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Schedule for Today
First Day of Course

* Background Information
* Program Components

* Global Addressing

* Stack Frames

* Calling Conventions
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Background Information

* Hardware Architecture

— Review features that influence software architecture
* Miscellaneous

— Software architecture derived from AIX

— Assembly programmers must do what compilers do!

— We're only talking about 32-bit software
* Special code can take advantage of 620
* No fully 64-bit O/S planned yet
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* Effective Address:
— The “register size” addresses used by PowerPC software.
e Virtual Address:

22 bt

TO kit )
— A “large” address used by PowerPC hardware during address

translation.
* Volatile Register:

— A register whose contents need not be the same on return from a
call as before.
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CPU Architecture

ey Instruction Set Features

* Three basic units = cheap branches
* Typical load/store architecture
* Generally three register operands
* Fixed length instructions
— Few memory addressing modes
* 32 bit only
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CPU Architecture

ey Instruction Set Features

* Lots of registers

— 32 General Purpose (32/64 bit)

— 32 Floating Point (64 bit)

— 8 Condition Code “Fields” (4 bits: LT, GT, EQ, SO)
* A large set of (mostly) reduced instructions
» Effective Address versus Virtual Address
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* Unconditional Branchgs/ ﬂr& ~Hszlo LS
— PC relative, 24-bit immediate displacement (+32MB)
* Conditional Branches
— PC relative, 14-bit immediate displacement (+32KB)
— Indirect through Link or Count Register
* Displacements
— Are signed and in words (instructions), not bytes
— May be taken as absolute address (lowest & highest 32xB)
* Calls save return address in Link Register
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CPU Architecture

Data Ad

ressmg Modes

* Base + Displacement Addressing Mode (D-form)

— Base: Any GPR other than RO (RO = zero for base)
May be updated with Effective Address

— Disp.: 16-bit signed immediate value (+32KB)
* Base + Index Addressing Mode (X-form)
— Base: Same as D—form
— Index: Any GPR (including RO)
* Large displacements need multiple instructions
— Construct absolute address
— Construct 32-bit offset

— Load pointer
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CPU Architecture

* Operand availability

* Instruction latency

* Hardware Implementation
— Number of functional units
— Register renaming support
— Special instruction support
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GPR Usage

* Size is 32 bits or 64 bits
* Volatile Registers (may be clobbered by calls)
- 0 = Scratch, glue, prologues, and epilogues
— 3:10 = Scratch, “integer” and composite parameters
— 11:12 = Scratch, glue, prologues, and epilogues
* Nonvolatile Registers (preserved by calls)
- 1 = Stack pointer
- 2 = TOC pointer
— 13:31 = Local storage
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* Size is always 64 bits
* Volatile Registers

- 0 = Scratch

— 1:13 = Scratch, floating point parameters
* Non-volatile Registers

— 14:31 = Local storage
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CR Usage

* Size is always 32 bits (8 fields of 4 bits each)
* Bits set as “LT, GT, EQ, SO/FU” or “FX, FEX, VX, 0X”
* Volatile Fields
- 0 = Scratch, set by integer Rc
- 1 = Scratch, set by floating point Rc
—  6:7 = Scratch
* Non-volatile Fields
—  2:5 = Local storage

& Apple Confidential
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‘Register Conventions
Special Register Usage

FPSCR status bits are volatile, control bits are nonvolati
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* GPR to GPR

* GPR to/from LR, CTR, XER, and CR fields
* FPR to FPR

* No GPR to/from FPR

* CR bit to bit and field to field
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Register Conventions

* Questions?

PowerPC Runtime Architecture R&D University
Version 1.1 Alan Lillich

& Apple Confidential
11-10--92

16

16



Program Compone
Basic physical building blocks

* Differentiated by:

— Usage
* Applications
* O/S and Toolbox
* “Extensions”

— Capabilities
* Supports static data (“AS world”)
* Size limitations

— Storage location and form
* In resource or data fork
* Type and number of resources
* Internal format of storage
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Program Component

eflnltlons

» Application:
— Software launched by the Finder to process documents.
* Shared Library:

— Software used at link time to resolve external symbols and again
(automatically) at runtime to provide implementation of those
resolved symbols.

» Extension:

— Software that is neither an application nor a shared library.
Activated manually at runtime. Examples XCMD, LDEF, DRVR,

INIT, CDEV. 7 pro
.,
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'680x0 Components

 Usage determines capabilities and form
 Application
— Collection of interdependent “CODE” resources
— Has a static (A5) world
* O/S & Toolbox
— Amalgam of ROM resources, INITs, patches, etc.
— Lacks a static world
* Extension
— Usually a single stand-alone resource
— Lacks a static world

PowerPC Runtime Architecture R&D University & Apple Confidential 1 9
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a Fragnt

* Fragment:

— A logical packaging of software encompassing common aspects of
applications, shared libraries, and extensions.

« Usage influences storage location and external attributes
 All fragments have important common capabilities

— Code and static data

— External interface

— Automated connections to other fragments
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PowerPC Components

* Container:
— The physical storage of a fragment.
 Storage location can be anywhere
* Internal storage formats hidden by loader API

* Linker creates fragments

— One link = one fragment G
et MQ(_ m’sﬂfy\kyﬁ;}
— Fragments are not segments <
* Section:

— A region of memory occupied by part of a loaded fragment
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CFM & CFL
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* Logical/physical separation
* Code Fragment Manager (CFM)
— Manages contexts and instances
— Manages export/import tables
— Uses CFL to process container
* Code Fragment Loader (CFL)
— Provides API to process container
— Fully shields higher layers from container format

— Finds proper loader at runtime
— PEF and XCOFF loaders are standard
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Similar Organization

« Single contiguous piece of storage
* Headers are of fixed length
* Typically three sections:

— Code (loaded)

— Static data (loaded)

— Loader information (not loaded)
* Loader information describes

— Loaded sections

— Exports & Imports

— Runtime relocations
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PEF & XCOFF Contalners

Differences in Usage |

* XCOFF headers and sections tied to UNIX memory model
* PEF truly supports multiple code and data sections
* PEF is defined only as an executable format
— No defined sections for linker relocations, debugging, etc.
— Could be extended, but there are no plans to do so
* Tool usage
— IBM'’s linker only generates XCOFF
— Apple's linker initially generates XCOFF
— A conversion tool reads XCOFF and writes PEF
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XCOFF Containers
‘Differences in Fea

* PEF has smaller headers
* PEF supports ...
— ... data sharing attributes
— ... packing for initialized data
— ... bidirectional version checks for imports
— ... initialization and termination routines
* PEF has a dramatically improved loader section
— Tremendous savings for runtime relocations
— Better organization for export/import tables
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'PEF & XCOFF Container

Loader Section Improvements

* Runtime relocations (all are 32-bit pointers)
— XCOFF uses 12 bytes per relocation
— PEF uses one 2 byte item for many relocations

— PEF takes advantage of relocation patterns
* Linker groups all transition vectors together
* TOC pointers to imported symbols are often contiguous
» TOC pointers to own code or data are often contiguous
* Initialized data like C++ VTables include relocation
» Export/Import tables
— XCOFF merges, PEF organizes by usage

— PEF contains hash tables for CFM
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PowerPC Components

Everything is a Fragment
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PowerPC Components
ragment Usage Differences

 Application
— Extra information in “SIZE” resource, etc.
— Stored in data fork of application file
* Shared library
— Connected automatically at runtime to clients
— Often stored in data fork of library file or ROM
* Extension
— Connected by explicit request
— Often stored in a resource

PowerPC Runtime Architecture R&D University
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PowerPC Components

verythlng is a Fragment

« All fragments are first class programming citizens

— Source language usage is not restricted by fragment usage
* Stored in containers with flexible format

— May be in data fork, as resource content, in ROM

— Appropriate low level loader found at runtime

— PEF and XCOFF loaders are standard
* Loading API provided by Code Fragment Manager

— Used by Process Manager to launch applications

— Directly callable to rﬁg%aﬁ@ndle extensions

— CFM handles automated connections and other preparation

PowerPC Runtime Architecture R&D University & Apple Confidential
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Capabilities of Frag

' very Fragment Has

* “Loaded” sections of code and static data
— Transparent static world switching on routine calls
* Exported symbols for others to use
— Defined manually at link time
* Optional initialization, main, and termination routines
* Imported symbols from shared libraries
— Created by linker during symbol resolution
— Connected by CFM automatically at runtime

PowerPG Runtime Architecture R&D University & Apple Confidential 30
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Capabilities of Frag

Loaded Section

* Code
— Pure code = ROMable & directly pageable
— Position independent

* Code can be placed anywhere = no absolute branches in code
* Data can be placed anywhere = no absolute data addresses in code

* Static Data
— Contains pointers for position independence of code
— Flexible sharing of data sections:
* Global: One system-wide copy
* Context: One copy per context (context = application; the norm)

* Never: Fresh copy for each load request
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Fragment Reality Today

and in the Immediate Future

* Conventional languages need only two sections
» At most one section of code per fragment

— Not intended for 680x0-style segmentation

— Data—only fragments are useful
* One section of static data

— Includes both “.data” and “.bss”

— Code-only fragments are not “conventional”
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and Imports
Both are created by the linker

* Exports

— Definition: a symbol provided to the outside world by a fragment.
It has a name and location (section + offset.) Used by imports. May
be looked-up manually.

— You give linker a list of global symbols to be exported
— Both routines and static data can be exported
— (FYI: Actually only data symbols are exported)
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* Imports

— Definition: a reference in a fragment to an export from a shared
library. Created at link time as part of the esternal symbol
resolution. Final address binding is automatically perfrom at
runtime.

— You give linker shared libraries to link with

— Shared library exports used for global symbol resolution
— Symbols resolved to exports become imports

— Imports recorded as library—name/export—-name pair

— Linker resolves symbols, CFM binds addresses

PowerPC Runtime Architecture R&D University & Apple Confidential 3 4
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Exports and Imports
Linker Creation of Imports
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* To load a fragment, the Code Fragment Manager
— Finds and loads the necessary imported libraries

* Full closure of libraries is loaded (not “on demand”)
* Runtime library must be compatible with linktime library

— Binds imported symbols to actual addresses of exports
* Compatibility Checks

— Library version recorded by linker, checked by CFM

— All imports must be bound at runtime, except ...

— Specific imports may be named at linktime as “soft”

* Allowed to be missing at runtime
* Programmer is responsible for checking before use
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nonmsecnal Routines

* Main
— Useful for applications and single-entry extensions
— Returned by CFM when loading a fragment
« Initialization
— Allows self-initialization of static data before use
— Called automatically by CFM when data sections are created

* Called in order of import dependency
* Order may be explicit for mutual dependencies

* Termination
— Obvious counterpart to initialization routine
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Building a Shared Library
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‘Building a Shared Library
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Fragments in Action

( | Building an Application
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Fragments in Action
uilding an Application
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Fragments in Actlon
pp,Shared les & Extensmn

StartApp StartApp

GetCommand
j StopApp

data for data for ]
Hondolrite|HondoDraw

InitGraf
WaitNextEvent

MenuSelect
ExitToShell

DrawText

data for data for |
HondoHlrite|HondoDras :

PowerPC Runtime Architecture R&D University
Alan Lillich

Version 1.1
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GetNewDialog
GetNewWindow
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_7 Fragments in Actlon

( Extension EXp ot"FllAPl ——

OpenChannel
CloseChannel
TransferData
PacketAccount
ErrorCount

( PowerPC Runtime Architecture R&D University
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_Fragments |n Act|on

App |h CustExensmns )

GetCommand
TrackMouse
SetPenColor
SetFillPattern
MoveGroup

OpenTool OpenTool OpenTool

CloseTool CloseTool CloseTool

ActivateTool ActivateTool ActivateTool
PowerPC Runtime Architecture R&D University Apple Confidential
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PowerPC Fragm

* Questions?
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»Global Addressmg

"The Table of Contents (TOC)

* The TOC i ...
— The code's gateway to the world
* More akin to personal address book than table of contents
— Buried in the static data
¢ Addressed through a dedicated register (R2 a.k.a. RTOC)

StartApp InitGraf

GetCommand WaitNextEvent

LNew

DrawText

PowerPC Runtime Architecture R&D University Apple Confidential
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Global Addressi

* The TOC collects pointers to support addressing model
— Localizes memory modified during loading
— Static data is addressed indirectly through the TOC

— Imported routines are called indirectly through the TOC

* (We'll see later that they actually use pointers to data to do this)
-4

data data X
—
-
k
a TOC
b pu—
[+
Toc =
»: data z
TOC
PowerPC Runtime Architecture R&D University & Aople Confidentias 4.0
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obal Addres

The Table of Contents (TOC)

» Explicit (source) pointers do not use the TOC
— Initialized static pointers get relocated (e.g. C++ VTables)

data |
- a—
P ] >
TOC dala X
TOC
PowerPC Runtime Architecture R&D University & Apple Confidential 50
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Global Addressing

The Table of Contents (TOC)

* The TOC supports ...
— Purity and position independence of code
— Separate static worlds ...

* For separate fragments
* For separate instances of one fragment

— Addressing of large numbers of static data items
— Unbounded size for individual static data items
* The TOC really belongs to routines, not fragments
— It is where RTOC points when a routine is called
— RTOC is switched as part of cross-TOC calls
— A linker is free to build multiple TOCs in one fragment

PowerPC Runtime Architecture R&D University & Apple Confidential 5 1
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Global Addressing

The Table of Contents (TOC)

* Compilers create some TOC entries, e.g. C uses:
— One pointer for each “extern” variable
— One pointer for a compilation's pool of “static”” variables
— One pointer for each routine whose address is taken
* Routine pointers are to “Transition Vectors”, not code
* Linker creates other TOC entries:
— One pointer for each imported routine
* Linker does final arrangement, discards unused pointers
— All offsets to TOC entries are fixed after linking
— TOC entries are not created at runtime
— TOC entries are initialized/set/filled—in at runtime

PowerPC Runtime Architecture R&D University & Apple Confidential 59D
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‘Global Addressing

Transition Vector (TVector)

* Two or three word structure:
— Entry point
— TOC address
— [Environment word]

* Created by compilers

* In static data, same fragment as code

* The address of a routine is the address of the TVector
— Export TVector address, not code address

* Not the “Routine Descriptor” of Mixed Mode
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_,_Fragments in Action 4

"App & Friends, with TOC

acToolbo

data for
NondoDras §

TO0C

data for
Hondolrite
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Global Addressing

* Questions?
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Calling Conve

 Stack Usage

— Radically different from 680x0 approach
* Parameter Passing

— Largely register—based, influenced by stack model
* Code Generation for Calls

— Compiler & Linker cooperate on cross—TOC calls

PowerPC Runtime Architecture R&D University
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Stack Usage
 680x0 Stack Model

¢ Conventional grow—down stack

— Separate frame pointer (FP) and stack
pointer (SP)

— Parameters above FP, locals below FP
— Push and pop at will using SP

* Pascal and C have different protocols
(Unnecessarily!)

— Order of parameter processing

— Which side pops parameters

— Where function results are returned
* Hardware enforces 16-bit alignment

— 32-bit alignment preferred

PowerPC Runtime Architecture R&D University Apple Confidential 5 7
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Stack Usage
PowerPC Stack Model

¢ Still a grow-down stack, but ...
— Single top of stack pointer (SP)

— Special areas for linkage, parameters,
locals, etc.

— No “trivial” pushing and popping

* Uniform usage for all languages (We
hope!)

* Alignment enforced by software

* Organized to reduce common—case
memory references

PowerPC Runtime Architecture R&D University
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«

PowerPC Stack Frames

Contents of Specnal Areas

* The “RedZone”™
* Callee's linkage area
¢ Callee's parameter area

CALLEE n + 1

* Callee's local variables

* Callee's FPR/GPR save areas
 Caller's linkage area

* Caller's parameter area

CALLEE

CALLER

PowerPC Runtime Architecture R&D University
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PowerPC Stack F

rames

| SackLinkage Area

Set in own area at frame creation| @ Saved SP

| 4 saved cr
8 Saved LR
Reserved (hot used at present)| 12 reserved

U

Used by “patching” mechanism| 16 reserved
Set ih own area by cross-TOC glue‘ZG Saved RTOC

8 Saved SP
4 Saved CR
8 Saved LR
12 reserved

Set ih caller’s area by callee’s prolog‘
Set in caller’'s area by callee’s prolog

16 reserved
28 Saved RTOC

PowerPC Runtime Architecture R&D University
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PowerPC_»Stack Frames

‘General Responsmllltls -

* Caller prepares parameters then
performs call

* RTOC saved in caller's linkage area
(by glue or caller) L

* Callee saves link and condition
registers in caller's linkage area

¢ Callee saves nonvolatile FPRs and
GPRs on the stack —

¢ Callee allocates frame, preserving
alignment and linkage (old SP)

L4
* Order of callee actions is by ook
convention, not requirement

o 20

&
3 o

o

CALLEE n + 1

CALLEE

CALLER

L EY

PowerPC Runtime Architecture R&D University Apple Confidential 6 1
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PowerPC Stack Frames

Alignment Issues

¢ Alignment is maintained totally
by software

* GPR Load/Store multiple have
hardware impact

CALLEE n + 1

— Require “natural” alignment

CALLEE

— Prefer quadword (16-byte)
alignment at high address end

— Instruction:

stmw start_reg, start_address &
@

* SP presumed to be kept 1%
quadword aligned s
PowerPC Runtime Architecture R&D University
Version 1.1 Alan Litlich
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PowerPC Stack Model
" S rin

* Callee saves & restores almost
all nonvolatile registers
— Link (LR) & condition (CR)
registers in caller's linkage area
— “High” GPRs (13-31) & FPRs
(14-31) in own save areas

* RTOC is special

— Saved “between” caller and
callee in caller's linkage area

CALLEE n + 1

CALLEE

CALLER

— Restored by caller immediately ]
upon return oot

* Leaf routines use “top” linkage
area and the RedZone™

(R X .

PowerPC Runtime Architecture R&D University Apple Confidential 6 3
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PowerPC Stack Model

~Interrupt Issues

* The RedZone™
— Must allow for maximum use
— Decrement SP by 224 before using stack
¢ 19x4 (GPRs) + 18x8 (FPRs) rounded to quadword
* Alignment
— Assume preserved by PowerPC code
— Assume not preserved by emulated code

— Save current value and clear low 4 bits of SP
* Don't save old SP on stack without skipping RedZone™ first!

PowerPC Runtime Architecture R&D Unlversity Apple Confidential 64
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_ C»al_l_i»ng Conventions

rtr Pasing

* Single parameter area in each

frame

— Used by caller to prepare
parameters

— Used by callee to access
parameters

— Large enough for largest
parameter list

PowerPC Runtime Architecture
Version 1.1

R&D University
Alan Lillich
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Parameter Passing

* Layout parameters like a record
— Leftmost parameter as first “field”
— Each field aligned to a word boundary
— Small “integers” extended to a word
— Composites not affected internally
* Some parameter values passed in registers
— First 8 words mapped to GPRs 3-10, except ...
— First 13 “visible” floats passed in FPR 1-13

PowetPC Runtime Architecture R&D University & Appie Confidertial 56
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Calling Conventions

unctloesults

 Simple function results in R3 or FPR1
* Composite results of known size
— Caller allocates space for the result
— Address of result passed as implicit leftmost parameter (R3)

PowerPC Runtime Architecture R&D University & Apple Confidential 67
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Calling Conventions

GPR and FPR examples

void foo (int il, float f1, do
unsigned char c1,

b o

1e dl, short sl double d2,

unsigned short 32 ffoat f2,

57

R f%?)&@ %

int i2);

PowerPC Runtime Architecture
Version 1.1

R&D University
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Calling Conventions

Parameter Hacks for C

* Variable numbers of parameters =
Minimum of 8 word parameter area
— Callee doesn’t know how many were passed
— Callee saves R3 through R10 into the parameter area
— Callee walks through parameter area to access values

[
%

High +

PowerPC Runtime Architecture R&D University @& Apple Confidential 6 9
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Calling Conventions
Parameter Hacks for C

¢ Lack of prototypes =
Floats in both GPR and FPR

— Caller doesn't know if callee expects floats or not
— Callee always knows what it expects

EITHER

PowerPC Runtime Architecture R&D University
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void Sierpinski (short mode,
{ BitMap *datBits)
short i, dh;

short x, y, x0, yO0;

B e B s 000

: lh'R3I,-4(SP) 0x00000004
stw RO,8(SP) 0x00000008
stwu SP,-96(SP) 0x0000000c
stw R3,120(SP) 0x00000014
stw R4,124(SP) 0x00000018

A0

({ PowerPC Runtime Architecture
.t Version 1.1

R&D University
Alan Lillich
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[Calling Conventions

* Local call, a ‘“‘compiled—in” call without a TOC switch

— Direct branch to callee

PowerPC Runtime Architecture
Version 1.1

R&D University
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‘Calllng Conventlon‘ I

: C Gnertlon for Calls

* Non-local call, “compiled—in” call with a TOC switch
— Compiler prepares, linker finishes cross—TOC connection
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Calling Conventions

* Pointer-based call, a call through a routine pointer
— Very similar to cross—TOC case
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* Cross-TOC Call Details

* Compiler generates RTOC reload slot w/ NOP

* Linker “fixes” RTOC reload, appends custom glue
e Linker may create TOC pointer to TVector

* Optional ‘“‘environment” word ignored
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glue:

* Cross-TOC Call Details
» Compiler generates RTOC reload slot w/ NOP

* Linker “fixes’” RTOC reload, appends custom glue
* Linker may create TOC pointer to TVector
* Optional “environment’ word ignored
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Code Generation for Calls

¢ Pointer-based Call Details

* Compiler calls standard glue,
passing TVector address

* Environment word passed in R11
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ode Generatio

* Pointer-based Call Details

* Compiler calls standard glue, passing TVector address

* Environment word passed in R11

SegmentA:

Sierpinski's d

ata

TOC
T.SegmentA:

AN

SegmentA's code SegmentA's da
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TOC:
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* Questions?
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Had Enough?

End of First

* Tomorrow's agenda

— Object modules

— IBM's “dis” tool

— Sierpinski example

— Shared libraries

— System software issues
* Questions?
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Day 2 Content
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Schedule for Day 2
Second ay of Course

* Object modules

* IBM's “dis” tool

* Sierpinski example

* Shared libraries

* System software issues
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Object Modules

File Formats

* Highlights, details later
* Compiler output is XCOFF
* IBM linker output is XCOFF
* Preferred Macintosh executable format is PEF
— Format defined by Apple to address XCOFF problems
— Generate today via XCOFF=PEF conversion tool
— Very similar in overall concept to XCOFF
— Considerably smaller and faster to load
— More expressive than XCOFF for runtime needs
— Lacks defined object module capabilities

PowerPC Runtime Architecture R&D University
Version 1.1 Alan Lillich

& Apple Confidential 83




Symbol Names & Classes

* Symbols are identified by both name and class
— Written as “name{class}” or “name][class]”
* Common symbol classes:
— PR = code (program)
— RW = initialized static data
— BS = uninitialized static data

— UA = unassigned (static data)
— DS = transition vector (descriptor to IBM)
— GL = linker created call glue

PowerPC Runtime Architecture R&D University
Version 1.1 Alan Lillich

— TC = TOC (note special TOC{TCO0} symbol)
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Object Modules
CSECTs (Control Sections)

* Similar to MPW “modules”

* Linker includes only referenced CSECTSs

* Have name and class like other symbols

* Note IBM compilers generate only one code CSECT!

PowerPC Runtime Architecture R&D University & Apple Confidential 8 5
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| Th “ t”acro |

e Format:

label .tc name, conternts

* Equivalent:

.csect name{TC}
label .long contents
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* Questions?

PowerPC Runtime Architecture R&D University & Apple Confidential &7
Version 1.1 Alan Lilich 11-10--62

87



‘Review of Yesterda
Sierpinski Example

* (See handouts)
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‘Shared Libraries

* Why they're a Good Thing
— Smaller executables
— Facilitate updates to common code
— Foundation for software components
— Simplify concurrent development

* Important features
— Ease/Transparency of use
— Automatic and on—demand connections
— Access to language features
— Sharing of code at runtime
— Flexibility of data instantiation

PowerPC Runtime Architecture R&D University
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Shared Libraries

* Available Implementations
— CFM on PowerPC
— SLM on 680x0
— Dinker on 680x0

¢ Feature Matrix

PowerPC Runtime Architecture R&D University & Apple Confidential 9 0
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:‘_Shared Libraries

Status of CFM & CFL

* Intrinsic part of PowerPC runtime
* In operation today
* Fully source transparent
* Most flexible data support
» Additional Features
— Bidirectional version checking
— Supports alternate internal models
— Integrated with Mixed Mode
— Partial library updates

PowerPC Runtime Architecture R&D University
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hared Libraries

Status of SLM

* Hacked on top of 680x0 runtime 5:
 Will layer on CFM for PowerPC :
* Almost source transparent H
* Additional tools to simplify C++ work

* Only supports system—wide data today

PowerPC Runtime Architecture R&D University & Apple Contidential 9 2
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v_z_Shared Libraries

Status of Dinker

* Hacked on top 680x0 runtime
* Unsupported effort from ADG

PowerPC Runtime Architecture R&D University & Apple Confidential 93
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What to Expect (Nay, Demand)

* Common Capabilities and API
— Transparent use for C
— Flexible data instantiation
— Automatic and on—demand loading
— Iteration through entry points
— Source portability
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_}:_Sha d Libraries

* Questions?
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» Access to O/S and Toolbox
* Mixed Mode
* Micro-kernel
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System Software Issues
Acess to o/S and Toolbox

* “0Old modified”’ API today for compatibility
— Only changes are for callbacks, due to mixed mode
— Low memory globals still around and switched
* New API coming for growth & evolution
— Will provide better error handling
— Will allow transition to preemptive scheduling

PowerPC Runtime Architecturs R&D University & Apple Confidential Q7
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680x0 stem Services

* Parameter Passing
— Pascal conventions
— Assembler conventions
* Invocation
— A-Line trap, possibly with selector
— Inline expansion, e.g. for low-mem “functions’
— JSR to glue

’
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Ol‘ stem ervices

* Services invoked as normal routines, not via traps
— Standard parameter conventions
— Standard routine call

* Packaged as one or more "shared libraries"
— Connections via standard fragment imports for code
— Low memory global locations hidden from client

PowerPC Runtime Architecture R&D University & Apple Confidential QO
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System Software Issues
Mode

Mixe

» Allows mix of emulated and native code
* Static division at the fragment level
— “Fat” files and resources contain both forms
* Dynamic division at the procedure call level
— 680x0 side may be ignorant
— PowerPC side must be aware
» API changes for callback pointers
* New service for callback invocation

PowerPC Runtime Architecture R&D University
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Mixed Mode

Routine Descriptors

* For flexibility use mixed mode descriptor pointers, not C routine
pointers (to PowerPC Transition Vector)

* Dispatch service accepts calling info separately

{
‘( PowerPC Runtime Architecture R&D University & Apple Confidential 1 O 1
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Mixed Mode
t's all ter i to Mie ode

* Except for simple tools, yes
* This is the external view for developers
* More internally to support O/S and Toolbox
* Big goals
— Simplicity for developers
— Invisibility for end users
* (OK, the debugging story is not the best)

PowerPC Runtime Architecture R&D University & Apple Confidentia 1 )2
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‘System Software Issues
Micro—kernel

* Won't be in first PowerPC release
* Features will appear over several releases
* Won't change low-level runtime model
— Nature of fragments (sections, exports, imports)
— Global addressing (TOC, TVectors)
— Calling conventions (parameter passing, register saving)
* Will eventually change system software model
— First micro—kernel release supports faceless background tasks
* Preemptively scheduled, probably just one address space

— Toolbox will not be re—entrant & preemptive until later
* Process Manager & cooperative switching will be with us for a while
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S stem Software Issues

* Questions?
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Th-Th-That's all Folks!

* Any Last Questions?
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PowerPC Native Runtime Architecture  Draft 6, July 27, 1992

PowerPC Native Runtime Architecture

This is the specification of the native runtime architecture for Macintosh programs on the PowerPC. It
deals only with the more primitive levels of the programming model. It specifically does not deal
with the organization of the Toolbox, internals of the heap implementation, etc. This is written for a
technical audience. Although written by the PowerPC Native Runtime team, the architecture is
intended to be CPU neutral, presuming only a large ﬂat address space and paged memory management.

Please send comments to Alan Lillich
AppleLink:  A.Lillich
QuickMail: Development Tools:DSGMAIL
Telephone: 408-862-0029
Mail stop: 37-R

Revision history:

29-Sept-91 Initial release to PowerPC Runtime and DTE teams only.

04-Oct-91 Expanded in an attempt to at least note all important issues. Sorry, no change bars.
14-Oct-91 Reorganization of contents to focus more on specific native issues. Still no change bars.
11-Nov-91 Add details on stack frame, regxster usage, and parameter passing.

27-Jan-92 Add shared library information, improve illustrations, reformat slightly.

27-July-92 Major revision to improve content and style.

‘ .
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I. Overview

This nete déscribgs the runtime model for Macintosh programs on the PowerPC. It deals only with
the more pnm;twedevels of the programming model. It specifically does not deal with the
orgamzatxon of the Toolbox mtemals of the various managers, etc. Our working definition of runtime
architecture covers ba51c orgamzanon and protocols, not specnflc services. Of course services must be
documented, butaeiasewhere thanktius archltectural def: uMon

SOMIIEW £ AT DRt

Althaugh designedJ by the PowerPC Natlve Runn’mewém*and containing PowerPC code fragments,
the system archrtectimre is mtended to 'bée portable to-other processors. The design is biased towards
systerns with hm;c‘lware memory management, ignoring the problems of real memory systems with small
physical memory. This bias is most obvious in the removal of software controlled code segmentation.

This is intended as design documentation for the implementors of programming tools and system
components such as the runtime loader. It inay also ser 2 as background for application and library
authors. -Thei infor matwn presented may be redundant ‘cr many, but this is written to be a standalone
documenh 'th,matenal covered proceeds roughly from the more general to the more specific, from the
larger gramed to the smaller grained. The more general topics, such as use of address space, apply to
user level code and not necessarily to. prwxleged level code‘ More detailed topics, such as procedure
calling comlentxons, apply to both. D s R T

This is a standard model, no:a. 9(1u11ec‘ mc Zel. It is sufficient for the needs of current procedural
languages It defines the intcroperat ™+~ Zel zmong languages aad between user code and system
services. Additional Jexibility is cesigried in'c low levels of the impiementation to support the
mtemai needs of languages that require a2 Jii2rent internal model. These areas are only briefly
identified kere, Full detanls «r= found 'n the documentation for the FowerPC Code Fragment Manager
and Code Fragment Loader. PERSOSSE

Much of the terminology and concepts come stralght from the 1BM implementation of AIX on the
RS/6000. They have already developed adequate solutions to several problems. Following their lead
also snmphﬁe,s use of the AIX tools for initial prototyping and testing. We deviate ftom the AIX usage
only where it is inadequate for our needs or where antique UNIX baggage can be disposed of at low cost.

‘The code fragments shown here ariz fordllustrationipurposes’afid represent the PowerPC based
Macintosh product. The actual sequenmsmsﬁd:tnay:befshghtly different. Compromises may also be
made for higher compatibility with AIX ta redw«:e;:txme;wmadcez:t Use'of the AIX model will be
‘necessary dun,ng higeeﬁrlygdevd@p gmc)permdﬂ 92 racleve tet nobmdil o

Grolnisd seitgere siemn s
T neiisibar neienoix

Vi

. uJ" - o
g iioe 10LUBDTT

‘ ;{éjeﬁﬁ@%ﬁw model.

H\u ;v,
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II. Requirements & Goals

These are the project goals from the specific perspective.of the N&t;veRumxmeﬂli(ﬂnh “Theydo ot i
minimize the work and responsibilities of other groups, but should: mm(imlze ‘the ) ‘été-'ll\lgrouprmc o10m o}
productivity and product quality. oo SaET LT r?(; =L e rou o6t 3*!3 10 sOEBSIALYIG

SOOI B ) ESEAEY vl giov o0 o1ainolilts

Requirements are defined as those items for ,w,lmch shppagg  or ;al;teratmn Mould ‘havssignificantrruoob
impact on the initial PowerPC products. Requirements would not be modified without visible warnings
to project management. Goals are those items that swe sonsider important but which: may-beasiodified: 1
over time for pragmatic reasons. Changes would ke publicly discussedsbut without the .ﬂaveﬂ amd ﬂags‘(a srﬁ
of requirements changes.

Requirements:

 Ship product by the end of Q1 1994-;* :

* Design a forward looking execution envifonment forhafive programs. - -
« Focus primarily on future hardware platforms; peﬂtaps‘excltrdmngay’ s low end !
« Allow reasonable source portability for well behaved code.

Goals:

* BeCPU and operating system kemeLneut
* Minimize historical pollution. =

« Reduce difficulties for other elements of the PowerPC Task Force.
* Maximize portability of existing Magintosh source-and images., -

!' 10

Strategies:

* Make minimal assumptions about the Q¢S:providedrmwiembry brrsdeli s o1 nworiz ?“{‘m‘iﬁ it 9b0> o T
* Provide fast register based subprogram célling convﬂluonsrﬂsed)biy@wﬂanguéges - o
* Provide an easy to use and powerful shaseddibrargmiecharismo? A1A A1 e ardyind T of

Febtel dw?m" i

* Use subprogram calls to shared libraries for system servncbs*:msxe‘emﬁ@f“@%ewﬁédi?ﬁ%ﬁéittﬁéﬂ” b (162292

* Define full user access to CPU features, e.g. for arithmetic exception handlers.
* Propose a unified application software extension mechanism.
* Follow existing AIX Stamf@megﬂasmahhw teilsmimgim-s j@p Lf d“" lofueEs Yo 0d

The first requirement is by far the most important, deservmg of its separate llstmg Our mmal
success or failure will be heavily judged by this although over the longer term other issues may gain
importance. A primary tactic is to adopt existing R$/6000 AIX solutions where rcasonable.

JCUE JRSU AR r 5
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The next two requirements are closely related. The first is more of an internal issue. We must design
a system that will carry Macintosh forward for another decade. The second is more external,
recognizing that the base level of hardware will continue to improve rapidly.

Two key aspects of this forward view are provisions for shared code with dynamic binding and fast
register based calling conventions. The first allows Apple and ISVs to deliver shareable images of
common code to end users and have applications co (ﬁiete their binding to shared routines at load time.
The second takes advantage of the large register sets fouind.in modern CPUs to improve general
performance Combined with shared code and dynamxc bmdmg, fast calls allow dramatic improvement

" in system service response over a trap based mechanism. There is nothing to prevent the use of traps for
system semces, but they should notbe necessary and we recommend that they not be used.

The last: requlrement is admittedly a declaratxon of freedom as much as a requirement. The source
level portability of well behaved code is important, but most code should be dealing with internal
algorlthms or Toolbox We w1ll strive for portability but not enslave ourselves to 100% portability.

° e ,k‘,;‘;";; :"""'.‘ i 3%

The first goal is almosta requ:rement bubdowngrade& twa goal since we won't be immediately
proving our neutrality. Also, some of the architecture defined here is inherently CPU specific, for
example the subprogram calling conventions. We intend to avoid concepts that could not be reasonably
implemented on other platforms, especially 68030 based Macintoshes. (By which we mean 020 with
PMMU,.030, and 040.) Being operating system kernel neutral emphasizes that the runtime architecture
is largely layered on top of the kernel and should not make numerous or highly specific demands on the
kernel B L e

r.,,..nruuM -
R

o p—

Thesecond ggal comple’rhen%’s {ﬁe "forwgrcz ionking” requrremegt We should not carry forward all
ot ihe. exish arch\tecture smxpl ; becauseyu: exists. Pragmatic demands for backward compatibility
“imay require, some amotaitiof lusténc:ai pol‘rutxon but this should be isolated into specific toxic waste
dumps with hopes of everitual ciéanup. - L

The last two goals mainly say that this is not a research project and we should not fixate on an
isolated perfection that risks global failure.

S
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III. System Memory Model

Use of Address Space np RS

The use of address space is quite simple, flexibility for the O/S kernel is maintained by makmg as
few assumptlons as possible. Programmers should expec}' tg see a large flat address spacé with “register -’
size” pointers. There may be a separate address space £(rir gach application, but this is not guaranteed.
The address space will be large enough to give each apphcahon plenty of elbow room, even if the
address space is shared. The runtime model does not presume that common structures are-at the same ‘
logical address for all running applications as is done on many UNIX systems Wwild apphcatlons m|ght
clobber innocent bystanders. Cang oanEd : B

s “
. EXTaE I
HETRINE]

The model is biased towards systems with virtual memoryqbut does not require it. We mtentlonally .
ignore the problems of small real memory systems that led to the adoption of software based. codé o o 2
segmentation in the current 680x0 model. We do not requige thatconcurrently executmg applications: ‘
have independent address spaces, but we don't prevent that either. Applications should not make °
assumptions about whether memory is real or virtual nor about the number of address spaces. Some
protection may be provided, e.g. that an application may not overwrite its code or that a section of b
memory belonging wholly to one application may not be read or written by z:mothe”,rl T DTN

Explanatory Note
To date only 32-bit operation has been planned Except when explicitly., noteqjtmgﬂqmm {0
paper in only discussing 32-bit operation. Although M*bttﬁmp!eménfﬁtlons 9j the s T e
PowerPC are already underway, full 64-bit bperation is wotﬂplannéa‘)ak’ 512 My o8 gmc A
of the runtime architecture has obvious extension into a wholly Mibx{‘véor d But nosuch "2 I
operating system support is planned at present. lexted 64-bit operatwn will be

allowed, this is described later.

:5{ 584 ng{

The address space seen by an application is divided into large blocks of contiguous storage, called
sections in this paper. A section of memory is characterized by:

« a base address and length

« whether it contains code, read-write data, or read—only data

< whether it is private or shareable

* the form and location of backing store (none, paging file, application file, etc.)

Shared memory sections are guaranteed to appear at the same logical location for all concurrent
users. This allows the use of normal linked data structures and passing of pointers among clients. The
operating system will choose the address at the time the shared section is created. [f the contents of a
shared section are to be saved to disk and later recreated it is the programmer’s responsibility to
preserve all embedded pointers. The operating system may allow you to request a specific address
when creating a shared section, but such requests may fail even if that space is not in use locally.

€ APPLE CONFIDENTIAL Page 5
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An application may have separate sections for its code, static data, heap, and stack. All code will
typically be in a single section, with all static data in another. The heap may actually be multiple
discontiguous sections, new ones being added as existing ones become full. Ideally the heap and stack
will be in separate sections, but the architecture does not mandate this.

An application may also utilize shared libraries having their own code and static data sections but
sharing the application’s heap and stack. These are described in more detail later. These shared
libraries are identified when the application is linked and connected automatically when the
application is launched. Their presence is generally invisible at the source code level. Resource and
file based extensions are also supported, with even more power than in the present 680x0 model.

Explanatory Note
The shared libraries discussed in this paper are an intrinsic part of this software
architecture. As such they will be provided first on the PowerPC and may never
appear on 680x0 machines. They are particularly convenient for procedural languages
like C, allowing a shared library to export both routines and data, and supporting

~ flexible rules for the creation of instances of the “static data world”. They do not
provide explicit support for higher level notions such as the export of entire C++ classes
as a single entity. A separate, higher level shared library system is under development
that will provide explicit C++ support. This other system is less convenient to use for
vanilla C and lacks some flexibility, particularly in regard to exporting data. This
other system will be available on both PowerPC and 680x0 platforms. On the PowerPC
it-will be built on top of the base system.

H [

Figure 1 shows a conceéptual model of multiple address spaces. (With heavy emphasis on the
conceptual!) The vertical orientation does not imply high or low address values, and the relative
positioning of the sections is not significant. The horizontal orientation does imply equal logical
addresses. This is significant only in the case of the shared code sections. Shared sections not “used"
might still be accessible, depending on the complexity and tradeoffs of the virtual memory
implementation. For example, user address space #2 might be able to see the code of library #3. Ina
single address space implementation the unshared sections of the the three user spaces may or may not
be arbitrarily interleaved. There is no guarantee that the three portions would be segregated in
private partitions, nor that they won't.

€ APPLE CONFIDENTIAL Page 6
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Figure 1. Conceptual maodel of rmultiple address spaces.

Explanatory Note
The existing Macintosh Memory Manager may not be modified to support the split,
extensible heap model. The intent is to allow developer’s to wean themselves from
handle-based data. One possible implementation is to have one heap section reserved
for the Memory Manager’s handle-based allocation. NewPtr, malloc, and related
routines would use other heap sections. -

Explanatory Note
The bounded application partition of the current 680x0 model is deemphasized if not
outright removed. The amount of code an application may have should not be bounded.
The amount of static data, stack, and heap should not be bounded either. Whether
they are bounded by the SIZE resource, whether the SIZE resource indicates an initial
heap allocation, or whether the SIZE resource is removed remains a policy decision for
human interface experts. The runtime architecture is neutral in this regard. Using the
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SIZE resource to indicate the stack size and an initial heap size would allow a program
to state minimal requirements on machines lacking virtual memory or having a limited
System 7 style virtual memory capability. Should such machines exist.

Explanatory Note
We have consciously not defined a multi-section extensible stack model. To be done
properly this requires hardware, operating system, compiler, and runtime support for
the detection of overflow and “underflow” back across the boundary of stack sections.
The lack of this capability is not seen as a major impediment to software development.
With the removal of the Process Manager’s partitioning and proper virtual memory
support we will be able to efficiently handle very large stack sections. The virtual
memory support is to allocate paging file space to the stack section only as needed.

Implementation Note
The initial PowerP’C products may still have the System 7 Process Manager and virtual
memory models. In this case the static data, stack, and heap may be bounded by the
application partition’s size and reside in one section of memory. The code may be
mapped into a separate section and paged directly from the application file, but this is
not guaranteed. If this mapping is not provided, the partition size will be

" “automatically increased by the size of the code to account for the concurrent residence of
all code. This should allow the same partition size to be tolerable for both 680x0 and
PowerPC versions of an application.

Weasel Note
It may seem like few concrete statements are made about the use of address space.
Everything from the System 7 Process Manager to fully separate address spaces can be
defined to fit. To a certain extent this is a fair criticism. This is an architecture that
must be implementable with several different O/S bases. The important concepts to
walk away with are that code space is not bounded and managed in the ways that led
to the segmentation model on the 680x0 and that shared structures are guaranteed to be
at the same address for all clients.

Constraints and Caveats

The PowerPC hardware notion of segmentation is not presumed. A particular implementation may
introduce hardware related limitations, but that is not part of the runtime architecture. For example,
on the PowerPC a section might be limited to 256MB if the O/S does not support sections spanning
hardware segments.

The maximum section size supported by the O/S must not be smaller than 16MB. This provides an
arbitrary guarantee for a maximum size of code sections. Programmers should consider the use of shared
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libraries for larger amounts of code. The programming tools on each platform must in some way support
code sections up to 16MB, they may optionally support larger sizes. A major factor is the displacement
range for relative branches. Compilers may limit the amount of code that may be generated from one
routine or source file. References outside of a source file should be assumed to be long and across code
sections. Compilers and linkers should cooperate to optimize situations where such calls actually
remain within a code section.

Of course a friendly operating system will support sections considerably larger than 16MB. This is
particularly important for large data structures, which cannot be conveniently broken apart in the
manner that code can with shared libraries.

A very important point is that code sections are intended to be used at a much coarser granularity
than the present 680x0 segments. While virtual memory is not absolutely required, it is presumed to
exist and code/constants should be paged directly from the executable file. Compilers, linkers, and
loaders should preserve some notion of smaller scale segmentation both for source compatibility and
control of locality. For example, the linker could arrange the code section by “segment” to improve
locality of reference. The loader and O/S might use that information as a hint to improve paging
performance.

This view of code sections is seen as a way to simplify application development. In exchange it
requires that the memory management system perform in such a way that applications do not suffer
from the lack of explicit segmentation. This implies a certain level of sophistication in the area of
working set management and a certain minimum disk throughput. This approach is felt to have both
high risk and high return.

-
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IV. Executable Fragments.

Fundamental Properties of Fragments

One very important and universal concept of this model is the notion of execution units composed of
blocks of code and associated static data. We've called these “fragments” to avoid conflict with other
popular terms like module, object, and component. Everything that can be placed into memory and run is
a fragment. Examples include applications, shared libraries, generic extensions like CDEFs, LDEFs, or
WDEFs, and custom application extensions such as HyperCard XCMDs, Canvas tools, or 4th Dimension
externals.

Fragments can be roughly divided into three classes, applications, shared libraries, and extensions.
These classes are based on typical usage and properties beyond the notion of “fragmentness”.
Applications are things that can be launched to operate on documents. They may cooperate but are
capable of independent operation. Shared libraries are special forms of extensions. Developers use
them at link time to satisfy unresolved external symbols in the fragment being linked. Shared libraries
are found automatically at runtime and connected to the fragment. Extensions are everything else.
They are not identified at link'time. They are explicitly looked up and connected at runtime.

Fragments have four fundamental properties:

» Loadable memory sections (code and static data),
« Exported symbols,

* Imported symbols, and

e Initialization, main, and termination routines.

Explanatory Note
Every fragment is a first class citizen, having all of the fundamental properties defined
here. This is not to say that all fragments are created equal. Just as only police have
the power of arrest and only the independently wealthy have the power of total
leisure, some fragments have properties beyond the fundamental ones. Only
applications have a SIZE resource defining stack and heap requirements. Only shared
libraries are automatically connected at runtime. Discovering other usage examples are
left as an exercise.

Explanatory Note
Three areas where we’ve gone beyond strict adoption of the AIX conventions are in
support for multiple code and data sections, support for multiple container formats, and

- support for initialization and termination routines. These are all new in the runtime
architecture defined by Apple. They are covered somewhat later in this paper and
more fully in the documentation for the PowerPC Code Fragment Manager.
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Code and Static Data Sections

Loadable memory sections are areas of code and static data that comprise the fragment’s.
“executable image”. In the prototypical case there is one section of code and one section of static data
for each fragment. Code is not segmented as in the 680x0 case, we are not concerned about reducing the
address space footprint. Large fragments are expected to be stored in the data fork of files, with virtual
memory support for direct, read-only paging of the code. Shared libraries will typically have a
separate copy of their static data for each concurrent use. This is invisible to the code, and is covered
more in later sections.

Explanatory Note -

The address space footprint of code is of less concern than in the present 680x0 model for
two main reasons. First, we are presuming a large address space with respectable
virtual memory support. The 680x0 model was designed to shoehorn programs into the
very limited space on the original 128KB Macintosh. Second the PowerPC, along with
the 68020 and better, has an unconditional branch with a decently long displacement.

Explanatory Note
The external storage of a fragment is known as a container. The runtime loader supports
multiple container formats, as described later. Some formats, such as PEF and XCOFF
use the term section internally, with some of their internal sections used only in support
of runtime loading. These are not “loaded sections” as defined here.

Once loaded, the code and data of a fragment do not move around. The term loaded here means
“prepared for execution”, not simply “placed into memory”. In the case of code bearing resources
LoadResource simply places the contents into memory. The runtime loader prepares it for execution
after it has been placed into memory and before it is used. If the resource is unlocked and moved the
runtime loader must prepare it for execution again at its new location. The loader is not connected to the
Resource Manager or Memory Manager. [t will not automatically detect movement of a resource and
reload the fragment. Unless otherwise noted, the term “load” means “prepare for execution” when
applied to fragments, even when those fragments are the contents of resources.

Implementation Note
The Mixed Mode mechanism, used to support intermingled 680x0 emulation and native
PowerPC execution, does provide some automation to allow old 680x0 code to properly
use resources containing native PowerPC code. Programs compiled for the PowerPC
should use the runtime loader to prepare the fragment whenever the resource contents
are locked in memory. This has “zero” cost if the fragment is at the same location as
the last time it was loaded.

The contents of code sections must be pure and position independent with regard to both code and
static data. Pure code needs no modification to execute. (For example, standard 680x0 Macintosh code is
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pure. The implementation of “32-bit everything” utilizes impure code, having absolute data addresses
that are relocated by the Segment Loader.) Pure code allows paging from application files, ROM
execution, and makes code sharing easier. In this model on the PowerPC pure code is achieved by using
self-relative branches within a fragment, indirect branches through pointers in static data between
fragments, and addressing static data through a combination of a dedicated base register and
indirection. The details of addressing are given in subsequent sections.

Position independence with regard to code means that the code will execute properly from any
location in memory. It does not necessarily mean that the code can be moved in memory without
modifying anything. It means that the code does not know or care where it is placed in memory.
Generally this implies having no absolute code addresses within the code for branches to this or other
fragments, case statement jump tables, etc. (Code can be pure and not position independent, as long as
everything is placed at the right address.) We achieve position independence with regard to code on
the PowerPC through the first two tactics for pure code, self-relative branches within a fragment and
indirect branches through pointers in static data between fragments.

Position independence with regard to data means that the code will execute properly no matter .
where its static data is placed. It does not necessarily mean that the data can be moved in memory
without modifying anything. It means that the code does not know or care where the data is placed in
memory. Generally this implies having no absolute static data addresses within the code. We achieve
position independence with regard to data on the PowerPC through the third tactic for pure code, a
combination of a dedicated base register and indirection. Static data that is not directly addressable
off of the base register is accessed indirectly through a pointer that is directly addressable.

Explanatory Note
The combination of pure code and position independence, along with calling conventions
for switching the dedicated base register make shared libraries “almost free”. This
model also supports multiple instantiations of fragments at the cost of just replicated
static data. Consider writing a protocol handler in C with normal static variables
maintaining the state of one connection. The handler can then be very easily
instantiated once for each connection.

The architecture and runtime software support multiple sections of code and data. This is done to
avoid designed-in limitations for “nontraditional” languages and unanticipated future use. The use of a
single code section and a single data section is adequate for today’s common procedural languages. That
is the standard output model of the linker. Again, multiple code sections are not intended to be used in
the same fine grained manner as 680x0 code segments.

Exports and Imports

A fragment may export symbols defined within any of its sections for use by other fragments. These
are exported by name. The names of the global symbols to be exported must be explicitly given to the
linker when the fragment is linked. Exports from shared libraries are used during the linking process to
resolve undefined external symbols into imports and again during the loading process to resolve imports
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into addresses.

After loading the locations of exports from a fragment may also be determined by query using the
export’s name. This is particularly useful for extensions that are loaded on explicit request. They may

export an entire APL

Explanatory Note :
Although code symbols may be exported, the addressing model is such that only data !
symbols are normally exported. Routines are exported through a descriptor in the data. |
There are conventions for compilers that make this transparent to programmers. A ‘
routine named “foo” in the source should have a code label of “.foo”, and a descriptor |
named “foo”. Telling the linker to export “foo” then does the right thing. Global data !

items keep their source names.

[mports are code and data items that a fragment requires from other fragments. They are denoted
with a library—name/symbol-name pair. Programmers present shared libraries to the linker just as
they present traditional linker libraries today. The symbols exported from the shared library become
available during the link like ordinary global symbols. When the linker resolves an undefined
external symbol to an exported symbol it will record that as an import in the new fragment rather than
actually copying the referenced code or data.
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(MondoWrite object modu!ej MondoTools shared library, (MacToolbox shared library,j
having unresolved symbols: having exported symbols: having exported symbols:
DrawText, GetCommand, DrawText,
GetCommand, StartApp, EraseRect,
GetNewDialog, StopApp ExitToShell,
GetNewWindow, GetNewDialog,
LNew, GetNewWindow,
StartApp, InitGraf,
\_ StopApp Yy, LineTo,
LNew,
MenuSelect,
WaitNextEvent,

/

(MondoWrite application, )
having imported symbols
from MondoTools:
GetCommand,
StartApp,
StopApp

and from MacToolbox:
DrawText,
GetNewDialog,
GetNewWindow,

K (New /

Figure 2. An illustration of export and import handling by the linker.

Figure 2 is an illustration of the linking process including resolution of undefined external symbols to
imports from shared libraries. [tis worth noting that the shared library used for linking need not be an
actual implementation. The link time library need only export the right names and contain
appropriate version information. This can simplify development considerably. A dummy linking
shared library can be created as soon as an APl is defined, allowing coding and linking of clients to
proceed. Implementations are only needed to test the client, these could be evolving versions supplying
partial functionality.

The imports are automatically resolved during loading to exports from shared library fragments,
providing the actual runtime address. The imported library will itself be loaded if necessary. The
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runtime resolution must be to the “same” library as the link time resolution. The runtime library must
have the same name and compatible version numbers. This is described more in a later section on shared
libraries. The code generation details related to the use of imported symbols are given in later sections
dealing with the addressing of global data and procedure calling conventions.

Explanatory Note
This approach is probably better called “dynamic binding” than “dynamic linking”. It
is very important to realize that all symbols must be resolved at link time. Those
symbols that are resolved to exports from a shared library become imports and have
their actual addresses bound at runtime. Each import specifies both the symbol name
resolved by the linker and the name of the shared library in which it was found. Each
imported symbol is looked up in the same library at runtime.

Implementation Note
The precise definition of a “shared library” is expected to evolve as tools and runtime
software become more sophisticated. Initially shared libraries may be files of type
“shlb”, whose name is taken as the simple file name. They will be found at runtime
through a simple search path including at least the application folder and system
extensions folder. Special libraries such as a ROM-based toolbox would be specially
known. It is desirable to move as soon as possible to a general registration scheme,
allowing libraries to be found anywhere in the network.

Figure 3 is an illustration of application, shared library, and extension fragments in operation. (As
with figure 1, heavy emphasis on illustration!) MondoWrite and MondoDraw are applications.
MondoTools and MacToolbox are shared libraries. MondoTools is a “normal” shared library, having a
separate static data instance for each application. MacToolbox is "abnormal”, having global shared
static data. MondoLDEF is an LDEF resource.

The solid arrows represent imports, for example MondoWrite imports from MondoTools and
MacToolbox, while MondoTools imports only from MacToolbox. The names by the arrows are the
symbols being imported. They must of course be exports from the library at the arrowhead.

The dashed line from MondoWrite to MondoLDEEF signifies that MondoWrite does not access the
LDEF as an import. It must load the resource (in both senses), and obtain a procedure pointer to the
LDEE This could either be via an agreed upon export name or via the main routine of the LDEF
fragment. The LDEF itself does have imports just like any fragment. They are automatically resolved
when the fragment is loaded.
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StopApp StopApp
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|
|
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MenuSelect
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Figure 3. An illustration of application, shared library, and extension fragments in operation.

Initialization, Main, and Termination Routines

The remaining basic capabilities are the initialization, main, and termination routines. Every
fragment may define these three routines, separate from its list of exports. The initialization and
termination routines may be left undefined for any fragment. Applications must have a main routine,
others need not. These rules are generalities based on typical usage, other specific uses may have their
own specific requirements.

The initialization routine is called as part of the loading process. It provides a place for specific
language runtime support or even hand written code to perform initialization before the fragment is
considered fully loaded. Integration of language initialization code and hand written code into a single
call is to be defined by compiler vendors and perhaps supported by linkers. The termination routine
provides the inverse, allowing cleanup before unloading.
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The interpretation of a main routine depends on the use of the fragment. For applications it is the
usual main entry point. For shared libraries it is ignored. For extensions with a single entry it could be
used instead of an export to avoid standardizing on a particular name. The main routine can be found by
query after a fragment is loaded.

When the loading of one fragment causes a (currently unloaded) shared library to be loaded (to
resolve imports), the initialization routine of the new shared library is called before that of the
fragment. This allows the fragment’s initialization to utilize the shared library. Mutually dependent
libraries may specify which must be initialized first. Termination routines are called in the inverse
order of initialization routines. This process is described more in a later section.

The initialization and termination routines provide significant power. They are crucial in
supporting the full use of C++, allowing any fragment to contain static objects having constructors and
destructors. The also allow the creation of self-initializing managers. Combined with initialization
ordering, suites of managers can be self-initializing in the proper order.

Fragment Storage

The external storage of a fragment is called a container. A container may exist as any contiguous
piece of storage, such as the data fork of a file (or a portion thereof), in ROM, or the contents of a
resource. The notion of container is separate from a fragment to clearly separate the logical properties
of fragments from the physical organization of containers.

Fragments are managed at runtime by the PowerPC Code Fragment Manager (CFM) and Code
Fragment Loader (CFL). The CFM does the high level work, knowing what is loaded, creating the code
and data sections, connecting imports and exports, etc. [t.operates transparently, much like the 680x0
Segment Loader. The CFM also supplies an AP allowing fragments to loaded on explicit request. This
APl is defined elsewhere. The CFM does not supplant services like the QuickTime Component Manager.
The Component Manager finds a container, the CFM prepares it for execution.

Explanatory Note
The general term “runtime loader” used earlier refers to the CFM, not the CFL.

The CFL provides low level services, mainly to the CFM. Its API provides routines and a loading
protocol, shielding the CFM from the physical format of the container. Following the loading protocol,
the CFM asks the CFL about the number of memory sections and their characteristics, the exported
symbols, the imported libraries and symbols, etc. The CFM tells the CFL where the memory sections
are placed, the addresses of imported symbols, and when to perform relocations. The CFL performs the
actual relocations.

The CFL design includes support for multiple container formats and loader implementations. [t will

find the appropriate loader for a container at runtime. Standard implementations include XCOFF and
PEF. The CFL is intended provide adequate support to integrate languages such as Lisp or Dylan with
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significantly different internal runtime models than C. By utilizing a Dylan container and loader,
shared libraries written in Dylan could transparently interoperate with “normal” languages. The CFL
API is defined elsewhere.

Explanatory Note
The CFL API is available to support the implementation of alternate loaders. Except
in very restricted circumstances developers should call the CFM for loading services
and not the CFL. The CFM implements the semantics of fragments, the CFL allows it to
do so without knowing the external storage format.

Open Issue
The exact means by which loaders are found at runtime is somewhat open. Ideally a
registration scheme would be available. Initially a file scan at boot time may be used.

XCOFF is the standard object and executable format used in AIX and PowerOpen. While an XCOFF
loader is provided, arbitrary UNIX programs and libraries are not guaranteed to be usable under the
Macintosh O/S. Use of UNIX memory or process services, dependence on the AIX memory model, etc.,
will cause problems.

PEF is the PowerPC Executable Format for Macintosh. It provides a dramatically smaller container
than XCOFF, mainly in the representation of the load time relocations. This reduces both disk usage
and load time. PEF is a format for executable containers only, not a relocatable object module format.
Details of PEF are documented elsewhere. :

Implementation Note
The IBM linker and initial Apple linker will take XCOFF as input and produce XCOFF
as output. A conversion tool exists to convert linked XCOFF into PEE Later versions of
the Apple linker may produce PEF output directly.
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V. Global Addressing, the TOC.

This section discusses the standard model for the addressing of global code and data. This includes
how one fragment accesses its own static data and how it accesses the code and static data of other
fragments. The dreaded TOC will be introduced, demystified, and vanquished.

Motivational Note
The PowerPC along with other RISC machines has a load/store architecture and fixed
length instructions. One effect of this is that immediate displacements for addressing
are limited in size, 16 bits in the case of the PowerPC. Loading a value at an arbitrary
32-bit offset from a base register requires at least two instructions on the PowerPC, three
instructions and an additional register if you want to save the address. Constructing a
pointer takes two instructions.

Using 32-bit offsets for static data would either require multiple instructions for all
static data references or compile time segregation of static data items into 16-bit and
32-bit pools, with the associated risk of 16-bit pool overflow at link time.

Another approach is to address static data items indirectly. A dedicated base register
is kept to a pool of pointers. A 16-bit offset allows 16K pointers, which means 16K
individual items addressable from one place regardless of their aggregate size.
Loading an item takes at most two instructions, obtaining a pointer takes one instruction.

Frequently used items should have their pointers kept in a register as part of a
compiler’s standard common subexpression and register allocation processing. A read,
modify, and write cycle takes just one extra instruction to load the pointer.

This approach has the further benefit of implicitly supporting address independence
for individual static data items. This allows shared libraries written in such deficient
languages as C to transparently export and import static data. (C is a problem because
you cannot tell at compile time whether a particular external variable will belong to
you or someone else.) Static data items known to belong to a single unit, such as those
with the C keyword “static”, can be grouped together and share a single pointer.

The indirect addressing approach is the one used here. Yes, the two instruction case
does involve two data memory references, one for the pointer and one for the value. But
a good compiler and decent coding habits will reduce the loading of pointers. In return
we gain significant expressive power and growth space for larger programs.

This model is taken directly from IBM’s RS/6000 AIX implementation. It works. We
have defined some details from a different view, but the basics are unchanged.

We'll first present the TOC in the framework of typical C usage, taking advantage of concrete
examples. We'll then provide the formal notions and generalized nature of the TOC.
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The TOC Nextdoor

The addressing of all static data and routines across fragment boundaries is done indirectly, through
pointers kept in an area known as the TOC. Although an acronym for “Table Of Contents”, the TOC is
more like a personal address book. It belongs to a fragment and tells that fragment where other bits of
the world are. The TOC does not tell the outside world where to find things within its own fragment.
The TOC does tell a fragment where its own static data is. This allows code to be shared among
multiple clients, each having their own copy of the TOC and static data.

Explanatory Note
The first sentence in the above paragraph should be parsed as

“... (all static data) and (routines across fragment boundaries) ...”
not as ’

“... all (static data and routines) across fragment boundaries ...".
This should become clear later in this section.

We're talking here only about “direct” source references, that is source that does not explicitly
involve a pointer. The explicit use of pointers, whether for data or routines, does not involve the TOC.
(Except perhaps to obtain the pointer value if it is itself a static variable.) The initialization of the
pointer is presumed to be done correctly. This may involve static initialization with relocation by the
runtime loader or code actually copying a pointer from the TOC.

Explanatory Note -
For example, consider this (contrived and useless) C code:

extern int foo;
extern int *bar = &foo;

foo=foo +1;
*bar = *bar + 1;

The use of foo is direct at the source level, bar is not. Assuming the TOC pointer to the
value of bar is already in a register, both assignments generate the same instructions.
The first uses the implicit TOC pointer associated with foo in this unit. The second uses
the explicit storage of bar for the pointer. The initialization of the TOC pointer for foo
and for bar itself are accomplished in the same way.

Add a picture here.

On the PowerPC, general purpose register 2 is dedicated to point to the TOC. It is commonly called
RTOC. The contents of this register are saved, modified, and restored for calls across fragments. Every
routine assumes that RTOC is pointing to its TOC upon entry. The details of this are presented later
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with other calling conventions.

The TOC is just a portion of the static data section described carlier. Whether before, after, orin
the midst of programmer declared static data does not really matter except as it affects the .
performance of runtime loading. For now the TOC is simply somewhere in the data section of a
fragment and GPR2 is loaded with its address before entering any routine in the fragment.

Explanatory Note
A reminder that this section presents the TOC in its standard C usage. The actual rules
are somewhat more general and presented later.

The pointers in the TOC are allocated by both the compiler and linker, never at runtime. The TOC g
entries are filled in with addresses during runtime loading; new entries are not allocated at runtime. ‘
Code is pure and ROM-ready after linking, all offsets to TOC pointers are fixed. Runtime loading may ’
also involve the relocation of pointers outside of the TOC. One example was given earlier, others will ,
be covered later. |

|
|

The C language has two classes of static data, “extern” variables visible across compilations and
“static” variables visible only within a compilation. If neither keyword is used for data outside of a
procedure, “extern” is presumed.

Keyword “static” variables are known at compile time to belong to the fragment of the source being
compiled. All “static” variables in a compilation are placed contiguously in the static data section by
the compiler and accessed through a single TOC pointer. The compiler allocates the TOC pointer.
References to a “static” variable first load the common TOC pointer then load at the appropriate offset
from it.

For “extern” variables the compiler does not generally know which fragment will contain the
storage. [t may end up in the fragment being compiled or it may end up coming from a shared library.
Each “extern” variable is addressed through a separate TOC pointer. These pointers are also allocated
by the compiler. References to “extern” variables of course first load the pointer from the TOC then the
value of the variable. i

Picture Place
Put in a picture showing a simple” C source, generated code, and storage diagram. Use
dis output to illustrate assembly programming at the same time.

Programming Note
By using “static” instead of “extern” where possible programmers give the compiler a
better chance to keep a variable’s TOC pointer in a register. This allows later
references to be done with a single instruction.

Assembly language programumers may utilize whatever clustering is appropriate. As always, they
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must do manually everything that compilers do. In this case that means creating TOC pointers
explicitly in their source.

Explanatory Note
The pointers in the TOC are to the actual referenced items. This includes all TOC
pointers, whether to a fragment’s own data or data imported from another fragment.
There has been some confusion in the past that the TOC pointer for an import pointed to
the TOC pointer in the owning fragment, that in turn pointed to the imported item. (As
though the import had a handle and the owner had a pointer.) This is not true. All
TOC pointers point directly to the referenced item. It becomes obvious when you note
that the compiler generates one form of code not knowing whether the final reference
will be an import or to “owned” data. The linker decides that.

A similar situation occurs for “extern” routines. The compiler does not know whether they will end
up being in the same fragment or will involve a cross-fragment call. The details are more complex than
for data, with the compiler doing a little of the work and the linker doing a larger part. The details
are given in a later section dealing with calling conventions. For now it suffices to say that the linker
allocates a TOC pointer in the calling fragment, and code in the calling fragment that uses that pointer
to complete the call.

Anticipatory Note :
An earlier note mentioned that code symbols are not usually exported. Each externally
visible routine has a descriptor associated with it. The descriptor contains the code
address for the routine and the address of the TOC for the routine. The TOC pointer
involved in cross-fragment calls points to the descriptor. Each caller has a pointer to
the descriptor, just like references to any external variable. Glue code involved in cross-
fragment calls uses this TOC pointer. This will all be detailed in a later section on
calling conventions. )

In summary, a TOC contains:

< One pointer for each “extern” data item used by the fragment.

* One pointer for the “static” pool of ecach compilation unit in the fragment.
* One pointer for each imported routine called by the fragment.

¢ Actual static variables if a compiler were to put any there.

* Anything an assembly language programmer tosses in.

The linker performs the final allocation of TOC space and optimizes the use of TOC elements.
Compilers allocate TOC pointers symbolically to “data item foo”, “routine descriptor bar”, etc. When
combining separately compiled units into a fragment the linker will recognize common references and
merge the TOC pointers. Each TOC will normally have just one pointer to any given routine or data
item.

—— Implementation Note
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The linkers (IBM’s and Apple’s) only combine TOC entries whose name and contents
both match. Using [BM’s assembler syntax, a TOC pointer to a static variable named
foo could be declared via:

label: .tc fooltc], foo[rw}

The label is strictly for local reference to the pointer. The name of the TOC entry is
“fooltc)”, its contents is the address of “foo{rw]”. The name and contents are used by the
linker in merging TOC entries, the label is not. Compilers of course always generate
TOC entries in the same way, ensuring that they will be folded. Assembly language
programmers can follow the same rules, given in a later section.

The Zen of TOC

No, Zen—0-TOC is not a new candy bar. Let's put on the rose colored glasses and meditate.

» The TOC is a collection of code generation and system software conventions.

* The TOC is the static storage to which RTOC points on entry to a routine.

* The TOC is the static storage which can be addressed in one instruction.

* The TOC is that which provides a dynamically bound gateway to the outside world.

* The TOC is that which provides a dynamically bound gateway to non-TOC static data.
« The TOC is what the 680x0 A5 world should have been.

The TOC is not an inviolate barrier. There are no TOC Police at compile time, link time, or runtime.
There are a set of code generation and system software conventions that support reasonably efficient
pure code, dynamic binding, and componentized software construction. It has particular value on
machines like the PowerPC that lack memory reference instructions with large displacements.

The TOC is there to let routines find the static data and external routines they are interested in,
where that interest is a direct reference in the source. The compilers, linker, and system software
eenspire-cooperate to add a level of indirection in these cases, providing wondrous benefits to
programmers without extra (visible) cost. As mentioned earlier, explicit use of pointers need not and
should not go through the TOC.

Explanatory Note
The compilers mentioned here are those for conventional procedure languages. Other
languages, particularly dynamic languages such as LISP, are free to use other
conventions internally. These conventions are necessary for interaction with system
software and allow transparent mixing of code from compliant languages. You could
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implement a shared library in onc language today and another language tomorrow with
no impact on its clients.

TOC:s are really properties of routines. When calling into a fragment the new TOC value is known
separately for each routine. The routine descriptors mentioned above provide this. There is no
constraint that all routines in one fragment share the same TOC. i.e. that the TOC value. in all of their
descriptors be the same. This is a decision between compilers and linkers. There is no constraint that a
fragment have a single data section with the TOC inside it. A linker is free to create code and data
sections in any way it chooses, placing the TOC in any data section. The only constraint on the linker is
that it not violate the legitimate assumptions of compiled code.

- Implementation Note . -
The general nature of these legitimate assumptions should be clear from this paper. (If
not the paper is deficient.) They are implicitly presented in various rules and
examples. They include such notions as the declaration and use of TOC pointers, the
initialization of non-TOC pointers in the static data, linker processing of calls across
compilation units, etc. Their details are to be found in documentation on the linker’s
input and internal processing.

Implementation Note :

Static data sections of fragments have an attribute that describes a granularity of
sharing for them. This is discussed in a later section. Note that should a linker be
implemented to create multiple data sections with different levels of sharing, the TOC
should be placed in the least sharable, perhaps in a section by itself. The TOC should
be replicated at least as often as anything else since it contains the pointers to address
the other sections.

Compilers decide whether particular calls within a source file are strictly local or might possibly
involve a TOC switch. Compilers provide with each compilation a description of the individual TOC
pointers necessary for that unit. Compilers do not create a “TOC area”, they do not deal with
relationships between TOC pointers. The linker makes the final determination of whether potentially
switching calls actually do switch. The linker makes the final decision of where individual pointers
appear in the TOC. The linker makes the final decision about collapsing identical TOC pointers.

Compilers for various languages may all have their own rules for the creation of TOC pointers,
association of multiple variables with one TOC pointer, switching of the TOC on particular calls, etc.
Languages with a module/package/unit concept and hierarchical separate compilation in particular
may have more stringent rules than C. (Hierarchical separate compilation allows nested procedures to
be separately compiled while keeping their nested context.)

So far everything in the TOC has been a pointer. There is no constraint on the TOC to contain only

pointers. Compilers and assembly language programmers are free to place any static data in the TOC.
This view is encouraged by the first two bullets above, i.e. that the TOC is the “casy access static
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data”.

There are of course linguistic and usage constraints on placing data directly in the TOC. The
compiler may only place directly in the TOC items that it knows will be owned by the unit being
compiled. The cases in which placement of variables in the TOC is profitable are not obvious. The
decisions require the same kind of usage information necessary for register allocation.

For example, C items declared with the “static” keyword have just file scope and could always be
placed in the TOC. But if the compiler uses a single TOC pointer for all statics in a compilation, this
pointer may end up in a register anyway, giving easy access to all “static” variables.

Items declared with the “extern” keyword have global scope and could only be placed in the TOC if
the source contained the defining occurrence. If the unit being compiled does not have a defining
occurrence it is possible that the variable will end up coming from a shared library. It would be
perfectly fine for the unit with the defining occurrence to place the storage in its TOC and export the
variable. Other units would reference the variable through a TOC pointer as usual. This might even
include separately compiled units linked into the same fragment.

|
]
|
|
|
|

Putting a frequently used item directly in the TOC might benefit the owner of the data by removing |
the indirection for loads and stores. But with a large register set the TOC pointer for that frequently ‘
used item might stay in a register anyway, an optimization available to all users of the data. The big
beneficiary of allocation in the TOC is probably a frequently called routine with few references to the
static data. They would save the load of the TOC pointer on each pass through the routine.

A variable’s size also plays a role in deciding where to allocate it. A single item of four bytes or
less will take no more space in the TOC than the pointer. Larger items use up TOC space faster,
increasing the risk of TOC overflow. C “static” versus “extern” are different here too. The former share
a pointer, the latter have one pointer per item.

This is clearly an area ripe with opportunity for compiler optimization and pragmas.

Implementation Note
Neither the IBM nor Apple compilers put data directly in the TOC yet.

[t is also desirable to reserve some space in all TOCs at fixed offsets for use by system software.
This provides a place to store context that should be associated with fragments and switched cheaply
with cross-fragment calls. We are proposing that 64 bytes (16 pointers worth) be reserved at offsets 0 to
63. No specific use for this space is defined yet. This space is reserved for use by Apple.

Open Issue
Some space will be reserved, what is proposed is that the exact amount be 64 bytes. We
have arbitrarily proposed that 64 bytes at offsets zero to 63 be reserved. Nothing has
been decided about use of this space by the Resource Manager or other components of
system softwarc.
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Rationale Note
The 680x0 use of 0(A5) as the QuickDraw globals pointer springs to mind, but that is
actually a poor example. There is one set of QuickDraw globals per application. This
pointer should be kept as a static variable in a Toolbox shared library, with one
instance of the library’s static data for each application.

A more interesting possibility occurs for the Resource Manager, introduced because of
shared libraries. This concept was first proposed in the Dinker design by Jed Harris.
There is currently one resource chain per application. With the advent of shared
libraries it becomes very desirable to have one resource chain per shared library, with
automatic switching during procedure calls. Consider an application using several
shared libraries, each with a DLOG resource number 123, and one of them wants to use
theirs. Who's on first?

Since the TOC is already switched during procedure calls, that becomes a handy place
to store the head of the resource chain. The linker could reserve space, say starting at
zero. One word of that is assigned to the resource manager, say at offset 4. This word
would be initialized to zero by the linker. The resource manager would store the
application’s “standard” head in a static variable of its own, as suggested above for the
QuickDraw globals pointer. It would also be stored in the application’s TOC. When
asked to open a resource file it would look in the TOC of the caller and if the word is
zero add the new file to the standard chain then store this new chain in the caller’s
TOC. If the TOC word is non-zero the new file gets added to that chain. LoadResource
would use the chain from its caller’s TOC.

Further complications, such as how to track and close all resource files at exit and what
LoadResource should do if its caller’s TOC does not have a resource chain, are left as
exercises.

Open Issue
The example given of use by the Resource Manager is not a complete proposal. The
calling conventions do make it possible to find the caller’s TOC in certain cases. Calls
within a shared library may not “do the right thing”, depending on the compiler and
linker used. This is discussed later.

Implementation Note
We can “fool” the IBM linker into “reserving” slots at the beginning of the TOC by
providing a special module at the front of a link. This module would ensure that the
reserved TOC entries get created at the right location. We would be depending on the
implicit linker behavior for TOC layout. The Apple linker will always rescrve space.

—— Open Issue
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One of the interesting aspects of adopting the AIX runtime model is the opportunity to
utilize AIX software easily under the Macintosh O/S. This may be rather difficult for
arbitrary UNIX applications, but should be easier for standalone shared libraries.
Such libraries won’t have this reserved TOC space, but then they shouldn’t be dealing
with the Macintosh Toolbox either. We need to document what UNIX software can be
used, how to use it, and what might go wrong.

We've been speaking of just a single TOC register. The architecture in fact only defines one
dedicated register as a TOC pointer. With a 16 bit offset on the PowerPC this limits a TOC to 64KB, or
16K pointers. The extension of the architecture to use multiple TOC registers could obviously be made
without conceptual violence. This was considered and rejected as unnecessary. The nature of the TOC
itself, including code generation conventions, results in surprisingly modest demands on it. Other
manual and tool-based approaches can reduce the risk of TOC overflow. Defining a second TOC register
would remove that register from general use to the benefit of a very small number of “pig” programs.

The TOC provides addresses for the static data items used by a fragment and the routines in other
fragments that are called. It does not provide a complete dictionary for its own fragment, nor is it a
catenation of complete dictionaries for referenced fragments. Nor does it contain pointers to data and
routines that are not actually used. Compiler conventions help, such as C’s use of a single TOC pointer
for all “static” variables in a compilation. It is rather difficult and unusual to actually construct a body
of software that makes use of over 16,000 external variables and routines.

Rationale Note
For example, we have taken a pure C++ version of MacApp and built an AIX shared
library from it to study TOC use and other issues. The shared library exports over 4500
symbols. We arbitrarily made every external variable and routine an export, although
some should probably be kept internal to MacApp itself. The TOC for the MacApp
shared library contains about 1050 pointers. ’

All Macintosh Toolbox services used by MacApp are treated as cross-fragment calls,
each has a TOC pointer. There are around 300 of these. As an artifact of the MPW C
headers and their conversion for test use on the PowerPC, references to low memory
globals appears as pointer casts of literals, not as references to external data. But there
are only about 25 low mems accessible through the MPW headers, so this is noise.

Since there are currently around 2000 to 2500 routines defined in the MPW headers and
around 220 low memory globals in the IM X-Ref, a worst case scenario for a “full”
PowerPC implementation would give MacApp a TOC with less than 4000 pointers.

The TOC for a client of MacApp would only contain what it used, an amount related to
how much of MacApp was overridden. In a worst case of overriding everything and
calling all system services directly, the client would have a TOC with around 7000
pointers plus its own static data, C library stuff, etc.
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The size of the TOC could be manually managed by separating major subsystems into shared
libraries of their own. This would require no source changes, only possible changes in linker scripts to
name the additional libraries. It is quite likely that large pieces of software have large numbers of
external references that can be segregated into subsystems, wh<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>