Introduction

Preface
Documentation Coaventions

Pixel Machine Features

RAYlib Functions

Differences Between RAYlib and PIClib 1.5
Differences in Common Structure Definitions 1-5
Differences in Common Functions 1-5
Functions Unique to RAYlib 1-6
Getting Started 1-8
Defining the Software Environment 1-8
Writing RAYlib Programs 1-10

1-10

Compiling RAYYb Programs

Preface

Documentation Conventions

The information in this guide is presented in the following way:
s Square brackets {] indicate options; parenthesis () indicate argumeats.

» Each command and function is addressed separately. The discussion includes a description of the
command or function’s purpose and operation. This is followed by its syntax and command usage
format and, finally, by an explanation of the argumeats; for exampie:

RAYatom(x.y,z,r)
float x.y,z,r5

XY,z the coordinates of the centerpoint

it

r the radius

« Where appropriate, examples and illustrations are included to further clarify the use of a command
or function.

Introduction 1-

1

Pixel Machine Features

The Pixel Machines are graphics generation and display systems that provide high quality image computing.
The systems are programmable and modular, and are designed to execute complex graphics functions at
very high speeds. (For a detailed description of the Pixel Machine hardware and software features, refer to
the Pixel Machines User’s Guide.)

The Pixel Machine offers a complete set of system commands and a powerful graphics library, PIClib, for
generating a multitude of images. PIClib’s functions reside on the host computer and provide an interface
between your application program and the Pixel Machine. Some of the highlights of PIClib include:

s high-level, 3D object generation (including patches, quadrics, and superquadrics)
» flat and Gouraud shading

s texture mapping onto 2D or 3D surfaces

« multiple light sources of different types

= antialiasing by supersampling for photorealistic 3D rendering

» 32-bit floating pont z-buffer for highly accurate depth precision

32-bit double buffering

= a robust set of interactive 3D graphics functions

» a unique set of rgbz buffer copy routines

[n addition to the graphics library, PIClib, a ray tracing library, RAYIib, is available for the Pixel Machine.
RAYlib is composed of a powerful set of tools for generating high-quality graphics images and includes
primitives for generating and manipulating 3D computer models and describing their physical attributes. It
can be used as a high-end renderer to create realistic images for use in 3D visualization, industrial design,
and television/motion picture production.

RAYIib includes many sophisticated features that enable you to achieve superb visual realism while main-
taining the high rendering speed made possible by the parailel architecture of the Pixel Machine. These
features include:

* Realism - RAYIib generates the shadows, reflections, and transparency that make a computer-
generated image more realistic. The user can control the reflective and specular componeats of an
object as well as the object’s degree of transparency. All of these features (shadows, reflections, and
transparency) can be disabled in the user’s program for a quick preview of the scene before render-
ing the final image.

» Light Sources - Multiple light sources of any color can be used to produce a variety of lighting
effects. The types of light sources available are point, direct (infinite), and area. Direct light sources
produce lighting that is similar to sunlight. Area light sources have the effect of producing soft,
natural shadows.

= Texture Mapping - Any 2D texture can be mapped onto objects created by RAYlib. These textures
can be used to generate realistic surfaces, such as wood grains, clouds, marble, etc. The texture
maps can have surface properties, such as reflectance and transparency, on a pixel by pixel basis. As
many as 64 texture maps can be used at one time. Texture maps can be as large as 3K x 4K

= Antialiasing - Adaptive stochastic antialiasing can be turned on to eliminate rough, jagged cdges.
The user can control the minimum and maximum number of samples and the contrast threshold.

1.2 RAYlIb User's Guide, Yersion 0.5

Pixel Machine Features

s Double Buffering - Double buffering can be used to create smooth animations. When double
buffering is enabled, objects are rendered into the off-screen buffer. This buffer is swapped with the
on-screen buffer when instructed to do so by the user.

All application programs for the Pixel Machine are written in C. As a result, life-like images can be created
quickly and easily without the need for machine-specific knowledge. For more information on the C pro-
gramming language, refer to The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie
(1978, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, or the updated 1988 edition).

The sections that follow provide an overview of RAYIib’s functions and a brief discussion of the differences
between PIClib and RAYlib. ‘

Introduction 1-3

RAYlib Functions

RAYIib functions are grouped into the following categories:

Category

Functious in this category are used to . . .

Coatrol

initialize the machine, start ray tracing, and terminate a ray trace
session.

Graphics primitives

generate three dimensional polygons and atoms, render superqua-
drics (spheres, cylinders, ellipsoids, toroids, and hyperboloids of one
and two sheets) and generate patches. Surface properties for these
three dimensional objects are supported.

Bounding volumes

initialize, terminate, and record three dimensional exteats of objects.
Proper use can greatly enhance the ray tracing execution speed.

Transformations

perform a wide variety of operations such as controlling the transla-
tion, scale and rotation of objects. Viewing and projection are also
included in this category.

Shading and Lighting

control the position, orientation, and intensity of light sources.
Ambieat light and light switch control are handled in this category.
Surface properties for objects as well as shading modes are defined
using these functions.

Viewports create and manipulate viewports.

Antialiasing eliminate jagged cdges in the objects of a scene through the use of
stochastic sampling,

Video enable and disable the video map from the shadow map, load and

retrieve color rgb maps as well as alpha overlay color maps.

1-4 RAYlIib User's Guide, Yersion 0.5

Differences Between RAYIlib and PIClib

The internal operation of RAYIib is fundamentally different from PIClib. While PIClib renders each
geomelric primitive as it is received by the Pixel Machine, RAYlib maintains a database of all geometry
being readered. Consequeantly, when using RAYb you must define ail objects and viewing parameters
prior to rendering. If a change is necessary in a scene, the entire image must be redefined and a complete
ray trace invoked again. Although slower than PIClib, RAYlib provides the realism often required for high
quality output.

Despite the internal differences, PIClib users will find that their programs are easily ported to RAYlib
because PIClib and RAYib share a common syntax, common functionality (although not every RAYlib func-
tion has a corresponding PIClib function and vice versa) and a common set of structure definitions
(typedefs).

There are, of course, some differences, and the remainder of this section is devoted to helping the PIClib
user quickly become a RAYlib user. To this end, the first subsection, "Differences in Common Structure
Definitions”, briefly describes differences in the way elements of some common structure definitions are
used by each library. The second subsection, "Differences in Common Functions”, discusses the ways in
which some RAYlib functions differ from their PIClib counterparts. The final subsection, "Functions
Unique to RAYIib" provides an overview of the RAYIib functioas that do not have a PIClib counterpart. For
a detailed description of each RAYlib function, refer to Chapter 3 of this guide.

Differences in Common Structure Definitions

The following structure definitions are accessed differently by each library:

Structure Usage

RAYsurface_model The RAYsuriace_model structure contains the same elements as the
PICsurface_model structure, but these clements are used slightly
differently. In RAYIib, the a_* and s_* color components are
ignored, and the speculanity, reflectivity, and refraction_index clements
are used. The reverse is true in PIClib.

RAYlight_source The RAYIib structure RAYlight_source has a structure element,
intensity, that applies to all RAYIib light sources. Additionally, the
fields samples, vertices, and vertex have been added to support area
light sources.

Differences in Common Functions

The following RAYlib functions are applied differently than their PIClib counterparts:

Introduction 1-5

Differences Between RAYlib and PIClib

Fuaction

Usage

RAYput_surface_model()

In RAYIib a call to RAYput_surface_model() actually allocates
memory for a new surface model. To reuse a surface model,
RAYset_surface_model() should be called with the value that the
function call to RAYput_surface_model() returned. Note that only
RAYput_surface_model() returns a meaningful value. The
corresponding PIClib function does not.

RAYatom()

The radius of the atom primitive defined by RAYatom() is scaled by
the average scale factor determined by the current transform. In
PIClib, no modeling transformations are applied to the radius of an
atom, ecven though the projection transform is applied.

RAYshade_mode()

The RAYshade_mode() function is used in RAY1Ib to control shading
effects such as shadows, reflections, and antialiasing.

Functions Unique to RAYlib

The following functions exist only in RAYlib:

Functioa Description
RAYtrace() Begins the ray tracing process. Nothing is rendered uatil RAY-
trace() is called.
RAYstatistics() Enables/disables the printing of ray tracing statistics.

RAYopen_bounding volume()

Begins the computing of bounding volumes. Proper use of bounding
volumes improves RAYlib's performance.

RAYclose_bouading_volume()

Ends the computing of bounding volumes.

RAYambient_intensity()

Sets the intensity of the ambient light.

RAYbackground_color()

Sets the color of a primary ray when it does not intersect any object
in a 3D scene.

16 RAYlib User's Guide, Yersion 0.5

Differences Between RAYlib and PiClib

Function

Description

RAYclear_viewport()

Clears the current viewport to a specified color. This function is pri-
marily used to clear the entire screea or to display drop shadows.
Because RAYlib will set every pixel in the current viewport whea it
ray traces, there is no nced to clear the viewport being ray traced.

RAYsamples()

Defines the minimum and maximum number of samples to take
within a pixel when antialiasing is being done. It also defines the
contrast threshold to be used to determine if the maximum amount
of antialiasing is needed.

RAYput_texture()

Allocates regions of resident texture memory or host memory {or
virtual textures.

RAYset__texture()

Sets the current texture map to the specified texture id; the texture
id should be the value returned by RAYput_texture.

RAYset_surface_model()

Sets the current surface model to the specified surface id; the id
should be the value returned by the RAYput_surface_model call.

Introduction 1-7

Getting Started

Before you can compile and run your programs, you need to make sure that the hardware is initialized and
the software environment is set up correctly. When you first turn on the Pixel Machine, you must initialize
the hardware to a known state. This is accomplished by executing the hypinit command. Once the
hardware is initialized, you must boot the Pixel Machine by executing the rayboot command before you can
run RAYlib graphics programs. For more information about hypinit and rayboot, refer to Chapter 2 of this
guide.

The software environment must be set up at installation time and after any changes to the system’s
configurations (for example, upgrading the Pixel Machine or changing the Transformation Pipeline
configuration). The procedures for setting up the software environment are described below.

Defining the Software Environment

Before using the Pixel Machine, the proper environment must be created. The /usr/hyper directory con-
tains files for defining the Pixel Machine environment. For csh users, a Jogin (.hyper_login) and a cshre
(-hyper_cshrc) are provided in /usr/hyper. ksh users will find a .profile (.hyper_profile) and a .env
(-hyper_env) residing there as well.

-hyper_login and .hyper_profile define Pixel Machine-specific environment variables and update some
standard UNIX system environment variables in order to provide easy access to Pixel Machine software
and manual pages. .hyper_cshrc and .hyper_env establish aliases (or shortcuts) for redefining eavironment
variables and performing system initialization functions.

If you are using csh, you should source .hyper_login and .hyper_cshrc into your .login and .cshrc files,
respectively. To do so, edit your Jogin file, and add the following to the end of the file:

source /usr/hyper/.hyper_login
Then edit your .cshre file and add the following to the end of the file:
source /usr/hyper/.hyper_cshrc

If you are using ksh, you should . (dot) .hyper_profile and .hyper_env into your .profile and .env files,
respectively. To do so, edit your .profile and add the following to the end of the file:

/usr/hyper/.hyper protile

Then edit your .env file and add the following to the end of the file:

/usr/hyper/.hyper_env

It 1s important to note that the files provided in /usr/hyper are generic, and the environment variables
defined 1n these files may not initially correspond to your specific machine configuration. Before using the
files provided, your system administrator should make any necessary modifications to ensure that the Pixel
Machine environment variables are defined appropriately for your machine.” A description of cach environ-
ment variable and a list of its possible values is given below.

1-8 RAYlib User's Guide, Version 0.5

The HYPER_MODEL variable specifies the Pixel Machine model and Transformation Pipeline
configuration. The table below describes the values that should be assigned to this variable, depending on

what modc. and configuration you have.

Avalueof... | Denotesa...

916 Pixel Machine 916, single Pipe, 1024x1024
916d Pixel Machine 916, dual Pipe, 1024x1024
920 Pixel Machine 920, single Pipe, 1280x1024
920d Pixel Machine 920, dual Pipe, 1280x1024
932 Pixel Machine 932, single Pipe, 1024x1024
932d Pixel Machine 932, dual Pipe, 1024x1024
940 Pixel Machine 940, single Pipe, 1280x1024
940d Pixel Machine 940, dual Pipe, 1280x1024
964 Pixel Machine 964, single Pipe, 1024x1024
9644 Pixel Machine 964, dual Pipe, 1024x1024
964X Pixel Machine 964, single Pipe, 1280x1024
964dX Pixel Machine 964, dual Pipe, 1280x1024

A lower case "n” appended to the model number denotes an NTSC model whose resolution is 720x486.

_NOTE| A lower case “p” appended to the model number denotes a PAL model whose resolution is 720x576.

|
e

The HYPER PATH variable specifies the full pathname to the host directory that contains the Pixel
Machine software (for example, /usr/hyper)

The HYPER_PIPE variable specifies the Pipeline configuration (serial or parallel) for systems with two

Transformation Pipelines.

Getting Started

The HYPER_UNIT variable spedifies the Pixel Machine unit number. Up to four machines (aumbered 0, 1,
2, 3) can be connected to a host computer.

Introduction

1-9

Getting Started

Writing RAYlib Programs

At the beginning of each application C program you write, you need to include the RAYIlib header file. This

file includes type definitions, constants, and external definitions, and is included by the following statement:
#include ‘“raylib.h*

The first RAYIib function called within an application program should be RAYinit. This function initializes
the viewport to a full screen (cither 1024x1024, 1280x1024, 720x480 or T20x576 depending on your Pixel
Machine configuration) and sets default precisions. RAYlnit returns a value of RAY_ERR_OK if the initial-
ization is successful, or a value of RAY_ERR_ARG if it failed. For a complete description of RAYinit, see
that manual page in the RA4Ylib Reference Manual.

The last RAYIib function called within an application program is usually RAYexit. It performs various clean
up functions, and unlocks the Pixel Machine making it accessible to other users. Be sure to include it at the
end of your program.

Compiling RAYlib Programs

To compile your RAYIib program, link raylib.a and the math library as follows:
cc -ISHYPER_PATH/include file.c $HYPER_PATH/lib/raylib.a 4m -o file.exe

where, file.c is the name of the file containiné the program. You can also link with raylib_ffpa.a to run on a
Sun with a floating point accelerator board.

The systcm will compile your program and create an executable file called file.exe (if the -o flag is omitted,
the executabie file will be called a.out). To run the program, type the name of this executable file.

1-10 RAYlib User's Guide, Yersion 0.5

Commands and Utilities

Pixel Machine System Commands and Utilities
hypenv

hypfree

bypid

hypinit

hypiock

hypstat

rayboot

Commands and Utilities

2-1
241
2:2
2-2
2-3
2-5
2-8
2-7

Pixel Machine System Commands and Utilities

The system commands and utilities allow you to perform utility and administrative functions, such as initial-
izing the hardware, loading the RAYIib processor programs into the Transformation Pipeline(s) and Pixel
Nodes, or simply locking your Pixel Machine.

The system commands described in this section are:

Command Function

hypenv Displays current settings of environment variabies.
hypfree Releases a locked unit.

hypid Displays node ID data.

hypinit Initializes the hardware.

hyplock Locks a unit.

hypstat Displays system status.

The system utilities described in this section are:

Utility Functioa

rayboot Loads RAYlib software into the Pixel Machine.

hypenv

The hypenv command displays the current values of the Pixel Machine environment variables. The
eavironment variables must be set on the host workstation either in a login procedure or on the command
line before using the Pixel Machine. (See Chapter 1 of this guide for procedures for setting Pixel Machine
environment variables.) If no options are specified, the status of all environment variables are displayed.

Command usage is:

hypenv (-D] (-M] [-P](-U] [-u]

The options are as follows:

Commands and Utilities 2-1

Pixel Machine System Commands and Utilitias

-D Print current value of HYPER_PIPE (serial or parallel)

-M Print current value of HYPER_MODEL environment variable
-P Print current value of HYPER PATH environment variable
-U Print current value of HYPER_UNIT environmeat variable

-u Print command usage format

If you enter hypenv, the system displays the following typical response:

Model: 964d Plpe: parallet Unit: 0 Path: /usr/hyper

hyptree

The hypfree command releases one or more Pixel Machines that were locked with the hyplock command.
If no options are specified, the command releases only the current unit.

Command usage:
hypfree [-a] [-u]
The options are as follows:

-a Free all units

-u Print command usage format

hypid
The hypid command generates a list of ID data on the Nodes in the Pixel Machine.

Command usage:
hypid (-a] [-d node}[-g node] [-w][-u]

The options are as follows:

2-2 RAYlib User's Guide, Version 0.5

Pixel Machine System Commands and Utilities

-dnode
-gnode
-w

-

Print ID data on all Nodes

Print 1D data of Pixel Node number node or ail

Print ID data of Transformation Node number node or all
Write the ID data into the selected Node.

Print command usage format

If you enter hypid -d1, the system displays the following typical response for a Pixel Machine 964 model

booted with PiClib:

node id:

1

X nodes: 8

//
j/ Drawing node 1 identification data:
!
|
|
|

x offset: O
y offset: 1

\
y nodes: 8)

program: 'pic964.dsp’
ssmaphore: Q /

The ID data provides the following information:

= node id contains the sequential aumbering of the Transformation and Pixel Nodes. The Pixel Nodes
range from 0 to n (n = 63 on a model 964). The Transformation Nodes range from 1) to 8 for a sin-
gle Pipe configuration; from 0 to 17 for a dual Pipe configuration.

s x nodes and y nodes indicate the configuration of the buffer in an N x M array.

= x offset and y offset indicate the position of the processor in the 2D array.

» program lists the name of the DSP executable program that is loaded iato memory.

s semaphore contains system information.

hypinit

Each time you power up the system, you necd to initialize it to a known state. The hypinit command ini-
tializes the Pixel Machine to its default state. If no options are specified, hypinit initializes the Transforma-
tion Nodes and FIFOs, the Pixel Nodes, the drawing mode register, the Transformation Pipeline, und the

video.

Commands and Utilities 2-3

Pixel Machine System Commands and Utilities
You can also use this command to reinitialize the Pixel Machine whenever you want the system to return to
its initial state.

Command usage is:
hypinit [-b] [-d] [g] [-m] [-p] (-q] [-Q] [-r] [-v] [-V] [-u]

The following options may be used to limit initialization:

-b Initialize the VME bus repeater
-d [nitialize the Pixel Nodes
-g Initialize the Transformation Nodes

-m Initialize the drawing mode register to the current configuration model, disable over-
lay video, and turn off testing mode.

-p Reconfigure Pipelines in series or parallel based on the environment variable
-q enables pipelined writes

-Q disables pipelined writes

-r Reset input and output Pipeline FIFOs

-v [nitialize video registers and lookup table

-V Do not initialize video

-u Print command usage format

[f you enter hypinit, the system displays the following typical response.

2-4 RAYlib User's Guide, Version 0.5

Pixel Machine System Commands and Wilities

Systern contiguration:
geometry cards: 2 nodes: 18
geometry pipes: multipke in parallel
drawing cards: 16 nodes: 64
drawing node dram: 256 (kbytes] vram: 256 [kbytes]
drawing pixel interieaving x: 8 y: 8
drawing node/screen scale x: 0.125y: 0.125
video format: high resolution
video screen size x: 1024 y: 1024

VMEDus-repeater csr register: active [no_pipeline lights: O no_reset cool_temperature |.
Geometry nodes({0-17]: active { hatted pir 16 eni dma auto pdf |.

Drawing nodes{0-63]: active [haited pir16 eni dma auto] errors [sync].

Geometry output (write) fifo[0] flags: active [empty |.
Geometry input (feedback) fito[0] flags: active [empty |.
Geometry output (write) tifo(1] tiags: active [empty |.
Geometry input (feedback) tifo(1] flags: active { empty .

Oraw mode registers(0-15): active.

Video car register: active [type: 964 shadow no_refresh no_shrt yo:
i 964X no_psyncQ no_psync1 haize: 1280 J.

hyplock

The hyplock command locks the current Pixel Machine and prevents other users who are timesharing the
system [rom accessing it. (The Pixel Machine is not multitasking.) Before you log off, remember to uniock
the system by executing the hyp{ree command.

Command usage:

hyplock {-u]

The options are as follows:

-u Print command usage format

Commands and Wilities 2.5

Pixel Machine System Commands and Utilities

hypstat
The hypstat command displays the system status of the Pixel Machine.
Command usage is:

hypstat [-u]

The options are as follows:
-u Print command usage format

If you eater hypstat, the system displays the following typical response. If you get an error message, enter
the hypinit command first and then hypstat:

,// \.\\

(System configuration: \

‘ geometry cards: 2 nodes. 18 ‘

| geometry pipes: muitipis in parallei

f drawing cards: 16 nodes: 54 !
drawing node dram: 256 (kbytes| vram: 256 (kbytes] |
drawing pixei interleaving x: 8 y: 8 ‘

drawing node/screen scaie x: 0.125 y: 0.125 |
video format: high resolution ‘
video screen size x: 1024 y: 1024)

VMEbus-repeater csr register: active [no_pipeline lights: 0 no_reset cool_temperature J. i

i Geometry nodes(0-7]: active [halted pir16 eni dma auto pdt |.
Geometry node(8]: active [halted pir16 eni dma auto |.
Geometry nodes(9-16]: active [halted pir16 eni dma auto pdf).
Geometry node(17]: active [halted pir16 eni dma auto |.

Geometry output (write) fifo{0] tlags: active [smpty |.
Geometry input (feedback) fifo(0] flags: active [empty |.
Geomeatry output (write) fifo[1] tlags: active [empty |.
Geometry input (feecback) tito{1] flags: active | empty |.

Orawing nodes(0-63]: active [halted pir16 eni dma auto | errors [sync |.

Oraw mode registers{0-15]: active,

Video csr reQister: active [type: 964 shadow no_rafresh no_shrft yo:
964X no_psyncQ no_psynct hsize: 1280 |.

2-6 RAYlib User's Guide, Version 0.5

Pixel Machine System Commands and Wilities

rayboot

rayboot initializes the machine (with the exception of the video) and loads the Transformation and Pixel
Nodes with the appropriate software for the machine based on the value of the HYPER MODEL and
HYPER_PIPE variables. The software that is downloaded to the Transformation and Pixel Nodes resides
in the directory specified by HYPER_PATH. To initialize the Pixel Machine video, use the hypinit com-
mand discussed earlier in this chapter.

rayboot should be executed:
» when the machine is powered up

= after changing any of the environment variables; HYPER_MODEL, HYPER_PATH, HYPER PIPE
and HYPER_UNIT

a after running PIClib demos
= after using DEVtools
» in the event of RAYIib software failure

[t is important to note that after changing the HYPER_MOOEL eavironment variable, you must first initial-
ize the Pixel Machine by executing hypinit -v in order to initialize the video registers and lookup tables. The
rayboot command can then be executed to download the appropriate software to the Transformation and
Pixel Nodes. Because the video registers and lookup tables are re-initialized by the first call to hypinit, you
need to re-execute picrt and picgamma if you are using these utilities.

‘ l For more information about picrt and picgamma, refer to Chapter 2 of the PIClib User’s Guide.
| NOTE

| |

Commands and Utilities 2-7

RAYIlib Functions

Control Functions 3-1
RAYinit() 3-1
RAYexit() 3-2
RAYtrace() 32
RAYstatistics() 33
RAYexit_immediate() 3-4
RAYhalt() 35
Graphics Primitives - Polygons and Atoms 3-7
RAYpoly_close() 3-7
RAYpoly_point_3d() 3-8
RAY _poly point_av() 3-8
RAY _poly_point_uv() 3-8
RAY poly point_nv_uv() 3-9
RAYatom() 3-10
Graphics Primitives - Quadrics and Superquadrics 3-11
RAYquadric_precision() 3-11
RAYsphere() 3-12
RAYsuperq_ellipsoid() 3-12
RAYsuperq_torus() 3-14
RAYsuperq_hyper1() 3-15
RAYsuperq_hyper2() 3-16
Graphics Primitives - Patches 317
Generating Patches 317

« Bexier Patches 3-18

« Hermite Patch 3-18

« B-Spline Patch 3-19

« Sixteen-Point Form Patch 3-19
RAYpatch geometry 3d() 3-19
RAYpatch_preasion() 3-20
RAYput_basis() 3-20
RAYselect_patch basis() 3-21
Bounding Volumes 3-24

RAYopen_bounding volume() 3-24

RAYclose_bounding_volume() 3-25
Transformations 3-26
Transformation Matrices 3-26
Transtormations - Projection Functions 3-29
RAYpersp_project() 3-29
RAYwindow_project() 3-30
Transtormations - Viewing Functions 3-31
RAYlookat_view() 3-31
RAYlookup_view() 3-32
RAYcamera_view() 332
RAYpolar_view() 3-34
Transformations - Modeling Functions 3-35
Rotation 3-36

« RAYrotate Functions 3-37

« RAYrotate_vector() 3-38

« RAYput_rotate_d Functions 3-39

« RAYrotate_d Functions 3-40
Translatioa 3-40

« RAYtranslate Functions 3-40

« RAYput_translate_d Functions 3-41

« RAYtranslate_d Functions 3-41
Scaling 3-42

o RAYscale Functions 3-42

« RAYput_scale_d Functions 3-43

« RAYscale d Functions 3-43
Transtormations - Control Functions 3-45
Modeling and Viewing Transformation Control 3-45
RAYget_inverse_transform() 3-45
RAYget normal_transform() 3-46
RAYget_transform() . 3-46
RAYpremultiply_transform() 3-46
RAYpostmultiply transform() 3-47
RAYpush_transform() 3-47
RAYpop_transform() ' 3-47
RAYput_transform() 3-48

i RAY!ib User's Guide, Version 0.5

RAYlib Functions

RAYput_identity_transform() 3-48
Viewports 3-50
RAYget_screen_size() 3-50
RAYput_viewport() 350
Shading and Lighting 3-52
RAYambient_intensity() 3-55
RAYlight_ambient() 3-55
RA Ybackground_color() 3-56
RAYput_light_source() 356
RAYlight_switch() 3-58
RAYput_surface_model() 3-59
RAYset_surface_model() 3-80
RAYput_texture() 3-60
RAYset_texture() 3-82
RAYshade mode() 3-63
Antialiasing 364
RAYsamples() 364
Display Control - 3-65
RAYdear_viewport() 3-85
RAYdouble_buffer() 3-65
RAYswap_buffer() 366
RAYget buffer mode() 3-66
RAYget buffer() 3-66
RAYput_scan_line() 3-67
RAYget scan_line() 3-68
RAYbroadcast_data() 369
RAYcopy_front_to_back() 3-70
RAYcopy_back_to_ext() 370
RAYcopy ext_to_back() 372
Video Functions 3-73
RAYupdate_map() 373
RAYput_color_map() 373
RAYput_color_map_entry() 3-74
RAYput_alpba_map() 374
RAYput _alpha_map_entry() 374

375

RAYget color_map()

RAYlib Functions

RAYIlib Functions

RAYget_color_map_entry() 375
RAYget_alpha_map() 3-75
RAYget_alpha_map_entry() 376

iv RAYlib User s Guide, Yersion 0.5

Control Functions

The RAYIib system control functions perform basic setup and "housekeeping” operations to allow applica-
tions to communicate with the Pixel Machine. Prior to using these programs, the Pixel Machine ray tracing
software must be loaded into the Pixel Machine hardware (see Chapter 2 of this guide). These control
functions are:

« RAYinit()

» RAYexit()

= RAYtrace()

s RAYstatistics()

s RAYexit_immediate()
=« RAYhalit()

RAYinit()

int RAYinit()

RAYinit is always the first function called in every RAYlib program, and should be invoked only once. It
initializes the viewport to full screen (1024x1024 or 1280x1024 for high resolution models, 720x480 for
NTSC models and 720x576 for PAL), initializes the transformation matrix to the identity matrix, and sets
various system parameters to their defauit values. RAYinit also sets up a signal handler to catch the follow-

ing signals:
« hangup
= interrupt
» software termination
When the signal handler is invoked, it calls RAYexit_immediate and terminates ray tracing on the Pixel

Machine. RAYinit will not override previously established signal handlers. If the user has established a sig-
nal handler for any of the above signals prior to calling RAYinit, that signal handler will remain in effect.

RAYinit returns an integer value of RAY_ERR_OK if the initialization succeeds and RAY ERR_OPEN if it
fails.

RAYlib Functions 31

Control Functions

RAYexit()

int RAYexit()

RAYexit is usually the last RAYIib function called in a program. It halts all transformation and drawing node
processors in the Pixel Machine hardware and closes the device. Signal handlers established during RAYinit
are reset to their default actions.

g RAYexit should not be used in a signal handler; instead use RAYexit_immediate.
| NOTE

RAYtrace()

int RAYtrace()

RAYtrace initiates ray tracing in the Pixel Machine. Calls to RAYlib prior to RAYtrace define the objects,
viewing, light sources, and other aspects of a scene. When RAYtrace is invoked, the data that has been col-
lected is rendered into the frame buffer. RAYtrace does not return until the entire ray tracing process is
completed. The RAYIib database is then re-initialized to accommodate animation sequences.

i | Unlike PIClib which renders objects as they are defined, RAYIib renders nothing until RAYtrace is called.
NOTE| Refer to the section, "Differences between RAYIib and PIClib” in Chapter 1 for more information.

RAYtrace returns an integer value indicating the completion status of the ray tracer. The possible return
codes are: '

A return code of . .. indicates that . ..

RAY_ERR_OK the ray tracer completed successfuily

RAY_WARN_NO_OBJ no objects were passed to the ray tracer

RAY_ERR_BAD BVOL the aumber of bounding volume opens does not
match the number of bounding volume closes

RAY HALTED the ray tracer was suspended at the user’s request

RAY ERR_INTERNAL an wnternal error (hardware or software) has occurred

3-2 RAYlib User's Guide, Version 0.5

Exampie:

7
/

/
[#include “raytib.h*
|
|

main()
{
i (RAYinit() != RAY_ERR_OK) exit(1);
; aAYtracoo;
i RAYexit();
|
\
RAYstatistics()

void RAYstatistics(mode)
int mode;

mode = statistics to be priated at the end of the ray tracing

run.

RAYstatistics determines what ray tracing statistics, if any, will be printed at the end of a ray tracing run.

This function is called with an argument, mode, which can be set to any one or combination of values
described in the table below. Modes are combined by adding them together. The default mode is

RAY_TIMINGS + RAY_STATISTICS.

A modeof... prints ...

'RAY_OFF no statistics

RAY STATISTICS total pages and object counts
RAY _TIMINGS timing statistics

RAY _PAGE_STATISTICS

page and page fault statistics

RAY ALL STATISTICS

print all of the above statistics

RAYlib Functions

Control Functions

3-3

Controi Functions

RAYexit_immediate()

void RAYexit_immediate()

RAYexit_immediate replaces RAYexit for signal handlers. If an application signal handler is going to exit
immediately, it should call RAYexit_immediate to halt the pixel nodes and clean up the system. If the pixel
nodes have begun ray tracing, they will continue to do so even after the program exits, unless a
RAYexit_immediate is called.

| RAYexit should still be used for normal program exits.
' NOTE

Example:

34 RAYlib User's Guide, Yersion 0.5

Control Functions

/* example of & signal handler that exits immediatety */

#include <signal.h>

#include ‘rayiib.h" |
i
void
mysignai(siq,code . scp)
it sig, code; .
struct sigcontext "scp; !
{ ;
/* in the event of an interrupe, this signml handler will !
termimate ray tracing and exit immediatety */ !
RAYexit_immediate();
oxit(); !
} |
main() i
{ .
it return_value; ‘
3ignal(SIGINT, mysignai);)
|
it (RAYinit() ! = RAY_ERR_OK) exit(1); !
|
[return_value = RAYtrace(), I
|
! RAYexit();
‘\ }
RAYhalt()

void RAYhalt()

RAYhalt is used to post a request to halt the ray tracer. Typically, it is called from a signal handler i
response 0 a user request. The halt request is only recognized by the routine RAYtrace. If a halt request
is encountered at any ime during the execution of a call to RAYtrace, ray tracing is terminated and RAY-
trace returns RAY HALTED. Execution may then continue in the application program as though RAYtrace
had completed normally.

RAYlib Functions 3-5

Control Functions

[f RAYhalt is called from a signal handler, it is important that the signal handler return to continue execu-
tion, or else the halt request will never be seen and the Pixel Machine may continue ray traang. f a signal
handler must exit, RAYexit_Immediate should be called to halt the Pixel Machine.

Example;

i /* eampile of & signal handler that requests a halt */
#include <signalh>
#include “raylib.h*
i void
| mysignal(sig,code,scp)
int sig, code;
struct sigcontext "scp;
P o
' /* in the event of an interTupt, this signal handler will
i post & request to terminate ray tracing and thea return */
! RAYhatt();
P}
! main()
Lo
| it return_value,
i 3ignal(SIGINT, mysignal);
t
} # (RAYinit() 1 = RAY_ERR_OK) exit(1);
I
|
return_vaiue = RAYtrace();
Ii it (return_value = = RAY HALTED)
| printf("Ray tracing halted because of user interruptO);
I
‘ RAYexit();
Loy
\

3-8 RAYlib User's Guide, Yersion 0.5

Graphics Primitives - Polygons and Atoms

Graphic primitives allow an application to draw three dimensional polygons and surfaces. The specific
topology is defined in this section. Surface characteristics are covered in the "Shading and Lighting” scc-
tion. All surfaces are rendered using the current surface model, which is established by a call to
RAYput_surface_model or RAYset_surface_model.

Polygons may be texture mapped and/or have normal vectors defined at the vertices. Associated functions
are:

s RAYpoly close()
» RAYpoly point_3d(xy,2)
a RAYpoly_point_nv(xy,z,nx,ny,nz)
= RAYpoly point_uv(xyzu,v)
. RAYpon__point_nv_uv(xmz,nx,ny,nz,u,v)
s RAYatom(x)yzr)
fr:m: When using the RAYpoly_point functions, note that all polygons must be convex and should be planar

-
i

RAYpoly close()

void RAYpoly close()

This function closes a polygon by connecting the last polygon point to the first vertex. The polygon is ren-
dered using the curreat surface model. This function must be used after a series of polygon defining calls

such as:
« RAYpoly point 3d
s RAYpoly_point_nv
» RAYpoly point_uv
= RAYpoly point_av_uv

RAYIlib Functions 3-7

Graphics Primitives - Polygons and Atoms

RAYpoly_point_3d(

void RAYpoly_point_3d(xy,z)
float x,y,z;

XY,z = the x,y and z coordinates of a vertex

RAYpoly_point_3d is used in sequence to define a series of 3D vertices that com pose a polygon. The
sequeance of coordinates defined by each call to a RAYpoly_point_3d function is not connected until a
RAYpoly_close function is specified. The polygon is drawn using the current surface model.

RAY_poly_point_nv()

void RAYpoly_point_nv(x,y,z.nx,ny,nz)
float x,y,z,nx.ny,nz;

X.Y,Z the xy and z coordinates of a vertex

[}

nx,ny,nz normal vector at the vertex

RAYpoly_point_nv is used in sequeace to define a series of 3D vertices that compose a polygon with nor-
mals at each vertex. The sequence of coordinates defined by each call to a RAYpoly point_nv function is
oot connected until RAYpoly_close is specified. The polygon is drawn using the current surface model.

A surface normal is specified at each vertex. The normal vector points outward in a closed solid object.

RAY_poly point_uv()

void RAYpoly_point_uv(x,y,z,u,v)
float x.y,z,u,v;

[T}

XJy,2Z the x,y and z coordinates of a vertex

u,v texture indices at the vertex

3-8 RAYlib User's Guide, Yersion 0.5

Graphics Primitives - Polygons and Atoms

RAYpoly_point_uv is used in sequence to define a series of 3D vertices that compose a polygon with tex-
ture indices at each vertex. The sequence of coordinates defined by each call to a RAYpoly_point_uv func-
tion is not connected until RAYpoly_close is specified. The polygon is drawn using the current surface
model.

The texture indices are specified at each vertex. These indices must be non-negative floating point values.
The edges of the texture are defined to be from 0.0 to 1.0, regardless of the size or aspect ratio of the tex-
ture. I[ndices greater than 1.0 cause the texture to wrap.

5 Texture indicies are currently limited to the range 0.0 to 16.0.
' NOTE|
S——

This function is unique to RAYIIb and has no equivalent in PiClib,

RAY_poly_point_nv_uv()

void RAYpoly__point_nv_uv(xJ,z,nx,ny,nz,u,v)
float x,y,z,nx,ny,nz,u,v;

XY,z = the x,y and z coordinates of a vertex
nx.ny,nz = normal vector at the vertex
u,v = texture indices at the vertex

RAYpoly_point_nv_uv is used in sequence to define a series of 3D vertices that compose a polygon with
normals and texture indices at each vertex. The sequence of coordinates defined by cach call to
RAYpoly_point_av_uv is not connected until RAYpoly close is specified. The polygon is drawn using the
current surface model

The texture indices are specified at each vertex. These indices must be non-negative {loating point values.
The edges of the texture are defined to be from 0.0 to 1.0, regardless of the size or aspect ratio of the tex-
ture. Indices greater than 1.0 cause the texture to wrap.

* i Texture indicies are currently limited to the range 0.0 to 16.0.

| NOTE|

RAYlib Functions 3-9

Graphics Primitives - Polygons and Atoms

RAYatom()

void RAYatom(x,y,z,r)
float x,y,zr;

XJy,Z center of the atom

r

radius

RAYatom draws a spherical atom centered at a given location with a specified radius. The atom’s center
and radius are transformed by the current transformation matrix. The radius of the atom is scaled by the
average scale factor determined by the curreat transform. Thus, if the modeling transform has explicit dis-
tortion, the atom will still be round when rendered. The atom 15 rendered using the current surface model.

Whenever possible, RAYatom should be used in place of RAYsphere. RAYatom is faster and more accu-
rate than RAYsphere becausec RAYatom is rendered as a single primitive, while RAYsphere (and all the
other superquadrics and patches) are tesseilated into polygons. RAYsphere should oaly be used when
independent scaling is required along each axis of the sphere.

i The radius () must be positive.
" NOTE|

3-10 RAYlb User's Guide, Yersion 0.5

Graphics Primitives - Quadrics and Superquadrics

The quadrics and superquadrics functions draw atoms, spheres, ellipsoids, toroids, and hyperboloids of one
and two sheets. All the primitives in this section are tesselated into polygons. The degree of tesselation is
controlled by the quadric precision.

: i The maximum precision for superquadrics is limited to 160 divisions in each direction.
NOTE|

Functions 1n this section are:
e RAYquadric_precision(nu,nv)
= RAYsphere()
» RAYsuperq_ellipsoid(x,y,z,expl,exp2)
s RAYsuperq_torus(x.y,z,r.expl,exp2)
s RAYsuperq_hyperl(x,y.z.expl.,exp2)
s RAYsuperq_hyper2(x.y,z.expl.,exp2)

i . When using the quadric and superquadric functions, one bounding volume is implicitly defined around

NOTE| the entire primitive.

RAYquadric_precision()

int RAYquadric_precision(nu,nv)

int nu,nv;

au = the number of line segments (or points) used to approximate the
quadric in the u direction

nvy = the number of line segments (or points) used to approximate the

quadric in the v direction

The RAYquadric_precisioa function sets the precision used to render quadrics and superquadrics. The pre-
ciston 1s defined by the number of line segments (or points) used to approxamate the quadric in both the u
and v directions. If the values for either direction are less than zero, the function returns RAY ERR ARG,
otherwise it returns RAY _ERR_OK; the default precision is RAY_QUADRIC_DEFAULT in both the uand v

directions.

RAYlib Functions 3-11

Graphics Primitives - Quadrics and Superquadrics

RAYsphere()

void RAYsphere()

Using the current surface model, the RAYsphere function renders a sphere that is centered at the origin
and has a unit radius. Its precision is set by the RAYquadric_precision functioa.

Whenever possible, RAYatom should be used in place of RAYsphere. RAYatom is faster and more accu-
rate than RAYsphere because RAYatom is rendered as a single primitive, while RAYsphere (and all the
other superquadrics and patches) are tessellated into polygons. RAYsphere should only be used when
independent scaling is required along each axis of the sphere.

RAYsuperq_ellipsoid()

void RAYsuperq_ellipsoid(x.y,z,expl.exp2)

Moat x,y,z,expl,exp2;

XYz = the radii of the ellipsoid in the x, y, and z directions
expl = the squareness parameter in the longitudinal direction
exp2 = the squareness parameter in the latitudinal direction

The RAYsuperq_ellipsoid function renders a superquadric ellipsoid using the current attributes. A super-
quadric ellipsoid is a single, closed volume that ranges from a cuboid to a spheroid to a pinched object,
depending on the specified exponeants, and is represented mathematically as:

xcos™? 1(ry)cosap,z(w)
2(nw) = | ycos™ (n)sin™*(w)
z5in™ '(n)
where, n and w are the longitudinal and latitudinal angles, respectively.

Values for n are in the range: -x/2 <= n <= x/2.

Values forw are in the range: -« <= w < x.

3-12 RAYlib User's Guide, Version 0.5

Graphics Primitives - Quadrics and Superquadrics

The shape of the ellipsoid can be modified by varying the exponents as follows:

exp <1 Square shaped ellipsoids
exp = 1 Round ellipsoids
exp = 2 Flat beveled ellipsoids
exp > 2 Pinched ellipsoids
, All arguments for this function must be greater than or equal to zero.
NOTE|
Example:

The following program fragments render a sphere, ellipsoid, cube, and cylinder, respectively:

#include “raylib.h® \

main()

{

/*render a sphere®/ .
RAYsuperq_eliipsoid(100.0,100.0,100.0,1.0.1.0): '
/*render an ellipsoid that's stretched [n the y direction®/ ‘
RAYsuperq_eilipsoid(100.0,200.0,100.0,1.0,1.0);

/*render a cube®/
RAYsuperq_silipsoxd(100.0,100.0.100.0,0.01,0.01);

/*render a cylindere/
RAYsuperq_eilipsoid(100.0.100.0,100.0,0.0,1.0);

RAYexrt():
exnt(0); 1

RAY!lib Functions 3-13

Graphics Primitives - Quadrics and Superquadrics

RAYsuperq_torus()

void RAYsuperq_torus(xy,zr.expl,exp2)

float xy,z,r,expl,exp2;
XY,z = the radii of the toroid ring
r = the distance from the center of the torus to the center of the outer

ring (see Figure 3-1)
expl = the squareness parameter in the longitudinal direction

exp2 = the squareness parameter in the latitudinal direction

The RAYsuperq_torus function renders a superquadric toroid using the current attributes. The toroid is
represented mathematically as:

x(a + cos™'(n)) cos™(w)
p(nw) = |y(@ + cos™'(n) sin™ *(w)
zsin™ '(n)

where,

and where n and w are the longitudinal and latitudinal angles, respectively.
Values for n are in the range: -x <= n < =
Values for w are in the range: x <= w < =,

If x and y parameters are not the same, the toroid radius is “stretched” in the direction of the larger param-
eter. The shape of the toroid can be modified in each direction by varying the exponents as follows:

exp < 1 Square shaped toroids
exp = 1 Round toroids

exp = 2 Flat beveled torods
exp > 2 Pinched toroids

3-14 RAYlib User's Guide, Version 0.5

Graphics Primitives - Quadrics and Superquadrics

Figure 3-1. A Superquadric Toroid

RAYsuperg_hyper1()

void RAYSuperq_hyperl(de,expl,epo)
float xy,z,expl.exp2;

.x.y = the radii of the xy cross-section of the hyperboloid at z = 0
z = the height of the hyperboloid whenn = 45°

expl = the squareness parameter in the loagitudinal direction
exp2 = the squareness parameter in the latitudinal direction

The RAYsuperq_hyperl function renders a superquadric hyperboloid of one sheet using the current attn-
butes. The hyperboloid is represented mathematically as:

xsccawl(n)coswz(u)
gimw) =1y sec™ l(ry)sinapz(w)

Zz tanapl(q)

where, n and w are the longitudinal and latitudinal angles, respectively.

RAYlib Functions 3-15

Graphics Primitives - Quadrics and Superquadrics

Values for n are in the range: x/2 < n < =/2.
Values for w are in the range: -x <= w < =
The shape of the hyperboloid can be modified by varying the exponeats as follows:

exp < 1 Square shaped hyperboloids
exp = 1 Round hyperboloids

exp = 2 Flat beveled hyperboloids
exp > 2 Pinched hyperboloids

RAYsuperq_hyper2()

void RAYsuperq_hyper2(x.y,z.expl,exp2)
float x,y,z,r,expl,exp2;

it

the radii of the xy cross-section of the hyperboloid at z = 0
the height of the hyperboloid when = 45°

Xy

Y 4

i

the squareness parameters in the longitudinal direction

expl
exp2

the squareness parameters in the latitudinal direction

The RAYsuperq_hyper2 function renders a superquadric hyperboloid of two sheets using the current attri-
butes. The hyperboloid is represented mathematicaily as:

xsec™? ‘(ry)scc'xpz(w)
o(nw = ysecwl(q)tanqz(w)

ztan™ ()

where, n and w are the longitudinal and latitudinal angies, respectively.
Values for n are in the range: x/2 < n < »/2.

Values for w are in the range: x/2 < w < x/2(piece 1), /2 < w < 3*x/2 (picce 2)

The shape of the hyperboloid can be modified by varying the exponents as follows:

exp < 1 Square shaped hyperboloids
exp = 1 Round hyperboloids

exp = 2 Flat beveled hyperboloids
exp > 2 Pinched hyperboloids

3-16 RAYlib User's Guide, Yersion 0.5

Graphics Primitives - Patches

A patch is a bounded collection of points used to model a surface. In RAYlib patches are rendered by first
specifying a basis matrix and then defining the patch as either:

1. aset of 16 control points
2. aset of four corner points with associated tangent and twist vectors

3. four boundary curves

The basis matrix determines how the control points will be used to reander the patch. Complex surfaces can be
created by connecting patches.

Patches in RAYIib are tesselated into polygons based on the current patch precision.
The patch functions discussed in this section are:

= RAYpatch geometryld(xgeom,ygeom,zgeom)

« RAYpatch_precision(nu,nv)

s RAYput_basis(basis,index)

s RAYselect patch _basis(uindex,vindex)

Generating Patches

Bicubic patches are used to create individual surface fragments that can be connected together to form
complete surfaces of complex objects. Traditionally, patches have been used in the field of computer-
aided design, for example, ship designers use patches to model ship hulls and automobile designers use
patches to experiment with different body styles.

Different types of patches allow varying degrees of control over surface design. Some patches exactly inter-
polate the control mesh defining the patch (such as Sixteen Point Form patches) while others only looscly
approximate a surface (such as periodic B-Spline Patches). The type of patch used to represent a surface
depends on the surface properties required by the designer.

RAYlib provides users with a set of predefined patch types; Bezier, Hermite, periodic B-Spline and Sixteen
point form. Users can also define their own patch types with arbitrary properties.

Patches are described in RAYIIb in geometric form and are generated using the technique of forward
differences because this technique is very fast and gencrates polygons that can be transformed in the pipe-
line. Geometric form is a matrix representation of a parametric surface. The equation describing any pont
on a patch is:

p(u ,V) = U . 1W » B . A{{ - V[

The U and V vectors indicate position in the patch, M is the matrix that defines the charactenstic ot a patch
and B is a gcometry matrix, which can hold point, tangent or twist information depending on what type of
patch is being generated.

RAYlib Functions 3-17

Graphics Primitives - Pstches

Each of the predefined classes of patches is described below. To define basis matrices for other classes of
patches, use the RAYput_basis() function discussed later in this section.

Patches are always generated as polygonal meshes and are implicitly enclosed by one bounding volume.
Once the desired shape is obtained, users can employ sophisticated lighting models and texture mapping to
create photorealistic complex objects.

i

! Texture mapped patches are currently not available.

i NOTE

Bezier Patches

Bezier patches are formed from a mesh of 16 coatrol points. The four corner points actually lic on the
patch; the other control points are approximated. The Bezer surface has a characteristic polyhedron of 16
points. The matrices defining the patch are:

Xy Xog Xog Xy Yo You Yos Y12 Ig Zoy Zog 22
o1 Tos o9 X3 ot Yos Yoo Y13 Zo1 Zes 2w 213
02 Yo X10 X14 02 Yos Y10 Yia Zo2 %06 210 214

Yo3 Xo7 Xyp Lys 03 Yor Y Yis Zo3 Zo7 211 Zis

Hermite Patch

A Hermite patch is defined by the following matrix:

[v 14 r v v 14 v
Koo Lo1 Xoo Xo1 Yoo Yot Yoo You Zoo 2ot Zoo 201
v 14 v v v v
Ko T3 Y10 F11 Wie Yuu Yo Y Z10 %11 Y10 T11
u u uv uv “ u uv iy u [uv ("1 4
Koo o1 Xoo Xo1 Yoo Yor Yoo Yot Z00 Zo1 200 T
u I’ wy 714 ° o uv uy u o uv uv
Ko 11 X0 f1n Vie Yuu Yo Yn 2y Zn Zw 2
L 4 L p L

‘ P is the derivative of the point with respect to the parametric variable u; P is the dertvative of the point
NOTE! with respect to v, is the derivative of the point with respect tou and v.

The matrix is split into four quarters. The upper left quarter defines the four corner points; the lower left
quarter contains the u tangent vectors at the four corner points; the upper right quarter contains the v
tangent vectors at the four corner points; the lower right corner contains the twist vector. If twist is set to
¢ero, then the patchis a Ferguson, or F-patch. This type of patch can only have first-order continuity with
adjacent patches. An F-patch is easier to specify than a {ully specified Hermite patch because the twist

3-18 RAYlIb User's Guide, Yersion 0.5

Graphics Primitives - Patches

vectors can be difficult to compute.

B-Spline Patch

The B-Spline surface is defined by a characteristic polyhedron, where all of the points fall within the convex
hull. The patch weakly approximates the polyhedra and local deformations of control points affect only
local regions of the patch. The particular type of B-Spline used here is termed periodic, which refers to the
symmetry of the blending function used to generate the patch.

Sixteen-Point Form Patch

The Sixteen-Point Form patch is defined as a patch whose 16 control points actually lie on the patch.
Sixteen-Point Form patches are easy to specify, particularly if the input geometry for the patch can be
obtained from a device like a 3D digitizer that can accurately interpolate the points on an object.

Sixteen-Point Form patches can be contrasted with Bezier patches, where only the four corner points actu-
ally lie on the patch. The coatrol points for Sixteen-Point Form patches are interpolated, whereas the con-
trol points for Bezier patches are approximated. Sixteen-Point Form patches do not require input of

tangent or twist vectors.

RAYpatch_geometry 3d()

void RAYpatch_geometry 3d(xgeom,ygeom,zgeom)
RAYmatrix xgeom,.ygeom,zgeom;

xgeom.ygeom,zgeom = aset of 3D coatrol points

The RAYpatch _geometry 3d function renders a 3D surface patch using the current basis matrix and the
current patch precision.

The shape of a 3D surface patch is defined by a set of user-specified 3D control points. The surface patch
is rendered using the current surface model.

(One bounding volume is implicitly defined around the entire primitive.
| NO’I‘E!
,‘» «

|

RAYlib Functions 3-19

Graphics Primitives - Patches

RAYpatch precision()

int RAYpatch_precision(nu,nv)
int nu,nv;

ouny = the curve’s precision in the u and v directions

The RAYpatch_precision function specifies the number of points, lines, or polygons used to represent seg-
ments of a surface patch. The precision is specified for both the u and v directions and can be a different
value for each direction. The arguments are specified as integers and must be greater than or equal to
zero. Remember, the higher the number (nu,nv), the smoother the patch, but the longer it takes to render.
If the arguments nu,nv are less than zero, the function returns RAY_ERR_ARG, otherwise it returns
RAY_ERR_OK. The default patch precision is RAY_PATCH_DEFAULT in both the u and v directions.

RAYput basis()

int RAYput_basis(basis,index)
RAYmatrix basis;

int index;
basis = a matrix of 16 floating point numbers
index = the index number associated with the basis matrix

The RAYput_basis function defines a 4x4 basis matrix and an associated index number, that can subse-
quently be used in rendering patches. The index numbers are defined by the following constants:

RAY USER BASIS 0
RAY USER BASIS 1
RAY_USER_BASIS 7

At initialization, the first four basis matrices contain the matrix definitions for Bezier, Hermite, B-spline
and Sixteen-point patches, respectively. Unless you wish to overwrite these matrices, the index argument
passed to RAYput_basis() should range from RAY USER BASIS 4 to RAY MAX BASIS - 1.

3-20 RAYlib User's Guide, Yersion 0.5

Graphics Primitives - Patches

If index is less than zero or greater than or equal to RAY_MAX _BASIS, this function returns a value of
RAY_ERR_ARG, otherwise this function returns a value of RAY_ERR_OK.

Ounce defined, the basis matrix is selected by passing its associated index to the RAYselect_patch_basis
function. -

RAYselect_patch_basis()

int RAYselect_patch_basis(uindex,viudex)
int uindex,vindex;

the index to the basis matrix for the u direction

uindex

the index to the basis matrix for the v direction

vindex

The RAYselect_patch_basis function selects the basis matrices to be used in drawing a surface patch. A
basis matrix is selected for both the u and v parametric directions of the patch. The basis matrices and
their indices must have been previously defined by RAYput_basis. If uindex or vindex are less than zero or
greater than or equal to RAY_MAX BASIS, RAYselect_patch_basis returns RAY_ERR_ARG, otherwise
this function returns a value of RAY_ERR_OK.

! At present, uindex and vindex must be set to the same vatue.
NOTE!

L
—

Example:

Generate a viewport with a shaded Bezier bicubic patch.

#inciude ‘“raylib.h®
#detine Pt 3.14159265358973323846

RAYmatrix GX = {
-100.0, -100.0, -100.0, -100.0,
-50.0. -50.0, -50.0, -50.0,
50.0, 50.0, 50.0, 50.0,
100.0, 100.0, 100.0, 100.0

RAYmatrix GY = {
-100.0. -50.0, 50.0, 100.0, |
-100.0, -50.0, 50.0, 100.0,
-100.0, -50.0, 50.0, 100.0,

RAYIlib Functions 3-21

Graphics Primitives - Patches

L

3-22

-100.0, -50.0. 50.0, 100.0

|3
RAYmatrix GZ = {
0.0, 30.0. 70.0, 110.0,
-20.0, 0.0, 80.0, %0.0,
30.0, -30.0, 40.0, 80.0,
60.0, 80.0, 90.0, 20.0
b
main(arge,argv)
int arge,;
char “*Argv;
{
int precu,precy;
RAYlight_source light;

RAYsurtace_model poly_surface;

it (RAYinit()) exn(-1);

/® - set patch precision

precu = 13;

precv = 13;

/® - setup suriace characteristics

poly_surface.d red = 0.7;
poly _surface.d green = 0.3;
poly surface.d blue = 0.2;

poly surface.exp = 1.0;

poly _surface.specularity = 1.0;
poly _surfacs.transparent = 0.0;

poly_surface.reflectivity = 0.0;

poly_surtace.refraction_index = 1.0;

RAYpm_surhco_modol(&poly_surtace);

RAYshade mode(RAY TRACE)

/* — make drop shadow

*/

continued

-

-/

RAYpm_vitwpon(290 +20, 690 +20, 80 +20, 400 +20),;
RAYclear viewport(0.1,0.15,0.5,0.0);

/* — create viewport and projection

RAYput viewport{ 290, 630, 80, 400);

RAYpersp project(30.0, 125, 10, 2048.0);

RAYlib User s Guide, Yersion 0.5

-/

—_——— ‘./

continued

RAYlookup_view(185.0, 185.0, 185.0, 0.0, 0.0, 0.0, 0.0);
- setup light source -/

RAYclear_viewport(0.2,0.3.0.7,0.0);
RAYbackground_color(0.5.0.7, 0.9);
RAYlight_ambient(1.0, 1.0, 1.0);
RAYambrent _intensity(0.3):

light.nx = 1.0;

light.ny = -0.5;

light.nz = 1.0;

light.r = Q.7;

ight.g = 0.7;

ight.b = 0.7;

RAYput light_sourca({ RAY_LIGHT _DIRECT, 1, &light);
RAYlight_switch(RAY_LIGHT DIRECT, 1, RAY ON);

RAYpatch_precision(precu.precv);
RAYselect patch_basis(RAY BEZIER BASIS, RAY_BEZIER BASIS):

RAYscale(0.4, 0.4, 0.4);

/® - display shaded patch . ¢/
RAYpatch_geometry 3d(GX.GY.GZ);
RAYtrace():

RAYexit();
axrt();

Graphics Primitives - Patches

RAYlb Functions

3-23

Bounding Volumes

Bounding volumes are 3D extents used to group objects that are near each other. A bounding volume is
defined as the exteats of the smallest cube that encloses all the objects being grouped. Bounding volumes
are parallel to each coordinate axis in Viewing Space.

All objects defined after a RAYopen bounding volume function call and before its corresponding

RAYclose_bounding_volume function call are included in the same bounding volume. When a bounding
volume is encountered while tracing a given ray, the bounding volume is tested for intersection with that
ray. The coatents of the bounding volume are tested for intersections with the ray if, and only if, the ray
intersects the bounding volume. Bounding volumes can be nested to further improve performance.

Although they are not required, bounding volumes are highly recommended for any RAYlib program,
because they can significantly reduce the time it takes to ray trace a given scene. Proper selection of
bounding volumes is largely trial and error, however, using the following guidelines should improve reader-
ing time:

1. If an entire scene fits in a viewport, bound the entire scene.

2. Nest bounding volumes into a hierarchy of scene, groups of objects, objects, groups of primitives.
Each of these levels can be further nested if they are sufficiently complex.

3. Bounding volumes work best when they eavelope groups of 7 t6 20 objects (an object may be a
nested bounding volume or a primitive).

4. Bounding volumes work best when the objects they bound are grouped closely together in viewing
space. The smaller the volume, the better the performance.

5. Do NOT bound individual atoms (RAYatom), but try to collect those that are close to each other.
Higher level objects, such as superquadrics and patches, are tessellated into simpler triangles by
RAYIib. Also, RAYlib automatically creates a bounding volume for each superquadric and patch.

The effort involved in generating good, tight, nested bounding volumes will more than pay for itself with
significantly reduced rendering times.
Functions in this section are:

. RAYopen_boundjnngolume()

- RAYclose_bounding_volume()

RAYopen_bounding volume()

int RAYopeu~boundjng_volume()

This function opens a bounding volume. The extents of the bounding volume are defined by the cumulative
extents of each object defined up to the matching RAYclose_bounding volume. Bounding volumes can be
aested up to RAY _MAX_BVOL_NEST levels deep. Upon successful completion, this function returns a
value of RAY_ERﬁ_OKV—If a call exceeds the maximum nesting level, RAY _MAX BAD BVOL is returned.

3-24 RAYlib User s Guide, Version 0.5

RAYclose_bounding volume()

int RAYclose_bounding velume()

Bounding Yolumes

This function closes a bounding volume opened in a matching RAYopen_bounding_volume call. Once this
function is called no other objects are considered as part of this bounding volume, and the current extents

of the bounding volume are saved. Upon successful completion, this function returns a value of
RAY_ERR_OK. If you attempt to close more bounding volumes than are opened, RAY_ERR_BAD BVOL

is returned.

Example:

-
rd

/

/ #inciude ‘rayiib.h”

main()

{

/‘ raylib imitialization */
if (RAYinit()) ext{100);

RAYopen bounding volume();

RAYpoly point_3d(x1y1.21);
RAYpoly point_3d(x2.y2.22);
RAYpoly_point_3d(x3.y3,23);
RAYpoly point 3d(x4.y4.z24);
RAYpoly ciose();

RAYciose bounding volume();

RAYtracs();
RAYexit();

RAYlib Functions

3-25

Transformations

The list below describes the three major types of transformations: Modeling, Viewing and Projectioa.

= Modeling transformations manipulate the Object Coordinate System with respect to the World
Coordinate System. Objects are first defined in their own space, the Object Coordinate System, and
then placed in the World Coordinate System by applying the modeling transformatioans (rotate,
translate, and scale). The Object Coordinate System can be the same as the World Coordinate Sys-
tem, thus eliminating the transformation from Object to World Space. The World Coordinate Sys-
tem is a right-hand system with y to the right, z up, and x out of the page (see Figure 3-2).

= Viewing transformations transform World Space to Eye Space. The Eye Coordinate System is a
right-hand system with x to the right, y up, and z out of the page. The eye is at the origin and the
viewing direction is down the negative z axis (see Figure 3-3).

s Projection transformations map eye space into the Screen Coordinate System. The origin of the
Screen Coordinate System is in the lower left corner with x to the right and y up (see Figure 3-4).

Primitives that are not transformed by the current transformation matrix, such as viewport definitions, are
specified in the Pixel Coordinate System. The origin of the Pixel Coordinate System is in the upper left
corner with x to the right and y down (see Figure 3-5).

Transformation Matrices

There is a matrix stack and current matrix that can be operated on. The stack contains the Modeling and
Viewing transformations. Objects are transformed by the curreat Modeling and Viewing (MV) matrix.
Viewing commands replace the current MV matrix with the specified viewing matrix. Modeling functions
cause the current MV matrix to be premultiplied by the matrix representing the specified transformation.
For this reason, transformations should be specified in the reverse order in which they will be applied.
Typically, transformations are specified in the following order:

1. Projection transformations
2. Viewing transformations
3. Modeling transformations

Object vertices and light positions are transformed by the current set of transformation matrices. Push and
pop functions can be used to localize operations by saving and restoring transformations.

3-28 RAYIlib User's Guide, Yersion 0.5

Transformations

v

X (OUT OF PAGE)

Figure 3-2. World Coordinate System

2

& (EYE AT 0. 0. 0. LOOKING 0, 0, -2)

Figure 3-3. Eye Coordinate System

RAYIIb Functions 3-27

Transformations

Figure 34. Screen Coordinate System

>

Figure 3-5. Pixel Coordinate System

3-28 RAYlib User's Guide, Version 0.5

Transformations - Projection Functions

The RAYIib Projection Transformation functions define the viewing volume and type of projection. The
projection transformation maps Eye Space to Screen Space. RAYIib provides the following types of projec-
tions:

= Perspective pyramid

= Perspective window

Functions in this group are:
= RAYpersp project({oy,aspect,near far)
s RAYwindow _project(left right,bottom,top,near far)

RAYpersp project()

void RAYpersp_project(fovy,aspect,near,far)

float fovy,aspect,near.far;

fovy = the field-of-view angle in the y direction of the Eye Coordinate System
aspect = the ratio of the xr and y dimensions of the Eye Coordinate System
nearfar = the distances form the origin to near and far planes along the view vector.

These argumeats are present only for compatibility with PIClib and are
ignored by RAYlIb.

RAYpersp_project defines a 3D perspective viewing pyramid by specfying the field-of-view angle, fovy, in
the y direction and the aspect ratio of the x and y directions of the Eye Coordinate System. The fovy and
aspect parameters determine the size of the projection frustrum. The aspect ratio of the projection {rustum
should match the aspect ratio of the current viewport in order to dispiay data without distortion.

| The near and far arguments are present only for compatabulity with PIClib and are ignored by RAYlib.

RAYlib Functions 3-29

Transtormations - Projection Functions

RAYwindow_project()

void RAYwiudow__project(Ieﬁ,right,bottom.top,near,fnr)
float left,right,bottom,top,near far;

left,right,bottom,top = the position and size of the viewing window in the near clipping
plane, defined in the x and y dimensions of the Eye Coordinate Sys-
tem :

near = the distances from the eye to the near plane. This argument is used
to position the projection window.

far = included only for PIClib compatability. This argument is ignored by
RAYib.

The RAYwindow_project function defines a 3D perspective projection by specifying a rectangular frustum
in the near plane. The parameters left, right, bottom and top define the position and size of the viewing win-
dow in the near plane. These are specified in the x and y directions of the Eye Coordinate System.

| t The near and far arguments have no meaning other than positioning the projection window. These argu-
 NOTEl ments are included for compatability with PIClib and are otherwise ignored.
i :

3-30 RAYlib User' s Guide, Version 0.5

Transformations - Viewing Functions

Viewing Transformations map World Space into Eye Space, given the user’s view specified by an eye posi-
tion and a view direction in the World Coordinate System. RAYlib provides four viewing functioas for speci-
fying the viewpoint and viewing direction:

s RAYlookat_view(vx,vy,vz,px.py,pz,twist)
= RAYlookup_view(vx,vy,vz,px,py,pz,twist)
» RAYcamera_view(x,y,z,pan,tilt,swing)

- RAYpolar_view(dist,azim,inc,twist)

The viewing transformations are kept on the transformation stack and are pre-multiplied by the modeling
transformations as they are defined. Therefore, the viewing transformations must be specified before any
modeling transformations are applied.

RAYlookat_view, RAYlookup_view, RAYcamera_view, and RAYpolar_view all repiace the current transfor-
mation with the specified viewing matrix. To preserve the current modeling and viewing transformation,
use the RAYpush_traasform command.

‘ All rotations discussed in this section follow the right-hand rule, unless otherwise noted. All rotations
{ NOTE| are specified in degrees.

lﬁ_

RAYlookat_view()

void RAYlookat_view(vx,vy,vz,px,py,pz,twist)

Moat vx,vy,vz,px,py,pz,twist;

YX,VY,VZ = the coordinates of the viewpoint

PX,py,pz = the coordinates of the reference (ar) point

twist = the rotation about the view vector (the -z axis of the Eye Coordinate

System)

RAYlookat_view defines a viewpoint and a reference (lookat) point in World Coordinates. The viewpoint
1s at (vx, vy, vz) and the reference point is (ax, py, pz). These two pounts define the view direction or view
vector. The twist angle specifies a rotation about the view vector (directed from the viewpoint Lo the reter-
ence point). The view vector defines the -z axis of the Eye Coordinate System.

RAYlib Functions 3-31

Transformations - Viewing Functions

f RAYlookat_view maintains the y axis of the World Coordinate System as the up vector.

RAYlookup view()

void RAYlookup_view(vx,vy,vz,px.py,pz,twist)
float vx,vy,vz,px,py,pz,twist;

VX,Vy,VZ = the coordinates of the viewpoint
PX,py.pz = the coordinates of the reference (af) point
twist = the rotation about the view vector, (the -z axis of the Eye Coordinate System)

The RAYlookup_view function specifies the viewpoint and view direction with a from point and an at point
in the World Coordinate System. These two points define the view direction or view vector. The twist angle
specifies a rotation about the view vector (directed from the viewpoint to the reference point). The
RAYlookup_view transformation ensures that the +y (up) vector of Eye Space and the +z (up) vector of
World Space form an acute angle. If the view direction is (0,0, = z), then the results are the same as if
theRAYlookat_view function had been used.

; RAYlookup_view maintains the z axis of the World Coordinate System as the up vector.
NOTE!

RAYcamera_view()

void RAYcamera_view(x,y,z,pan,tilt,swing)
float x,y,z,pan,tilt.swing;

XY,z = the x, y, and z coordinates of the viewpoint

pan = the left-hand rule rotation about the y axis of the Camera Coordinate System
tilt = the left-hand rule rotation about the x axs of the Camera Coordinate System
swing = the left-hand rule rotation about the z axis of the Camera Coordinate System

3-32 RAYlib User's Guide, Yersion 0.5

Transformations - Yiewing Functions

RAYcamera_view defines a viewing transformation in terms of pan, tilt, and swing angles. The arguments
to this function define a viewpoint (xy,z) and speafy a view direction by applying a pan degree rotation
about the v axis, a it degree rotation about the x axis, and a swing degree rotation about the z axis of the
Camera Coordinate System.

In its initial orientation, the x, y, z axes of the Camera Coordinate System are parallel to the -x, z, -y axes of
the World Coordinate System. The eye is positioned at the origin of the Camera Coordinate System
(defined by x, y, z) and the viewing vector is the positive z axis of the Camera Coordinate System. The
orientation of the view vector is determined by the pan, alt and swing parameters. See Figures 3-6 and 3-7.
Note that the view vector in Figure 3-7 points toward the origin.

|

The Camera Coordinate System is a left-hand system and all rotations in it are left-hand rotations.

]

[

WORLD COORDINATE
SYSTEM
-
CAMERA COORDINATE
SYSTEM
1004 — — —
X _ VIEW VECTOR

Figure 3-6. RAYcamera_view(100.0, 100.9, 0.0, 0.0, 0.9, 0.0)

RAYlib Functions 3-33

Transformations - Viewing Functions

WORLD COORDINATE
SYSTEM
-y
CAMERA COORDINATE
SYSTEM
100 £ —— —
X

VIEW VECTOR

Figure 3-7. RAYcamcra_view(lOO,(), 100.0, 0.0, 45.0, 0.0, 0.0)

RAYpolar_view()

void RAYpolar__view(disLazimJnc,Mst)
float dist,azim,inc,twist;

dist = the distance from the viewpoint to the origin of the World Coordi-
nate System

azim = the azimuthal angle of the viewpoint in the xy plane measured from
the y axs

inc = the inddence angle of the viewpoint in the yz plane measured from
the z axs

twist = the rotation about the view vector (the -z axis of the Eye Coordinate
System)

3-34 RAYlib User's Guide, Version 0.5

Transformations - Viewing Functions

The RAYpolar_view function defines the viewpoint and direction in Polar Coordinates. The dist parameter
is the distance from the viewpoint to the origin of the World Coordinate System. The azim parameter is the
azimuthal angle in the xy plane, measured from the y axis. The inc parameter is the incidence angle in the
yz plane measured from the z axis. The twist parameter specifies a rotation about the view vector. The view
vector is directed from the viewpoint to the origin of the World Coordinate System and defines the -z axis
of the Eye Coordinate System.

RAYIlib Functions 3-35

Transformations - Modeling Functions

The Modeling Transformations rotate, translate, and scale objects relative to the World Coordinate Sys-
tem. Modeling functions cause the current MV matrix to be premultiplied by the matrix representing the
specified function. Because of this, modeling transformations are applied to all objects drawn after the
modeling transformation is requested. The curreat Modeling and Viewing matrix can be saved with the
RAYpush_transform function and restored with the RAYpop_transform function.

This section describes the following modeling transformation functions:

Rotation Functions

« RAYrotate x(x)

a RAYrotate_y(y)

u RAYrotate_z(z)

s RAYrotate_vector(x,y,z,nx,ny,nz angle)
RAYput_rotate_dx(dx)

Translation Functioas

= RAYtranslate_x(x)

= RAYtraanslate_y(y)

s RAYtranslate_z(z)

= RAYtranslate(xy,z)

» RAYput_translate_dx(tx)

Scaling Functions

s RAYscale x(x)

» RAYscale y(y)

» RAYscale_z(z)

s RAYscale(x.y,z)

= RAYput_scale_dx(sx)

= RAYput_rotate_dy(dy)
« RAYput_rotate_dz(dz)
= RAYrotate_dx()
s RAYrotate_dy()
» RAYrotate_dz()

w RAYput_translate_dy(ty)
=« RAYput_translate_dz(tz)
» RAYtranslate_dx()
s RAYtranslate_dy()
» RAYtranslate_dz()

» RAYput_scale_dy(sy)
« RAYput scale_dz(sz)
s RAYscale_dx()
s RAYscale dy()
» RAYscale dz()

{ i All modeling commands operate with respect to the World Coordinate System.

I'NOTE)
{ i
‘ 1

RAY1ib Functions 3-35

Transformations - Modeling Functions

Rotation

Objects may be rotated with respect tox or y or z or an arbitrary axis. All rotations follow the right-hand
rule. Positive rotations are counterclockwise when looking from the positive axis toward the origin (see Fig-
ure 3-8).

Rotations may be absolute or incremental. Absolute rotations rotate about the x or y or z axis by x, ¥, and z
degrees. Also, arbitrary axis rotatioas allow you to specify an axis of rotation with a point, x,y,z, a direction,
nx.ny,nz, and an angle 4. This produces a rotation of ¢ degrees about the specified axis with the center of
rotation at x,y,z.

[ncremeantal rotations rotate about the x,y, or z axis by a prespecified Ax, Ay, and Az degrees.

Positive degrees cause counterclockwise rotation; negative degrees cause clockwise rotation.
INOTE
1

(I

The rotation functions are:

= RAYrotate x(x) = RAYput_rotate_dy(dy)
» RAYrotate_y(y) s RAYput_rotate_dz(dz)
. RAYrotate_z(z) » RAYrotate_dx()
s RAYrotate_vector(x,y,z,nx,ny,nz.angle) = RAYrotate_dy()
@ RAYput_rotate_dx(dx) » RAYrotate dz()

3-38 RAYIib User's Guide, Yersion 0.5

Transformations - Modeling Functions

T ' EYE
/

/ &
7 >y

, >

4{// 7

(80° ROTATION ABOUT

THE y-AXIS) (FINGERS CURL COUNTER
X CLOCKWISE FROM THE EYE)

Figure 3-8. Right-Hand Rule Rotation

RAYrotate Functions

void RAYrotat.e_x(x)
float x;

x = the angle of rotation about the x axs

void RAYrotate_y(y)
float y;

y = the angle of rotation about the y axis

void RAYrotnu_l(z)
float z;

z = the angle of rotation about the z axs

The RAYrotate functions (RAYrotate_x, RAYrotate y and RAYrotate z) rotate objects by a specified anele
about the x or y or z axis. The angfe is specificd in degrees according to the right-hand rule.

RAYlib Functions 3-37

Transformations - Modeling Functions

RAYrotate vector()

void RAYrotate_vector(x,y,z,nx,ny,nz,angle)
float x.y,z,nx,ny,nz angle;

xJ,z.nx,ny,nz = the point (x,y,z) and direction (nx,ny,nz) that define the axis about
which the object will rotate
angle = the angle of the rotation expressed in degrees

The RAYrotate_vector function rotates objects by a specified angle about an arbitrary axis. The axds of
rotation is defined by a point and a direction as shown below:

N

(10.0, 0.0, 0.0) UNROTATED SPHERE (00. 00, 00)

"y

(0.0. -1.0,00)

<

——{'————b- ROTATED SPHERE (100, 00, -100)

X }

-2

Figure 3-9. Arbitrary Axis Rotation
(RAYromlc_vector(10.0,0.0,0.0,0.0,-1.0,0.0,90.0);

3-38 RAYIlib User's Guide, Yersion 0.5

Example:

Transformations - Modaling Functions

The following example demonstrates how to spedify a rotation of 90° about the vector defined by the point

(10.0, 0.0, 0.0] and the direction [0.0, 1.0, 1.0].

—-—
——

RAYrouate vector(10.0, 0.0, 0.0, 0.0, 1.0, 1.0, 90.0);

(
!
(\'

RAYsphere(); /® draw 2 unit sphere st the origin */

——

RAYput_rotate_d Functions

void RAYput_rotate_dx(dx)
float dx;

dx = the incremental angle of rotation, in degrees, about the x axis

void RAYput_rotate dy(dy)
float dy;

dy = the incremeantal angle of rotation, in degrees, about the y axis

void RAYput_rotate_dz(dz)
float dz;

dz = the incremental angle of rotation, in degrees, about the z axis

The RAYput_rotate_d functions (RAYput_rotate_dx, RAYput _rotate_dy and RAYput_rotate dz) specify
the A rotation about cach axis. Objects can then be rotated in increments about a World Space axis (X, v,

or z) using the RAYrotate d functions.

RAYlib Functions

3-39

Transtormations - Modeling Functions

RAYrotate__d Functions

void RAYrotate_dx()
void RAYrotate_dy()
void RAYrotate_dz()

The RAYrotate_d functions (RAYrotate_dx, RAYrotate_dy and RAYrotate_dz) rotate objects about the x,
y, and/or z axis using a predefined incremental rotation. Before using any of the RAYrotate_d functions,
be sure to specify the incremental angle with one of the RAYput_rotate_d functions.

Translation

Objects can be translated independeantly inx or y or z or in xyz. There are two types of translations: absolute
and incremental. Absolute translations are applied along x or y or z. Incremental translations are applied
along the x or y or z axs by a specified Ax, Ay and Az,

The translation functions are:

s RAYtranslate x(x) « RAYput_traaslate dy(ty)
» RAYtraasiate y(y) = RAYput_translate_dz(tz)
s RAYtranslate z(z) s RAYtransiate_dx()

s RAYtranslate(x.y,z) = RAYtranslate_dy()

s RAYput_translate_dx(tx) = RAYtranslate_dz()
RAYtransiate Functions

void RAYtranslate(x,y,z)
float x.y,z3

xyZ = thex,y, ztranslation

void RAYtranslatz_x(x)
float x;

X = the x translation

void RAYtranslate y(y)
float y;

3-40 RAYIlib User's Guide, Yersion 0.5

the y transiation

void RAYtranslate z(z)
float z;

1}

z the z translation

Transformations - Modeling Functions

The RAYtranslate functions (RAYtranslate, RAYtranslate_x, RAYtranslate y and RAYtranslate_z) apply

a translation along x or y or z to the current transformation matrix.

RAYput transiate_d Functions

void RAYput_transiate_dx(tx)
float ox;

tx = the incremental translation in x

void RAYput_transiate_dy(ty)

float ty;

ty = the incremental translation in y
void RAYput_transiate_dz(tz)

float tz;

tz = the incremental translation in z

The RAYput_translate_d functions (RAYput_translate_dx, RAYput_transiate_dy and
RAYput_transiate_dz) specify the delta translation along each axis. Objects can then be translated in
increments along a World Space axis (x,y, or z) using the RAYtranslate_d functions.

RAYtranslata__d Functions

void RAYtransiate dx()
void RAYtranslate_dy()
void RAYtranslate dz()

RAYlib Functions 3-41

Transformations - Modeling Functions

The RAYtranslate_d functions (RAYtranslate_dx, RAYtranslate_dy and RAYtranslate_dz) translate the
objects along the x or y or z axis by a predefined incremental translation. Before using any of the
RAYtranslate_d functions, be sure to specify the incremental angle with one of the RAYput_translate d
functions.

Scaling
Objects can be scaled independently about x or y or z or about xyz, simuitaneously. Scale commands can
shrink (sx < 1), expand (sx > 1), and mirror (sx < 0) objects.

There are two types of scaling transformations: absolute and incremental. Absolute scaling is applied about
xoryorz. Incremental scaling is applied about the x or y or : axis by a specified Ax, Ay, and Az.

The scaling functions are:

= RAYscale x(x) s RAYput_scale_dy(sy)
= RAYscale_y(y) s RAYput_scale_dz(sz)
s RAYscale_2(z) = RAYscale_dx()
« RAYscale(x,y,z) s RAYscale_dy()
= RAYput_scale_dx(sx) a RAYscale_dz()

RAYscale Functions

void RAYscale(x.y,z)
float x.y,z;

XJy2 = the x, y, and z scaling factors

void RAYscale_x(x)

float x;

X = the x scaling factor
void RAYscale y(y)

float y;

Y = the y scaling factor

void RAYscale 2(z)
float z;

i

z the z scaling factor

342 RAYlib User's Guide, Version 0.5

Transformations - Modeling Functions

; i A common mistake is to call RAYscale with only one argument. Be sure to supply x y and z scaling fac-
y NOTE| tors even if uniform scaling is desired.

———

The RAYscale functions (RAYscale, RAYscale_x, RAYscale y and RAYscale z) reduce, enlarge, and mirror
objects by scaling the object’s x or y or z coordinates by the scaling factors x, y, and z, respectively. Objects
can be scaled about one axis only or about all three axes.

: ! Positive scaling factors larger than | expand the object; less then 1, reduce the object. Negative scaling
| NOTE! factors mirror the scaled object across an axis.
[

RAYput_scale_d Functions

void RAYput_scale_dx(sx)
float sx;

sx = the incremental scaling factor in x

void RAYput_scale_dy(sy)
float sy;

sy = the incremental scaling factor in y

void RAYput_scale_dz(sz)
float sz;

sz = the incremental scaling factor in z

The RAYput_scale_d functions (RAtiut_scale_dx, RAYput_scale_dy and RAYput scale_dz) specify the
delta scaling factor about each axis. Objects can then be scaled about a World Space axs (x, y or z) using
the RAYscale_d functions.

RAYscale_d Functions

void RAYscale_dx()
void RAYscale_dy()
void RAYscale _dz()

RAYlib Functions 3-43

Transformations - Modeiing Functions

The RAYscale_d functions (RAYscale_dx, RAYscale_dy and RAYscale_dz) scale the objects inx or y or z by
a predefined incremental scale factor. Before using any of the RAYscale_d functions, be sure to specify the
incremental angle with one of the RAYput_scale_d functions.

Example:

The following code fragment illustrates the use of the incremental scaling and rotation functions.

RAYpersp project(45.0, 1.25, 1.0, 1000.0); X
RAYlookup_view(150.0, 150.0, 150.0, 0.0, 0.0, 0.0, 0.0); !

RAYpm_scah_d.x(a.O); /® set the incremental x scale value */ . ;
| RAYput_ rotate dz(20.0); /* set the iscremental y rotation value */ |

for (i = 0. < MAX_ITERATIONS; i + +) {

i RAYrotate _dz();
[RAYscale_dx();

! RAYpatch_geometry 3d(GX.GY.G2); <
i RAYtrace();
i

RAYswap butfer();

344 RAYlib User's Guide, Yersion 0.5

Transformations - Control Functions

The Transformatioa Control functions manipulate the modeling and viewing transformation stack by push-
ing and popping, pre- and postmultiplying, and loading or retrieving matrices.

| ' RAYIib does not have the projection matrix stack that PIClib has.

' NOTE|
: !

H :
'

The modeling and viewing transformation matrix is applied as follows:

COO COl COZ COJ

bree] lccrener) + bvev]

C)O CJI C32 C33

Modeling and Viewing Transtformation Control

The Modeling and Viewing Transformation Coatrol functions operate on the current MV (Modeling and
Viewing) matrix and MV stack containing the modeling and viewing transformations. These functions are:

= RAYget_inverse_transform(matrix) - = RAYpush_transform()

= RAYget_normal_transform(matrix) = RAYpop_transform()

s RAYget transform(matrix) = RAYput_transform(matrix)

. RAYpmmultiply_tmnsform(matrix) = RAYput_identity transform()

. RAYpostmultiply_translorm(matrix)

RAYget_inverse_transform()

int RAYget inverse_transform(matrix)
RAYmatrix matrix;

matrix = indicates where to store the inverse of the current MV transforma-
tion matrix

RAYlib Functions 3-45

Transformations - Control Functions

The RAYget_inverse_transform function returns the inverse of the current MV transformation matrix. The
mverse is computed on the host from the current MV matrix obtained from the Pixel Machine. This func-
tion does not change the MV transformation stack or current transformation matrix.

RAYget_inverse_transform returns RAY_ERR_INVERSE if the matrix is singular (not invertable), and
RAY_ERR_OK if successful.

RAYget _normal_transtorm()

void RAYget normal_transform(matrix)
RAYmatrix matrix;

matrix = indicates where to store the normal transformation matrix

The RAYget_normal_transform function returns the normal vector transformation matrix. The normal vec-
tor transformation matrix is the inverse transpose of the upper 3x3 submatrix of the current transformation
matrix. This function does not change the MV transformatioa stack or current transformation matrix.

RAYget_transtorm()

void RAYget transform(matrix)
RAYmatrix matrix;

matrix = indicates where to store the curreat transformation matrix

The RAYget_transform function returns the current 4x4 modeling and viewing transformation matrix. This
function does not change the MV transformation stack or current transformation matrix.

RAYpremuitiply transtorm()

void RAYpremultiply transform(matrix)
RAYmatrix matrix;

matrix = a user-defined 4x4 matrix

3-48 RAYlib User's Guide, Version 0.5

Transformations - Control Functions

The RAYpremultiply transform function premultiplies the current MV transformation matrix by a
specified matrix. The result becomes the current MV matrix.

RAYpostmuttiply transform()

void RAYpostmulitiply transform(matrix)
RAYmatrix matrix;

matrix = a user-defined 4x4 matrix

The RAYpostmultiply_transform function postmultiplies the current MV transformation matrix by a
specified matrix. The result becomes the current MV matrix.

RAYpush_transtorm()

void RAYpush_t.ransform()

The RAYpush_transform function places a copy of the curreat MV transformation matrix on top of the
stack. (The stack is not changed if it is full.) The MV transformation stack can be
RAY_MAX TRANSFORM levels deep.

This function is useful for saving the current transformation on the matrix stack, maodifying this transforma-
tion temporarily, and then restoring its original contents by popping the transformation stack with
RAYpop_transform.

RAYpop transtorm()

void RAYpop_transform()

The RAYpop_transform function replaces the current transformation matrix with the transformation
matrix on top of the MV stack. If the MV transformation stack is empty, RAYpop_transform has no cffect.

RAYIlib Functions 3-47

Transformations - Control Functions

Example:
The following code fragment illustrates the use of the push and pop operations oa the transformation stack.

7

[\‘a

RAYpersp project(45.0, 1.2%, 1.0, 1000.0);
RAY\ookup_view(150.0, 150.0, 150.0, 0.0, 0.0, 0.0. 0.0 };

’ RAYpush_transform(); /* save the original coordinate systen */
RAYtranslate(10.0. 10.0, 10.0); :
RAYrotate x(90.0); i
RAYsuporq_torua(S0.0. 50.0, 50.0, 90.0, 1.0, 2.0);

RAYpop _transform(); /* restore the original coordinate system */

RAYsphers(); ,
} !
/

N | ,,

e e oL

RAYput_transtorm()

void RAYput_transform(matrix)
RAYmatrix matrix;

matrix = a user-defined 4x4 matrix

The RAYput_transform function loads a specified 4x4 matrix into the current MV transformation matrix.
This function replaces the current MV transformation matrix with the specificd matrix. {f you need to save a
copy of the current transformation matrix on the stack, use RAYpush_transform first.

RAYput_identity transtorm()

void RAYput_identity_tmnsform()

348 RAYlib User's Guide, Yersion 0.5

Transformations - Control Functions

The RAYput_identity_transform function places an identy matrix into the current MV transformation
matrix. This function repiaces the current MV transformation matrix with the specified matrix. If you need
to save a copy of the current transformation matrix on the stack, use RAYpush_transform first.

The identity matrix is of the form:
1000
0100

0010
0001

RAYlib Functions 3-49

Viewports

The viewport functions allows you to define an area on the screen that displays the rendered image.
Viewports are defined by specifying the four limits of the rectangular area in screen units. Depending on
your Pixel Machine model and configuration, the screen may be 1024x1024 or 1280x1024 in high resolution
mode, 720x480 in NTSC mode and 720x576 in PAL mode. Application developers should remember that
the screen space starts in the upper left with the +y axis going down.

Functions in this group are:
= RAYget screen_size(ix,ly)
s RAYput_viewport(left right,top,bottom)

RAYget_screen size()

void RAYget screen_size(ixly)
int *ix,*y;

ix,iy = pointers to the memory locations that contain the screen’s dimen-
slons

The RAYget_screen_size function returns the dimensions of the screen in the x and y directions. The x
dimension is stored in ix; the y dimeansion is stored in iy.

RAYput viewport()

void RAYput_viewport(left,right,top,bottom)
int left,right,top,bottom;

left,right
top,bottom = initial and final y Pixel Coordinates

it

initial and final x Pixe] Coordinates

The RAYput_viewport function defines the coordinates of the current rectangular viewport and loads it into
the current vicwport.

. Viewports must be defined in accordance with the screen’s coordinates. The feft and nght coordinates
NOTE[range from 0 to screen_wadth - 1, the top and bottom coordinates range from 0 to screen heght -1

3-50 RAYIib User s Guide, Yersion 0.5

Yiewports

Example:

To calculate the coordinates of a viewport of size 401x401 in the screen’s ceater, do the following:

ya hY
{ '
nt x.y; :

! 4 RAYgo(_scroon_snze(&x,&y); /* assume 1280,1024 */

max x =x-1; |
max y =y-1; |
loft = (max x - 401) / 2; /2439 ¢/ i
right = max_x - left; /°840 ¢/ i
top = (max_y-401)/2; /® 3t/ i
loft = max_y - top; /o712y }
!

RAYput_viewpon (left,right top,bottomy);

RAYlib Functions 3-51

Shading and Lighting

RAYlib provides a wide variety of light sources and surface types. In addition to ambient light, three light
source types (directional, point, and area) can simulate many lighting situations found in nature.

The light sources cast realistic shadows based on physical light models. Accurate color rendering is
achieved through ray tracing methods that account for light and surface characteristics, including tran-
sparent and reflective surfaces. Texture maps can also be applied to surfaces.

A description of each type of light source is provided below:

e Directional: a unidirectional light source used to simulate global lighting effects. The intensity of
the light reflected from the light source depends only on the orientation of the surface relative to the
light source. It is independent of the relative position and distance of the surface being illuminated.

Directional light sources are specified by color and a vector pointing toward the light.
« Point: an omnidirectional light source that is used to simulate localized lighting effects. The lntensity

of the light reflected from the light source depends on the orientation and relative position of the
surface being luminated. Point lights attenuate with distance.

Point light sources are specified by color, position, and intensity of the light.
« Area: an area light source simulates diffuse light that radiates from a polygonal area, and is used to

generate soft shadows in a scene. Samples are taken stochasticly from within the polygonal area.
Each sample is treated as an independent point light source and behaves as such.

Area light sources are specified by color, intensity, samples per triangle, aumber of vertices and list

of vertices.

Up to RAY_MAX_LIGHT light sources of each type can be defined. Light sources can be turned on and off
for a given scene.

In PIClib, lights can be turned on and off for any object in a scene. In RAYIib, however, oniy the lights that
NOTE! are on when RAYtrace is called are used to render the scene.

The following variables are used to describe the lighting calculations presented below:

la is the ambient light intensity for the scene (from
RAYambient_Intensity).

Kr is the object’s reflection coefficient (from the reflectivity element of
RAYsurface_model).

Kt is the object’s transmission coefficient (from the transparent com-

ponent of RAYsurface_model).

Kd(x) s a component of the object’s diffuse reflection coeffient (from the
d_* elements of RAYsurface_model).

Ks is the object’s specular reflection coefficient (from the specularity
clement of RAYsurface_model).

3-52 RAYlib Usar's Guide, Yersion 0.5

Shading and L.ghting

Vn is the normal vector at a point on the object surface.

" is the vector from the light source to the point on the object’s surface
(derived from the x,y,z or nxny,nz elements of RAYlight_source).

Le(x) is a component of the color of the light source (from the », g b ele-
ments of RAYlight_source).

Ve is the vector from the object to the eye point.
Vr is the reflection vector from the object which is the mirror vector of
V1 about Vn.

Oe is the object’s specular exponent (from the exp element of
RAYsurface_model).

1 is the intensity of the light source (from the intensity element of
RAYlight_source).

td is temporarily hardwired to 1.0.

d is the distance from the light source to the point being shaded.

d(s) is the distance from a sample of an anea light source to the point
being shaded

xis the red, green, and biue components of light.

If a ray intersects an object, the following formula is used to determine the x component of the color of that
ray:
Color(x) = la * Kd(x) + (Kr * reflect(x)) + (Kt * transmitted(x)) + contribution of each light source
where,
reflect(x) is color produced by the reflected ray, if any.
transmitted(x) is the the color produced by the transmitted ray, if any. The direction
of the transmitted ray is affected by the relative measurement of the

permativity of two surfaces (from the refraction_index component of
RAYsurface_model)

The colors produced by the reflected and transmitted rays are evaluated as if they were primary rays at the
point of ray intersection. The same calculations described here are used for the reflected and transmitted

rays.

The contribution of each light source is determined as follows; a ray is shot from the point of intersection of
the current ray and the object, toward cach light source. If this shadow ray strikes an opaque object, the
light source has no contribution on the current object, because it is in shadow. If the shadow ray does not
intersect any objects, the contribution of the light source is defined by the formula:

Contnbution(x) = A(d) * Cd(x) + A(d) * Cs(x)
where,
Cd(x) is the diffuse component of the light source given by the equation:

Cd(x) = Kd{(x) * Lc(x) * (Vn oo L)

RAYIIb Functions - 3-83

Shading and Lighting

Cs(x) is the specular component of the light source given by the equation:
Cs(x) = Ks * Le(x) * (Ve o Vr)**Oe

(d) is an attenuation function which is dependent on the distance (d) of a given light source from the point
being shaded.

The value of A(d) for each type of light source is given as:
for direct light sources: A(d) = 1.0
for point light sources: A(d) =7/ (d + td)
for area light sources: A(d(s)) =/ / (d(s) + td)

If the shadow ray intersects one or more transparent objects, the light’s coatribution is computed as
described above, but attenuated for each object by the formulas:

Contribution(red) *= Kt *(1.0-0.5 * (Kd(green) + Kd(blue)))
Contnibution(green) *= Kt *(1.0-05* (Kd(red) + Kd(biue)))
Contnibution(blue) *= Kt *(10-05 * (Kd(red) + Kd(green)))

: i In these calculations, Kt and Kd(x) are taken from the surface model of the object that intersects the sha-
 NOTE[dow ray.
. |

In the case of area light sources, a shadow ray is shot at random potnts in the area polygon, one shadow ray
for each sample specified in the light source definition.

If a primary ray does not intersect any objects, the pixel color is set to the color defined by
RAYbackground_color. If a reflected or transmitted ray fails to intersect any objects, its color components
are set to the color defined by RAYlight_ambient.

If a surface is textured, the diffuse components are taken from the texture rather than the surface model.
In addition, the transparent and reflectivity components may also be modified by the alpha value of the tex-
ture map. If a pixel of a texture has an 8 bit alpha value ranging from 0 to 127, it redefines the reflecaivity
component to (alpha / 127). If the textured pixel has an alpha value ranging from 128 to 255, it redefines
the transparent component to ((alpha - 128) / 127). Thesc components are only temporanly modified for
the current pixel of the texture.

3-54 RAYlib User's Guide, Version 0.5

Shading and Lighting

The Shading and Lighting functions available in RAYIib are:
s RAYambient_intensity(Ival)
* RAYlight ambient(red.green,blue)
. RAYput_light_source(type,indcx,light)
s RAYlight_switch(type index light)
= RAYput_surface_model(surface)
= RAYset_surface_model(surface)
. RAYput_texture(texture,oﬂx,oﬂy,sizcx,sizey)
s RAYset_texture(texture_id)
» RAYshade mode(mode)

RAYambient_intensity()

void RAYambient_intensity(lval)
float lval;

val = intensity of the ambient light for a 3D scene. Should range from 0.0
to 1.0.

This function sets the intensity of white ambient light in a scene. Ambient light has no specific direction
and does not cast a shadow in a scene. The ambient intensity should be between 0.0 and 1.0.

RAYlight_ambient()

void RAYlight ambient(red green,blue)
float red green,blue;

red.green,blue = light component values for ambient color

This function sets the color of the ambient light for a 3D scene. RAYlight_ambient defines the color when
a reflected or transmutted ray does not intersect any objects. RAYbackground color defines the color when
a pnmary ray does not intersect any objects.

RAYlib Functions 3-55

Shading and Lighting

Valid values for the light color components range from 0.0 to 1.0

‘ . Non-reflecting, non-transparent objects will not be affected by RAYlight_ambient as they are with the
 NOTE| corresponding PIClib function, PIClight ambient.

‘ , -

[

RAYbackground_color()

void RAYbackground_color(red green,blue)
float red.green,blue;

redgreenblue = color values for background color of the current viewport

RAYbackground__colbr specifies the 7gb color of the background. This is the color that is used if a primary
ray does not intersect any objects in the scene. The colors are specified using an additive rgb color system
with color components ranging from 0.0 to 1.0. RAYlight_ambient can be used to define the color if a
reflected or transmitted ray does not intersect any objects.

! ! Tt is recommended that RAYbackground_color be set to the same color as RAYlight_ambient.
NOTE!

RAYput_light source()

void RAYput_light _source(type,indexlight)
int type,index;
RAYlight source *light;

type = RAY_UGHT_POINT
= RAY_UGHT DIRECT
= RAY_UGHT_AREA
index = auser-specified number ranging from 0 to RAY_MAX_UGHT used
to identify a light source.
*light = pointer to the RAYlight_source structure

3-58 RAYlib User's Guide, Version 0.5

Shading and Lighting
RAYput_light source selects a light source. The type of light selected can be either point, direct or area.
Up to RAY_MAX_LIGHT light sources of each type can be defined.

The index is a user-defined number ranging from 0 to RAY_MAX_LIGHT - 1 that selects a light from an
array of light sources of the specified type. Each light source needs to be defined according to the following
RAYlight_source data structure:

typedef struct {

float x, vy, z;
float nx, ny, nz;
float r g, b;

float exp, angle;
float intensity;
long samples;
long vertices;
float *vertex;

} RAYlight_source;

‘The elements x, y, and z define the position of a point light source. nx,ny, and nz define a vector from any
object toward a direct light source. The color of light is defined by the elements 7, g and b. The exp and
angle clements are currently unused. The intensity of point and area lights used in attenuation calculations
is defined by intensity. samples defines the number of samples per triangle of area light, and vertices
defines the aumber of vertices in the polygon defining an area light source. *vertex is a pointer to the Xy
and z positions of those vertices.

For pount light sources, the light’s position (x, y, z), color (r, & b), and intensity must be defined; for direct
light sources, the light’s direction vector (nx, ny, nz) and color (1, g b) must be defined: for area light
sources, the color (r, g b), intensity, number of sampies per triangle, number of vertices in the area, and a
list of vertices must be defined.

Area light sources with more than 3 vertices are tesselated to multiple tnangular area lights, each of
NOTE| which counts as | light source. The intensity and samples are specified per tniangle.

Please keep the following points in mind:
= The viewing transformation for a scene should be defined before defining area light sources.
= Once a light source is turned on, it remains on until it is turned off.
« Oanly the lights that are on when RAYtrace is called are used to render the scene.

= There is no default setting for RAYput_light_source, therefore you need to specify a light source.

RAYIlib Functions 3-57

Shading and Lighting

RAYlight_switch()

void RAYlight_switch(type,index,state)
int type,index,state;

type = RAY_LIGHT_POINT

= RAY_UGHT _DIRECT

= RAY_UGHT_AREA

= RAY_TYPE ALL
index = user-defined number to identify light in other operations
state = flag indicating on/off state of the light

RAYlight_switch selectively turns light sources on (state = RAY_ON) or off (state = RAY_OFF) . Light
sources are defined with RAYput_light_source.

The type argument specifies the light source type:

= RAY _LIGHT _DIRECT

» RAY_LIGHT _POINT

= RAY LIGHT_AREA

« RAY TYPE ALL
The index argument is a user-defined number assigned to a light source that exists in a user-defined array
of light sources. Iadices may range from 0 to RAY_MAX_LIGHT. The constants RAY_TYPE ALL and

RAY_LIGHT_ALL can be used to manipulate all light sources simultaneously. The folrowing constants can
also be used to turn lights on and off:

s RAY BLACKOUT - switch all light sources off
s RAY_SUNGLASSES - switch all light sources on

i Only the lights that are on when RAYtrace is called are used to render the scene.
NOTE
I

3-58 RAY!ib User's Guide, Yersion 0.5

Shading and Lighting

RAYput_surface_model()

int RAYput_surface_model(model)
RAYsurface_model *model:

*model = pointer to the RAYsurface_model structure

RAYput_surface_model defines a data structure,RAYsurface_model,

of surface characteristics and sets the current surface model. The current surface model will remain in
effect until it is overwritten by either another call to RAYput_surface_model or a call to
RAYset_surface_model. The RAYsurface_model data structure is defined as follows:

typedef struct {

float a_red, a_green, a_biue;
Hloat d_red, d_green, d_biue;
float s_red, s_green, s blue;
float exp;

float transparent;

float specularity;

float reflectivity;

float refraction_index;

} RAYsurfacc_model;

The elements (d_red, d_green, d_blue) define the object’s diffuse color. The object’s degree of specularity is
defined by specularity. The object’s specular exponent is defined by exp. The object’s transparency level is
defined by transparent and ranges from 0.0 (no transparency) to 1.0 (full transparency). The object’s
reflectivity is defined by reflectivity and ranges from 0.0 (no reflection) to 1.0 (full reflection). The index of
refraction is defined by refraction_index. The other components of RAYsurface_model are only present for
PIClib compatibility and are ignored by RAYlib.

If a surface is textured, the diffuse components are taken from the texture as opposed to the surface model.
In addition, the transparent and reflectivity components may also be modified by the alpha value of the tex-
ture map. If a pixel of a texture has an 8 bit alpha value ranging from 0 to 127, it redefines the reflectivity
componeat to (alpha / 127). If the textured pixel has an alpha value ranging from 128 to 255, it redefines
the transparent component to ((alpha - 128) / 127). These components are only temporanly modified for
the current pixel of the texture.

Each time RAYput_surfacc_model is called, it allocates memory for the specified surface model and
returns an integer that can be used to access that model. If an application program needs to reuse a surface
model, it is most efficient to pass the integer returned by RAYput_surface_model to the
RAYset_surface_model function described below. Keep in mind that cach ume RAYput_surface_model is
called, rr—lcmory is allocated for the new surface model description. No checking 1s done for duplicate sur-
fuce models.

RAYlib Functions 3-59

Shading and Lighting

RAYset_surface_model()

void RAYset_surface_model(model)
int model;

model = index returned from the RAYput_surface model call

The RAYset_surface_model function is unique to RAYIib. It scts the current surface model to the specified
model; which should be a value returned by RAYput_surface_model. To reduce memory requirements and
improve the efficiency of application code, RAYset_surface_model should be called whenever you want to
reuse a previously defined surface model.

RAYput texture()

int RAYput_texture(texture,offx,offy,sizex,sizey)
unsigned long *texture;
unsigned loag offx,ofly,sizex sizey;

texture = format of the texture

offx,offy = coordinates of the beginning of a texture residing in extended video
memory

sizex,sizey = size of a texture

RAYput_texture defines a texture map. A texture can cither be resident in extended video memory or in a
memory array on the host. RAYput_texture returns an index identifying a texture that can be passed to
RAYset_texture to set the current texture. RAYput_texture returns RAY ERR TEXTURE if you attempt to
define more than RAY_MAX_TEXTURES. The format of the texture is determined by texture:

texture = RAY_RESIDENT TEXTURE

The texture resides in extended video memory. The texture begins at x = offx, y = offy, and s of
size sizex by sizey. Buoih sizex and sizey must be positive and not greater than 256. Both offx and
offy must be positive and not greater than 255. The sum of offx and sizex and the sum of offy and
sizey must be positive and not greater than 256. Resident textures may be loaded with
RAYbroadcast_data. Once a texture is loaded, it stays in memory until the machine is powered
down, another texture is loaded, or a program overwrites the texture. Textures will usually be
overwritten by copies to external memory or by antialiasing in PIClib.

360 RAYlib User's Guide, Yersion 0.5

Shading and Lighting

RAYlib Functions 3-61

Shading and Lighting
texture = RAY_RESIDENT_TEXTURE

The texture resides on the host and is considered to be a virmual texture. texture is a pointer to an
array of sizex by sizey longwords each containing an RGBA value. Each byte of the longword is a
value from 0 to 255 defining the red, green, blue, or alpha component of the texture. offx and offy
are unused in this mode. sizex and sizey must be positive and less than or equal to 4096.

RAYset_texture must be called to use a texture defined with RAYput_texture.

If a surface is textured, the diffuse components are taken from the texture rather than the surface model.

[n addiuoa, the transparent and reflectivity components may also be modified by the alpha value of the tex-
ture map. If a pixel of a texture has an 8-bit alpha value ranging from 0 to 127, it redefines the reflectivity

component to (alpha / 127). If the textured pixel has an alpha value ranging from 128 to 255, it redefines
the transparent component to ((alpha - 128) / 127). These componeats are only temporarily modified for
the current pixel of the texture,

, texture = RAY_RESIDENT_TEXTURE is not supported on Pixel Machine models 916 and 920 in high reso-
: NOTEi |ution mode, however it is supported in NTSC mode on all models.

RAYset texture()

void RAYset_texture(texturt_id)
iat texture_id;

texture id = texture index

RAYset_texture sets the current texture map to the specified texture id; texqure id should be the value
returned by the RAYput_texture call. Any polygons subsequently defined with RAYpoly_point_uv or
RAYpoly_point_nv_uv will be textured using the specified texture map.

The default texture_id is 0, which is the entire 256 x 256 pixel resident texture map.

3-62 RAYlib User's Guide, Yersion 0.5

Shading and Lighting

RAYshade_mode()

void RAYshade_mode(mode)
int mode;

mode = shading mode for ray tracing

This function selects the shading mode used for ray tracing. The possible values for the mode argument
are:

RAY TRACE

RAY_SHADOWS
s RAY NOSHADOWS o
s RAY_ANTIALIAS
s RAY_NO_ANTIALIAS

modes may be combined by adding them together. The default is:

RAY_TRACE + RAY_SHADOWS + RAY_NO_ANTIALIAS

. Each of the default shading modes (RAY TRACE, RAY SHADOWS and RAY _NO_ANTIALIAS) are
NOTE] defined to be 0. A mode only needs to be specified if it is not a default. For example, use

- RAYshade mode(RAY NO SHADOWS) instead of RAYshade_mode(RAY_TRACE +
RAY_NO_SHADOWS + RA?QNO_ANTIALIAS).

RAYlib Functions 3-63

Antialiasing

To reduce the jagged edges that occur between objects and within textures, you can use antialiasing, which

takes several stochastic (randomly placed) samples and averages them together to obtain the final value for
a pixel. RAYIib uses adaptive antialiasing to achieve better quality with a minimum number of samples. In

many cases, the adaptive nature of the antialiasing technique used allows for a picture quality equivalent to
100 samples per pixel at only 16 times the rendering speed of a typical unantialiased image.

Sampling passes are performed sequeatially, i.e., the entire image is rendered for a sampling pass, then
those pixels that require further sampling are recomputed and their values averaged, and so on. Thus, the
entire image is first rendered with no antialiasing, and then it is iteratively improved. Samples are taken
stochasticly within each pixel.

The function used to control antialiasing is:

= RAYsamples(min,max,threshold)

RAYsamples()

void RAYsamples(min,max,threshold)
int min,max;
float threshold;

min = the minimum number of passes the ray tracer will make in an
attempt to antialias the image

max = the maximum number of passes the ray tracer will make in an
attempt to antialias the unage

the minimum contrast needed within a given pixel to require further
antialiasing

threshold

This function establishes the minimum (min) and maximum (max) number of samples taken in any pixel
during ray tracing to antialias an image. The threshold defines a minimum contrast needed within a pixel to
require further processing; its value should range between 0.0 and 1.0

The coatrast of a given pixel is computed as:

Max Luminence in a pixel - Min Luminence

Max Luminence + Min Luminence

where luminance is defined as:

03 * red + 059 * green + 0.11 * blue

3-64 RAYIib User's Guide, Version 0.5

Antialiasing

If RAYshade_mode has RAY_ANTIALIAS set, the minimum number of samples is taken at every pixel.
Further samples are taken only for those pixels that exceed the contrast threshold. The contrast is checked
after each additional sample. Sampling occurs until each pixel falls within the specified threshold or the
maximum number of samples is reached.

RAYIlib Functions 3-65

Display Control

This set of functions performs operations on pixels, images, viewports, and data memory, such as

reading/writing scan line operations. The functions are:

s RAYclear_viewport() » RAYget scan_line()

» RAYdouble_buffer(mode) s RAYbroadcast_data()

= RAYswap_buffer() = RAYcopy_froat_to_back()
s RAYget_buffer_mode() = RAYcopy_back_to_ext()

= RAYget buffer() s RAYcopy_ext_to_back()

= RAYput_scan_line()

RAYclear_viewport()

void RAYclear_viewport(rg,b.a)
float rg,b.a;

rgba = red green, blue, and alpha indices for the viewport

RAYclear_viewport clears the current viewport to the specified 7gb color and the overlay piane to the

specified alpha (@) index. This function is primarily used to clear the eatire screen or to display drop sha-

dows.

: .\'Oﬂ-:i the viewport being ray traced.

e
i

RAYdouble butfer()

void RAYdouble_buﬂ'er(mode)
int mode;

mode = RAY _ON or RAY OFF

Because RAYlib will set every pixel in the current viewport when it ray traces, there is no need to clear

RAYIlib Functions

3-65

Display Controi

The RAYdouble_buffer function enables or disables the use of double buffering. When enabled, objects are
drawn into the back buffer, which is not displayed on the screen. (When in doubie buffering mode, use the
RAYswap_buffer function after completing a frame.) When disabled, objects are drawn into the front
buffer only, which is displayed on the screen. The default setting is RAY_OFF.

RAYswap buffer()

void RAYswap_ buffer()

The RAYswap_buffer function swaps the back and front buffers. This function is called during animation.
Objects are drawn in the back buffer and displayed in the front buffer. (The back buffer is not displayed.)

% i Be sure to enable double buffering before using RAYswap buffer.
NOTE

i

i

RAYget_buffer_mode()

int RAYget_buffer_mode()

The RAYget_buffer_mode function returns an integer indicating which buffer mode is being used (single or
double). RAY_SINGLE BUFFER indicates single buffcr mode; RAY _DOUBLE BUFFER indicates double
buffer mode. The default setting is RAY_SINGLE _BUFFER.

RAYget butfer()

int RAYget__buﬂer()

The RAYget_buffer function returns an integer indicating the number of the current display buffer. The
number is either RAY_BUFFER_ZERO or RAY_BUFFER_ONE. When you initialize RAYIib, the front
buffer is RAY_BUFFER_ZEROQ (this buffer is displayed on the screen) and the back buffer is

RAY BUFFER_ONE.

3-66 RAYlib User's Guide, Version 0.5

Dispiay Controf

RAYput_scan_line()

void RAYput_scan_linc(ix,iy,red,green,blue.alpha,npixl,mode)
int ix,iy;

RAYpixel *red, *green, *blue, *alpha;

int npixi,mode;

ix,iy = the coordinates of the scan line. The left-most pixel of the scan line
is positioned at Pixel Coordinates (ix,iv) (see Figure 3-5).

red.green,blue,alpha = arrays that determine the color of each pixel

epixi = the number of pixels in the scan line. RAYput_scan_line can write

an individual pixel by setting npix/ to one.

mode = RAY_RGB _PIXELS Each pixel is 24 bits of rgb; 8 bits from each red,
green, blue array.
= RAY_RGBA_PIXELS Each pixel is 32 bits of rgba; § bits from each red,

green, blue, alpha array.

= RAY_RGBA_PACKED PIXELS Each pixel is 32 bits of rgba from a packed array
pointed to by red. The pixel components are stored
in rgba order. The first bvte in red contains the red
component of the first pixel.

= RAY_ABGR_PACKED_PIXELS = Each pixel is 32-bits of rgba from a packed array
pointed to by red. The pixel components are stored
in abgr order. The first byte in red coatains the
alpha component of the first pixel.

= RAY_RGB_ENCODED_PIXELS Each pixel is 24 bits of rgb; 3 bits from each red,
green, blue array. The alpha array contains count
numbers that determine how many pixels of the
same color are to be written. A count number can
range from 0, indicating that the run is 1 pixel long,
to 255, indicating that the run is 256 pixels long. In
this mode, npixi refers to the number of runs in the

scan line.

= RAY_EXTENDED VRAM If RAY_EXTENDED VRAM is added to mode, the
scan line is written into the extended video
memory.

= RAY_COMPOSITE Combunes current image on screen with input scan
line according to the formula:
RGB = RGB __ *a vRGB_*(l-a)
scm sem n

RAYIlib Functions 3-67

Display Control

The RAYput_scan_line function lets you write a scan line of rgb or rgba pixels to the screen by specfying
the location of the first (left-most) pixel (ixiy); the number of pixels, npix/; the color of each pixel, red,
green, blue, alpha, which are arrays of length npix/; and the format of the pixels (mode).

: | If the system is in double-buffer mode, the scan line will be written to the write buffer nor the display buffer.
NOTE
, i
I

RAYget_scan_line()

int RAYget_sam_line(ix,ly,rcd,green,blue.alpha,npixl,mode)

int ixdy;

RAYpixel *red, *green, *blue, *alpha;

int npixl;

int mode;

ix,iy = the coordinates of the scan line. The left-most pixel of the scan line
is positioned at Pixel Coordinates (ixiy). (See Figure 3-5).

red.green,blue,alpha = arrays to store the scan line

npid = the aumber of pixels in the scan line. RAYget scan line can read an
individual pixel by setting npix/ to one.

mode = RAY_RGB PIXELS Each pixel is 24 bits of rgb (8 bits stored to each

" red, green, blue array).
= RAY_RGBA PIXELS Each pixel is 32 bits rgba (8 bits stored to each red,

green, blue, alpha array)

= RAY_RGBA_PACKED PIXELS Each pixel is 32 bits of rgba stored to a packed
array pointed to by red. The pixel components are
stored in rgba order. The first byte in red contains
the red component of the first pixel.

= RAY_ABGR_PACKED PIXELS Each pixel is 32 bits of rgba written to an array
pointed to by red. The pixel components are stored
in abrg. order. The first byte wn red contains the
alpha component of the first pixel.

3-68 RAYlib User's Guide, Version 0.5

Display Control

mode

[}

RAY_RGB_ENCODED_PIXELS Each pixel is 24 bits of rgb; 8 bits from each red,
green, blue array. The alpha array coantains count
numbers that determine how many pixels of the
same color were read. A count number can range
from O, indicating that the run is 1 pixel long, to
255, indicating that the run is 256 pixels long. In
this mode, npix{ refers to the number of runs in the
scan line.

RAY_EXTENDED VRAM If RAY_EXTENDED VRAM is added to mode, the
scan line is read from the extended video memory.

The RAYget_scan_line function lets you read a scan line of rgb or rgba pixels from the screen by specifying
the location of the first (left-most) pixel of the scan line, (ixiv); the aumber of pixels in the scan line, npix/;
and the format used to read the pixels, mode.

! If the system is in double-buffer mode, the scan line will be read from the write buffer and nor the
! NOTE! display buffer. [t is recommended that you call RAYwait_psync() before the first call to
! i, RAYget_scan_line. This ensures that the entire frame has been drawn before any scan lines are read.

RAYbroadcast_data()

void RAYbroadcasvt_dats(memory,iny,dnm,nword)
int memory, ix, iy;

int *data;

int nword;

int mode;

memory = RAY_BROADCAST_VRAM

ix,iy = the starting ¥ and y memory addresses

data = an array of 32-bit words

aword = the number of 32-bit words to be broadcast

mode = RAY_RGBA_PACKED PIXELS Each pixel is 32 bits of rgba from a packed array
potnted to by duta. The pixel components arc
stored in rgba order. The first byte in dura coatains

the red component of the first pixel.

RAYIlib Functions 369

Display Control

mode = RAY_ABGR_PACKED PIXELS Each pixel is 32-bits of rgba from a packed array
pointed to by dara. The pixel components are
stored in abgr order. The first byte in data contains
the alpha component of the first pixel.

The RAYbroadcast_data function broadcasts a line of data to extended video memory (memory =
RAY_BROADCAST_VRAM). The data coasists of 32-bit words stored in an array data.

[f the data is broadcast to the extended video memory, each 32-bit word should be organized as four 8-bit
pixel components. These components can be stored in rgba or in abgr order depending on the parameter
mode. The aumber of 32-bit words of data to be broadcast is set by nword. The starting x and y memory
addresses are ixjy. A common use of RAYbroadcast_data is to broadcast textures to VRAM so that all
nodes receive the same data.

RAYcopy_front to back()

void RAYcopy_{ront_to_back()

The RAYcopy_froat_to_back function copies the contents of the current viewport from the froat buffer to
the back buffer. This function is useful when doing double buffered animation.

RAYcopy back_to_ext()

void RAYcopy__back_to_ext(buﬂer,ix,ly)

int buffers
int ix, iy;
buffer = RAY_TOP_BUFFER
= RAY__BOTTOM_BUFFER
= RAY_SCREEN_BUFFER
ix, iy = coordinates in an off-screen image buffer. These coordinates are

used with the RAY_SCREEN _BUFFER constant to specify where in
the off-screen image buffer to copy the contents of the current

viewport.

3-70 RAYlib User's Guide, Version 0.5

Display Controt

The RAYcopy_back_to_ext function copies the contents of the current viewport from the back buffer (o an
extended buffer. There are two available extended buffers: RAY _TOP_BUFFER and

RAY BOTTOM_BUFFER. These are used for copying rgb plancs to off-screen memory for 3D compositing
and other purposcs When buffer is set to RAY_SCREEN_BUFFER, the extended memory is treated as a
single large buffer, and you need to specify the location (zx.ry) indicating where to place the contents of the
current viewport.,

The size of the off-screen buffer varies, depending on the model being used. Consult the table below to
determine the off-screen buffer size for your model. RAY_SCREEN_BUFFER should be used to create
flipbooks or to scroll through large images.

Model Off-screen Buffer Size
964x 2048x2048
964 2048x2048
964n 2048x2048
940 1280x2048
940n 1280x2048
932 1024x2048
932n 1024x2048
920 -
920n 1280x1024
916 -
916a 1024x1024
Figure 3-10.

Since each Pixel Node processor oaly has access to every other Nx x Ny pixels on the screen, the iy values
have to be chosen carefully when copying to/from RAY_SCREEN BUFFER. For example, if the current
viewport starts at a multiple of Nx x Ny pixels on the screen, then the ixiy offset values would also have to
be a multiple of Nx and Ny. The table below lists the Nx and Ny values for the various Pixel Machine
models.

Model | Nx | Ny
964 8|8
940) 10 | 8
932 8 | 8
920 10 | 8
916 8185
Figure 3-11.

RAYlib Functions 3-71

Display Control

x values in multiples of 40 and y values in multiples of 8 will work for all models.
! NOTE

|

e
P

RAYcopy ext_to_back()

void RAYcopy_ext_to_back(buffer,ix,ly)
int buffer;

int ix, iy;

buffer = RAY_TOP BUFFER

= RAY_BOTTOM BUFFER
= RAY_SCREEN BUFFER

ix, iy = coordinates in an off-screen image buffer. These coordinates are
used with the RAY_SCREEN_BUFFER constant to specify what part
of the off-screen image buffer to copy into the current viewport.

The RAYcopy ext_to_back function copies a region from an extended buffer to the current viewport. For a
description of the possible buffer types and use of the (x,iy coordinates, refer to the discussion on
RAYcopy_back_to_ext above. :

3-72 RAYlib User's Guide, Version 0.5

Video Functions

The Video functions allow you to manipulate the color lookup tables and query their current status. This
section discusses the following functions:

= RAYupdate map(mode)

» RAYput_color__map(red.grcen,blue)

= RAYput_color_map_entry(index,red green,blue)
s RAYput_alpha_map(red.green,blue)

s RAYput_alpha_map_entry(index,red.green,blue)
« RAYget_color_map(red.green,biue)

s RAYget coior_map_entry(index,red. green,blue)
s RAYget alpha map(red.green,blue)

s RAYget alpha_map_entry(index red.green,blue)

Before aitering the color map entries or alpha map entries, RAYupdate map(RAY_OFF) should be
called. After the updates are complete, call RAYupdate_map(RAY_ON) to use the new color entries.

4
|
|

i

I NOTE

1

RAYupdate_map()

void RAYupdate_map(mode)
int mode;

mode = RAY _ON or RAY_OFF

RAYupdate_map cnables updating of the video lookup tables from the shadow lookup tables when mode =
RAY_ON. When mode = RAY_OFF, changes to the lookup tables are not displayed until the function is
re-enabled. Updating of the video lookup tables should be disabled before calling any RAYput_color or

RAYput_alpha map or map entry commands.

RAYput_color_map()

void RAYput_color_map(red.green,blue)
float *red,*green,*blue;

RAYIlib Functions 3-73

Video Functions

RAYput_color_map loads an eatire lookup table, defined by the red, green, and blue arrays, for the rgb
channel. The red, green and biue arrays are of length RAY_VIDEO_TABLE and consist of floating point
values between 0.0 and 1.0.

RAYput_color_map_entry()

int RAYput_color_map_entry(index,red.grtcn,blue)
int index;
float red.green,blue;

index = indicates which entry is being updated

RAYput_color_map_eatry loads a specified color into the rgb color map. index can range from 0 to
RAY_VIDEO_TABLE - 1. The parameters red, green and biue are floating point values between 0.0 and 1.0.
RAYput_color_map_entry returns RAY_ERR_ARG if index is out of range, otherwise RAY ERR OKiis
returned.

RAYput_aipha_map()

void RAYput_alpha_mzap(red.green,blue)
float *red,*green,*blue;

RAYput_alpha_map loads an entire lookup table, defined by the red, green, and blue arrays, for the alpha
chanpel. The red, green and biue arrays are of length RAY_VIDEO TABLE and consist of {loating point
values between 0.0 and 1.0.

RAYput_alpha_map_entry()

int RAYput_alpha_map_entry(index,red,green,blue)
int index;
float red, green, blue;

index = indicates which entry is being updated

3-74 RAYlib User's Guide, Yersion 0.5

Yideo Functions

RAYput_alpha_map_entry loads a specified entry into the color map for the alpha channel. index can
range from 0 to RAY_VIDEO_TABLE - L. The parameters red, green, and blue are floating point values
between 0.0 and 1.0. RAYput_alpha map_entry returns RAY_ERR_ARG if index is out of range, otherwisc
it returns RAY_ERR_OK.

RAYget_color_map()

void RAYget_color_map(red.green,blue)
float *red,*green,*blue;

RAYget color_map_entry returns a specified rgb entry from the current rgb lookup table. index can range
from 0 to RAY_VIDEO_TABLE - 1.

RAYget_color_map_entry()

int RAYget color_map_entry(index,red.green,blue)
int index;
float *red,*green,*blue;

RAYget_color_map_entry returns a specified rgb entry from the current rgb lookup table. index can range
from 0 to RAY_VIDEQ_TABLE - 1. RAYget color_map_entry returns RAY ERR ARG if index is out of
range, otherwise it returns RAY_ERR_OK.

RAYget_aipha_map()

void RAYget alpha_map(red, green, blue)
float *red,*green,*hlue;

RAYget_alpha_map rcturns arrays containing the current r, g, and b values in the alpha map. Each red,
green, and blue array is of length RAY_VIDEO TABLE.

RAYlib Functions 3-75

Video Functions

RAYget_alpha_map_‘entryo

int RAYget_alpha_map__cnﬂ-y(lndemdwn.blue)
int index;
float *red,*green,*blue;

RAYget alpha_map_entry returns a specified rgb alpha map entry. index can range from 0 to
RAY_VIDEO_TABLE - 1. RAYget_aipha_map_entry returns RAY_ERR_ARG if index is out of range, oth-
erwise it returns RAY_ERR_OK.

3-78 RAYlib User's Guide, Version 0.5

A

Appendix A

Deftinition of Constants

Appendix A

Definition of Constants

Constant

Value

RAY FALSE
RAY_TRUE

RAY_OFF
RAY_ON

RAY ERR_TEXTURE
RAY_ERR_OK
RAY_ERR_ARG
RAY_ERR_OPEN
RAY_ERR_NODE
RAY_ERR FILE
RAY_ERR_LOAD
RAY_ERR_INVERSE
RAY_WARN_NO_0OBJ
RAY ERR_INTERNAL
RAY _HALTED
RAY_ERR_BAD_BVOL

RAY_RESIDENT TEXTURE
RAY VIRTUAL_TEXTURE

RAY_MAX_TEXTURES

RAY MAX TRANSFORM

RAY_MAX_BASIS

RAY QUADRIC DEFAULT

RAY_PATCH_DEFAULT

RAY_BEZIER BASIS
RAY_HERMITE_BASIS

RAY FOUR POQINT BASIS

RAY_B_SPUNE _BASIS

RAY_USER_BASIS 0
RAY_USER_BASIS_1
RAY_USER_BASIS 2
RAY_USER_BASIS_3
RAY_USER_BASIS 4
RAY_USER BASIS 5
R7_USER BASIS 6
RAY_USER BASIS 7

0
(! RAY_FALSE)

Do
%
O
il
J

—
8!\)0 QW MNITME LN = O —

w
@ N

WN - O

NO O e LN -0

Appendix A

A-1

Definition of Constants

Constant

Value

RAY_LIGHT DIRECT
RAY_LIGHT POINT
RAY_LIGHT_SPOT
RAY_LIGHT_CONE
RAY_LIGHT AREA

RAY_LIGHT ALL
RAY_TYPE ALL
RAY_BLACKOUT
RAY_SUNGLASSES

RAY_MAX_LIGHT
RAY_VIDEO_TABLE

RAY_STATISTICS

RAY TIMINGS
RAY_PAGE_STATISTICS
RAY_ALL_STATISTICS

RAY TRACE

RAY NO SHADOWS
RAY SHADOWS
RAY ANTIALIAS
RAY_NO_ANTIALIAS

RAY_LIMIT_REFLECTIONS
RAY_LIMIT _TRANSPARENCY

RAY_MAX_TREE_DEPTH
RAY_MAX_BVOL_NEST

RAY_IMAGE_PIXELS

RAY_RGB_PIXELS
RAY_RGBA_PIXELS
RAY_RGBA_PACKED PIXELS
RAY_ABGR_PACKED PIXELS
RAY_RGB_ENCODED PIXELS
RAY_RGB_PACKED_ENCODED PIXELS
RAY_COMPOSITE

RAY TOP BUFFER

RAY_BOTTOM BUFFER
RAY_SCREEN BUFFER

A-2 RAYlib User's Guide, Yersion 0.5

D& WA -

RAY OFF
RAY_ON

(RAY_STATISTICS
+ RAY_TIMINGS
+ RAY_PAGE_STATISTICS)

QN O —-O

—

16
© 100

2048

DU esEWLWwN - O

0x0200
0x0280
Ox0600

Definition of Constants

Coanstant Value
RAY EXT ENDED_VRAM OxfQ
RAY_BROADCAST_VRAM 0

Appendix A A-3

B

Appendix B

Type Detinitions

Appendix B

Type Definitions

Because RAYlib and PIClib are compatible in syntax, many of the supporting data structures (typedefs) are
the same, or as close as possible. In some cases, particular variables may be meaningful for one library but
meaningless in the other. To maintain compatibility, structures often include names to for both libraries.
As a result, some vanables necessary for one library are ignored by another.

typedef float RAYmatrix(4][4];

typedef struct {
float X, Y, Z;
float nx, ny, nz;
float r. g b;
float exp, angle;
float intensity;
long samples, vertices;
float *vertex;

} RAYlight_source;

typedef struct {
float a_red, a_green, a_blue;
float d_red, d_green, d_blue;
float s_red, s_green, s_blue;
fioat exp;
fioat transparent;
float specularity;
float reflectivity;
float refraction index;

} RAYsurface_model;

typedef unsigned char RAYpixe;
typedef struct { RAYpixel red, green, blue; } RAYrgb pixel;
typedef struct { RAYpixel red, green, blue, alpha; } RAYrgba pixel;

typedef struct { RAYpixel alpha, blue, green, red; } RAYabgr_pixel;

Appendix B -

C

Appéndix Cc

RAYlib Function Return Types

RAYlib Function Return Types

extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern int

extern void
extern void
extern void
extern void
extern void
extern void
extern void
extern int

extern int

extern int

extern void
extern int

extern int

extern void
extern int

extern void
extern void
extern void
extern ot

extern void
extern void
extern void
extern void
extern int

extern void
extern int

extern void
extern void
extern void
extern void
extern void
extern void
extern void
extera void
extern void
extern void
extern void
extern void
extern int

extern int

extern void

RAYambient_intensity();
RAYantialias_range();
RAYatom();
RAYbackground _color();
RAYbroadcast_data();
RAYcamera_view();
RAYdear viewport();
RAYclose_bounding _volume();
RAYcopy back_to_ex();
RAYcopy_ext_to_back();
RAYcopy_froat_to_back();
RAYdouble_buffer();
RAYexit();
RAYexit_immediate();
RAYget_alpha_map();
RAYget_alpha_map_entry();
RAYget buffer();
RAYget_buffer_mode();
RAYget_color_map();
RAYget_color_map_entry();
RAYget_inverse_transform();
RAYget_normal_transform();
RAYget scan_line();
RAYget_screen_size();
RAYget_transform();
RAYhalt();

RAYinit();
RAYlight_ambient();
RAYlight_switch();
RAYlookat_view();
RAYlookup_view();
RAYopen_bounding _volume();
RAYpatch_geometry 3d();
RAYpatch_precision();
RAYpersp_project();
RAYpolar_view();
RAYpoly_close();
RAYpoly_point_3d();
RAYpoly_point_av();
RAYpoly point_nv_uv();
RAYpoly_point_uv();
RAYpop_transform();
RAYpostmultiply transform();
RAYpremuitiply transform();
RAYpush_transform();
RAYput_alpha_map();
RAYput_alpha_map_entry();
RAYpit basis();
RAYput_color_map();

Appendix C

C-1

RAYlib- Function Retur Types

. cxf‘c‘:_x‘iﬁ e o RAYput_color_map_entry();

externvoid =~ RAYput_identity_transform();
externvoid RAYput _light_source();
extern_int RAYput_limit(); -

exter‘n vmdf" RAYput_rotate_dx();
extern void ’ RAYput_rotate_dy();
extern void RA Yput_rotate_dz();
externvoid-~ RAYput_scale’ dx();
e'ctem void RAYpit_scale_dy();
extern void. RAYput_ scale _dz();
extern void RAYput_scan_line();

extern int RAYput_surface_model();
extern int RAYput_texture();
extern void - RAYput_transform();
extern void RAYput_translate_dx();
extern void RAYput_trasslate_dy();
extern void RAYput_translate_dz();
extérn void RAYput_viewport();
extern int RAYquadric_precision();
extern void RAYrotate _dx();

extern void RAYrotate_dy();

extern void RAYrotatc ~dz();

extern void RAYrotate” vector();
extern void RAYrotate x();

exterr void RAYrotate_y();-

extern void RAYro(atc_z() 3

extern void . RAYsamples();-
extern void RA Yscale();"
extern void RAYscale_dx();
extern void RAYscale dy();
extern void- RAYscale dz();
extern void RAYscale x();
extern void RAYscale y();
extern void RAYscale z();

extern int RAYselect Ja(ch basis();
extern void RAYset_surface modcl()
extern void RAYset tcxturc()

extern void RA Yshade mode()
extern void RAYsphcre()

extern void RAYstau.sncs()
extern void RAYsuperq_cUnﬁsOId()
extern void RAYsupcrq_'hypcrl()
extern void RAYsupcrq_hyperZ()
extern void RAYsuper(L{orus()
extern void RAYswap_buffer();
extern int RAYtrace();

extern void RA Ytranslaté _dx():
extern void RA Ytransfdte_dy() ;
extern void RA Ytranskite dz();
externvoid . RAYtranslate _x();
extern void RA Ytranslate y();

G2 RAYIib Users Guide, Yersion 0.5

Types

‘ Yo,

RAYlib Function Raturn
extern void RAYtranslate _z();
extern void RAYupdate_map();
extern void RAYwindow_project();

o
.; . “ ST
g s,
; o T
.
N s
.- PR RS a -
.3 < 4
31
1 - ’)
. o ’
s
, R
: 1
k4
r
N
v
NN
[
Ll !
¢ v

N
iy,
.
-
o

AppendixC C-3

