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Introduction

DEVtools is the software development toolkit for the Pixel Machine. DEVtools differs from the
other Pixel Machine libraries (PIClib, RAYlib, etc.) in that DEVtools users program both the host
and the processors in the Pixel Machine. Users of the other libraries, however, program only the
host system—the Pixel Machine functions are performed implicitly by the libraries supplied with the
Pixel Machine.

DEVtools enables users to implement a wide variety of applications that take advantage of the
graphics and compute power of the Pixel Machine. Consequently, DEVtools users require a deeper
understanding of the Pixel Machine architecture and the DSP32 processor than do users of the other
libraries.

DEVtools is designed to provide a high level programming model for the Pixel Machine. This
model enables users to quickly develop Pixel Machine applications without having to know or
understand the details of the inner workings of the Pixel Machine. However, DEVtools does sup-
ply the detailed information for those users with special needs that may require lower level access to
the Pixel Machine hardware.

DEVtools comprises the following:
m DSP32 C compiler, assembler, linker, library and miscellaneous other utilities
m a library of host functions that control and communicate with the Pixel Machine
m a library of Pixel Machine functions that are used to program the pipe and pixel nodes

Components of a Typical DEVtools Application

A typical DEVtools application consists of a host program, pipe node programs and a pixel node
program.

The host program serves as the controller or master of the application. The application is initiated
by invoking the host program in the same manner as any other host program. The host program,
through the use of DEVtools function calls, loads the Pixel Machine executable files into the pipe
and pixel nodes and initiates execution. Once execution has begun the host is responsible for send-
ing data and commands to the Pixel Machine, and for servicing message requests for the Pixel
Machine to perform operations such as input/output.

Pipe node programs are used to perform transformations on the data produced by the host before the
data is sent to the pixel nodes. Many DEVtools applications do not require use of the pipe. The
Pixel Machine can be configured without a pipe for users with no need for pipeline processing.
When an application does not use the pipe but is un on a system equipped with a pipe, a program
must be loaded into the pipe that passes the data through the pipeline to the pixel nodes. DEVtools
includes a pipe program that performs this function. Applications that do make use of the pipe can
load a different pipe program into each pipe node or they can load the same program into every
node. DEVtools includes functions to read and write command information, send messages to the
host system, control access to the pixel broadcast bus, and to send data to the host feedback FIFO.

The Pixel Machine System Archltecture 11



introduction

Pixel node programs are typically the core of the application. The same program is usually loaded
into all pixel nodes, although this does not have to be the case. Pixel node programs read com-
mands from either the host or pipe, process the command, and produce results in the distributed
frame buffer. Applications that produce non-graphical results can send the data back to the host for
storage or output. Applications that use data distributed -among the pixel nodes can use the serial
I/O communications facility for interprocessor communication. DEVtools includes functions to read
commands, send messages to the host, perform frame buffer I/O, serial I/O, memory management,
processor synchronization, etc.

Pipe and pixel node programs are created in much the same manner as would be used to create host
executables, with the exception that the command devcc is used in place of cc.
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The Pixel Machine

Introduction

Generating a realistic image from complex two and three dimensional data in real time demands a
lot of computational power. Graphics and image processing algorithms, particularly rendering algo-
rithms, often perform a set of operations to generate each pixel, with little or no interaction between
pixels. These algorithms are candidates for mapping to a parallel architecture, with performance
increasing nearly linearly with the number of processors.

In many display systems, a single custom processor handles the typical frame buffer operations.
This approach is adequate for rendering simple two-dimensional images. However, when realisti-
cally shaded images must be displayed in real time, a single processor cannot provide the necessary
computational power.

Pipelines or arrays of special purpose processors provide high performance at the expense of flexi-
bility. Their performance improvements are limited to the narrow range of algorithms that they
were designed to solve.

While the use of parallelism and pipelining gives a system the power needed to render high quality
images in real time, the use of programmable processors provides the flexibility to attain high per-
formance for a wide range of graphics and image procession algorithms. It is much easier to change
a program from Gouraud shading to Phong shading, for example, than to redesign a customized pro-
cessor.

The AT&T Pixel Machine combines the strengths of both coarse grain pipelining and multiple
instruction/multiple datapath (MIMD) computing arrays. A pipeline of computing elements
processes the serial tasks that precede pixel-level processing while a processor array provides high-
bandwidth access to an integrated frame buffer and computes individual pixel values. The proces-
sors in both the pipeline and the array are programmable, with hardware floating point operations.

The programmability of the processors allows all algorithms to be implemented in software. A set
of mapping functions transfer frame buffer algorithms written for conventional serial computers to
algorithms that execute in the pixel nodes and access the distributed frame buffer. The ability to
use floating point computations in frame buffer operations such as antialiasing, ray tracing, and cas-
caded filtering, allows high quality image generation.

The Pixel Machine provides up to 820 megaflops of processing power and 48 megabytes of memory
for data visualization applications, including three-dimensional rendering and animation, image pro-
cessing, and display of multi-dimensional data.

The Pixel Machine System Archltecture 1-3



Pixel Machine Architecture

Design

The Pixel Machine combines the strengths of both coarse grain pipelining and MIMD computing
arrays to provide the performance of a supercomputer on image synthesis and image analysis appli-
cations. Synthesis applications include the generation and display of two and three dimensional
scenes as well as the visualization of scientific and engineering computations. Analysis applications
include the processing and interpretation of image data from, say, a nuclear magnetic resonance
machine or a satellite. The design philosophy is:

m Use floating point computation and large image memories, which are useful for image pro-
cessing.

® Design simple, modular processors that can be repeated a number of times to build a system.
B Implement all algorithms in software.
The modular approach enabled the Pixel Machine to be designed, built, and programmed by a small
group of people in a short period of time. The decision to implement algorithms in software rather

than special purpose VLSI chips gives wide functionality, faster implementation of new algorithms,
and easier modification of existing ones.

The architecture has the following features:
8 AT&T DSP32 processors
0, 9 or 18 pipe nodes, configurable as zero, one or two pipelines
16, 20, 32, 40, or 64 pixel nodes
32~bit pixel and z-buffer data
floating-point computation for pixel generation
a frame buffer with pixel-interleaved parallel architecture
1280x1024 or 1024x1024 high-resolution 60 Hz non-interlaced display
NTSC and PAL display modes
a large image memory that allows single, double, or quadruple buffering

software that transparently handles the different frame buffer sizes
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Plxel Machine Architecture

Figure 1-1: Pixel Machine block dlagram
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Both the pipe nodes and the pixel nodes include an AT&T DSP32 Digital Signal Processor, a
32-bit, high speed, programmable device whose features include:

= 20 MHz, 5 MIPS, 10 MFLOPS

m 4K bytes of on-chip memory
32-bit floating point arithmetic
four 40—bit floating point registers

[
|
m twenty-one 16—bit integer and address registers
B an interface to off-chip expansion memory

=

parallel and serial I/O ports with DMA

The DSP32 can be programmed in assembler language or in C. The software development environ-
ment includes a compiler, an assembler, a linking loader, and a simulator. All arithmetic operations
on data are floating point operations. Only memory address generation and program control calcula-
tions use integer arithmetic. Software is developed on a host computer, typically a SUN or SGI
workstation. The Pixel Machine is connected to the host computer via the VMEbus.

Inside the Pixel Machine, there are 0, 9 or 18 pipe nodes configured as zero, one or two pipelines, a
broadcast bus that transfers data from the end of the pipes to the pixel nodes, an array of 16, 20, 32,
40, or 64 pixel nodes that form a distributed frame buffer, and a pixel funnel that transfers digital
video data from the frame buffer to the video processor, which controls the display monitor.
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Plxel Machine Architecture

Each pipe and pixel node can be viewed as a small independent computer that executes its instruc-
tions and operates on data asynchronously with all the other nodes. Programs are loaded into the
nodes by the host, using unique, software-defined node numbers to distinquish between them.
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Pipe Nodes

Figure 1-2 shows a block diagram for a pipe node. Each pipe node has a DSP32 processor that
executes five million instructions or ten million floating point operations per second. The parallel
DMA interface of each processor is connected to the VMEbus. The pipe nodes have 9Kx32 bits of
memory for instructions and data, a 512x32 bit input FIFO containing data written by the previous
pipe node, a 512x32 bit output FIFO where all output is written, to be read by the next node in the
pipeline.

Figure 1-2: Plpe node block diagram
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The host computer provides input to the first pipe node via the VMEbus. The output from the last
pipe node is broadcast to all of the pixel nodes. In addition, the last pipe node has a second output
FIFO that can be read by the host, again via the VMEbus.

A system can have 0, 9 or 18 pipe nodes. The 18-node systems are software-configurable as either
two nine-node parallel pipelines or one 18-node pipeline (see Figure 1-3). In a two pipeline system,
the node in each pipeline has the ability to request, acquire, and release the broadcast bus. In the
one pipeline system, the last node has continuous access to the broadcast bus.
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Pipe Nodes

Figure 1-3: Plpeline configurations
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(c) one long pipe

The pipe nodes perform those parts of the algorithms that are serial in nature and can be pipelined.
These include 3D transformations, clipping, projections, shading, and image filtering. The pipeline
can also be used as a hardware subroutine by processes running in the host computer, which can

send data to the first node and read results from the last one.
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Plpe Nodes

Pipe Node Memory Areas

This section describes the memory areas and their use within pipe node programs. Direct use of
these memory areas and flags is discouraged because the addresses of the areas and other dependen-
cies, such as timing requirements, are considered to be implementation defined and may be different
in future systems. When it is necessary to access these memory areas, the symbolic names given
below and defined in the header file pipe.h should be used.

The Pixel Machine System Archltecture 19



Pipe Nodes

Table 1-1: Memory Map of a Pipe Node’s Address Space

Address Name Mode Description
0000 - 0060 R/W crt0 (startup code)
0060 — 7fff R/W static RAM for program and data storage
c000 — cl1ff R Input FIFO
c000 PM_FIFOIN R Input FIFO
c000 PM_FIFOIN_L R Input FIFO — low word
c002 PM_FIFOIN_H R Input FIFO — high word
€200 — c3ff w Output FIFO
€200 PM_FIFOOUT w Output FIFO
€200 PM_FIFOOUT L W Output FIFO — low word
€202 PM_FIFOOUT _H w Output FIFO - high word
c400 PM_EMPTY_IN W Input FIFO empty flag
c600 PM_HALF_IN W Input FIFO half-full flag
c800 PM_HALF_OUT W Output FIFO half-full flag
ca00 PM_FULL_OUT W Output FIFO full flag
€000 — efff on-chip ROM (unusable)
000 — ffff R/W static RAM for program and data storage

Last Node on a Board

b000 PM_BUS RELEASE | W Broadcast bus release
ce00 — cfff Feedback FIFO
ce00 PM_FIFOFB w Feedback FIFO
ce(0 PM_FIFOFB_L w Feedback FIFO — low word
ce02 PM_FIFOFB _H w Feedback FIFO ~ high word
d400 PM_HALF_FB W Feedback FIFO half-full flag
d600 PM_FULL_FB W Feedback FIFO full flag
d80o PM_BUS_GRANT W* Broadcast bus grant
da00 PM_BUS_REQUEST | W Broadcast bus request
dc00 PM_PIXEL_ALLRDY | w* Pixel node vsync flag
de00 PM_PIXEL_XFLAG W Pixel node psync flag
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Pipe Nodes

The mode field in the memory map defines whether the address can be read (R), written (W), or
both (R/W). Memory areas that are not defined must not be referenced.

Sync Signal Selectors

The flags in the memory map designated with an asterisk (‘‘*’’) are boolean values whose state may
be sensed by the DSP32 conditions sys and syc (sync set and sync clear). The values of each of
these flags is routed through a multiplexer. The value to be passed to the DSP32 is selected by
writing any value into the address associated with the flag to be sensed. For example, to check the
input FIFO half-full flag, you would write a value to the address c600 (PM_HALF_IN), then check
the sync signal. If the signal is set, then the condition is true; the FIFO is half full.

The sync signal must not be tested immediately after setting one of the signal selector flags because
a short delay is required for the hardware to switch the signals. The minimum delay is three
instructions for the last node on a board and two instruction for all of the other nodes.

Static RAM

The static RAM area totals 36k bytes of memory for general purpose program and data storage.
The standard memory definition file (ifile) designates 0060 through 7fff for program storage and
f000 through ffff for data storage. This can be changed by supplying an ifile to the linker that dis-
tributes the memory in the manner desired.

Input FIFO

The input FIFO contains up to 2048 bytes of data, organized as 512 units of four bytes each. The
input FIFO may be read as one four-byte word, two 2-byte words or as four bytes, however, all four
bytes of each FIFO entry must always be read in order for the contents of each byte of the FIFO to
remain synchronized with the others. The status of the input FIFO is checked by writing a value to
input empty or input half-full, then checking the sync flags (sys or syc). The FIFO must not be
read when it is empty.

The FIFO can be read using any of the 32 bit 4-byte words that are mapped to the output port of
the FIFO. This allows a program to use a standard block move routine to read to the FIFO as long
as no more than 128 4-byte words are moved at one time,

Output FIFO

The output FIFO is the input FIFO of the next pipe node. For the last node in the pipeline, the out-
put FIFO is the broadcast bus to the input FIFO’s of the pixel nodes. As with the other FIFOs, all
four words must always be written in order to maintain synchronization. The status of the output
FIFO is checked by writing a value to output full or output half-full, then checking the sync flags
(sys or syc). The FIFO must not be written when it is full. The FIFO of the last node (the broad-
cast bus) must not be written unless the bus is granted to the board that wishes to do the write
operation.
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Pipe Nodes

The FIFO can be written using any of the 32 bit 4-byte words that are mapped to the output port of
the FIFO. This allows a program to use a standard block move routine to write to the FIFO as long
as no more than 128 4-byte words are moved at one time.

Feedback FIFO

Each pipe board contains a feedback FIFO that can be read by the host system. Both feedback
FIFOs can be used regardless of whether the pipes are operating in serial or parallel mode. As with
the other FIFOs, all four words must always be written in order to maintain synchronization. The
status of the feedback FIFO is checked by writing a value to feedback full or feedback half-full, then
checking the sync flags (sys or syc). The FIFO must not be written when it is full.

The FIFO can be written using any of the 32 bit 4-byte words that are mapped to the output port of
the FIFO. This allows a program to use a standard block move routine to write to the FIFO as long
as no more than 128 4-byte words are moved at one time,

Accessing the Broadcast Bus

In a dual-pipe system with the pipes operating in parallel mode only one pipe has access to the
broadcast bus at any point in time. When operating in parallel, each pipe must release access to the
broadcast bus to the other pipe on a regular basis, because both pipes must be able to write to the
broadcast bus in order to achieve optimal performance.

Access to the broadcast bus is controlled by three memory locations: PM_BUS_REQUEST,
PM_BUS_RELEASE, and PM_BUS_GRANT. PM_BUS_REQUEST is used to request access to
the broadcast bus. PM_BUS | RELEASE is used to Iehnqmsh control of the broadcast bus to the
other pipe. PM_BUS_GRANT is used to connect the bus grant signal to the sync signal of the
DSP32 so that the software can sense whether access to the bus has been granted.

*PM BUS REQUEST = rl /* Can be any register-the contents don’t mattar */
*PM BUS_GRANT = rl

2*nop /* Delay needed before signal can read */

loop: .

if (syc) goto loop /* Wait for grant signal to be true */
nop

To gain access to the bus
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Pipe Nodes

*PM_BUS_RELEASE = rl /* Can be any register - the contents don’t matter */

To release the broadcast bus

Single pipe configurations and dual pipe configurations operating in a series do not need to check
the bus grant flag because the bus will always be granted to the node that has access to the broad-
cast bus.

Pixel Node Flags

Pipe activity can be synchronized with pixel node activity by using the PM_PIXEL_ALLRDY and
PM_PIXEL_XFLAG signals. The PM_PIXEL_ALLRDY flag is true when all of the pixel nodes
have set their vsync signals. PM_PIXEL _XFLAG is true when all of the pixel nodes have set their
psync signals. These signals are available to both pipes of a dual pipe system in both serial and
parallel modes.
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Pixel Nodes

The pixel nodes form an nxm array with a distributed frame buffer. They receive their data from
the broadcast bus of the pipe nodes and store their output into the frame buffer or return it to the
host computer. Mapping registers provide uniform access to the frame buffer across different
configurations of pixel nodes, and a four-way multiplexed I/O switch and channel allows two-way
communication with the four neighboring pixel nodes.

A DSP32 is the computing element in each pixel node. Just as in the pipe nodes, there is an
8192x32 bit static RAM in the node, in addition to the 1024x32 bits of on-chip storage. Figure 1-4
shows a block diagram.

Figure 1-4: Pixel node block dlagram

lBroadcast Bus VMEbus
: :
513_‘1)?(032 - DsP32 *— 10 Switch :
O216x32| 6AKXB2 | | meightors [~
SRAM VRAM e
64Kx32 | 64Kx32 :
DRAM VRAM

Two banks of 64Kx32 bit VRAM:s form the pixel node’s piece of the the distributed frame buffer.
The video RAMs store the red, green, blue, and alpha settings for the pixels. These memories can
be displayed or used as off-screen storage for images.

Pixel nodes also contain a 64Kx32 bit dynamic RAM that can be used to hold floating point z-
buffer values or any data in byte or word format, pixels in floating point representation, sections of
display list, or code segments. The processor can execute instructions from this memory, although
it is slower than executing from either the on-chip or SRAM memory.

1-14 DEViools User's Gulde, Version 1.0



Plxel Nodes

Table 1-2: Pixel array configurations

Pixel Pixel Node Array Display Subscreens
Nodes | physical virtual | Resolution Size # pixels per node
16 4x4 8x8 1024x1024 | 128x128 65536 4
20 5x4 10x8 1280x1024 | 128x128 65536 4
32 8x4 8x8 1024x1024 | 128x128 32768 2
40 10x4 10x8 1280x1024 | 128x128 32768 2
64 8x8 8x8 1024x1024 | 128x128 16384 1
64 8x8 8x8 1280x1024 | 160x128 20480 1

A Pixel Machine can be configured with 16, 20, 32, 40, or 64 pixel nodes. Table 1-2 summarizes
these five configurations. The two video RAMs and the dynamic RAM (when used to store pixel
data) are organized as three blocks of 256x256 32—bit pixels. Each bank can be logically divided
further into smaller blocks, called subscreens (see Chapter 3 for a discussion on subscreens).

In order to allow configuration-independent software, the concept of virtual pixel nodes that reside
inside physical nodes is introduced. Each virtual node accesses a single subscreen. All systems
have either 64 or 80 virtual nodes, depending on the resolution of the display screen. In a 64—node
system, each physical pixel node contains a single virtual node, while a 16— or 20—node system has
four virtual nodes per physical node.

The Pixel Machine System Architecture
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Pixel Nodes

Figure 1-5: Pixel format
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Pixel data is stored in the frame buffer as 16—bit signed integers. The four components of a pixel,
(red, green, blue, o) form two 32-bit words, as shown in Figure 1-5. Only eight of the 16 bits in a
pixel component are populated with memory,

Each pixel node has a serial input/output (SIO) channel that provides a communication path to its
four nearest neighbors, allowing the Pixel Machine to function as a computing mesh. Node place-
ment follows pixel interleaving conventions, as shown in Figure 1-6. Thus, in a 4x4 array of pixel
nodes, node 5’s neighbors are nodes 1, 4, 6, and 9. The edges of the mesh wrap around to form a
torus, so node 0’s neighbors are 1, 3, 4, and 12, for example.

The SIO capability at each node consists of one input and one output serial port that operates at
peak rates of 16Mbits/sec. Pixel data can be moved from node to node at a sustained rate of
5.25Mbits/sec, including the time spent buffering pixel data to and from the display memory. In
practice, however, processor cycles will be shared between an application program and SIO, and the
data transfer rate will be proportionately slower.
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Pixel Nodes

Pixel Node Memory Areas

This section describes the memory areas and their use within pixel node programs. Direct use of
these memory areas and flags is discouraged because the addresses of the areas and other dependen-
cies, such as timing requirements, are considered to be implementation defined and may be different
for future systems. When it is necessary to access these memory areas, the symbolic names given
above and defined in the header file pixel.h should be used.

Address Name Mode Description
0000 ~ 0060 R/W crtQ (startup code)
0060 — 7fff R/W static RAM for program and data storage
8000 — bfff | PM_PIXEL_MEM | R/W reserved for VRAM/ZRAM access via
page registers
8000 — 83ff R/W memory reference via page register 0
8400 — 87ff R/W memory reference via page register 1
8800 — 8bff R/W memory reference via page register 2
bc00 — bfff R/W memory reference via page register 15
c800 — ¢840 | PM_MAP_ADDR | R/W page register storage
c800 — c803 R/W page register
c804 - c807 R/W page register 1
c808 — c80b R/W page register 2
c83c — c840 R/W page register 15
do02 —- d003 | PM_FLAG_REG drawing mode register
d800 — dfff Input FIFO
d800 — d803 | PM_FIFO_32 R Input FIFO
d800 — d801 | PM_FIFO_16L R Input FIFO — low word
d802 - d3803 | PM_FIFO_16H R Input FIFO — high word
e000 — efff on-chip ROM (unusable)
000 — ffff R/W static RAM for program and data storage

The Pixel Machine System Architecture 1-17



Pixel Nodes

The mode field in the memory map defines whether the address can be read (R), written (W), or
both (R/W). Memory areas that are not defined must not be referenced.

Static RAM

The static RAM area totals 36k bytes of memory for general purpose program and data storage.
The standard memory definition file (ifile) designates 0060 through 7£ff for program storage and
f000 through £fff for data storage. This can be changed by supplying an ifile to the linker that dis-
tributes the memory in the manner desired.

Flag Register
Each pixel node has a flag register that contains:
@ the sync signal section flags
@ the node’s psync and vsync flags
@ the flags that select the video buffer to be displayed
@ the overlay flag for the processor

The flag register is 16—bits and is accessed through the address d002 (PM_FLAG_REG). The fol-
lowing describes the structure of the register:

ovlIv0f rsss

where:

& o is the overlay flag. For overlaying to be enabled, the overlay flag of all the drawing nodes
must be set, and the overlay flag for all the pixel board mode registers (see below) must also
be set.

8 20 and v] designate which area of the video memory should be displayed. 0 controls
whether the top buffer or bottom buffer is displayed (0 displays the top buffer). If v1 is
false, the image is displayed starting at the first pixel of image memory. If v1 is true, an
offset of 128 pixels is used.

m fis the processor’s psync flag.

m r is the processor’s vsync flag.
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m sss is the sync signal selection flag. The sync signal selection flag is used to designate which
of several flags is to be connected to the DSP32 sync signal. Once selected these signal may
be sensed by the DSP32 conditions, sys and syc (sync set and syc clear). The value of sss
must be one of the following:

o 000 (PM_EMPTY_LOWERY): input FIFO 16-bits (not usually used)
o 001 (PM_HALF_FULL): lower 16—bits (not usually used)
o 010 (PM_DRAW_EMPTY): input FIFO empty flag
o 011 (PM_DRAW_HALF): input FIFO half-full flag
o 100 (PM_VERTBLNK): vertical blanking flag
o 101 (PM_HORZBLNK): horizontal blanking flag
o 110 (PM_XFLAG): all processors vsync flags are set
o 111 (PM_ALLRDY): all processors psync flags are set
There must be a delay between setting the flag register and testing the sync signal in order for the

hardware to have time to switch the signals. A minimum of two instructions must be executed
between setting the flag register and checking the sync signal.

Pixel Array Board Mode Register
Each pixel array board contains a mode register that contains:
m the board level overlay mode flag
| the video shift flag
m gate flags that are used to disable pixel boards
@ serial I/O direction flags

The mode register is a 16—bit register that can only be accessed by the host. The structure of the
register is:

5 s gfgs vvoo

where:

The Pixel Machine System Archlitecture 1-19



Pixel Nodes

ss is the serial I/O direction to be used.

gf is the DEV_GATES_FIFO flag. If true the FIFO flags are included when determining the
FIFO flags that are passed to the pipe board(s) to determine whether they can broadcast to the
pixel nodes.

gs is the DEV_GATES_SYNC flag. If true, the psync and vsync flags from the processors
on this board are included when determining the value of the PM_ALLRDY and
PM_XFLAG signals.

v is the video shift mode, and must be one of the following;

o 00 (DEV_SHIFT_NOT964): used for all models except the 964

o 01 (DEV_SHIFT_TOP964): upper 4 lines of each 8 scan lines of the 964

o 11 (DEV_SHIFT_BOT964): bottom 4 lines of each 8 scan lines of the 964
oo is the overlay mode. This indicates whether or not overlaying is enabled, and if enabled
which of several modes is to be used. The value must be one of the following:

o 00 (DEV_OVERLAY_OFF): Overlaying is disabled.

o 01 (DEV_OVERLAY_ON): Overlaying is enabled. If the overlay value is zero, the
RGB value is used. If the overlay value is 255, the inverse of RGB is used. If the
overlay value is 1-254, the overlay value is used.

o 10 (DEV_OVERLAY_FORCE): The overlay value is always used.
o 11 (DEV_OVERLAY_MASK): If the high order bit (80 hex) of the overlay value is
true, the overlay value is used, otherwise RGB is used.
o The value displayed for each pixel is determined by:
o the value of the pixel memory (RGB and overlay)
o the overlay mode in the pixel mode register of each pixel array processor board

o the overlay flag in each of the pixel node flag registers

If all of the overlay flags are on, overlay mode is determined by the overlay mode in the pixel mode
register. If all of the overlay flags are off, then DEV_OVERLAY_OFF mode is used.

The three components described above are used to make two decisions:

1.

1-20

which values should be sent to the video controller for RGB. The video controller accepts
24-bits of color information, 8-bits each of red, green, and blue. The 24—bits can contain
either the red, green, and blue pixel data, or the overlay data can be copied into the red,
green, and blue fields (the same 8-bits is copied into each of the three colors).
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2. which lookup tables on the video controller should be used to produce the final color value.
Normally the primary lookup table is used. When the overlay data is being displayed, the
overlay table is used for those pixels.

Table 1-3: Memory Map of a Pixel Node's Address Space

Overlay Overlay Overday RGB Lookup

Flag Mode Value Table

OFF (any) (any) RGB  Primary
ON OFF (any) RGB  Primary
ON ON 0 RGB  Primary

1-254 o000 Overlay
255 "RGB  Primary

ON FORCE (any) RGB Overlay

ON MASK 0-127 RGB
128-255 o000 Overlay

When the overlay flag in the pixel nodes is off (false), the RGB data is displayed using the primary
lookup table in all cases. When the overlay flag in the pixel nodes is true, the displayed value
depends on the overlay mode and the contents of each overlay pixel.

DEV_OVERLAY_ON: If the overlay value is zero, the red, green, and blue data is displayed using
the primary lookup table. If the overlay value is in the range 1-254, the overlay value is used for
red, green, and blue, and the overlay lookup table is used. If the overlay value is 255, the bitwise
complement of red, green, and blue is displayed using the primary lookup table.

DEV_OVERLAY_FCRCE: The red, green, and blue data is displayed using the overlay lookup
table.

DEV_OVERLAY_MASK: If the overlayh value is in the range 0-127, the red, green, and blue data
is displayed using the primary lookup table. If the overlay value is in the range 128-255, the over-
lay value is used for red, green, and blue, and the overlay lookup table is used.
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Input FIFO

The input FIFO contains up to 2048 bytes of data, organized as 512 units of four bytes each. The
input FIFO may be read as one four-byte word, two 2-byte words or as four bytes, however, all four
bytes of each FIFO entry must always be read in order for the contents of each byte of the FIFO to
remain synchronized with the others. The status of the input FIFO is checked by setting the
PM_DRAW_EMPTY or PM_DRAW_HALF bit in the mode register then checking the sync flags
(sys or syc). The FIFO must not be read when it is empty.

Z Memory

The Z memory (also referred to as DRAM or ZRAM) consists of 256k bytes of dynamic RAM
memory for each pixel node. The Z memory can be used for floating point values, integers, or
bytes, and it is accessed through the use of page registers, which are described below.

Video Memory

Each node contains 512k bytes of video memory. The video memory is also accessed through the
use of page registers, and it is divided into two sections, VRAMO and VRAM1. Each of these
areas is subdivided into two sections: one containing the red and green pixel components (RGO and
RG1) and the other containing the blue and overlay pixel components (BOO and BO1).

As described above, each color component of a pixel consists of 8 bits of data stored in the high
order bits (the bits after the sign bit) of a short integer. In the red/green section the red pixel data is
stored in the low order word of the 32 bit value for a pixel, and the green data is in the high order
word. Since the byte ordering on the DSP32 is least significant byte first, the red pixel data is
stored at byte location N, and the green information is at byte location N+2. In the blue/overlay
region the blue data is in the low order word (memory address N) and the overlay data is in the
high order word (memory location N+2).

Page Registers

Page registers allow the pixel nodes to access 256k bytes of ZRAM and 512k bytes of video RAM
even though the DSP32 only has a 16 bit address space.

Memory addresses in the range 8000 through bfff are reserved for paged memory access. Put
another way, all addresses that begin with the bit sequence 10 are reserved for paged memory
access. Paged memory addresses have the form:

10pp ppoo o000 o000
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where:
10 designates this as a paged address
pppp is the page register number (0 to 15)
0000000000 is the ten bit offset from the address contained in the page register.
The page registers are accessed as four byte values at memory locations starting at c800 for page

register 0, c804 for page register 1, and so on, up to ¢83c for page register 15. Only the 12 low
order bits of the page register are used. The structure of the page register is:

mbbb aaaa aaaa

where m is the mode selection bit. The two addressing modes are:

m 0: Fixed row addressing. The address field contains the row number to be accessed. This
mode allows the access of a processor’s pixels on a given scan line.

m 1: Fixed column addressing. The address field contains the column number to be accessed.
This mode allows the access of a processor’s pixels on a given screen column.

bbb is the bank selection field. The defined values are:
a 001: PM_ZMEM - Z memory
m 100: PM_RGO — the red/green components stored in VRAM bank 0
m 101: PM_BOO — the blue/overlay components stored in VRAM bank 0
m 110: PM_RG1 — the red/green components stored in VRAM bank 1
@ 111: PM_BO1 ~ the blue/overlay components stored in VRAM bank 1
aaaaaaaq is the 8—bit extended address value.

Macros are provided to build and use page registers. They hide the internal structure of the page
register and the physical addresses that are used.

PMdesc is used to build a value to be stored in a page register. The format of the macro is:
PMdesc(mode bank)+extended_address

mode must have the value PM_FIX_ROW or PM_FIX_COL
bank must have the value PM_ZMEM, PM_RGO, PM_BOO0, PM_RG1, or PM_BO1
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PMpagereqg is used to access the locations in which the page registers are stored. The format of
the macro is:

PMpagereg(reg_number)

reg_number must have a value in the range of 0 to 15

PMxlate is used to generate an address that uses a page register. The format of the macro is:

PMxlate(reg_number)

reg_number must have a value in the range of 0 to 15

The following is an example of the macros used in assembly code. r2 holds the row index and 13
contains the column index:

4 R

rl = PMdesc(PM FIX ROW, PM ZMEM) + r2 /* Access the 2 mamory row
designated by the value in r2 */

*PMpagereg (4) = rl /* Move the dascriptor into
page register 4 */
r3 = r3 * 2 /* convert the colurn index in r3 to a byte */
r3 = r3 * 2 /* offset by multiplying by 4 (since each
float takes up 4 bytes) */
r4 = PMxlate(4) + r3 /* Get the address of the value

designated by the row

number in page register 4,

plus the offset in register r3 */
a0 = *r4 /* Move the desired value into register aG */
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In some applications, it may be necessary for the pixel nodes to exchange data. For example, to
scroll the image memory by one pixel requires that each processor send the entire contents of its
pixel memory to a neighboring processor, replacing the pixels with those received from another
neighboring processor. Another use is communicating intermediate results of a computation that is
distributed over the processor array, for example, multiplying matrices that are distributed among
the nodes.

To accomplish this exchange of data, the Pixel Machine supports nearest-neighbor communications
among the pixel nodes. Because this communication is implemented using the serial 1/O port of the
DSP chip, it is sometimes referred to as SIO (Serial 1/O) to distinguish it from the node-host com-
munication implemented with the parallel I/O port.

Topology
Each node can communicate with one of four neighboring nodes over the communications links; the

neighbors of any node, and the links connecting to those neighbors, are referred to as North, South,
East, and West.
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Figure 1-6: Link directlons from a plxel node
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The communications links between the mesh of pixel nodes form a torus: a mesh connected at the
edges (Figure 1-7). This allows every node to connect to four neighbors. The neighboring nodes are

arranged in the same pattern as pixels are interleaved among pixel nodes; complete topologies for
all Pixel Machine models are given at the end of this section.
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Figure 1-7: Torus topology for a 4x4 processor mesh
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While each node has links to four neighboring nodes, only one of the four links may be active at a
given time. Furthermore, all nodes communicate in the same direction. Setting the active link
(also referred to as setting the link direction) is done by the host using the DEVserial_direction
call. This restriction means that all pixel nodes must agree on the order in which data is sent over
the links, and to which destination nodes it is sent. The link direction is set to North, South, East, or
West, and sends data to the neighboring node in that direction, while receiving data from the neigh-
boring node in the opposite direction. For example, if the link is set East, a node will send data to
its East neighbor while receiving data from its West neighbor.
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The frame buffer is distributed throughout the array of pixel nodes. An example is shown in Figure
1-8. The pixel funnel rearranges pixels from the frame buffer into a properly ordered raster scan
sequence. Both the video controller and the pixel funnel are software configurable for the five dif-

ferent pixel arrays.

Figure 1-8: Pixel mapping In the distrlbuted frame buffer for a PXM 916
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The frame buffer stores (red, green, blue, ) values for each pixel; the video processor may substi-
tute the o value for the red, green, or blue value, based on the dispiay mode:
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RGBoyt = rgl bin
OVERLAY OFF

rghin if o=0
RGBout = | rghin if 0=255
oo, if 0<o<255

OVERLAY ON

rgbin if 0<0i<128
RGBoy = { 1 1r8casdss

OVERLAY FORCE
RGBout = rgbm

OVERLAY MASK

The video processor uses six 256x10 lookup tables, or color maps, to translate 8—bit pixel color
values to 10~bit video data. Three of the tables map red, green, and blue. The other three map o
to red, green, and blue values.

There are two sets of color maps. One set contains high-speed video tables that are used to convert
video data. The other set are shadow tables that can be read and written via the VMEbus. The con-
tents of the shadow tables are automatically copied to the video tables during a vertical retrace
period, with copying enabled and disabled in software. The shadow tables prevent two problems
common to many video systems from arising: snowy and sheared video because color maps are
modified during active video periods, and distracting flashes on the screen because of partially
modified color maps.

In high-resolution mode, the video system displays 1024 lines of either 1024 (in systems with 16,
32 or 64 pixel nodes) or 1280 (in systems with 20, 40, or 64 nodes) pixels, at 60 Hz non-interlaced.
In NTSC mode, the video system uses the RS-170A format to display 485 of 720 pixels in all pixel
node configurations. In PAL mode, 575 lines of 720 pixels are displayed.
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Video Format

DEVtools supports the PAL and NTSC video format, PAL is the video format used in Europe
which corresponds to the NTSC format used in North America. PAL enables the Pixel Machine to
produce a PAL signal for Buropean customers to use with their video equipment. The screen reso-
lution for PAL is 720x576; NTSC resolution is 720x485.

Using the Pixel Machine in PAL mode is similar to using it normally. All the user is required to do
is set the appropriate model, which should be 964p for a single pipe 964 and 964pd for a dual pipe
system, and issue a hypinit command to actually switch to PAL video format. To switch back to
standard hi-res video, change the model to 964 or 964X and issue a hypinit command.

For NTSC mode, set the model as you would normally but append an n to the end of it. For exam-
ple, if you have a 964 with a dual pipe, set the model to a 964dn,

For high resolution the subscreens are:

Model | Subscreens Size
964X 1 160x128
964 1 128x128
940 2 128x128
932 2 128x128
920 4 128x128
916 4 128x128

For PAL the subscreens are:

Model | Subscreens Size
964p 1 90x72
940p 2 72x72
932p 2 90x72
920p 4 72x72
916p 4 90x72
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For NTSC the subscreens are:

Model | Subscreens Size
964n 1 90x61
940n 1 72x122
932n 1 90x122
920n 1 144x122
916n 1 180x122

The DEVtools variables PMimax and PMjmax are set to these limits minus one. Therefore, on a
model 940n (NTSC) PMimax would be equal to 71 and PMjmax would be 121.
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As described above, the Pixel Machine can be configured with five different pixel array sizes and
three different pipeline sizes. The ten models are described in Table 1-4. Models 964 and 964d
can be programmed to display either 1024x1024 or 1280x1024 pixels.

In high-resolution display mode, Models 916 and 920 have two rgb o frame buffers and one z-
buffer, with enough memory to render full-screen 32—-bit images in double-buffered mode with a
floating point depth buffer. Models 932 and 940 have two off-screen buffers in addition to the two
displayable buffers, plus two z-buffers. In addition to the two displayable buffers and one z-buffer,
the model 964 has an additional six video buffers and three z—buffers in 1024x1024 mode. In
1024x1280 mode there are two additional video buffers and one additional z-buffer.

In NTSC display mode, each pixel node has a single subscreen, regardless of configuration. The
subscreen size in Model 916 is 180x122 = 21960 pixels, while in the 964, it is one fourth as big.
This means that a 916 can render full-screen NTSC images about as fast as a 964 can in high-
resolution mode.
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Table 1-4: Pixel Machine conflgurations

Model Nodes Peak Performance | Memory Buffers Bytes

Number | pipe pixel | MIPS MFLOPS | (Mbytes) | rgba z | per pixel
916z 0 16 80 160 12 2 1 12
916 9 16 125 250 12 2 1 12
916d 18 16 170 340 12 2 1 12
920z 0 20 100 200 15 2 1 12
920 9 20 145 290 15 2 1 12
920d 18 20 190 380 15 2 1 12
932z 0 32 160 320 24 4 2 24
932 9 32 205 410 24 4 2 24
932d 18 32 250 500 24 4 2 24
940z 0 40 200 400 20 4 2 24
940 9 40 245 490 30 4 2 24
940d 18 40 290 580 30 4 2 24
964z 0 64 320 640 48 8 4 48
964 9 64 365 730 48 8 4 48
9%64d 18 64 410 820 48 8 4 48
964X* 4%% k% 24

* 964 programmed to display 1280X1024 pixels.
** 18 Mbytes in additional partial buffers are available.
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The distinct architectural components of the Pixel Machine are the host computer, the pipe nodes,
and the pixel nodes. The host computer allows an application program to access the power and
functionality of the Pixel Machine, the pipe nodes are responsible for the serial parts of algorithms,
and the pixel nodes execute parallel algorithms. The following sections describe the software that
supports each architectural component.

Host Software
A host-resident, C—callable library is responsible for command creation and transmission, invoca-
tion of subprocesses that monitor external events, and machine initialization and control.

Commands are the packets of data that the host sends to the Pixel Machine to request actions or to
serve as data. Commands are discussed more completely in Chapter 2, ‘“Writing Programs for the
Host’’. Commands should not be confused with messages, which are requests that originate in the
Pixel Machine and are directed to the host. Messages are explained in Chapter 3, *“The DEVtools
Message Service Protocol’’.

The primary functions provided by the host are:

® translating high-level function calls and macros into commands

® transmitting commands over the VMEbus to the Pixel Machine

s down-loading code to the pipe and pixel nodes and initializing them

® handling interactive functions (e.g., mouse/cursor interface)

m processing message requests received via the parallel I/O from the Pixel Machine processors
All commands are sent to the first node in the pipeline. Commands proceed serially down the pipe

until the last node broadcasts them simultaneously to all of the pixel nodes. In systems without a
pipeline, the host sends commands directly to the pixel node broadcast bus.

Pipe Node Software

The pipe nodes are typically used to implement a set of algorithms that act serially on a set of data.
For example, a rendering and modeling application might use the pipeline to generate objects, apply
modeling and viewing transformation, cull and shade the objects, apply projection transformations,
do x, y, and z clipping, and finally, map the image to a viewport on the screen.

A useful analogy is to think of the pipe nodes as UNIX® system filters. Each node, like a UNIX
system filter, reads some input, transforms the input, and writes some output.
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The pipe program reads commands from the input FIFO. Each command consists of an opcode, the
number of parameters, and the parameter list. When a command arrives at a pipe node, four actions
can be triggered. The node can:

& forward the command to the next node in the pipeline,
B modify the parameter list and send it down the pipe
W process the command, possibly generating new commands,

m consume the command.

Each pipe node stores and executes routines that are invoked by command opcodes. In a typical
polygonal rendering and modeling application, the pipe nodes perform geometric processing algo-
rithms. For instance, three nodes could be assigned to clip the polygons in the x, y, and z planes,
and one node to shade the polygon. In order to optimize the shading, however, the system could
easily be re-configured to have three shading nodes and only one clipping node. Thus the pipeline
can be optimized for any application through experimentation and new functions can be added as
needed.

A Pixel Machine can contain no pipe, a single 9-node pipe, or 18 pipe nodes that be configured as
either two parallel 9—node pipes or a single 18—-node pipeline. In parallel mode, shown in a single
pipeline are duplicated in both pipes.

Pixel Node Software

Pixel nodes implement algorithms that can be done in parallel, like the raster-scan conversion of
points, lines, and polygons, image compositing, and ray tracing. Because the frame buffer memory
is distributed through the pixel node array [Figure 1-6], all routines that access the frame buffer are
implemented here as well. In the pixel node array, identical functions are usually replicated in each
node.

The Distributed Frame Buffer

Programming the pixel nodes to access the interleaved frame buffer requires an understanding of
two concepts:

1. an algebraic domain transformation that maps from a screen space coordinate system to a
processor space coordinate system, and

2. techniques for rendering images in a subscreen, the small, contiguous frame buffer that is
attached to each pixel node.
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The domain transformation maps point from Cartesian (x ,y ) screen space to (i,j) processor space
as follows:

i = p—(x - Ox) j =1y -0y

where N; and N, are the number of processors per row and column, respectively, in the pixel node
array, and are fixed for any given model of the Pixel Machine. O and Oy select a particular pro-
cessor in the array, with O, in the range [0,Nx—1] and O, varying between 0 and N, - 1.

The transformations from processor to screen space are:

The effort required to parallelize an existing algorithm involves the restructuring of the algorithm so
that it operates in the (i,j ) processor space rather than screen space. Any algorithm that processes
each pixel independently, such as fractal generation or ray tracing, requires very little modification,
because no coherence is required from one pixel to the next. The number and complexity of
modifications required increases with the degree of coherency between one pixel and the next or one
scan line and the next. Writing a program so that it adberes to the domain transformation guaran-
tees portability to single processor systems, where Ny = Ny =1 and Oy = Oy = 0.

The pixel interleaving scheme presents an obstacle to applications that require a single pixel node to
process and display a contiguous set of pixels. The serial I/O (SIO) capability of the pixel nodes
provides a way to circumvent the problems created by interleaving. The set of pixels can be created
in undisplayed memory and then routed, using SIO, to the pixel nodes that will display them.

The pixel nodes are arranged in an nXm array, and the processor in the ith row, jth column handles
every nth pixel on every mth scan line (see Figure 1-6). Each processor addresses a portion of the
frame buffer, which it sees as a contiguous subscreen. The coordinate system of the subscreen is
called the processor space. DEVtools provides mapping functions from (x,y) screen space to (i,j)
processor space:

i = PMilo(scrn, x) returns the smallest integer i > 'E'I_V(;)‘x‘

i = PMihi(scrn, x) returns the largest integer i < _’f.;v?"_

j = PMjlo(scrn, y) returns the smallest integer j 2 ‘ILN—L—?
= PMjhi{scrn, 1 t int <
j jhi(scrn, y) returns the largest integer j .ZNT'L

Where O; and O, are the processor offsets in the x and y direction, respectively, and N; and Ny
are the numbers of processors in the x and y direction, respectively.
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Because there are more pixels in screen space than in processor space, the mapping is not
one—to—one. To ensure that the processor space pixel (i1,j1) is actually screen space pixel (x1,y1),
the following condition must hold:

(PMilo(scrn,x1)==PMihi (scrn,x1)) && (PMjlo(scrn,yl) ==PMjhi (scrn.yl))

Here is a simple example. The code segment shown in Example 1-1 draws a set of vertical and
horizontal lines in a screen space viewport defined by xmin , Xxmax , ymin , and ymax .

for (x=xmin; x<xmax; x+=delta)
for (y=ymin, y<ymax; y+)
PMputpix(scrn, %, y, RED);

for (y=ymin, y<ymax; y+=delta)
for (x=xmin; x<zmax; x++)
PMputpix(scrn, x, y, GREEN);

Example 1-1. Line drawing in screen space.

This code segment can be converted into code that will run on a 964 by adding a conditional state-

ment to test for the pixel’s presence in the processor space of this node, as shown below (Example
1-2).

4 N

for (x=umin; x<xmax; x+=delta)

for (y=ymin, y<ymax; y+)

if ({i=PMilo(scrn, x))==PMihi(scrn, x)&&(j=PMjlo(scrn, y))==PM3ihi({scmn, y))
PMputpix(scrn{0],i, j, RED);

for {(y=ymin, y<ymax; y+wdelta)

for (x=xmmin; x<xmax; X++)

1f ((i=PMilo(scrn, x))==PMihi(scrn, x)&&(j=PM3lo(scrn, y))==PMihi (scrn, ¥})
PMputpix(scxrn{0},i, J, GREEN);

. /

Example 1-2. Line drawing in processor space.

The pixel node code shown above is straightforward but inefficient. It iterates across screen space,
and does the processor space mapping and testing for each pixel. A better method is to iterate over
processor space, as shown in Example 1-3.
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a )

imin = PMilo(scrn, xmin);
imax = PMihi(scrn, xmax);
dmin = PMjlo(scn, ymin);:
jmax = PMjhi(scxn, ymax);

for (i=imin; i<=imax; i+=delta)

for (J=imin, j<=imax; j++)
PMputpix (PMscrns[0],1, Jj, RED);

for (j=jmin, Jj<=jmax; Jj+=delta)

for (imxmin; i<=imax; i++)
PMputpix (PMscrns [0],1, j, GREEN);

. )

Example 1-3. Efficient line drawing in processor space.

In the next section, a more complicated example of an algorithm that might be implemented in the
Pixel Machine nodes is presented.

Visualizing Complex Functions

Fractal geometry is a branch of mathematics used to describe self-similar structures such as those
observed in nature. The Julia set is a class of fractals in the complex plane. A generating function
is evaluated at discrete points in a complex range until the function diverges or a maximum number
of iterations is reached.

The generating function is a squaring function of the form:

Zﬂ+1 = ZM = (Xﬂ +Y” i)L"(P"'Qi)
= X2~ Y 42X Yy itP+Qi
= Xp+14+Y,+1i
where Xus1 = X — Y HP Yo =2X, Yu+Q

Different values of P and Q define different Julia sets. If 2 = X/+Y,f is greater than a pre-
specified limit, the function has diverged.
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The Standard Implementation

The Julia set is displayed by mapping a rectangular region of the complex plane onto a raster
display. The complex region is described by the real and imaginary ranges, relo to rehi, and imlo to
imhi. The real axis is plotted in the x direction and the imaginary axis in the y direction.

The generating function is evaluated at discrete complex coordinates corresponding to each pixel in
the viewport. The complex coordinates are defined by a linear mapping from screen space to com-
plex space:

re = a*x+by im =a*y+b;

The algorithm loops over all pixels in the range [xmin xmax 1, [ymin ,ymax]. The generating func-
tion is iterated at each pixel, with initial values Xo = re and Yo = im. The iteration continues until
the square of the magnitude of the generating function, z, diverges from the origin (z2zmax) or a
pre-set number of iterations is reached (n=nmax).

If the function does not diverge within a limited number of iterations, the pixel color is based on the
final z value. Otherwise, the intensity is based on the number of iterations performed.

Pixel Machine Implementation
The transformation from (3,j) processor space to (x,y) screen space is given by the equations:
X = i*Nx+Ox y - j*Ny'i’Oy

where N, and N, are the number of processors in x and y, respectively, and Ox and Oy are the
offsets into the two dimensional processor array. Each processor loops over pixels in the range imin
to imax, jmin to jmax. The library functions PMilo(), PMihi(), PMjlo(), and PMjhi() are used
to map the given (x,y) limits into boundaries in (i,j) space for each processor.

Equations 1 and 2 provide the mapping from a given (x,y) screen coordinate to its corresponding -
(re, im) complex coordinates. Library functions PMfxtoi() and PMfytoj() transform a screen space
equation into a processor space equation by modifying its coefficients. Equations 1 and 2 become:

re = at*i+by im = as*j+b;

Once these initial transformations have been performed, the algorithm proceeds exactly as the
sequential one does, except that each processor loops from imin to imax and jmin to jmax, as
opposed to xmin to xmax and ymin to ymax. When a pixel value has been determined, its color
is set using the function PMputpix().
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Example 1-4 shows the two implementations. Example 1-4(a) is the sequential algorithm, operating
in screen space. Example 1-4(b) is the parallel algorithm, operating in processor space. The lines
that differ are shown in boldface, illustrating the minimal changes which are required to adapt

existing algorithms to the Pixel Machine.

K

al = {rehi - relo) / (xmax - zmin);
bl = relo - al*xmin;
a2 = (imhi - dimlo) / {ymax - ymin);
b2 = imlo - a2*ymin;

for (y = ymin; y<=ymax; y++)
for (x=xmin; x<=xmax; x+) {

re = al*x + bi;

im « a2*y + b2;

done = FALSE;
for n=0 ; n<max && !done ; n++) {
if ({z = re*re + im*im) <= zmax) {
temp_im = 2*re*im + Qg
re = re*re - im*im + P;-
im = temp im;
}
alse dona = TRUE;

)

if (done) write pixel(x, y, value based on n);
else write pixel(x, y, value based on_2);

\

(a) The standard implementation.
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- )

al = (rehi - relo) / (xmax - xmin);
bl = rele - al*xmin;
a2 = (imhi - imlo) / (ymax -~ ymin);
b2 = imlo - a2*ymin;

imin = PMilo( scrn, xmin );
jmin = PMjlo( scn, ymin );
imax = PMihi( sczn, xmax );
jmax = PMjhi( sem, ymax );

PMixtoi(scrn,al, bl);
PMfytoj(sem,a2, b2);

for (j=ijmin; Jj<=dmax: I++)
for {(ieimin; i<=imax; i++) {
ve = al*i + bl;
im = a2*j + b2;

done = FALSE;
for (n = 0; n<maxn && !done; n+) |
if ({z = re*re + im*im) <= zmax) {
temp_im = 2*pe*im + Q;
re = ra*re — imrim + P;
im = temp im;
}
else done = TRUE;
}

if (done) PMputpix(scm, i, j, value_based on_n);

else PMputpix(scen[0i, j, value based_on_z);
}

o /

(b) the Pixel Machine implementation.

Example 1-4. Fractal functions: Sequential and parallel implementations of the Julia set.
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Header Files and Subroutine Libraries

Introduction

An application program for the Pixel Machine can be written to run in the host, the pipe nodes, the
pixel nodes, or a combination of the three. The header files and libraries that provide useful
definitions and functions for all three programming environments are discussed in this chapter.

Following is a list of header files that are used to compile programs for the host and for the Pixel
Machine: :

Table 2-1: Host and Pixel Machine Header Files

Host Pixel Machine
devtools.h pxh
devcommand.h | libmath.h
devimage.h syscmd.h
deverrorh | pageregs.h
msgserve.h modeLh
sysmsg.h pipeh

crt0.h pixelh

pipe.h sysmsg.h
pixeLh

The first section describes writing host programs that can control and communicate with the Pixel
Machine. The second section describes the library that contains Pixel Machine functions for the
pipe and pixel nodes for the DSP32. The final section describes the libraries that contain DSP32
routines. These are general purpose routines, not limited to use on a Pixel Machine.

Documentation
All the functions for the host and Pixel Machine are described in the DEVtools Reference Manual

and are included in the on-line manual pages. The DSP32 libraries are described in the WE®
DSP32 and DSP32C C Language Compiler: Library Reference Manual.
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Introduction

To compile and link programs that use DEVtools you need to know where the header files, execut-
able files, and libraries reside on your system. deviools, the DEVtools directory, can usually be
found in the directory hyper. This directory usually resides in /ust, but it can be located elsewhere
on your system; you may need to check with your system administrator. The examples in this sec-
tion assume that the DEVtools directory is called /usr/hyper/devtools.

Setting up your Environment

The PXMtools software provides files in the /usr/hyper directory that can be used to initialize the
execution search path and environment variables that you need to use the DEVtools software. The
files are:

Name Function
Jhyper_profile | Profile file for Bourne shell and Korn shell
Jhyper_env Environment definition file for Kom shell

-hyper_login Login initialization file for C shell
Jhyper_cshre C shell startup file

To use the DEVtools software, your executable program search path list must include the required
hyper directories, and must also contain:

Name Function

/usr/hyper/devtools/bin Contains DEVtools executables such as devprint
/usr/hyper/devtools/dsp32/bin | Contains the executables for the DSP32 Support Software Library

The environment variable DSP32SL must contain the pathname of the directory that contains the
DSP32 Support Software Library, usually /ust/hyper/devtools/dsp32.

To access the DEVtools online manual pages, your MANPATH environment variable must include
fusr/hyper/devtools/man.
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Compiling DEVtools Programs for the Pixel Machine

Pixel Machine programs are compiled using the devee command. devce is similar to the d3cc
command (described in the DSP32 C Language Compiler User’s Manual), but it knows about the
special files needed for compiling aixd linking Pixel Machine programs. These special files are the
DEVitools library, include files, startup code, and the loader directive file, A typical command line
used to compile a Pixel Machine program is:

devcee —c ctest.c
Additional information about devce can be found on the manual page in the DEVtools Reference

Manual, and more information on the DSP32 Support Software Library can be found in the DSP32
Support Software manuals:

DSP32 Software Support Library User’s Manual
DSP32 C Language Compiler User’s Manual
DSP32 C Language Compiler Library Reference Manual

Linking DEVtools Programs for the Pixel Machine

Pixel Machine programs may be linked using devce or d31d. After the Pixel Machine library has
been specified, any of the DSP32 Support Software Library libraries can be specified. libc, libm,
and libap may be specified using the —1c, —1m and —lap compiler or linker options.

devcc supplies the linker with the appropriate options to successfully link programs that run on the
Pixel Machine. Following is a typical command line used to link a Pixel Machine program:

devce —o ctest.dsp ctest.o

In the few cases where the loader must be called explicitly, the link command must also provide the
following information:

® /usr/hyper/devtools/lib/crt0_pixel.o or crt0_pipe.o: the startup (crt0) file

m /usr/hyper/devtools/include/pixel_ifile or /usr/hyper/devtools/include/pipe_ifile: the
memory usage definition file

m /usr/hyper/devtools/lib/libpm.a
Following is an example of how to use d31d to link a Pixel machine program:
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d31d /usr/hyper/devtools/include/pixel ifile\
/usr/hyper/devtools/1ib/crt0_pixel.o\
ctest.o\

/usr/hyper/devtools/1lib/1libpm.a\

~1lc\

-0 ctest.dsp

The above command links a program that runs in a Pixel node. For Pipe node programs the startup
file would be:

lust/hyper/devtools/lib/crt0_pipe.o
and the loader directive file would be:
/ust/hyper/devtools/include/pipe_ifile
When you use devce, pipe or pixel programs can be specified with the —pipe or —pixel command

line options (—pixel is the default). With these options devce specifies the appropriate files to
d3ld. See the manual page for devcc in the DEVtools Reference Manual for more information.

Stack Configuration

The default action of the loader is to load the stack segment immediately after the text segment.
Because the DSP C compiler grows the stack from low memory to high memory, the stack is
allowed to grow to fill all available memory in bank0.

The stack section is set up differently in the pipe and pixel nodes as explained below.

Pipe Node Stack

In a pipe node, the stack is set to be a minimum of 320 bytes long. The loader exits with an error
if there is not enough room for the minimum stack. It is possible to change the default minimum to
something less than 320 bytes, but it is the user’s responsibility to make sure that the new minimum
is sufficient. '

To change the minimum stack size it is necessary to assemble and link a new stack.o with your
program to replace the one that is automatically loaded from libpm.a. A sample stack.s that
should be used can be found in /usr/hyper/devtools/lib/stack.s. To change the size of the stack,
copy this file to another directory and assemble defining PM_STACK_SZ to the desired stack size,
and PIPE. For example, to change the stack size to 2048 bytes use:
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d3as -DPM_STACK Sz=1024 -DPIPE stack.s

The stack.o that is produced should then be linked with the user program. Be sure to include it
before libpm.a. The stack size should be a multiple of 4.

Pixel Node Stack

In the pixel nodes the stack is set up differently. Because there is a relatively large initialization
function (_initpixel()) that is called once and only once before main(), it is loaded above the stack
in a section called .init, so that the stack can grow into it and reuse the space. The stack itself is
initially given only 30 bytes, but the initialization code affords approximately another 1.5 kilobytes.
Again, the loader will produce an error if this minimum stack does not fit.

The user is still able to enlarge the stack, but should not reduce it any further. The same technique
that is used for the pipe nodes is used here except that PIXEL needs to be defined. For example:

d3as -DPM_STACK_SZ=1024 -DPIXEL stack.s

Compiling DEVtools Programs for the Host System

Host programs are compiled using the cc command. To locate the header files, the directories that
contain the Pixel Machine header files and the DEVtools header files must be specified on the cc
command line. The cc command line should include the following options:

-I/usr/hyper/devtools/include

A typical command line used to compile a Pixel Machine program is:

cc —-¢ ~I/usr/hyper/devtools/include host.c

Linking DEVtools Programs for the Host System

Host programs should be linked using the cc command. The name of the Pixel Machine DEVtools
host library (devlib.a) must be included on the cc command line.
A typical command line used to link a host program is:

cc —-o host host.o /usr/hyper/devtools/lib/devlib.a
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Versions of devlib.a are provided that support the Sun floating point accelerator (fpa), or support
profiling, or support both fpa and profiling. Fpa support is only provided for the Sun 3 libraries.
The names of the libraries are:

Library Supports
devlib.a Any host, without profiling
devlib_p.a Any host, with profiling

devlib_ffpa.a Uses fpa, does not include profiling code (Sun 3 only)
devlib_ffpa p.a | Uses fpa, includes profiling code (Sun 3 only)

Sample Programs

The DEVtools package includes a set of sample programs that illustrate the use of DEVtools for a
variety of applications. The sample programs are located in /usr/hyper/devtools/sample/misc.
The sample directory contains the directories:

Directory | Contains

bin host executable programs

boot Pixel Machine executable programs and shell scripts to run the sample programs
host host source files

include host and Pixel Machine include files for sample programs

pipe pipe node source files

pixel pixel node source files

The host, pipe, and pixel directories each contain source code and a makefile. These files provide a
good place to look for efficient usage of many Pixel Machine functions. The makefile can be used
to generate the executable versions of the sample programs, and is a good guide for constructing
makefiles for your own programs.

The following lists the shell scripts that can be invoked to run the sample programs, and describes
the functions illustrated by the program.

m Circle: A simple program to draw a large circle on the screen. A simple example of the use
of subscreen information. '

m Colors: A very simple program. Clears the screen red then to grey. Uses PMapply() to
replicate a function for each subscreen.

m Copies: Make multiple, overlapping copies of upper the left hand comer using the VRAM
and ZRAM copy routines.
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m Dataflow: Generates commands in one of the pipe nodes. These commands are passed
down the pipe into the pixel nodes. A host program (devprint) is used to output print com-
mands from the pixel nodes. Shows the use of command processing functions and the use of
printf,

m Fastpixels: Demonstrate an efficient way to fill contiguous pixels.
m Hello: Clears the screen and uses printf. Prints the node ID.

m Julia: Displays and animates julia set fractals. Uses subscreens and the PMilo()/PMihi(
and PMjlo()/PMjhiQ macros, as well as double buffering. Shows the processing power of
the Pixel Machine.

m Led: Tums off the vsync and psync LEDs on the pixel processor boards. Only interesting
if the cover of the machine is removed.

m Lights: Flashes vsync and psync LEDs on the pixel processor boards. Only interesting if
the cover of the machine is removed.

Mand: Mandelbrot set; another fractal.

Math: Uses a number of math library functions.

NTSC: Displays colored bars on the screen. Can be used with any type of display.
Pipes: Shows how to pass data from one pipe node to the next.

Pong: A sample animation of a bouncing ball.

Pxmclear: Clear the front and back buffers to black.

Qcopies: Use fast ZRAM copy to replicate image in front buffer.

Send: A host program and associated pixel node programs. Implements a user-message
handling routine on the host to route messages from one node to any other node.

Shift: Moves pixels around the screen using serial I/O.
m Texture: Generates a random texture.

m Zstuff: Uses a host program to set the contents of the Z memory and a pixel node program
to read the contents from Z memory.

m Ztest: Sample use ZRAM allocation routines.
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Introduction

The operation of the Pixel Machine is controlled by the host system to which it is attached. Run-
ning a program on the Pixel Machine requires the use of a group of system control commands that
perform functions such as resetting the Pixel Machine processors, loading programs into the
memory of the processors, displaying status information, etc. More detailed information about the
system control commands can be found in the PXMtools manual pages.

How to Run a Program on the Pixel Machine

The execution of Pixel Machine programs is typically controlled by a program executing on the host
system. Some simple programs that require no interaction with the host can be run without a host
program through the use of the hypload and hyprun commands.
Host programs provide:
m a simple mechanism to ensure that the proper programs are loaded into the pipe and pixel
nodes
B a convenient method of controlling the Pixel Machine

B a message passing protocol that allows a user program running on the Pixel Machine to sig-
nal the host program. This feature can be used to send data to the host, request data from the
host, and to perform any other tasks that the nodes cannot perform by themselves.

m the ability for the Pixel Machine to output information on the host using the DEVtools
printf routine

m other control functions that must be performed by the host such as selecting the serial I/O
direction.

The host program should begin by calling DEVinit. This opens the Pixel Machine and resets all of
the processors in the Pixel Machine. Before exiting the host program, DEVexit should be called to
release the Pixel Machine so that it can be accessed by other users.

Programs that require no communication with the host can be loaded and started by the hypload
and hyprun commands. ‘

Following is an example of the commands used to run a program that does not require any host
communication on all of the pixel nodes:
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hyplock

hypload -dall prog.dsp
hyprun -dall

hypfree

hyplock should be used to lock the Pixel Machine before running programs that are not controlled
by a host program to prevent other users from accessing the machine while the current program is
running. After the program has finished, executing hypfree makes the machine available for other
users. When the Pixel Machine is controlled by a host program, hyplock and hypfree are not
needed

Refer to the PXMtools manual pages for more information about these programs.
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Host programs are written in C and compiled, linked, and loaded with the standard compiler,
libraries, and header files. In addition, there are libraries and header files of special functions and
definitions used to control and communicate with the Pixel Machine.

The devlib Library

devlib includes functions for sending commands to the pipe and pixel nodes and for writing a mes-
sage server to respond to messages from the nodes. host/devtools.h should be included in all pro-
grams that use devlib. host/msgserve.h is required if the message polling functions of DEVtools
are used. host/devcommand.h, supplies macros for sending properly formatted messages to the
pixel and pipe nodes.

Host programs tend to focus on sending and receiving commands from the Pixel Machine. This
section will describe the format of a command and the routines for reading and writing them, and

then discuss a message server program on the host and how it might be extended to handle user-
defined messages.

Commands

Commands are made up of an opcode, a parameter count, and a parameter list, as shown in Figure
2-1.

Figure 2-1: Command format

opcode count parameter(1] soe parameter[count]

0 5 0 15 0 31 (4 )

Commands are generated on the host and written to the pipe node FIFOs using the DEVcwrite
macros. DEVcommand is used to encode an opcode and parameter count into a properly format-
ted 32-bit value that can be passed to the DEVcwrite macros. There are twelve DEVewrite mac-
ros, each -handling a different number of parameters.
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DEVcwrite0( DEVcommand(opcode, 0));

DEVcwritel( DEVcommand(opcode, 1), type, argl);
DEVcwrite2( DEVcommand(opcode, 2), type, argl...arg2);
DEVcwrite3( DEVcommand(opcode, 3), type, argl...arg3);
DEVcwrite4( DEVcommand(opcode, 4), type, argl...argd);
DEVcwrite5( DEVcommand(opcode, 5), type, argl...arg5);
DEVcwrite6( DEVcommand (opcode, 6), type, argl...arg6);
DEVcwrite7( DEVcommand(opcode, 7), type, argl...arg7);
DEVcwrite8( DEVcommand(opcode, 8), type, argl...arg8);
DEVcwrite9( DEVcommand(opcode, 9), type, argl...arg9);
DEVcwrite10( DEVcommand(opcode, 10), type, argl...arg10);

DEVcwriten( DEVcommand(opcode, count), type, arg_array, count);

Commands with ten or fewer arguments are assembled more efficiently by the count-specific
DEVcwrite macro. Arguments can be either integer floating point or another type that represents a
properly aligned 32-bit value, but all arguments to a command must have the same type. The type
parameter to the DEVcwrite macros is a type name, either int, float or other type name.
DEVwrite macros are similar to DEVewrite macros but they do not include command arguments.

There is another set of twelve macros for writing commands to the second pipeline whenever a sys-
tem with eighteen pipe nodes is configured with two parallel pipelines. They are identical in form
and function to the macros presented above, except that _alt is appended to the macro name (e.g.,
DEVcwrite0_alt ).

Four macros for reading commands are also defined in devcommand.h: DEVcread() and
DEVcread_alt() read a command and parameter count, and DEVread() and DEVread_alt() read
the arguments. These are used for reading the feedback FIFOs.

High Level Functions

Table 2-2 shows the routines that make up the high level devlib routines that are most commonly

used by host programs. DEVinit() and DEVexit() are the recommended ways to start and finish

host programs. The other routines are part of the message passing support, and many of them will
be used in the host program that is described in the next few paragraphs.
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Table 2-2: High Level Functions

Name

Function

DEVexit()
DEVget_scan_line()
DEVinit()
DEVpipe_boot()
DEVpixel _boot() -
DEVpoll_nodes()
DEVput_scan_line()
DEVrun()
DEVswap_pipe(
DEVuser_msg_enable()
DEVwait_exit()

halt processors and close Pixel Machine device

upload an image or a portion of an image to a Pixel Machine
open and initialize Pixel Machine device

load a DSP executable into the specified pipe nodes

load a DSP executable into the specified pixel nodes

polls DSP processors for messages

download an image or a portion of an image to a Pixel Machine
begins execution of the current Pixel Machine program
reverses the rolls of the primary and secondary pipes

define a message code and associated functions

wait for pixel nodes to signal completion, then call DEVexit()

The host program performs certain functions on behalf of the Pixel Machine. These functions
include initializing the system, loading programs into the nodes, beginning execution, and servicing
message requests from the Pixel Machine. Message requests are used to perform other actions such
as input/output (I/O) operations, controlling serial /O, etc. Following is a sample host program:

2-12
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o D

#include <stdio.h>

#include <host/devtools.n>
main ()

{

DEVpixel system *pixel system;

if ((pixel system = DEVinit()) w== NULL} {
fprintf (stderr, “Open of Pixel Machine failed.™);
axit (1);

}

/* Load all of the pipes with “pipe.dsp™. */
DEVpipe boot(pixel system, "pipe.dsp", 0,
DEVlast_pipe(pixel system), NULL, DEV_BOOT _CHECK TIME) ;

/* Load all of the pixels with “pixzel.dsp™. */
DEVpixel boot (pixel system, *pixel.dsp®, O,
DEVlast_pixel{pixel system), NULL, DEV_BOOT CHECK TIME);

/* Begin execution */
DEVrun(pixel_ system);

/* Poll the nodes for message requests. DEVpoll nodes returns when a
"host exit" message is received from a node. */

DEVpoll nodes (pixel_system, 0, DEVlast_pipe(pixel system),
0, DEVlast_pixel (pixel system), DEV_FOREVER, DEV_NONE);

/* Close the Pixel Machine, */
DEVexit () ;

\_ | | Y,

Example 2-1. Sample Host Program

To customize the host program to receive application-specific messages, calls to
DEVuser_msg_enable() can be inserted after DEVinit() and before the polling loop. Each user
message has a unique opcode in the range (0,DEV_HIGHEST_USER_MESSAGE ), defined in
host/msgserve.h, and specifies two functions. The first routine is called if the message is received
from a pipe node, and the second one is used when a pixel node sends the message. See the
manual page for DEVuser_msg_enable() for more details.
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Low Level Functions

Table 2-3 contains low level system control and I/O functions.

Table 2-3: Control and VO Functions

Name Function
DEVclose() disconnect the host program from the Pixel Machine device
DEVfifo_parallel() configure 18 pipe nodes as two parallel pipes

DEVfifo_read()
DEVfifo_reset(
DEVfifo_serial()
DEVfifo_write()
DEVget_color_map()
DEVget_pixel()
DEVload_color_tables()
DEVload_linear_ramp()
DEVlock(

DEVopen()
DEVopen_system()
DEVpipe enable_error_halt()
DEVpipe_get(
DEVpipe_get_msg()
DEVpipe_get_pir()
DEVpipe_halt()
DEVpipe_id_check()
DEVpipe_id_print(
DEVpipe_id_write()
DEVpipe_put()
DEVpipe_read()
DEVpipe_run()
DEVpipe_write()
DEVpixel buffer()
DEVpixel_enable_error_halt()
DEVpixel_get()
DEVpixel get msg()
DEVpixel get_ pir()
DEVpixel_halt()
DEVpixel_id_check()
DEVpixel_id_print()
DEVpixel_id_write()
DEVpixel_mode_init()
DEVpixel_mode_overlay()

2-14

read 4 bytes from a pipe node FIFO

reset all FIFOs on a board

configure 18 pipe nodes as one long serial pipeline
write 4 bytes to a pipe node FIFO

fetch the contents of the color tables

read a pixel from the frame buffer

load the color tables using a gamma correction table
load the color tables with a linear table (no gamma correction)
manage Pixel Machine locks

connect a user program to a Pixel Machine

allow system to be opened without resetting config information
set DSP to halt on hardware errors

read data from a pipe node

read data from a pipe node

read the PIR register in a pipe node

halt a pipe node

verify a pipe node’s identification block

print a pipe node’s identification block on stdout
write a pipe node identification block into memory
send a block of data to a pipe node

read data from a pipe node

initialize and start a pipe node

DMA a buffer of data to a pipe node

select one of the two frame buffers for display

set DSP to halt on hardware errors

read data from a pixel node

read data from a pixel node

read the PIR register in a pixel node

halt a pixe! node

verify a pixel node’s identification block

print a pixel node’s identification block on stdout
write a pixel node identification block into memory
initialize pixel mode register

set overlay mode in the pixel mode register
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Table 2-3: Control and VO Functlons (continued)

DEVpixel_mode_serial()
DEVpixel_overlay()
DEVpixel_put()
DEVpixel_read()
DEVpixel _run()
DEVpixel_start()
DEVpixel write()
DEVput_color_map()
DEVput_pixel()
DEVread_z()
DEVserial_direction()
DEVsservershadow_of£()
DEVshadow_on()
DEVunit()
DEVwrite_z()

set serial I/O direction in the drawing mode register

set overlay mode in the pixel nodes

send a block of data to a pixel node

read data from a pixel node

initialize and start a pixel node

start a program running in a pixel node

DMA a buffer of data to a pixel node

update contents of the color tables

write a pixel value into the frame buffer

read from the z-buffer memory of a pixel node

update serial I/O link direction

turn off shadow palate update to allow color tables to be updated
tarn on shadow palate update after color tables have been updated
return the value of HYPER _UNIT environment variable

write to the z-buffer memory of a pixel node

System Status Tracking

Pixel Machines are frequently used by a number of people, each of whom can be running a different
application, and possibly even using different libraries. For example, a single system may be used
for applications written using PIClib, RAYlib, and DEVtools. Furthermore, several DEVtools users
may each require different DSP code to be loaded in the Pixel Machine.

Even if all of the users of a Pixel Machine are running a single application, there still can be differ-
ences in configurations based on pipe modes (parallel vs. serial), video format (hi-res vs. NTSC)
and other configuration parameters.

All Pixel Machine software maintains a file that reflects the current status of the Pixel Machine.
This status information includes the:

& number of pipe nodes

m number of pixel nodes

m current pipe mode (serial, parallel)

m current video format (hi-res, NTSC, PAL)
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®m current gamma correction mode
® current video options (sync source, etc.)

a pathname and modification time of the executable file loaded into each pipe and pixel node

When a program is invoked that uses the Pixel Machine, the current state of the machine is com-
pared with the configuration parameters specified by the user’s environment (HYPER_MODEL,
HYPER_PIPE, etc.) The DSP executables required for the user’s application (as specified by
DEVpipe boot and DEVpixel boot, or as implicitly specified by library functions such as
PICinit) are compared with those currently loaded. If the appropriate software is not already
present in the machine, it will automatically be loaded.

Users that are developing DSP software can request that the file modification times of the execut-
able files be compared with those of the files currently loaded in the machine. This allows new ver-
sions of files to be loaded automatically.

When a file is loaded into a Pixel Machine node, a checksum value is computed based on the path-
name of the file and the process ID of the process performing the load operation. Subsequently,
when another program checks whether the correct files are loaded, it first compares the pathname of
the desired file with the pathname of the loaded file (relative pathnames are converted to absolute
pathnames by prepending the current directory name). If the file names match, the modification
times are compared (if this option has been selected). Finally, the checksum value stored in the
node’s memory is compared with the value in the status file. If the checksums match, the program
is not reloaded. The checksum is a safeguard to ensure that the system can not be fooled by a cor-
rupted status file or by turning off the Pixel Machine.

The status file is read by DEVinit(} and written by DEVexit(). The status information is main-
tained in memory during the execution of the host program. During execution, the disk copy of the
status file is marked as invalid. As a result, executing a command that checks the status file
(hypid, for example) will result in a node checksum does not match message.
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libpm

libpm is the library that supplies subroutines for use in both the pipe and pixel nodes. All programs
that use libpm must include the header file pxm.h

Both pipe and pixel nodes use the command data structure as defined in Figure 2-2 and pxm.h.
Pipe nodes read commands from their input FIFO in two stages, first the opcode and argument
count (using PMgetop()) and then the arguments themselves (via PMgetdata()). Pixel nodes read
all three command components at once by calling PMgetcmd().

Figure 2-2: PMcommand() data structure

~ R

#include "pxm.h"

typedef struct {
short opcede;
short count;
float *data ptr;
} PMcmdtype

extern PMaxitype PMcommand;

/

Pipe nodes write commands to their output FIFO by calling either PMputemd(), which writes an
entire command, or PMputop() followed by PMputdata() if the argument count is greater than
zero. Pixel nodes cannot send commands.

Functions for Pipe and Pixel Nodes

This section describes routines that are useful in both pipe and pixel node programs.

A global variable, PMsem, is used as a semaphore by the host and node to synchronize DMA
accesses. PMsetsem() and PMwaitsem() are the synchronizing primitives that set and test the
semaphore.

Recall that each node has a PIR register, written by the node and read by the host. PMoutpir() is
the function that writes a value into the register. If necessary, it waits until the previous value has
been read by the host. The PIR register is also written by the PMusermsg() routine, which sends a
user-defined message to the host.
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Table 2-4: Plpe and Pixel Node Functions

Name

Function

PMcolor_float()
PMcolor_int()
PMdelay()
PMenable()
PMfloat_colox()
PMhost_exit()
PMint_color()
PMoutpir()
PMsetsem(
PMusermsg()
PMwaitsem()
printf()

converts internal color value to floating point number
converts internal color value to an integer

do nothing for a specified time

enable processing of selected system commands
converts floating point value to internal color value
signal DEVpoll_nodes to retum to caller
converts an integer to an internal color value
output a value to the PIR register

set the semaphore

send a user defined message to the host

wait for semaphore to clear

formatted output conversion on host

Pipe Node Functions

This section describes routines. that can only be used in pipe nodes. Most of them concern reading
commands from and writing commands to the FIFOs,

Table 2-5: Pipe Functions

Name Function
PMbus_wait() waits until control of the broadcast bus is granted
PMcopyemd() copy opcode, parameter count, and data from input to output FIFO of a pipe node
PMfb_off() direct output commands to the regular output FIFO
PMfb_on() direct output commands to the feedback FIFO
PMgetdata() get data from a pipe node FIFO
PMgetop() get opcode and parameter count from input FIFO of a pipe node
PMputcmd() write opcode, parameter count, and parameters to the output FIFO of a pipe node
PMputdata() write parameters to the output FIFO of a pipe node
PMputop() write opcode and parameter count to the output FIFO of a pipe node
PMswap_pipe() | release the broadcast bus and request it again
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Pixel Node Functions

This section describes functions that are only useful in pixel nodes. Most of them are used to read
and write values in the various pixel nodes memories.

pxm.h includes macro definitions that convert (x,y) screen space coordinates to (i,j) processor space
coordinates.

m PMilo(subscreen,x) returns the smallest processor space integer that, when mapped to screen
space, will be 2 x.

B PMihi(subscreen,x) returns the largest processor space integer that, when mapped to screen
space, will be < x.

u PMijlo(subscreen,y) returms the smallest processor space integer that, when mapped to screen
space, will be 2 y.

8 PMijhi(subscreen,y) returns the largest processor space integer that, when mapped to screen
space, will be < y.

Figure 2-3 shows some examples of these mappings. Figure 2-3(a) shows an 8x8 comer of the
screen, with some pixels turned on. Figure 2-3(b) shows the pixel to processor mapping for a 4x4
pixel node mesh. Each pixel location is tagged with the number of the processor which keeps that
pixel in its subscreen memory. Figure 2-3(c) shows the (i,j) values for the pixels and Figure 2-3(d)
the individual subscreens. Table 2-6 shows the values associated with calls on the four macros used
to map (x,y) values into (i,j) values. Whenever PMilo(subscreen,x)==PMihi(subscreen,x) and
PMjlo(subscreen,y)==PMjhi(subscreen,y), then the pixel (x,y) is part of the issuing processor’s
subscreen. (Macros PMmyx and PMmyy can be used to abbreviate the equality tests.) The table
shows pixel ownership by using boldface for the values that satisfy the condition.
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Figure 2-3: Screen to processor space mapping functions
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Table 2-6: Converting screen space coordinates Into processor space

screen mapping processor doing the mapping

pixel macro 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
io@ |+ 1 1 1 1 t 1 1 1 1 1 1 @0 0 0 O

30 HB{o o o 0 0 0 0 o 0 0 0 0 0 0 0 0
Jooyle o o o 0o o 0o 0 © 0 0 0 0 0 O O
JHO) ]Oo -1 -1 -1 0 -1 -1 I 0o -1 -1 -1 0 -l -1 -1
IO@|) | 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1

@2 H) [t 1 1 1 0o o o o ¢ 0o 0 o0 0 © 0 O
Jo@ |1 1 o o 1 1 o0 o 1 1t o0 0 1 1 0 0
M@ |o o o -1 0 0 0 1 0 0 0 -1 0 0 0 -
oy li1 1 1 1 0 o o o o 0 o 0o o0

(15) Hit) { o 0 0 o 0 0 0 o -1 -1 -1 -1 -1 -1 -1 -1
Jogy)j2 1 1 1 2 1 1 1 1t 1 1 11
JHI(B) | 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
e |2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

(6,6) IHI@B) | 1 1 1 1 1 1 1 1 1 1 1 1 0 [} 0 0
Jog) |2 2 1 1t 2 2 1 1 2 2 1 1 2 2 1 1
JHIB) | 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

It is also possible to reverse the mapping. That is, the PMxat and PMyat macros can be used in a
pixel node program to convert (i,j) into (x,y) coordinates.

There are three macros that map the coefficients in linear expressions from screen space to processor
space.

s PMf#xtoi(subscreen,A,B) converts an expression of the form Ax+B to one of the form
A’i+B’. The macro modifies the values of A and B.

B PMfytofj(subscreen,A,B) converts an expression of the form Ay+B to one of the form
A’j+B’. The macro modifies the values of A and B.

m PMfxytofij(subscreen,A,B,C) converts an expression of the form Ax+By+C to one of the
form A’i+B’j+C". The macro modifies the values of A, B, and C.
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Figure 2-4: LEDs on the pixel node boards
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Each pixel machine has FLAG and READY signals that are connected to LEDs on the pixel node
processor board (see Figure 2-5). FLAG is used by PMpsync() and READY is used by
PMvsync() and PMrdyoff() . They can also be set by the user (whenever the sync routines are
not required by the program) with the PMrdy_led() and PMflagled() routines in libpm. The sig-
nals and LED displays can be useful for debugging to identify states in the program.

0000 0000 OO0 000 00O 000

P3 Connector

Note that the LEDs are inverted logic. That is, when the signal is off, the Light is on. When the
signal is on, the light is off.
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Table 2-7: Pixel Node Functlons

Name Function

PMapply apply a function to all subscreens

PMclear fill a rectangular region of the screen

PMcopy_§ fast but dangerous 32 bit D/VRAM copy

PMcopy_s safe 32 bit DRAM or VRAM copy

PMcopy_v 32 bit copy with variable increments

PMcopyftob copy front to back

PMcopyvtov copy blocks of VRAM

PMcopyvtoz copy video RAM to DRAM

PMcopyztov copy DRAM to video RAM

PMcopyztoz copy from one section of DRAM to another

PMdblbuff enable double buffering mode

PMflagled tumn the DEV_FLAG LED on or off

PMfreezaddr decrement references to a page register

PMfxtoi map a linear function of x from screen space to processor space i
PMfxytoij map a linear function of x and y from screen space to processor space i and j
PMfytoj map a linear function of y from screen space to processor space j
PMgetcmd read command from a pixel node FIFO

PMgetpix read a pixel from the current buffer

PMgetrow, PMgetcol  read a scanline from pixel memory without subscreens
PMgetscan read a scanline from pixel memory

PMgetzaddr assign address to a section of DRAM

PMgetzbuf read a float value from the Z buffer

PMgetzdesc allocate DRAM

PMihi map from screen space(xmax) to processor space (ihi)
PMilo map from screen space(xmin) to processor space (ilo)
PMinterleave interleave or deinterleave a block

PMjhi map from screen space(ymax) to processor space (jhi)
PMjlo map from screen space(ymin) to processor space (jlo)
PMmsg_exchange send and receive data packet over serial links
PMmsg_setup set serial DMA. input pointer

PMmyx test if a given screen space coordinate is in processor space
PMmyy test if a given screen space coordinate is in processor space
PMpagereg macros to manipulate page registers used to access video and Z memory
PMpixaddr generate a pointer to a specific pixel

PMpsync wait for all pixel processors to synchronize

PMputpix output a pixel to the current buffer

PMputrow, PMputcol  read a scanline from pixel memory without subscreens
PMputscan write a scanline to pixel memory

PMputzbuf write a float value to the z-buffer

PMgqcopyztoz copy from one section of DRAM to another

DEVtools Libraries
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Table 2-7: Pixel Node Functions (continued)

PMqget
PMqput
PMqzget
PMgqzput
PMrdyled
PMrdyoff
PMsiodir
PMsioinit
PMsnglbuff
PMswapbuff
PMvOget
PMvOput
PMvlget
PMvlput
PMvsync
PMxat
PMyat
PMzaddr
PMzaddrcol
PMzbrk
PMzget
PMzput

quick read of a pixel from the current buffer
quick write of a pixel to the current buffer
quick read of Z value from the Z buffer
quick write of Z value to the Z buffer
turn the DEV_RDY_LED on or off

turn the ready signal off

set serial I/O link direction

initialize serial I/O

disable double buffering mode

swap visible and pixel buffers

read a pixel from buffer 0

write a pixel to buffer 0

read a pixel from buffer 1

write a pixel to buffer 1

synchronize and wait for vertical retrace
map subscreen coordinates to screen space
map subscreen coordinates to screen space
generate a ZRAM pointer to a row
generate a ZRAM pointer to a column
initialize DRAM for allocation

read a float from the z-buffer

write a float to the z-buffer

Pixel Machine Math Functions

This section describes the hand-optimized assembly language versions of a few mathematical sub-
routines that are included in libpm (see Table 2-8). These routines have been implemented for the
architecture and requirements of the Pixel Machine and will run more efficiently than similar rou-
tines in the other DSP32 libraries. Some of these routines, however, are more restrictive than the
other DSP32 libraries; please see the manual pages in the DEVtools Reference Manual for further

information,
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Table 2-8: Math Functions

Name Function

PMcos cosine

PMieee_dsp | convert IEEE floating point number to DSP format
PMldot specialized dot product for light sources
PMlong_dsp | convert long integer to float

PMnorm normalize a vector and return its length

PMpow power function

PMsin sine

PMsqrt square root function

PMx_exp_n | integer power function
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The DSP32 C Language Compiler Library Reference Manual describes three libraries that contain
routines that can be included in Pixel Machine programs.

The libc Library

libc is a subset of the standard UNIX system C library and includes functions that support error
handling and debugging. Table 2-8 lists the routines and gives a brief synopsis.

libc is needed even if none of its functions are called explicitly because the compiler needs it for
some operations, for example, cases, mod and integer divide. Some of the routines require header
files, including math.h, memory.h, stdio.h and string.h. Refer to the individual manual pages in
the DSP32 C Language Compiler Library Reference Manual for more information.

Table 2-9: DSP32 libc

Name

Function

ecvt

isalnum, isalpha,
isascii, iscntr],
isdigit, isgraph,
islower, isprint,
ispunct, isspace,
isupper, isxdigit

frexp

convert a floating point number to a string
classify characters

separate mantissa and exponent in a floating point number

ldexp combine mantissa and exponent into a floating point number
memchr find first occurrence of a character in a block of memory
memcpy copy a block of memory
modf separate mantissa and exponent in a floating point number
perror print system error messages
(only for use with the d3sim simulator)
printf print formatted output
(only for use with the d3sim simulator)
(the libpm version of printf should be used for Pixel Machine programs)
strlen return the length of a string
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The libm Library

libm provides all of the functions found in the standard UNIX system math library. Table 2-10 lists
and briefly describes them. Note that these libraries do error checking and are not optimized for the
DSP32; therefore they are rather slow. Whenever possible, use an alternative function from libap or
libpm.

To use the libm routines, include math.h and load the program with —Im.

Table 2-10: DSP32 libm

Name Function

acos arccosine

asin arcsine

atan, atan2 | arctangent

ceil ceiling function
€os, gcos cosine

erf, erfc error functions
exp exponential
fabs absolute value
floor floor function
fmod remainder function
gamma Gamma function
hypot Euclidian distance
j0, j1, jn Bessel functions
log, logl0 | logarithms
matherr error handling
pow power function
sin, sinh sine

sqrt square root

tan, tanh tangent

y0, y1, yn | Bessel functions
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The libap Library

libap is a library of routines that have been written and optimized for the DSP32 processor, and
includes functions for mathematics, matrix manipulation, filtering, and imaging. The routines are
listed in Table 2-10.

To use the libap routines, include libap.h and load the program with —lap. Some of the mathemat-
ical functions appear in both the math library and the applications library. The routines in libap
have been hand-optimized for the DSP32 and will run faster than the libm version. The DSP32C
Language Compiler Library Reference Manual contains a section describing how to use both
libraries in the same program.
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Table 2-11: DSP32 libap

Name Function

acos, qacos arccosine

alogl0, alog2, aloge anti-logarithms

asin, qasin arcsine

atan, qatan arctangent

cos, qcos cosine

div, divf quotient

dsp32 convert from IEEE to DSP floating point format
ieee32 convert from DSP to IEEE floating point format
inv, invf inverse

invsqr inverse of the square root

logl0, qlogl0, log2, loge logarithms

ran, gran random number generators

sin, gsin sine

sqrt, qsqrt, sqrtf, sqriq square root

tan, qtan tangen

xtoy xy

matin2, matinf, maninv

matmul, mat2x2, mat3x3,
matdx1, matdx1f,
matdx4, mat5x5

matrix inversion
matrix multiplication .

fir, fir5, firc
iir, ir2, iir3, iir4,
iird, iirt, iirtl,

finite impulse response filters
infinite impulse response filters

iirt2, iirt3, iirtd
1ms, Imsc, Imsl real adaptive FIR filters using
least-mean-square algorithm
fft fast fourier transform

hamm, hamm0, hamm1, chammo0 | multiply by Hamming Window
hann, hann0, hannl, chann0 multiply by Hanning Window
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Host/Node Communication

Introduction

Most applications that run on the Pixel Machine must communicate with the host system in order to
receive the data to be processed, to return results, or to perform operations, such as I/O, that the
Pixel Machine processors cannot perform on their own.

This section describes the ways in which host programs and Pixel Machine programs communicate.
It is divided into sections that describe:

m communication to the Pixel Machine using the DEVtools command protocol
¥ communication from the Pixel Machine to the host using the message passing protocol

® other communication using a user-defined protocol
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A complete Pixel Machine program is one that uses all the architectural components of the Pixel
Machine, and consists of:

m a controlling host program
m DSP programs running in the pipe nodes
m DSP programs running in the pixel nodes

Host programs usually command the Pixel Machine by sending data using the DEVtools command
protocol, which is a convention for passing data from the host to the pipe(s) in the Pixel Machine.
The data is sent from the host to the first pipe node in the Pixel Machine in units called commands.
The pipe nodes can modify, delete, or pass on the command packets unmodified to the next node.
They can also generate new packets to be broadcast to the pixel nodes.

Each command consists of opcode, an operand count, and the operands. The opcode and operand
count are encoded into a single 32—bit value. The operands are 32—bit quantities that can be
integers, host floating point values, or Pixel Machine floating point values.
The format of commands on the host is:

OPCODE COUNT PARAM[l] . PARAM[count]
Macros are provided to simplify the generation and processing of commands on the host. These
macros are used to write commands to the Pixel Machine pipelines and read commands back from
the feedback FIFO. These macros are defined in devcommand.h (see the DEVtools Reference
Manual). The following is an example of the code required to generate a command:

DEVcwrite2 (DEVcommand (opcode, 2), int, some_data, more_data);

DEVcommand is used to encode an opcode and parameter count into a 32—bit command code.
The command argument of the DEVcwrite macros is usually a call to DEVcommand. opcode is
a user defined positive value. It is only important that the host and Pixel Machine routines agree on
the meaning of the opcodes and the format of the operands that follow each opcode. The 2 in the
DEVcommand macro is the number of operands that follow this command. This is frequently the
same as the last character of the macro name, but it is not always the same, because multiple write
macro invocations are required for commands that contain operands of more than one data type. int
is the type of the operand to be passed to the Pixel Machine. some_data and more_data are expres-
sions that are used as the values of the operands.

Following is an example of a command that contains both integer and floating point operands:

DEVewrite2 (DEVcommand (opcode, 4), float, x, y);
DEVwrite2(int, i, 3j);

To send an opcode cmd with no parameters use:

DEVcwritel (DEVcommand (cmd, 0));
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To send an opcode with one integer argument, argi, use:
DEVcwritel (DEVcommand (cmd, 1), int, argi);

To send an opcode with one float argument, argf, use:
DEVcwritel (DEVcommand (cmd, 1), float, argf);

There are separate macros to write from 0 to 9 parameters. If the number of parameters will not be
known until run—time, use DEVcwriten. For example:

DEVewriten (DEVcommand (amd, length), float, flt_array, length);

If possible, it is best to use the individual macros because they are more efficient than DEVcwri-
ten.

The DEVcwrite0 through DEVcewrite9 macros are used to write commands and a number of
operands that match the last character of the macro name. The DEVwrite0 through DEVwrite9
macros only write operands; they do not output a command code.

DEVcommand_opcode and DEVcommand_length are used with the DEVreadn macros to
extract the opcode and length from the encoded value when reading from the feedback FIFO.

On systems with multiple pipes configured in parallel, the macros write to whichever of the pipes is
the current pipe. Commands can be written to the alternate pipe by using the macros ending with
the string _alt. The _alt macros must not be used on single pipe systems or on multi—pipe systems
whose pipes are configured in series.

A few more details about the command formats (these are all taken care of by the macros): The
DEVcommand macro turns the count into a negative byte count and packs it into one word
together with the opcode. The byte ordering on the Sun and Pixel Machine are also different, so
when sending bytes or 16—bit ints packed into a 32—bit parameter, it is necessary to do some swap-
ping. The floating point format is also different, and the conversion must be done explicitly either
on the host or in the nodes. It is usually more efficient to do the float conversion in the pipe nodes.

From the point of view of the pipe nodes, the command packets are read one 32—bit word at a time
from the input FIFO and possibly written to the output FIFO. In the nodes, a set of functions
(PMgetcmd, PMgetdata, PMgetop, PMputemd, PMputdata, PMputop (described below)) is
provided for efficient reading and writing of the hardware FIFOs. All the FIFO routines use a data
structure called PMcommand that holds the command packets.

The PMcommand structure is defined in the pxm.h file, and is as follows:
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4 )

#include <pxm.h>

typedef struct
{
short opcode;

short count;
float *data ptr;
} PMamdtype;

extern PMcwdtype PMcommand;

N v

The global data stracture, PMcommand, defined in both the pipe and pixel node libraries, reflects
this packet structure. The members of this structure have the following functionality:

® PMcommand.opcode: contains the user—defined opcode.

® PMcommand.count: contains the negated byte count of the parameters pointed to by the
next field.

m PMcommand.data_ptr: points to a static buffer containing the parameters. It is initialized
by the system, although this can be changed to point to a user—defined buffer. The location
of this buffer is specified to optimize the DSP32 data move instruction.

Reading Commands from the Input FIFO
Pipe node programs read a command in two steps:

1. call PMgetop() to load an opcode and count from the input FIFO into the PMcommand
structure.,

2. if the parameter count is nonzero, call PMgetdata() to load parameters from the input FIFO
into the PMcommand structure.

Pixel nodes read a command by calling PMgetcmd(), which loads all three components of the
command into PMcommand.

Writing Commands to the Output FIFO
Pipe node programs can write a command in two ways:
1. by calling PMputop() followed (if count is nonzero) by PMputdata().

2. by calling PMputcmd(), which combines the functionality of PMputop( and PMput-
data().

By changing members of the PMcommand structure, a pipe node program can modify the com-
mand stream as needed. Pixel node programs read commands from the pipe nodes but cannot write
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commands.

Data flows through the system in the following manner: the program on the host assembles com-
mand packets which consist of an opcode, count, and data and sends them to the first pipe node via
the first input FIFO. The pipe node (and subsequently the rest of the pipe nodes) reads the opcode
and decides what to do with it. There are three scenarios:

1. it could simply pass the command packet to the next node via the output FIFO
2. it could do some processing and consume the command packet without passing it on

3. it could do some processing of the data and then pass it on to the next node. It can use the
same opcode or change it to another one. It could alter the data (e.g., convert IEEE format
floats to DSP format) or change it entirely, even passing on several new command packets.

After the last pipe node processes its commands, it writes the packets to its output FIFO which is
broadcast to the input FIFOs of all the pixel nodes. Each pixel node can then read the packets and
process the opcode and parameters according to its algorithm.
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During the course of processing images on the Pixel Machine, it is often necessary to download an
image from the host to the Pixel Machine (e.g., to display or perform some processing) or upload an
image from the Pixel Machine to the host (e.g., to save a result). Because upload/download of a
full image requires moving over 4Mbytes of information, it is desirable to accomplish this task as
quickly as possible.

Two DEVtools routines, DEVget_scan_line and DEVput_scan_line, have been designed to pro-
vide users with fast and flexible image upload/download processing. Both routines take care of the
pixel interleaving/de-interleaving. To process images quickly, both DEVget_scan_line and
DEVput_scan_line require cooperating code to be executed on the Pixel Machine. To perform the
upload/download, the host routines send system commands to the Pixel Machine. When a program
executing on a pipe/pixel node receives a system command via PMgetop or PMgetcmd, it checks
to see if the command was ‘‘enabled”’ by PMenable. If the command was not enabled, the node
takes no action and passes the command on to the next node (in the case of pipe nodes). If the
command was enabled, the appropriate DEVtools routine is called to process the command. After
the system command is processed, control is passed back to PMgetop or PMgetcmd to receive the
next user command.

Both DEVget_scan_line and DEVput_scan_line take a mode argument that specifies the format
of an individual pixel and which portion of Pixel Machine memory the pixels should be
uploaded/downloaded from/to. The following pixel formats are supported:

® DEV_RGBA_PACKED_PIXELS ~ on the host each pixel is 4 bytes long and the red pixel
component is stored in the first byte (the byte at the lowest memory address).

m DEV_RGB_PACKED_PIXELS - on the host each pixel is 3 bytes long and the red pixel
component is stored in the first byte (the byte at the lowest memory address). When using
DEV_RGB_PACKED_PIXELS in ZRAM, it is assumed that pixels are stored in RGBA for-
mat, therefore upload uploads 3 bytes, skips one, uploads the next 3 bytes, etc.

® DEV_MONO_PIXELS - on the host each pixel is one byte long. When downloaded to
VRAM, the pixel component is placed in each of the red, green, blue and alpha components.
When uploaded/downloaded from/to ZRAM, pixels occupy consecutive bytes.

m DEV_MONO_R_PIXELS ~ on the host each pixel is one byte long. When
uploaded/downloaded from/to VRAM, the pixel component is placed in the red component of
a pixel. Other pixel components are left untouched. ZRAM upload/download is not sup-
ported.

s DEV_MONO_G_PIXELS - on the host each pixel is one byte long. When
uploaded/downloaded from/to VRAM, the pixel component is placed in the green component
of a pixel. Other pixel components are left untouched. ZRAM upload/download is not sup-
ported.
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m DEV_MONO_B_PIXELS - on the host each pixel is one byte long. When
uploaded/downloaded from/to VRAM, the pixel component is placed in the blue component
of a pixel. Other pixel components are left untouched. ZRAM upload/download is not sup-
ported.

m DEV_MONO_A_PIXELS - on the host each pixel is one byte long. When
uploaded/downloaded from/to VRAM, the pixel component is placed in the alpha component
of a pixel. Other pixel components are left untouched. ZRAM upload/download is not sup-
ported.

s DEV_MONO_16_PIXELS — on the host each pixel is two bytes long. When
uploaded/downloaded from/to ZRAM, each pixel occupies successive ints. VRAM
upload/download is not supported.

m DEV_DSP_FLOAT_PIXELS - on the host each pixel is four bytes long. When
uploaded/downloaded from/to ZRAM, each pixel occupies successive floats. VRAM
upload/download is not supported.

m DEV_IEEE_FLOAT_PIXELS - on the host each pixel is four bytes long. When
uploaded/downloaded from/to ZRAM, each pixel occupies successive floats. During the
download operation, each pixel (float) is treated as an IEEE floating point number and con-
verted to the DSP internal floating point format. During the upload operation, each pixel
(float) is treated as a DSP floating point number and converted to the IEEE floating point for-
mat. VRAM upload/download is not supported.

In addition to the above pixel formats, the mode argument also specifies the area in Pixel Machine
memory to upload/download from/to:

s DEV_FRONT_BUFFER - the currently visible portion of VRAM. Typically used to
display an image on the monitor.

s DEV_BACK_BUFFER - the currently non-visible portion of VRAM. Typically used to
upload/download an image while another image is being displayed on the monitor.

m DEV_VRAMO BUFFER - the VRAMO portion of VRAM (only available on models 932
and above). Typically used to store an image that is larger than the size of the screen. Note
that VRAMO is the union of the FRONT and BACK buffers.

a DEV_VRAM1_BUFFER - the VRAMI portion of VRAM (only available on models 932
and above). Typically used to store an image that is larger than the size of the screen. Note
that VRAMI is not directly visible.

m DEV_ZRAM_BUFFER - non-displayable dynamic RAM used typically for storing Z buffer
values (ZRAM). Typically used to perform numerical calculations on image data.
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Note that for all forms of VRAM, the subscreen concept is used, but for ZRAM upload/download
the subscreen concept is not used. This allows for more efficient use of ZRAM when performing
image processing.

The following table gives the size (in pixels) of the largest image that can be stored in each of the

above buffers:

Model FRONT BACK VRAMO VRAM1 ZRAM
916 1024x1024 | 1024x1024 - - 1024x1024
920 1280x1024 | 1280x1024 - - 1280x1024
932 1024x1024 | 1024x1024 | 1024x2048 | 1024x2048 | 1024x2048
940 1280x1024 | 1280x1024 | 1280x2048 | 1280x2048 | 1280x2048
964 2048x1024 | 2048x1024 | 2048x2048 | 2048x2048 | 2048x2048

964X | 2048x1024 | 2048x1024 | 2048x2048 | 2048x2048 | 2048x2048

Note that for ZRAM the numbers given in the above table should be multiplied by 2 for

DEV_MONO_16_PIXELS and by 4 for DEV_MONO_PIXELS.

When enabling reception of system commands using PMenable, the user has the choice of ena-
bling upload/download for all memories, just VRAM or just ZRAM. Because program size on the
pixel nodes is minimal, it is recommended that users enable the smallest piece that they need. If

users run out of program space and still wish to perform image upload/download, the
DEVget_pixel and DEVput_pixel routines can be used (albeit more slowly).
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It is often necessary for the processors in the Pixel Machine to initiate communication back to the
host system. This is required to perform tasks that can only be done on the host, such as input and
output operations.

The protocol used to send messages to the host has the following steps:
m the node checks its semaphore to see if any previous operation has completed
@ the node loads a message code into the PIR; the semaphore is set

m meanwhile, the host is polling the PIR registers of a designated set of pipe and/or pixel
nodes. When a message code is found in a node’s PIR, it is used as an index into an array
of function pointers initialized by calling DEVuser_msg_enable()

m message specific code is executed on the host to perform any other communication related to
this message

m if the message operation must complete before execution continues, then the node process
must wait for the semaphore to be cleared by the host

The message protocol is used for communications operations that are internal to DEVtools (such as
host communication required by the printf routine) as well as to implement user message routines.
Message codes that are used internally by DEVtools are known as system messages. Message
codes that are used for user defined functions are known as user messages.

Functions are provided to send a message code to the host and to check to see if the semaphore has
been cleared. The PMusermsg function checks to see if the semaphore is clear, and then sets the
semaphore and loads the PIR. It has one argument, the message code (a positive integer from 1 to
256) to be sent to the host.

Upon receiving a message code, the host will perform the action requested and then clear the sema-
phore. The Pixel Machine program can continue execution after sending the message code, or it
may wait for the semaphore if its processing requires that the host action be completed before exe-
cution can continue.

In order for the host to serve the message requests, a process on the host must poll the Pixel
Machine processors for pending messages. The polling processing is designed to be incorporated
into a user’s program that runs on the host. In this way, the message serving functions can be com-
bined with other host processing that may include other operations such as generating pipe com-
mands using the command protocol described previously.

DEVpoll_nodes is the function that polls the Pixel Machine processors. The user program may
poll a single node, all nodes, or a range of nodes. Both pipe nodes and pixel nodes may be polied.
The number of times that the processors are to be polled and the delay time between polls are argu-
ments to DEVpoll_nodes. To poll continuously, the value DEV_FOREVER can be used. The
delay time is used as a argument to the usleep( system call. If no delay is wanted, DEV_NONE
should be used. DEV_NONE should only be used for host serving applications that need to be able
to serve Pixel Machine requests very quickly, because the host process using DEV_NONE will con-
sume as much CPU time as it can get.
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For DEVpoll_nodes to recognize a user message code, that specific message code must be
enabled. This is done by calling DEVuser_msg_enable. For example:

DEVuser_msg_enable{l, pipe function, pixel_function};
DEVuser_msg enable (2, NULL, pixel_ func_2);

In the first line of the example, user message code 1 is enabled. If message code 1 is received from
a pipe node, a call to pipe_function is made. If message code 1 is received from a pixel node, a
call to pixel_function is made. In the second line, if message code 2 is received from a pipe node,
an error will be generated. If a message code is received for a code that has not been enabled, an
error is also generated. pipe_function, pixel_function, and pixel_func_2 represent user written
routines that are called when the specified message code is received. The following is a sample of
the declarations for a user-written message handler:

- A

int pipe function(opcode, pixel_system, node)

int opcode;
DEVpixel system *pixel systam;
int noda;

int pixel function({opcode, pixzel system, noda)

int opcode;
DEVpixel_ system *pixel system;
int node;

o /

opcode is the user message code that caused the message handler to be called. This allows the mes-
sage handler to know which code was received so that one function can be used to handle several
message codes. pixel_system is a pointer to a system descriptor and is returned by DEVinit. node
is the number of the node that sent the message code. It is possible to have a single function serve
both the pipe and pixel nodes.

Once a message code has been received, it is often necessary for the server routine to communicate
with a processor to send or receive other information. Other communication may be performed
using the low-level Pixel Machine control library functions. These functions provide routines that
perform DMA /O, read from the PIR, write using the PDR, and provide other monitoring and con-
trol functions.

Message serving routines may use any of the DEVtools routines to transfer data to and from the
processor. The message server routine and the message sending routine must agree on how data is
transferred, and how much data is transferred. If the sender and receiver get out of sync, it is possi-
ble for the Pixel Machine or the host system to get caught in a loop waiting for more data, or for
the host to attempt to interpret data from the Pixel Machine as message codes.
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Message serving routines should not access the software semaphore since this is used by the mes-
sage handling routines to indicate that a message operation has been completed. The semaphore is
reset by DEVpoll_nodes after the return from the user message handler.

Using DEVtools 311



Node Global Variables

libpm contains a set of global data that is initialized by the startup code and is available for users.
These variables should be treated as read-only by the user. Corrupting their values would have des-
tructive effects on many of the library commands.

The following variables are defined for both pipe and pixel node programs. They are all declared
“‘extern’’ in pxm.h. Their values are set by hypload, DEVpixel _boot or DEVpipe_boot.

/

int
int
int
int
int
char
int
int
int
int
int
int

o

PMnode;
PMnx;
PMny;
PMox;
PMoy;
PMsid[10];
PMsem;
PMmodel;
PMvideo;
PMpipe;
PMgmax;
PMymax;

PMcmvitype PMcommand;

/*
/*
/*
/*
/*
/*
VA
/*
/*
/*
/*
/*

/*

*

*/

\

node ldentification number [0=~63] */
number of drawing nodes in x [4,8,10} */
mmber of drawing nodes in y [4,8] */
drawing node’s offset in x [0=7] */
drawing node’s offset in y (0-7] */
software name {10 chars) */
software semaphore */
coded pixel machine model */
video format code */
pipe mode code */
maximum x value in screen space */
maximum y value in screen space %/
PMcommand struct with Opcode,Count and

DataPtr for reading and writing FIFO's

/

The PMcommand structure is used by all the FIFO input and output routines in both pipe and

pixel nodes.

The following variables are defined only for pixel node programs. They should not be referenced
from pipe node programs. If they are, their values will be undefined. Their values are set in the
startup code and depend on the configuration of the machine.
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- D

int PMimax; /* max pixels in I direction in processor space*/
int PMimax; /* max pixzels in J direction in processor space*/
int PMmx; /* more processing in x direction? boolean */
int PMy; /* more processing in y direction? boolean */

/%

* Table of Valuas for PMmx and PMny

*

*

* imodel  |PMmx jpMry |

* jo— fo— |— |

* 1964 o 1o i

* 1940 | 1 f o

* 1932 S 1o |

* 1920 I 1 T S

* 1916 11 [ S

*

*/
int PMnindex; /* total number of subscreens (2*PMumy+PMuxtl} */
PMsubscrn *PMscrns(4]; /* initialized array of subscreen pointers */

_/

Although there are four PMscrns, only the appropriate ones are initialized for a given model.
PMscrns should only be used to pass it to an appropriate screen function.
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Introduction to Subscreens

As described in Chapter 1, each processor contains a portion of the frame buffer memory. For
example, on a 64 processor system displaying a 1024x1024 image, each processor contains 128x128
(16384) pixels of the frame buffer. On systems with fewer than 64 processors, each processor is
responsible for a larger area of the frame buffer. A 32 processor system, for example, is responsible
for 128x256 (32768) pixels, while a 16 processor system is responsible for 256x256 (65536) pixels.

To provide a simple and uniform interface to the hardware that works for all system configurations,
the concept of virtual nodes or subscreens was developed. Through the use of subscreens, each pro-
cessor repeats a set of operations from one to four times, operating on a different ‘‘subscreen’’ or
portion of the frame buffer each time. In essence, subscreens perform the function of several pro-
cessors of a larger system.

On a 64 processor system each processor contains a single subscreen. On smaller configurations
each processor contains a number of subscreens such that the total number of subscreens is either 64
or 80; 80 for 20 and 40 processor systems, and 64 for 16 and 32 processor systems. In other words,
in 32 and 40 processor systems, each processor contains two subscreens; in 16 and 20 processor
systems, each processor contains four subscreens.

Where the Frame Buffers are Stored in VRAM

For many DEVtools applications it is helpful to understand where pixels are located in memory,
which memory areas are used by the frame buffer and which memory areas are available, and so on.
The figures that follow illustrate which memory is used for frame buffer storage on each system
configuration. All examples are for 1024x1024 images on 16 and 32 processor systems, and for
1280x1024 for 20 and 40 processor systems. Examples of both 1280x1024 and 1024x1024 are pro-
vided for 64 processor systems.

Figure 3-1 illustrates the two 256k banks of VRAM found on each pixel node. Each bank consists
of two planes, and each plane consists of a 256x256 array. Each element of the array contains two
color components: the first plane contains the red and green values, while the second plane contains
blue and overlay.
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Flgure 3-1: Pixel Nodes: Video Memory Organization
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Figures 3-2-3-5 designate the portion of VRAM that is used to contain the frame buffer. The Pixel
Machine supports double—buffering on all configurations. The buffer shown is the memory used in
single buffer mode, or what is called the ‘‘top buffer’’ in double—buffered mode. The second
buffer, or ‘‘bottom buffer”, is stored in the lower portion of the boxes shown in the figures and
always begins at row number 128. The names “‘top’’ and ‘‘bottom’’ refer to the location of the
buffer within VRAM, and should not be confused with ‘‘front’’ and ‘‘back’ which refer to the
buffer currently being displayed and updated, respectively.
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Figure 3-2 shows the top buffer of a 964 operating in 1024x1024 mode. Each buffer consists of a
single subscreen containing 128x128 pixels.

Figure 3-2: Frame Buffer Organization on a Model 964
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Figure 3-3 shows the top buffer of a 964 operating in 1280x1024 mode. Each buffer consists of a
single subscreen containing 160x128 pixels.

Figure 3-3: Frame Buffer Organization on a Model 964X
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Figure 3-4 shows the top buffer of a 940 operating in 1280x1024 mode, or a 932 operating in
1024x1024 mode. Each buffer consists of two subscreens, each containing 128x128 pixels.

Figure 3-4: Frame Buffer Organization on a Model 840/32
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Figure 3-5 shows the top buffer of a 920 operating in 1280x1024 mode, or a 916 operating in
1024x1024 mode. Each buffer consists of a four subscreens, each containing 128x128 pixels.

Figure 3-5: Frame Buffer Organization on a Model 920/16

VRAMQ VRAM1

Subscreen to Screen Mapping

Once you know where the subscreens are in memory, you must understand how the pixels in a
given subscreen correspond to the pixels on the screen. Figures 3-6-3-10 show, for each
configuration, where the pixels for a given subscreen are displayed.

Figure 3-6 shows the mapping for a 964. With only a single subscreen, the 964 is the simplest .
case. Each processor displays every 8th pixel of every 8th scanline.
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Flgure 3-6: Processor to Screen Mapping on a Model 964
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Figures 3-7 and 3-8 show the mappings for the 940 and 932, respectively. The 940 contains a 10x4
array of processors, the 932 an 8x4 array. Each processor performs the function of two processors
in the Y dimension, resulting in a 10x8 or 8x8 array of subscreens.

Figure 3-7: Processor to Screen Mapping on a Model 940
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Figure 3-8: Processor to Screen Mapping on a Model 932
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On a 940, each processor displays:
Subscreen 0 every 10th pixel of every 8th scanline, beginning with scanline PMoy
Subscreen 1 and every 10th pixel of every 8th scanline, beginning with scanline PMoy+4

On a 932, each processor displays:

Subscreen 0 every 8th pixel of every 8th scanline, beginning with scanline PMoy

Subscreen 1 and every 8th pixel of every 8th scanline, beginning with scanline PMoy-+4
Figures 3-10 and 3-11 show the mappings for the 920 and 916, respectively. The 920 contains a
5x4 array of processors, the 916 a 4x4 array. Each processor performs the function of two proces-

sors in the X dimension and two processors in the Y dimension, for a total of four. The result is an
array of 10x8 or 8x8 subscreens.
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Figure 3-9: Processor to Screen Mapping on a Model 920
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On a 920, each processor displays:

Subscreen 0 every 10th pixel of every 8th scanline, beginning with pixel PMox of scanline
PMoy

Subscreen 1 and every 10th pixel of every 8th scanline, beginning with pixel PMox of scanline
PMoy+4

Subscreen 2 every 10th pixel of every 8th scanline, beginning with pixel PMox+5 of scanline
PMoy

Subscreen 3 and every 10th pixel of every 8th scanline, beginning with pixel PMox+5 of scan-
line PMoy+4

Using DEVtools 3-25



Frame Buffer Memory and Subscreens

Figure 3-10: Processor to Screen Mapping on a Model 916

Every 8th pixel
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On a 916, each processor displays:

Subscreen 0 every 8th pixel of every 8th scanline, beginning with pixel PMox of scanline
PMoy

Subscreen 1 and every 8th pixel of every 8th scanline, beginning with pixel PMox of scanline
PMoy-+4
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Subscreen 2 every 8th pixel of every 8th scanline, beginning with pixel PMox+4 of scanline
PMoy

Subscreen 3 and every 8th pixel of every 8th scanline, beginning with pixel PMox+4 of scan-
line PMoy+4

Subscreens in Z Memory

When Z memory is being used to store pixel-related data, such as Z-buffer values, it is necessary
to divide the Z memory into subscreens. Figure 3-12 shows the Z memory subscreen mapping used
by such DEVtools functions as PMputzbuf().
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Figure 3-11: Z-Buffer Mapping on a Model 916/920
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Programming with Subscreens

Program code can be broken into three classes:
m subscreen independent code — code that must be executed only once
m subscreen dependent code — code that must be executed once for each subscreen

m code that functions correctly whether executed once or once for each subscreen

Subscreen independent code includes functions such as reading data from an input FIFO, swapping
buffers with PMswapbuff(), and initializing Z memory using PMzbzk(). These are functions that
should not be repeated for each subscreen.

Subscreen dependent code includes computing the processor space coordinates using the PMilo(
and PMihi() macros, and updating the frame buffer using functions such asPMclear(), and
PMputpix(). All functions that take a subscreen argument (e.g., PMilo(, PMihi()) are subscreen
dependent.

Programs typically consist of a subscreen independent function that reads data from the input FIFO,
performs some processing and then calls a subscreen dependent function N times, once for each
subscreen. The subscreen dependent function receives as an argument a pointer to a structure that
describes the subscreen to be processed.

Code that functions correctly as either subscreen dependent or independent could include part of an
application that performs calculations on data not directly related to drawing pixels on the screen.

PMsubscrn is the type name of the structure used to describe a subscreen. The fields contained in
each subscreen structure are:

Nx number of subscreens or virtual nodes in the X dimension

Ny number of subscreens or virtual nodes in the Y dimension

Ox offset of this subscreen in the X dimension

Oy offset of this subscreen in the Y dimension

ifix byte offset from the beginning of the VRAM row of this subscreen

jfix specifies whether the subscreen is in VRAM 0 or VRAM 1 and whether it is in

the top buffer or bottom buffer

All of these values are stored as floating point values.

The ifix and jfix values can be useful when determining the location of a subscreen if page registers
are being used to update the frame buffer. The subscreen structure also contains values that are
used to compute the PMilo(), PMihi(), PMjlo(), and PMjhi() functions.
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DEVtools includes a simple facility that can be used to call a subscreen dependent function the
appropriate number of times with the proper subscreen structure pointer. This is done by using the
PMapply() function. PMapply() calls a specified function and passes, as the first argument, the
subscreen pointer. For example the statement:

PMapply (PMclear, 0, 0, PMimax, PMjmax, &color);

is functionally equivalent to:

for (i = 0; i < PMnindex; i++) {
PMclear (PMscrns{i], 0, 0, PMimax, PMimax, &color);
}

If code is written to un on a specific model, the PMscrns array can be used to access the pointer
for a specified subscreen. Code written exclusively for a 964, for example, could be written as:

PMclear (PMscrns[0], O, 0, PMimax, PMimax, &color):

The global variables PMmx and PMmy can be used to determine the number of subscreens in each
dimension. When PMmx is true, it means that there is more than one subscreen for each scanline
X. PMmx is true in high-resolution mode for all systems except the 964. When PMmy
is true it means that there is more than one subscreen for each scan column Y. PMmy is true in
high—resolution mode for the 916 and 920.

Subscreens and Video Formats

NTSC uses only a single subscreen on all configurations. PAL uses the same number of subscreens
as high—resolution, however, each subscreen is smaller.
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Accessing Memory Without Subscreens

Images are sometimes stored in memory without using subscreens. This can simplify some image
manipulation tasks when the data is not required to be in a displayable format while being pro-
cessed. For example, an image copied into Z memory using the PMcopyvtoz() function is not
stored in subscreen format in Z memory. A special subscreen structure is provided to allow func-
tions such as PMilo() andPMihi() to be used with these images. The global variable PMrealscrn
can be used to access this structure. In the PMrealscrn structure, the physical node counts and
offsets are always equal to the virtual values.
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There are several different types of memory associated with each pixel node. These can be divided
into three groups: Static Memory (SRAM), Video Memory (VRAM), and Dynamic Memory
(DRAM). SRAM includes 1kx32—bit of on chip memory and 8kx32-bit off chip memory, which
are both available for program storage. Additionally, there is memory for the frame buffer and
pixel data (usually for z-depth information). This additional memory consists of two banks of
256x256x32~-bit VRAM, referred to as VRAMO and VRAM], and one bank of 256x256x32-bit
DRAM used for the z-buffer, which is also referred to as ZRAM.

Figure 3-12: Plxel organization of the rgba (video) and z (dynamic) memories

256
Video M :
emory 0 o5t
32
256
Video Memory 1:
256
32
256
Dram Memory:
256
32

3-32 DEVtoois User's Gulde, Version 1.0



Memory Access

VRAM and ZRAM Access

Because of the way that non—program memory is organized, special low level functions and macros
are needed to access it. These functions are needed because access to this memory involves using
page registers. In addition, each bank of pixel memory (VRAM) is actually composed of two
planes, an RG (red/green) plane and BO (blue/overlay) plane that are accessed separately. Also,
only 8-bits out of each 16 are actually used. For additional information, see the section ‘‘Pixel
Nodes’’ in Chapter 1 of this guide.

Following is a list of library routines to help access memory correctly:

Table 3-1: VRAM Access

Routine Function

PMgetscan()  read a scanline from video memory
PMputscan()  write a scanline to video memory
PMpixaddr()  generate a pointer to a specific pixel
PMgetpix() read a pixel from the specified subscreen
PMputpix() write a pixel to the specified subscreen
PMv0get() read a pixel from video buffer 0
PMv0put() write a pixel to video buffer 0

PMvlget() read a pixel from video buffer 1
PMvlput() write a pixel to video buffer 1

PMqget() quick read of a pixel from the current buffer
PMqput() quick write of a pixel to the current buffer

Table 3-2: ZRAM Access

Routine Function

PMgetzbuf()  read a float value from the Z-buffer
PMputzbuf()  write a float value to the Z-buffer
PMzget() read a float from the Z-buffer
PMzput( write a float to the Z-buffer
PMqzget() quick read of Z value from the Z buffer
PMqzput() quick write of Z value to the Z buffer
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There are two types of functions that access pixels: those that use subscreens and those that do not
use subscreens. For example, when you are rendering, you would want to access pixels with refer-
ence to where they map to the screen. In this case you would want to use subscreens, but if you
did not care about the mapping, you could use the direct functions.

When accessing data row by row, you can substantially increase the efficiency by careful use of the
“‘quick’’ routines, after setting up the pointer and page register by a call to the appropriate function.
For example, to update an entire scanline, use PMpixaddr( to generate a pointer to the first pixel
on the line:

dptr = PMpixaddr(scrn, 0, j):

Besides returning the pointer PMpixaddr() and the other memory functions, all of these routines

also have the effect of setting up the appropriate mapping registers. Next use dptr as an argument
to PMqput:

dptr = PMgput (color, dptr);

PMgqput will also return a pointer to the next element. It is safe to use the q routines up to
PMimax times before reaching the end of the subscreen boundary, at which time a new pointer
needs to be generated.

The same applies for ZRAM. However, instead of using PMqzget or PMqzput the pointer can be
used directly because it points to real 32-bit memory (except that the access is slower than SRAM).
The Z pointer can be incremented up to PMimax times, or, if you are not using subscreens, up to
256 times before the page registers have to be updated by a call to one of the other z routines.

Using Z Memory As General Purpose Memory

Z memory can be used for both Z values used in displaying images and as general purpose memory
for data storage. A number of functions have been provided to facilitate the use of Z memory as
general purpose memory. These functions correspond, somewhat, to the malloc function available
on most UNIX systems, but their use is more complex. The additional complexity is due to the
limitations imposed by page registers. These functions hide most of the details of page register
usage, but still impose some responsibility on the user. Thus programs that used malloc on a
UNIX system based processor will require some modifications.

The functions used to manage Z memory are:
m PMzbrk() - used to reserve the general purpose Z memory pool.

m PMgetzdesc() — gets a block of Z memory of the requested size, and returns addressing
information. The memory is still not accessible by the program.
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m PMgetzaddr() — makes the memory accessible to the program and returns the address at
which it can be accessed.

m PMfreezaddr() ~ frees the address space to be used for another block of memory.

PMzbrk() is called first to initialize the values that will be used by the other functions. Its only
argument is the number of ZRAM rows to devote to allocation by these functions. The memory is
allocated from high numbers down, so that, if viewed as rows, PMzbrk(l) would set aside row 255.
The memory not allocated by PMzbrk() is still available for other purposes.

After a large chunk of memory is reserved by PMzbrk(), the memory is subdivided and allocated
with PMgetzdesc(). PMgetzdesc() is called with the number of bytes desired. It rounds up to
the nearest 4 byte boundary to make sure that the next block of memory is properly aligned for
floats or other such data. It updates a private data structure to give the location of the next unallo-
cated block of memory, and returns a PMzdesc structure that contains the information on the loca-
tion of this block of memory. This return should be checked and its value retained. If a number of
memory blocks are to be allocated in a program, that is, if PMgetzdesc() is called repeatedly, it is
probably a good idea to create an array of type PMzdesc and keep the returns in that array. Once a
block of memory has been allocated it cannot be returned to the memory pool. In most cases, the
best way to use PMzdesc is to set up a set of buffers, that are re-used, as opposed to the usual way
that malloc is used, allocating, freeing, and reallocating.

PMgetzdesc() locates available Z memory but does not make it accessible by a program. This
requires the setting of page registers and the determination of the correct pointer of the memory
block given the page register used. This is the purpose of PMgetzaddr(. PMgetzaddr() searches
the list of page registers reserved for its use (as explained below) to find one which is not in use for
some other purpose. Once one is found, it is loaded with the information from PMgetzdesc(), so
that the processor can address the DRAM. The address is then calculated, so that the program can
address that memory. The return from PMgetzaddr() should also be checked, because, even if
there is enough memory, there may not be any available page registers.

Page registers are a limited resource, and some functions require the use of certain ones. The fol-
lowing table shows the allocation of page registers to functions in libpm.a:
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Table 3-3: Page Reglster Assignments

Page Register  Function

0 PMgetscan(), PMputscan(), PMclear(), PMgetcol(, PMputcol(),
PMgetrow(), PMputrow()
1 PMgetscan(), PMputscan(), PMclear(), PMgetcol(), PMputcol(),

PMgetrow(), PMputrow()

2 PMvOget(), PMgetpix(), PMgetcol(), PMputcol(), PMgetrow(), PMputrow()
3 PMvOget(), PMgetpix(), PMgetcol(), PMputcol(), PMgetrow(), PMputrow()
4 PMv0put(), PMputpix()
5 PMv0put(), PMputpix()
6 PMviget()
7 PMvilget()
8 PMvlput(
9 PMvlput(
10 PMpixaddr()
11 PMpixaddr()
12 PMzget(), PMgetzbuf(), PMzaddr()
13 PMzput(), PMputzbuf(), PMzaddrcol()
14 Reserved for host use
15 Reserved for host use

It is unlikely that all of these functions will be used in a given program. It is likely that a set of
these functions will be used with the Z memory allocation functions. The Z memory allocation rou-
tines have been designed to be flexible in the use of page registers. There is an array that maintains
the busy status of each page register. Page registers can be made available for Z memory alloca-
tion, or set aside for use by the routines listed in the table, by the use of macros. The macro
PMblock_reg() sets aside a page register, so it will not be used by the Z memory allocation rou-
tines. It takes as its argument the number of the page register. PMblock_reg() puts a non-zero
value into the busy status array element for that page register. The opposite function is served by
the macro PMavail_reg(), which puts a zero into that element. Because external memory is not
always cleared when a program is restarted, it is a good idea to explicitly set the status of every
page register before the Z memory allocation functions are used. The macro PMset_lowreg() is
provided to reduce unnecessary searching through reserved page registers. Normally, the page regis-
ter status array is searched from 0 to 13. If, say, only 12 and 13 are available, this is extra work for
the machine. PMset_lowreg() can be used to restrict the search by setting the low register to 12.
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After PMgetzaddr() returns, the segment of Z memory is in the address space of the program.
The pointer can be used as any pointer would be used. When this memory is not in use, other Z
memory may be used and PMgetzaddr() called; the page register should be freed. This is done
with PMfreezaddr(). PMfreezaddr() does not free Z memory or modify the contents of Z
memory. It only makes a page register available for use elsewhere. When memory needs to be
reaccessed, the function PMgetzaddr() should be called again using the Z descriptor for that
memory. The address may be different, but the contents will not be changed.

The procedures can be illustrated by the following code fragment:
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N /

4 )

#include “"pxm.h"
$include "pageregs.h®

#define NULL (char *}0
#define MAXDESC 21

main ()
{
PMzdesc desc{MAXDESC]:;
int i, 37
char *ptrvall;
char *tptrl;
char *tptr4;
char *msgptr = "Got memory on pass®:

PMzbrk (5) ; /* make 5k usable for general purpose */
/* set limits on page registers */

PMset_lowreg (10} ;

PMset hireg(13);

for (=0 ; 1 ; 3+#) { /* loop until error */
desc[j] = PMgetzdesc(256);

if { ipPMzdesc valid(desc{il) ) { /* no memory left */
printf ("No DRAM memory available, pass %d0, j):
break; '

}

if ( (ptrvall = PMgetzaddr{desc{j])) == NULL } {(
/* no pointers (i,e. page registers) left */
printf (*No Page Registers available, pass %d0, 3);
break;

}

/* copy string to to the allccated mam in 2RAM */

/* (this is generally not an efficient copy on DSP’g) */

for ( i = 0, tptrl = ptrvall , tptrd = magptr; 1 < 19 ;7 I+ ) {
*tptrl+t+ = *Cptrd++;

}

/* print string from ZRAM */

printf ("%s %40, ptrvall, 3j);

/* block till printf is done so we don’t change page reg before

devprint neads to read the string */

PMwaitsem();
/* comment out next call and reuse desc’s to get no page registers avail */
PMfreezaddr (ptrvall); /* make pointers avallable */

}
PMhost_exit();

)
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A Pixel Machine program using SIO progresses through three stages: initialization, setting link
direction, and exchanging data. Each stage is explained in detail below, and a short example pro-
gram demonstrating SIO is provided at the end of this section.

Initialization

Every pixel node program using SIO must call the DEVtools routine PMsioinit before any other
SIO routines are called. PMsioinit initializes the SIO hardware and must be called only once in

each program.

Setting Link Direction

To change the SIO link direction, call the DEVtools routine PMsiodir. This routine takes one
parameter specifying the direction, which must be one of:

PM_MSG_SERIAL_NORTH
PM_MSG_SERIAL_SOUTH
PM_MSG_SERIAL_EAST
PM_MSG_SERIAL_WEST

These constants are defined in the header file sysmsg.h, and must be #included before PMsiodir
is called.

PMsiodir requires that a host server process such as devprint (described earlier in this document),
or a user program calling the host devlib library, be running on the host machine. PMsiodir sends
a message to the server process requesting that a call to the host library routine
DEVserial_direction be made to actually change the link direction.

All nodes must call PMsiodir.

Exchanging Data
After SIO is initialized and the link direction set, data packets may be exchanged with neighboring

nodes. All nodes must transmit simultaneously and send exactly the same amount of data as all
other nodes. The sequence of DEVtools calls to exchange a data packet is:
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float *inbuf, *outbuf;
short size;

PMnsg_setup (inbuf) ;
PMpsync (} 7
PMmsg_exchange (inbuf, cutbuf, size);

The variables outbuf and inbuf are pointers to an output buffer, whose contents are sent in the link
direction, and an input buffer which receives data from the opposite direction.

The call to PMmsg_setup sets up the SIO hardware to do DMA input to inbuf. Next, the
PMpsync call ensures that all processors are synchronized and have set up their input buffers.
Finally, PMmsg_exchange is called to exchange data packets. It sends size floats from outbuf and
then waits until size floats have been received into inbuf.

Example Program

The short program below uses SIO to send a data packet from each node to its west neighbor, then
sends the received data packet back to its starting point.
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A Pixel Machine program using SIO progresses through three stages: initialization, setting link
direction, and exchanging data. Each stage is explained in detail below, and a short example pro-
gram demonstrating SIO is provided at the end of this section.

Initialization

Every pixel node program using SIO must call the DEVtools routine PMsioinit before any other
SIO routines are called. PMsioinit initializes the SIO hardware and must be called only once in

each program.

Setting Link Direction

To change the SIO link direction, call the DEVtools routine PMsiodir. This routine takes one
parameter specifying the direction, which must be one of:

PM_MSG_SERIAL_NORTH
PM_MSG_SERIAL_SOUTH
PM_MSG_SERIAL_EAST
PM_MSG_SERIAL_WEST

These constants are defined in the header file sysmsg.h, and must be #included before PMsiodir
is called.

PMsiodir requires that a host server process such as devprint (described earlier in this document),
or a user program calling the host devlib library, be running on the host machine. PMsiodir sends
a message to the server process requesting that a call to the host library routine
DEVserial_direction be made to actually change the link direction.

All nodes must call PMsiodir.

Exchanging Data
After SIO is initialized and the link direction set, data packets may be exchanged with neighboring

nodes. All nodes must transmit simuitaneously and send exactly the same amount of data as all
other nodes. The sequence of DEVtools calls to exchange a data packet is:

Using DEVtools 3-39



Serial /O Protocols

float *inbuf, *outbuf;
short size;

PMmsg_setup{inbuf) ;
PMpsync(} ;
PMmsg exchange (inbuf, outbuf, size):

The variables outbuf and inbuf are pointers to an output buffer, whose contents are sent in the link
direction, and an input buffer which receives data from the opposite direction.

The call to PMmsg_setup sets up the SIO hardware to do DMA input to inbuf. Next, the
PMpsync call ensures that all processors are synchronized and have set up their input buffers.
Finally, PMmsg_exchange is called to exchange data packets. It sends size floats from outbuf and
then waits until size floats have been received into inbuf.

Example Program

The short program below uses SIO to send a data packet from each node to its west neighbor, then
sends the received data packet back to its starting point.
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Figure 3-13: SIO sample program

—

main() {

$include <pxm.h>
#include <sysmsg.h>

#define SIZE 100

float inbuf[SIZE], outbuf[SIZE];
short 1i;

/* Fill the data packet with a sequence of numbers */
for (1 = 0; 1 < SIZE; i+
outbuf{i] = PMnode * i;

PMsioinit{): /* Initialize sic */

/* Set link direction */
PMsiodir (PM MSG_SERIAL WEST);

/* Send outbuf to the West, raceive inbuf from the East. */
PMnsg_setup (inbuf);

PMpaync() ;

PMnsg_exchange (inbuf, outbuf, SIZ2E);

/* Reverse link diraction */
PMsiodir (PM _MSG SERIAL EAST);

/* Send inbuf to the East, receive outbuf from the West, */
PMmsg_setup (outbuf);

PMpsync (} 7

PMmsg_exchange (outbuf, inbuf, SIZE);
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Introduction

It is often necessary for the pixel nodes to synchronize themselves to ensure they have all reached
the same stage of a computation before continuing to compute. An example is making sure that all
processors have finished rendering their portion of a frame into the back buffer before switching it
to become the visible buffer.

Hardware features of the Pixel Machine support this synchronization; alternatively, synchronization
may be done in software with the aid of the host workstation. Both approaches are described in this
section.

Hardware Synchronization

The basic DEVtools synchronization routine is named PMpsync. When called, this routine does
not return until all pixel nodes have called PMpsync. This form of synchronization has very low
overhead, returning within twelve instruction cycles of synchronization. Because PMpsync is so
efficient, it is heavily used in internode communications routines.

The PMvsync DEVtools routine is similar to PMpsync. PMvsync is used to accomplish syn-
chronization for tasks that change the displayed image; for example, before switching buffers in
double-buffer mode. Like PMpsync, PMvsync waits until all processors have called it. It then
waits for the beginning of a vertical blanking interval - when the electron beam of the monitor
has reached the beginning of a field. PMvsync retums within twelve instruction cycles of the
interval. It may take up to 1/60th second to return, depending on the position of the electron beam
when the routine is called.

Since there is very little time between the start of the blanking interval and the time pixels in a
frame begin to be displayed, PMvsync returns as soon as the interval is detected. The hardware
signal used for synchronization must be tumned off before another call to PMvsync is made, using
another DEVtools routine PMrdyoff.

In summary, PMvsync is used as follows:
PMvsync(); /* Return after start of blanking interval */
(swap buffers or similar task)
PMrdyoff(); /* Disable VSYNC signal for the next call */

Note that in the normal case, PMswapbuff() should be used if the you intend to swap the visible
buffer. PMvsyne() and PMrdyoff() should only be used when synchronization with the vertical
retrace is desired for some other purpose.
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Software Synchronization

Another method of synchronizing processors requires the aid of the host workstation. The host
polis the nodes, waiting for a software condition to be established. An exampie would be waiting
for nodes to set their software semaphores to a specific value. After this condition is established
and the work associated with it accomplished, the host establishes a different software condition in
the nodes enabling them to proceed. This form of synchronization requires that the host and nodes
agree upon the software protocol to be used. Many protocols may be used; below is a simple exam-
ple using the software semaphore:

Host action Node action

Wait for semaphore == 1 in all nodes
Set semaphore = 1
Take action upon synchronization
Wait for semaphore == 0

Set semaphore = 0 in all nodes

Synchronization Signals and LEDs

The hardware mechanism used by PMpsync and PMvsync is visible in the form of LEDs on the
Pixel Array Processor boards. The strip of 8 red LEDs on each board contains 2 LEDs for each
pixel node. The upper 4 LEDs show the state of the PMpsync signal in each node. The lower 4
LEDs show the state of the PMvsync signal in each node:
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Figure 3-14: LED layout on pixel node boards

psync - processor 3
psync - processor 2
psync - processor 1

psync - processor 0

vsync - processor 3
vSync - processor 2
vsync - processor 1

vsync - processor (

OOO0 | OO0O

These LEDs may be used for other purposes (such as a debugging aidr) if the pixel node program in
question makes no use of the corresponding synchronization calls (including calls to other
DEVtools routines that require synchronization).

If no use is made of PMi)sync, the upper LEDs may be tumed on and off explicitly with the call
PMflagled. This takes one integer argument. If nonzero, the LED is tumed on, otherwise it is
turned off. :

Similarly, if no use is made of PMvsync, the lower LEDs may be turned on and off explicitly with
the call PMrdyled, which takes the same on/off parameter as PMflagled.
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Software Synchronization

Another method of synchronizing processors requires the aid of the host workstation. The host
polls the nodes, waiting for a software condition to be established. An example would be waiting
for nodes to set their software semaphores to a specific value. After this condition is established
and the work associated with it accomplished, the host establishes a different software condition in
the nodes enabling them to proceed. This form of synchronization requires that the host and nodes
agree upon the software protocol to be used. Many protocols may be used; below is a simple exam-
ple using the software semaphore:

Host action Node action

Wait for semaphore == 1 in all nodes
Set semaphore = 1
Take action upon synchronization
Wait for semaphore == (

Set semaphore = 0 in all nodes

Synchronization Signals and LEDs

The hardware mechanism used by PMpsync and PMvsync is visible in the form of LEDs on the
Pixel Array Processor boards. The strip of 8 red LEDs on each board contains 2 LEDs for each
pixel node. The upper 4 LEDs show the state of the PMpsync signal in each node. The lower 4
LEDs show the state of the PMvsync signal in each node:
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Figure 3-14: LED layout on pixel node boards

psync - processor 3
psync - processor 2
psync - processor 1

psync - processor 0

VSYIC - processor 3
vSync - processor 2
vsync - processor 1

vsync - processor 0

O000 | OOOO

These LEDs may be used for other purposes (such as a debugging aid) if the pixel node program in
question makes no use of the corresponding synchronization calls (including calls to other
DEVtools routines that require synchronization).

If no use is made of PMi)sync, the upper LEDs may be turned on and off explicitly with the call
PMflagled. This takes one integer argument. If nonzero, the LED is turned on, otherwise it is
turned off. :

Similarly, if no use is made of PMvsync, the lower LEDs may be turned on and off explicitly with
the call PMrdyled, which takes the same on/off parameter as PMflagled.
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Flgure 3-15: Model 816
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Figure 3-16: Model 920
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Runtime Skeleton

The skeleton directory in /usr/hyper/devtools/sample/skeleton contains a sample of a complete
Pixel Machine program, which means that all the architectural components of the Pixel Machine are
used.

Sample Skeleton Program

The skeleton program is a sample of how to use command passing through the system. The main
program boots the pipe and pixel nodes with their corresponding programs and starts the Pixel
Machine running, and then enters the main loop. In the first part of the loop the host sends down
commands to alternately clear the screen to red and then blue while flashing the FLAG LEDs. A
delay command is also sent down between colors; the delay is shorter as the loop progresses
towards the end.

In the next part of the loop, the host loops while sending down a random 1gb color value and then a
command to draw a random rectangle of that color. At the end of the main loop, the host sends
down a single command, the DEV_GENERATE opcode. This opcode instructs a pipe node to gen-
erate many random rectangles on its own.

Finally, after the main loop exits, the host sends the pixel nodes a command to clean up and exit. It
then calls DEVpoll_nodes() to wait for an exit code from the pixel nodes before exiting.
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Introduction

Debugging programs that run on parallel computers is a task that strikes fear into the hearts of most
programmers. Debugging code on the Pixel Machine, however, is much simpler than may be
expected, and, in fact, is not much different than debugging on an ordinary computer. This is true
because, in most cases, it is possible to debug a program on a single processor without worrying
about what all of the other processors are doing. On the Pixel Machine this is possible because the
processors do not share any of their memory with other processors. With the exceptions of serial
DMA 1/O with neighboring processors and parallel DMA 1/O with the host, a single processor is in
complete control of its environment.

Tools for General Debugging

Following are the tools available for general debugging:

® printf: the libpm library provides a version of printf that can be used to display data during
the execution of a program on the Pixel Machine. The data is directed to the standard output
of the controlling program running on the host. Print statements can then be used to display
information as you would do on a conventional system.

m User Messages: using the message handling routines provided by devlib, a Pixel Machine
program can send messages to the host indicating what the Pixel Machine program is doing,
providing values of variables, etc. The host program can than check the sequence of the
events, the values of the variables, etc.

® hypeek and hypoke: these commands allow you to display and modify data in a node’s
memory. They are useful for examining the data of a running process.

® d3sim: is the general purpose DSP simulator provided with the DSP Tools to simulate and
debug programs written in DSP32. It can be used to debug Pixel Machine programs, except
that it does not model any of the Pixel machine specific components such as FIFOs and
frame buffers. For more information, see Chapter 6 of the WE®DSP32 and DSP32C Sup-
port Software Manual.

Tools for Debugging Pipe Routines

Programs that run in the pipe nodes usually perform operations similar to a UNIX system filter.
They read input from the FIFO, perform some transformations, and output to the FIFO of the next
processor. It is often useful to display the data that is the input to a given processor, and then to
display the output of that processor (that is the input to the next processor). The program
lust/hyper/boot/pipe_fb.dsp can be loaded into a pipe node. It reads input from its FIFO and
transfers the data to a host program through the PIR. A host program, called hypfb, can then read
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the PIR data and display it.

For example, if you wanted to display the data that pipe node 0 is receiving as input, you would
load pipe_fb.dsp into pipe node 0, run the host program that sends commands to the pipe, and run
the program hypfb on the host. This would display all of the commands from the host as received
by node 0.

If you wanted to display the output of node 0, you would load pipe fb.dsp into pipe node 1, run
the host program that sends the commands and run hypfb. This would display the output of node
0, that is also the input to node 1.

If the program you are debugging accepts commands in the format supported by the devlib com-
mand macros and functions, the hypemd command can be used to translate the output of hypfb
into a more readable format. To use hypemd, simply pipe the output of hypfb into hypemd.
The commands:

hypload -g0 $HYPER PATH/boot/pipe fb.dsp
hypnun —g0

host_program

hypfb -g0 | hypomd

will read the feedback information from pipe node 0 and translate it into command format.
host_program must be run in the background or from a different window, because it and hypfb
need to run at the same time.

3-52 DEVtools User’s Gulde, Verslon 1.0






