
LINEA.DOC;2 22-MAY-1986 13:57 Page 1

THE LONG-AWAITED LINE "A" DOCUMENT

In order to provide "quick-and-dirty" access to the assembler-level
graphics routines, ATARI engineers have set up the 68000's LINE "A"
exception as an interface to several useful routines. The LINE "A"
interface is faster than going through GEM's VDI and has some extra
features. Also, LINE "A" calls require less application code than their
VDI counterparts. Of course, LINE "A" doesn't replace the VDI completely,
but if an applicati6n only needs a few primitive graphics functions (and
wants maximum performance), then LINE "A" is sufficient (and optimal).

The LINE "A" interface is provided for the hacker-at-heart and no claims
are made about its ease of use. The interface may seem unusually inconsistent,
but it was not designed; it simply fell out as a freebie from the low-level
VDI primitives interface. That is, these routines are the heart of the VDI.

The LINE "A" interface consists of 15 opcodes. The calls to LINE "A"
are assembled as 1-word instructions, the highest 4 bits of which are
1010 (A in hexadecimal, hence LINE "A") and the lower 12 bits of which
are used as the opcode field. Following is a description of the 15
opcodes:

0 = Initialization.
1 = Put pixel.
2 = Get pixel.
3 = Line.
4 = Horizontal line.
5 = Filled rectangle.
6 = Line-by-line filled polygon.
7 = BitBlt.
8 = TextBlt.
9 = Show mouse.
10 = Hide mouse.
11 = Transform mouse.
12 = Undraw sprite.
13 = Draw sprite.
14 = Copy raster form.

15 = Seedfill. (exists only in versions of TOS after the 1st release)

The LINE "An routines have some features that the VDI doesn't support.
BitBlt supports half-tone patterns on the source and TextBlt supports all
16 BitBlt logic operations, not just the 4 GEM VDI writing modes. In
addition to these straight-forward extensions LINE "A" a:!.so allows the
adventurous programmer to experiment with special effects. The BitBlt is
especially generous in this area.

(0) Initialization

dc.w $AOOO Init the LINE "A".

input: none.

output: dO = ptr to the base address of LINE "A" interface variables.
aO = ptr to the base address of LINE "A" interface variables.
a1 = ptr to array of ptrs to the 3 system font headers. a~6-

LINEA.Doei2

note:

bugs:

(1) Put pixel

dc.w

input:

output:

note:

(2) Get pixel

dc.w ...

22-MAY-l~~6 13:S7 page ::l

a2 = ptr to array of ptrs to the 15 LINE "A" routines.

The value returned in aO is the sine qua non of the LINE "A"i
interface. Inputs to all the other LINE "A" operations are
made relative to this value, i.e., the LINE "A" interface
variables are contained in a structure pointed to by aO.
The offsets of these variables in the structure are'given
below.

In the first TOS release, a2 is not returned as described
above. Instead, it is preserved across the LINE "A" call.
See Example Program #2 at the end of this document for the
technique that makes a2 point to the proper place.

...
$AOO1

INTIN[O]
PTSIN[O]
PTSIN[1]

none.

i Plot a pixel at x,y.

:: pixel value.
= x coordinate.
= y coordinate.

For a discussion of the eONTRL, INTIN, PTSIN, INTOUT, & PTSOUT
arrays, see the GEM VOl manual.

$A002 ; Get the pixel atx,y.

input: PTSIN[O] = x coordinate.

(3) Line

PTSIN[1] = Y coordinate.

output: dO = pixel value.

...
dc.w

input:

$A003

Xl = xl
Y1 = y1
X2 = x2
Y2 = y2
eOLBITO
eOLBIT1
eOLBIT2
eOLBIT3
LNMASK
WMODE
LSTLIN

i Draw a line between (x1,y1) and (x2,y2).

coordinate.
coordinate.
coordinate.
coordinate.
= bit value for plane O.
= bit value for plane 1.
= bit value for plane 2.
= bit value for plane 3.
= line style mask.
= writing mode.
= always set this to -1, if using xor mode.

else ignore it.

(~:

LINEA.DOC;2 22-MAY-1986 13:57 Page 3

output: LNMASK is rotated to align with right-most endpoint.

quirks: 1) If the line is horizontal, LNMASK is a word-aligned
pattern, not a line style. That is, a bit other than
bit 15 of LNMASK may be used at the left-most endpoint.

note:

2) As the foregoing references imply, the line is always
drawn from left to right, not from (Xl,Yl) to (X2,Y2).
Thus, LNMASK is always applied from left to right.

Because of the quirks, an application cannot depend upon the
phase of the LNMASK being properly updated between calls
to line-drawing primitives. If the phase is critical, the
application must compute and init LNMASK before each line
is drawn.

LNMASK is applied to the line-drawing DDA algorithm along
the direction of greater delta. If delta Y is greater than
delta X, then LNMASK is applied in the Y direction.

These line-drawing quirks and notes apply to the GEM VOl, too

(4) Horizontal line

dc.w

input:

$A004

Xl = xl
Yl = yl
X2 = x2
COLBITO
COLBITl
COLBIT2
COLBIT3
WMODE
PATPTR
PATMSK
MFILL

output: none.

(5) Filled rectangle

dc.w $A005

input: Xl = xl
Yl = yl
X2 = x2
Y2 = y2
COLBITO
COLBITl
COLBIT2
COLBIT3
WMODE

; Draw a line from (xl,yl) to (x2,yl).

coordinate.
coordinate.
coordinate.
= bit value for plane O.
= bit value for plane 1.
= bit value for plane 2.
= bit value for plane 3.
= writing mode.
= ptr to the fill pattern.
= pattern index.
= multi-plane pattern flag.

; Draw a filled rectangle with upper left corner at
(xl,yl) and lower right corner at (x2,y2).

coordinate.
coordinate.
coordinate.
coordinate.
= bit value for plane O.
= bit value for plane 1-
= bit value for plane 2.
= bit value for plane 3.
= writing mode.

S,,,

LINEA.DOC:2 22-MAY-1986 13:57 Page 4

PATPTR = ptr to the fill pattern.
PATMSK = fill pattern index.
MFILL = mult'i-plane fill pattern flag.
CLIP = clipping flag.
XMINCL = x minimum for clipping.
XMAXCL = x maximum for clipping.
YMINCL = Y minimum for clipping.
YMAXCL = Y maximum for clipping.

output: none.

(6) Line-by-line filled polygon.

dc.w $A006 ; Draw 1 scan-line of a filled polygon.

input: PTSIN[] = array of polygon vertices.
«x1,yl) , (x2,y2) ••• , (xn,yn), (x1,y1»

CONTRL[l] = n = number of vertices.
Y1 = Y coordinate of scan-line to fill.
COLBITO = bit value for plane O.
COLBIT1 = bit value for plane 1.
COLBIT2 = bit value for plane 2.
COLBIT3 = bit value for plane 3.
WMODE = writing mode.
PATPTR = ptr to the fill pattern.
PATMSK = fill pattern mask.
MFILL = multi-plane fill pattern flag.
CLIP = clipping flag.
XMINCL = x minimum for clipping.
XMAXCL = x maximum for clipping.
YMINCL = Y minimum for clipping.
YMAXCL = Y maximum for clipping.

output: Xl and X2 are clobbered.

note: The 1st endpoint must be repeated at the end of the list of
n endpoints.

(7) BitBlt

...
dc.w $A007 : Perform a BIT BLock Transfer.

input: a6 = ptr to a structure of input parameters.

output: none.

BIT BLT PARAMETER BLOCK OFFSETS

equ
equ

+00
+02

; width of block in pixels
height of block in pixels

(

LINEA.DOC~2

PLANE CT

FG COL
BG-COL
OP-TAB
S XMIN
S-YMIN
S-FORM
S NXWD
S-NXLN
S-NXPL

o XMIN
o YMIN
D-FORM
D-NXWD
D-NXLN
D-NXPL

P ADDR
P-NXLN
P-NXPL
P-MASK

P BLOCK LEN

*** notes ***

equ

equ
equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ

+04

+06
+08
+10
+14
+16
+18
+22
+24
+26

+28
+30
+32
+36
+38
+40

+42
+46
+48
+50

76

22-MAY-1986 13:57 page 5

number of consecutive planes to bIt (D}

foreground color (logic op index:hi bit)(D)
background color (logic op index:lo bit)(D)
logic ops for all fore and background combos
minimum X: source
minimum Y: source
source form base address
offset to next word in line (in bytes)
offset to next line in plane (in bytes)
offset to next plane from start of current

~ minimum X: destination
~ minimum Y: destination
i destination form base address
~ offset to next word in line (in bytes)
~ offset to next line in plane (in bytes)
~ offset to next plane from start of current

~ address of pattern buffer (O:no
~ offset to next line in pattern

offset to next plane in pattern
i pattern index mask

pattern) (0
(in bytes)
(in bytes)

the parameter block must be 76 bytes long

C: parameters marked with (D) may be altered during the course
of the BIT BLT execution

contents of OP TAB

+00 byte

+01 byte

+02 byte

+03 byte

O. PREFACE

operation employed when foreground and background COlOl
bits for current plane are both clear (0)

operation employed when current plane's foreground col(
bit is clear (0) and background color bit is set (1)

operation employed when current plane's foreground Aco
bit is set (1) and background color bit is clear (0)

operation employed when foreground and background colo
bits for current plane are both set (1)

Before one floggles one's tormented mind with this tangled nest of
arcane knowledge, one ought to be intimately familiar with chapter E
of the GEM VDI manual. Author assumes that one's knowledge of Rastel
matters is quite wide and that the rudiments of BIT BLTting are belc
discussion. If the author is mistaken then he's sorry (and you're

3"

LINEA.OOC;2 22-MAY-IY~b Ij:~1 J:'age b

about to become lost in the sea of woe, oh ho!).

I. PARAMETER BLOCK

BIT BLT is accessed via a 76 byte parameter block. Register A6 points
to the head of this block upon LINE A entry. Only the first 52 bytes of
the block need be attended to by the abuser. The remaining space is
maintained internally by the BLT. Note in the following explanations,
parameters will be refered to by symbolic offsets into the parameter
block.

II. MEMORY FORMS

memory forms are something like a cabbage patch. (a cabbage patch is a
place for mentally retarded programmers). Face it, forms are nothing
like a cabbage patch. if you think they are, go back and read chapter 6
in the GEM VOl manual. if you know anything at all about memory forms,
you know they are almost entirely but not totally unlike a garbage can.
memory forms are of two sexes, source and destination.
each sex is defined by the same four parameters: form block address,
block width, offset to next contiguous word, and offset to next plane.

S FORM and 0 FORM point to the first words of the source memory form
and destination memory forms, respectively. addresses must fallon
word boundries or severe hardships fall (as will address exceptions)
like plagues upon the ancient egyptians.

S NXWO and 0 NXWO are offsets to the next word in a plane of the memory\ ;
form. for example, in the monochrome mode the value is 2 while a value '/
4 is used in medium resolution and 8 is applicable to low resolution.

5 NXLN and 0 NXLN are form widths for source and destination. (i can't
remember which one belongs to source form and which one belongs to the
destination form). widths must be even byte values, as you know, for
they represent the offset from one row to the next and forms
must be word aligned and an integral number of words wide. (hint: the
hi rez screen value is 90 while 10 and medium rez values are 160)

5 NXPL and 0 NXPL are offsets from the start of one plane to start of
the next plane. because of the 5T screen's interleaved plane structure,
this value is always two (2). alternative universes allow for a series
of contiguous planes where NXPL values are number of bytes each plane.
thus , it is possible to BLT from the contiguous universe into the
interleaved ST universe and vice versa.

the actual bit alligned blocks of memory are defined within the form
by an upper left anchor point, a pixel width, and a pixel height:
(5 XMIN, S YMIN, B WO, and B HT). the location in the destination form
is-defined-by an anchor point (0 XMIN, 0 YMIN). no harm will come if
these two areas overlap. Note no-clipping is performed andthere is no
checking t.o determine whether bit blocks fall within the confines of
the encompasing memory forms. finally, the number of planes to
be transfered (the number of itterations of the BLT algorithm) is
contained in the PLANE CT word.

87()

(-""\.
.' .

. ,
,~,r

LINEA.DOC;2 22-MAY-1986 13:57 Page 7

III. RASTER OPERATIONS

OP TAB is a table of four RASTER OP codes. Each of byte wide entries
in-Op TAB contain a code for one of sixteen logical operations between
consenting source and destination blocks. For each plane, the logical
operation is chosen by indexing the OP TAB with a value derived from
FG COL and BG COL words. given plane "n", bit "n" of FG COL is the hi
bit of the two bit index value and bit "n" of BG COL is-the 10 bit of
the index value.

for those with a furniture fetish, here is a table:

FG(n) BG (n) OP TAB entry ------ ----- ------------
0 0 first entry
0 1 second entry
1 0 third entry
1 1 fourth entry

IV. PATTERNS

Patterns are word wide, word aligned images that are logically anded
with source prior to logical combination of source with destination.

Patterns are packed in an imaginary grid anchored left corner
(0,0) of the destination memory form.

Patterns are 16 bits wide and repeated every 16 pixels horizontally.

patterns are an integral power of 2 in height and repeat vertically
at that frequency.

The source is shifted into alignment with destination rectangle prior
to the combination of source with pattern.
Thus, the relationship between source and pattern is dependent upon the
X,Y positioning of the destination rectangle.

P AD DR points to the first word of the pattern. If this pointer is 0, a
pattern is not combined with the source rectangle.

P NXLN offset (in bytes) between consecutive words in the pattern.
For reasons too inane, this number should be an integral
power of 2 (such as 2,4, or 8)

P NXPL is the offset (in bytes) from the beginning of a plane to the
beginning of'the next plane. In the case of a single plane pattern used
in a multi plane environment, this value would be zero. thus, the same
pattern is repeated through all planes.

P MASK works with P NXLN to specify the length of the pattern.
The length (in words) of the pattern must be an integral power of 2.

if P_NXLN. = 2 ** n

then P MASK = (length in words -1) « n
17/

LINEA.DOC:2 22-MAY-1986 13:57 Page 8

i don't know why. go ask your father.

v. BAG '0 TRICKS

Q. I want to BLT from a single plane source to multi plane destination.

A. That's not in the form of a question. And besides, i can't think
with water pick spurtin in my ear. Hey, that's my cat your puttin in­
the Cuisinart. Wha you think your doin bustin into my word processor
like this. Hey bud, stay away from that delete key. Hey moe foe, i'm
serious.-How'd you like an unexpected interrupt?

Q. This key is loaded and it's pointed at your bonus check.

A. ok/ok ••• i'll talk.

S NXPL =0 => same source plane is BLTted to all destination planes

Q. yea, i know that but what logic ops do i use ?

A. to map l's to foreground color and O's to background color
set OP TAB to:

offset logic op

+00 00 all zeros
+01 04 D' <- [not S] and D
+02 07 D' <- S or D
+03 15 all ones

load foreground color into FG_COL and background color into

Q. you wanna buy some lake bottom property?

A. to map l's to foreground color and make O's transparent
set OP TAB to:

offset logic op

+00 04 D' <- [not S] and D
+01 04 D' <- [not S] and D
+02 07 D' <- S or D
+03 07 D' <- S or D

load foreground color into FG COL
it doesn't matter what you put into BG COL

don't forget to set S NXPL to 0

enough smalltalk, let's get down to the core of the issue.
Here are some of my Aunt Marge's flavorful BIT BLT recipes:

BG COL

r--,
- /

C

LINEA.DOC12 22-MAY-1986 13:57 Page 9

1. BLT a pattern without Source to the Destination.

For this number, we'll need a word of ones. Label it "ones:"
next, point S FORM at "ones". Set S NXLN, S NXPL, S_NXWD,
S XMIN, and S-YMIN to O. Set up the pattern as you usually would
and before you know it, you'll have a wonderful steaming pattern
filled rectangle.

2. this is a nice way to make a sprite like device.

o you will need to bake a monoplane mask. everywhere there is a
1 in the mask, the background will be removed. wherever a 0 falls
the background is left intact.

set OP TAB to:

offset logic op

+00 04 0' <- [not S] and 0
+01 04 0' <- [not S] and D
+02 07 0' <- S or 0
+03 07 0' <'- S or 0

load foreground color into FG COL
it doesn't matter what you put into BG COL

o next, take monoplane form (or multiplane form) and "or" it (OP 07
into the area that you just scooped out with the mask

feeds a family of four.

(8) TextBlt

dc.w $A008 1

input:
WMODE

TEXTFG
TEXTBG
FBASE
FWIDTH
SOURCEX
SOURCEY
DESTX
DESTY
DELX
DELY
STYLE
LITEMASK
SKEWMASK
WEIGHT
ROFF
LOFF

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

Perform a TEXT BLock Transfer of 1 character.

writing mode. (0-3 => VOl modes
4-19 => BitBlt modes)

text foreground color.
text background color. (used for modes 4-19)
ptr to start of font data. (font form)
width of font form.
x coord of character in font form.
y coord of character in font form.
x coord of character on screen.
y coord of character on screen.
width of character.
height of character.
vector of TextBlt special effects flags.
the mask to use in lightening text.
the mask to use in skewing text.
the width by which to thicken text.
offset above character baseline when skewing.
offset below character baseline when skewing.

'73

LlNEA.DOC:2

= scaling flag. (0 => no scaling.)
= accumulator for x dda.

page 1U

SCALE
XDDA
DOAINC
SCALOIR
CHUP
MONO
SCRTCHP
SCRPT2

= fractional amount to scale up or down.
= scale direction flag. (0 => down)

output: none.

(9) Show mouse

= character rotation vector.
= monos paced font flag.
= ptr to start of text special effects buffer.
= offset of scaling buffer in above buffer.

dc.w $A009 7 Show the mouse.

input: see GEM VOl manual.

output: none.

(10) Hide mouse

...
dc.w $AOOA Hide the mouse.

...
input: see GEM VOl manual.

output: none.

(11) Transform mouse

dc.w $AOOB 7 Transform the mouse's form.

input: see GEM VDI manual.

output: none.

(12) undraw sprite

dc.w $AOOC ; Undraw the previously drawn sprite.

input: a2 = ptr to sprite save block.

note: The sprite save block is used to save the screen
underneath the sprite. Its size is 10 bytes + 64 bytes
per plane, i.e. (10 + VPLANES * 64) bytes.

output: clobbers a6. ("C" programmers beware.)

(
~

... /

LINEA.DOCi2 22-MAY-1986 13:57 Page 11

(13) Draw sprite

dc.w $AOOD i Draw a sprite.

input: dO = x hot-spot.
d1 = Y hot spot.
aO = ptr to sprite definition block.
a2 = ptr to sprite save block.

SPRITE DEFlNTlON BLOCK LAYOUT

ds.w 1
ds.w 1
ds.w 1

ds.w 1
ds.w 1
ds.w 32

x offset of hot-spot.
y offset of hot-spot.
format flag. (1 => VDl Format,

-1 => XOR Format)

fg bit
o
o
1
1

fg bit
o
o
1
1

VDI Format

bg bit
o
1
o
1

action
transparent to screen
background color plotted
foreground color plotted
foreground color plotted

XOR Format

bg bit
o
1
o
1

action
transparent to screen
background color plotted
xor screen
foreground color plotted

background color (color table index)
foreground color (color table index)
interleaved background/foreground image.
(word 0 = background line O.
word 1 = foreground line o.
word 2 = background line 1.
word 3 = foreground line 1.
etc.)

output: clobbers a6. ("C" programmers beware.)

bugs: This function is not usable as a LINE "A" call in the 1st
release of TOS. See Example program #2 below for the
technique one must adopt to use this function.

(14) Copy raster form

dc.w $AOOE 7 Copy a raster form from source to destination.

input: See the VDl discussion of Copy Raster, Opaque & Transparent,
EXCEPT, CONTRL(O), CONTRL(l) , CONTRL(3), and CONTRL(6) are

8?~-

LINEA.OOC;2 22-MAY-1986 13:57 Page 12

ignored.
COPYTRAN = opaque/Transparent mode flag. (0 => Opaque)

output: none.

note: See the BitBlt discussion above.

USING THE LINE "A" INTERFACE

The inputs to the LINE "An routines are contained in a structure pointed
to by the value returned in aO after an initialization call ($AOOO) has
been made. This initialization only needs to be done once and any returned
values can be saved and used as needed.

The LINE nAn interface can be used in cooperation with the VOl and AES,
however, one cannot expect the variables below to be unchanged after the
VOl or AES has been used. Therefore, if an application wants to mix calls
to LINE nA" and VOI/AES, it must reload any variables that it uses as input
to the LINE "A" routines.

The caller should assume that registers dO-d2 and aO-a2 are clobbered
upon return. The rest are preserved.

The LINE"A" input variables structure:

offset name type description

o VPLANES word
word

number of video planes.
number of bytes/video line. 2 VWRAP

4
8

12
16
20

24
26
28
30

note:

CONTRL
INTIN
PTSIN
INTOUT
PTSOUT

note:

COLBITO
COLBIT1
COLBIT2
COLBIT3

These variables can be changed to implement special effects,
e.g.,doubling VWRAP will cause the routines to skip 1 scan­
line between every scanline that is output to the screen.
Of course, any modifications made to these variables must be
undone when normal operation of the LINE "A" (or VOl) is
desired.

long ptr to the CONTRL array.
long ptr to the INTIN array.
long ptr to the PTSIN array.
long ptr to the INTOUT array.
long· ptr to the PTSOUT array.

See the GEM VOl manual for a discussion of the above arrays.

word current color bit-plane 0 value.
word current color bit-plane 1 value.
word current color bit-plane 2 value.
word current color bit-plane 3 value.

note: current foreground writing color = l*COLBITO +
2*COLBIT1 +
4*COLBIT2 +
8*COLBIT3.

(

LINEA.DOC;2

32
34
36

LSTLIN
LNMASK
WMODE

word
word
word

22-MAY-1986 13:57 Page 13

set this to -1 and forget it.
equivalent to VDlis line style.
writing mode. (0 => replace mode,

1 => transparent mode,
2 => xor mode,
3 => inverse trans mode.)

note: see VOl manual for discussion of writing modes.

38
40
42
44
46
50
52

54
56
58
60
62

64

66

68
70

72
74

76
78
80
82

Xl
Y1
X2
Y2
PATPTR
PATMSK
MFILL

CLIP
XMINCL
YMINCL
XMAXCL
YMAXCL

XDDA

note:

DDAINC

note:

SCALDIR
MONO

SOURCEX
SOURCEY

note:

DESTX
DESTY
DELX
DELY

word
word
word
word
long
word
word

word
word
word
word
word

word

xl coordinate.
y1 coordinate.
x2 coordinate.
y2 coordinate.
ptr to the current fill pattern.
fill pattern "mask".
multi-plane fill flag.
(0 => current fill pattern is single plane)
(1 => current fill pattern is multi-plane)

clipping flag (0 => no clipping)
minimum x clipping value.
minimum y clipping value.
maximum x clipping value.
maximum y clipping value.

accumulator for textblt x dda.

Should be initedto 8000H (.5) before each invocation
of TextBlt.

word fractional amount to scale up or down.

If scaling up, set DDAINC to
256*(Intended size-Actual size)/Actual size.

If scaling down, set DDAINC to
256*Intended size/Actual size.

word
word

word
word

scale direction flag. (0 => down)
o => current font is not monospaced OR

its OK for thickening to increase the
width of the current font.

1 => current font is monospaced AND thickenin
may not increase the width of the font.

x coord of character in font form.
y coord of character in font form.

SOURCEX can be computed from the information held in the
font header. (see Appendix G of VOl manual for header def)
e.g. temp = character value; ..

temp -= fnt ptr->first ade;
SOURCEX = fnt_ptr->off:table(temp);

SOURCEY is typically set to o. (top line of font form)

word
word
word
word

x coord of character on screen.
y coord of character on screen.
width of character.
height of character.

LINEA.DOC~2 22-MAY-1986 13:57 page 14

84
88

90

92
94
96
98

100

102
104

106

108
112

114
116

note:

FBASE
FWIDTH

note:

STYLE

note:

LITEMASK
SKEWMASK
WEIGHT
ROFF
LOFF

note:

SCALE
CHUP

OELX & DELY can be computed from the font header.
e.g. temp = character value~

temp -= fnt ptr->first ade~
SOURCEX = fnt ptr->off-table(temp);
DELX = fnt ptr->offtable(temp+1)-SOURCEX;
DELY = fnt:ptr->form_height;

long
word

ptr to start of font data. (font form)
width of font form.

FBASE & FWIDTH can be computed from the font header.
e.g. FBASE = fnt ptr->dat table~

FWIOTH = fnt_ptr->form_width~

word vector of TextBlt special effects flags.
Bit 0 = Thicken flag.
Bit 1 = Lighten flag.
Bit 2 = Skewing flag.
Bit 3 = Underline flag. (ignored)
Bit 4 = Outline flag.

Set the bits to select the desired effects.
Underlining must be done by the application.

word
word
word
word
word

the mask to use in lightening text.
the mask to use in skewing text.
the width by which to thicken text.
offset above character baseline when skewing.
offset below character baseline when skewing.

The above 5 input variables can be computed from the font
header.
e.g. LITEMASK = fnt. ptr->lighten;

SKEWMASK = fnt-ptr->skew;
WEIGHT = fnt ptr->thicken~
if (skewing)-t

ROFF = fnt ptr->right offset~
LOFF = fnt-ptr->left_offset~

1
else {

ROFF
LOFF

1

word
word

=
=

0;
O~

scaling flaq. (0 => no scaling.)
character rotation vector.
o => normal horizontal orientation.
900 => rotated 90 degrees clockwise.
1800 => rotated 180 degrees clockwise.
2700 => rotated 270 degrees clockwise.

TEXTFG word text foreground color.

SCRTCHP
SCRPT2

long
word

ptr to start of text special effects buffer.
offset of scaling buffer in above buffer.

note: These special effects buffer pointers must be initialized
before TextBlt effects can be used.

TEXTBG word
COPYTRAN

text background color. (4/20/85) RAMVDI only.
word copy raster form type flag. (4/26/85) RAMVDI.

?7r

(~\

(~'

LINEA.DOC;2 22-MAY-1986 13:57 Page 15

0 =) Opaque type
n-plane source -) n-plane dest
BitBlt writing modes

-0 =) Transparent type
I-plane source -) n-plane dest
VDI writing modes

118 SEEDABORT long ptr to routine which is called within the
seedfill logic to allow the fill to be
aborted. Initialized to point to a
dummy routine which returns FALSE.
Returning TRUE aborts the seedfill.

note:

*
*
*
VPLANES
VWRAP
CONTRL
INTIN
PTSIN
INTOUT
PTSOUT
COLBITO
COLBIT1
COLBIT2
COLBIT3
LSTLIN
LNMASK
WMODE
Xl
Y1
X2
Y2
PATPTR
PATMSK
MFILL
CLIP
XMINCL
YMINCL
XMAXCL
YMAXCL
XDDA
DDAINC
SCALDIR
MONO
SRCX
SRCY
DSTX
DSTY
DELX
DELY

This ptr doesn't exist in 1st release of TOS. See Example
Program #2 for the technique to use to identify the 1st TOS
release.

EXAMPLE LINE "A" EQUATES

equ 0
equ 2
equ 4
equ 8
equ 12
equ 16
equ 20
equ 24
equ 26
equ 28
equ 30
equ 32
equ 34
equ 36
equ 38
equ 40
equ 42
equ 44
equ 46
equ 50
equ 52
equ 54
equ 56
equ 58
equ 60
equ 62
equ 64
equ 66
equ 68
equ 70
equ 72
equ 74
equ 76
equ 78
equ 80 1'79 equ 82

LINEA.DOC;2 22-MAY-1986 13:57 Page 16

FSASE equ 84
FWIDTH equ 88 i"\ STYLE equ 90 1

LITEMSK equ 92
SKEWMSK equ 94
WEIGHT equ 96
ROFF equ 98
LOFF equ 100
SCALE equ 102
CHUP equ 104
TEXTFG equ 106
SCRTCHP equ 108
SCRPT2 equ 112
TEXTBG equ 114
COPYTRAN equ 116
SEEDABORT equ 118
*
*
*
INIT equ $AOOO
PUTPIX equ INIT+1
GETPIX equ INIT+2
ABLINE equ INIT+3
HABLINE equ INIT+4
RECTFILL equ INIT+5
POLYFILL equ INIT+6
BITBLT equ INIT+7
TEXTBLT equ INIT+8
SHOWCUR equ INIT+9
HIDECUR equ INIT+10
CHGCUR equ INIT+11 ~_/(,

DRSPRITE equ INIT+12
UNSPRITE equ INIT+13
COPYRSTR equ INIT+14
SEEDFILL equ INIT+15

EXAMPLE PROGRAM #1

text

start: dc.w INIT initialize.
move.w #-l,LSTLIN(aO) once and for all.
move.w #$5555,LNMASK(aO) dithered line.
move.w #O,WMODE(aO) replace mode.
move.w #1,COLBITO(aO)
m,::-.... \.·. w #l,COLBITl(aO)
move.w t1,COLBIT2(aO)
move.w to,COLBIT3(aO) drawing color = 7.
move.w #O,Xl(aO) Xl = O.
move.w #O,Yl(aO) · Yl = o. I

move.w t99,X2(aO) · X2 = 99. I

move.w #99,Y2(aO) · Y2 = 99. I

dc.w ABLINE draw line.

move.w to,-(sp)
trap #1 ; exit.
end

LINEA.DOC12

*
*
*
start:

*

*

22-MAY-1986 13:57 Page 17

EXAMPLE PROGRAM #2

text

clr.l
move.w
trap

addq
move. I

-(sp)
#$20,-(sp)
#1

#6,sp
dO,stksave

supervisor mode required to use
line "A" routines via jsr.

1 save old stack ptr.

* Find out which version of LINE "An handler exists.
*

*

*
*

move. I
dc.w
move. I
bne

lea

#O,a2
INIT
a2,d2
a20k

-4*15(a1),a2

1 convenient value for testing.
1 line "A" initialization.
; old version?
; no, a2 points to array of line "An

routine addresses.
yes, a2 is untouched, so use a1 plu

displacement (15 addresses).

* a2 now points to array of line "A" routine addresses.
*
a20k:
*
*
*

loop:

*
new:
* merge:

*
wait:
*

move.l 4*$D(a2),drawaddr; fetch draw routine address.

Bug-workaround/Initialization complete.

move.w
move.w
lea
lea

movem.w
movem.l
move.l
tst.w
beq
move.l
jsr
bra

dc.w

#O,dO
#O,d1
sprite,aO
save,a2

dO-d1,-(sp)
aO/a2,-(sp)
a6,-(sp)
old linea
new
drawaddr,a3
(a3)
merge

DRSPRITE

move. I (sp)+,a6
movem.l (sp)+,aO/a2

move.w #2000,d2
dbra d2,wait

movem.l
move. I
dc.w
move. I
movem.l
movem.w
addq.w

aO/a2,-(sp)
a6,-(sp)
UNSPRITE
(sp)+,a6
(sp)+,aO/a2
(sp)+,dO-dl
#1,dO

init x.
; init y.
; point to sprite.

point to save area.

save x,y.
save ptrs.
draw clobbers a6.
old or new line "A" handler?
new, branch.
fetch draw routine address.
draw the old way.

draw the new way.

restore ptrs.

; wait a bit.

; save ptrs.
undraw clobbers a6.

; restore ptrs.
restore x,y.

; inc x.

LINEA.DOC;2 22-MAY-1986 13:57 Page 18

cmp.w #640,dO
ble loop

* move.l stksave,-(sp)
move.w #$20,-(sp)
trap #1 ; user mode.
addq #6,sp

*
move.w to,-(sp)
trap #1 . exit. I

data
*
*
*
sprite: dc.w 0,0 ; x,y offsets of hotspot.

dc.w 1,0,1 format, background, foreground.
bob: dc.w $FFFF . background line 0 • ,

dc.w $07FO ; foreground line O.
dc.w $FFFF
dc.w $Off8
dc.w $FFFF
dc.w $lfec
dc.w $FFFF
dc.w $1804
dc.w $FFFF
dC.w $1804
dc.w $FFFF
dc.w $1004
dc.w $FFFF
dc.w $le3c " '.
dc.w $FFFF
dc.w $1754
dc.w $FFFF
dc.w $1104
dc.w $FFFF
dc.w $Ob28
dc.w $FFFF
dc.w $Odd8
dc.w $FFFF
dc.w $0628
dc.w $FFFF
dc.w $07dO
dc.w $FFFF
dc.w $2e10
dc.w $FFFF
dc.w $3geO
dc.;;;' $FFFF
dc.w $3800

bss
*
*
*
stksave: ds.l 1
save: ds.b 10+64
old linea: ds.w 1
drawaddr: ds.l 1

end S",;L

