
FnTechnical Report
Apr# 19e

AD-A199 721

CRON US, A DISTRIBUTED OPERATING
SYSTEM: PHASE I

BBN Laboratories Incorporated

Richard E. Schantz, Robert HI. Thomas, R. Gurwitz, G. Bono, M. Dean,
K. Lebowitz, K. Schroder, M. Barrow, and R. Sands 'X

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

DTICSELECTE
OCT 0 41988

ROME AIR DEVELOPMENT CENTER0
Air Force Systems Command .

Griffiss Air Force Base, NY 13441 -5700
*IS

810 3 106
M S

Ipv

AnlP'MLQ .-

r~~~rt~~~bas-besn~~~~.~ reiwdb h RD ulcAfir iiin(A

UDC-TReport2 has been reviewed byd ths aCrve P ublica t iiion(A

RAYON P.UT , JR..

~~OMJOH A. LAWENZ

Technicalt Dfirenctorogam

If yur drectoate ofhCnged onitob eoe rmteR aln

Do nt reurn opie ofthisrepot Dirsctratea obliason roranoic

Iour addressihas dcanedur ifa yoish be re oedfrrthned.miln

litri h drse sn ogr mlydb orognztopes

notify~ ~ ~~ ~N RVD (C.TD %rffs AV N 134--0 Thi %il asis us% inan
% %ann a curn maln lit

m~Ruiam~uuv W5UM~JII d'JW.FJ PW %wX %K ' X'% 'r' "A1.X r~ JI[%r--1r 3?7.(" 3. iE. VUt !I VT - vI Vy .' in

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA'GE

REPORT DOCUMENTATION PAGE OM o. 070p0188

la REPORT SECURITY CLASSIciCATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED N/IA
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION IAVAILAB'LITY OF REPORT

N/A Approved for public release; distribution
2b DECLASSIFICATION; DOWNGRADING SCHEDULE unlimited.

4 PERFORMING OR6ANIZATION REPORT NUMBFR(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

RADC-TR-88-32 i/,

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITOR;NG ORGANIZATION

BBINLabratoiesIncoportedRome Air Development Center (COTD)

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

10 Moulton Street Criffiss APB NY 13441-5700
Cambridge MA 02238

Ba NAME OF FUNDING,SPOiSORING 8b O FFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATtON (if applicable)

Rome Air Development Center COTD F3060281-C0132

8c AD DR E SS (City, Sta te, a nd Z. P Code) TO SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 El EMENT NO %0 NO ACCESS;Oi% NO

63728F 2530 01 07.

1 1 TITLE (include Security Classification)

CRONUS, A DISTRIBUTED OPERATING SYSTEM: PHASE I

12 PERSONAL AUTHOR(S) Richard E. Schantz, Robert H. Thomas, R. Gurwitz, G. Bono, M. Dean,

K. Lebowitz, K. Schroder, M. Barrow, and R. Sands
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT

Final FROM Sep 81 To Se74T April 1988 84
16 SUPPLEMENTARY NOTATION

N/A

17 COSAT, CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB GROUP Distributed Operating System Tuteroperability

12 07 ___ Heterogeneous Distributed System Survivable Application .

System Monitoring and Control
19 ABSTRACT (Continue on revers-? if necessary and identify by block number) ',

Tlis is the final report for the first phase of development for the CRONIS DOS Design and

I mplemen tat ion Project. CRONUS is the name given to the distributed operating system (DOS)

* and distribu~ted system architecture appl icat ion development environment being designed and
implemented by BBN Laboratories for the Air Force Rome Air Development Center.

%1-

20 ~ , DITtUI, -~ I11i FASRC 1ASRC SCRT LSIIAIN

W.~~' % .V

'0 IN-

20 STRUTN A~iA~ iY C ASTRCT21 BSRAC SCURTYCLASIICAIO

0 J~C~ASIFEC)IINUITE ~ AMEAS RT ~OTI USRS UCLASIFED%

Table of Contents

1 In t r o d u c ti o n 1
1.1 Th e Ro le o f a DO S 2

2 O v e r v i e w 5

2.1 Background 5
2.2 Functional Description 5
2.3 System Design 6
2.4 System Implementation8

2.5 Test and Evaluation 9

3 The Cronus Architecture and Design 10
3.1 General Hardware Architecture 10 %

3.2 Key Ideas and Implications 12
3.3 Software Architecture 14
3.4 The Cronus Object Model 16

3.4.1 Cronus Objects and Operations 16
3.4.2 Layered Structure 18
3.4.3 Message Passing Core 21

3.4.4 Prim itive Operations 22
3.4.5 Object Location and Message Routing 23
3.4.6 Properties of Messages 24
3.4.7 Message Encodement 25
3.4.8 Extending Beyond a Local Network 27
3.5 Basic Cronus Types 29
3.6 Access Control in Cronus 30
3.7 File System....... 32
3.7.1 Primal Files ... 34
3.7.2 Reliable Files 37-
3.8 The Cronus Catalog 44
3.8.1 Implementation of the Cronus Symbolic
Catalog 0

.. 47
3.9 Automating Cronus Manager Development 51
3.9.1 Manager Facilities Provided Automatically 51
3.9.1.1 Multiple Object Types 52
3 .9.1.2 D ispatch ing 52
3.9.1.3 Mu ltitask ing 53 0
3.9.1.4 Access Control 53 %
3.9.1.5 Inheritance of Operations 53
3 9.1.6 Message Parsing and Validation 54 %
3.9.1.7 Storage For Instances of Objects 54 e.
3.9.2 Client Facilities Provided Automatically 55

-e -r r

,

3.9.2.1 Subroutine Interfaces ... 55
3.9.2.2 Generic User Interfaces 55

3.9.3 Documentation 55

3.9.4 Experience to Date. 56
3.10 Cronus Monitoring and Control System 56
3 .10 .1 R o le o f th e M CS 56
3.10 .2 Functional Areas 57
3.10 .2 .1 Fau lt Detection 57
3.10 .2 .2 Logg ing 58
3.10 .2 .3 Fault Isolation 58
3.10 .2 .4 Fau lt Correction 59
3.10.2.5 Resource Allocation and Policy

Management

. 5 9
3.10.3 Current Implementation 60
3.10.3.1 Host Probes and Service Probes 60
3.10.3.2 Transaction Log 61
3.10.3.3 Status Display Programs 61
3.10.3.4 Starting and Stopping Services 61
3.10.3.5 Graphical User Interface 61
3.10.3.5.1 Graphical Presentation 62 ,
3.10.3. 5 .2 Interactive 6...................2............. 6
3.10.3.6 Configuration Management 63
3.10 3.7 Structure of the MCS 64
3.11 Resource Management in Cronus 64
3.11.1 General Approach 64

3.11.2 A Resource Management Example 67 %m

4 Test and Evaluation 71
4 1 Areas of Internal Use 71

Accession For !

NTIS GRAI [V
DTIC TAN "

JustIf. 1 I I Ol

9By--

~Distribution/

Aqatlability Codes

i cn or n/o

.S.

V, , N- "A,. %

Avalsbilty Cdft
Avilz an/o

Dist %pca% %
p1N,

O

1 Introduction

This is the final report for the first phase of development ,.

for the Cronus DOS Design and Implementation Project/^, Cronus is
the name given to the distributed operating system (DOS) and
distributed system architecture application development
environment being designed and implemented by BBN Laboratories --

for the Air Force Rome Air Development Center.

This is not the first DOS developed by BBN The field of "
distributed operating systems and its supporting technology base
has evolved rapidly since our early attempts over the preceeding
ten years at coupling the operation of otherwise autonomous
systems. In this respect Cronus represents an amalgamation of .'-

much of what we have learned from previous DOS efforts combined
with the experiences of others pursuing similar goals, new
underlying technology, and updated views of what distributed
operating systems and programming distributed systems are all
about.

K '

The Cronus distributed operating system is intended to .

promote resource sharing among interconnected computer systems,
and manage the collection of resources which are shared. Its
major purpose is to provide a coherent and integrated system -0

based on clusters of interconnected heterogeneous computers to
support the development and use of distributed applications.
Distributed applications range from simple programs that merely ,
require convenient reference to remote data, to collections of
complex subsystems tailored to take advantagp of a distributed

* architecture. One of the main contributions of Cronus is a
unifying architecture and model for developing these distributed .r
applications, as well as support for a number of system provided
functions which are common to many applications. The Cronus
project is starting from a desire to achieve the basic concept of
an integrated distributed computer utility and evolving a design
and impl~mentation toward experimentally validating its system * w.

model.

.N N

31 % T -, . WI W - - T

1.1 The Role of a DOS

It is now a practical reality that the world is and will

continue to be populated by distributed computing resources.

This is a direct outgrowth of two somewhat distinct but related

phenomena. The first factor is the increase in the number of

computerized activities associated with any given organization of

significant size along with the inherent distribution within the

organization itself. The second factor is the tremendous

decrease in the pride and size of computer systems and modules

making it economically feasible for a system designer to

contemplate a collection of intelligent computer systems

(components) as a solution to some data processing requirements.

As a result of the first factor, organizations often find
themselves with a number of independent, sometimes unique

computer systems, each supporting some of their overall data

processing requirements. When this situation arises, it is quite

natural to seek degrees of interoperability between the

previously independent computer systems by interconnecting them

via a computer network. One important role of a DOS is to

support and control interoperability between at least some of the

resources developed by the constituent host systems. The second

factor (the feasibility of using collections of machines to

provide some integrated service) leads to a quite a bit different
view of the role of a DOS. The contribution of any single host

toward supporting the overall system functionality may be

limited. A number of potential benefits are often cited for
organizing a set of services around a collection of cooperating

systems. Among these are the potential for increased efficiency

through functional specialization, modular expansion, forms of

enhanced reliability, and potentially improved performance

through extended parallelism. --

Applications which could make use of distributed resources M* 0

come in a variety of forms, each often attempting to initially

utilize their distribution as a means of achieving a different

goal. It is believed by many that a distributed architecture is

key to increasing the reliability, or improving the performance

or modular expandability of computing systems. Distribution is A%.

S key to system reliability because physical distribution (even

over relatively short distances) typically means independent
failure patterns. It is key to system performance because of
potential for increased efficiency through functional

specialization and because distributed processing components can
exhibit a great deal of real parallelisar It -fty to system

h2

bw-2-

* 0%

mI

modularity and evolvability because of the requirement for well
defined functional interfaces and protocols and the convenience
of adding additional computing elements.

There are other approaches to reliability, performance and UaY
modularity besides a distributed one. In isolation other

approaches could even be as promising. However, when taken all
together, and included with such other desirable features such as

interoperability between heterogeneous system resources, and
shared access to common services, a distributed processing
computer utility appears to be the only approach capable of

simultaneously achieving many or all of these objectives.
Distributed processing systems represent not so much a difference
in terms of what is computed but rather in how a system is ,*
structured to provide the computational facilities.

Despite the growing existence of distributed resources, it
is aecidedly not a reality that these resources can be easily
integrated into a coherent collection responsive to the needs of
the organization deploying them. Bits and pieces of extremely
valuable functionality applying distributed resources to emerging , e

immediate problems continue to be developed, but there have been
few attempts to try to either capture the basis of distributed
applications to make it available for subsequent ones, or to
develop an application in such a way that it can be easily
integrated with preceding, concurrent or planned applications in

an integrated fashion as part of the overall automation a
objectives of the organization. It is the distributed operating .. K

system and its associated hardware, firmware and software which
organizes an otherwise independent collection of computers into

an effective computing facility.

The two distinct aspects of a DOS, for preplanned and
unplanned integration, are reflected in the various parts of our
DOS design. Some parts are oriented toward the interoperability
of similar functions found on many individual systems, thereby
providing a degree of uniformity in an otherwise heterogeneous
environment. Other parts are more concerned with value added to
individual functions within an environment which is completely
designed to operate with companion functions in a more
homogeneous fashion.

3-

--

' \ ',L L A .z . ,,-el o -, -,\. - . .' . , \, - ;

It is the intent of the Cronus design and testbed

implementation to provide a hands-on vehicle for addressing the %
technical and administrative issues associated with trying to
effectively utilize distributed system technology.

In the rest of this report we discuss the background for the
project and how it is organized. We then provide an overview of
the architecture and describe the system design and
implementation to date. We conclude with a synopsis of our test
and evaluation experiences to date.

.

• .

%%' % %

A* _N N

2 Overview

2.1 Background --,

Recognizing the potential that a distributed systems
architecture has for meeting future command and control
application requirements for interoperability, survivability and
extensibility RADC has been supporting the development of
applicable technologies through its Distributed System Technology
Program. One of the areas being pursued is that of distributed
operating systems. A distributed operating system (DOS) is that
software which integrates, coordinates and controls a collection N.--

of computer systems interconnected by means of one or more
communication networks. A DOS serves to facilitate development
and operation of application programs requiring the resources of
multiple machines for reasons of functionality, survivability,
scalability, and/or performance.

In 1981, after a number of study projects, and experience
with a number of prototype distributed system implementations,

BBN began work on developing for RADC a distributed system
testbed and DOS software. This distributed system testbed is
intended to provide a base for building and evaluating
distributed applications. The DOS Design/Implementation project
was divided into four parts. functional description, system ,
design, system implementation, and test and evaluation. 0%

2 2 Functional Description

The first part of the Cronus project involved assessing the

requirements for use of distributed system technology in
supporting future C2 systems. This resulted in a Cronus System %
Functional Description which lays the framework for the system 0

development. Two prominent themes, which are similar to the
development of the C2 systems themselves, emerged from the
functional description effort. The first is that the problem : -"
area is multi-dimensional and potentially very large, and the
second is that the systems developed must evolve in such a way ..-

that attention can be focused on specific parts of the overall 0
problem at different times. The functional description enumerated
the various functional areas and system properties which were
thought necessary for successful demonstration of distributedapplications.

-5-

% %

The system objectives were to establish a comprehensive
distributed system architecture, and then to integrate a
collection of computer systems into a coherent and uniform %

computing facility within this architecture. This computing
facility should exhibit the following properties. 0

o survivability of system functions

o scalability of system resources

o global management of system resources

o substitutability of system components

o convenient operation of the system

Our approach to developing Cronus has been to establish a
general svstem framework into which each of the above-mentioned
objectives fit, and then to elaborate in these areas on a
priority basis. The Cronus effort to date has concentrated on ..

developing an extensible distributed system architecture, e*_,/
establishing an initial Cronus hardware testbed facility,
designing and implementing a model fc: host-independent access to
system resources, establishing system-wide uniformity in a
variety of DOS functional areas, and begun to address issues of = -"
survivability, resource management, and monitoring and control.

The functional areas which were determined to be necessary
include flexible interprocess communication, a system-wide global 9
name facility, authentication and access control, a distributed
file system, distributed process management, a uniform user
interf ace, and monitoring and control software -,

2 3 System Design -.

The second part of the effort involved the design of a --. 7.
system meeting the above functional requirements. Because of the ,""

experimental nature of the effort, a system design approach which 0
supported system evolution was adopted. This design allowed a NO
multi-phase implementation effort, where some parts of the system
could be designed and implemented before other parts. The system e
design was documented in a series of Cronus System/Subsystem %
reports These reports describe the overall system structure,

9

, ' .-**,.

-6-

.% VV * .4,,rP
% %,, %. % % ~

established the major components of the system, and developed
designs for those parts of the system which were to be
constructed during the initial phase of implementation The
intent of our initial design work was to establish a solid
framework which could be extended in an orderly way in all of the
areas of interest, focusing on demonstrating particular aspects
of distributed system technology.

The Cronus system design is based on an object-oriented view
of the system. The Cronus system kernel includes a host
transparent object-based interprocess communication facility, "i
focusing on the invocation of operations on objects. The kernel
itself supports the abstractions of a host object for monitoring
and control purposes, and process objects for supporting Cronus -
object managers. A Cronus library provides a standardized

interface for invoking operations on objects. including
conversion to and from a standard data exchange format for ,
inter-processor communication (thus accounting for heterogeneity
within the cluster). The rest of the system consists of system
and application objects and managers, along with client commands
and subsystems which allow users to access these objects and
perform operations on them. Some of the system objects are
migratable, and serve as a basis for reconfiguring the system,
while other objects are replicated to support survivability. The
initial set of object managers used as building blocks supporting
Cronus application software include.

o Catalog managers, which collectively implement a system-
wide symbolic name space.

o authentication managers, which provide principal and group
objects supporting authentication and access control,

o file managers, which implement a distributed file system,

o device managers, which allow connection of terminals, line 0
printers, etc. ,." -

Initial application software provides the user interface and

monitoring and control functions. The system design is
extensible through the addition of new object types, including 0
application-specific objects. In this way, the development of
system functions (such as a catalog manager) serves both as an
example of how to use system mechanisms for supporting
application development, and as a building block for new
applications.

%I %

-- % % %.

% 6 ON% %% - -%

2.4 System Implementation

The third aspect of the Cronus project is the development
and implementation of a testbed facility. This includes the
selection and integration of a variety of hardware components
representative of the diverse selection expected to be found in a
command and control data processing facility. It also involves

the implementation of the Cronus design for these hardware
components.

The initial hardware components specified and selected for
integration into the Cronus testbed were C/70 UNIX and VAX/VMS as
general-purpose application hosts (demonstrating processor and
operating system heterogeneity) and special-purpose
microprocessor-based Generic Computing Elements (GCEs),
interconnected via an Ethernet local area network for
communication within a cluster, and standard Internet gateways
for communication between clusters. In all cases, these

components represent either an instance of a larger class of
hardware types, or a demonstration vehicle (with possible later

substitution of a component more appropriate to a given
operational context). An additional system component, a
dedicated single user workstation, was also included in the
original architecture. Because of the current volatility of •
workstation technology, workstation integration was deferred from
immediate attention. However, we have recently selected and
integrated a SUN microsystem workstation to serve the role as a I
dedicated C2 workstation. A recent system upgrade also included
evolving the C/70 based UNIX software onto 4.2BSD VAX-UNIX .

systems. 0

To ensure the substitutability of the network communication
medium, the system implementation is based on the standard DoD
protocols, IP and TCP.

Both the Cronus design and implementation are proceeding in
phases. Our approach to implementation is first to concentrate
on an initial version of basic system functionality,

% demonstrating the uniformity, coherence, and flexibility of the
system concept within the heterogeneous cluster environment.
Although the general approach to system survivability and %
cluster-wide resource management in Cronus has already been

defined and some initial demonstration software is in place, .- ;
developments in these areas are the dominant functional

extensions specified as part of the next phase of implementation.

-8-

% %
SW' W'.-.s-~s..; .,-%

.- t

To date we have implemented the Cronus object system support II
software for each host in our testbed configuration. In
addition, we have implemented a variety of object manigers which
represent major system functional units. These include catalog
managers, file managers, and authentication managers all running
on many of the host types in the configuration and integrated
with initial application programs. An initial monitoring and
control capability has also been developed.

2.5 Test and Evaluation

The fourth aspect of the Cronus project is system test and
evaluation. The general approach taken is to promote the use of
Cronus system components to support the daily activities of the
Cronus developers and further development of the system. This
focus was intended to accomplish multiple objectives. First, it

causes the use of system components which shake out reliability
and performance problems early in the development cycle. Second,
it concentrates effort on the problems of developing software for
a Cronus cluster. Since a major role of emerging distributed
operating systems is support for the development of distributed
applications, this form of test and evaluation helps in smoothing 4

the transition from in-house usability to use by outside
organizations. Use of the system by the system developers has

meant early emphasis on the distributed file system aspects of
Cronus, as well as attention to the problems of integrating %
existing software development tools into the Cronus environment.
This too is an important area for continued implementation 9
effort.

0 0

%f, tN

- 9 -.. 'a

S%%%

% %d % % %

3 The Cronus Architecture and Design

3.1 General Hardware Architecture

Cronus operates in an environment made up of interccnnected
computer communication networks. This internet environment
includes both geographically distributed networks which span tens
to thousands of miles and local area networks which span
distances of up to.a mile or two. From an architectural point of
view, it is useful to think of this environment as being composed
of clusters of host computers, where the hosts within a cluster
are separated by distances of up to a few miles and are typically
under a unified administration.

A cluster is specified by an explicit enumeration of its
host components. The configuration of a cluster may change over
time by the addition and removal of hosts. These changes are
expected to occur relatively slowly. Since a cluster, in effect,
acts to define the boundaries of a Cronus system, a cluster is
the domain over which a class of names are guaranteed to have
meaning and be interpretable. The names of interest here are both
low level unique identifiers and higher level symbolic names for
objects.

A cluster may include hosts on several networks, and several
clusters may exist on the same network. However, performance
considerations will generally lead to clusters that consist of %
hosts on a single local area network or on a few local networks
interconnected by means of high performance gateways. Therefore,
although a cluster is a logical rather than a physical concept,
clusters will tend to be aligned with local area networks.

Cronus currently operates in a cluster defined by one or
more local area networks. Extensions to multi-cluster 0

architectures are currently being designed. The principal _
elements in a Cronus cluster include:

1. A set of hosts upon which Cronus operates.

2. One or more high performance local area networks which
support communication among hosts within a Cronus cluster. ,- -

3. An internet gateway which makes the cluster part of the
internet by supporting communication between cluster hosts
and hosts external to the cluster.

10
4 0-

. .? .' - .'V'"....JI, , ,' . % ., , "" '? r . . ,. '. P- ., .0•. . .

The Cronus host set is a heterogeneous collection of hosts
which can be divided according to function into three broad

classes

1. Hosts dedicated to providing Cronus functions.

The functions the hosts provide include file and data

storage, user authentication, catalog management, device

control and terminal access. The hosts which support these

functions are called Generic Computing Elements (GCEs).

GCEs are small, dedicated-function computers of a single
architecture but varying configuration. Each GCE provides

one or more basic Cronus functions. Since GCEs have the

same architecture, they provide a replicated hardware

resource which, with appropriate software, enhances the

survivability of basic Cronus functions.

4 2. Utility and application hosts.

Although these hosts may support some Cronus functions
supported by GCEs, their primary role is to support user

applications. The utility and application hosts include a

variety of machines with unrelated architecture. They are

typically mainframe hosts which may serve a number of users

simultaneously. .

These hosts run operating systems which are largely

unmodified. The software necessary to integrate them into

Cronus runs as an adjunct to rather than a replacement for
the hosts' primary operating systems. Hosts can be included

in Cronus with varying degrees of system integration, with

some supporting and providing access to only limited

subsets of the services defined by the Cronus environment.

3. 'Single user workstations.

Workstations are powerful, dedicated computers which

provide substantial computing power and graphics capability

to a single user. They are used both to provide user access

to Cronus and for their ability to run applications. They

differ from mainframes in that they support a single user

and from terminals in that they offer significant 0
computational resources.

Since we began the Cronus design three years ago, a new host type

has emerged. the inexpensive personal computer as exemplified by

the Apple Macintosh or the IBM PC. We are currently considering

P .W

% 1 -%%

S z * ? ? " , , * -o . , . " , ? % '
% % N

..a. **bN

10
dl-

the architecture impact, if any, of these single user machines.

3.2 Key Ideas and Implications

There are several key ideas which form the basis fc, J-e
Cronus design. These are:

1. The Cronus object model.

The basic system organizing principle for Cronus is an
abstract object model. Cronus can be thought of as a
collection of objects organized into classes called types.

The services Cronus supports are implemented by processes
that manage various object types: files, processes,

directories, etc. Cronus attempts to treat all types
uniformly. in accord with its object model. Within the
object model, location independence and dynamic run time
binding to objects are important concepts behind the

design. The object model is extendable to application
development. The system design is based on the idea that
to a user there is essentially no difference between
providing "system" services and "application" services.

2. System-wide availability of essential services.

The services provided by Cronus include:

o Object management for many types of Cronus objects.

o A standard interprocess communication (IPC) facility

o A system-wide distributed file system.

o A system-wide symbolic name space for all types of objects.

o Facilities for process management.

o User and process authentication. ..

o A standard access control discipline for all system and
application resources.

A user interface that provides access to all Cronus and i
application services.

- 12 -

% S
S S ~ .y*~..,.* .. ,..,.* %;. ' / *'- ~ p .

a Monitoring and control services for the entire system, the

individual hosts, individual services, and applications.

At the heart of the Cronus concept is the availability of

these services to all Cronus applications. The coherence
and uniformity of Cronus is directly enhance4 when
applications and application host operating systems utilize
the Cronus-supplied services as the single source of these
services. To the extent that applications and application

hosts choose to utilize parallel but incompatible services,
coherence and uniformity are diminished. For many existing

applications and hosts integrated into the Cronus
architecture, we anticipate a gradual evolution from
dependence on local mechanisms to reliance on Cronus
functions for similar globally managed services.

3. Generic Computing Elements (GCEs).

The concept of the GCE is important to the Cronus design.
As previously noted, a GCE is an inexpensive host that can

be flexibly configured with small or large memory, and with
or without disks and other peripherals. GCEs are
configured for, and dedicated to specific Cronus services,

such as file storage, Cronus catalog managment, and user
authentication. Because they are dedicated to Cronus, it
is possible to control and optimize the performance and OX
reliability of the Cronus services supported on GCEs.

4. Minimal dependence on a particular LAN technology and other

system hardware.

Cronus accesses the local network capabilities indirectly
through an interface called the Virtual Local Network (VLN)

rather than directly. The VLN interface embodies an
abstraction of local network capabilities. The cluster
configuration used for Cronus- development includes an

Ethernet. By building Cronus to use the VLN interface, it
is possible to replace the Ethernet with any local network

that provides the basic transport services Cronus requires

simply by developing software which implements the VLN
interface for the new network. Cronus has already been
ported to a Pronet Ring network base with only network
device drivers needing recoding. Writing Cronus system
software in a high level language (C) and using Cronus

mechanisms internal to the implementation both reduce
dependencies on constituent operating system functions.

This makes Cronus components easy to port to new hardware
which is anticipated to increase the effective system

0

-13

-% 1% 3 - %

lifetime through a number of periods of hardware evolution.

5. Flexible host integration.

When a new application host is integrated into Cronus there
are a range of integration possibilities which occupy
different points in a cost versus degree of integration

space.

When a host is integrated with minimal effort, little more
than a communication path between the host and the rest of
Cronus will be present. The host will be able to obtain
many Cronus services through the communication path, but
its own resources may be inaccessible to external process
through the normal Cronus mechanisms. Further effort can
be devoted to integrate the host more fully into Cronus.

6. Use of Standards

Cronus uses recognized standards in several key areas.

These directly contribute to both the coherence of Cronus
and interoperability with other systems. Standards are

used predominantly as interfaces internal to the system
itself, as a means of simplifying the introduction of new
system components which a'-eady adhere to one or more of
the standards. Use of st lards also extends the system V.
lifetime by allowing cony ent component upgrade as the
technology changes. The indards that it uses include:

o DoD Internet (IP) and Trar mission Control (TCP) Protocols.

o ARPA standard gateway.

o Ethernet.

o IEEE 796 bus (MultiBus).

o UNIX Constituent Operating System

S3 3 Software Architecture 0

The basic system organizing principal underlying Cronus is
an abstract object model. With this model all system activity can
be thought of as operations on a collection of objects managed by
the system and organized into classes called types. Examples of

-14-

'P 0*e. e.
%~J % %

%~ :-a ~ --. *d.

object types are files, processes, and directories of catalog
entries. The type of an object defines the operations that can
be invoked on it. The underlying structure of Cronus, which is
largely hidden from client processes, consists of the primitives
and mechanisms for delivering the operations to objects and
delivering the results, if any, of operations back to the
invoking client.

Cronus is implemented by a number of processes that reside
on hosts which are part of the cluster. Some processes, called
object managers, play a special role in implementing objects.
Generally, when an operation is invoked on an object, it i s

delivered to a manager for the object which performs the
operation. Other processes run application programs. Still
other processes provide services and functions fo- iserz For
example, the user interface runs as a process

There are three interrelated parts to Cronus,

1. The Cronus kernel, which supports the basic elements of the
object model, processes, communication between objects,
object addressing, and the relationship between objects and
their manager processes. The Cronus IPC is a major part of
the kernel.

2. A group of basic object types, along with the object
managers which implement them. The basic object types
include files, processes, devices, and user records.

3. User interface and utility programs which provide
convenient access to Cronus objects and services. The user
interface and utility programs make use of the Cronus IPC
and the basic objects to provide their services.

In addition, Cronus includes a set of rules for building and
accessing new types of objects, which spell out the methods for
integrating new object managers. Typically object managers for
new types make use of the Cronus IPC and existing object managers .. "
to implement their new types. Application programs developed for ..,

Cronus may make use of existing types by means of the Cronus IPC,
or may include managers for new types. N 5t

_% % ilk'

2-14i

leZN O N 'A N 16 %
%~

orA

% 15 %-

rlVr Ile I

%,.

3.4 The Cronus Object Model

3.4.1 Cronus Objects and Operations

The object model in Cronus provides a framework for both the
system itself and application subsystems. Cronus system
components, such as processes and files, are implemented as
objects, and operations on them support sys+er- services.
Application programmers are encouraged to use the object model
for the standard access paths it provides to pre-existing
objects, and for the facilities that are available to create new
objects and object managers.

The definition of an object in Cronus is tailored to the
distributed nature of the system. Special emphasis is placed on
allowing efficient access to objects without detailed information
about their current physical location.

All Cronus objects have several components.

1. A Unique Identifier (UID). A UID is a fixed length
structured bit string guaranteed to be unique over the
lifetime of the system. It serves as a handle for a
particular object. It consists of a unique number or

LUiQ and an Object Tyj field. The UNO guarantees
uniqueness and incorporates the host upon which the
object was created. The Type serves to classify the
object.

Although ultimately, all references to objects are
through U!Ds, Cronus implements a symbolic name space
which provides a mapping between user-defined symbolic
names and object UIDs in order to facilitate user

references to objects.

2 A Set of Operations. Processes may perform operations ,

on an object by sending request messages to the object's

mana gge. An object manager is a process or set of
processes responsible for maintaining and manipulating
an object. By convention, all managers are responsible
for performing several generic operations on their
objects. In addition they may perform any number of 0

object specific operations.

3. An Object Descriptor. This is data associated with the U0
object. It is maintained by the object's manager. It
consists of several required fields and any number of

16

% %. %

% 1 .

object specific fields. Some of the generic operations

are defined for accessing object descriptors. Cronus

achieves a consistent system model partly from the
uniform integration and handling of these object
attributes.

A mechanism is provided to group the objects associated with

a particular manager. Each object has an associated Object IyU.

A manager may declare itself a manager of one or more object
types. A functional area is typically supported by a set of
functionally .quivalent and cooperating manager processes
distributed on various hosts of the system.

A useful property of type managers is that they may be

accessed by simply knowing the object type that they are

responsible for. A special UID is provided this, the generic UID
of a given type. Generic UIDs are used for creating new objects

and for status probes.

An object's type is also used to describe its attributes.
In particular the set'of operations associated with an object and .
the parameters necessary for each operation ma" be determined 0

from the object's type.

The actual set of operations available on an object of a

given type consists of the set of generic operations and a set of
type specific operations. The generic operations are Create,
Remove, Locate, and several operations which read and write

standard fields in the object descriptors. Examples of type
specific operations are Read (for files) and Lookup (for

directories).

A key element of the object model is the Cronus kernel which
supports communication between client and object manager
processes. The kernel is message oriented, and it supports
object-oriented addressing. When an operation is invoked on an
cb~ect, the kernel delivers the operation (in a message) to the

appropriate object manager. Messages corresponding to operations *I
are sent as messages addresssed to the objects. The object .4

addressed is the operand, and the message data contains the
operation and any additional parameters necessary to specify the "4

operation. When the manager for the object receives the message,
it performs the operation requested. Responses are sent as

-17 j
* %

% I~~~"* qa

messages from object managers to requesting clients.

When invoking an operation a process need not specify the
host where the addressed object resides. To deliver the message,
the kernel must determine the appropriate host using the object
UID. In general, three somewhat different classes of objects

are accessed through the kernel. These are:

1. Primal Objects

These are forever bound to the host that created them. f

2. Migratory Objects

These are objects that may move from host to host as
situations and configurations change.

3. Structured and Replicated Objects

These are objects which have more internal structure than a
single "atomic" object. An example is a reliable
(replicated) file which has a number of identical primal
files *as its constituent parts.

The important thing about primal objects is that, given the a
UID of a primal object, the kernel always knows where to find it,

since the host it resides upon is coded in the UID. Non-primal
objects may move from host to host or may be replicated at
several hosts. The kernel uses an object location procedure to
find non-primal objects. This procedure locates an object by
means of a mechanism that broadcasts the generic operation Locate
(as a message addressed to the object). This ensures that every
manager for the object's type receives the Locate operation
message. Because Locate is generic, it is defined for all object

* types and implemented by all object managers. Any manager that S
manages the object will reply, thereby locating the object.

5.

3.4.2 Layered Structure

Cronus provides a set of facilities for the composition of
messages and their transmission to provide a systematic
communication facility among Cronus processes. There are three
parts to this communication support:

% %

- 18 -

% 0

% r 1r:.%-%

o An interprocess communication (IPC) transport facility.
based on the object model and object-oriented addressing,..

provides Cronus primitives for uniform, host-independent

communication among processes.

o Conventions for passing data using Cronus canonical data

types permit messages to be composed without concern for

the heterogeneity within a cluster.

o Protocols and conventions for constructing messages used

in intercomponent interactions, especially the invocation

of operations and the replies

The Message Structure Library (MSL) organizes these
conventions and protocols by providing routines for the

composition and examination of messages.

10

The IPC mechanism of Cronus is built upon the primitive

functions Invoke, SendToProcess, and Receive. These primitives

support the asynchronous communication of uninterpreted data

octets among Cronus processes, by means of the abstractions of

invoking an operation on an object or sending a message to a

process.

Messages, the entities communicated by the IPC. may be sent -'-'

either reliably or with minimal effort. In addition, notions of

both a small message which can be carried by a single datagram on

the underlying transport mechanism, and a large message which may O

require an arbitrarily large number of datagrams are supported,

although this distinction is hidden by the IPC library routines

Messages may be sent and received all at once or in pieces The

size of the chunk of data manipulated is independently selected

by the sender and receiver. Large messages of indefinite size

form the basis for interprocess stream communication

The Message Structure Library (MSL) is used to format

messages, but is independent of the IPC. It provides a mechanism
for inserting and extracting typed, structured data into a
message buffer in a position- and machine-independent manner.
Associated with the MSL are conventions, called the Operation % %

Protocol, for the patterns of communication that arise in

performing operations on Cronus objects.

-19-

% .0
% %% %, %

%. % ,.=,*..

Cronus is based on a layered architecture. This provides

the opportunity to use only a subset of Cronus for 'a specific or
limited application, and to easily replace individual parts of
the implementation with alternative but equivalent
implementations, should the need arise for optimization purposes.

A top down layout of the layers of the Cronus model follows

Manager Design Conventions

Access Control Conventions
J,

Object Manager Standards

Request & Reply standards (OP)-

Message Encodement (OP)

Message Passing Protocols ,

small [packet] & large [stream]l

IP Protocols

LAN %

The lowest levels consist of communication and message
routing protocols. The next two consist of the definition and
standards for using the Operation Protocol (OP) to send and

encode requests and replies. Above these are the standards for
implementing an object manager (including the set of required
object operations). The highest levels consist of conventions
for using the mechanisms provided in Cronus.

Although the Cronus system concepts are language

independent, and implementations exist for other languages, we 0

have concentrated our major implementation effort on the C
programming language A C language subroutine interface is .
provided to perform common tasks such as message generation and

parsing. In addition to these, higher level tools are available
for the development of new managers, including parameterized

-20 - %v

WN
%

•N- ',y , " , . , .', ,% .".'.% " " " " "" % 7 "
% %m '" " .' ." h % , ,..% ,,'. .• " . , .% '.,' .% %

.',L

'I--

routines for designing manager control structures. -

The following sections describe each of the layers of the
Cronus Model begining with the lowest level protocols and
continuing through to a brief description of the C language

interfaces.

3.4.3 Message Passing Core

Process-to-process messages form the basis of all Cronus "

Operations. A Cronus Operation in the simplest case consists of
a request message from a client to an object, and a reply message
from the manager of the object sent back to the client. A
complex operation may involve many sub-requests to various
managers and replies to each of the requests

The paradigm for a Cronus Operation is as follows A client
process determines the object UID on which it should perform an
operation. Using the object and the operation it constructs and
sends a request message.

r-

<object uid, operation, data>.

The apropriate object manager receives the request in this form .

<client uid, object uid, operation, data>. 0

The manager services it and sends a reply message back which the
client receives as.

<manager uld, reply data>.

It is important to note that the actual locations of the
client, the object, and the object manager can be transparent to 50%

both. In order to support this flexibility in a heterogeneous
environment, the lowest level of Cronus consists of host

independent protocols for message definition and routing.

The Operation Protocol is a protocol designed for the host
independent encodement of messages. Message data is encoded as a

list of values of the form.

%S

%* %

- "" ". V%.

<data type, encoded value>.

A key is associated with each value to reference it.
Encoding and decoding algorithms for each data type depend on the
local host's internal data structures. OP defines many standard
data types for values, such as integers and character strings.
In addition, higher level constructs such as arrays and
substructures are possible.

The Cronus Interprocess Commu'nication (IPC) facility is used
to deliver messages to the apropriate destination. An operation
switch Peer To Peer Message Protocol is used to route messages
between hosts. This protocol provides reliable routing,
sequencing, and delivery of inter-host messages. In the case of
communication failures, it also provides provisions for message
rerouting and error notification. e

3.4.4 Primitive Operations

The primitive operations available to Cronus Processes are

Send , Invoke , and Receive Send is used to send a message
directly to a process. Invoke is used to perform an operation on
an object. An Invoke is delivered to the manager of a given
object, based on its type. Receive is used to receive the next
message.

A simple client/manager operation illustrates how these

functions are used First, the manager process waits in a
Receive state for a message to arrive. A client process sends a
request to the manager using the ipvoke operation on one of the

• manager's objects. The client then typically does a Receive and
waits for a reply. The manager services the request and Sends a
response back to the client. The client gets his reply and the
manager performs a Receive to wait for the next operation.

w'.
.- W

The distinction between the Invoke and Send primitives here
is an important one. The client need not know the specific
identity of a manager tn direct a request to it using Invoke.

p The target of an Invoke is the object UID. It is the IPCU -,
mechanism that routes the message to the object's manager.

-22-

.%.%0%
. .-.-%

The separation of the Invoke operation from the Receive that

generally follows it allows for complex asyncronous operations ---

and optimizatons involving parallel execution. In particular it : '

is possible for managers to Invoke sub-operations while ..
simultaneously being available to start new operations.

To encourage use of asyncronous message handling, a simple ' .

multitasking facility has been implemented for use within Cronus -'r.2e:_,
managers. New requests are associated with tasks, each of which

*'. d ,

may perform simple InvokeReceive operations wthout complex

state saving and restoring techniques.

3.4.5 Object Location and Message Routing %

A consideration that is unique to the distributed
environment is the location of resources. It is often impossible
to guarantee the availability of certain hosts in a
configuration, yet it is desirable to use them when they are ,'.'-*9.. *

available. Cronus provides support for these specialized
problems by defining objects which may be moved from one host to
another, or which may be replicated on several different hosts,
and by supporting a dynamic binding procedure for these objects.

Cronus objects types fall into three catagories. Primal
Migratable and Replicated Primal objects remain where they
are created, migratable objects may move from time to time, and •
replicated objects may be located on several hosts
simultaneously. In this context, an object's location refers to
the host on which a manager process may service requests directed
to the object.

If a primal object's host is active and its manager process .
is running, it may be accessed. Primal objects are the simplest
kind of objects, and they require no cooperation between the .. '
various type managers on the system which handle them. The IPC
mechanism routes an invoke to a primal object by using the host
of origin from thi object's UID and delivering the message to
the appropriate manager process on that host.

". '..*' '

Zb .
-23-

%~~~- F .-..,7

e . e .S e .* % ' ~ ~ P~V %

The notion of a migratable object is somewhat more
generalized. Migratable objects may move from one host to
another The object managers are responsible for much of the
mechanism necessary to support migrating objects. They
implement, by convention, manager to manager protocols for moving
objects, and forwarding for misdirected messages to previously
migrated objects.

The operation switch binds invocations to migratable objects
by first broadcasting a Locate request to all potential managers '
of an object. The correct manager, if it is available, answers
the request, and the message gets delivered to it. As an
optimization, the current locations of recently accessed objects
is cached.

Replicated objects are the most complex. A replicated

object is maintained simulataneously by a number of manager
processes. Its manager processes keep copies of the object data,
which they syncronize by means of manager to manager
comunication. Invocation binding is handled in the same way as
for migratable objects, the difference being that any of the

available managers of a replicated object may answer locate
requests. Currently the first one to respond is chosen for the
operation invocation.

3.4.6 Properties of Messages

The message passing primitives have a number of properties
beyond transmitting datagrams. These consist of routing options,
header information passed to the receiver, and support for error %
recovery. Invoke and Send functions include the following
options 0

a. Maximum time. The maximum amount of time allowed for a .

message to be routed.

b. Low Effort Option. Normally, messages are passed between

hosts using a reliable transmission protocol. Messages 0

which are passed for informational purposes often don't

need guaranteed delivery, therefore a routing option is
available which attempts to minimize the overhead in
sending the message.

-24-

Is %

c. Broadcast Option. When this option is selected, a copy
of the message is sent to each host in the configuration.
This important feature is used for object location and
status queries.

d. NACK Option. If this is set, a negative acknowledgement
will be generated and delivered to the sending process if
there is a timeout or routing error.

e. Start Large Message. Requests that a direct connection be V
established between the source and destination processes

to facilitate the transmission of large amounts of data.

When a message is actually delivered, the destination %k

process receives, in addition to the message, a header consisting -
of :

a. The sender's routing information. This may include the
handshake data used to esablish a large message
connection.

b. The actual target UID. Obviously this is mandatory for
Invokes, since a single manager may manage many objects.

c. The source UID. This is the basis for access control in

Cronus. Before servicing a request, a manager may
determine the requesting user and access rights

associated with the requesting process based on its UID. %

A C library interface exists for these primitives. it-

provides a uniform interface for small and large messages, as
well as default values for all the routing options. ,-*.

6 %

3.4.7 Message Encodement .

The Operation Protocol is used to encode Cronus messages.
It is designed to facilitate the transfer of structured binary e

data between clients and managers. Message data is converted to
a list of (key, type, value) triples of the form:

< <keyl, typel, valuel>, <key2, type2, value2>, >

where each value has been encoded into a machine independent

25 - "., .

external representation, for the type and each key is used as a

handle to reference a particular value. All messages are
transmitted in this format. On the receiving end the message is
decoded into a local format for the type which is compatible with
the local architecture and programming language.

Message data is order independent; the only requirement is
that each key be unique. The host independent design allows
messages to be modified and resent without any data reformatting.

1'.- N N,

A set of C language library routines called the Message
Structure Library (MSL) is provided to simplify the task of
creating, modifying, and decoding OP messages. In particular
these include, a PutMSValue function which encodes a value into
its typed external format, associates a given key with the value,
and adds the key value pair to a message being composed; and a
GetMSValue function which finds the value associated with a given

key in an OP message and converts it to internal format.

In addition to the application dependent values. OP messages
by convention contain a number of standard key-value pairs.
These are used by system tools to trace messages and analyze
message traffic, and by high level standardized functions which
are used to sort and match requests and replies. Standard keys

include.

Global Request JD: A UNO which identifies an operation
between a client and a manager, all messages associated with
this operation including any necessary manager to manager
message interactions are labelled with this idenitifier.

Request U: Another UNO which identifies a specific

request/reply interaction. 0

a Tyt: Labels the message as a request, a reply, or
simply an informational posting.

Opration (requests only): The object operation associated
with a request.

General R Code (replies only): A general status .

indicator describing the degree of success of the requested

operat i on.

-26 - 1%

*1
,

I-

The message passing, data encoding, and object binding
mechanisms provide the Cronus system developers and Cronus
application developers a powerful base for supporting remote
invocations and remote procedure call type interactions in
distributed computations.

3.4.8 Extending Beyond a Local Network

Cronus makes extensive use of broadcast facilities provided
by its communication base (typically a local area network or LAN)
to locate object managers and objects dynamically. It is often
true that a selected collection of hosts to be integrated into a
Cronus system are not limited to a single LAN. In order to extend
Cronus utilities across several local area nets and allow hosts
which are not on a LAN to fully participate in Cronus, it is
necessary to provide some means of forwarding broadcast packets
between LANs or to the off-LAN hosts. Since Cronus IPC already
uses intcrnet addressing, regular (i.e. non-broadcast) messages
can already traverse multiple networks without special handling.

Cronus uses broadcasts primarily to locate objects and for
collecting status reports. Cronus broadcast packets are generated
(and received) exclusively by the Cronus kernel (operation
switch). One possible approach, therefore, is to put the
broadcast-packet forwarding function into the operation switches.
This approach limits the availability of multi-LAN broadcasts to
Cronus, and further burdens and complicates an already busy and
complex program. Another problem with using the operation switch
to forward broadcast packets lies in configuration control. all
the operation switches would have to know about all the off-net
sites, or a subset of operation switches must take care of
forwarding packets to off-net sites which were generated by other
operation switches.

A second approach is to teach gateways about forwarding

broadcast packets. Gateways already give one the correct access
to the network, and there are proposals to do just this for the
address resolution protocol (RFCs 917 and 925). The problem with
this approach is that current gateways are not particularly
flexible, nor do we have sufficient control over the gateway to
be able to add new destination networks to its broadcast-
forwarding tables. Also, in a future filled with many Cronuses
governed by different agencies which may not own the gateways

- 27 -

M0 A-. S0*1 1* 0 e
-g- e *.

*0dZ- k- x:

involved (which in turn may be manufactured or programmed by
several different companies) administrative control over this
mechanism may present a problem.

A third approach is to build a separate program (which we
call a broadcast repeater) which listens for broadcast messages
on its LAN, and forwards the packets to other LANs. Such a
program can be simple, flexible, and has application as a general
network utility outside its use in Cronus. For example, many
applications rely on broadcasting datagrams to distribute
information. Rather than teaching these programs about a network
composed of several LAN sub-networks, a network of broadcast
repeaters can convey the information transparently across network
boundaries.

The broadcast repeater system has two halves, a passive.
listening half, and an active, broadcasting half. The passive

half, on LAN A. listens for broadcast messages When it receives
a broadcast message (recognized by being a message addressed to
the broadcast address of LAN A) it can filter it according to a
variety of fields in the packet, and forward the packet to any

active repeaters on other LANs which may be interested in this
packet. An active repeater on LAN B then replaces the
destination address with the broadcast address of LAN B
(preserving the rest of the packet and recalculating the .-..
neccessary checksums).

We have taken the broadcast repeater approach because of its
flexibility and simplicity.

The broadcast repeater system serves as a transparent medium
for relaying broadcast packets from one LAN to another, and also
for forwarding broadcast packets to off-LAN hosts. To achieve 0

this transparency the repeater requires access to the raw network

layer, which may not be provided by many network implementations.
Only one system per network need have this capability, however.
An active repeater needs to be able to write an IP packet to the
network with the same source address as the original datagram on
the source network. The repeater must be able to specify the

host of origin of the message in order to serve as a transparent , U

medium.

-28

%, %' %

.% 5*1

A passive repeater may also forward the packet directly to a 4
destination host (presumably an isolated host located off the
LAN) rather than to a LAN repeater. In this case the passive
repeater simply replaces the destination address with the address
of the destination host and forwards the packet. Of course,
since the packet is a UDP datagram, and since it is traversing
gateways, it is not guaranteed that the packet will arrive at an
off-LAN site. It is the role of higher levels of protocol to
take the appropriate steps to insure delivery if that is desired.
This is precisely the way UDP is specified, although experience
on LANs has shown that very few datagrams actually do get lost.

Passive repeaters send packets to active repeaters through
TCP connections. TCP provides guaranteed, sequenced delivery,
and automatic notification of either end of the connection going
down. The drawback of using TCP is that a single repeater can
talk to a limited number of other halves: hosts limit the number

* of TCP connections a single process can hold. Fortunately, this
limit is likely to be large enough for our applacation, and
should it become a problem, then the use of TCP can be dropped in
favor of a sequenced datagram protocol.

Another potential problem with this scheme is "ringing": 0
passive repeaters forwarding re-broadcast packets back to their
net of origin, where they are again forwarded to other nets.
Ringing can be avoided simply by having the passive repeaters not
forward broadcasts which have an origin off of their LAN. If a
broadcast has an off-LAN origin it may be safely presumed that
the packet got to this LAN via a repeater which forwarded it to
all the places the packet should go.

* 3.5 Basic Cronus Types 0

The basic object types supported as part of the initial
Cronus development effort and their corresponding object managers
include:

Process objects and process managers that support the ._,P
Cronus system and application processes. .%%

2. User identity objects, called principals, objects which are
collections of principals, called groups, used to support

%

-29-

0 ,

% %

user authentication and access control. These objects are
managed by an authentication manager.

3. File objects and file managers that provide a distributed

filing system.

4. Catalog and directory objects and catalog managers that
implement the Cronus symbolic name space.

5. Device objects and device managers that support the

integration of I/O devices into Cronus.

3.6 Access Control in Cronus

All client access to Cronus objects is subject to access

control. The goals of the access control mechanisms are:

1. Prevention of unauthorized use of Cronus and unauthorized
access to data and services maintained and provided by
Cronus.

2. Preservation of the integrity of the system and its
components.

3. Support for a uniform user view of access control to Cronus 'Af
resources and functions.

4. Survivable authentication and access control in the

presence of a wide range of host and communication

failures.

The basis of access control in Cronus is the ability of the
0 Cronus IPC to reliably deliver the identity of the invoker of an •

operation to the receiver of the message. The recipient of a
request can then decide on the basis of the sending client's
identity whether or not to perform the operation requested o-i the

particular Cronus object.

For this to be a useful basis for access control there must

be a means for reliably associating authorizations with clients.
Mechanisms are required to establish bindings between client
processes and authorities, and for object managers to determine

the authority binding. for client processes.

* 30 -t 3O -t

L .

Ultimately. most activity within Cronus is the result of
requests initiated by users. Human users are represented
internally to Cronus by objects of the basic type "principal".
The authority bindings are, therefore, a correspondence between

client processes and principals. By extending the notion of a
principal beyond human users to include system elements, such as
object managers, all activity in the system can be thought of as

initiated by principals.

From the viewpoint of access control, the identity and
authority of the principal (user) corresponding to a client
process requesting an operation must be checked prior to
performing the operation. Access control in Cronus involves two

things:

1. Identification Authentication, determining the identity of
the principal requesting a particular operation.

2. Authorization Verification, determining whether a given
principal has been authorized to perform an operation on a
particular object.

For example, when an object manager must decide whether to
perform an operation, it must know the identity of the principal
requesting the operation (Identification Authentication) and the
rights the principal may have with respect to the operation and
object (Authorization Verification).

Cronus uses access control lists to support authorization

verification. In its simplest conceptualization, an access & .

control list (ACL) is a list of principals that serves to limi t
access to an object for a particular action to those principals
on the list. This simple idea is extended in two ways.

400
1. The UID for a group of principals may appear on an ACL.

This makes it possible to authorize a group of principals
rather than authorizing each individually. (Like principal,

group is a basic Cronus type.)

2. A set of rights is associated with each UID on an ACL. 0
There is a right associated with each possible operation.

Each right in the set represents authorization to perform
one or more particular operations. This makes it possible
for an ACL to selectively control access to an object on a
per-operation basis, and for the rights to be customized

-31 -

0 OwN

~ ~ % % ~ Z Y %,j -%

for each type.

When a user (U) attempts to start a Cronus session, a
process (P1) is allocated. The authority-binding for P1 cannot be
established until the user demonstrates by the Login operation
that he is U. The Login operation involves an authentication
dialogue between the user and Cronus through which the user
supplies a name and password that is checked against information
stored with the principal object in the user registry. If the
name and password are valid, the set of groups to which the user
belongs is computed from a list of group UIDs maintained with U's
principal record. Since groups can contain groups, this is a
transitive closure computation. The user's principal UID is
combined with the result of the computation to form a set called
the access group set (AGS). The AGS is then bound to the
authenticating process through its process manager. Processes
subsequently created by an authenticated process inherit the AGS

*of the creating process.

In order to perform an access control check for an operation
on an object, the manager for the object needs to determine the

AGS binding of the client process. The identity of the client
process is known to the manager because its UID is delivercd by
the Cronus Operation Switch along with the message that requests
the operation. The AGS binding of the client can be obtained by
invoking the BindingOf operation on the client process. After
obtaining the AGS of the client process, the manager can perform
the access control check by comparing the AGS with entries on the

ACL. •

When new objects are created, they are given an access
control list which may be initialized under client control %

There are generic operations which apply uniformly to all objects

* for further manipulating access control lists.

3.7 File System

Cronus supports a variety of different file types. Object N
managers for three types of files are part of the basic Cronus
system design.

J%

o Primal files.

- 32- ,',.-

- .--. , , , ' ,, . ,--%5 % %%% %

.,0

PWW -W~AJ-Wr WAIIX V r K7 K. IV 'ILI~1

A primal file is stored entirely within a single host and

it is bound to the host that stores it. Primal files
provide mechanisms for supporting atomic updates and

rollback to a prior consistent state Other Cronus
managers are a major user of primal files.

o Fast files

Fast files are primal files without provision for atomic

update, rolljback or other internal consistency measures.
As a consequence their performance is significantly better
than regular primal files. Fast files have been used
extensively when integrating existing software tools to the

distributed file system environment.

o Reliable files

Reliable files are implemented by one or more primal

files. Each primal file used to implement a reliable file
contains all of the file data. The reliability of these
files derive from the fact that the file is accessible as %
long as at least one of the primal files that implement it

is.

A reliable file can be moved from host to host. When a
reliable file is moved, the primal file or files which
implement it change.

Other types of files can be supported by developing

appropriate object managers and using an appropriate data storage

medium. For example, a type of "dispersed" file which had its
contents distributed over several hosts could be implemented by
several primal files each of which would be used to contain part

of the contents of the file. Alternatively, Cronus can be used
as a uniform and convenient remote access path to existing

Sconstituent operating system file systems and files. This is
another aspect of the evolutionary nature of the Cronus system

architecture.

m ~ ~ ~ o -r e%.l-ll i lri l i l l r- I. - - -,a =

%% %

% % %

3.7.1 Primal Files

The primal file system is partitioned among hosts that store

primal files. Like other Cronus objects, primal files are
accessible to processes by means of the Cronus kernel. There is
a Primal File Manager process on each host that supports primal

f iles.

A primal file is bound to the host that stores it The host %

field of the UID for a primal file always specifies the host that

stores the file. Hence the UID for a primal file always contains
a valid "hint" identifying the host that stores it.

Primal files cannot be moved from one host to another. A
copy of a primal file stored on one host can, of course, be
created on another host, and the original can be deleted.
However, the copy is a different primal file with a different UID
which happens to have the same data as the original.

Most of the operations provided by conventional operating

systems (create, read, write, etc.) are supported for primal

files. ,

Cronus provides conventional access to files bracketed by
open and close operations, and it also supports a type of access

to files, called "free" access, for which bracketing open and
close operations are unnecessary "Open" and "close" operations
are supported for situations that require reader-writer

synchronization and to permit optimization of file io in
sitatuions where repeated read or write operations are performed.
Supporting open/close requires that the File Manager maintain

state information for open files and be prepared to deal with the

problem of files that are opened and are never explicitly closed

(e g., because the cl: ,t's host has crashed). Furthermore open

and close represent significant overhead when only small amounts
of data are to be written or read. Supporting two modes of
access (open/close access and free access) enables a client to %

choose the mode appropriate for the situation. -. A

Free reads and writes are synchronized in the sense that

multiple reads and writes are serializable. This means that the
File Manager in effect, performs each read or write operation in

its entirety before performing another operation. A client

34 0,

-34-

% %

0

process may read or write data in a prima] file (subject to
access control considerations) without opening it, unless
another process has opened the file in such a way that free
reads and %rites are forbidden.

When a file is opened, two parameters specify the access
state requested. One specifies either Read or ReadWrite access.
The second specifies the type of reader-writer synchronization
desired. There are two types of synchronization supported
"frozen" which permits either N readers or a single writer, and
"thawed" which permits any number of simultaneous writers and
readers. When a file is opened with "thawed" access, readers of
the file see updates made by writers of the file. Opening a file
with "thawed" access prevents other processes from opening it

"frozen".

A file may be opened so long as the access state requested
does not conflict with the current access state of the file The '-'

access states defined for a file are. K'

idle;

frozen read open,
frozen readwrite open,
thawed open;

(free) read in progress.
(free) write in progress. "- '

Table 1 defines the compatibility of the access states with
client open, read and write operations. An OK for an (OPERATION,
ACCESS STATE) entry in the table means that a client process can
perform the operation on a file when the file is in the
corresponding access state; a NO entry means that the operation
will fail when the file is in the corresponding state; a DELAY

S operation means that the operation will be delayed until the 0
operation in progress kand any others that may be queued) are '-" "'.

completed.

In order to support file system recovery, data that is
written to a file that has been opened for (ReadWrite, Frozen)
access does not become part of the permanent file data until the
file is closed. It is possible to close a file opened for

- 35-

; %,. .--. ...%. -

JLMIK WT WI-TII IQX IJU 1-L--7X5)12

ACCESS STATEj

idle frozen frozen thawed read in
write in

read readwrite progress

progressI

frozen
read OK OK NO NO OK

DELAY 07
open

frozen
readwrite OK NO NO NO DELAY

DELAYI
open %

thawed OK NO NO OK DELAY
DELAY

oe

f ree OK OK NO OK OK0
DELAY

read

f ree OK NO NO OK DELAY
* DELAY

write

Access State Compatibility
Table 1

* (ReadWrite, Frozen) access in a way that aborts writes made toS
the file while it was open.

-36-

*% 0

When a process is destroyed with files open. the files are
closed and any writes to (ReadWrite, Frozen) open files are
aborted. The normal close operation may only be invol ed by the
process that opened the file. An alternate close operation can
be used by other processes to close a file during cleanup.

The Primal File Manager does not acknowledge write requests
until the data has been written to non-volatile ;torage. A
client process can be sure that the data has bee. written when

the acknowledgement is received, even if the Pri ial File Manager
or its host should crash shortly afterward

Primal File write operations are atomic with respect to host
crashes That is, if the Primal File Manager host should crash

during a write operation, after the host and Primal File Manager
have been restarted and the Primal File Manager has performed its
recovery procedures, the write operation will have either
occurred in its entirety or no part of it will have occurred. If .

the crash occurs after the data has been safely written but
before the acknowledgement has been sent, the acknowledgement
will never be generated. .

As with other object types, access to a primal file is
controlled by its access control list (ACL). Access to a primal
file may be granted to other users by adding entries to the ACL.
Similarly, access to a file may be revoked from a user by

removing the corresponding entry from the ACL.

3.7.2 Reliable Files

The principal motivation within Cronus for maintaining _S
multiple copies of a Cronus object derives from reliability
considerations. The objective is to increase the probability

that the object wi!l be available for access at any given time by
keeping copies (in Cronus we shall call them images) of the
object at a number of hosts. Although any given host that stores 0

the object may fail, so long as at least one of the hosts
maintaining an image is accessible, the object will be.

040

JAC)

',€" '," ,t W " w " w- l nm ' ,- W" "J " gz (" f" - 1 - m" . ,4 w ' ,,(r , ,, Im ,, ('o . "l • . ' " , . q q " ' ' " ' " -, .I

",. - ".3.

Secondary benefits include performance improvements that may
result from distributing the object access load among the hosts
that store it, and from the possibility that client access to an
image maintained on its own host will be more responsive than
access to an image on a remote host.

Increased object availability does not come for free. The
cost is increased complexity in managing the object. Most of the
complexity is a consequence of the fact that the system works to
ensure the mutual consistency of the images; when one image
changes, all others should be updated to reflect the change.

Reliable files are an example of a replicated Cronus object.
In Cronus, different approaches to handling the coordination and
consistency of replicated objects are possible for each different
object type. These details for different forms of replication

6 are handled within the managers for the object type in question.
In this section we discuss the design considerations for reliable

file objects. P1

Concurrency control requires that sites managing images of a
file cooperate to synchronize client access to the file. Inaddition, since strong concurrency control mechanisms require the ,X

participation of more than one site, situations may arise where
an insufficient number of file image sites are accessible to
perform the concurency control. Unless the system is willing to _..1
permit unsynchronized access to an accessible file image in such
situations, some of the reliability benefits of multi-image files
will be lost. The danger of unsynchronized access is, of course,
that accessors may cause different images of a file to become
inconsistent.

The approach to concurrency control for reliable files is

based on the presumption that file availability is important
enough that it is permissible to risk the consistency of file
images and to grant access to file data when synchronization

cannot be achieved. That is, when a choice must be made, file ,:1
availability or survivability is considered more important than

0 mutual consistency of file images. The reliable file manager will 0
try to achieve strong synchronization prior to file access in
order to maintain the consistency of the file images. However,
should the synchronization fail because thc file sites required
to achieve it are inaccessible, the client will be informed and A1

access to the file will be permitted only if the client gives

-38- 1
%- %

J- k .. ~ .. .-~ A.

explicit consent to continue.

This approach to concurrency control will be practical only

if.

1. File access patterns are such that it is relatively
unusual for multiple concurrent updates to occur.

2. Hosts are reasonably reliable so that host failures that
prevent strong synchonization are relatively rare

3. There is a simple and inexpensive way to detect
inconsistent images of a file. We believe that the
Version Vector mechanism developed at UCLA [Parkerl983] is

a good one for this purpose

A Cronus Reliable File (RF) is a collection of one or more
primal files, each of which represents an image of the reliable
file. No two images of a reliable file are stored at the same
site.

The number of images of a reliable file may change over the
lifetime of the file, as may the sites which maintain the
individual images. The desired number of images is called the
cardinality of the file. The actual number of file images may be
different than the file cardinality. For example, when a file is
first created its cardinality will be greater than the number of
images until all of the images are created. Similarly, if the
cardinality of a file is changed, it takes finite amount time for

the number of images to be adjusted. Thus, the cardinality is
properly thought of as an objective.

Each Reliable File Managers (RFMs) maintains a UID table for -

the reliable files that it manages. Unlike simpler objects, such
as primal files, the management of reliable files requires the .
cooperation of RFMs. Each RFM participates in the management of
a collection of reliable files (the ones in its UID table), but

not all RFMs participate in the management of all reliable files.

When a client invokes an operation on a file, the underlying P

interprocess communication facility routes the operation to an J
RFM capable of performing it. Any interactions among RFMs that
are required to perform the operation are transparent to the

-39- 1

-- o . h - a .a i rNMna Kla. l kS' L nKT M La EN. 1X'. F . r.. MA Nwa %A.~. Twt % ,r ,Wjyw I WE:WE S9 ~T ii"T?~W.

client process.

Access to the primal files that comprise a reliable files is
limited to RFMs. No other process may directly access a primal
file used to implement a reliable file, even if the process has
the UID for the primal file; this is enforced by the Cronus
access control mechanism. RFMs reside only on sites that also
have primal files managers (PFMs). The manager's image of the
file is stored at the manager's site.

In order to maintain the consistency of images of reliable
files and the integrity of internal file data (for primal as well -I>.

as reliable files), the manner in which clients access the files
must be controlled and synchronized.

The reliable file approach to synchronization can be

characterized as a best effort approach consisting of the
foilowing steps.

1. try to synchronize access;

2. if synchronization cannot be achieved permit access if the

client so desires;

3. be prepared to detect and deal with inconsistencies that
may result from unsynchronized access later.

A specific concurrency control mechanism must be chosen.
Although much has be written about concurrency control and .-*

synchronization for multiple copy files and data bases, there is
little practical experience on which to base a choice. We have
decided to use a simple mechanism at least initially. Should the

mechanism prove to be inadequate (for example, because it cannot .
achieve synchronization often enough, given the failure patterns
observed in Cronus), it can be replaced with a more capable (and

complex) one.

Synchronization will be accomplished by means of a
primary/secondary image approach. Each reliable file will have
one primary image and one or more secondary images. All attempts
to synchronize access to a reliable file will require
synchronization with the primary image. We refer to the manager
of the primary image as the primary manager for the file;

- 40 -

*-

*~~~~~~ % t .s.'~:

managers of other images are called secondary managers.

When a client attempts to access file data in a way that

requires synchronization, an attempt will be made to synchronize
with the primary image of the file. If the client's access

attempt is initiated with the manager for the primary image,

synchronization occurs as for primal files. If the access
attempt is initiated with the manager for a secondary image of

the file, the secohdary manager interacts with the primary

manager to gain the appropriate kind of access (non-exclusive

read, exclusive write).
I

RFMs use a locking discipline to support synchronization.
This discipline works roughly as follows. When an attempt to
open a file for reading is handled by a secondary manager, the

manager tries to set its lock for the file to "reserved for

reading". The attempt to set the lock fails if the file is

already locked for writing. Next, the manager interacts with the ,o.,"
primary manager to try to set the primary manager's lock for the

file. If this succeeds, the secondary manager sets its lock to

"locked for reading" and proceeds with the open. If the primary

has the file locked for writing, the secondary manager clears its

lock and reports to the client that the file is busy. When the

file is closed, both the local lock and the primary manager's

lock for the file are cleared. Attempts to open a file for
writing are handled in an analogous fashion. %

If synchronization for any operation fails because the --0

primary manager cannot be reached, the operation may proceed, but

only with the explicit consent of the client, and, of course, at

some risk. The risk is that different images of the file may be
undergoing unsynchronized access, and, as a result, the file

images.may diverge into inconsistent states. 0

A client may specify its intent with regard to
unsynchronized access when it initiates a file operation by means
of an optional operation parameter. Alternatively, the client

may choose not to specify the action to be taken when it invokes
the operation, in which case, if synchronization cannot be 5

achieved, the manager will ask whether it should proceed with or

abort the operation.

41

% %

.~J.

Inconsistent images of a file can be detected by means of a -

version vector mechanism developed at UCLA. A version vector
for a reliable file, RF, is a set of N ordered pairs, where N is
the number of sites at which RF is stored. A particular pair
(Si, Vi) counts the number of times updates to RF were initiated
at Si. Thus, each time an update to RF originates at Si, Vi is
incremented by one. The version vector is part of the object
descriptor for RF.

Two images of a reliable file are said to be consistent if
the modification history of one is the same as or is an initial
subsequence of that of the other. It can be shown that two
images are consistent if one of the vectors is at least as large
as the other in every (Si, Vi) pair. The larger vector is said
to dominate the smaller, and the image corresponding to it
represents a -later, consistent version of the image corresponding
to the smaller vector. If two vectors are such that neither
dominates the other (that is, some pairs in one are larger than
some pairs in the other and vice versa), then the corresponding
file images are inconsistent with one another. .

RFM's must interact with one another in order to maintain
reliable files. For example, when a reliable file is updated,
the new file data must be transmitted to each site that has an
image of the file.

Occassionally a RFM that must participate in such an
interaction will be inaccessible. It is important that when, if
ever, such a RFM becomes accessible the interaction occur. It is
the responsibility of the inititiating RFM to ensure that the
interaction occurs.

The operations supported for primal files are also supported

for reliable files. Three additional operations are supported
for reliable files. The ChangeCardinality operation changes the
cardinality of a reliable file. The FileSites operation
produces a list of the sites that are thought to be maintaining ..I
images of the file, with the primary file site distinguished. -

The MoveImageToSite operation moves a file image from one site
to another (removing the image at the source site).

- -'

-42-

V ;0
NIN

iu create (reliable fii:, the -lieat ir-,!:e- the Create
opL.'ation specifying the cardinality of the file as a parameter
The RFM that receives the Create operation becomes the primary
manager for the file.

When a reliable file is first written and whenever the file
cardinality is increased, the RFM selects sites to store images
of the file. The acquisition of new sites involves three steps.

I. The selection of the new sites.

2. Obtaining commitments from the RFMs at the selected sites
to store images of the file.

3. Updating file descriptors at each of the file sites to

reflect the new sites.

ihe RFM at which write operations are performed is
responsible for distributing updates to the other file images.
It does this by interacting with the other RFMs sites in the

following way:

I. It increments its (Site, Version) element of the file
version vector.

2. It attempts to interact with each other RFM that manages
an image of the file.

3. Should it fail to complete the image update with any RFM,
it adds a record to a PendingActions data base for
completion at a later time, specifying the file and the
RFMs it was unable to update. 1

Version vectors are used to detect inconsistent images of 0

reliable files. In the current design, both the descriptor for a
file and the file itself are protected by version vectors. '*,,g

Version vectors are compared in two situations.

1. When an image of a file is updated. The RFM initiating
the image update supplies its version vectors, and the
responding RFM compares them with its own.

2. When an attempt is made to lock a file for read or write

% % %l l.

% % % % %

AP '%N8'L % le, %

A? %Mv A

acce. Tht secondary RFM a.tenjp ting Lo ;ok the fi c
supplies the primary RFM with its version vectors and the
primary RFM does the comparison. See the Cronus System
Subsystem Specification [BBN Report No. 5884] for more
details on reliable files and the use of version vectors.

3.8 The Cronus Catalog

Cronus supports two system-wide name spaces for referencing
ob jec ts.

At a relatively low level there is the name space of object
UIDs supported by the Cronus kernel and object managers. Every
Cronus object has a UID. Each object manager maintains a record
of UIDs for objects it manages in a UID Table. When a manager
creates an object it creates an entry for the new object in its
UID Table. Each manager's UID Table defines a part of the UID
name space. The entire Cronus UID name space is defined by the
union of the UID tables of all the object managers. Thus, there
is no single identifiable catalog of UIDs supporting the UID name
space. Rather, the Cronus UID name space is implemented in a
distributed fashion with each object manager responsible for
implementing part of it.

At a higher level there is a symbolic name space for Cronus .-¢'
objects. The implementation of the symbolic name space is 0

supported by the Cronus Catalog. The principal function of the
Cronus Catalog is to provide a mapping between the symbolic names
that people use to refer to objects and the UIDs that are
required to actually access the objects.

Access to objects is supported by means of the invocation
mechanism of the Cronus kernel. Typically access to an object
will be initiated in one of two ways:

1. Directly through the UID name space.

The accessing client process has the UID of the desired VN

object and invokes an operation upon it. The Cronus kernel
delivers the requested operation along with the UID and ,.'

any other parameters to the appropriate object manager.
The object manager consults its fragment of the UID Table

-44

S"*"

to access trie oDject as .ecessary to perform the requ,.st.d
operation.

2. Through the symbolic name space.

The accessing process has a symbolic name for the object.
In this case, access - accomplished first by consulting
the Cronus Catalog to find the UID for the object named.
This involves a name lookup operatizn usi'n the catalog.
If successful, the lookup finds the catalog entry
corresponding to the name which contains the UD for the
object. With the UID for the object, access to the oojcct
can proceed as described in (1) above.

In either case, access control is performed by the object
manager responsible for the object.

An object may have zero, one, or more symbolic names. When %
an object is given a symbolic name, an entry for the name is made
in the Cronus Catalog, and when the name for an object is
removed, its entry is removed from the Cronus Catalog. The
Cronus Catalog is a Cronus object which is managed by the Cronus
Catalog Manager.

Symbolic names are location independent in the sense that a
name for an object is independent of its host location within
Cronus and that a name that refers to an object may be used
regardless of the location within Cronus from which it is used. 0
In addition, symbolic names are uniform in that common syntactic
conventions apply to names for different types of objects -

(including file, groups, etc.).

The symbolic name space is structured hierarchically as a 0
tree, much like the UNIX and Multics file name hierarchies. ;.g..
However, in Cronus any object may be given a symbolic name. The
tree contains nodes and directed labeled arcs. Each node has
exactly one arc pointing to it, and can be reached by traversing
exactly one path of arcs from the root node. Nodes in the tree ...
represent Cronus objects which have symbolic names, and non- 0
terminal nodes correspond to directories which are objects
implemented by the Catalog Manager.

%

-45-

-.bo *1 0 ~ **0% .1 ~ %**~* W.?~.

Irv~~~:~ U..1.x.-77 _

The cmplete ne-. of a node, and a symbolic name for the
corresponding object, is the name formed by concatenating the
labels on the arcs traversed on the path from the root node to
the node in question. The syntax for a complete name is:

: I x : * y

where "x" and "y" are arc labels, the "i",'i" brackets indicate

optional presence, the ":" is a punctuation mark to separate name
components, and "*' is the Kleene star.

It is also possible to name nodes relative to a directory.
Such a relative or partial name is formed by concatenating the
labels on the arcs traversed on the path from the directory in
question to the node. The syntax for a partial name is:

x : * y

The Cronus catalog also supports links". The catalog entry
for a link identifies another point in the symbolic name spac.
called the link target. The catalog entry holds a complete ,
Cronus symbolic name for the link target. Links are catalog ed
as terminal nodes in the name hierarchy tree.

In addition to the generic operations, the Catalog Manager
supports Enter, Lookup, and Remove entry operations. The Enter
operation establishes a symbolic name for a Cronus object.
Lookup interprets symbolic names. The Lookup operation is
performed by using the Cronus Catalog in a straightforward
manner. It begins with a designated directory (the root for a
complete name or an implicitly or explicitly specified directory
for a relative or partial name. Directories are used to evaluate
the components of a name until either the last component of the

0 name is consumed and its catalog entry is found in which case
the lookup succeeds, on a name component cannot be found in a
directory in which case the lookup fails. The catalog entry
corresponding to a symbolic name includes the UID of the object
named. .

For some types of objects it is useful to be able to think
of a collection of the objects as a sequence of "versions" or
"revisions" of the same logical object. The Cronus Catalog
supports versions for certain object types. For types for which
versioning is supported, the Enter operation permits the same

-46-

0 P0%- % %
' 'L. ~~~ ~ -or."' - 0, "J "" " " " " , ... " #' 'eve'e'ee" %;.e. /re l_, e #' .e et,~ . . '.%

0P

9

Name to be entered into a given directory more than once. The
first time a Name is entered the result is version 1 of the
object. Subsequent entries of the same Name result in
successively higher versions of the object All of the catalog
operations which take a name parameter allow the specification of
a version number extension to the name, with appropriate

defaulting in their absence.

3.8.1 Implementation of the Cronus Symbolic Catalog

The Cronus Catalog is implemented in a distributed fashion

by a collection of Catalog Managers on several Cronus hosts The
following are some design considcrations for the Cronus catalog

1. The catalog shouldn't be stored at ONLY ONE site.

Reliability consideration.

This implies that the information in the catalog should be VVW
distributed and possibly replicated in some fashion.

2. The entire catalog shouldn't be stored at ANY SINGLE site.

Scalabi 1 i ty consideration.

This implies that the catalog should be dispersed among %
several sites in some fashion. ' "

3. It should always be possible to access an object when the
site that stores the object is accessible.

Reliability consideration.

This implies that the catalog entry for an object (or a 0
copy of it) should be stored at the same site as the
object. In addition, there should be sufficient
information at that site to enable it to selectively
control access to the object. *,-e '

The UID Table exhibits this property. The Cronus symbolic
catalog should also.

4. There is little utility in maintaining a catalog entry for
an object in a more reliable fashion than the object

itself.

-47-

10~~~~~~~\ ?k%%e%% .. %%%

% % %
*p*J.*

Common sense consideration

This suggests that there is little utility in replicating
catalog entries for objects beyond that required by (3).

A directory is a collection of catalog entries. Directories
are implemented by Cronus files. Directories are Cronus objects ,_-

with symbolic names. The UID in the catalog entry for a
directory is the UID of the directory.

Cronus files are stored in their entirety within a single

host. Therefore, a directory is stored in its entirety within a e

single host. This means that the smallest unit of dispersal for _
the catalog is the directory. %

The LookUp operation involves following branches
corresponding to components of a Cronus symbolic name through a
number of different directories. The location of the root
directory, the start point for the lookup, is known to the Cronus
Catalog software. With no further restrictions on the dispersal
of the catalog the name lookup could require following branches
(entry names) through a number of different directory sites. 0

It is desirable to place further restrictions on the
dispersal of the catalog in order to limit the number of sites- V

that must be involved in a lookup operation. A useful
restriction is to 0

1. Require that the catalog structure for entire subtrees
below a certain cut (the "dispersal cut") through the

catalog tree be stored within a single site. We call a .-.

subtree that is rooted at the dispersal cut a "dispersal
subtree".

2. Require that the catalog structure above the dispersal cut
be stored within a single site. We call the structure
above the dispersal cut the "root portion" of the

hierarchy.

The first restriction ensures that lookup operations within
a subtree that is below the dispersal cut can be confined to the
site that stores the catalog portion corresponding to the

subtree, and the second ensures that determining the site that

-48 -

% %
%~- * V % % * * V ' - - V * V ~ * % % %

,.- .%" mJ%

stores the catalog portion for any given dispersal subtree can be
confined to the site that stores the root portion of the

hierarchy.

The impact of these two restrictions is that lookup
operations require at most two catalog sites.

We now observe that it is useful to replicate the root
portion of the a.talog hierarchy. Furthermore, a good way to
replicate it is to maintain it at each site that maintains a -

dispersal subtree. The reasons for doing this are.

1. To distribute among several sites the load resulting from
lookup operations.

2. To allow some lookup operations to be confined to a single
site.

3. To increase the availability of the root portion of the " . ,

hierarchy.

For this to be a practical dispersal, it must be possible to_!
maintain the various copies of the root portion of the hierarchy
in a mutually consistent fashion. A mechanism for maintaining
this consistency is described in the Cronus System/Subsystem
Specification. It is basel on the observation that in many
multi-user systems the root portion of the hierarchy changes only
very slowly over time, and in quite limited ways This is
typically so because only a few users are authorized to make
changes to the root portion, and because changes generally occur
as the result of the addition or deletion of a user or project.
This means that the mechanism need not be powerful enough to

handle the most general form of the multiple copy update problem.

%

For considerations 3 and 4, the objective is to ensure that
an object is accessible symbolically whenever the site that J.

stores the object is.

* 0

The primary symbolic access path to a file is: A

Symbolic name -- > Cronus -- > UID -- > UID -- > object

Catalog Table '

49 -*~

% %P_4 Or % ;.% %
1%I •' 1

The problem to be addessed is how to handle the situation
when the Cronus symbolic catalog is inaccessible.

There seem to be two approaches to this problem e1% o

I. Replicate the catalog sufficiently to ensure that it is
available with the degree of reliability that is desired.

2. Recognize that not every object will require the same
degree of reliability, and replicate the catalog e.vf""

information required to access a particular object (i.e.,
its catalog entry) to the degree desired and store it at
the site that stores the object.

In Cronus we are currently using approach (2). The idea is
to maintain a secondary symbolic access path to objects. The

* secondary access path is supported at each object managing host

by collections of copies of Cronus Catalog entries. The catalog
system software is responsible for maintaining the consistency
between the distributed catalog entry copies and the Cronus
Catalog.

Nq

Under normal conditions, a symbolic reference to an object
is accomodated by a Lookup using the Cronus Catalog in the normal
fashion, following catalog entries from one directory to another
until the Lookup either terminates on an entry for the symbolic
name or fails because there is no entry (i.e., the name is not
catalogued). 0

In situations when the catalog is unavailable, the secondary
symbolic access path would be used for the Lookup. The Lookup
would succeed whenever the object itself can be reached, since a
copy of the catalog entry for the object is stored at the same"0
site as the object, if the object has a symbolic name.

One can ask why not always use the secondary access path
since it will always succeed when the object is accessible. The
answer is that a Lookup by means of the primary path is S
"directed" whereas one by means of the secondary path is
"undirected" (e.g., there is no a priori knowledge of which host ,A *.
or hosts should be consulted to perform the Lookup and it is
likely that wher the host is found the name to catalog entry
mapping will take longer to perform since it may be difficult to

-50-- o ... *

% 0 %
%~~ %

%~-~ %

i

structure the search though the catalog entry copies.

3.9 Automating Cronus Manager Development

In previous sections we have discussed the elements of the
Cronus object system support. As these parts of the system
became available, the first Cronus object managers (file and
catalog) were coded by making calls on the library routines .Pell

previously mentioned. With this experience we easily recognized
that much of the effort that went into developing a manager, and
client software to access that manager's objects fell into a

predictable pattern, was repetitious, and was largely the same
from object type to object type.

With this in mind, we initiated an effort to elevate the -
abstractions which an application object manager developer uses.
We provide for specification driven automatic code generation for

much of the object framework which is common to all managers.
This "manager compiler" automatically generates code to handle
invocation, message receipt, parsing, dispatching, reply
generation, access control etc. In sum, the application
developer need only deal with and provide code for the problems
(operations) which are specific to his application. The rest of
the software needed to handle all of the intermediary details is
automatically provided as part of the manager structure itself. -"

In the rest of this section we discuss the current automated
facilities provided to application developers for developing new
Cronus object managers.

3.9.1 Manager Facilities Provided Automatically

One begins development of a Cronus application manager by
defining the various object types, the operations upon them, and

the access control constraints. The criteria for determining
exactly what should be objects are not by any means absolute, but
often times objects will correspond to "real world" entities or '.['''

abstractions pertinent to the user of the software. S

In many cases, applications make use of existing data
outside the Cronus environment The data abstraction features of
the object model favors this, since only the manager of a given

- 51 - s..' m2

%, % % '..

Z% e 'w N A. -1 -N

* "* q.

object is aware of its internal organization. Representations A- A

may even vary between managers of the same object type on
different hosts (thereby providing a convenient mechanism for
dealing with similar data from different sources).

Once defined, the object definitions are coded in a non-
procedural specification language, compiled, and stored in the
"protocol database". The database is then used to generate the -

code for the "automatic" components of the manager.

3.9.1.1 Multiple Object Types

An implementor may choose to have a single process manage
multiple, related Cronus object types (such as Principals and
Groups, or several varieties of files). This can be advantageous
with request to code sharing, concurrency control, faster access

between data structures, or reduced process contention. The
manager development software allows any number of types to be

managed by a given manager. The mix is functionally transparent
to the rest of the system, and may even vary between hosts.

3.9.1.2 Dispatching .\'\

The actual tape dependent processing for an operation is
performed by an implementor-supplied procedure. Dispatching to ?d Q

the appropriate procedure (based on the operation requested and
the object type) is done by the manager software after the
implementation-independent processing described below has been
performed.

A given operation processing routine can be used in the %
implementation of more than one type (assuming, of course, that
the operation parameters and semantics are equivalent). The
processing routines are currently all written using the standard
C programming language. 0

-52-

-52 - -- - - -,

% I a o

3.9.1.3 Multitasking

In order to facilitate interleaving of operations and to
minimize the amount of time to initiate processing of an
operation, the manager software supports a coroutine-style
tasking facility, whereby multiple operations are processed
simultaneously. The dispatcher (itself a task) creates a new
task for each incoming operation.

To ease concurrency considerations, the tasking package is 1
non-preemptive. A task will relinquish control to another task
only by explicitly doing so, or when it awaits a reply from a
(nested) operation invocation. The latter could occur, for
example, during access to a Cronus file used in the internal "-
object representation. It also occurs when obtaining the
client's bindings during the access control check.

3.9.1.4 Access Control

Each Cronus object has an access control list associated
with it, defining the access rights available to individual users]
or groups of users. The application developer may declare that

the client must have a specified set of access rights in order to
invoke a given operation on an object. Possession of this access
will automatically be checked by the manager software. Of

course, the application is free to impose additional procedural
constraints and checks, and may reference the access control list |

directly.

3.9.1.5 Inheritance of Operations 5

The manager software supports "inheritance" within a
hierarchy of types, with respect to both operation parameter
definitions and code sharing.

This is the mechanism used to support the generic operations p_
defined for all Cronus types. These are defined for type
CTObject (the top of the type hierarchy), and include opera'i-ns
for locating the object or manager, obtaining descriptive

information about it (available operations, interpretation of

%

3 5 3 - '"-" -"

access rights, etc), manipulation of access control lists and

attributes, and status information. Although functionally

distinct, these may effectively be viewed as part of the manager
software.

3.9.1.6 Message Parsing and Validation

The manager software attempts to shield the application from

the unwieldy data representations required for network
communication in a heterogeneous environment. Operation
"arguments" are passed to the processing routine in internal

programming language .-presentaLuis. Appropriate supplementary
information is also provided for arrays, variable-length, and
optional data elements.

The manager software also provides argument validation at
what might be called the lexical and syntactic levels. This

includes checking that required arguments are present, and that
data types match. Of course, additional validation may also be

performed by the application.

%

3.9.1.7 Storage For Instances of Objects . e.

Virtually every Cronus object has some type specific data 0

associated with it. The manager software provides for efficient
automatic management of such data, including retrieval each time
the object is referenced. Both fixed and variable-length
components may be specified. Of course, such data may also
contain pointers into external data spaces known only by the .
implementation.

Such automated storage management will eventually include

mechanisms for generic backup/recovery, replication, and

migration of objects.

P. .,.-

I. 61. %.. . %

3.9.2 Client Facili'.ies Provided Automatically

Support is also provided for developing the client software

necessary to manipulate the objects. Of course, any manager may

also be the client of other managers.

3.9.2.1 Subrout'ine Interfaces

The manager software automatically generates subroutine
stubs encapsulatng the nec'essary argument processing

(linearization and collecting data into the message body),

operation invocation, response argument parsing, and error
detection involved in an operation invocation. This effectively
provides an RPC-ike interface to all Cronus operations.

3.9.2.2 Generic User Interfaces

The manager software also generates tables driving a

generic, technology-retargetable user interface subsystem. This
allows the direct command level invocation of any operation

defin in v in Cronus. It is tremendously valuable as a debugging
aid, and has also proved quite useful as a standard user

interface (encapsulated slightly via command scripts) for those

operations which map directly to user-level commands.

3.9.3 Documentation

Once annotations have been provided to the object 0,'' '%
definitions, the manager software can generate formatted talsdrv

descriptions suitable for inclusion n hardcopy system This
documentation (the entire section 3 of the Cronus Users' Manual

was produced in this fashion) u l ar

-55 -..-

descriptionssuitable forinclusion in hardcopy system

doumnato (th enir secio 3? of the CrnsUesMna
was prdue in thi fashion).

% f-'Sf

3.9.4 Experience to Date

We have already used the automated manager development tools
to generate a number of Cronus object managers which are in daily
use, including the Cronus Authentication Manager. We estimate
that using the automated tools we reduce the lines of code needed
to be written by the application developer to about 1/6 that of a
hand coded manager, without any noticeable change in performance.
As Cronus itself is extended in areas of resource management and
survivability, we anticipate including "off-the-shelf" and
customizable approaches to these object attributes as part of the

manager development package.

3.10 Cronus Monitoring and Control System

3.10.1 Role of the MCS

This section describes the existing and planned monitoring
and control system for the Cronus distributed operating system. "V
The Monitoring and Control System (MCS) includes monitoring and
control of hosts, of the Cronus managers on those hosts, and of
network communication. The monitoring and control station
provides the functionality of an operator's console for the
Cronus Distributed Operating System. The MCS treats Cronus as an N6
integrated system, decomposed by function rather than by host. %-I..

The MCS is designed to be integrated with and supports the
abstract object orientation of the overall system architecture.

In their role as caretaker, operators use the MCS to review
resource usage, to examine status and trouble reports from the
services, to monitor host and peripheral device availability, and
to activate and deactivate managers during routine hardware
maintainence. As system specialists, operators use the MCS to
relocate managers, to modify policy parameters that influence

resource allocation decisions, to evaluate the effect of changes 0
in policy parameters, to centrally monitor experiments, and to
diagnose system problems.

Where practical, the MCS also monitors and controls
Constituent Operating System (COS) functions, the processor and
peripheral hardware and the network from the same station, but S
such functions are limited by our desire to modify the
constituent software as little as possible.

- 96 -,

% N NN
% % % % %

%-.-. . %_ .% ' .. . %.. ..- . .. %.. . >. . . ,/ , -. ... , , , ,

Cronus is restarted from the Monitoring and Control System.

For hosts, the MCS supports resetting the hosts and starting
Cronus. For some hosts, such as those without disks, the MCS
will download an executable image to start Cronus. For other
hosts, the MCS will invoke programs executed by the host's
constituent operating system to start Cronus.

3.10.2 Functional AreasI
The following describes typical activities currently

envisioned for the Cronus operator and MCS software.

3.10.2.1 Fault Detection

Problem areas can be first identified by the operator, a
component such as a host or manager, or by the MCS software
itself. Operators recognize problems either from a report by

another user, by having the MCS software detect anticipated fault I.X
conditions, by personally noticing unexpected system behavior, or
by examining data collected by the MCS. The problem is then
reported to the MCS and if the MCS cannot correct the problem 0

itself, the operator is prompted to take action. An audible
alert accompanies the report of a critical event.

The MCS and manager software detect problens -n a number of

ways. These strategies include a report from another system
component or user, an unackno*ledged polling or other request, or
violation of a MCS recognized system parameter constraint.

Priorities are assigned by the originator of system and MCS
generated reports to guide the MCS and operator in schedulingthe ir revi ew. :'"'

The forwarding of fault messages from system services to the 0

MCS forms the simplest MCS problem detection strategy. The
warning is forwarded to the operator for review, sometimes with

additional information supplied from the configuration database I
or from recorded data regarding the defective component's
immuediately past behavior.

The MCS periodically polls all system components to see if %
they respond and to determine their current status. Component
failures are reported, along with the time the failure was first -
discovered. If the failure occured recently, the component can
be restarted from the MCS. Status polling and manager control "'

%

-57 %

brw~ tr 01 0

% %
% <% P.'J J . P

"4b k%:,--~

",. "'¢ -

k

functions are carried out using standard Cronus generic
operations, making it easy to extend monitoring and control
functions to new resources and application "types" whiach are
subsequently added to the system.

Thresholds and other constraints are also applied to
collected system parameters, measured rates and resource usage.
When a constraint is violated, a report to the operator is
generated. For example, the operator is alerted if too many ,
authentication failures occur, since that may indicate an
intruder. More common situations, such as rising disk usage or
high soft error rates, often forshadow more serious upcoming
problems, and can be detected and reported this way.

3.10.2.2 Logging

Various data reported to and collected by the MCS is

recorded. This allows long term statistical evaluation and %
comparison. It also provides a journal for reviewing events that
led to a system f.ilure. For example, health and status reports
are recorded by the -s tem. This information can be viewed later

by an operator or included in reports. The contents can be
analyzed for performance evaluation. S

3.10.2.3 Fault Isolation %

A more difficult problem occurs when a program fails 0
unexpectedly. The cause of the problem could be: a bug in the
program insufficient access rights by the client or a manager
for some data or resource needed to satisfy the request; IPC, *

network or host congestion triggering timeouts; component failure
leaving a non-reliable resource inaccessible; and so forth.

Using the MCS for fault detection, the operator starts with .
a high level view of the system, possibly narrowed by some
initial sense of what caused the problem. For example, if the
problem is frequent access request denials, the operator might
start by examining the catalog and authentication managers as a
whole functions to see if the problem was system-wide. Then, the 5
particular managers servicing the request could be examined, to
determine their current state. Then the processors and process -Nw,
managers cunning the managers might be checked, or perhaps the r.

behavior of the Cronus kernel on the effected hosts depending
upon what was causing the failure. The MCS software supports all

S

-"- ~% %".~<VZON." % %

of these individual "views" of the system, and provides a
convenient mechanism for interactively moving between different

views as well as for constructing additional special purpose
views.

3.10.2.4 Fault Correction

A problem can be corrected at several levels. The MCS may
be able to identify and correct the fault automatically. For
example, if the MCS notices a failed manager, it can be restarted
automatically. The restart operation is reported to the
operator. If the restart rate exceeds some threshold, the MCS
either automatically or under operator control could take the
host offline from the MCS station

When the MCS is not programmed to handle the failure, the
operator must correct the problem. The MCS alerts the operator,

provide information end guidance, and accepts and invokes
commands from the operator to correct, eliminate or bypass the

problem area.

Finally, there are the problems that require attention by S
the vendor. Hardware component failures and software bugs are
both situations where the operator may not have the necessary
resources to correct the problem and other specialists may be
required. The MCS will, however, allow the cperator to take the
component out of service until the problem has been corrected.

3.10.2.5 Resource Allocation and Policy Management

The operator can control managers and the resources they
manage. Managers can be started or stopped, replicated to %

increase redundancy (provided they implement the appropriate]
consistency model) or relocated to a different host. The
operator can adjust policy parameters that control the placement
of new object instances such as files, the size of caches, quotas

limiting the activity of a particular principal or manager, or
can instruct the managers to relocate instances of migratable
objects. One of the major roles of polling is to collect .

periodic snapshots of resource allocation and consumption

patterns in order to coherently display these to the operator on
either a collective functional or individual host basis.

-59

-% %

The MCS maintains recent historical views of the monitored
parameters to help the operator identify trends in the affected
parameters. Based on these representations of immediately past
resource allocation patterns, or based on values exceeding some
predefined thresholds, the operator can adjust the resource
management policy for the effected resource (see Cronus Resource

Management).

3.10.3 Current Implementation

During the initial phase of Monitoring and Control System
development, we implemented a set of functions to retrieve

manager and host status information and several portable programs

to display the data on common terminals. These programs run as
clients on many Cronus hosts. The status programs display the

results of their monitoring and command activities either as a
,i if ort. .r as a table, whichever is arpropriate. A

graphical interface that integrates most of these functions is
also available on hosts with the required graphics hardware.

The information monitored by these programs includes network

traffic statistics, host and manager status, and manager specific
resource information such as available file space, cache hit

rates and processor loading. In addition, manager transactions
logs are recorded and accessible throughout the cluster using the

Cronus file system.

3.10.3.1 Host Probes and Service Probes

Host probes are supported on all Cronus hosts to reply to

are you there" requests. S,.rvice probes' are similar monitoring
entities in all Cronus services. The service probes are

implemented as part of each manager. When a "report status"
request is received by a particular manager process, the probe
packages the current status and long term statistical data and

transmits it to the requesting client. The operation switch also
supports a "list services" request, to which it responds with a

list of the currently active managers. Programs construct lists
of available hosts and services by brc _casting an "are you
there" request and examining the replies to determine the

internet addresses of the active hosts.

•

.,.

- 6- - -"',.

3.10.3.2 Transaction Log

Each manager records a transaction log. A central trap log
manager similarly records trap reports submitted by other
managers. Any of the log files may be examined from any point in
the Cronus cluster. Commands may be sent to the managers to
change the dcree of detail of the information recorded in the
log files.

3.10.3.3 Status Display Programs

Commands exist for displaying the status of host, primal
process, primal file, and directory objects, and for listing the
active managers of a particular host. The replies are displayed
in either textual or graphical format.

3.10.3.4 Starting and Stopping Services

Managers may be started and stopped by invoking an operation
on the associated Cronus process. These requests are subject to
access control based on the operator's access rights. Similar •
requests may be used to stop all Cronus manager activity on a
particular host. When this command is received by the process
manager, all Cronus processes will be terminated. The request
may specify that the managers should not be restarted until
instructions to do so are received; otherwise a specified set of
managers will be immediately restarted. The program images S
needed to restart Cronus may be loaded from a remote location for
hosts that cannot store the images locally. Some hosts are
automatically restarted from the MCS if they fail to respond to
active poll requests.

3.10.3.5 Graphical User Interface

We have also developed a graphical MCS user interface. This , , ,

program provides integrated access to the entire collection of
monitoring and control facilities. It replaces the individual 0
commands and tabular data formats of the previous MCS
implementation with icons and graphs. It also displays
historical data, to indicate trends, and alerts the operator when
certain situations occur, such as host or manager crashes.

0

-61-

% or

3.10.3.5.1 Graphical Presentation

Economical graphics devices make a sophisticated MCS
graphics interface practical. The MCS interface presents IN

graphical, in addition to the traditional textual and tabular
displays. The goal is to allow the user to view relationships
between data values in a way that appeals to the users physical
intuitions.

The simplest case consists using a gauge to display resource

usage. The operator can recognize trouble when the meter reaches
a certain positi,,, rather than c1Ioiparing two numbers
representing the available and consumed resource amounts. A
particular icon can simultaneously present several values, each
encoded differently. For example, when metering the primal file

service, we use the length of a bar gauge to represent percentage -r

of file space occupied, a number on the face of the meter to
display the actual values, and the brightness to indicate how
fast retrieval reqipsts are serviced. We make the gauge blink if

the response time gets too long, thus drawing the operator's
attention to the gauge. Historical data is shown on a graph,
where the trend and the rate of change are apparent. Diagrams

can be used to display relationships. For example, showing .,

network traffic by the thickness of connecting lines between
manager icons quickly gives the user a sense of where the bulk of
the system activity is occuring and what pathways are relatively

idle and could be either eliminated or other traffic rerouted to .. 4.

better divide the use. Thus, by effective use of graphics, we
allcit: th- 14CS user tc apply relatively quick visual perceptions,
normally used to evaluate physical objects, rather than the
slower analytical processes needed to evaluate tabular data or
data presented on simple, unrelated graphical objects,

3.10.3 5.2 Interactive

Another goal for the MCS interface is that the operator
should not need to remember complicated sets of options or names _.
of specific hosts. When the operator is expected to enter a
command, the full range of appropriate choices are presented; a

mouse cr_-r may then be used to select the desired command. The -

operator can choose items by selecting a visible icon denoting
the item.

We also seek to guide operator attention when unexpected
events, such as host crashes, occur. For this we use multiple
windows. A special message window is alway visible. This is

* 0*

- 62 -

IV 0

IV VV

-N

used by the MCS to request action by the operator If a report

indicates operator attention is required, a notice is posted in
the message window, with details provided in another window that
the operator may select to review the situation. If the report
specified which components were affected, a special menu will be
provided for that report window that will allow the operator to
quickly select views showing the affected components, with the
affected components highlighted to help the operator locate them
on the screen.

Our initial implementation provides high level views showing
ccmposite data, such as overall available file space, total
active processes in the cluster, live host counts and network
traffic. Exploded views are accessed by selecting the icons
representing a service or host. Selecting a service icon gives a
breakdown by host of the hosts supporting managers for that
service. Selecting a host icon gives a brzckdown of the managers
running on that host. Selecting a manager icon, gives more
detailed information on the selected manager. The user may also
reduce the level of detail by using menu selections to return to

summary views.

Icons for quick access to associated managers are provided.
This reduces the need to step through several views when
switching between service and host oriented views. Also, the S
same information may appear on several views. The MCS system
continuously polls the cluster. It allows the user to examine
various views of the system and to start and stop managers and

hosts.

; \- .'

3.10.3.6 Configuration Management

A configuration manager is used to provide a single,
consistent view of the current system and of its configured
resources. This information can be used to identify which
managers participate in providing a particular service, to
determine the hardware configurations for which a new software
revision must be produced, and to format new views for the MCS

operator.

.

%~% % %- -63-

- 0::::

- 63 - ..- .- .

3.10.3 7 Structure of the MCS 6

The MCS consists of several cooperating processes These ..N 1
components may run on one or several hosts, and some components ..

may be appropriately duplicated. It stores data using the Cronus
file system It uses the Cronus IPC to communicate among its
components and with the services it monitors.

There are five functional components. the user interface,

data routing, analysis, recording and retrieval, outbound command
dispatching and poll regulation, configuration management, and
service monitors and probes 'el

The MCS functions can be executed from anywhere in the
cluster. Failure of the MCS or its operator does not endanger
DOS survivability. To achieve this, the MCS follows three
guidelines, key operator interactions can be accomplished from
any access point (Cronus access control mechanisms distinguish

* Cronus operator requests from those of the non-operator user).
the MCS functions are split into separate components which may be
distributed and reliable, as appropriate, and Cronus object %,.I
managers are designed to operate independently of the MCS, with
the MCS providing instrumentation and control for the operator
and nonessential advisory services to managers based upon its
global system purview.

3.11 Resource Management in Cronus

3 11.1 General Approach

As a distributed system architecture, Cronus faces a number
of resource management issues not present in non-distributed
erchitectures. Strategies for effectively controlling the
redundancy and configuration flexibility inherent in Cronus are
needed to take advantage of the distributed system environment 5
These strategies for resource management are often conveniently

separated into policies and mechanisms.

A poLLI is a goal or guideline set by a system
administrator constraining the decisions made by a resource
allocator An intelligently formulated policy is based on an
effort to maximize an overall benefit measure for the system.
For example. a system-wide policy might be to evenly distribute
resource utilization with the intent of minimizing the impact of
a single system outage %

* 0

64 -

* e NO.,-.-_- - .. " *- 5: . -

'N %- r N, ' " ' 0. , ' ,. ' ' " '. , " 4" . " . " " . % ..a '. " ." . " . " " .. ." ," 4 . " " €

A mechanism is an internal system structure designed to)
implement a class of policies. For example, operating systems .

sometimes divide the processor manager into two components. a%
dispatcher or scheduler and a policy module. The dispatcher --
maintains a list of processes requesting the processor, sorted on
a numeric priority field. Periodically, the dispatcher gains
control of the processor, whereupon it activates the process with L_ -
the highest priority on the list. The dispatcher thus implements ?-.
a mechanism for priority scheduling, but does not determine a i":.
policy. The policyv module, on the other hand, is responsible for '"%.
periodically computing the priority of each requesting process, -.'-*
typically based on administratively-determined parameters, k.i
together with measurements obtained from the dispatcher. Varying D O
the values of the parameters considered, or instructing the : ::
policy module to utilize additional parameters are both ""'
techniques for changing the resource management policy using the '' -
standard priority mechanism. The separation of policy and "* "'....

•] ,; I

mechanism plays an important role in Cronus resource management."' *'',

' -I

In the Cronus system model, there are currently two general ',
aspects of resource allocation which are part icular to the Z :-. .,,
network environment and must be effectively managed. One of %. 4
these is the binding of a request from a client to a particular ¢,.-
resource manager for those resources which are available 0 O
redundantly. Redundancy comes in two forms. replicated objects ---
(e.g. , a multi-copy file) and replicated managers, any of which,'.;...
can create a new instance of an object type. In both cases the """'

selection of an object manager to provide the given service is an-[--.-'
important resource management decision. The other important""'--..-
aspect of resource management is the ability to dynamicallvy
migrate objects. This is a powerful tool for matching system :-:'
resources to tasks in a manner that attempts to maximize some,',,*--
measure of system performance, reliability, or' survivability ---
Both static reconfiguration (e.g., moving an entire collection of ","'.

migratable objects at once), and dynamic reconfiguration (e.g.,".,.'.

moving an individual object in direct response to demand for its 0.,.
use) are possible in the Cronus architecture and design. . :.._

The general approach to resource management in Cronus is to ,.:...

individually control the management of the classes of objects... ' -

which make up the system. This approach extends Cronus resource
management concepts to the abstract resources developed by .. ,"
applications. Resource management for an individual abstract ;.-
resource (type) in Cronus is based on integrating a number of"'":-
carefully planned mechanisms already in the system architecture.. '-.,
In addition to resource management by resource type, application ..". .

656

-*7 ek U"k -L c.....L

%(V7

T7

and system interface code can, if they choose to do so, control 0
resource management decisions to incorporate larger purviews such
as implementing an application specific policy which manages
collections of object types used in a specific context.

In Cronus we achieve global and easily controllable resource
management by requiring the object managers to cooperate in
enforcing a resource management policy for their resource type.
An object manager can redirect operations to a peer manager on
another processor dn the basis of current resource status. In
the case of files, this means a file manager can redirect a
request for creation of a file to an alternate file manager which
may have more storage available. Part of the basis for decisions
to redirect requests are parameters, settable dynamically by
system administrators through monitoring and control functions,
which control the resource management strategy. The creation of
objects and resource management in general thus becomes a ..
responsibility that is decentralized among object managers on
each processor based on a global allocation policy, both in terms .4
of sharing current status and possible redirection of operations .
between managers. The ultimate objective is to develop a type-
independent model (and associated mechanisms) for resource c I
management in Cronus, to be used off-the-shelf by future object '-

type managers. This model would be capable of supporting a
variety of policies.

The Cronus resource management model is based on the the
integration of the following set of primitive mechanisms.

o the ability of the kernel to route a request for a given
type to any available manager of that type, using the

Locate mechanism

o the ability of a Cronus manager to redirect a request to a
Emore appropriate peer to accomplish resource management

objectives

" the ability of managers to periodically accumulate current '1
status of their peers via a standard mechanism (Report
Status) to be used as a basis for selecting a site for
redirecting an operation -

o The ability of users or applications to optionally indicate
specific location preferences with requests

o the ability to monitor and regulate the functioning of the

-66- -

e -..
% -% % N* 0"'.-*-.

I

resource management policy from the monitoring and control
stat ion

o the ability of applications to utilize system mechanisms
(e.g. broadcast, Report Status operations) to build

special-purpose resource management strategies tailored to
their needs.

There is a hierarchy of desirable locations for implementing

resource management policies: object managers, shared libraries,
and finally application programs or users themselves. Managers

are the most desirable because there are a limited number of
them, they are readily identifiable and addressable, and they are
most likely to be under administrative control (sc policy
parameters could easily be adjusted from the MCS). We anticipate

that many decisions can be negotiated between managers based upon
information periodically obtained via the generic operation
ReportStatus. The Monitoring and Control Station also uses the -
ReportStatus operation to present the operator with a global view
of how well the resource management policy is proceeding. Of

course, these policies refer to automatic decisions made by the
system, mechanisms for explicit user control of resource %
allocation continue to be available for those applications
requiring it. Other application-dependent facilities could be I
built upon these explicit control mechanisms to implement user

preferences and requirements. %

3.11.2 A Resource Management Example

One aspect of resource management in Cronus involves a
mechanism in which a manager of some given resource can, upon
receipt of a service request, determine that it is not well
suited to handle the given request and then make an attempt at * 0
finding another manager (of the same resource type) that is more
likely to satisfactorily complete the client's request. More
specifically, file manager resource management offers a flexible
way to take advantage of a distributed filesystem and provide a

mechanism to transparently improve file system performance for %

the client. Within Cronus, we have initially experimented with 0

filesystem resource management for the file creation operation.
In the future the same approach to resource management will be

extended to cover other file operations and as well as other
object types.

..I

. @.
%

~ A~ ,d~VPV/.~.~~* d -

xitF W W WUVWWK W W !TI AZ1 ZA A .N1-J1~V.

Before discussing how the various mechanisms are used in
file system resource management, it is useful to review the basic

steps in file creation within Cronus. A Cronus file can be

created by either specifying the destination host on which to

have the file created or with a generic create with which the

system will locate a host for the client and send the request to
that location. If the client has specified the host on which the

file is to be created then that host's file manager will either

service the request or, if there are circumstances which prevent
it from doing so, it will reject the request and send a negative
acknowledgement to the client. Alternatively, if the client has

not specified the target host for file creation then any host is
free to answer the request from the client's operation switch -
request to locate a file manager. When a file manager has
answered a locate, the client's original create request is

forwarded by the operation switch to that manager. It is useful
to note that without resource management, answering the locate
request implicitely allows that manager to be selected for the A.

file creation without any regard for its ability to handle the
request with any degree of efficiency or reliability.

The basic elements needed for performing resource management
for Cronus files lie mostly in the file managers themselves.
Upon receiving a file creation request, the manager must be able

to analyze what its current capabilities are for successfully
providing that service. The method used for calculating what the P.

'health' of a given file manager is at any given moment is
through an objective function. This function inputs the values

of several variables kept by the manager and returns a single
value which will tell the file manager if it should go ahead and 0

perform the file creation or take alternative action. Currently

the variables maintained for the objective function to use as

inputs are.

F1lesystem Capacit"

This variable relates to the percentage of available
space in the the Cronus filesystem on that host. If

this percentage ever falls below a preselected limit
then the objective function will return a value that
would indicate this file manager unfit (except under
emergency conditions) for file creation regardless of I
the values for other variables. This file manager .*

would still service other types of requests (such as

reading, deleting and reportstatus operations) since
these operations don't require additional disk storage.

0 -68-

'.1%. V 1.

% % .% % %

% % % % % %
q- 'r %% % %I

% %-... -.- -.-e. y . y .- -- -- - - . - . . : , "

HotLa Average

The load on the host on which the file manager resides
is tested to see if the level appears high enough to
prevent the manager from expediently completing the
requested operation. In the event of a heavy load, a
file manager is still capable of successfully carrying
out the operation but performance considerations make
it desirable to find a better candidate to service the
c 1 i ent .

Objective variable- -

An objective variable is included to provide to the
operator a tunable' parameter for affecting how
managers will accept or reject operations based on >
their objective function values. This variable is .

intended to be set from an operator at the MCS
intimately familiar with the entire Cronus cluster. If
the operator decides that a particular file manager is
in fine shape then this variable should be set to a
high value. If for any reason the operator decides
that some file manager should not bear much of the
systemwide file creation load (or none at all) then
this value is set low (or to zero to keep it from 0
performing any creations at all). ..* .-

If the objective function returns a value that tells the ' --
file manager not to perform the operation itself the manager.= =I-,

attempts to forward the request to a 'healthier' file manager. •
Obtaining the status of alternate sites for handling this request 'J""

, . '

is done by broadcasting to all other peer file managers the ,,.% ,
generic operation reportstatus. Included in the reportstatus
reply are parameters which are used to compute the objective
function for other managers. The manager computes objective

functions for at least some other peer mfie anad selects one

with a better objective function. If it can't find a manager ," ".2
whose status is better than it's own it can do the operation

itself, if at all possible, or else it may be forced to reject
the client's request. If a candidate has been found to assume ,
the file creation request then the original creation request is
forwarded to that host and the responsibility for servicing the D 0
client falls to that host's file manager.

% %

-69-e

% %
%. %- % . ¢ " f r rw ". '. r • . " . ". " . " 4 "w -. , 2 . ', ' "

F ~ '_"L' e .Ww s -' .% • 4,. # " ," ei ' ." w _e . , e ' , -" . - " € " - " - " ._" , - " . ," . 4 " -, " w F

We are currently experimenting with these mechanisms and

tunable parameters before applying the general resource

management strategy to other resources and attempting to

incorporate it into the automated manager development software.

V1,

,/.

J.

1TM

70°

1. % SrLI'-
4' FJ

% 'r %

%

4 Test and Evaluation

The testing and evaluation of new technology is a difficult
undertaking. Best results seem to emerge when a new technology
or product is made available to potential users early in the
development cycle. However, on the other side of this issue,
early models of a technology or product are most likely to be
very flawed and incomplete, and likely to dissuade any serious

use except by really committed organizations. Without some \-N

degree of serious use there can not be any serious test and
evaluation. In the case of Cronus in particular, because it is a
large and evolving system, early use by an outside user community
is just not feasible. But precisely because it is iarge and
evolving, early use can help identify areas of deficiency at a

time when they are easier to identify and correct.

To deal with this apparent contradiction we have focussed
our initial system test and evaluation activities on our own use
of the system as its parts become available. In some cases this

implies nothing more than a standard, "layered" bottom up
development process, where new levels of functionality make
direct use as clients of interfaces developed for the lower . -

layers. In other cases, this implies additional tasks and effort
to tailor emerging system functionality toward areas which would
be of immediate use to us in our role as software designers,

developers, and maintainers. In the rest of this section we
discuss both aspects of our approach to test and evaluation, and
make a few preliminary conclusions of results to date.

4.1 Areas of Internal Use

There are three major aspects of our internal use of the
emerging Cronus system and software. These are.

o Applying the basic Cronus decomposition and distribution
methodology to the development of the system itself.

o Using network support software on testbed hosts to

provide initial access to the cluster machines for
YF., L'l s of software development.

o Constructing specific Cronus services and integrating
specific software development tools to allow the use of
Cronus components as an aid in developing and supporting

Z Z
-71

.M

.%* .. $

additional Cronus software development.

By applying the Cronus decomposition methodology we mean
that major parts of the system itself and many of its intended
applications are structured as interactions among and between
abstract objects distributed throughout the system and clients
requesting the manipulation of these abstract objects. Files,
processes, principals, directories, etc. are system objects (i.e-
supplied along with the basic system) which are on equal footing
with application specific objects and object managers. Thus,
when we are developing catalog managers, authentication managers
and support for other system objects we are utilizing internal
interfaces and relying on the correct functioning of the same
support software as will the future application developer. In 4/
addition, some system components make direct use of others in
their implementation. As examples, the catalog manager uses

Cronus primal files for storing directory objects, and the
"names" of access control groups are cataloged in the Cronus
catalog. These implementations provide early and heavy use of

many system components.

Enhancements and refinements made to the object system
support code as a result of initial use in developing parts of
the system's intended functionality has resulted both in better
performance of these functions and better support for future

distributed applications. Our approach is to initially
experiment with "hand coded" implementations to gain experience
with the real issues and problems which will face the progiammer

before developing high level tools for future Cronus application

programmers. The first few Cronus object managers were coded by "iN'
manually inserting calls to support library routines, while the
last few have benefited from this experience and the subsequent

. automation of a number of steps in the development procedure.

Our testbed environment consists of a number of different
types of systems. Networking these machines together via the -'

local area network was an early project effort. The current
design of Cronus requires as a support component implementations
of the IP/TCP protocols, in addition to local network support,
for each participating host. For some hosts, these O
implementations already existed and came with the system, for
others they needed to be procured from a separate vendor, for
still others we had to design and build our own. In each case,
the software needed to support Cronus IPC was largely untested
especially under load conditions.

0

- 72-

N,.N,., ---- .- , .,

As a means of both improving the accessibility of our
machines to development staff and to evaluate the adequacy and
reliability of the network support code, we began by developing
support for standard network protocols such as Telnet and FTP to I
stimulate daily use of the newly developed or acquired software.
In addition, to ascertain the adequacy of network performance,
extensive measurements of Ethernet, IP and TCP response time and
throughout were made. These were reported in Cronus Interim
Technical Report No. 2 (BBN Report No. 5261).

While the evaluation approach was very positive, the results
were mixed. One implementation of network software (C/70 UNIX)
proved buggy but fixable, one implementation (M68000 CMOS GCE)
proved to be fairly reliable after some initial problems were
cleared up, and one implementation (Compion software for VAX-VMS)
proved very unreliable and problem prone. It is scheduled to be
replaced by another implementation as soon as possible.

The final aspect of current test and evaluation was to
orient initial use of the system toward software development
application programs. This too has a dual purpose First, it
will exercise additional Cronus components on a daily basis,
including file manager, catalog manager and user authentication.
Second, the software tools and applications developed for or
integrated into Cronus establish a starting point for providing 'PO
future application developers a set of software development tools
which support more convenient use of resources distribuLed"1/
throughout the cluster. Initial use involved the development of
a distributed file system and integration of standard word
processing and basic software production (compiler etc.) tools
which can operate in the distributed file environment. Early
experience has led to a number of improvements, especially in
performance, of the basic system functionality, as well as the
recognition of a number of areas requiring additional effort .
Three of these important areas identified as requiring additional '
work in the next phase of the effort include the survivability of .-

key system functions (e.g. catalog survivability), continued
performance improvement and improved tools for distributing new
versions of system components to the many and varied hosts of the
conf igurati on.

Using the system as a basis for a continuing program of test

and evaluation has proven extremely valuable in validating
approaches and uncovering problems, althrough it is becoming more
costly as we become dependent on more of the system being

- 73 -

0 0,
- ?. A . W

A

available daily. This has resulted in devoting more project

resources to system maintenance activities, and consequently less

to new development.

4%4

A

474

S~
%:

MISSION~

-~Of

Rom Ar Deelopent ente

RADCptan an exeuteAtesatch devtopenttez
and ~~~ ~ ~ ~ ~ ~ ~ .~ 4eetdaqi%.o ~ga4 nspoto

Command, ~~~~~~ ~ ~ .CottCmuictoA n netie

(C1 aciii9 ehia n nietn

TheataRom ecAia Deeopmtente Cnter
RACo pntio man and&te contach, dee.atrnen, tt
manageentd acqw't4ton pto94am6. n swtveittce

* Cnomman, Cntetignc dt Comn cotteci and handeZ~ng
(C3.!) .6avte . Tenecn e~entine4and
ptupaaAtin a~nd eecttonic, mpe-tenc n Z6piot de -t

Tan ea cm ad -ititny. aptec ncud

commun~~ca~t~on4, Voman an %o~~Z at~

= % aee~,Zd.'~ata ~c6Zn,-c~eZac

