 and later. ResEdit is compatible with (but
does not require) 32-bit QuickDraw™.

What this manual contains

Chapter 1 introduces the concepts behind ResEdit, starting with an overview of Macintosh
resources. Chapter 2 tells you about the user interface. Chapter 3 discusses the individual
editors that are built into the program. Chapter 4 then describes template editing, and Chapter
5 tells you how to build your own templates. Chapter 6 is a "hints and kinks" area in which
we include useful information that will help you make efficient use of ResEdit Chapter 7
describes the programmatic interrace to ResEdit and tells you what you need to know in order
to write your own picker and editor. Appendix A describes the inner workings of the 'KCHR'
editor, Appendix B describes the inner workings of the 'BNDL' resource, Appendix C lists a
number of extant resource types, and Appendix D is a chart of the regular Macintosh
character set.

How to use this manual

If you have used previous versions of ResEdit, you will probably want to take a quick look at
Chapter 2, which describes the user intetface in some detail, specifically because the interrace
has been changed extenSively in version 2.0.

If you have never used ResEdit, you should probably read Chapters 1 and 2 and look over the
rest of the book. Use the program for a while, and then look at the book again. It will
probably make a lot more sense after you've actually played with ResEdit.

xli ResEdit 2.0 Reference

(

Conventions used in this book

The following visual cues are used throughout this book to identify different types of
information:

• Note: A note like this contains information that is interesting but not essential for an
understanding of the main text.

6. Important A note like this contains information that is essential. ~

• Warning Warnings like this indicate potential problems. ~

This manual uses courier type to represent code fragments and the names of procedures.

Graphics

Most of the artwork in this book is taken directly from Macintosh screens. Some illustrations
show a condensed version of the screen with a sequence of windows or some particular
feature (such as a menu) evident. Others show only an active window, or an alert or
dialog box.

Preface xiii

Where to get information

Apple technical books published by Addison-Wesley, such as Inside Macintosh, are available
at commercial bookstores. Books and manuals published by Apple are available through
APDA, the Apple Progranurers and Developers Association, at the address liSted below.
Technical notes and other materials of interest to Macintosh application developers are also
available from APDA.

AboutAPDA

APDA provides a wide range of technical products and documentation, from Apple and other
suppliers, for programmers and developers who work on Apple equipment. You can contact
them as follows.

APDA
Apple Computer, Inc.
20525 Mariani Avenue, MIS 33-G
Cupertino, CA 95014-6299

Telephone: 1-800-282-APDA or 1-800-282-2732 if you are inside the United States;
in Canada, 1-800-637-0029; elsewhere in the world, 01-408-562-3910.
Fax: 408-562-3971 Telex: 171-576 AppleLink: DEV.CHA.N!'ffiLS

About Developer Programs

If you plan to develop hardware or software products for sale through retail channels, you
can get valuable support from Apple Developer Programs. Write to them at the
following address:

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, MIS 75-2C
Cupertino, CA 95014-6299

xiv ResEdit 2.0 Reference

(,

Chapter 1 ResEdit Overview

This chapter introduces the concept of resources as they are handled on the
MacintoshGt computer, and introduces ResEdit"', an interactive, graphically
based application for manipulating resources in Macintosh fIles. Some
Macintosh fIles don't contain any resouJtes, but all applications and roost of
the System Folder fIles do.

1

Resources

One of the ways in which the Macintosh is different from other computers is its handling of
resources (typefaces, icons, dialog boxes, and so on). In the Macintosh, resources are distinct
from data (for example, the text in a word-processing me). The Macintosh does not insist on
keeping resources in a central pool; they may be placed in any me.

In roost computers, a me consists of a set of bytes, perhaps beginning with a header that
contains some information about the structure of the data contained in the me, and possibly
ending with some sort of trailer; in any case, the file is one set of bytes. The Macintosh has,
instead, a file structure that is designed to include two sets of bytes, a data fork and a resource
fork. Any me may contain only a data fork, only a resource fork, or both. While a plain
HyperCard stack, for example, has only data in i~ people commonly add icons and sounds to
their stacks, creating resource forks for those stacks in the process.

Resources are classified by type. Each type has its own name, which consists of exactly four
characters. Any characters in the Macintosh character set can occur in resource type names,
even unprintable ones, but typically they consist of lower- and uppercase letters, numerals,
punctuation marks, space, and Option-space. Resource type names are shown here with
single straight quotation marks around them (for example, 'itlO'). If you see a name that
appears to be shorter, the empty slots are probably Hlled with spaces (for example, 'snd ').
Some resource types are named and described in Appendix C. There are many different types
of resources, and you can create your own resource types with Res Edit if you don't fmd the
type you need.

• Note: Apple Computer, Inc., reserves all names that don't contain any uppercase letters.
Any combination with at least one uppercase letter in it is yours to use, though it is a good
idea to avoid using any type name that someone else has already used that you know of.

Another feature of this system is that code is regarded as a resource. It even has its own
resource type name (very straightforwardly, 'CODE'). Any application, then, must have a
resource fork, which is where its code resides, along with various other resources, such as
menus.

2 ResEdit 2.0 Reference

(ResEdit lets you copy and paste all resoun:e types, and lets you edit many of them ('NFNT' is
an exception, and is discussed briefly in the section on 'FONT editing, in Chapter 3.) ResEdit
actually includes a number of different resoun:e editors: There is a general tesoW'Ce editor
for editing any resoun:e in hexadecimal and ASCII formats, and there are individual resource
editors for various specific resoun:e types. There is also a template editor, which lets you
edit some kinds of resources in a dialog box format, with fields that you can nil in as
appropriate. There are predefmed templates for quite a few resoun:es already built into
ResEdit, and you can create others. For further information on template editing and on
generating your own templates, see Chapters 4 and 5.

New and changed resource types supported by ResEdit 2.0

The 'den' color icon resource type is up to 8 bits deep and contains its own color lookup
information. It defaults to a size of 32 x 32 pixels, though both its height and its width can be
changed independently to be anything from 8 to 80 pixels. This icon resource includes a
monochrome version and mask. ResEdit 2.0 includes an editor for 'cicn' resoun:es.

Finder icons for system software version 7.0 occur in 6 variants, including the old 'ICN#' and
the new 'ies#' types, as well as the new 4- and 8-bit small and large color icons ('ics4', 'ics8',
'icl4', and 'icl8'). A comprehensive editor in ResEdit 2.0 lets you deal with each set of Finder
icons as a coherent group.

ResEdit 2.0 includes an editor for bundles, resoun:e type 'BNDL' (bundles also involve other
resources, as described in Appendix B), and an editor for menus, resource types 'MENU',
'cmnu', 'CMNU', and 'mctb'. These editors are discussed in Chapter 3.

Resource categories in ResEdit

ResEdit behaves as if there were three kinds or categories of resources on the Macintosh.

Resources of the first kind are accessed with individual pickers and edited with individual
editors. These resources and their editors are described in some detail in Chapter 3. Several of
these resources CCURS', 'FONT, 'ICON', 'PAT', and so on) are in some sense pictorial. All of
the pictorial resources are edited with bit editors, which are discussed in Chapter 3.

Chapter 1 ResEdit Overview 3

Resources of the second kind are edited as templates. That is, if you open a resource of this
kind, you are presented with a dialog box in which there are various labeled fields. You can
change the contents of the fields. Information on existing templates and on generating your
own templates appears in Chapters 4 and 5, and an example of template editing appears in
Chapter 6.

Resources of the third kind are edited with the hexadecimal editor, unless you write your own
templates or editors for them.

Uses

ResEdit is especially useful for creating and changing graphic resources such as dialog boxes
and icons. For example, you can use ResEdit to try out different formats and presentations of
resources in the process of putting together a quick prototype of a user interface. Anyone can
quickly leam to use ResEdit for translating resources into languages other than English
without having to recompile programs. You can use ResEdit to modify a program's resources
at any stage in the process of program development. ResEdit is also useful for modifying the
'IA YO' (desktop layout controD resource in a copy of the Finder™ so that you can
reconfigure some aspects of the desktop display. See Chapter 6 for more details about the
'IA YO' resource.

Extensibility

A key feature of ResEdit is its extensibility. Because it can't anticipate the formats of all the
different types of resources that you may use, ResEdit is designed so that you can teach it to
recognize and parse new resource types.

There are two ways that you can extend ResEdit to handle new types:

• You can create templates for your own resource types. ResEdit lets you edit most resource
types by filling in the fields of a dialog box; this is the way you edit the Finder's desktop
layout control resource, for example. The ordering of the items in these dialog boxes is
determined by a template in ResEdit's resource me, and you can add templates to ResEdit
or to the ResEdit preferences me yourself to edit new resource types. Resource templates
are described in Chapters 4 and 5, and the desktop layout control resource is distussed in
some detail in Chapter 6.

4 ResEdit 2.0 Reference

• You can program your own special-purpose resource picker or e"ditor (or both) and
add it to either ResEdit or to the ResEdit Preferences ftle. CThe resource picker is the code
that displays all the resouoces of one type in the resouoce type window. The editoris the
code that displays and allows you to edit a particular resouoce. These pieces of code are
separate from the main code of ResEdit) A set of Pascal or C routines, called ResEd, is
available for this purpose-see Chapter 7 for information. The advantage of adding your
code to the ResEdit Preferences ftle rather than to ResEdit itself is that doing so facilitates
updating to new versions of ResEdit as they become available.

The resource development cycle

ResEdit is often used with Macintosh Programmer's Workshop (MP~) and other program
development systems. Once you have created or modified a resource with ResEdi~ you can
use the MPW resouoce decompiler, DeRez, to convert the resource to a textual representation
that can be processed by the resource compiler, Rez. You can then add comments to this text
ftle or otherwise modify it with the MPW Shell or another text editor. Rez and DeRez are fully
described in the Macintosh Programmer's Workshop Reference (MPW Reference). It is not
necessary to use Rez or DeRez unless you have some specific need or desire to modify or
comment the code that DeRez produces; the resouoces generated by ResEdit are, in general,
entirely acceptable.

Chapter 1 ResEdit Overview ;

Chapter 2 Getting Started

If you are new to ResEdi~ you will want to proceed with some caution, as
ResEdit is quite powerful and can easily damage or destroy your meso If you
are accustomed to earlier versions of ResEdi~ you will notice that the user
interface has been extensively changed and now confonns roore closely to
the guidelines established by Apple Computer, In~.

7

Invoking ResEdit

Res Edit is a regular application, so if you are in the Finder or in HyperCard you can start it up
just as you would any other application. If you are using MPW, you can start ResEdit by
entering either of these commands in the MPW Shell:

ResEdit

ResEdit filel file2 ...

The latter command causes ResEdit to open the named files automatically.

When ResEdit fIrst starts up, it displays an anitmted "splash screen." Figure 2-1 shows one of
the stages of this animation.

• Figure 2-1 Splash screen

ResEdit 2.0 o 2.0b2 . -
COPllright C) 1984-1990, Apple Computer, Inc.

;'11 rights reserved

The animation continues until you click the mouse anywhere or press any key. If you click
the mouse or press an unmodified key ResEdit puts up a dialog box, shown in Figure 2-2, that
lets you create a new me or open an existing one. If you press a comtmnd-key combination,
the splash screen is dismissed and ResEdit perfonns the action you have requested. This is
especially useful for command keys assigned to the Open Special menu, destribed in this
chapter. You can, if you wish, use the Preferences command on the File menu to choose not
to have ResEdit put up the dialog box.

8 ResEdit 2.0 Reference

(
• Figure 2-2 ResEdit HIe open dialog

leg utilsl

<A Rbout Time
o Rntlulral
<A Rpple HD SC Setup
o Bostonll
<A BOH B for Mat II
~ ChengeRppFont ' ,
[) Clotk Dot !~!
o Color Cutter 1.1 i!!
~ Dillgnostit Sound SlImpler !l!

<A Disk First Rid

= NtiebetleUI •••

E le< t

Driul'

New

« Open I
Cllntel

You can select a mename by clicking it or by typing one or more characters of the mename.

Working with files

ResEdit provides facilities to let you open mes, create new mes, create resources, move and
edit them, and perform two levels of veriftcation on them.

Resource checking

Sometimes a resource me gets corrupted. This is typically the result of a crash occurring while
the me is being updated. In the past, ResEdit would occasionally crash when you tried to
open a damaged me with it. Version 2.0 of ResEdit provides resource me checking facilities to

help avoid crashes and to minimize loss of data. The checking facility does not detect -
corrupted individual resources; it bases its tests on the me's resource map.

When you open a me, ResEdit performs a partial resource check on it This test verifies only
that the resource map is located after the end of the resource data area, and that the header,
data, and map do not extend beyond the EOF of the resource fork. If the me does not pass
these initial tests, a full test is automatically performed. If you choose "Verify mes when they
are opened" in the Preferences dialog, ResEdit performs a full test whenever you open a me.

Chapter 2 Getting Started 9

If you want to invoke the full test yourself, choose Verify Resource File from the File frenu.

In order to perform a full resource check, ResEdit waIks through the entire resource map and
verifies that the type lis~ the reference lists, and the narre list are consisten~ that all resource
data areas can be located, and that they do not exceed the available me size. It also checks for
duplicate types, and for duplicate ID numbers within each type. ResEdit has several
techniques for locating the resource map, the existence and location of which is critical to the
process of recovering damaged resource mes.

If damage is discovered, the user is offered a repair option. This procedure does not change
the damaged file. Instead, ResEdit creates a new me, extracts all the resources it can fInd in
the damaged file, and copies them to the new me. It then renames the old file (with an
extension of "(damaged)". ResEdit also presents the user with status information about the
resources that were extracted.

There is one exception to the rule that the damaged me is not "touched" minor damage
occurs whenever a resource me is not properly closed. ResEdit repairs this damage without
asking the user's permission. (The actual process involved is quite simple: ResEdit opens the
me using the Resource Manager, calls the UpdateResFile routine to rewrite the resource
map, and closes the me.) After performing the repair, it presents an alert to the user.

Openingame

To list the resource types in a me, select and open the mename from the list in the me open
dialog. If you try to open a me that does not have a resource fork, ResEdit displays a dialog
box, shown in Figure 2-3, that asks you whether you want to open the me anyway. If you
permit it to open the file, ResEdit extends the me by creating a resource fork in it.

• Figure 2-3 Add resource fork alert

The file 'MRose Funny' has no
resource fort. Opening it will add one.
Do you wish to open It1

(Cancel I OK I

10 ResEdit 2.0 Reference

(

(

.6. Warning You can edit any file shown in the window, including the System file and
ResEdit itself, though there are some restrictions (the Finder and the
Desktop File cannot be opened by ResEdit under MultiFinder™, for
example). It's dangerous, "though, to edit a file that's currently in use. In
general, it is much wiser to edit a duplicate instead of the file itself. ...

When you open a file, a file window appears. This window displays a pictorial list of all the
resource types in that file (See Figure 2-4), unless you choose "by Name" from the View menu
(See Figure 2-18). If you do choose to view the resource list by nacre, you can also choose to
show the total size of each resource type.

• Figure 2-4 A ResEdit 2.0 me window

When a me window is the active window, you can create new resource types, copy or delete
existing resources, and paste resources from other files. Here, operations are performed on
sets of resources. For example, selecting the resource type 'ALRT' in a file causes all resources
of type 'ALRT' in that file to be selected as a group. Any operation you then perfonn on that
group affects all 'AiRT' resources in the file. To select more than one resource type, hold
down the Command key while clicking the individual items or click an item at the beginning
of the range you want to select, hold down the Shift key, and click the item at the end of the
range. The Shift key allows you to select the items in a rectangular area. You can then
continue to select or deselect individual resource types with the Command key. (These
techniques will also work within an open resource type for selecting individual resources.)

~hapter 2 Getting Started 11

• Note: Many applications put more than one resource type at a time into the scrap when
Copy is chosen. For example, when an object is copied in MacDrawGD, an'MDPL' resource
and a 'PIer resource are put into the scrap. When you paste into the ftle window in
ResEdit, all resources that are present are pasted.

• Note: You can no longer use ResEdit to delete fdes; also, ResEdit does not manipulate or
read data forks (this means, for example, that it cannot copy them).

12 ResEdit 2.0 Reference

(Menus in ResEdit

The structure of menus in ResEdit has been changed with the 2.0 release. There are five main
menus discussed here (File, Edi~ Resouoce, Window, View), and special menus for particular
resources that are discussed in the sections on editing those resources, in Chapter 3.

TheFnemenu

Figure 2-5 shows the File menu.

• Figure 2-5 File menu

Get Info for Finder
Get File/Folder Info •••
Derify Resource File ...

Page Setup ...
Print... .P

Preferences ...

The File menu conunands act as follows:

New ... Brings up the new file dialog box.

Open ... Brings up the file open dialog box similar to the one shown in Figure 2-2, but
without a New button.

Open Special Allows you to open fLIes quickly. The Modify This Menu command, which always
appears at the bottom of the submenu, brings up the dialog box shown in Figure 2-6,
which allows you to add and remove files and conunand keys.

Chapter 2 Getting Started 13

Close

Save

Revert file

Closes the currently active window. (Using this command has the same effect as
clicking the close oox.)

Saves the currently active me, if there is one.

Restores the currently active me, if there is one, to the last version you saved.

Get Info for This File
When no file is open this command is gray and cannot be used. When a file is open
the words "This File" are replaced by the filename, and this command is enabled. It
displays me information and allows you to change it. (See Figure 2-7.)

Get FilelFolder Info ...
Displays file or folder information and allows you to change it. Figure 2-7 shows a
File Info window as it appears under system software version 6.0. Figure 2-8 is a
Folder Info window, also for system software version 6.0.

Verify Resource File ...

Page Setup ...

Print...

Preferences ...

Quit

Allows you to check the resource map of a me you specify.

Brings up the page setup dialog oox.

Allows you to print from alroost any picker or editor. When no files are open, it is
gray and cannot be used.

Brings up the dialog box shown in Figure 2-9. This lets you specify whether you
want ResEdit to start up with a file open dialog, whether you want to be warned if
you attempt to open the System file or ResEdit itself, whether you want ResEdit to
perform a verify operation on files when you open them, and also allows you to set
the sizes of type picker and resource picker windows.

Quits ResEdit and returns to the Finder (or the MPW Shell, HyperOlrd, or whatever
program launched ResEdit).

14 ResEdit 2.0 Reference

(
• Figure 2-6 Open Special dialog box

Files on Open Speclel menu

Finder
Finder Sounds
Flesh-It

(Cencel)

•• ••
Rdd File •••

Remoue File

Set cmd key •••

[Remoue cmd key]

I OK J

• Figure 2-7 A File Info window

File

Type '--__ ...J

D System D Inulsible
D On Desk ~ Inited
o Shered D No I nits
D Rlweys switch leunch

D Resource mep Is reed only D File Protect

D Printer drluer Is MultlFlnder competlble D File Busy

Creeted 3/t 0/86 3: 19:20 PM 0 File Locked

Modified 8/12/86 2: 16:46 PM

Size 10855 bytes In resource fork
o bytes In dete fork

Chapter 2 Getting Started 15

• Figure 2-8 A Folder Info window

10_ Info for folder St. Millipede of Zipper _

Folder 1",#nlil.tq,Gljlf1u .14

o System 0 Inuisible [olor.1 Blaclc
o On Desk 183 Inlted

• Figure 2-9 Preferences dialog box

Preferences

Window at startup: @ Open dialog 0 None

181 WarnIng when System or ResEdlt Is opened

183 Llerify files when they are opened

Default window size:
Type pickers

Width In plHels: 1,1_1
Height In plHels: ~

(Cancel)

16 Res Edit 2.0 Reference

Resource pickers

~
~

I OK J

(
The Edit menu

Figure 2-10 shows the Edit menu. It has only one unusual feature, the Select Changed
command on the last line. This command allows you to select only those items that have been
changed since the last time you saved the me you are working on.

• Figure 2-10 Edit menu

• File'-: Resource Window Uiew
Undo :-:Z

101 The

Itt! I Cut .H
Copy .C e!l Paste ." IIIiDI Clear

[7J
_.

Oupllc<'I1e :-:0
Select All .A

eD' Select Changed

LI [7J en ! .10<1 .Dt rOD

Chapter 2 Getting Started 17

The Resource menu

The Resource menu is configured to provide the commands appropriate for the frontmost
window. The same items are always present on the m!nu, but they have slightly different
meanings, depending on the context. The wording of the iterm on the menu always tells you
what they do when you choose them Figure 2-11 shows the Resource menu with a resource
type picker open and the 'BNDL' type selected

• Figure 2-11 The Resource menu for 'BNDL'

[7J
cJln NorA .m.

l:J[7]m
l>r.oG .an !OlD

The Create New Resource command lets you create any resource type. The Open Picker
command invokes a picker for the particular kind of resource that is selected. This is reflected
in its name, which includes the name of the selected resource type. At this level, the only
other command you can use is the Revert Resources command, which takes the resources
back to the last saved version. If you have made changes in individual resources of the
selected type since the last time you saved the file, you can undo those changes here.

18 ResEdit 2.0 Reference

(Figure 2-12 shows the Resource menu again, this time with a resource picker open. Note that
it is now possible to open a resoulte with a resoulte editor or template (if one is available) or
with the hexadecimal editor.

• Figure 2-12 The Resource menu with a picker open

Create New
Open Resource Editor
Open Using Template •••
Open Using HeN Editor

Figure 2-13 shows the result of attempting to use the Open Using Template command on a
'CODE' resoulte. There is, in fac~ no template for resoultes of this type. It is generally not
useful to open a resource of one type with a template for a resource of a different type.

• Figure 2-13 There is no template for 'CODE' resources

• File Edlt.r· I Window tHew

The Dwarf Banana I
CODEs from The Dwarf Bf

~ SM. -
1 1032
2 21120 Select Template

[3 16712
4 S388
5 4 CCut

~ 0 6 3436 clut
7 3246 cmnu

I
8 728

CNIl
CTY# I OK J
dctb ..

(Cancel 1 Din

Chapter 2 Getting Started 19

It is also possible to get information on the selected resource. Figure 2-14 shows the Get Info
window for a resource of type 'ICN#'. This dialog lets you change the name and ID number of
the resource, and select or deselect some of its attributes.

• System Heap: If this attribute is set, the resource is placed in the System heap unless it is
too large to fit In that case, the resource is placed in the Application heap, as if the box
were not checked. This attribute should not be set for an Application's resources.

• Putgeable: If this attribute is set, the resource can be purged from meroory if roore room
is needed. It is typically a good idea to set this attribute, but there are exceptions.

• IDcked: If this attribute is set, the resource is locked in place in the heap; and cannot be
rooved. This attribute overrides the IIJ>urgeable" attribute.

• Protected: If this attribute is set, the Resource Manager cannot change the name or ID
number of the resource, rrodify its contents, or remove the resource from the file that
contains it. The Toolbox routine that sets these attributes can be called, however, to unset
this one.

• Preload: Setting this attribute causes the Resource Manager to load the resource into
memory immediately after opening the resource me.

• Figure 2-14 An 'ICN#' Get Info window

4[:1.
$92 1299 1S 11

Name:

&~~
Owner type

-
Rttributes:
o System Heap 0 Locked 0 Preload
181 Purgeable 0 Protected

Opening a resource type produces a window that lists each resource of that type in the me.
The list is generated by a resource picker, and will take different fonns, depending on the
particular resource picker that is displaying it The general resource picker displays the
resources by type, name, ID number, or order in the file; pickers for sPecific resource types
generate displays that are appropriate for their type. Figure 2-15 shows a picker for the 'ICN#'
resource type.

20 ResEdit 2.0 Reference

(

. ;

l

(

You can also write your own pickers. For lOOre infonnation, see Chapter 7.

• Figure 2-15 A resource type window (with custom picker)

F.~.delcons I
ICN#s from F.~.d

< 4 r:J • - 12M sail

& ~ ~
17'n _0 324'

...... '6 C ~
:tI77 41112 .:Ie -

When a resource type window is the active window, the Edit rrenu commands have the
following effects:

Undo

Cut

Copy

Paste

Not usable .

Removes the resources that are selected, placing them in the ResEdit scrap. If only
one resource is selected, it is placed in the clipboard.

Copies all the resources that are selected into the ResEdit scrap. If only one resource
is selected, it is copied to the clipboard.

Copies the resources from the ResEdit scmp (or from the clipboard) into the resource
type window.

• Note: Only resources of the currently open type are copied into the resource type window.

Clear

Duplicate

Removes the resources that are selected without placing them in the ResEdit scrap.

Creates a duplicate of the selected resources and assigns a unique resource ID
number to each new resource.

When you choose Open Using Template from the Resource menu, a list of templates is
displayed, and you can pick the one you want to use.

Chapter 2 Getting Started 21

The Window menu

The Wmdow menu, shown in Figure 2-16, gives you an overview of what windows are
currently open, and indicates the currently active window with a checkmark. It also lets you
select a new current window. Note that the Wmdow menu is sorted not by window depth,
butbyftle.

• Figure 2-16 The Window menu

• File Edit Resource .11ffiIi no. BNDL
The Dwerf Benene-Tree

Uirus RM 1.6 BNDLI Benene

r
ecurs from Uirus ~ BNDl ID· 128 ~I , acu _._- I

Huaber of l
Ulrus RM 1.6

IInane-Tree ... acurs
rot"t Pr.1oN o BNDL ID - 1 acur ID· 0 re-

I
Signature: 1@!iI:11

-

~
Type Finder Icons

flPPL --~ ... ~
10..-

10..-

I-

~ ~ H

22 ResEdit 2.0 Reference

" ,

The View menu

The View Irenu is configured to match the frontm:>st window. When a me window is the
currently active window, the View Irenu lets you show the resource types in a file by Icon or
type name, and if you show them by type, it lets you show the size of each type. (That is, the
sum of the sizes of all resources within the type.) See Figure 2-17.

• Figure 2-17 The View Irenu and a ResEdit 2.0 file window

DA.TA. 1 3120
DIU 10 246<1
DLOO 10 369
DREL 1 896
POND 2 186
PONT 9 16372
Pm!" 1 7
GOBB 1 163
icW 1 512
icll 1 102<1

When a resource type window is the currently active window, the View menu lets you choose
among several viewing styles (see Figure 2-18), and lets you show some attributes for each
resource when you are viewing by ID, Name, Size, or Order in File (See Figure 2-19).
Attributes cannot be edited in this view, only displayed.

For SOIre resources, the "By Special" line that is grayed out in Figure 2-18 is changed to a
type-specific alternate (for example, "By cien") . Attributes cannot be displayed in the
special views.

When an individual resource is open, the View menu is not shown.

Chapter 2 Getting Started 23

• Figure 2-18 The View rrenu and a resource type window

.. File Edit Resouree Wlndow_
""Y 10

lbe Dwerf Benana I 'Y Name
..-01 BNOll from The Owerf BIlE! 'Y Size
I II> ... - 'Y Order In File

blJ Special

[
Show attrtbutes

I
- ~

• Figure 2-19 Showing type attributes

II.~ BNOl. from lbe Dwarf Benene-Tree ~

24 ResEdit 2.0 Reference

Resource ID numbers

Within a given resource type, resource ID numbers must be unique. Resources can, in
general, have any ID number between -32768 and +3Tl67, but you should be aware of the
following restrictions which apply to most resources:

• ID numbers from -32768 to -16385 are reserved. 00 not use them!
• ID numbers from -16384 to -1 are used for system resources that are owned by other

system resources. For example, a dialog box used by a desk accessory (the desk
accessory is, itself, a resource of type 'DRVR') would have a number in this range.

• ID numbers from 0 to 127 are used for system resources.

• ID numbers from 128 to 3Tl67 are available to you for your uses.

Some system resources own others. The "owner" contains code that reads the "owned"
resource into memory. For example, desk accessories can have their own patterns, strings,
and so on. Please see Chapter 5 of Inside Macintosh, Volume I, for more information.

Fonts constitute a special case. For information about fonts, see the section on 'FONT
resources in Chapter 3.

Chapter 2 Getting Started 25

(

Doc7itJe DrajtNum

Chapter 3 Editing Individual Resources

So.re of the ResEdit resource editors are discussed in this chapter. The use
of the editors not discussed here should be apparent when you run them.
For information on editing template resources, please see Chapter 4.

(127190

27

Starting an editor

To open an editor for a particular resource in a me, fIrst open the picker for the resource type.
To do this, either double-click the resource type narre or select it and choose Open Picker
from the Resource rrenu. (The conunand will actually name the resource type. For example,
Open BNDL Picker.) Then doubleclick an individual resource, or select it and choose Open
Resource Editor from the Resource menu. When an editor is invoked, one or more auxiliary
menus may appear, depending on the type of resource you're editing. Some editors, such as
the 'Dm' editor, allow you to open additional editors for the elerrents within the resource.
The editors vary in their appearance and function, as explained in this chapter.

If you choose Open Using Template from the Resource rrenu or hold down the Option and
Command keys while opening a resource, a list of templates is displayed. You may then
select the template that is appropriate for the resource you are opening. For more information
on editing with templates, see Chapter 4.

Bit editors

Pictorial resource types are edited with a bit or pixel editor; ResEdit 2.0 has two major types of
bit editor.

Monochrome editors

In the editors for strictly black-and-white resources (for example, the icons commonly used in
HyperCard), the cursor acts like the pencil tool in MacPaint.

Holding down the Shift key allows you to use the marquee tool. To make a selection, hold
down the Shift key while you drag. To move a selection you've made, Shift-drag. Remember
that you must continue to hold down the Shift key; otherwise, your next mouse·dick will tum
off the marquee and invert whatever pixel the mouse is on. You can also cut, copy, and paste
the selections you've rmde.

28 Macintosh Res Edit 2.0 Reference

(

("•

. '

• Note: If you try to paste more bits than there is room for in the resource (for example, if
you try to paste a 4O-by-4O-bit area from a paint program into, say, an 'ICON', which can
only hold a 32-by-32-bit area), ResEdit pastes the selection centered into the active area,
and the boundary of the selection will be outside the active area of the editing window.
You can shift-drag to reposition the selection.

The 'FONT editor, discussed in detail later in this chapter, is also a bit editor, but it has a
palette with several tools, the use of which is familiar from common paint programs, rather
than just the pencil and the marquee.

Color editors

ResEdit 2.0 includes two new bit editors that make use of color when it is available. These are
the color icon ('dcn') editor and the Finder icon editor. These editors (and the bundle and
menu editors, which also display in color when it is available) have some characteristics that
are slightly different from those of the monochrome editors; for instance, when you open,
say, a 'dcn' resource, the editor window is placed on the deepest screen. If you have two
monitors, one of which is set to black and white and the other is set to sixteen gray levels, the
editing window is opened on the monitor that can display gray. When you use ResEdit on
systems with 24-bit monitors, you will probably need to increase the Application Memory size
beyond the default 512 KB in order to avoid out-of-memory warnings.

The marquee tool is explicitly available on the tool palette in the color icon editors. Holding
down the Shift key does not activate the marquee tool in these editors.

Both these bit editors and the other two color editors, for bundles and menus, are discussed
in more detail in this chapter.

Chapter 3 Editing Individual Resources 29

Using the hexadecimal editor

The hexadecimal resource editor is invoked if you hold down the Option key while opening
a resource or choose Open Using Hex Editor from the Resource menu. This editor allows you
to edit the resource as hexadecimal or ASCll data. The hex editor can edit resources larger
than 255 KB. If a resource is between 256 KB and 511KB in size, each click in the up or down
scroll arrow scrolls two lines; if between 512 KB and 767 KB, each click scrolls three lines,
and so on. (The scroll bars keep track of position with an integer, which is a single byte, and
thus is limited to values between 0 and 255.)

If you enter hexadecimal text when you are using this editor, the editor maintains byte
alignment of the incoming data. Thus, if you type 2 into an empty byte, the editor displays
02. If you then type A, the editor displays 2A.

The hex editor bas a Search menu. It allows you to search for the occurrence of a pattern in
the resource being displayed and allows you to enter the pattern in either hexadecimal or
Macintosh character set notation, the latter being loosely described as ASCII, though it is
actually considerably larger than the true ASOI set. See Appendix D for a chart of the
Macintosh character set. The hex editor also allows you to move to a specified offset from the
beginning of the resource you're editing.

'WIND' resources

A 'WIND' resource deftnes a window on the screen. When you open a 'WIND' resource,
ResEdit displays a small picture of the screen with the window shown to scale, in its usual size
and location. It also presents a special menu with the title WIND. This menu bas only one
item, Display as Text. You can size the window by using its lower-right comer. You can move
the window by clicking anywhere in it, except in its lower-right comer, and dragging the
window to where you want it. Moving or sizing a window changes the default values when
the window is actually displayed. When the window appears on the screen, its name may be
displayed. If the name is displayed, it shows up as a title, in the title bar. To change the name
of the window, choose Display as Text from the WIND menu. The text version of a window is
shown in Figure 3-2.

30 Macintosh ResEdit 2.0 Reference

(Figure 3-1 shows a 'WIND' resource open for editing. Notice the white area across the top of
the window in the figure. The white area represents the space that is taken up by the menu
bar when the window is actually displayed on the screen.

• Figure 3-1 Editing a 'WIND' resource

• F~3-2 'WIND' resource displayed as text

I WINO 'Generic Window' ID· 128 from pEma

Window title:
uEMn(S 3.ge

top

left

64

60

proclD 8

DUislble

bottom 314

right 458

refton 0

o goRwllyFllIg

Chapter 3 Editing Individual Resources 31

'ALRT' and 'DWG' resources

'ALRT' and 'OLOG' resources display dialog boxes on the screen. Editing them is much like
editing 'WIND' resources, except that the corresponding 'om' resource is automaticany
opened if you double-click on the picture of the dialog box after opening the resource. (See
the next section.) When you display anindividual'ALRT' or'OLOG' resource, a
corresponding menu appears. It has only one item, Display as Text You can change the
resource ID of the associated 'om' in the text view, as shown in Figure 3-5.

Figure 3-3 shows an 'ALRT' open for editing. You can see the ALRT menu tide in· the menu
bar. Note the white area at the top of the window, just under the words Alert ID - 132 from
MacDraw n 1.1; this space is where the menu bar appears when the alert box is displayed on
the screen.

• Note: The first item in the 'om' associated with any 'ALRT' must be a button. The system
has no way of telling what is where, so it always regards the first item as a button. In the
alternate view of the 'ALRT', you can specify either item 1 or item 2 as the default. If item
1 is the defaul~ of course, item 2 need not be a button. There is an informal convention in
Macintosh programming that item 1 is the "OK" button, and item 2 is the cancel button if
there is a cancel button.

There are four special items that you can put into static text in a 'om' item or into a 'STR#' .
resource. They are built of a caret (A) fonowed by a number from 0 to 3. Each of these refers
to one of the items in a global array named OAStrings, maintained by the ~ialog Manager. An
occurrence of one of these causes the contents of the corresponding entry in that array to be
substituted via a ParamTe:xt call when the resource is displayed. An example of a 'om' with
these items is shown in Figure 3-4. Please see Inside Macintosh, Volume I, page 421 for
further information.

32 Macintosh ResEdit 2.0 Reference

(
• Figure 3-3 Editing an 'ALRT' resource

• Figure 3-4 Special parameter strings

Din 10 - 132 from Finder

h-.. jiire you sure you·went to completely i
ill repleCe contents of

r' A 2" {A3J I
iWi~contenti=orr·--------"""!

,;:1=:"D="=(="1:=;1',. ___ . __ ._-_--~
OK) (Cencel)

Chapter 3 Editing Individual Resources 33

• Figure 3-5 'ALRT' resource text view

.0_ ALAT 10·132 from Mac Drew 111.1 -

Top ~ Bottom ~
Left ~ Right ~

ltemslol132 I Sound tD-3)

Stage I 0 #2 bold ~ Drawn ~
Stage 2 0 #2 bold ~ Drawn 1

Stage 3 0 #2 bold ~ Drawn 1

Stage 4 0 #2 bOld ~ Drawn 1

Macintosh ResEdit 2.0 Reference

(

(/

'DM.' resources

For 'om' (dialog item list) resources, the editor displays an image of the items from the list as
they would be displayed in a dialog or alert box. When you select an item, a size box appears
in the lower-right comer of its enclosing rectangle so that you can change the size of the
rectangle. You can move an item by dragging it with the mouse.

If you open an item within the dialog box, the editor associated with the item is invoked; for
an 'ICON', for example, the icon editor is invoked. If you hold down the Option key while
opening a 'CNTI', 'ICON', or 'PIer, the hexadecimal editor is invoked. If you hold down the
Option and Command keys while opening a 'CNIt', 'ICON', or 'PIer resource, the 'om'
Item Editor (the editor used for buttons, static text, and so on) is invoked. Some dialog items
are not editable and are listed as User Items. These are defined in the application, rather than
in the Oialog Manager, and are actually built only when you run the application.

When you edit a 'CNTI' item, you will fmd that two rectangles are used to determine the
location and size of the control. The location of the control within the 'om' is determined by
the top and left values that you set in the 'om' Item Editor. The size of the control is
determined by the size Clx?ttom-to-top and right-to-Ieft) that you set in the 'eNTI' editor. This
means that no matter what you set the bottom and right values to in the 'om' Item Editor,
they are reset to correspond to the size that is set in the 'CNTI' editor. You must edit both the
'om' item and the control itself.to set both the location and size!

Because they are linked, the 'om' resource is usually given the same ID number as the
parent 'OLOG' or 'ALRT'.

Figure 3-6 shows the 'om' corresponding to the 'ALRT' from Figure 3-4. The ALRT menu has
been replaced by the om menu, shown in Figure 3-7.

Chapter 3 Editing Individual Resources 35

• Figure 3-6

• Figure 3-7

Editing a 'Om' resource

om menu

Set Item Number
Select Item Number

Macintosh ResEdit 2.0 Reference

(The om menu contains the following commands:

Bring to Front Allows you to change the order of items in the item list. Bring to Front causes the
selected item to be drawn in front of any items that it may overlap. The actual
number of the item is shown by the 'om' Item Editor.

Send to Back Causes the selected item to be drawn behind any items that it
may overlap.

Set Item Number Allows you to specify a new number for the selected item.

Select Item Number
Allows you to select an item by specifying its number.

Align to Grid Aligns the item on an invisible 8-by-8-pixel grid. If you change the item location
while Align to Grid is on, the location is adjusted such that the upper-left comer lies
on the nearest grid point to the location you gave it. If you change the item size, it is
constrained to be a multiple of 8 pixels in each dirilension.

Use RSRC Rectangle
Restores the enclOSing rectangle to the rectangle size stored in the underlying
resource. Note that this command works on 'ICON', 'PIer, and 'CNTI' items only;
the other items have no underlying resoun::es.

Use Full Window Adjusts the window size so that all items in the item list are visible in the window.
The window size that your program will use when it displays the 'Dm' is actually
stored in the parent 'ALRT' or 'DLOG' resource; this command is present solely for
your convenience when you are editing the dialog items.

Font and Size menus are also present. These menus are provided to allow you to see how
your 'om' looks when displayed in various typestyles. The font and size you set by using
these menus are not saved, and must be reset each time you edit the 'Dm'.

Chapter 3 Editing Individual Resources 37

'B~L'resources

To date, 'BNDL' resources have been mysterious, opaque, and difficult to learn about

For historical reasons they have a fairly complex set of concepts behind them, but in fact, the
only thing they do is bring together an application's documents (including the application me
itselO and their icons for the Finder. Any application that has a distinct icon on the desktop
also contains a 'BNDL' resource. For more details on the structure and concept of the 'BNDL'
resource itself, please refer to Appendix C, "The 'BNDL' Resource."

The 'BNDL' editor in ResEdit 2.0 helps you create a bundle consisting of the necessary 'BNDL',
'PREP' and Finder icon resources, and saves you the burden of dealing with the internal
workings of the bundle concept. The basic view you get when you first bring up the 'BNDL'
editor is shown in Figure 3-8. The window appears in the display with the largest available
number of gray levels or colors. (This is also true of the extended view, shown
in Figure 3-10.)

• Figure 3-8 Editing the 'BNDL' resource, simple view

TeechleNt 1.2

BNOls from leechleHt I.

01 BNOl ID - 128 from TeoehleNt 1.2

Signature: Inm-I

The Finder bundles together documents, applications and their icons with a 4 character
signature, which must be unique for every application. All the necessary resources to do this
are stored in the so-called Desktop fIle (or in the desktop database in system software version
7.0). This signature is shown in the first line of the window. All characters in the Macintosh
character set (see Appendix D) are allowed in the signature. In order to regis~r a unique
signature for your own application, please contact Macintosh Developer Technical Support
at Apple.

38 Macintosh ResEdit 2.0 Reference

/ ,

(This signature is used as the creator code for all flies that are part of the bundle (the creator
code is a property of every file and can be set using the Get FilelFolder Info col'Ilmlnd on the
File menu). Every file on the Madntosh also has a file type, which is another 4 character field
(several standard flIe types are defined: APPL for application, TEXT for plain text documen~
PIer for picture ftles, etc.). This ftle type is not only used to differentiate between different
kinds of ftles but is also used to associate distinct icons with different flies having the same
creator (i.e. belonging to the same application). This is what the list in the bottom part of the
'BNDL' editor window does. In order to create a new flIe type and its icon, select Create New
File Type from the Resource menu. Enter the flIe type in the left column and open the Finder
Icon field in the right column by selecting Choose Icon from the BNDL menu or by double­
clicking on the field.

Figure 3-9 shows the Icon chooser. Here you can either choose an existing icon for your file
type, or you can create your own by pressing the "New" button. Note that even though the
'BNDL' editor shows the entire Finder icon family, because of screen real estate considerations
you will only see a list of'ICN#' resources in this window.

• Figure 3-9 The Icon chooser

• File Edit Resource Window .H""'.
TeachTeHt 1.2 I

.
• BNDLs from TeachTeHt 1. I

I; ~. w.- I
BNDL ID

Signature: ~ Choose an Icon for the type ttwo:

~ (J II 6 ~ i:2
Type r

~
~l WI 129 12.

RPPL

~ TEHT I I.... ttro
10

io-o-

I
(New I (Edit) I Cancel J (01()

ttwo

I

Once you have associated all your file types with distinct icons (remember to include the flIe
type APPL for your application itself) there are only a few more steps necessary in order to
make the Finder display your icons.

Chapter 3 Editing Individual Resources 39

Select the Get FilelFolder Info command from the File menu and choose your application in
the upcoming list of files. Now set the fUe type to APPL and the creator to the signature you
have entered in the 'BNDL' resource. Then set the Bundle bit and clear the Inited bit. This tells
the Finder that your application contains a 'BNDL' resource and that it hasn't already seen
your me. If the Finder doesn't immediately show your new icon, select your application and
use the Get Info command in the Finder.

• Note: Once the Finder has seen your 'BNDL' resource and loaded the ico(lS into its
Desktop me, it will never again look at your 'BNDL', even if you clear the lnited bit.
In order to change the 'BNDL' resource or to change some icons, you will need to remove
your 'BNDL' resource from the Desktop fUe manually using ResEdit (this works, but is not
recommended), or to recreate the Desktop file. To do this, hold down the Option and
Command keys while restarting your Macintosh. The Finder will then ask you if you want
to rebuild the Desktop fIle. Remember that when you do this, you lose all comments you
may have entered in the Get Info windows in the Finder in system software previous to
system software version 7.0.

If you want to move information contained in the 'BNDL' resource from one file to another
you can do so by using the commands on the Edit menu. For copying operations, all
necessary information (including the Finder Icons) is copied with the file type. If you clear or
cut a flle type in the 'BNDL' resource, please note that for safety reasons the Finder Icons are
not removed (beautiful icons are so hard to design, it is generally considered better to waste a
few bytes than accidentally kill one).

Should you ever have need to tinker with the internal workings of the 'BNDL' resource, you
can edit all information stored in the 'BNDL' and associated 'FREF resources by selecting
Extended View from the BNDL menu. See Figure 3-10.

40 Macintosh ResEdit 2.0 Reference

• Figure ~10 Extended view in the 'BNDL' editor

• File Edit Resource Window aNol

TeachTeHt 1.2

aNOls from TellchTeHt 1.

aNol 10 • 128 from TeachTeHt 1.2

Signature: IlimMI
ID:~ (,"ould be 0'

• String: ITeachTeHt, Denlon 1.2

129 TENT 129

2 130 ttro 2 130 : . i

For historical reasons the third line of the extended view, which displays the contents of the
signature resource, is labeled "© string". This is because in the days before the introduction of
the 'vers' resource to keep track of version infonnation, the signature resource was used to
store such infonnation. Today the contents of the signature resource are ignored by the
Finder unless the 'vers' resources are missing. In this case the Finder displays the contents in
its Get Info window.

Chapter 3 Editing Individual Resources 41

Editing 'cicn' resources

Ordinary color icons are pictorial resources of type 'den'. Figure 3-11 shows the 'den' editor.
Because of the limitations of laserprinting, it is, unfortunately, not possible to do even a full
grayscale version of this screen here. This version is far from accurate, and is intended only as
a general representation. Please see the inside front cover for a color illustration of the
'den' editor.

Tools

Most of the tools in the tool palette are familiar from paint programs. One tool, the color­
dropper, is new, and one, the pendl, has slightly different functionality when a color icon is
being edited.

The coior-dropper, when clicked on a pixel in the editing area of the window, sets the current
color to be the color of that pixel. This is particularly useful when there are many available
colors to choose from The current color selection in the color part of the editor is
independent from the current selection in the black and white part.

When you are using other drawing tools (e.g., the paint bucket), you can get the color­
dropper by holding down the Option key. This does not, however, work with the eraser; the
eraser always erases to white.

Clicking on any pixel that is not of the current color with the pencil tool changes it to the
current color. Clicking on a pixel that is already the current color changes it to white.

It is possible to transfer images anxmg the various framed images at the right edge of the 'dcn'
editor. If you drag across either the color image or the black-and-white image, an outline will
detach. You can then move that outline to the other image or to the mask. The destination
highlights to indicate that releasing the mouse button will transfer the image. If you transfer
the image to the mask, interior bits in the image are set to black.

42 Macintosh ResEdit 2.0 Reference

• Figure 3-11 Color icon editing

DI cltn ·Clllrus the Do Cow· 10· 114 from Colorflnder

The Transform menu

The Transfoffil rrenu is shown in Figure 3-12. It allows you to transform selected regions in
several ways. The Flip Horizontal, Flip Vertical, and Rotate commands are familiar from paint
programs. The Nudge commands move the selected region by 1 pixel in the indicated
direction. (You can also nudge the selected region by using the Arrow keys.) The Show Grid
command toggles. When turned on, it causes the icon to display with 1 screen-pixel of blank
space around each enlarged pixel of the icon being edited. (When this command is turned
off, the enlarged pixels of the icon touch each other. In Figures 3-11, 3-12, and 3-13, the Show
Grid command is active, but because of the way the screen shots have been edited for
printing, it is hard to see except in the black areas of the large view of Clarus.) The "Icon size"
command brin~ up a dialog box that allows you to choose the horizontal and vertical sizes of
the icon. These sizes are separate; that is, the icon does not have to be a square. The
minimum for both is 8 pixels, and the maximum is SO. The Delete B&W Icon command is
only active when the Black and White icon is selected.

It is possible to create a 'cien' resource without a B&W image, but because the system uses the
B&W image to display the icon on rmnitors that are set to black and white or to 4 grays or
colors, it is probably a good idea to include it.

Chapter 3 Editing Individual Resources 43

• Figure 3-12 Color icon editor with Transfonn rrenu

Nudge Up
Nudge DOll'n
Nudge bit
Nudge Right

#T

o
li1

~~I~
K

[I]

Creating new color icons

When you create a new'dcn' resource, you get the default set of 16 colors. The color menu,
shown in Figure 3-13, lets you select other color collections. The roost commonly used
collection is Standard 256 Colors, which installs the 8-bit System color table into the icon.
Apple recommends that you use colors in the standard 16- and 256-color collections, as these
are the colors that are typically present when a 'cicn' icon is drawn.

44 Macintosh ResEdit 2.0 Reference

• Figure 3-13 The Color menu

standard 4 Colon
Standard 16 Colors
Standard 256 Colon

The Custom Colors command lets you use a previously saved 'clut' or 'pItt' resource instead of
the standard 'clue resources.

The Remove Unused Colors command is helpful at the end of editing, to minimize the size of
the resource. If you use it before you are done, however, it eliminates all the colors you have
not yet used, and if you later fmd you want some of them, you will have to add them back in.

Chapter 3 Editing Individual Resources 45

'CURS'resources

Cursors are pictorial resources of type 'CURS'. Figure 3-14 shows the 'CURS' editor. The top
part of the display has three large images for editing. The left image shows the cursor itself.
The middle image is the mask for the cursor, which affects how the cursor appears on various
backgrounds. The right image shows a gray picture of the cursor with a single point in black.
This point is the cursor's -hot spot." O'he hot spot is the point in the cursor that the Macintosh
recognizes as, the cursor's location. The hot spot of the familiar arrow cursor, for example, is
its point) You can invert bits in the left and center images by clicking them, and you can use
the marquee tool to cut, copy, paste, and move part or all of the picture areas in the left and
center images by holding the Shift key down and dragging, as with the other monochrome bit
editors in ResEdit In addition, if you click a pixel in the right image, that pixel becomes the
cursor's hot spot In the bottom part of the display, the cursor is drawn to scale on three
different background patterns. To draw the cursor, a hole is made in the background by
turning off the pixels in the area of the screen covered by the mask. Then the cursor is
overlaid on the hole. Ordinarily, the mask should be just a ruled-in outline of the cursor so
that the cursor can be seen clearly.

• Figure 3-14 Editing a 'CURS' resource

The CURS menu contains the following commands:

Try Cursor

Data-> Mask

Lets you try ol:lt the cursor by having it become the cursor in use inside ResEdit.

Makes a ruled-in copy of the cursor in the mask-editing area.

46 Macintosh ResEdit 2.0 Reference

(Finder icons

Finder icons, beginning with system software version 7.0, constitute a suite, or family, of
pictorial resources. These include small and large color icons in 16 and 256 colors (types 'ies4'
and 'icsS' in the small size, 'ic14' and 'icl8' in the larger size) as well as small and large
monochrome icons, now types lies#' and the familiar 'ICN#', discussed later in this chapter.
The large icons are 32-by-32 pixels, and effectively share the mask of the 'ICN#' type. The
small icons are 16-by-16 pixels; they, too, share a common mask, in an lies#' resource.

Opening any of these resources except'ICN#' automatically invokes the Finder icon editor
and starts the subeditor for the particular resource type. 'ICN#' still has its own individual
editor and may be edited either by itself or in the Fmder icon editor with the other members
of the suite. (Double-clicking a resource of type 'ICN#' opens the 'ICNI' editor rather than the
Finder icon editor.)

Figure 3-15 shows the Finder icon editor during an 'icl4' edit. The other editing windows are
quite similar, all of them sharing the tool palette; here, as with the 'cicn' editor, a monochrome
illustration cannot fully represent the appearance of a color screen, but should give you some
idea of the appearance of this editor. Please see the inside front cover for a color illustration
of the Finder icon editor.

• Figure 3-15 Editing Finder icons

WriJ
mfiJ
WCiJ
mriJ

Chapter 3 Editing Individual Resources 47

When you click one of the eight small pictures labeled with resource type names, that icon is
opened for editing. dicking in the display bar on the far right does nothing. This area shows
the icon in the fonn of three groups of images against the selected background, The groups
are labeled 'Closed', 'Open', and 'Omine', The display shows the way the ico'ns are drawn by
the system software version 7.0 Finder. In each group, the icon is shown unselected on the
left, and selected on the right.

Tools

Most of the tools in the tool palette are familiar from paint programs. One tool, the color­
dropper, is new, and one, the pencil, has slightly different functionality when a color icon is
being edited.

The color-<iropper, when clicked on a pixel in the editing area of the window, sets the current
color to be the color of that pixel. This capability is particularly useful when there are 256
colors to choose from The current color is maintained independently in the black and white
part of the editor, the 'icl4' and 'ics4' part, and the 'iel8' and 'jcs8' part.

When you are using other tools (e.g., the oval-drawing tool), pressing the Option key
activates the color-<iropper. This is not true of the eraser, however.

When the current color is other than black or white, clicking on any pixel that is not of the
current color with the pencil tool changes it to the current color. Clicking on a pixel that is
already the current color changes it to white,

The Transform. menu

The Transfonn rrenu is shown in Figure 3-16. It allows you to transfonn selected regions in
several ways. The Flip Horizontal, Flip Vertical, and Rotate commands are familiar from paint
programs. The Nudge commands move the selected region by 1 pixel in the indicated
direction. The Show Grid command toggles and, when turned on, causes the icon to display
with 1 screen-pixel of blank space around each enlarged pixel of the icon being edited.
(When this command is turned off, the enlarged pixels of the icon touch each other. In
Figures 3-10 and 3-11, the Show Grid command is active.) The Delete command allows you to
delete the icon type currently being edited. If a mask is being edited, the Delete command
allows you to delete the monochrome icon ('ICN#' or 'ies#') that owns the mask.

48 Macintosh ResEdit 2.0 Reference

(

(

• Figure 3-16 Finder icon editor with Transfonn rrenu

flip Horizontal
flip Uertlt:al
Rotate

Nudge Up
Nudge Down
Nudge Left
Nudge Right

Chapter 3 Editing Individual Resources 49

'ICON' resources

When icons appear within a program (HyperCard is a good example), they are resources of
type 'ICON'. The 'ICON' editor, as shown in Figure 3-17, displays one panel in the window.
The left side of this panel shows an enlargement of the icon, and is an editing area. The right
side of the panel shows the icon at actual scale. The editor for pictorial resources, including
'ICON', is a bit editor. It lets you click a pixel to invert it, and (if you hold down the Shift key)
permits you to use the marquee tool to cut, copy, paste, and rmve part or all of the picture
area. (Of course, you cannot rmve the entire picture.) If you cut or copy a marquee selection,
you can paste it as a 'PIer resource. F'ust close the editor and picker. (You must close the
picker in order for this to work.) If you then paste, ResEdit makes the contents of its scrap into
a new 'PIer. The 'PIer resource picker does not have to be open when you cut, copy,
or paste.

• Figure 3-17 Editing an 'ICON' resource

SO Macintosh ResEdit 2.0 Reference

('ICNI' resources

The 'ICN#' resource is another conunon target for ResEdit The icons that you see on the
desktop in system software version 6.0 and earlier, representing applications and their
docurrents, are all 'ICN#' icons, as are folder icons and even the trashcan. The 'ICN#' resource
type is edited with a monochrome bit editor that permits you to change any of the pixels in
the icon, which are in a 32-by-32-pixel square, and (if you hold down the Shift key) lets you
use the marquee tool to cut, copy, paste, and move part or all of the picture, with the
exception that if you use the marquee to select the entire picture and then you move it, you
necessarily make part of it disappear outside the editing window. Arrow keys do notwork
here to move the selection. If you cut or copy a marquee selection, you can later paste it as a
'PIer resource. See the description of 'ICON' resource editing earlier in this chapter.

In system software version 7.0 and later, this icon is part of the Finder icon suite, so it can also
be edited with ResEdit's Finder icon editor. Because there is an 'ICN#' editor, however, that
specific editor is activated if you double-click a resource of type 'ICN#'. You must bring up the
Finder icon editor by opening another Finder icon type if you want to edit a resource of type
'ICN#' in concert with other Finder icons.

The 'ICN#' editor displays two panels in the window, as shown in Figure 3-18.

• Figure 3-18 Editing an 'ICN#' resource

DreedEdlt.ICN#

JI· ••• II 111··111 I •••••••• ••• • •••
• :il:II:· Iii .11 •• ••• 11-::-:.::. I I. •• ••••••• • •• • .1 =: • ..- a. ••• •• •••• ••

I ... I I .. : . . .
1
.1_ 1

1
:

. -
• • ••••• _ ...

Chapter 3 Editing Individual Resources 51

The upper panel is used to edit the icon. It contains an enlargement of the icon on the left,
and an enlargement of the icon's mask on the right The lower panel shows, from left to right,
how the icon will look unsela."1ed, selected, and open on both a white and a gray
background. It also shows how the icon win appear unselected, selected, and open in the
Finder small icon view.

In recent versionS of the Finder, 'lCN#' resources are displayed on the screen as follows: First
the mask is used to blank an area of the screen. Then an OR operation is performed in the
same screen area, using the icon as data. (When a highlighted icon is displayed, the
foreground and background ·colors- (in this case black and white) are swapped before the
OR operation is performed on the data.) If the mask is not the same shape as the outline of
the icon, the results will in general be unaesthetic unless the background is black.

The ICN# menu contains the following commands:

Data-> Mask Makes a fllled-in copy of the icon in the mask editing area.

Display using old method
Lets you display the icon in the lower panel, using the method that was used by
Finders in system software versions previous to version 6.0. If the mask is just a
fllied-in copy of the icon, you probably won't see a difference between the old and
new displays.

52 Macintosh ResEdit 2.0 Reference

('SIeN' resources

Small icon ('SIeN') resoun:es are edited with a monochrome bit editor, just like other
monochrome pictorial resources. Unlike 'ICON' or'ICN#' resources, 'SICN' resources can, and
usually do, occur in groups. A typical display is shown in Figure 3-19. The upper panel is
enlarged and shows the icon currently being edited. The lower panel shows four icons at
actual scale. The one shown in the upper panel is enclosed in a box in the lower panel. To
get to a different icon, click its picture in the lower panel. If the icon you want to edit is not
currently visible, click either the right or left picture, as appropriate, until it appears.

You can add a new icon before (to the left 00 the currently selected icon by choosing the
New command from the Vue menu. Commands on the Edit menu can be used to cut, copy,
paste, clear, or duplicate icons.

• Figure 3-19 Editing a 'SICN' resoun:e

... .­...... -
·i· .-

I~ WI L@Js --~ \Ioa!

Chapter 3 Editing Individual Resources 53

'FONT' resources

The 'FONT resource is one of two major ways of representing bitmap (screen) fonts for the
Macintosh. (The 'NFNT' resource, described briefly later in this section, is the other.) The
'FONT resource contains a series of pictures that typically represent iterm in the Macintosh
character set, though they need not do so. A chart of the Macintosh character set is presented
in Appendix D.

Because the Macintosh displays a character of type on its screen as a bitmap,' however, it is
possible for the pictures to be just that-pictures. 'FONT resources on the Macintosh can
contain scanned images and other pictures just as easily as they can contain the alphabet,
numerals, and punctuation marks.

The Macintosh can modify elements of a font-for example, it can boldface them, or slant
them for an approximation of italics. Print quality on dot-matrix printers (and screen-display
accuracy as well) can be improved, however, by providing extra fonts that are constructed
with those styles built into them 'FONT resources typically come in families, so that it is
possible to display text on the screen (and print it on dot-matrix printers) in several styles,
most commonly roman, bold, italic, and a bold-italic combination, without taking processor
time to calculate the way such styleS should look. These families can also correspond to
downloadable PostScript fonts for laser printers and typesetters.

If you use ResEdit to examine a Fonts me from a recent Macintosh system software version,
you will fmd that it contains three kinds of resources: 'FOND' 'FONT, and 'vers' (a record of
the version number of the release). The 'FOND' resource "owns" one or roore sizes of a
particular font and contains kerning tables and other important information about the 'FONT
resources it owns. The 'FOND' resource has a unique ID number, from which the ID numbers
of its subsidiary 'FONTs are calculated. To fmd the ID number of a particular 'FONT
resource, take the ID number of the parent 'FOND', multiply by 128, and add the point size of
the 'FONT. For example, 'FONT ID 268 corresponds to New York (family ID 2), in
12 point size.

The ID numbers of 'FOND' resources may be from 0 (Chicago, the default System font) to 255,
inclusive. Apple reserves ID numbers from 0 through 127. Unfortunately, there are a great
many bitmap fonts (vastly more, in fact, than 255 of them), so occasional ID number collisions
are unavoidable. Version 3.8 and later versions of the Font!DA Mover attempt to resolve such
collisions, as do some third-party system-enhancer packages.

Macintosh ResEdit 2.0 Reference

There is also another, newer kind of font resource, type 'NFNT. like 'FONT resources,
'NFNT resouItes are also owned by 'FOND' resoUItes. ID numbering of 'NFNT fonts is,
however, not keyed to the ID number of the parent 'FOND'. Arbitrary numbering of 'NFNT'
resources helps avoid font ID number collisions and facilitates resolution of conflicts when
they do occur. 'NFNT fonts, moreover, can contain and display more than 1 bit per pixel and
can be assigned absolute colors with a corresponding 'fcth' resource, which is a Coloffable
record. (Font Coloffable records are discussed in Inside Macintosh, Volume V, in the section
on the Color Manager. The Font Manager is discussed in some detail irt Inside Macintosh,
Volumes N and V.) ResEdit cannot edit 'NFNr fonts, but it can copy and move them, as can
version 3.8 and later versions of the FontIDA Mover. A third-party editor for 'NFNT' fonts is
available.

Editing 'FONT' resources

Fonts are edited with a bit editor that is a superset of the bit editors for other pictorial
resources. This editor has several of the tools you are probably familiar with from programs
like MacPaint

The editing window for 'FONT resoUItes is divided into four panels: a character-editing
panel, a sample text panel, a character-selection panel, and a typical set of graphics tools.
These panels are shown in Figure 3-20.

• Figure 3-20 Editing a 'FONT resource

.11
.1 I • . -_ .. -. -

UCD 0l&oI YIoItl. IIoe.-
6S 0 12 174

Beauty Is momentary In the
mind - I The fitful tracing of a
portal I But In the flesh It Is
immortal.

- Wallace Slevens

.. B

Chapter 3 Eqiting Individual Resources 55

The character-editing panel, on the left side of the window, shows an enlargement of the
selected character. You can edit it, as with the other bit editors for pictorial resources, by
clicking bits on and off. Drag the black triangles at the bottom of the character-editing panel
to set the left and right bounds of the character (that is, the character width). Two of the three
triangles at the left side of the panel control the ascent and descent of chalacters in the font If
you want to increase the ascent or descent, 1ll>Ve the appropriate triangle first If you put
pixels outside the indicated area and then move the triangle, those pixels are wiped out.

.... WarnIng Changing the ascent or descent of a character changes the ascent or
descent for the entire font '"

The third triangle on the left shows the location of the baseline, which is fIXed and is
displayed only for reference. Below the Panel are the character number (labeled • ASClr), and
the character's offset, width, and location, all in decimal notation.

• Note: The correspondence between the Macintosh character set number and a real ASCll
number is limited. Strictly speaking, ASCll is a set of 128 characters, numbered from 00
($00, the NUll chalacter) through 127 ($7F, the DEL character), and is intended to
represent a basic character set rather than any font or typeface, in a relatively universally
understood fonn. Because the Macintosh chalacter set is oriented toward electronic
publishing, which has more (and different) requirements, it has twice as many possible
chalacter numbers. (See the section on the 'KCHR' editor later in this chapter.) For
ordinary text fonts, characters 0 through 127 of a Macintosh font are the ASCll character
set. For Symbol, ITC Zapf Dingbats~, and the various pictorial fonts, however, the
correspondence with the ASCll character set is minimal. The Macintosh character set is
shown in Appendix D.

The sample text pane~ at the upper right, displays a sample of text in the font currently being
edited. (You can change this text by clicking in the text panel and using normal Macintosh
editing techniques.)

The character-selection panel is below the text panel. You can select a character to edit by
typing it (using the Shift and Option keys if necessary), or by clicking it in the row of three
characters shown. To rmve upward through the character number lange, click the right
character in the row; to rmve downward, click the left character. The character you select is
boxed in the center of the row. (To scroll quickly, click the right or left character and drag the
pointer outside the selection panel, to the right or left.)

Macintosh ResEdit 2.0 Reference

(The graphics tools panel, directly below the character-selection panel, offers several familiar
graphics-manipulation tools, including the pencil, eraser, circles, and rectangles. The 'FONT
editor, unlike the other bit editors, includes the marquee tool as a panel selection, and the
lasso is also available.

Any changes you make in the character-editing panel are reflected in the text panel and the
character-selection panel, except on rronitors displaying more than 2 colors or gray levels.

You can also change the narre of a font. The font name is stored in two places: as the name
of the 'FOND' resource of that font family, and as the name of the size 0 'FONT resource. To
change the font narre, select the individual 'FOND' resource with the name you wish to
change, and choose Get Info from the File menu. To maintain consistency, you should alSo
change the name of the 0 point 'FONT resource. This resource does not show up in the
normal display of all fonts in a me. To display i~ hold down the Option key while you open
the 'FONT type from the me window. You will see a generic list of fonts. Select the font with
the narre you wish to change, and choose Get Info.

Chapter 3 Editing Individual Resources 57.

'PAT' resources

The 'PAT' resource (pattern) editor is shown in Figure 3-21. It displays two panels, with the
editing area on the left and the pattern shown on the right. The bit editor for 'PAT' resources
is very similar to the bit editor for other pictorial resources. It lets you invert a bit in the central
editing area, and lets you use the marquee tool by holding down the Shift key while you drag.
The editing area is small, but it is possible to make some use of the marquee tool.

• Figure 3-21 Editing a 'PAT' resource

58 Macintosh ResEdit 2.0 Reference

(-

- "

'PATI' resources

The 'PATI' resource (pattern list) editor is a bit editor much like the 'SIeN' editor; it is shown
in Figure 3-22. Instead of displaying a single enlarged picture of the pattern being edited, it
shows two. The one on the left is for editing; the one on the right shows the resulting pattern
at full scale.

• Figure 3-22 Editing a 'PAT#' resource

MetPelnt

P81#1 from MeePaint

Chapter 3 Editing Individual Resources 59

'INn', 'itlO', and 'itll' resources

The 'INIt' resource combines the functionality of the 'idO' and 'id1' resources. That is, 'INTL'
"US" ID - 0 is the same as 'idO' "US" 10 - 0, and'INIt' "US" 10 -1 is the satre as 'id1' ·US" 10
• O. These resources are used in international1ocalization. For further infonnation, see Inside
Macintosh, Volume V, Chapter 16. Each of these resources (whether you edit them as 'INn'
or as 'idO' and 'id1') is shown as a window with "a set of boxes to be filled in and some buttons
that can be clicked. Figures 3-23 and 3-24 show the windows for 'idO' and 'id1'.

• Figure 3-23 Editing an 'idO' resource

ItlO ·us· 10 - 0 from S stem

N.mb • ..., •• "m.".'." 1 I l8I l •• dlO. C y Symb.,
Thousands separator: • D Minus sign for negatiue

($1,234.50) List separator: ; 181 Trailing decimal zeros

($0.5) ; ($0.5) Currency: $ 181 leading Integer zero

Short Date: Date separator: D 0 leading 0 for day

Oate Order:1 M/D/Y I D leading 0 for month

1/16/89

Time: Time separator: :
4:25:06 AM Morning trailer: AM
4:25:06 PM (uening trailer: PM

24-hour trailer:

Country Code:1 DO - US

o Include century

181 leading 0 for seconds
181 leading 0 for minutes

D leading 0 for hours

18112-hour time cycle

D metric -uersi~-n-;: ,=1 =1

60 Macintosh ResEclit 2.0 Reference

(

(

• Figure 3-24 Editing an 'itIl I resource

Itli ·US· 10 - 0 from S stem
Names for months Names for de s

JanualY July Sunday

February August Monday

March September Tuesday

April October
Wednesday

Thursday
May Nouember Friday
June December Saturday

Day
•• I Month I Dete 11l.:..'_J-I...;;Y..;.ee;;.;.r~C]_...J

Use E1characters to abbreulate names

Country cOde:,-I..;;o;.;;o_-_u;;.;s~_=~
Mon, Jan 16, 19M Dersion: EJ
Monday, January 16, 1989

o Leading 0 in D8te
o Suppress Date
o Suppress Day
o Suppress Month
o Suppress Year

Chapter 3 Editing Individual Resources 61

'KCHR' resources

The 'KCRR' resouoce controls keyboard mapping. The 'KCHR' editor can be used with any
Macintosh that runs system software version 5.0 or later. The main 'KCHR' editing screen is
shown in Figure 3-25, with Command-Option-3 pressed; the dead key editor is shown in
Figure. 3-26. Appendix A contains an in-depth discussion of the 'KCHR' resource itself, and a
short section of 'KCRR' questions and answers appears in Chapter 6.

• Figure 3-25 Editing a 'KCRR' resouoce

Keyboard region

The main. 'Kom' editor

The display for the main 'KCHR' editor (Figure 3-25) is divided into five parts, which are
described in the sections that follow.

62 Macintosh ResEdit 2.0 Reference

(

(

The character chart

This chart shows the 256 characters that make up the currently selected font. It displays the
character generated by the currently pressed key, by highlighting it. You can also display a
character by clicking with the mouse in either the keyboard region or the virtual keycode
chart. These characters can be assigned to keys on the keyboard. To assign a character to a
key, drag the character either to a keycap in the keyboard region or to the virtual keycode
chart. You cannot assign characters to the Command, Option, Shift, Caps Lock, Control,
Return, or Enter keys.

The table chart

The Shift, Caps Lock, Option, Command, and Control keys are considered to be "modifiers" j
no combination of modifier keys generates a character code unless some other key is also
pressed. The table chart shows which table is used by the currently depressed modifier
key combination.

Please note that although there are 256 possible combinations of modifier keys, most versions
of the 'KCHR' resource use only 8 tables, and very few ever use more than 16. This is because
similar modifier key combinations are frequently mapped to the same table. For example, in
the U.S. 'KCHR', all combinations involving the Control key point to Table 6. Also, the Caps
Lock and Shift combination points to Table 1 (which is pointed to by the Shift key) rather than
Table 2 (which is pointed to by the Caps Lock key on its own).

To change the table used by a modifier key combination, press that combination of modifier
keys and click on a different table. The mapping is changed by the editor. This feature is
probably of very little use, and the information is included here for completeness. Here is a
listing of the tables as they are pointed to by various modifier key combinations in the ,U.S.
'KCHR', as supplied:

• Table 0 is shown with none of the modifier keys pressed, or with the Command key or
Command and Shift keys pressed.

• Table 1 is shown with the Shift key or Caps Lock and Shift keys pressed.

• Table 2 is shown with the Caps Lock key pressed.

• Table 3 is shown with the Option key pressed.

• Table 4 is shown with Shift and Option keys pressed.

• Table 5 is shown with Caps Lock and Option keys pressed.

• Table 6 is shown with Option and Command keys pressed.

• Table 7 is shown with the Control key (and any other keys) pressed.

Chapter 3 Editing Individual Resources 63

The virtual keycode chart

This chart shows all 128 keycodes in the current table, and highlights the keycode that is
generated if you press a particular key with the current modifier key combination. These
keycodes come from the keyboard, and are virtual in the sense that further translation has to
take place before a Macintosh character set number results and a character can
be displayed.

The keyboard region

This area reflects a particular keyboard layout You can choose a different keyboard for
displaying the virtual keycodes by using the "View as" command on the KCHR menu. The
Apple~ Extended Keyboard and Extended Keyboard II have two sets of modifier keys, and
you can use the "Uncouple modifier keys" command, also on the KeRR menu, to get access
to the alternate rmdifier keys (the ones on the right side of the keyboard, which are usually
coupled with the ones on the left side). If you do not have the Apple Extended Keyboard or
Extended Keyboard n connected to your Macintosh, you cannot choose the "Uncouple
modifier keys" command.

Note that the modifier keys shown in the keyboard picture have a gray border. This border
has two purposes:

• It reminds you that you cannot drag a character from the character chart onto a
IOOdifier key.

• It helps you fmd the modifier keys in the virtual keycode chart. (They have a gray border
there, too.)

Note also that if you press the Option key, some keys in the display are shown with solid
black borders. These are "dead" keys. If you click a dead key, the special editor for dead keys
is invoked. For more information on editing dead keys, see "Editing Dead Keys," later in
this chapter.

The information region

This small chart shows you the character code and virtual keycode, both in hexadecimal form.

64 Macintosh ResEdit 2.0 Reference

/'

(

Editing dead keys

Sorre combinations of keys do not immediately specify a character. Because nothing appears
on the screen and the cursor does not move when these combinations are pressed, they are
called "dead" keys. Typically they act to modify the next key that is pressed after the dead key
is released. The special editor for dead keys is shown in Figure 3-26.

• Figure ~26 Editing a dead key

The dead-key editor

The display for the dead-key editor is divided into five functional sections.

The character chart

This chart displays the character codes and is used to assign a different character code to
either a completion character, a substitution character, or the nomatch character; you assign a
code by dragging the character to its new location. If you drag a character to one of the empty
slots (displayed in gray) in the completion and substitution character pair list, you
automatically add a new pair.

Chapter 3 Editing Individual Resources 65

The nomatch character

If the character typed after the dead key doesn't fit, a nomatch character is displayed,
followed by the character you have typed. For example, Option-E must be followed by a
vowel; it doesn't make much sense to put an accent mark on a k. The nomatch character for
the current dead key is shown in the upper-right comer of the window.

The completion and substitution character pair Hst

This list shows the translation rules for the dead key that is currently selected. There are two
columns, allowing for a total of 32 dead keys. The left half of each column shows all
completion characters; the right half shows all substitution characters. If the character typed
after the dead key is one of the completion characters, the matching substitution character is
actually produced. For example, pressing Option-e and then e produces the character e.

The Trash

To rermve a completion/substitution character pair, just drag either character from that pair in
the completion/substitution pair list to the trashcan in the lower-right corner of
the window.

The information region

This area contains the character code in hexadecimal form whenever you click one of the
other parts of the editor. It is on the right edge of the window, and contains the word ·Char:".

The menus

The 'KCRR' editor has three menus: KCRR, Font, and Size.

The KOIR menu

This menu is shown in Figure 3-27.

66 Macintosh ResEdit 2.0 Reference

(
• Figure 3-27 The KCHR menu

Duplicate Table

aemoue unused tables

The KCHR menu contains the following commands.

View as ... If you have the Key uyout me (which has been part of the system software since
version 4.2) in your System Folder, you'll be presented with a list of keyboards to be
used for displaying the virtual keycodes. Note that you are not changing the layout of
a particular keyboard, but the 'KCHR' resource that is used by all keyboards and is
based on the ISO (International Standards Organization) ADB keyboard.

Uncouple roodifier keys
This command is enabled when you have an ADB extended keyboard connected to
your computer. It can be used to uncouple the right modifier keys (see note above)
and thus edit the tables used by them. Please note that the 'KCHR' editor
automatically recouples them whenever you bring another window to the front or
close the editor.

Chapter 3 Editing Individual Resources 67

• Note: When you select the ·Uncouple modifier keys" command, you must also use the
"View as" command to set the current keyboard to a keyboard that supports uncoupled
nxxlif'ter keys. To avoid confusion, and because not all keyboards support this
decoupling, it is recommended that you not make use of this command.

New Table Creates a new empty table.

Duplicate Table Creates an identical copy of the rurrent table.

Remove unused tables
Looks for tables that are not used by any modifer key combination, and removes
them

Remove duplicate tables
Checks for tables that are identical, reassigns roodifier key combinations as necessary
to one table, and removes the duplicate(s).

Edit dead key... Displays a dialog box containing a list of all dead keys and lets you choose one to
edit. Note that there is a shortcut to edit dead keys: You can either click a dead key
on the screen, or press the dead key on the keyboard. In either case the dead-key
editor will automatically pop up.

Convert to dead key
Whenever you hold down a key with any combination of modifier keys and choose
this menu command, the key will be converted to a dead key. You can then use the
Edit dead key command to define all valid completion and substitution characters for
the new dead key.

Remove dead key This command is enabled only when a dead-key window is open. It removes the
dead key currently being edited from the dead-key lis~ converting it into a live key in
the process.

The Font menu

This menu lets you choose a font for displaying the characters in the editor's window.

The Size menu

This menu lets you choose a size for the characters displayed in the editor's window. All
characters in the window are automatically resized.

68 Macintosh ResEdit 2.0 Reference

(

(

• Note: If you are editing 'KCHR' resources on a Macintosh SE, Macintosh Plus, or Macintosh
512K enhanced, the 'KCRR' editor automatically sets the size to 9 pOints so that the editing
window fits on the screen.

Chapter 3 Editing Individual Resources 69

'MENU' resources

Menus are an important part of the Macintosh user interface and are found iI\ all applications
and many desk accessories. They are stored in resources of types 'MENU' (regular menus),
'annul (MacAppGD temporary menUSj these are converted into 'MENU' resources by PostRez
during the MacApp build process, so you will never find one in an application), 'CMNU'
(MacApp permanent menUSj these will be supported in future versions of MacApp), and
'mctb' (menu color tables for any of the preceding types). The 'cmnu' and 'CMNU' types differ
from regular menus in that they have an additional comrmnd number field stored for each
item in the menu. ResEdit 2.0 supports editing of all these menu resource types with a new
editor that automatically integrates the color information stored in the 'mctb' resources and
thereby allows editing of menus in color. See the inside front cover for a color illustration of
menu editing.

The display of the menu editor, shown in Figure 3-28, is divided into two sections. The left
side shows the entire menu, and the right side displays detailed information about the item
selected on the left side. To accommodate menus with many items, the box on the left side
has a scroll bar.

• Figure 3-28 Editing a 'MENU' resource

• File Edit Resource Window MENU $tql~

IOH 8 for Mac II
ResEdIt 2.0, Marl6

MENUs from IOH 8 for M;

~. MENU "Knobs" 10·132 from BON 8 for Mac II

II Entire Menu: 181 Enabled
Shorter lines
longer lines
More Open
Mora Packed
Faster
Slower

11t1e:

70 Macintosh ResEdit 2.0 Reference

o • (Rpple menu)

Color

mla: III
Item TaHt Default: •

Menu Background: D

(

If the title of the menu is selected, the editor not only allows you to change the title but also
displays some infonnation about the entire menu. You can enable/disable the entire menu
and also select colors for the menu's title, for the item text default, and for the menu
background. On machines capable of displaying color the color patches pop up like menus
and let you select a color from a palette corresponding to the pixel-depths of the deepest
device intersecting the window. Should you, however, need to enter a color in RGB values,
you can double-click on the color patches and set the color using the standard color picker.
On monochrome machines the color picker is opened whenever you click the color patch,
because a palette cannot be displayed adequately. Since the • Apple" character can't easily be
generated on some keyboards there is also a convenient radio button to make the menu title
the • Apple" character instead of text entered in the box. If you do enter the • Apple" character,
the editor automatically chooses the radio button.

When you create a new menu, there are no items to select in order to start the editing process.
You can choose Create New Item from the Resource menu, or type Command-K.

When an individual menu item is selected the display changes to the one shown in
Figure 3-29. As in the title's display you can either edit the text of the item directly or you can
use the radio button to make the item a separation line (which you can also do by entering • -"
in the text box). You can use the Style menu to select a different style (bold, italic, and so on)
for each item, and you can enable or disable the item with the checkbox in the upper right
comer. For each item you can assign a command key equivalent (the menu manager is not
case sensitive, so for esthetic reasons and consistency you should only use uppercase
characters) and an item mark, which you can choose from an extensible pop-up menu shown
in Figure 3-30. Both the command key equivalent and the mark character can be displayed in
color. If you want to do that, select a color from the corresponding color palette pop-up
menus.

• Figure 3-29 'MENU' line item edit

10 MENU "Knobs" 10 - 132 from BOH 8 for Mac II

I Knobs I I Selected Item: 181 Enabled
I Shorter Lines 115 Q

I I I' I. ! TeHt: @ I Longer lines
More Open liD !
More Pacted liP I 0 - (separator line)
Fester IIF i

Color Slower II' !
o has Submenu TeHt:.

cmd-Key:D • O!
!

Mart: 0 •
Chapter 3 Editing Individual Resources 71

• Figure 3-30 'MENU' mark pop-up

MENU "Knobs" 10 - 132 from BaH 8 for Mec II

IKnobsl I Selected Item: I8JEnebled
I Shorter Lines 8IIS IQ

I , ,. . TeHt: <i I longer Lines
.0 More Open

More Pected 8IIP o - (seperator line)
rester 8IIr
Slower .6 Color

o he. Submenu TAut._

~

I Cmd-Key: • I ~I
0

ED! None

Other •••

In order to make an important item look unique you can put an icon in front of the item's
text. Select Choose Icon from the MENU menu to get the dialog shown in figilre 3-31.

• Figure 3-31 'MENU' Icon chooser

Choose en Icon for this menu Item:

Put Foober III
Q

<i Normel Icons (ICON) (New (cencel I
o Reduced Icons (ICON)
o Smell Icons (SICN) (Edit J I OK I

72 Macintosh ResEdit 2.0 Reference·

/

('

(

Because of menu manager restrictions, the icon's ID must be in the range of 257 to 511 in
order for it to be used in a menu. All other icons are displayed in gray. If a regular item seems
to be too large for your menu, you can select the "Reduced" radio button to shrink the icon to
a roore convenient 16x16 size or you can add a small icon (resource type 'SICN') instead of a
regular one. If you later want to remove the icon from an item, choose -Remove Icon from the
MENU menu. In order to reduce clutter, the menu on the left side of the editing window does
not show icons.

If you want to see how your menu looks in real life you can try it out at the right edge of the
menu bar. To show you that this is not a regular menu but a sample of the menu you are
editing, its title is outlined with a black border.

Sometimes a menu may become overcrowded with items. Thafs when you should start to
think about organizing the items in groups and turning the menu into a hierarchical menu.
The menu editor helps you create submenus by providing you with the option to turn any
item into a submenu just by clicking in a checkbox. In order to edit the items of the submenu,
either select Open Submenu from the Resource menu or double-click on the item's text.

If you happen to edit a 'cmnu' or 'CMNU' menu for inclusion in a MacApp program, you will
notice that there is an additional field shown in the item's display that lets you set the
command number for each item. This is shown in Figure 3-32, bottom center.

• Figure 3-32 'cmnu' editing

liD cmnu 10 - 128 from The Dwarf Banana-Tree

I Haue You Now I I Selected Item: C8I Enabled
I

I
I TeHt: @ I You're My Father177 I
I 0 - (separator line)

I" Color

I 0 has Submenu TeHt: •
!
i tmd-Key:D 111 I

0: I Cmd-Num: ~ Mark: 0 •
The menu editor also lets you rearrange the items in your menu. You can either use the
standard commands on the edit menu, or you can put an item in a new position by dragging it
around in the menu on the left side of the window. As you move the item around, a black line
between items shows you where the item is currently located.

Chapter 3 Editing Individual Resources 73

Selecting colors from the various pop-up palettes actually modifies an 'mctb' resource (menu
color table) which is transparently generated and changed for you. If you want to get rid of
the colors you have set, you can reset the 'mctb' resource by selecting Use Default Colors
from the MENU menu.

The 'MENU' resource has two assigned ID numbers. One of these is the resource ID number;
it is set by getting infonnation on the resource from the picker window, and is the ID number
that always shows up in the picker window. The other;s the rrenu 10 number; it is set inside
the editor and is the part of the 'MENU' resource that is returned by the rrenu rmnager of the
Macintosh Toolbox in response to MenuSelect and MenuKey calls. Keeping these two
numbers the same, while not required, avoids confusiOn, and in fact they default to the same
number. See Chapter 6 for roore infonnation. .

The corresponding 'MDEF ID number is almost always O. This refers to the standard 'MDEF'
in the System File, which is generally appropriate. Some menus do, however, need to be
drawn differently. (Palettes, for example,) These could use separate 'MDEF resources, and
hence would not have 0 in this field. Figure 3-33 shows the 'MENU' and 'MDEF' 10 number
dialog box.

• Figure 3-33 'MENU' ID dialog

Please enter the Menu 10 and
the resource 10 of the MOEF to
be used below.

Menu 10: ~1"~1'~~
MOEF 10: 10_---'

(Cancel) I OK I

74 Macintosh ResEdit 2.0 Reference

Chapter 4 Using ResEdit Templates

One generic way of editing a resource is to nn in the nelds of a
dialog box. The contents of the dialog box are specified by a template
contained, typica1ly, in ResEciit's own resource me. This chapter discusses
template eciiting.

75

Template characteristics

If you open an actual resource of any of the types listed in this chapter, you will find yourself
editing in a dialog oox, the contents of which are specified by the template of the same name
as that resource type. (For example, the 'LA YO' resource, discussed further in Chapter 6, is
controlled by the 'TMPL' resource named LA YO in ResEdit.) The template specifies the format
of the resource and also specifies what labels should be put beside the editText items in the
dialog oox used for editing the resource.

• Note: Templates can contain a maximum of 2048 fields. For the purpose of enumerating, a
field is defined as any item that is drawn on the screen. That is, a label counts as a field, as
does a separator, and so on. This limiting number of 2048 is reached rather easily,
particularly in resources with repeating lists, as for example, 'pItt'.

The 'TMPL' resource inside ResEdit is recursive, in the sense that the contents of each of these
named 'TMPL' resources is a template for a template. (There is even, of course, one for 'TMPL'
itself.) As of mid-1990, ResEdit contains 'TMPL' resources for these resource types:

'aetb' 'acur 'ALRT' 'APPL' 'BND1' 'cctb'

'eIut' 'cmnu' 'CNTI.' 'CfY#' 'detb' 'Dm'
'DLOG' 'DRVR' 'FBTN' 'fetb' 'FDIR' 'fmf

'fld#' 'FOND' 'FONT' 'FREF 'FRSV' 'FWID'

'icmt' 'inbb' 'indm' 'infa' 'infs' 'inpk'

'inra' 'insc' 'itlb' litle' 'itlk' 'LAYO'

'MBAR' 'mcky' 'mctb' 'MENU' 'nret' 'PAPA'

'PIer 'pItt' 'POST' 'ppat' 'PRCO' 'PRC3'

'PSAP' 'qrsc' 'RMAP' 'ROv#' 'scm' 'SIGN'

'SIZE' 'STR' 'STR#' 'TEXT' 'TMPL' 'verst

'wctb' 'WIND' 'wstt

76 ResEdit 2.0 Reference

(

Editing

When you are editing a template, the Tab key moves you forward from field to field within
the template. Shift-Tab moves you backward. Here, however, the termfteldmeans an active
area with an editable value in it. Fields are shown on the screen as boxes.

To add a new field to a repeating sequence in a template, select a sepafator, which is usually
a set of asterisks (*****), and choose Create New Field from the Resource menu.

Sorre templates control windoWs or resources that contain rectangles. Sorre of these
templates will have a Set button that lets you draw a rectangle on the screen to delimit the
resource. The pixel numbers for the rectangle are automatically copied to the appropriate
fields in the template. There is a Set button in the 'LA YO' template, which is discussed in
Chapter 6; another is shown in Figure 4-1.

Values can be entered into numeric fields in either decimal or hexadecimal notation. You can
enter a hexadecimal number into any numeric field by preceding it with a dollar sign ($).

'PICl" editing

There is no custom editor for 'PIer resources, though there is a custom picker. 'PIer
resources can, however, be sized with the template that exists for them, which is shown in
Figure 4-1. If you click the Set button, you can then draw a rectangle on the screen to define
the shape and size of the picture. Otherwise, you can enter values in the fields as you would
in any template. .

Chapter 4 Using ResEdit Templates 77

• Figure 4-1 The template editor for 'PIer

HyperCard t .2.5 I

• PICYs from HyperCard 1.2.5 I
~ ! I !II

PICY 10- 100 from HgperCard 1.2.5

I Size

~~EJC!!D
~

Imll!l ::

Rect

Opcodes S 11 01 01 00 OR 00 00 00
00 01 S6 02 00 96 00 OA

I: 00 60 01 10 00 80 01 90
1 00 60 01 .. 3 00 80 01 6A

00 60 01 13 00 60 01 6A
00 00 OA 06 IF FO 01 FF
CO 3F FO FE 00 DB 09 10
16 01 00 20 20 10 00 16
00 DB 09 IF Fe 01 01 30
21 9C 00 66 00 DB 09 10
16 01 01 30 2F Dot 01 61 ~ I"" ,,,. "n,..,.. n, .. "

For other examples of template editing, see the description of the 'STR#' resource template in
Chapter 5 and the description of the 'IA YO' resource in Chapter 6. Procedures for generating
new templates are also covered in Chapter 5.

78 ResEdit 2.0 Reference

(

Chapter 5 Creating ResEdit Templates

This chapter describes how you can generate templates for your own
resource types. These templates, which are resources of type 'TMPL', need
not reside within ResEdit The ResEdit Preferences me in the System folder
is a good place to keep them.

79

Template example

The 'TMPL' resource inside ResEdit with name STRI is shown in Figure 5-1. It is shown here as a
ready example of what 'TMPL' innards look like on the screen.

• Figure 5-1 'TMPL' deftnition for type 'STRI'

TMPl "STR#" 10 - 256 from He.Edlt 2.082

"""""
Label

Type

"""""
Label I"""""
Type ILSTC

"""""
Label IThe string

Type IpSTR I
"'''''''''
Label I"""''''''
Type ILSTE

"'''''''''

Figure 5-2 shows the same template being used to edit an actual 'STRI' resource. You can see
the correspondence between the iteJIl'i in the 'TMPL' resource and the resulting display.

80 ResEdit 2.0 Reference

(
• Figure 5-2 'SfR#' template in use

• Fila Edit Resourte Window Font

TeachTeHt 1.2

STR#I from TeachTeHt 1.:

STR# 10 • 200 from TeachTeHt 1.2

Hu.Strings 20

The string

The str i ng 1 T_eo_c_hT_ex_t _______ --'

The string I~ 1986-1988 Apple Co.puter. Inc. 1

The string IBryan Stearns

You can look through the other templates and compare them with the structures of their
corresponding resources to get a feel for how you might define your own resource template.
(If you use MPW, note that these templates are equivalent to the resource type declarations
contained in the {RIncludesl directory-refer also to the DeRez command in the MPW
Reference, and the appropriate chapters of Inside Macintosh.)

These are the types you may choose from for your editable data fields:

DBYT, DWRD, DLNG Decimal byte, decimal word, decimal long word.

HBYT, HWRD, HLNG Hex byte, hex word, hex long word.

A WRD, ALNG Word align, long align.

FBYT, FWRD, FLNG Byte fill, word fill, long fill (with 0).

HEXD Hex dump of remaining bytes in resource. (This can only be the last type
in a resource.)

PSTR Pascal string (length byte followed by the characters).

LSTR Long string (length long followed by the characters).

Chapter 5 Creating ResEdit Templates 81

WSTR

ESTR,OSTR

CSTR

ECSf,OCST

BooL

BBIT

TNAM

CHAR

REef

Hnnn

Cnnn

POnn

Same as LSTR, but a word rather than a long word.

Pascal string padded to even or odd length (needed for om resources).

C string (characters followed by a null).

Even-padded C string, or odd-padded C string (padded with nulls).

Boolean (two bytes).

Binary bit. (There must be 8 or an even rrruitiple of 8 of these; if fewer than 8
bits are define~ you must include placeholder bits.)

Type name (four characters, like OSfype and ResType).

A single character.

An 8-byte rectangle.

A 3-digit hex number; displays nnn bytes in hex format.

A C string that is nnn bytes long. The last byte is always a 0, so the string itself
occupies the nrst nnn-J bytes.

A Pascal string that is nn bytes long. The length byte is not included in nn, so
the string occupies the entire specifted length.

• Note: Scrolling can become extremely slow if a template contains many BBIT
or BooL items.

ResEdit does the appropriate type checking for you when you put the editing dialog window away.

The template mechanism is flexible enough to describe a repeating sequence of items within
a resource, as in 'STR", 'om', and 'MENU' resources. You can also have repeating sequences
within repeating sequences, as in 'BNDL' resources. To terminate a repeating sequence, put
the appropriate code in the template as follows.

LSfZ

LSfE

ZCNf

List Zero-List End. Terminated by a 0 byte (as in 'MENU' resources).

82 ResEdit 2.0 Reference

(
LSTC

ISfE

ocm
LSTC

ISfE

1STB

ISfE

Zero Counv'list Cou~list End. Terminated by a zero-based word count that starts
the sequence (as in 'Dm' resoun:es).

One Count/List Counl-list End. Terminated by a one-based word count that starts
the sequence (as in 'sm#' resoun:es).

Ends at the end of the resoun:e. (As in 'acur' and 'APPL' resources.)

The "list-begin" code begins the repeating sequence of items, and the LSTE code is the end.
labels for these codes are usually set to the string "*****". Both of these codes are required.
It is generally advisable to keep the beginning and ending labels identical to each other, and
to have them be no more than five characters long.

Your template does not have to be inside ResEditj it can be in any open file. (The preferred
location is the ResEdit Preferences file in your System Folder.) Note that if roore than one
currently open me contains a template for your resource type, the one in the most recently
opened me is used when you edit resources of your type. To create a template, follow
these steps:

1. Open the me that you want to put your template into.

2. Open the 'TMPL' type window. Use the Create New Resoun:e command to create the
'TMPL' type if it doesn't already exist in the file.

3. Choose Create New Resoun:e from the Resource menu.

4. Select the list separator (*****) by clicking it.

5. Choose Insert New Field(s) from the Resource menu. You may now begin entering the
label,type pairs that define the template. Before closing the template editing window, choose
Get Info from the Resource menu and set the name of the template to the four-character
name of your resource type.

6. Close the me window and save changes.

The next time you try to edit or create a resoun:e of the new type, you'll get the dialog box in
the format you have specified.

Chapter 5 Creating ResEdit Templates 83

(

(:

Chapter 6 ResEdit Tips

As with any other utility, ResEdit takes some getting used to. This chapter
presents a few handy tips and a few "hints and kinks" to help you become
more comfortable with the capabilities of the program.

85

Hints and kinks

• At the risk of being slightly repetitive, and because these things can be importan~ it is
once again suggested that you edit resources in a copy of your target fUe, rather than
the original.

• If you choose Get Info for ResEdit (from the Finder), you will fmd that Application
Memory Size is set to 500 KB. If you are editing large resources 500 KB is not sufficien~
and you should give ResEdit more memory.

• The following sequence of steps can be used to copy a 'PIer resource from most drawing
or painting programs into another fUe:

1. Open the file that contains the graphic that you want to turn into a 'PIer.

2. Select and copy the part of the graphic that you want.

3. Start ResEdit and open the file that you want to contain the 'PIer resource.

4. Open the 'PIer picker for that file.

5. Choose Paste.

If you paste with the file window open instead of the 'PIer picker window, you will get both
the 'PIer and the application's private resource type (for example, 'MDPL' if your 'PIer is
from MacDraw).

• To add a picture to a 'DLOG';
1. Get a picture. Add it to the 'PIer resources in your fUe. (See the previous tip.)

2. Choose the Get Resource Info corrunand from the Resource menu.

3. Use Copy to put the ID number of the new 'PIer in the scrap.

(Instead of steps 2, 3, and 7 here, you can always just read the ID number when you copy the
'PIer and type it into the 'Dm' item by hand. ResEdit 2.0 displays the ID number of each
'PIer' resource.)

4. Go to the 'Dffi' that belongs to the 'DLOG' you are adding the picture to.

5. Choose New Item.

6. Click the PIer button.

7. Paste the ID number from the scrap.

8. Close the Dialog Item Editor.

9. Choose Use RSRC Rect from the menu.

10. Position the picture.

86 ResEdit 2.0 Reference

(• If you are using the 'ICNI' editor or the 'ICON' editor, and you make a selection with the
marquee and then cut or copy it, you can paste it as a 'PIer resource. First make the type
picker of your target (this can, of course, be the 'PIer picker) be the active window. If
you then paste, Res&lit makes the contents of its scrap into a new 'PIer. The 'PIer
resource picker does not have to be open when you attempt to perform the
paste operation.

• There are keyboard equivalents for many operations you would ordinarily perform with
the muse. Try selecting a me in the me open dialog by typing the Brst letter or two, then
opening it with the Return keYi you can do the same with resource types, and then with
individual resources. (With individual resources, you can type the ID number or the
name.) The arrow keys also work-for example, in a me list, you can go down the list
with the down-arrow key.

• In general, it is a good idea to use the same ID for an 'ALRT' or 'DLOG' and its associated
'Dffi', though this practice is not required.

• Other shortcuts and handy items:

o In the resource picker: Option-double-click for Open Using Hex.

o In the resource picker: Option-Command-double-click for
Open Using Template.

o In the resource picker: Option-Command-Shift-double-click (or Shift-Open Using
Template) displays the template-type dialog box without the list of templates. (You
can enter the template type you want.) If you are operating from a floppy disk, this
can be a fast method:

o Option-Cut and Option-Copy append the cut or copied item to the scrap. At the
individual item editor level, holding down the Option key does not change the action
of Cut or Copy.

o In the 'Dffi' editor: Option-Commanci-double-click on a 'CNTI', 'ICON', or 'PIer to
open it as a dialog item.

o Command-click in a picker for disjoint selection.

o Shift-click in a picker to extend a selection. (In a pictorial display such as the one for
'ICON' resources, the selection will extend as a rectangle.)

DUSing Shift-Create New Resource to create a new resource type gives you the "new
type" dialog box without the list of resources. You must, of course, enter the resource
type you want rather than selecting it from the list. If you are operating from a floppy
disk, this can be a fast method.

o In the bit editors ('CURS' and 'ICNI', for example), Shift-drag creates a selection
rectangle (marquee). Using Shift-drag inside the marquee moves it. Releasing the
Shift key and clicking inside the editing area turns off the marquee, but also inverts a
bit in the picture. The marquee is also available in the 'FONT editor.

Chapter 6 ResEdit Tips 87

• If you hold down the Command, Option, and Shift keys while choosing About ResEdit
from the Apple rrenu, you can toggle a special stress-testing mode (-Pig mode-). In this
mode, ResEdit perfonm a compact-rremory opemtion and a purge-memory operation
each tirre it receives an event from the queue, excepting null events. This feature was
designed as an aid to debugging ResEdit itself, and is, clearly, something most people will
never have any use for. It is suggested that you avoid invoking this mode unless you are
writing an editor and need to stress-test it

• If the 'om' for a 'OLOG' that is being displayed contains a reference to a 'CN11' that
doesn't exist, the editor will hang (in NewDialoq) when it tries to dIaw the dialog box.
Please be careful!

• Because 'om' and 'AI.Rf' resources are ordinarily displayed where you put them in the
window, there is some chance that they may be mispositioned. That is, if you don't have
your code display these resources exactly where you want them, they could show up
where you don'twant them. To be sure that a dialog box shows up where you want it,
mark it as invisible and reposition it exactly in your code. Have your code mark it visible
right after displaying it. (This avoids various embarrassrrents,)

• If you hold down the Option and Command keys and choose About ResEdit from the
Apple menu, you get a list of credits that tells you who has worked on the program
Under MultiFinder, hold down the Option and Command keys, pull down any menu
other than the Apple menu, and then move over to the Apple menu. Choose About
ResEdit.

• . Although under ordinary conditions the menu ID number and the 'MENU' resource ID'
are kept identical to one another, there is one situation in which you may Want to make
them different. If you are using an ordinary debugger to disassemble and walk through
the main event loop of your program, it is convenient to have the menu manager return
numbers like 1, 2, 3, 4, and 5 for the menus in your progmm You would therefore set the
menu ID fields of your ID!nus to consecutive integers. Then you might create a 'MBAR'
resource with ID 128 and list the 'MENU' resource IDs of your menus in it You need only
call GetNe~MBar (128) in your program to install all of the menus. When you are
debugging, a call to MenuSelect (for example) returns a value of $00030004 if the 4th
item in the 3rd menu has been chosen. This is rather more convenient than seeing
$00820004 and having to ttanslate $82 to 130 decimal, and then remembering that 130
was your third ID!nu. If you use a high-level debugger this approach is unnecessary.

88 ResEdit 2.0 Reference

(

(

The 'JAYO' resource

One of the resources inside the Fmder is of particular interest, because it controls a number of
defaults, most of which are part of the layout of your desktop. It is the 'IA YO' resource. To
open the Finder with ResEdit, you IlUlSt be running under the Finder itSelf (rather than under
MultiFinder), or you must edit a copy of the Finder. It is, of course, suggested that you edit a
copy. If MultiFinder is running and you try to open the currently active Finder, you get an
error rressage telling you that the Finder is already open from another application.

If you are in a risk-taking mood (or if you have done this a few hundred times already and
have become inured to it), boot without MultiFinder, open the Finder, and choose the 'IA YO'
resource type. There is only one 'LA YO' resource, ID number 128. Open it.

The first part of the template is shown in Figure 6-1.

• Figure 6-1 'IA YO' template, view 1

LAYO 10 - 128 from FInder

Font 10 Ip I
Font Size 19 .1
Screen Hdr 120 I Hgt

Top line 1-21
break

Botlo. line 117
break

Printing hdr 1~2
hgt

Printing 132
t.

The first two items control the display font-that is, the font that prints out under the icons on
your desktop. The default is 9-point Geneva, as shown. If you dislike sans-serif fonts, you can
easily change the ftrSt two items to 2 and 9, for New York at 9 points, or to 20 and 10 (or even
12), forTunes at 10 or 12 points; the 9-point version of Times is very small.

The line of numbers labeled Window Rect in Figure 6-2 allows you to specify the default
folder (and disk) window size and location.

. Chapter 6 ResEdit Tips 89

• Figure6-2 'IA YO' template, view 2

LIIYO 10 - 128 from Finder --=--=::::--= - - ------==--=---=;--

footer hgt

Ulndo. Rect ~ IT!:] ~§:JC!!D
Line apacing 116 1 .
Tab atop 1 120 1 ·1

Tab atop 2 Ilii I
Tab atop 3 18i

Tab atop i 280

Tab atop 5 376

Tab atop 6 i2i

Tab atop 7 i56

If you like, you can specify these defaults by clicking the Set button and then drawing a
rectangle on the screen. Please note that if MultiFinder is running when you edit the 'IA YO'
resource in a copy of the Finder, and you try to start your rectangle in an area of the screen
that has something other than a ResEdit window in i~ you will find yourself surrunarily ejected
(rom ResEdit into whatever you have clicked. The cure is straightforward: Move a ResEdit
window to the area where you want to start drawing your rectangle before you click the Set
button, or use the number fields instead of the Set button. You can also explicitly set the
locations of the seven tab stops the Finder uses for displaying information about flIes when
you choose to view by Name, Date, Size, or Kind.

A bit further down the template are the numbers that control the placement of the icons
themselves, as shown in Figure 6-3.

90 ResEdit 2.0 Reference

(
• Figure 6-3 'lA YO' template, view 3

UIYO 10· 128 from finder

Reserued 1$00

Icon Horz. 160
spacing

Icon Uert. 160
spacing

Icon Uert. 115
phase

S •• Icon 1104
Harz.

s •. Icon 118
Uert.

Sorre people dislike having icons with long names overlapping and obscuring the narres of
other icons. One solution to this problem is to reset the Icon Vertical phase. Figure 6-3 shows
some rmdified numbers, rather than the defaults supplied with the system release.

A WarnIng Do not set the Icon Vertical phase to exactly half the Icon Vertical
spacing unless you like system crashes. ...

Figure 6-4 shows some unused bits and three commands, the first of which ("Use zoom
Rects") is on by default. If you set it to False, the Finder will open and close windows slightly
faster, because it won't use its 'zoom' visual effect.

Chapter 6 ResEclit Tips 91

• FIgure 6-4 'LA YO' template, view 4

LRYO 10 - .28 from finder
date ~
Use zoo. 00 .' !I
Recta I I!

Skip trash <to O. oil
Li
i;

.arnlngs ::

AI.ays grid 00 CiI
:1 drags

Unused 1 80 01
Unused 3 CiO 01 0:1

il!
Unused 2 CiO 01

: ,'il Unused 1 Cio 01
" ""'ft ""

Skip trash warnings prevents the system from asking whether you really want to throwaway
that application or System file. Since you can avoid the warnings by simply holding down the
Option key when you throw things into the trashcan, this seems a bit extreme. Moreover, it
can be quite dangerous, depending on what you tend to throw out and how attentive you are
about it.

If you don't like having to clean up your windows, try turning on Always grid dmgs. This
option makes the icons stick in place at the grid spacing specified in the part of the template
shown in Figure 6-3. Sorre people prefer to be able to put them anywhere and therefore
eschew this option.

The Watch Thresh setting (not visible in any of the figures) allows you to adjust how long the
Finder will wait during lengthy opemtions such as me copying before it displays a wristwatch
cursor with animated hands. The time is expressed in 60ths of a second. If you make it too
short, the cursor will jitter and change shape too often. Sorre older Finders do not make use
of this option.

Figure 6-5 shows a few more unused bits and the end of the template.

92 ResEdit 2.0 Reference

(

• Figure6-5

Unused 5

Unused 1

Use Phys
Icon

Tit Ie Click

Copy Inherit

H .. Fold
Inherit

Color Style

Mox • of
.Indo.s

'LA YO' template, view 5

LRYO 10 • 128 from Finder ~~-­---~~-
~

@O 01

@)O 01

00 @1

00 @1

@O 01

@)O 01

10

10

Use Phys Icon is handy if you have a Macintosh II or Macintosh SE with two floppy disk
drives. If this option is on, the icon you get when you insert a floppy disk into your machine
indicates which drive the floppy disk is in. The disk location is certainly easy enough to recall
just after you put the disk in, but you rmy forget it later. Knowing which drive a floppy disk is
in may not be a major issue, but is certainly a pleasant convenience. This option a~ includes
distinctive icons for an external hard disk and a CD-ROM drive.

Title Click lets you double-click the title bar of a folder's window to bring the parent folder'S
window to the front (or to open it if it is not already open). This feature can be quite handy.

When you create folders on an AppleShare~ server, New Folder Inherit causes them to get
their privileges from the parent folder, and when you duplicate existing folders on an
AppleTalk server, Copy Inherit causes the copies to inherit their privileges from the originals.

The Max # of windows field allows you to set the maximum number of windows the Finder
can have open at anyone time. Increasing this number causes the Finder to need more
memory. Under MultiFinder, you rmy have to increase the memory allocation for the Finder if
you make this number much larger than the default.

SoIre of the items in the 'LA YO' template have not been discussed here. Of these, some are
not yet in use. Others are either arcane. or self-evident. .

Chapter 6 ResEdit Tips 93

'KO:IR' questions and answers

• How do I change the character generated by Shift-e?

Shift-e normally generates a capitatE character. To make this key combination generate a
different character, simply hold down the Shift key and use the mouse to drag a character
from the character chart to the e key on the keyboard.

You will notice that when you press the Shift key, the table that is highlighted in the table list
changes. (For IIDSt key layouts, the highlight switches from Table 0 to Table 1.) This change
shows you that any character changes you make will be made in the highlighted table. When
you make Shift-e generate a different character, you are changing every rrodifier key
combination that uses the highlighted table. For example, if Option-Shift used the same table
as Shif~ you would also have changed the character generated by Option-Shift-e.

• How do I change the behavior of a modifier key combination?

For example, suppose you wanted Option-Shift-a to generate a different character from that
generated by Option-Command-Shift-a. If you hold down the Option and Shift keys and then
. press and release the Command key, you will notice that (for most key layouts) the
highlighted table does not change. If you want these two modifier key combinations to be
differen~ you need to create a new table for one of them. To do this, you can use either the
New Table command or the Duplicate Table command f(om the KCHR menu. If you want to
create only a few differences, you should use the Duplicate Table command:In our example,
we only want Option-Command-Shift-a to be differen~ so we would do the following:

1. Press and hold down the Option, Command, and Shift keys.

2. Choose Duplicate Table from the KCRR menu.

3. Select the new table that was added to the end of the list (while still holding down
the modifier keys).

4. Choose OK in the alert box that appears.

5. Drag the character from the character chart to the key that you want to change
(while still holding down all of the modifier keys).

• How do I remove a table that is no longer being used?

If you have reassigned a modifier key combination so that a table is no longer used, you can
relOOve the. table by choosing "RelOOve unused tables" from the KCHR menu. If there are
unused or duplicate tables present when you close the editor, you will be asked whether they
should be removed.

• How do I create a dead key?

94 ResEdit 2.0 Reference

(You can create a dead key (such as Option~ in IIDst key layouts) by choosing "Convert to
dead key" from the KCHR menu while holding down the key. For example, follow these steps
to make Option-k into a dead key:

1. Press and hold down the Option and k keys.

2. Choose ·Convert to dead key" from the KCRR menu.

3. Release the keys.

4. Once again, press Option and k to activate the dead-key editor.

• How do I remove a dead key?

Follow these steps:

1. Select the dead key to display the dead-key editor.

2. Choose "Remove dead key" from the KCRR menu.

• How do I create a new completion/substitution pair in the dead-key editor?

When the dead-key editor is active, you can drag characters from the character chart to the
completion/substitution pair list. The character on the left in the list is the completion
character, and the character on the right is the substitution character. For example, Option-E
produces the E character.

n How do I delete a completion/substitution pair in the dead-key editor?

To delete a completion/substitution pair, drag either character from that pair in the
completion/substitution pair list to the trashcan in the lower-right comer of the window.

Chapter 6 Res Edit Tips 95

(

(

DocTftle DraftNum

Chapter 7 The Programmatic Interface

You may want to create and edit your own types of resources. You can
write pickers and editors as extensions to ResEdit in Pascal or C, and put
them in the ResEdit Preferences me in your System Folder. This chapter
describes this process and discusses necessary and optional functions
and procedures.

6/27/90

97

Pickers and editors

Pickers and editors are separate from ResEdit's main code and hence may be supplied by
user-written software.

The picker is the part that displays all the resources of your type in the resourte type window.
It is given the resoulte type and should display all resources of that type in the current
resource me, using a suitable display fonnat If the picker is given an open call and there is a
suitable editor, it should launch that editor. You need not supply your own picker; if a custom
picker is not available, the standard picker is used to show a list of your resourtes with their
narres and IDs.

The emtoris the code that displays and lets you edit a particular resource. The editor is given
a handle to the resource object and should open an edit window for you.

Note that pickers and editors can be opened from anywhere in ResEdit or in your code. For
instance, a dialog editor may open an icon picker so that you can choose an appropriate icon.

Code-containing resources in the ResEdit release

ResEdit includes three different types of resourtes that contain code. Much of the code is in
the normal'COOE' resources. The editors and pickers are found in the 'RSSC' resourtes, and
the IDEF (or list defInition) procedures are found in the 'IDEF resources. The resoulte
names of the pickers and editors are very important. The resourte name of the 'RSSC'
resource for a picker should be the resource type that the picker will pick. The resource name
for an editor should be the resoUlte type that the editor will edi~ with a commertial "at" sign
(@) in front of it. Subeditors (described in the section "L1unching routines" later in this
chapter) should have a dollar sign ($) in front of the resource type name. For example, the
'om' picker can be found in an 'RSSC' resoUIte with the name om. The 'om' editor can be
found in an 'RSSC' resource with the name @om, and the 'om' subeditor in an 'RSSC'
resource with the name $Om.

98 ResEdit 2.0 Reference

(

Samples

A sample resource editor, picker, and LDEF are included with ResEdit. The samples are
provided in both C and Pascal and use the MPW 3.1 environment, the MPW C or Pascal
Compiler, and the MPW Assembler. The appropriate build ftles and makefiles are
also provided.

Sample editor

A sample ResEdit editor is provided in the file XXXXEdit. In this sample, XXXX represents
your resource type. The sample editor will simply display a window and invert its contents.
Since the details of editing your resource are known only to you, it is up to you to ftll in the
code necessary to make this sample into a real editor.

The sample editor is initialized by means of the Edi tBirth procedure when a resource of
type XXXX must be edited. Edi tBirth is passed two handles: a handle to the resource to
be edited (the same handle that would be received by using a GetResource call) and a
handle back to the picker that launched the editor.

The editor then creates a window and sets up any data structures needed to operate. Because
it may be loaded in and out of memory during any given session and because it doesn't have
access to global variables, it creates a handle to a data structure to hold all data that needs to
be preserved between calls. It stores the handle in the edit data structure rXXXXRec. Note
that the handle to the edit data structure is stored in the window's ref Con parameter.
ResEdit uses this data structure to identify which editor or picker is to receive a given event.

ResEdit determines which editor should receive which events, so you need to worry only
about events that affect your editor. During an update even~ the Beg inUpda te and
EndUpdate calls are done by ResEdi~ not by the extension program.

Sample picker

A sample ResEdit picker is provided in the file ICON.Pick. The sample picker is the actual
'ICON' picker from ResEdit. The 'ICON' LDEF (in the me ICON.LDEF) is included with this
example so that you can see the interaction between a picker and its LDEF.

Chapter 7 The Programmatic Interrace 99

SampleIDEF

A sample ResEdit IDEF is provided in the file ICON.IDEF. An IDEF is a list definition
procedure used to customize the way the List Manager draws and highlights cells. For more
information, see Inside Macintosh, Volume IV, Chapter 30, and Technical Introduction to the
Macintosh Family, Chapter 3. In ResEdit, IDEFs are used to customize the look of the picker
windows. IDEFs are generally very simple procedures that draw or highlight a single cell of a
list. The sample IDEF is the 'ICON' IDEF from ResEdit This IDEF is used to display a
fIle's Icons.

Building the examples

You can build the examples by using the build scripts provided in the folder appropriate to
the language that you are using. The build scripts assume that ResEdit and the Examples
folder will be found in the directory {bootlResEdit:. If these fIles are located elsewhere, the
build script fIles should be modified accordingly.

If ResEdit is successfully located, the MakeFile instructions will install the editor, picker, and
IDEFs directly into ResEdit. When you experiment with changing any of these fIles, you may
want to build into a copy of ResEdit. If anything goes wrong, you can then get a fresh copy of
ResEdit to continue your experiments.

Using ResEd

The program you write must be a Pascal unit or C header fIle and library. Its interface with
ResEdit is established by the MPW unit ResEd, contained in the fIle ResEd.p or ResEd.h. If
your unit is written in PASCAL, it must begin with a USES declaration for this unit.

The assembly-language code that "opens up" ResEdit and activates your program is contained
in the file RSSC.a. It must be linked with your Pascal or C module. When you open a resource
of your type, ResEdit will call this code.

100 ResEdit 2.0 Reference

If your build script does not automatically install your editor or picker, place it in ResEdit's file
by using ResEdit itself, with the type 'RSSC' and a unique ID number. Please use an ID
number greater than lO,(XX) to avoid future conflicts. Your editor'S name in the ResEdit file
must be of the fonn @ABCD, where ABCD is the nam! you have assigned to the new type it
edits. Install your picker (also of type 'RSSC') with the name' ABeD (without the cOJllIrercial
"at" sign).

Writing a ResEdit extension

Here are two things to remember when writing a ResEdit extension:

• Always know which resource you are requesting and where it will come from. Many
resource files may be open at any given time. Whenever a resource is needed, make sure
which resource me you are accessing by USing UseResFile or similar operations.

• Your editor may be called with an empty handle in order to create an entirely new
instance of the type you edit.

In all of these procedures, remember to lock any handle that is going to be dereferenced (for
example, in a Pascal with statement). For example, in Pascal, the nrst instructions in the
DoEvent procedure should be

BubbleUp(Handle(object»;
HLock(Handle(object»;

It is important to call the BubbleUp procedure to avoid heap fragmentation. Remember to
unlock the object at the end of the procedure!

If any of these procedures will need access to the current port, especially Edi tBirth,

DoEvent, and DoMenu, call
SetPort (objectAA.wind)

if you are writing in Pascal, or
SetPort «*object)->wind)

if you are writing in C.

Chapter 7 The Programmatic Interface 101

ResEdit 2.0 changes

Here's what you have to do to upgtade an editor to ResEdit 2.0:

• Change the name field of your parent record from STR64 to STR255.

• Add AbleMenu for the Resource menu on activate:
AbleMenu (rsrcMenu, rsrcEditor);

• Change AbleMenu for the File menu to
AbleMenu (fileMenu, fileAll);

• Add PrintItem to the DoMenu procedure:
print Item:

PrintWindow (NIL);

• In DoMenu, change Revert Item to rsrcRevertItem and GetInfoItem to
rsrcGetInfoItem. Move them from the File menu to the Resource menu.

• Add the IsThisYours function and be sure to make it public. See the example code
for details.

• EditorWindSetup now requires a windowKind parameter and a dlogID
parameter; windowKind should be the resource ID of the editor or picker (returned by
ResEdID), and dlogID should be NoDialog or the resource ID of a dialog to be used for
the window.

• WindOrigin now takes a ParentHandle parameter and requires that the
windowKind field of the argument window be set to the resource ID of the editor.

ResEd changes for the 2.0 release

• P ickRec was changed to remove some unused fields and add other fields for the
View menu.

• ParentRec was changed to include an SfR255 instead ofSTR64.

• Menu and string constants were changed.

Several procedures have Interface changesj these are the new interfaces:
FUNCTION EditorWindSetup (dlogID: INTEGER; color: BOOLEAN; width,

height: INTEGER; VAR windowTitle, windowNarne: STR255; addFrom: BOOLEAN;
windowKind: INTEGER; father: ParentHandle): WindowPtr;

PROCEDURE WindOrigin (w: WindowPtr; dad: ParentHandle);

102 ResEdit 2.0 Reference

(PROCEDURE PickMenu (tossOnClose: BOOLEAN; ~enu, item: INTEGER;
pick: PickHandle);

Chapter 7 The Progranunatic Interface 103

The following routines are no longer available:
CWindSetup
WindSetup
RevertResource
PickStdRows
CallEBirth
CallEvent
CallMenu
CallPBirth
CopyRes
DoKeyScan
DoListEvt

Required routines

Each picker and editor m~t contain a set of required procedures. Some of these procedures
are appropriate only for editors, and others are appropriate only for pickers, but all of them
m~t appear in all editors and pickers.

EdltBfrth
PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle);

This procedure should initialize the editor data structure and create an editor window for the
given resource type. In a picker, this procedure will do nothing and should ~
defined as

PROCEDURE EditBirth (theResource: Handle; dad: ParentHandle);
BEGIN
END;

PickBfrth

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);

This procedure should initialize the picker data structure and create a picker window for the
given type. P ickBirth is very similar to Edi tBirth except that it takes a resouoce type as
a parameter instead of a resouoce handle. The DoP ickBirth procedure can ~ually be ~ed
to take care of most initialization for a picker. In an editor, this procedure will do nothing and
should be defmed as

PROCEDURE PickBirth (theType: ResType; dad: ParentHandle);
BEGIN
END;

104 ResEdit 2.0 Reference

DoEvent

PROCEDURE DoEvent(VAR evt: EventRecord; object: ParentHandle);

DoEvent handles all events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a P ickHandle) instead of the generic
ParentHandle.

Editors will normally handle all of the events (except those described in the next parngraph)
thermelves, whereas pickers should simply call P ickEvent.

Many events are handled by the main part of the ResEdit code before the DoEvent
procedure is called. For mouse-<lown events, Res Edit handles the following events: pulling
down menus, drngging windows, switching between windows, and converting doubleclicks
to open commands. Update events call BeginUpdate and EndUpdate around the call to
DoEvent. For key-<lown events, the DoMenu procedure is called if the Command key was
down (unless the key was Return, Enter, or an arrow); DoEvent is called otherwise.
MultiFinder suspend and resume events are converted into the appropriate activate or
deactivate events.

DoInfoUpdate

PROCEDURE DoInfoUpdate(oldID, newID: INTEGER; object: ParentHandle)i

This procedure is called when information about a resource-for example, its ID number-is
changed in a Get Info window. (See the ShowInfo procedure, discussed later in this chapter
in the section "Miscellaneous utilities.") For editors, the DolnfoUpdate procedure should
recalculate the window title and the narre stored in the ParentHandle and pass the update
on to its father by USing the Call InfoUpdate procedure as follows:

CallInfoUpdate(oldID, newID, objectAA.fatherAA.windA.refCon,
objectAA.fatherAA.windA.windowKind);

Pickers should Simply call
PickInfoUp (oldID, newID, object);

DoMenu

PROCEDURE DoMenu(menu, item: INTEGER; object: ParentHandle);

DoMenu handles all menu events for the picker or editor. The object parameter can be locally
defined as whatever type is appropriate (such as a P ickHandle) instead of the generic
ParentHandle.

Chapter 7 The Programmatic Interface 105

The main part of the ResEdit code takes care of several of the menu-handling details. All
selections from the Apple menu are handled so that the editors and pickers do not need to
know anything about desk accessories. All commands in the File rrenu are also handled for
you. The Quit command displays the Save Changes dialog box and may pass a Close
command to all editors and pickers. If your editor needs to do some cleaning up before the
Quit command completes, it should do so when it receives a Close or deactivate command If
"no" is chosen in the Save File dialog box, the frontmost window receives a deactivate event
No events are passed to any other window. When your editor receives a Close command, it
can call CloseNoSave to see whether edit checking should be perfonned. If the current ft1e
is being closed but the changes are not being saved, CloseNoSave will return TRUE, and
edit checking should not be perfonned.

Pickers can Simply call
PickMenu (tossOnClose, menu, item, object);

If your picker has loaded all of the resources, it should call P ickMenu with tos sOnClose

set to TRUE so the resources are released when a Close command is received.

Using custom IDEFs

You will typically want to write your own picker simply to display the resource list in a more
meaningful way (such as drawing the icons themselves in the 'ICON' picker, instead of listing
their names). You can easily accomplish this task by providing a simple picker and a custom
IDEF that is used for drawing the picker list When you call DoP ickBirth in your
PickBirth procedure, pass the resource ID of your picker as the PickerResID parameter.
You can get the resource ID by calling ResEdID. The resource 10 is passed on to the LNew

procedure. You should then provide a custom IDEF with the same resource 10. The IDEF will
be called whenever the list needs to be updated. Please refer to the chapter on the List
Manager in Inside Macintosh, Volume IV, for details of the workings of the
drawProc mechanism.

In JlX)st cases, the DrawLDEF procedure takes care of most of the tasks required of an LDEF.
All you have to do is provide a procedure to draw your resource type.

106 ResEdit 2.0 Reference

The ResEd interface

The ResEd unit contains data structures, procedures, and functions that you can access from
your extension program They are described in the remainder of this chapter.

Data structures

The ResEd unit declares the data structures described in this section, which provide
communication between extension programs and ResEdit. Each editor or picker has its own
object handle. The data structure has to start with a handle to its parent's object, followed by
the name distinguishing the father. This name will be part of the son's window title. The next
field should be the window of the object that may be used by the son to get back to the father
through the ref Con in the windowRec record. The next field is the rebuild flag, which is
used to indicate that a window's data (for example, a pickers list) must be recalculated at the
next opportunity. For editors, the rest of the handle can have any format; pickers have
additional data, as described in this chapter. Editors and pickers typically declare additional
fields following the rebuild field, and can store in these additional fields global data that they
need to access from the DoEvent, DolnfoUpdate, and DoMenu procedures.

The name (in the ParentRecord) for a picker should be the name of the me, folder, or
disk. for editors, the name should be the complete name (not the window's title), preceded
by an editorNameChr character. An example of a complete name would be -ALRT ID --
1234 from AFile". This name is used to uniquely identify a window. The windows title is
created by GetWindowTitle or EditorWindSetup, described later in this chapter.

• Note: It is important for editors and pickers to follow these conventions for name and
window title. For pickers, it is more important that the windows title be unique, and for
editors, that the name be unique. The AlreadyOpen procedure uses the windows
name and title to determine whether the window is open. Please refer to the description
of AlreadyOpen later in this chapter in the section "Window management routines" for
complete information about how the name and title are used.

Chapter 7 The Programmatic Interface 107

The parent record
ParentPtr - AParentRec;
ParentHandle - AParentPtr;
ParentRec - RECORD

father: ParentHandle;
name: Str255;

{ Back ptr to dad }

wind: WindowPeek;
rebuild: BOOLEAN;

END;

The picker record

Flag set by son to indicate that }
world has changed so father should
rebuild list }

The record for pickers is slightly different from the standard parent record. The first four fields
are the same as those in the parent record. The rest of the fields are specific to pickers.

PickPtr = APickRec;
PickHandle - APickPtr;
ViewTypes = (viewById, viewByName, viewBySize,

viewByOrder, viewBySpecial);
PickRec - RECORD

father:
fName:
wind:
rebuild:

pickID:
rType:
rNum:
rSize:
nInsts:
instances:
drawProc:
scroll:
viewBy:
IdefType":
theViewMenu:
showAttributes:
viewMenuMask:
cellSize:

END;

108 ResEdit 2.0 Reference

ParentHandle;
STR255;
WindowPtr;
BOOLEAN;

INTEGER;
ResType;
INTEGER;
LONGINT;
INTEGER;
ListHandle;
Ptr; "
ControlHandle;
ViewTypes;
Res Type;
MenuHandle;
BOOLEAN;
LONGINT;
Cell;

Back ptr to dad }

Directory window }
Flag set by son to
indicate that father
should rebuild list
ID of this picker
Type for picker }
Resfile number }
Size of a'null resource
Number of instances
List of instances
List draw proc }
Scroll bar }
Current view type
Which LDEF to use
The picker view menu
Show attrs in window? }
Which i~ems are enabled?
Cell size for special view.

(

(

Other routines

The required routines are called by ResEdit itself. Here are others you can use. These are
called by the editor or picker.

Launching routines

PROCEDURE GiveEBirth (resHandle: Handle; pick: PickHandle);

Gi veEBirth starts an editor. This routine is used when a picker wants to start an editor or
when an editor wants to start another editor (as when the 'DLOG' editor starts the 'Dm'
editor). If Open Using Template was chosen or an editor is not found, the 'GNRL' (template)
editor is started. If Open Using Hex Editor is chosen or neither an editor nor a template is
found, the hexadecimal editor is started. A call to the appropriate editor's EditBirth
procedure is then generated, as follows:

EditBirth (resHandle, pick)

In this call, ResHandle is the handle of the resource that is to be edited, and pick is the
caller's ParentHandle.

• Note: When an editor is starting another editor, it is important to remember that
pick"" . rType and pick"" • rNurn must be set before this routine is called. The
editor's ParentRecord will need to be equivalent to a P ickRec, at least down to the
rNurn field. The Gi veEBirth procedure looks into the P ickHandle parameter for
infonnation (for example, the resource type) that it needs to start up an editor.

PROCEDURE GiveThisEBirth (resHandle: Handle; pick: PickHandle;
openThisType:ResType);

Gi veThisEBirth is similar to Gi veEBirth, except that it lets the caller specify the type
of editor to open. The specified editor is opened even if Open Using Template or Open Using
Hex Editor is chosen. If an editor of the specified type is not found, a template of the specified
type is opened. If a template is not found, the hexadecimal editor is opened.

Chapter 7 The Programmatic Interface 109

PROCEDURE GiveSubEBirth (resHandle: Handle; pick: pickHandle);

Gi veSubEBirth starts an editor that edits a part of another type of resource. For example,
the 'Dm' editor uses Gi veSubEBirth to start the Dialog Item Editor. Gi veSubEBirth
behaves exactly like Gi veEBirth except that the name of the resource that it looks for
begins with a dolJar sign C$) instead of a commercial-at" sign CO). For example, the name of
the 'Dm' editor resource is @Dmand the name of the 'Dm' subeditor resource is $Dm.
This distinction allows an editor to use the standard method for editing multiple occurrences
of a subtype within the resource. For example, a dialog item list C'Dm') typically contains
several dialog items. Calling Gi veSubEBirth lets the user open multiple dialog items and
treat them in the same way as any other windows.

Information-passing routines

PROCEDURE CallInfoUpdate (oldID, newID: INTEGER;
refcon: LONGINT; id: INTEGER);

CallInfoUpdate passes an information update command to the specified window. After
updating its own window and data structures, each editor's Do InfoUpdate procedure
should call this routine to pass the information update along to its parent window. This call is
necessary since the parent may be displaying data (such as the ID or name in a picker
window) that has been changed. An editor could pass this information along by making the
following call:

CallInfoUpdate (oldid, newid, father~~.windA.refcon,

fatherA~.windA.windowkind);

PROCEDURE PassMenu (menu, item: INTEGER; father:
ParentHandle) ;

PassMenu passes menu commands on to any son pickers or editors that you have started.
For example, when your editor receives a Close command, it should pass that command
along to any subeditors or information windows that it has opened by making the following
call:

PassMenu (fileMenu, closeItem, myObj)

Window management routines

FUNCTION AlreadyOpen (VAR windowTitle, windowName: STR255;
dad: ParentHandle): BOOLEAN;

AlreadyOpen looks to see if the window is already open. If the window is open,
AlreadyOpen activates it and returns TRUE. WindowTitle and windowName are as
defined in the note immediately below. You don't need to call this function if you are using
the PickerWindSetup or EditorWindSetup procedure.

110 ResEdit 2.0 Reference

(
• Note: You should call AlreadyOpen, to avoid opening the same resource twice.

AlreadyOpen depends on your setting windowTitle and windowName correctly.
For pickers, the window's title must uniquely identify the window. For editors, the name
stored in the parentRec data structure must uniquely identify the window. The name is
used for editors so that the window title can be simple and short. For example, the
window title fora dialog item might be Edit DITL item 13, whereas its name would
beEdit DITL item 13 • DITL "<resource name>" id = <num> from
<f ile name>.

PROCEDURE GrowMyWindow (minWidth, minHeight: INTEGER;
windPtr: WindowPtr; Ih: ListHandle);

This procedure is used by pickers to grow their windows. The minWidth and minHeight
parameters determine the minimum size of the windowj windPtr is the window to be
grownj Ih is the list that is in the window.

The GrowMyWindow procedure takes care of everything that is necessary to grow a picker's
window. If necessary, the list is resized and redrawn. Two-dimensional lists (such as those
used by the icon picker) are updated to fit as many cells as possible in the window without
requiring horizontal scrolling.

PROCEDURE GetWindowTitle (VAR windowTitle, windowName: STR255;
addFrom: BOOLEAN; dad: ParentHandle);

GetWindowTitle constructs the window title and name for an editor, This routine should
always be called in the DoInfoUpdate procedure, and should be called in the EditBirth
procedure if EditorWindSetup is not called. WindowTitle should be used for the
window's title. AddFrom determines whether or not the name of the file is added to the title.
WindowName should be saved in the name field of the editor's data structure. This name is
used later to identify the window uniquely. On inpu~ windowTitle should contain only
the title or the resource (for example, 'ALRT'), and windowName should contain the resource
type (for example, 'ALRT'). If EditorWindSetup is not used, the following code fragment
can be used to assure that the name and title are correct:

GetResInfo(myResource, theID, theType, windowTitle);
TypeToString (theType, windowTitle);
SetETitle(myResource, windowTitle);
windowName := windowTitle;
GetWindowtitle (windowTitle, windowName, TRUE, parent);

Chapter 7 The Programmatic Interface 111

PROCEDURE SetETitle (resHandle: Handle; VAR title: STR255);
Extended Resource Manager

SetETitle concatenates the resource's in with its name and places the result into title.
The res Handle paraIreter is the handle to the resource. You can use this routine when you
are constructing a window's naIre or title.

FUNCTION WindAlloc: WindowPtr;

WindAlloc returns a pointer to a window record to be used by your editor or picker. Using
this routine instead of allocating your own window pointer can help reduce heap
fragrrentation. Because windows are pointers and must be nonrelocatable objects in the
heap, ResEdit uses this procedure to try to allocate Windowptr pointers as low in the heap
as possible. When this procedure is called, it usually returns a WindowPtr that it has
previously allocated low in the heap.

PROCEDURE WindReturn (w: WindowPtr);

WindReturn returns a window pointer that was allocated by WindAlloc. Use this
procedure when you terminate your editor or picker and you are fInished with its window.
WindReturn makes the memory used by the window available to another picker or editor
for use as a new window. This helps keep the nonrelocatable window pointers as low in the
heap as possible.

FUNCTION WindList (w: WindowPtr; nAcross: INTEGER;
cSize: Point; drawProc:INTEGER): ListHandle;

WindList creates a new empty list and returns a handle to that list This procedure should
be used by pickers to allocate their lists. WindList calls the LNew procedure to allocate a
list. w is the window in which the list will be created. nAcross specifies the number of cells
across that the list should contain. The list is allocated with 0 rows. cSize is the cSize
parameter to LNew. drawProc is the Proc parameter to LNew. For more information on
lists and a description of the LNew pararreters, see the chapter on the list Manager in Inside
Macintosh, Volume IV. Please refer to the section "Using custom IDEFs, II earlier in this
chapter, for information on specifying custom draw procedures.

PROCEDURE WindOrigin (w: WindowPtr; dad:ParentHandle);

WindOrigin moves the window pointed to by w to the fltSt available position in the set of
offset positions; this is usually a position immediately below and to the right pf the front
window. If w is a color window, the window is positioned on the deepest available display
device. This routine guarantees tha~ if possible, the entire window will be visible.
WindOrigin requires the windowkind field of w be set to a ResEdit value (for example by a
call to ResEdId), and that the window size be set. If you are using the P ickerWindSet up
or EditorWindSetup procedure, you don't need to call this procedure.

112 ResEdit 2.0 Reference

\.", ,/

(' ,

, "

FUNCTION PickerWindSetup(color: BOOLEAN; width,
height: INTEGER; VAR windowTitle: STR255;
windowKind: INTEGER; dad: ParentHandle): WindowPtr;

PickerWindSetup should be called by pickers from the PickBirth proce9ure. It is similar to the
EditorWindSetup procedure.

FUNCTION EditorWindSetup (dlogID: INTEGER; color: Boolean;
width, height: INTEGER; VAR windowTitle,
windowName: STR255; addFrom: BOOLEAN;
windowKind: INTEGER; dad: ParentHandle): WindowPtr;

EditorWindSetup should be called by editors from the EditBirth procedure to set up
their windows. If the color parameter is TRUE, a color window is returned. Color windows
are positioned on the deepest available display. WindowTitle, windowName, and
addFrom are passed directly to GetWindowTitle. Refer to the description of
GetWindowTitle for details about these parameters. WindowName is returned with the
string that should be used for the name in the ParentRecord. This routine also takes care
of constructing the windowTitle and windowName correctly so that the window can be
uniquely identified. If dlogID is not set to noDialog, the width and height parameters should
be set to 0 if you want to use the size stored in the DLOG resource. Use the dlogID
parameter if you want your window to be a dialog; for nonnal windows, pass the constant
noDialog. The windowkind parameter is used to initialize the window. Pass the result of
a ResEdId call here.

• Note: NIL is returned if the window can't be allocated for some reason or the window is
already allocated (that is, an editor is already open). If NIT. is returned, the EditBirth
routine should be aborted.

Resource utilities

FUNCTION AddNewRes (hNew: Handle; t: ResType; idNew: INTEGER;
s: str255): BOOLEAN;

AddNewRes has the same parameters and performs the same actions as the Macintosh
procedure AddResource. The only difference is that if an error is detected, an alert is
displayed and FAlSE is returned; TRUE is returned otherwise.

FUNCTION BeautifulUniquelID (t: ResType): INTEGER;

This routine should be used instead of the toolbox procedure Unique1ID. It will return the
fIrst unused resource ID starting with ID 128.

Chapter 7 The Programmatic Interface 113

FUNCTION CurrentRes: INTEGER;

CurrentRes returns the ID number of the current resource file. This routine is the same as
the CurResFile trap except that if CurResFile returns SysMap, this routine returns 0
(for the System file).

A typical use of this routine is to save the current resource file so that it can be restored later.
For example:

savedResFile :~ CurrentRes;
UseResFile(someOtherRes);

UseResFile(savedResFile);

FUNCTION GetlIndex (t: ResType; index: INTEGER): Handle;

Get 1 Index is similar to the Get lIndResource trap. The only difference is that if the
resource is not found, this routine will set ResError to the resourceNotFound error and
return NIL.

FUNCTION GetlRes (t: ResType; id: INTEGER): Handle;

Get lRes is similar to the Get lResource trap. The only difference is that if the resource is
not found, this routine will set ResError to the resNotFound error and return NIL.

PROCEDURE GetlMapEntry (VAR theEntry: ResMapEntry;
t: ResType; id: INTEGER);

Get IMapEnt ry accesses the current resource map for a resource of type t and ID number
id, placing the result in theEntry. For a description of resource maps, see KFormat of a
Resource File" in Inside Macintosh, Volume I, Chapter 5.

PROCEDURE GetlIMapEntry (VAR theEntry: ResMapEnt~y;
t: ResType; index: INTEGER);

GetlIMapEntry is similar to Get IMapEntry, except that it refers to its resource by index
instead of by ID number.

FUNCTION NeedToRevert (my Window: WindowPtr; theRes: Ha~dle):
Boolean;

The NeedToRevert function should be called by all editors before they revert their
resource. If the editor's window is the frontmost window and the resource has been changed,
an alert is displayed asking the user to verify that he or she really wants to revert the resource.
If the user does want to revert the resource, the function returns a value of TRUE. Otherwise it
returns a value of FALSE. The my window parameter is a pointer to the editor's window. The
theRes pararreter is the handle of the resource that is to be reverted.

114 ResEdit 2.0 Reference

(
FUNCTION NewRes (s: LONGINT; t: ResType; 1: ListHandle;

VAR n: INTEGER): Handle;

Given a size, s, NewRes allocates a new handle, clears it, adds it to the current resource me
as a resource of type t with a unique ID, adds it to the list 1 (unless 1 is NIL), and returns a
handle to the new resource. The paratreter n is the item number in the list 1. If this function
fails, it returns a NIL handle.

FUNCTION ResEditGetlResource (theType: ResType; ID: INTEGER;
VAR wasLoaded: BOOLEAN; VAR error: INTEGER): Handle;

ResEditGetlResource should be used in place of the toolbox routine GetlResource.
It's equivalent to GetlResource except for the fact that it returns a wasLoaded variable to
indicate whether the resource is already in use. If wasLoaded is returned TRUE, the caller
should NEVER free the resource with the ReleaseResource procedure.

PROCEDURE ResourceIDHasChanged (theObj: Pare~tHandle;
theType: ResType; theOldId, theNewId: INTEGER);

Call this procedure if you have changed the 10 of a resource. If you change a resource 10 and
don't call this routine, revert won't work properly.

FUNCTION RevertThisResource (theObj: ParentHandle;
res: Handle): BOOLEAN;

Revert ThisResource restores a resource being edited to the state it was in before editing
started. The paratreter res is a handle to the resource. The parameter theObj is the
ParentHandle from the current window. It is needed to determine whether the resource
was newly added. The Revert ThisResource function returns a value of FALSE if the
resource was newly added by ResEdit (and, therefore, no longer exists after the reversion),
and TRUE otherwise. If the resource has not been changed (its resChanged flag is not set),
nothing is done.

PROCEDURE RemoveResource (theRes: Handle);

This procedure should always be used in place of the toolbox call RmveResource. It
correctly handles resources that have the protected attribute set, by unprotecting them before
rerroving them. The function of this routine is otherwise the satre as that of the
RmveResource toolbox procedure.

FUNCTION SysResFile: INTEGER;

This function returns the resource me ID of the System me. It is often necessary to take special
precautions when accessing the System me. This function allows you to take these
precautions without hard-coding a value for the system resource file ID, which may change in
the future.

Chapter 7 The Programmatic Interface 115

Mfscd1aneous utWties

PROCEDURE Abort;

Abort sets the abort flag, which will stop any command that is in progress. The most
coIllIOOn use of this command is in stopping the Quit command. For example, if an error is
detected in a template when its window is being closed, the template editor calls Abort SO
that processing of the Quit command will stop and the error can be corrected.

FUNCTION WasAborted: BOOLEAN;

WasAborted returns the state of the aborted flag (set by the Abort procedure just
described). This function is useful, for example, if you have just called PassMenu with a
Close command and you want to know if any of the windows that were closed encountered
a problem

PROCEDURE AbleMenu (menu: INTEGER; enable: LONGINT);

AbleMenu enables or disables menu items. Ablemenu differs from the Resource Manager
routines EnableItemand DisableItem in that it acts on the entire menu. The par-llreter
menu is a menu ID; enable is a mask. Values used for the mask can be found in the
ResEdftle.

PROCEDURE BubbleUp (h: Handle);

BubbleUp sets Up the correct heap zone and then performs the Meroory Manager routine
MoveHHI. For information about MoveHHi, see Inside Macintosh, Volume II, Chapter 1.
This routine should always be called, to avoid heap fragmentation, before the Macintosh
procedure HLock is called for any handle. Remember to unlock any handle that you lock!

FUNCTION BuildType (t: ResType; 1: ListHandle): INTEGER;

Given a list that has been initialized with no rows, BuildType builds a list of all resources of
type t from the current resource ftle. (See the WindList routine described earlier in this
chapter.) If SetResLoad (FALSE) has not been called, all of the resources will be loaded
into mem>ry. BuildType returns a count of the number of instances that it adds to the list.

A picker that doesn't use P ickerWindSet up can set up its window with this sequence:
myList :- WindList(myWindow, myListWidth, myCellSize, ResEdid);
LDoDraw(FALSE, myList); {draw it later}
NInsts :- BuildType(myType, myList);
LSetSelect(TRUE, Cell(O), myList); {automatically select first cell}
LDoDraw(TRUE, myList); {ok to draw it next time}

116 ResEdit 2.0 Reference

/

(-

.-
(

PROCEDURE CenterDialog (theType: ResType; dialog: INTEGER);

This procedure centers dialogs or alerts on the same screen as the current port, which is
assumed to be a window. If the dialog is in color, it is centered on the screen with the most
colors on which any portion of the current port appears. ResType can be 'OLOG' or 'ALRT'j
dialog is the resoun::e ID of the dialog or alert. The 'DLOG' or 'ALRT' resource is loaded
into meroory and its boundsRect is centered. When you use the dialog or alert (for example,
in GetNewDialog) the resource will be found in Dl!mory with the correct boundsRect.

FUNCTION CheckError (err, msgID: INTEGER): BOOLEAN;

CheckError displays an error alert if err is nonzero. This routine has built-in alert
messages for several errors (such as disk write-protected, out of meroory, and so on). If
rnsgId is negative, a fatal error message is retrieved from the 'STR# resoun::e with ID of 128.
This resoun::e is preloaded into meroory, and may be accessible even if a serious error has
occurred. If msgID is nonnegative, an error message from the 'STR#' resoun::e with ID of 129
is displayed. If the error is not one that is built in, the string with an ID of msgID is displayed
in the alert. TRUE is returned if err was zero, FALSE otherwise. When adding a new string
for use by CheckError, be sure to add it to the end of the existing list in the
'STR#' resource.

FUNCTION CloseNoSave: BOOLEAN;

CloseNoSave returns a Boolean value that indicates whether data checking should be
performed before clasing. A return value of TRUE indicates that checking should not be
performed. For example, if the user is editing a template and there are errors in the template
when the Quit command is chosen, the template editor should not perform edit checking if
Kno" was clicked in the Save Changes dialog box.

FUNCTION ColorAvailable (needColorQD: BOOLEAN): BOOLEAN;

ColorAvailable returns TRUE if color QuickDraw is available. If the needColorQD
parameter is TRUE, an alert is displayed if color QuickDraw is not available.

PROCEDURE ConcatStr (VAR strl: STR255; str2: STR255);

ConcatStr concatenates str2 to strl, leaving the result in strl.

• Warning This routine does not check for aggregate string lengths in excess of 255
characters. Please be carefull ..

Chapter 7 The Programmatic Interface 117

FUNCTION DefaultListCellSize:INTEGER;

DefaultListCellSize returns the height of a list cell with the application font (ascent +
descent + leading). This function should be used by pickers that display resources as text
strings when setting up their window.

FUNCTION DisplayAlert (which: AlertType; id: INTEGER):
INTEGER;

DisplayAlert displays an alert with the given id. This routine assures that the alert
resource is loaded from ResEdit and that the cursor is reset to an arrow. The which
parameter determines the kind of alert that is displayed.

AlertType = (displayTheAlert, displayStopAlert, displayNoteAlert,
displayCautionAlert);

FUNCTION DisplaySTRAlert(which: AlertType; STRName: STR255;
STRIndex: INTEGER): BOOLEAN;

This procedure is similar to DisplayAlert except that a standard alert box is used and the
text is retrieved from a 'STRI' resource. If you want to display an alert, just create a 'STRI'
resource in ResEdit and call this routine with the 'STR#' resource name and the index in the
string list of the string to be used. Whenever possible, this routine should be used instead of
DisplayAlert.

FUNCTION DoPickBirth(color: BOOLEAN: buildList: BOOLEAN;
wWidth, wHeight, columns: INTEGER; pickerResId: INTEGER;
pick: PickHandle): BOOLEAN;

DoP ickBirth takes care of just about everything needed to initialize a picker. If
buildList is TRUE, the list of all of the resources will be created. pick is the handle to a
partially initialized P ickHandle. The fields that should be initialized before this procedure
is called are: father, rType, viewBy, cellSize, and ldefType. The example picker
shows how these fields should be initialized.

PROCEDURE DrawLDEF (message: INTEGER; lSelect: BOOLEAN:
lRect: Rect; theRes: Handle: id: INTEGER:
title: STR255; maxH, maxV: INTEGER:
DrawResource: ProcPtri lh: ListHandle);

DrawLDEF is a general purpose drawing routine for graphical LDEFs like 'ICON', 'cicn', and
so on. It should be called from an LDEF that is used by a picker. If tit Ie is an empty string,
id is converted to a string and used as the title. The dra wP roc is of the form: PROCEDURE
DrawResource (lRect: Rect; theRes: Handle).
Use of this procedure is shown in the example picker LDEF.

118 ResEdit 2.0 Reference

(PROCEDURE DrawMBarLater (forceItNow: BOOLEAN);

DrawMBarLater should be used instead of the toolbox DrawMenuBar procedure. It will
collect updates to the menubar but actually draw the menubar only when no other events are
pending. Using this procedure avoids flashing the menubar as menus are added and
rerooved. If forceItNow is TRUE, the menubar is drawn immediately and any pending
updates are cleared.

FUNCTION FindOwnerWindow (theRes: Handle): WindowPeek;

FindOwnerWindow checks all of ResEdit's windows to see if an editor is open for the
specifJ.ed resource. If you're writing an editor that uses a resource that may be in use by
another editor (for example, two 'OLOG' resources may share the same 'Om'), call
FindOwnerwindow to detennine whether the resource should be released.

PROCEDURE FixHand (s: LONGINT; h: Handle);

F ixHand makes sure that the object to which h is a handle is s bytes long. If it is longer,
F ixHand shrinks i~ if it's shorter, F ixHand expands it and fills the extension with zeros.

PROCEDURE GetNamedStr(index: INTEGER; name: STR2SS;
VAR str: STR2SS);

GetNamedStr returns in str the indexth string in the 'STR#' reso~e named name. All
strings should be stored in either 'STR#' or 'STR ' resources to maintain the international
localizability of Res Edit.

PROCEDURE GetStr (nurn, list: INTEGER; VAR str: STR2SS);

GetStr returns, in str, string number nurn from ResEdit's 'STR#' resource with ID of list.
All strings should be stored in either 'STR#' or 'STR ' resources to maintain the international
loca1izability of ResEdit.

PROCEDURE FlashDialogltem (dp: DialogPtr; item: integer);

F lashDialogltem flashes (inverts) a dialog button for 8 ticks to indicate that the button
was selected. This procedure should be called from a dialog's fllter procedure.

PROCEDURE FrameDialogltem (dp: DialogPtr; item: integer);

FrameDialogltem draws a frame around a dialog button to indicate that it is the default
button (the button that will be selected when either the Return or the Enter key is pressed).
This procedure should be called when an update event is received by a dialog's
fllter procedure.

Chapter7 The Programmatic Interface 119

FUNCTION GetQuickDrawVars: pQuickDrawVars;

This function returns a pointer to the QuickDraw variables that are normally available to
Macintosh programmers. Because of the way that pickers and editors are implemented, they
do not nonnally have access to these variables. The following types are used with
this function:

pQuickDrawVars - AQuickDrawVars;
QuickDrawVArs = RECORD

randSeed: LONGINT;
screenBits: BitMap:
arrow: Cursor;
dkGray: Pattern;
ltGray: Pattern;
gray: Pattern;
black: Pattern;
white: Pattern;
thePort: GrafPtr;

END; { QuickDrawVars

FUNCTION HandleCheck (h: Handle: msgID: INTEGER): BOOLEAN;

HandleCheck checks to see if the handle h is NIL or empty. If it is either, HandleCheck

returns FAISE and displays an error alert, using string msgID from ResEdit's 'STR#' resource
ID 129. If the handle id is OK, HandleCheck returns TRUE.

PROCEDURE MetaKeys (VAR cmd, shift, opt: BOOLEAN);

MetaKeys returns the values of the modifier keys from the last event. Some menu
commands that have shortcut key combinations simulate the shortcut modifier keys when the
menu command is selected. For example, when Open Using Template is selected,
MetaKeys indicates that the Command and Option modifier keys were preSsed. Because of
these transformations, MetaKeys should always be used to get the modifier values.

PROCEDURE PickEvent (VAR evt: EventRecord; pick: pickHandle);

P ickEvent handles an event contained in evt for a standard picker referenced by pick.

P ickEvent should be called from your picker's DoEvent procedure. It is usually sufficient
to call only this routine from DoEvent, with no other special processing at all.

PROCEDURE PicklnfoUp (oldID, newID: INTEGER;
pick: PickHandle);

PickInfoUp handles the update necessary when a resource's ID is changed in the Get Info
window. PicklnfoUp should be called from your picker's DoInfoUpdate procedure. It is
usually sufficient to call only this routine from DoInfoUpdate, with no other special
processing at all.

120 ResEdit 2.0 Reference

(,

PROCEDURE PickMenu (tossOnClose: Boolean; menu, item: INTEGER;
pick: PickHandle);

P ickMenu handles menu commands for a standard picker referenced by pick. P ickMenu
should be called from your picker's DoMenu procedure. This routine handles all of the
standard menu commands. If tossOnClose is TRUE, all of the resources displayed by the
picker are released when it receives a Oose command. It is usually suffIcient to call only this
routine from DoMenu.

FUNCTION pickStdwidth: INTEGER;

This function returns the width in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified width is
guaranteed to fit on the screen.

FUNCTION PickStdHeight: INTEGER;

This function returns the height in pixels that should be used when creating picker windows.
This value is obtained from the Preferences dialog box. A window of the specified height is
guaranteed to fit on the screen. PickStdHeight replaces the old
PickStdRowsprocedure.

FUNCTION PrintSetup: Handle;

Use PrintSetup if you are doing your own printing instead of using PrintWindow.
Return type is actually TIiPrint The following code can be used to set up your own
printing loop:

myPrintHandle := PrintSetup;
IF myPrintHandle <> NIL THEN

BEGIN
PrOpen;
IF PrError = noErr THEN

BEGIN
IF PrJobDialog(myPrintHandle) THEN

BEGIN
printingPort :- PrOpenDoc(myPrintHandle, NIL, NIL);
IF PrError - noErr THEN

BEGIN
{do the usual printing loop here (see TechNote t161)
{Warning: be careful NOT to change the current resfile
{ or the printing manager will fail

PrCloseDoc(printingPort);
END;

Chapter 7 The Programmatic Interface 121

END;
PrClose;
END;

END;

PROCEDURE PrintWindow (toPrint: PicHandle);

PrintWindow does just that If you pass it NIL, it will print an image of the current window.
If you pass it a PicHandle, it will print the picture.

FUNCTION ResEdID: INTEGER;

ResEdID returns the resource ID of the calling picker or editor. For editors, this value should
be saved in the windowKind field of the editor's window. For pickers, this value should be
saved in the P ickId field of the picker's P ickRec as well as in the windowKind field of
the window.

PROCEDURE SetResChanqed (h: Handle);

SetResChanged sets the resChanqed attribute for the specified resource and also sets
the mapChanqed attribute for the resource fIle that contains the resource. SetResChanqed
should be called whenever a resource is changed.

PROCEDURE SendRebuildToPickerAndFile (theType: ResTypei
parent: ParentHandle)i

This procedure sends a rebuild (sets the rebuild flag in the window's parentRecord) to all
open picker windows of the specified type. A rebuild is also sent to the fIle picker in case a
new resource type is being added. This routine is useful if an editor creates a resource of
another type. This routine should be caned to make sure that the resource picker and the fIle
picker are updated to reflect the addition of the new resource. For example, this routine is
caned from the 'ALRT', 'DLOG', and 'Dm' editors.

122 ResEdit 2.0 Reference

(

_'1f-

t

PROCEDURE SendRebuildToPicker (theType: ResType;
parent: ParentHandle);

This procedure is similar to SendRebuildToP icke rAndF ile except that it doesn't send
the rebuild on to the file (what a surprise!).

PROCEDURE SetTheCursor (whichCursor: INTEGER);

Set TheCursor changes the cursor to the specified cursor resource. The constant
arrowCursor defined in the ResEd me should be used to set the cursor to the arrow. This
routine makes sure that the resource me is set to ResEdit before loading the cursor, so that the
cursor will be loaded from either ResEdit or the System me. The most common use of this
routine is to set the cursor to a watch (watchCursor) while something is being done that
may take a while.

PROCEDURE Showlnfo (h:Handle; dad: ParentHandle);

Showlnf 0 puts Up a Get Info window for the resource referenced by h that belongs to the
father object referenced by dad. Showlnf 0 should be called by your editor when Get Info is
selected from the File menu.

PROCEDURE TypeToString (t: ResType; VAR 5: Str255);

TypeToString returns a string consisting of the four characters that make up
the ResType t.

PROCEDURE UseAppRes;

The UseAppRes procedure sets the current resource me to be the ReiEdit Preferences file.
This is necessary if you need to get a resource from ResEdi~ such as a menu, string, alert, or
dialog box. Be sure to restore the original resource me when you are done with Res Edit's
resource me. For example:

SavedResFile := CurrentRes;
UseAppRes;

UseResFile(SavedResFile);

Chapter 7 The Programmatic Interface 123

FUNCTION WasItLoaded: BOOLEAN;

Was ItLoaded should be called by every editor in the Edi tBirth procedure. The return
value should be saved in the ParentRec data structure. When a Close command is received,
the resource being edited should be released only if Was ItLoaded returned FALSE. A return
value of TRUE means the resoun:e may already be in use by ResEdit or the System and
therefore shouldn't be released.

PROCEDURE WritePreferences (prefType: ResType;
prefId: INTEGER; prefName: STR255; prefHandle: Handle);

You can use WritePreferences to add your own preference resoun:e to the ResEdit
preferences file. P ref Type is the resoun:e type that you have chosen for your preference
resource. PrefId and prefName are the ID and name for the resource. PrefHandle is a
handle to the preference data itself. To read your preferences you can use this code:

myPrefs:= GetlNamedResource(prefType, prefName);

Internal routines

The following routines are used internally within ResEdit and may be useful in
other circumstances.

FUNCTION DupPick (h: Handle; c: cell; pick: PickHandle):
Handle;

DupP ick is called from P ickMenu and should normally not need to be called from any
other procedures.

PROCEDURE GetErrorText (error: INTEGER; VAR errorText:
STR255) ;

GetErrorText will return an error string for the given error. If no specific error text is
found, an I/O error is returned.

FUNCTION GetType (templatesOnly: BOOLEAN; VAR s: STR255):
BOOLEAN;

Get Type displays a dialog box containing a list of the types of resources that can be edited.
The list contains all types for which there are templates. If templatesOnly is FALSE, the
list also contains all the types for which there are editors. The selected type is returned in s.
TRUE is returned if a type was selected; FALSE is returned otherwise.

PROCEDURE KillCache;

KillCache flushes all caches for all volumes (bitmap, control, and so on).

124 ResEdit 2.0 Reference

(.
FUNCTION MapResourceType (editor: BOOLEAN; theRes: Handle;

origResType: ResType): ResType;

This function checks the 'RMAP' resoUItes in ResEdit and the ResEdit preferences file to see if
the specified resouIte type should be treated as if it were a different type.

PROCEDURE MyCalcMask (srcPtr,dstPtr: Ptr; srcRow, dstRow,
height, words: INTEGER);

MyCalcMask calculates a mask for the given soun:e bit image and puts it into the destination
bit image. The pararreters srcPtr and dstPtr reference the soun:e and destination bit
images; srcRow, dstRow, height, and words define the area on which
MyCalcMask operates.

PROCEDURE NoDoubleClickHere;

Call this procedure in your mouse~own processing code if you don't want ResEdit to convert
a doubleclick at this location to an Open command. This should be used if a double-click
makes sense only in part of your window.

FUNCTION PlaySyncSound(which: INTEGER; sndHandle: Handle):
BOOLEAN;

P laySyncSound is used by the 'snd ' picker to play sounds.

FUNCTION ResEditRes: INTEGER;

The ResEditRes procedure returns the resouIte file 10 of ResEdit. This routine will rarely
be needed. You can use this routine if you don't want to release a resource that you have
been editing, if the resouIte came from ResEdit.

FUNCTION RestoreRemovedResources (pick: PickHandle): BOOLEAN;

This function reverts all resources of the type handled by the picker (pick"'" • rType). It
returns true if the list needs to be rebuilt.

PROCEDURE ScrapCopy (VAR h: Handle);

ScrapCopy copies the handle h into the ResEdit scrap. A different handle will be returned ..

PROCEDURE ScrapEmpty;

ScrapEmpty empties the ResEdit and desktop scrap.

Chapter 7 The Programmatic Interface 125

PROCEDURE ScrapPaste (pasteAll: BOOLEAN; typeToPaste: ResType;
resFile: INTEGER);

ScrapPaste pastes the resouoces from the ResEditsoap to the me identified by the ID
number resFile. If pasteAll is TRUE, all resouoces found in the scrap are pasted. If
pasteAll is FAISE, only resoUl'tes of type typeToPaste are pasted.

The next four routines implement the color palette pop-up menu ~d by
the 'MENU' editor.

PROCEDURE InstallColorPalettePopup(whichWindow: windowPtri
CQDishere, isActive: Boolean)i

InstallColorPalettePopup sets up a palette for the window containing the system
colors for the deepest available device. Call this procedure immediately after opening your
window and whenever you receive an update event whichWindow is the window
containing the pop-up menu, CQDishere is TRUE when Color QuickDraw is available, and
isAct i ve is TRUE when the window is the frontnx>st one.

PROCEDURE DrawColorPopup(whichWindow: WindowPtri
itemBox: Recti whichColor: RGBColori
CQDishere: Boolean);

DrawColorPopup draws the color patch and a drop shadow indicating that this is actually a
pop-up menu. Call this procedure for every pop-up palette whenever you need to update the
window contents. whichWindow is the window containing the pop-up palette, itemBox is
the Rect to be ~d to draw the color patch, whichColor is the RGBColo~ to be drawn
and CQDishere is TRUE when Color QuickDraw is available.

FUNCTION ColorPalettePopupSelect(whichWindow: WindowPtri
itemBox: Recti VAR whichColor: RGBColori
CQDishere: Boolean): Booleani

ColorPalettePopupSelect handles roo~-down events in the color palette pop-up
menu. Call this procedure whenever you receive a mouse-down event in one of your color
patches. whichWindow is the window containing the pop-up, i temBox is the Rect to be
~d to draw the color patch, whichColor is the RGBColor to be used as default and
CQDishere is TRUE when Color QuickDraw is available. On exi~ whichColor contains
the RGBCoior selected by the ~r.

PROCEDURE DeinstallColorPalettePopup(whichWindow: windowPtri
CQDishere: Boolean);

DeinstallColorPalettePopup rerooves the palette from the window. Call this
procedure before closing the window.

126 ResEdit 2.0 Reference

(.
Obsolete routines

The following routines are obsolete and should no longer be used. They are no longer
available in the aurent version of ResEdit

FUNCTION CWindSetup (width, height: INTEGER; t, s: STR255):
WindowPtr;

Use PickerWindSetup or EditorWindSetup instead.

FUNCTION WindSetup (width, height: INTEGER; myType, name:
STR255): WindowPtr

Use PickerWindSetup or EditorWindSetup instead

FUNCTION pickStdRows: INTEGER;

No longer supported. Use P ickStdHeight instead.

PROCEDURE CallPBirth (theType: ResType; parent: ParentHandlei
id: INTEGER);

PROCEDURE CallEBirth (resHandle: Handle; parent: ParentHandlei
id: INTEGER);

PROCEDURE CallEvent(VAR evt: EventRecord; refcon: LONGINT;
id: INTEGER);

PROCEDURE CallMenu (menu, item: INTEGER; refcon: LONGINT;
id: INTEGER);

FUNCTION CopyRes (VAR h: Handle; makeID: BOOLEAN;
resNew: INTEGER): Handle;

PROCEDURE DoKeyScan (var evt: EventRecordi offset: integer;
lh: ListHandle);

PROCEDURE DoListEvt (e: EventRecord; 1: ListHandle);

Chapter 7 The Programmatic Intetface 127

DocTUle DraftNum

Appendix A The 'KCHR' Resource

This appendix contains more infonnation about the 'KCHR' resource, its
structure, and its function. The 'KCHR' resource controls mapping from the
keyboard to the resulting characters. This mapping process involves several
areas of the Macintosh architecture.

6/27/90

129

Basic theory of keyboard operation

In order to appreciate fully the workings of the 'KCHR' editor, you really should be aware of
the process that it controls. Here is a summary.

Generating the virtual keycode

Whenever a key on any type of keyboard is pressed, the operating system polls the key
information from the device. It then translates each raw keycode generated by the keyboard
into a virtual keycode and a combination of modifier keys by means of the 'KMAP' resource.
The resulting virtual keycode is information about the key being depressed that is
independent of the keyboard type.

Exceptions to the rule

Some countries have different layouts for different keyboards, mostly for historical reasons.
To deal with those exceptions, the 'itlk' resource contains a table of translation rules from a
virtual keycode generated by the actually connected keyboard to a virtual keycode on the ISO
ADB keyboard or to whatever keyboard is supported by the 'KCHR' resource for that country.

Generating the character code

When the operating system has generated a virtual keycode, the KeyTrans () procedure
then translates the virtual keycode and the concurrently pressed modifier keys into a
Macintosh character set number based on the tables in the 'KCHR' resource. That character
number and the virtual keycode information are then stored in the event queue and can be
accessed by calling GetNextEvent () .

130 ResEdit 2.0 Reference

(

Dead keys

When you press a dead key, the first thing you'll notice is that nothing happens i1IlIrediately
(that is, no event is fed into the queue). When you then press another key, the Event Manager
uses the chatacter number generated by this new key and the previously pressed dead key to
detennine which chatacter number should be put in the event queue. This process is used,
for example, to generate the Gennan characters with umlauts A,O,U,a,o, and ii. You have to
press the dead key for a diaeresis (which is Option-u in the U.S. 'KeRR') and then press one
of the keys that generate the char.lcters A,O, U,a,o, or u. (You can also generate i, and e,
which do not exist in German, but, depending on the font, possibly not their uppercase
equivalents.) If you press a key that generates none of the defmed character numbers for this
dead key, the Event Manager generates the nomatch character (which is, in the case discussed
here, the umlaut alone).

The Dead Array contains a list of dead keys. For each dead key it defmes the virtual keycode
and the table that is used to trigger the dead-key mechanism It then lists pairs of completion
characters and substitution characters and, fmally, the nomatch characters. The whole dead­
key mechanism can be described as follows:

1. Press a dead key on the keyboard.

2. Press any key that generates a character number that corresponds to a valid
completion character.

You get the corresponding substitution character in the event queue. (If you didn't press a
valid completion char.lcter in step 2, you get the nomatch character.)

Appendix A The 'KCHR' Resource 131

The structure of a 'KCHR' resource

Here is the defmition of a 'KCHR' for the resource compiler Rez. (This info~tion can also be
found in the me SysTypes.r in the folder {RIncIudes} in MPW.)

type. 'KCHR' {

} :

integer:

wide array [$100]

byte:

/* Version

/* Indexes

} ;

integer = $$CountOf(TableArray);

array TableArray {

wide array [$80] { /* ASCII characters

char;

} :
} ;

integer = $$CountOf(DeadArray);

array DeadArray {

} ;

byte; /* Table number * 1
byte; 1* Virtual keycode *1
integer = $$CountOf(CompletorArray);
wide array CompletorArray {

char; 1* Completing char

chari
} ;

char:

char:

1* Substituting char

1* No match charl

1* No match char2

*1
*1

*/

*1

*/

*1

Each table in the Table Array describes the virtual keycode-to-character number translation
for one complete layer of the keyboard (that is, for all 128 possible keys). The Index Array
defines the mapping of modifier key combinations to tables. The high byte of the modifier
flag (described in Inside Macintosh, Volume V, Chapter 10) is used as an index to determine
the number of the table to be used for translation. The information in Inside Macintosh is,
however, not complete, because the alternate modifier keys (the Shift, Option, and Control
keys on the right side of the ADB extended keyboard) are not mentioned. Those keys are
normally coupled with the corresponding keys on the left side. It is possible to uncouple
them by sending a command to the keyboard. (See "Reassigning Right Key Code" in Inside
Macintosh, Volume V, Chapter 10.) The correct bit layout of the high byte is shown in
Figure A-I.

132 ResEdit 2.0 Reference

*/

(
• Figure A-I Modifier flag high byte

1 if alternate Command key oown
1 if ahemate Optkln key down

1 if alternate Shift key down

1 if Control key down

1 if Option key down

1 if Caps Lock oown

1 if Shift key down

1 if Command key oown

Suppose you hold down the Option key. This keypress will result in a value of 8 (bit 3 is set)
in the high byte of the modifier flag. Thus the Toolbox Event Manager takes the value stored
in IndexArray [8] , which is 3 in the current U.S. 'KeRR', and therefore uses Table 3 to
translate the keycodes to chatacter numbers.

Appen~ A The 'KCHR' Resource 133

/

Appendix B The 'BNDL' Resource

The 'BNDL' resource bundles together icons (resource types 'IeN#, 'ics#',
'icl4', 'idS', 'ics4', 'ics8'), fde type references (resource type 'FREF), and the
·signature" resource (whose resource type is identical to the creator field of
the application fde) for the Finder. This enables the Finder to display distinct
icons for an application and its documents, and also enables it to launch the
appropriate application when the user double-clicks a document.

135

The strocture of a 'BNDL' resource

The 'BNDL' resource contains a reference to the signature resource type and ID (for historical
reasons the ID must be 0) as well as a list of resource types (almost always only 'PREP and
'ICN#', although other things are theoretically possible) and localID to resourceID mapping
tables. The term "local" ID is used, because this ID is used within the 'BNDL' .resource itself to
tie together the me reference and its icons. When the Finder copies the 'BNDL' resource and
all its bundled resources to the Desktop file (or the desktop database in System 7.0), it
actually has to change the resource ID numbers to avoid ID conflicts within the Desktop. The
local ID numbers remain unchanged.

The signature resource can contain anything you want, although, for historical reasons, it
typically contains some version and copyright infonnation. The resource ID of the signature
resource needs to be O. If you use the 'BNDL' editor in ResEdit 2.0 this resource is
transparently created and maintained for you.

For every file type that should be displayed with a distinct icon in the Finder there need to be
two entries in the 'BNDL' resource, which in tum refer to one 'FREF' resource, and one 'ICN#'
resource (or an entire Finder icon family for system software version 7.0). The 'FREF' resource
contains the 4 character me type and a reference to a local ID for an icon to be used for this
me type. Even if you plan to include an entire Icon Family, you only need to list the 'ICN#'
resource in the 'BNDL' resource. The System 7.0 Finder automatically recognizes and loads all
the other parts of the Finder Icon Family. The relationship of local ID numbers and resource
ID numbers is shown in Figure B-1.

136 ResEdit 2.0 Reference

• Figure B-1

File type

Six resources and their relationships

put a length 1Jyte and that
many IJyfIJs 0/ te:Jt:t here ...

11XT
o

FREF

LocaIID Resource ID

Must be 0

Resource ID

Icon's Local ID ~ ________ '--_____ = _____ Aka local ID 1

In order for the Finder to recognize a 'BNDL' resource these conditions must be met:

1) The bundle must be complete; that is, all the resources listed here must exist and their
relationships must be defmed. If you use the 'BNDL' resource editor built into ResEdit 2.0
you can be sure that this condition is met.

Appendix B The 'BNDL' Resource 137

2) The fIle's creator must be identical to the signature specified in the 'BNDL' resource and
the fIle's fIle type must be one listed in the 'BNDt' (Le., it must have its own 'FREF and
corresponding 'leN#'). Typically the fIle type will be 'APPL' for application, although any
fIle can contain 'BNDL' resources. Specific examples other than 'APPL' are 'INIT' and
'CDEV'. Use the Get FilelFolder Info command in the File menu to change the fIle's fIle
type or creator.

3) The fIle's Bundle bit must be set and the Inited bit must be cleared. The Finder always sets
the Inited bit whenever it ftnds a new me and reads in some information about it. By
clearing this bit you tell the Finder to reread that information. Use the Get FilelFolder Info
command in the File menu to change the Bundle and Inited bits.

4) There must not already be a 'BNDL' resource with the same signature in the Desktop fIle
(or desktop database in System 7.0). If you want to change an existing bundle (to IDJdify
the icons, for example) you will need to recreate the Desktop me by rebOOting while
holding down the Option and Command keys. Note that by doing so you will lose all
comments you may have entered in the Get Info windows in the Finder in system
software before version 7.0.

Definitions of the 'BNDL' and 'FR£F' resources

Here are the deftnitions of the 'BNDt' and 'FREP resources from the MPW Types.R me:

/*-------------------------BNDL • Bundle------------------------------*/
type 'BNDL' {

literal longinti

/* Signature */
integer;

/* version 10 */

integer = $$CountOf(TypeArray) - 1;
array Type Array {

literal longint;

/* Type * /
integer = $$CountOf(10Array) - 1;

wide array 10Array {

} ;

138 ResEdit 2.0 Reference

integer;
/* Local 10

integer;

/* Actual IO
} ;

*/

*/

} ;

/*-------------------FREF • File Reference----------------------------*/
type 'FREF' {

} ;

literal longint;
/* File Type

integer;
/* Icon ID

pst ring;
/* Filename

*/

*/

*/

Appendix B The 'BNDL' Resource 139

/

(

(

Appendix C Resource Types Defmed for
Rez and ResEdit

This appendix contains a list of some resource types in use at Apple
Computer, Inc., current as of mid-l990. An attempt has been made to give
pertinent information about what each type is, how it is handled by the
resource compiler, Rez, and how it is handled by ResEdit. This list is neither
formal nor exhaustive!

141

• Table C-l Resource types deftned for Rez and ResEdit

Type

actb
acur

ADBS
ALRT
APPL
atpl
bmap
BNDL
CACH
cctb
CDEF
cicn
clut
CMDO
cmnu
CNTL
CODE 0

CODE
crsr
ctab

CTYf
CURS

dctb
DICL
DITL

DLOG
DRVR
DSAT

FBTN

fctb

De.6nidon Rez

Alert Color Lookup Table Types.r
Animated cursor resource Types.r

ADB driver loaded before INIT 31 -----
Alert Template Types.r
Application list (Desktop)

AppleTalk Resource
BitMap
Bundle Types.r
RAM Cache Control Code
Control Color Lookup Table Types.r
Code for drawing controls
Color Icon Types.r
Generic Color Lookup Table Types.r
For MPW commando interface Cmdo.r

MacApp temporary menu resource
Control Template Types.r
Jump Table

Application Code
Color Cursor Types.r
Cache Tab <list of possible cache sizes>

City list from MAP CDEV
Cursor

Dialog Color Lookup Table
<for MacWorkstation>

Dialog Item List

Dialog Template
Driver

Types.r

Types.r

Types.r

Types.r
SysTypes.r

Startup alerts & code to display them

MiniFinder button
Font Color Lookup Table Types.r

142 ResEdit 2.0 Reference

ResEdit

Template
Template

Template, Editor
Template

Template, Editor

Template

-----, Editor
Template

Editor
Template

Template

-----, Editor
Template

Template, Editor

Template, Editor
Template

Template
Template

(Continued)

(
• Table C-1 Resource types defIned for Rez and ResEdit (continued)

Type J)eftoitinn

FCMT Get Info comments from Desktop file

FDIR
finf
FKEY
fldt

FMTR
FOBJ
FOND
FONT
FREF
FRSV
FWID

MiniFinder button directory ID
Font information
Function Key Code

SysTypes.r

List of folder names for folder mag

Format Record
Information about Folders
Font Family Description
Font Description
File Reference
ROM Font resources
Font Width Table

SysTypes.r

SysTypes.r
SysTypes.r
Types.r

SysTypes.r
gama Gamma Table (color correction for screen)

GNRL

ICON
ICNt
ictb
INIT

insc
INTL

itlO

INTL

0

1

NBP Timeout and retry info for AppleTalk

Icon Types.r
Icon List Types.r
Color dialog item list
Code that is run at system startup time

Installer Script SysTypes.r
International Formatting Information

SysTypes.r
(== itlO; no longer used)

International Formatting Information
SysTypes.r

International Date/Time Information
SysTypes.r

(-= itl1; no longer used)

ResEdit

Template
Template
Template

Template

Template
Template, Editor
Template
Template
Template

Editor
, Editor

Template

, Editor

Editor

Editor

(Continued)

Appendix C Resource Types Dermed for Rez and ResEdit 143

• TableC-1 Resource types defmed for Rez and ResEdit (continued)

Type

itll

J)efinitfon

International Date/Time Information
SysTypes.r

itl2 IntI Str Comparison Package Hooks

itl4
itlb

International Tokenize
International Script Bundle

SysTypes.r
SysTypes.r
SysTypes.r

itlc International Configuration SysTypes.r
itlk IntI exception dictionary for kchar

KCAP
KCHR
KEYC

KMAP

kscn
KSWP
LAYO

LDEF
mach
MACS
MBAR
MBDF

mcky
mctb
mcod
mdct
MDEF
mem!
MENU

minf
mitq

SysTypes.r
Physical Layout of Keyboard SysTypes.r
ASCII Mapping (software) SysTypes.r
old keyboard layout <used by old INIT 0+1>

Keyboard Mapping (hardware)
Keyboard/Script icon
Keyboard Swapping
Finder layout resource
Code for drawing lists
cdev filtering
Version t in system file

SysTypes.r
Types.r
SysTypes.r

SysTypes.r

Menu Bar Types.r
Menu bar definition procedure <Code>

Mouse Tracking
Menu Color Lookup Table
MacroMaker information
MacroMaker information
Code for drawing menus
MacApp memory utilization
Menu
Macro info (MacroMaker)

SysTypes.r
Types.r

Types.r

Default queue sizes for MakeITable
SysTypes.r

144 ResEdit 2.0 Reference

-----, Editor

Template
Template
-----, Editor

Template

Template
Template

Template
Template

Template
-----, Editor

Template, Editor
Template

(Continued)

(
• TableC-1 Resource types dermed for Rez and ResEdit (continued)

Type

mntb

mppc
NBPC

J)efloitfon

MacApp menu table(relate command. to menu)

MPP Configuration Resource
NBP configuration <AppleTalk>

SysTypes.r

ncts List of constants
NFNT

nrct
PACK

PAPA

PAT

PAT'

Font Description

Rectangle position list
SysTypes.r

SysTypes.r
Packages of code used as ROM extensions

Printer Access Protocol Address (AppleTalk)

Quickdraw Pattern
Quickdraw Pattern List

Types.r
Types.r

PDEF Code to drive printers
PICT

pltt
POST

ppat

ppt'
PREC

PRCO

PRC3

PSAP

PTCH

qrsc

ROv'
scrn

seg!

SERD

SICN
SIGN

Quickdraw Picture

Color Palette
Types.r

Types.r
Postscript - found in Laser Prep file

Pixel Pattern
Array of ppats

Types.r

Printer driver's private data storage

Default page setup info for printer

(PRED id = 0)
Print record (PREC id = 3)

Just a string

ROM Patch

System 7.0 query resource
ROM Resource Override

Screen Configuration

MacApp

RAM serial driver

Small Icon

SysTypes.r

SysTypes.r

Types.r

Template

Template
Editor

-----, Editor

Template
Template

Template

Template

Template
Template

Template

Template
Template

Template

, Editor

Template

(Continued)

Appendix C Resource Types Dermed for Rez and ResEdit 145

• TableC-l Resource types defmed for Rez and ResEdit (continued)

Type Deftoftfon lei

SIZE MultiFinder Size Information Types.r
snd Sound SysTypes.r
STR PascalStyle String Types.r
STR' PascalStyle String List Types.r
styl Style information for TextEdit
TEXT Unlabeled string. (Same as minf)

tlst Title list
TMPL ResEdit template
vers Version SysTypes.r
wctb window Color Lookup Table Types.r
WDEF Code for drawing windows
WIND window Template Types.r
wstr Query str used by qrsc resource

146 ResEdit 2.0 Reference

Template
----- (player)
Template
Template
-----, Editor

Template

Template
Template
Template

Template, Editor
Template

(

Appendix D The Macintosh Character Set

This appendix contains a chart that displays the regular character set for
Macintosh fonts. The fJl'St 128 characters correspond to the standard ASCII
character set. Please remember that not all fonts far the Macintosh have
these standard characters in them. Specific examples are Symbol and ITC
Zapf Dingbats; there are also many pictorial fonts available as bitmaps for
dot-matrix printing.

147

<:
• Figure D-1 Macintosh character set

0 E F
0

* • 1 1 A Q A e ± 0

2 2 B R b r ~ ¢ S ., (]

3 c s c s E So ~ ..j • 0

4 4 0 T d N
A

I i y f I %0 ·u
5 5 E U e u 0 1 • }1 = A

6 6 F V f v u ii CJ a £\ + E
7 7 G W g w a ,

s I « 0 A 0

8 H X h x a 0 ~ n » y E

9 y y
A

a 0 © 1t Y E
A J z j z a 0 TIll f obop I i

B· K k a 0 I A 0 i
.I' c < L \ ~

,
g A U < ,

I"

0 n 6 J " = M m C u * >
E N 1\

A

If: <E fi 6 > n - e u a: '"
F I 0 0 e u 0 0 ex: fl 6

sp space
del delete -
nbsp non-breaking space (option-space on US keyboard)

The key labeled Delete on the US keyboard actually
generates ~ (08) character.

:iiiiiiiiil!:!:!ii

The shaded characters cannot normally be generated
from the Macintosh keyboard or keypad.

Appendix D The Macintosh Character Set 149

(- characters Display using old method 52
Opti>n-space 2 DisplayAlert function 117
unprintable 2 DisplaySTRAlert function 117

Index CbeckError function 116 Dmmenu37
'den' resource editor 29, 42-45 'Dm' resource editor 28, 3>-37, 'OJ
'den' resource type 3, 42 'Dm' resource type 32, 35, 86, 87
Clear 21 associated with 'ALRI" or 'DLOG'
Close 14 32

-83 CloseNoSave function 116 'DLOG' resource editor 32-34
'annu' resource editor 69-73 'DLOG' resource type 32, 35, 86, 'OJ 24-bit mooitors, using ResEdit with 29
'annu' resource type 3, 69 DoEvent procedure 101, 104 IABCD101
'CN'll! resource editor 35 DolnfoUpdate procedure 104

A 1CN11' resource type 35, 87 DoMenu procedure 101, 104
code, as resource 2 DoPickBirth function 117

AbleMenu procedure 115 'CODE' resource type 2, 19, 98 DrawColorPopup procedure 125
Abort procedure 115 color icon editor 29 DrawIDEF procedure 117
AddNewRes function 112 color-<1ropper tool 42, 48 DrawMBarL1ter procedure 118
Align to Grid 37 Color Available function 116 'DRVR' resource type 25
AlreadyOpen functi>n 109 CoIorPalettePopupSelect function 125 Duplicate 21
'ALRI" resource editor 32-34 CoIorTable record 55 Duplicate Table 68
'ALRI" resource type 32, 35, 87 commands, menu See individual DupPick function 123
APDA xiii conunand name
Apple Developer Programs xiv ConcatStr procedure 116 E
Application Memory size 29, 86 Convert to dead key 68 Edit dead key ... 68 ascent 56 Copy 21 Edit menu 17 .i ASCII character set 56 corrupted resource 9 EditBirth procedure 101,103 ,
B

CurrentRes function 113 editors
CURS menu 46 'ALRI" 32-34

BeautifulUniquelID function 112 'CURS' resource editor 46 bit 29,87
bit editor 3, 28, 29, 'OJ 'CURS' resource type 46 'BNDV~l, 135
bit editor tools See tools Cut 21 'dOl 29
black-and-white resource 28 IdOl' 42-45
'BNDV resource editor ~1, 135 D 'annu' 69-73
'BNDL' resource type 3, 38, 134-137 damaged resource 9 1CN11' 35
Bring to Front 37 Data -> Mask 46, 52 color icon 29
BubbieUp procedure 115 data fork 2,12 'CURS' 46
BuildType function 115 default System font 54 'Dm' 28, 3>-37, 87
Bundle bit 40 DefaultListCellSize function 117 'DLOG' 32-34
bundle resource editor 29 Deinsta1lColorPalettePopup procedure 'FONT' 29, 54-57, 87

125 hexadecimal 3
C DeRez-5 'ICNI' 51-52, 87
Call1nfoUpdate procedure 109 descent 56 'ICON' SO, 87
'CDEV' resource type 136 Desktop File 11 1IN11.' 60-61
CenterDialog procedure 11~ rebuilding 40 'illO' 60-61
character set Developer Programs, Apple xiv lilll' 60-61

ASCII 56 dialog box 4 'KCHR' 62-69
Macintosh 2, 56 User Items in 35 'KOIR' dead key 62

character-editing panel 56 dialog item list 35 'MENU' 69-73
character-selection panel 56 Dialog Manager 35 monochrome 28

(
Index 151

'PAT' 58 BuildType 115 GetQuickDrawVars procedure 119
'PAT" 59 CheckErra 116 GetStr procedure 118
'SICN' 53 CloseNoSave 116 GetType function 123
template 3 CoIorAvai1able 116 GetWmoowTJtle procedure 110
'WINO' 30-31 CoIorPalettePopupSelect 125 GiveEBirth procedure 108
bundle 29 CurrenlRes 113 GiveSubEBirth procedure 109
Finder icon family 29,47-49,51 DefaultListCellSize 117 GiveThisEBirth procedure 108
menu 29 DisplayAlert 117 graphic resource 4

EditorWirrlSetup functbn 112 DispJaySTRAlert 117 graphical resource editor 28
eraser too142 DoPickBirth 117 graphics tools panel 57
extensibility of ResEdit 4 DupPick 123 GrowMyWindow procedure 110

EdilorWitxlSetup 112 HandleCheck procedure 119
F FindOwnerWindow 118 hardware requirements xii

'fctb' resource type 55 Get Ilndex 113 hexadecimal editor 4, 30

File menu 13-16 GetlRes 113

flie type 39,136 GetQuickDrawVars 119 I,J
fliewindow12 GetType 123 'id4' resource type 3, 47
flies HandleCheck 119 'iel8' resource type 3, 47

Desktop 11 IsThisYours 102 ICN#menu 52
ICON.IDEF 99, 100 MapResourceType 124 'ICN" resource editor 51-52,87
ICON.Pick 99 NeedToRevert 113 'ICN" resource picker 20
ResEdit Preferences 83 NewRes 114 'ICN" resource type 3, 39, 47, 51, 134
Types.R 136 PickerWmdSetup 112 icon 4
XXXXEdit99 PickStdHeight 120 'ICON' resource editor SO, 87

Finder 11, 89 PickStdWidth 120 'ICON' resource type 29, 35, SO, 87
Finder icon family 47 PlaySyncSound 124 Icon Vertical phase 91
Finder icon family resource editor 29, PrintSetup 120 ICON.IDEF me 99, 100

47-49,51 ResEdID 121 ICON.Pick me 99
FindOwnerWindow function 118 ResEditGetlResource 114 icons
FixHand procedure 118 ResEditRes 124 folder 51
FlashDialogItem procedure 118 RestoreRemovedResources 124 roonochrome 48
folder icon 51 RevertThisResource 114 trashcan 51
Font Manager 55 SysResFUe 114 'ics#' resource type 3, 47
FONT menu 68 WasAborted 115 'ics4' resource type 3, 47
FontlDA Mover 54, 55 WasltLoaded 123 'ics8' resource type 3, 47
'FOND' resource type 54 WindAlloc 111 IDnumber
'FONT' editor: ascent of character 56 WindList 111 local 134
'FONT' editor: descent of character 56

G
resource 134

'FONT' resource editor 29,54-57,87 ID number restriction 25
'FONT' resource type 25, 54 general editor See hexadecimal editor 'INIT' resource type 136
fork Get FUe/Folder Info ... 14 lnited bit 40

data 2 Get Info for This FUe 14 InstallColorPalettePopup procedure
resource 2 Get Info window 20 125

FrarneDialogltem procedure 118 Get1IMapEntry procedure 113 'IN1t' resource editor 60-61
'FREP resource type 38, 134 Getllndex function 113 'IN1t' resource type 60
functions GetlMapEntry procedure 113 IsThisYours function 102

AddNewRes 112 Get IRes function 113 'illO' resource editor 60-61
AlreadyOpen 109 GetErrorText procedure 123 'illO' resource type 60
Beautifu!UniquelID 112 GetNamedStr procedure 118 'ill1' resource editor 60-61

('itt1' resowce type 60 Window 22 PickInfoUp procedure 119
menus: ICN# 52 PickMenu procedure 105, 120

K MetaKeys procedure 119 PickSldHeight function 120

KCHR menu 66, 94, 95 monochrome editor 28 PickStdWidth function 120

'KCHR' dead key editor 62 monochrome icon 48 pictorial resource 3

'KCHR' resource editor 62-69 MPW DeRez command 81 pictorial resource editor 28

'KCHR' resource type 62, 94-95, 128- MPW resource compiler and Pictorial resource type 28

131 decompiler 5 'PIer resource type 12,35,50,77,86,

'KCHR' with Macint~h SE, Macint~h MuitiFinder II, 89 87

Plus, or Macintosh 512K MyCalcMask procedure 124 Pig mode 88

enhanced 68 pixel editor 28

KillCache procedure 123 N PlaySyncSoundfunction 124

'KMAP' resource type 128 NeedI'oRevert furx:tion 113 p~tRez69

New 53 Preferences ... 14

L New Table 68 PrinlSetup function 120

'lA YO' resource type 4, 76, 89-93 NewDialog 88 PrintWmdow procedure 121

'IDEF resource type 98 NewRes function 114 Print ... 14

list separator 83 New ... 13 procedures

'NFN1' resource type 3, 54 AbleMenu 115
local ID number 134 Abort 115 NoDoubleClickHere procedure 124

M nonexistent 'CNTI' 88 BubbleUp 115
CallInfoUpdate 109

MacApp 0 CenterDialog 116
pennanent menu 69

obsolete routine 126
ConcatStr 116

temporary menu 69 DeinstallColorPalettePopup 125
Macint~h character set 2, 56 Open Special 13 DoEvent 101, 104

\ Macint~h Programmer's Workshop 5 Open Using Template 21 DoInfoUpdate 104
MapResourceType function 124 Open ... 13 DoMenu 101, 104
marquee tool 28, 29 Option key 30, 35 DrawColorPopup 125
mask 42, 48, 52 Option-space character 2 DrawIDEF 117
'MBAR' resource type 88 oval-drawing tool 48 DrawMBarl.ater 118
'mctb' resource type 3, 69

P
EditBirth 101, 103

'MDEF resource type 72 FixHand 118
'MDPL' resource type 12, 86 Page Setup ... 14 FlashDialogItem 118
memory requirements xii paint bucket tool 42 FrameDialogltem 118
'MENU' resource editor 29, 69-73 ParamText 32 Get1IMapEntry 113
'MENU' resource ID 88 parent record defmition 106 Get1MapEntry 113
'MENU' resource type 3, 69 PassMenu procedure 109 GetErrorText 123
menus Paste 21 GetNamedStr 118

CURS 46 'PAT' resource editor 58 GetStr 118
Dm37 'PAT' resource type 58 GetWmdowTItle 110
Edit 17 'PAW' resource editor 59 GiveEBirth 108
File 13-16 'PAT#' resource type 59 GiveSubEBirth 109
FONT 68 pencil tool 28, 48 GiveThisEBirth 108

0
KCHR 66, 94, 95 PickBirth procedure 103 GrowMyWindow 110
Resource 17-21 picker record defInition 107 InstallColorPalettePopup 125
SIZE 68 pickers 98 KillCache 123
Style 70 pickers: 'ICN#' 20 MetaKeys 119
Transform 43, 48 PickerWmdSetup function 112 MyCalcMask 124
View 22-24 PickEvent procedure 104, 119 NoDoubleClickHere 124

(
Index 153

PassMenu 109 'ALRT' 32, 35, ffl ResourceIDHasChanged procedure
PickBirth 103 13~L'3,38,1~137 114
PickEvent 104,119 'CDEV'I36 resoUICe$ 2
PickInfoUp 119 'dOl' 3,42 corrupted 9
PickMenu 105, 120 'cmnu' 3,69 damaged 9
PrintWmdow 121 'CNn' 35, ffl pictorial 3
RemoveResource 114 'CODE' 2, 19, 98 signature 41
ResourceIDHasChanged 114 RestoreRemovedResources function
SaapCopy 124 'CURS'46 124
SaapEmpty 124 'Dm' 32, 35, 86, ffl Revert fde 14
SaapPaste 125 'DLCK3'32,35,86,ffl Revt:rt1bisResource functk>n 114
SendRebulldToPicker 122 'DRVR'25 Rez5
SendRebulldToPickerAndFlle 121 'feth' 55 ROM requirements xli
SetET1tle 111 'FO~'54 'RSSC' resource type 98, 101
SetResChanged 121 'FON!" 25, 54
SetTheCursor 122 'PREP 38, 134 S
ShowInfo 122 'ic14' 3, 47 sample text panel 56
TypeToString 122 'id8' 3, 47 Save 14
UseAppRes 122 'ICN#' 3, 39, 47, 51, 134 SaapCopy procedure 124
WindOrigin 111 'ICON' 29, 35, SO, ffl SaapEmpty procedure 124
WindRetum 111
WritePreferences 123 tics#' 3, 47 ScrapPaste procedure 125

'ics4' 3, 47 Select Item Number 37

Q 'ics8' 3, 47 Send to Back 37

'INIT 136 SendRebulldToPicker procedure 122
Quit 14

'INIt'60
SendRebulldToPickerAndFlle

It 'idO' 60
procedure 121

Set Item Number 37

RAM requirements xli
'idl' 60 SetET1tle procedure 111

rebuilding a Desktop fde 40 'KCHR'62,94-95,128-131 SetResChanged procedure 121

Remove dead key 68 'KMAP'128 SetTheCursor procedure 122

Rettx>ve duplicate tables 68 'LA YO' 4, 76, 89-93 Shift key 29
Remove unused tables 68 'LDEF98 ShowInfo procedure 122

RemoveResource procedure 114 'MBAR' 88 'SIeN' resource editor 53

ResEd 5,100 'mctb' 3,69 'SIeN' resource type 53, 71

ResEdID function 121 'MDEF72 signature resource 41

ResEdit Preferences fde 83 'MDPL'1286 SIZE menu 68 ,
software requirements xii ResEditGetlResource function 114 'MENU' 3,69

ResEditRes function 124 'NFN!" 3,54 'SI'R" resource type 32, 81

resource 4 straight quotation mark 2

resource category 3
'PAT'58 Style menu 70
'PAT#' 59

resource editors 27 'PIer 12, 35, SO, 77, 86, 87
SysResFlle function 114

resource fde checking 9
resource fork 2 'RSSC 98, 101 T
resource ID number 25, 134 'SICN' 53, 71 template 4, 21
Resource menu 17-21 'SfR#' 32, 81 template editor 3
resource picker 20 'TMPL'76,80 'TMPL' resource type 76, ro
resource type 20 Ivers' 41, 54 tool palette 29
resource type name 2 'WIND'30 tools
resource types color-dropper 42, 48

_.-
/

(

(eraser 42
marquee 28, '1!)

oval-drawing 48
paintbucket 42
pencil 28, 48

Transform menu 43, 48
trashcan icon 51
Try Cursor 46
24-bit monitors, using ResEdit with '1!)

type checking 82
Types.R file 136
TypeToString procedure 122

U

Uncouple modifier keys 67
Undo 21
unprintable character 2
Use Full Window 37
Use RSRC Rectangle 37
UseAppRes procedure 122
UseResFile 101
USES declaration 100

V
,J--

Verify Resource File 10 {t,
Verify Resource File ... 14
'vers' resource type 41,54
VieW as ... 67
VieW menu 22-24

W

WasAborted function 115
WasltLoaded function 123
WIND 30
WindAlloc function 111
WindList function 111
WindOrigin procedure 111
Window menu 22
windows

file 12
Get Info 20

'WIND' resource editor 30-31
'WIND' resource type 30
WindRetum procedure 111
WritePreferences procedure 123

X, Y,Z
XXXXEdit me 99

('
"

Index 155

(~ .c. mE APPIJ! PUBUSHING SYSTEM

This Apple manual was written, edited, and
composed on a desktop publishing system using
Apple Macintam~ computers and Miaosoft~ W~
software. Proof and final pages were aeated on Apple
laserWriter~ prin1ers. Line art was aeated using
Adobe illustratalll• P05ISC~, the page­
clesaiptk>n language for the LaserWriter, was
developed by Adobe Systems Incorporated. Screen
shots were taken with FlashIt

Text type and display type are Apple's corporate font,
a condensed version of Garamond. Bullets are rrc
Zapf Dingbats~. Some elements, such as program
listings, are set in Apple Courier.

Writer: Jon Singer

Developmental Edila: Silvio Orsino and Steve Hiatt
illustrata: Deb Dennis and Sandee Karr
Production Supervisor: Renee EkIeberry

Special thanks to:

Nobu Tose for FlashIt

Mikel Evins for DreadF.dit.

The ResEdit engineering team, particularly Peter, Craig, and
Alexander, who helped the author mae than he can say.

Developer Technical Support at Apple for assistance above
and beyond the call of nature, and for CIarus the DogCow.
MooflTM

