- 66 -

nen S/b CH Meaning

mented, if that was called for orig-
inally, to the second word of the
double-precision receiving address.

7 1 11 If 28 or 29 is specified as receiving
address, change sign of first word of
double-precision operand and transfer
it via the inverting gates to AR.
Then transfer the second word, all
29 bits, via the inverting gates
also, to AR.

* Note: If this table is being used for reference, see page 82,

Notice here that the operations listed so far do not constitute the
complete list of operations available in the computer; to name two
very important ones which were not included, multiply and divide. We
will see later how these operations, and many others, are called for,
but first we must complete the description of the basic parts of a com-
mand .

So far all we have discussed are operations. Another part of each com-
mand is the address of the operand: the computer must be told on which
number in its memory the operation is to be performed. Remember that
it has been pointed out that an exact address in memory consists of a
line number plus a word number, called a word-time. The line in which
the operand is located is called the ''source', and, in the layout of

a command on page 61, this number is referred to as "S". If the line
containing the operand is called a source, the obvious name for the
line which will receive the transferred word is 'destination'. This

is referred to in the layout of a command as '"D'". S and D can each
range from 00 through 31, although the meaning of 31 has not yet been
explained. 1In binary (all words in memory are in binary), 5 bits are
required to represent the decimal number 31.

31(10) 11111(2)
Notice that five bits have been allotted to both S and D. Since no
address is complete without a word-time, there must be an allocation
for this in a command. There is; it is "T". There are 108 word-times
per long-line. No other line in memory requires more; in fact, no
other line in memory requires nearly as many, so the range 00 - 107
(u7) will be sufficient.

107 = 6v = 1101011 ,
(10) (16) (2)
so seven bits will be sufficient for T; notice that seven have been
allowed. Now, is T combined with S to form an address, or with D?
The answer is: with both! So we see that, if the straight transfer

- 67 -

of a single word from one long line to another is called for, the
word being transferred will, upon execution of the command, occupy
the same word-time in the new line as it does in the old. The
drawing below will clarify this,

As long as no command is being
executed, the read-heads for

each line in memory (there are

28 of them plus the number track)
are connected to the correspond-
ing write-heads, and bits, words,
and whole lines are recirculating
merrily along. This is all going
on behind the drawing to the left.
But then, when a command is exe-
uted, things begin to happen. If
no commands were ever executed, it
Drop sign would be an easy matter to under-

00 - 19

20 - 23

24 - 26
& 30
28 & 29

D
E
S
T
I
N
A
T
I
0
N

if CH = 10 stand what's going on in the com-
and S or D puter, but computers, as a rule,
don't do much of anything useful

2 28
, if no commands are being executed.
When a command is executed, it has
a source (S), a destination (D), a
word-time (T) during which it is
to be executed, and an operation
(CH and S/b), and other things we

‘ / won't mention here. During word-
A g time T a word is entering the

source selector from each line

00 - 19

QZHAAXHE<ZH
N30

20 - 23

O OFEE 0N

24 - 26 Change sign in memory, as shown in the draw-
if CH = 11 ing. Notice that only one line

28 and S or D number for PN is shown (26, not

» 28 30); this is because PN can be a

source of data in only one capac-
ity (as a storage location).

In the case of AR, 29 is an illegal line number for AR as a source. AR
must be referred to as line 28 when being treated as a source. The source
selector now has a word from each line, and it must pick out the correct
one and ignore the rest. Of course it can do this, because the command
has informed it of the line specified by S. The word frorn memory whose
address is S.T leaves the selector, on its way to be processed.

Processing actually consists of being transferred back to memory again,
over the proper circuit, which, in some cases, will perform an addition
of bits. It also may consist of complementing a negative number. Part
of the processing will be called for by the CH in the command. Depend-
ing on the value of CH, switch A in the drawing may be in one position
or the other, causing the word being transferred to pass around or
through the inverting gates. The word then arrives at the destination
selector. The destination selector will usually disconnect the read-
head for the line chosen as D from the corresponding write-head, pre-

- 68 -

venting recirculation of word T in that line. It will allow all other
read-write connections to remain intact, so that word T in all other
lines is being recirculated. It will then take the word it has received
from the source selector and feed it to the proper line. Thus, what

was originally in the destination line at word-time T is lost and re-
placed with word T from the source line. The source line has recircu-
lated and still contains word T. If the destination is either 29 or 30,
the original contents of the destination line at word time T is not lost,
but is added to word T arriving from the destination selector.

In order to hold down the size of this book to a single volume, we will
leave it to the reader to trace through this procedure for each opera-
tion code listed in the preceding table.

IMMEDIATE vs. DEFERRED COMMANDS

A series of commands could be written to perform any of these opera-
tions on a sequance of words; S, D, and the operation could be the same
in each of the series of commands, with T being increased by 1, in the
case of single-precision operation, or by 2, in the case of double-
precision operation, in each succeeding command. As an example, a
straight single-precision transfer of 04.10 to 05.10 would be coded
with a "C" code of 0, a source of 04, a destination of 05, and T = 10.
This could be followed by another command with the same 'C" code, the
same source, the same destination, but with T = 11. Then T could be
increased by 1 again, and so on. Up to a whole long line could be
transferred, one word at a time, in this way. By this method, it would
require 108 commands to transfer 108 words. There is a way of accom-
plishing this with one command: it is to code the command in such a
way that its execution will cover any desired number of contiguous
word-times. In the layout of a command, as shown on page 61, bit 29

of the command is a one-bit indicator called "I/DP". The "I" stands

for "immediate'. An immediate command is one which will be executed
immediately after it is read and interpreted. Its execution will con-
tinue until the computer is told to stop the execution. The T number
in such a command serves as a 'flag', telling the computer when to

stop the execution of the command. The execution will be stopped before
T, but after the immediately preceding word-time. To indicate immediate
execution of a command, bit 29 of the command is set with O, 1In the
above example, if it was desired to transfer words 10 - 15 from line 04
to line 05, a command with a "C'" code of 0, S =4, D =5, T = 16, and
I/D = 0, could be located at word 09 of some line out of which it would
be read. Which line of memory the command would be in is as yet an
open question. The command would be read at word-time 09 and executed
immediately, meaning that its execution would start in the very next
word-time, 10. It would continue operating through 10, 11, 12, 13, 14,
and 15. The T number of 16 would serve as a flag, stopping the opera-
tion after word-time 15 and before word-time 16.

An important point to note in the discussion of immediate commands is
that an immediate command must execute for at least one word-time
before the flag can be effective. If, in the previous example, the
immediate command located at word 09 had a T of 10, the flag could not

- 69 -

stop the operation until a complete drum cycle had elapsed, and word

10
in
to

was coming up for the second time. This, then, would be the way
which one command could cause the transfer of one whole long line
another: 1let T of the command be 1 greater than the location of

the command itself, and let the command be an immediate command call-
ing for the straight transfer of words.

Any of the previously discussed commands, either single- or double-
precision, can be made immediate by setting bit 29 of the command
equal to O.

If
is

an immediate command is not desired, or, to put it another way, it
desired that operation be deferred until some particular word-time,

and then be performed for that word-time only, bit 29 of the command
must be set to 1, indicating deferred (D) operation. Of course a
deferred double-precision command will still obey the rules for double-
precision operations: namely, the operation will continue until the
next sign-time, which will be two word-times later. In other words,
making a double-precision command deferred does not alter the fact

that two contiguous words will be operated upon; it merely pinpoints
the two words. An immediate double-precision command will operate on
contiguous two-word numbers until stopped by a flag.

The immediate commands which can be made from each of the operation
codes discussed so far are often referred to as "block'" operations,
since they operate on blocks of numbers.

SEQUENCING OF COMMANDS

As

shown in the layout of a G-15 command on page 61, each command con-

tains in itself the address of the next command (N) to be obeyed, and

the word-time portion of this address is in bits 20 - 1l4. Notice that
seven bits are allotted and are sufficient to express any word-time in
memory. Commands, like data, may occupy any word. An address consists

of
be
to
is
in

more than a specified word-time, however; a line number must also
included. In the case of N, in a command, the line-number is implied
be the same as the number of the line in which the current command
located. In other words, the G-15 will continue looking for commands
the same line, once it has started with a command in that line. Since

this is the case, it is only necessary to specify the word-time at which
the next command is located in the same line.

COMMAND LINES

Not all lines in memory are connected to the special circuits which in-
terpret commands. Any line which is so connected is called a "command
line', and commands located in it can be read and executed. The com-

mand lines are 00, 01, 02, 03, 04, 05, 19, and 23. A command can also

be
in

executed out of AR, but this special action by the computer must,
turn, be called for by a special command, which will be discussed

later. 1In order to preserve numerical continuity in all references to
command lines, line 19 is referred to as command line 06, and line 23

is

referred to as command line 07. AR, because of its special nature

in this regard, is not referred to as a command line. Once a command
line has been chosen, the computer will continue to obey commands in
that line, but how does a command line get chosen originally? What
happens when a program must occupy more than one line? These are
logical questions, and we will look into their answers just as soon
as we complete the discussion of commands, themselves.

The only bit in a command word which remains unmentioned at this point
is bit 21. You may now consider it mentioned, although this would be
the wrong time in the discussion to describe its function. For our
purposes at present, always assume it contains 0.

So far, although many computer operations have been discussed, they do
not include all of the operations we will need for the solution for the
quadratic equation. Multiplication and division are just two of the
operations not supplied through the normal operation codes. It has been
pointed out that, although there is no line 31 in the memory of the G-15,
this number may be placed in a command as either the source (line) or the
destination (line). If 31 is specified as either S or D in a command,
the computer will know that no ordinary transfer is being called for.

SPECIAL COMMANDS

Upon discovery of D = 31 in a command, the computer will treat this com-
mand as a "“special' command, and interpret it in a special way. The S
number will be treated as a special operation code, and the three bits
which normally specify the operation will usually be interpreted in the
light of the special operation called for.

In the example of the quadratic equation, all additions and subtractions
can be performed by using normal operations, but the other operations
necessary, of which multiplication and division are two, will require
special commands.

MULTIPLICATION AND THE TWO-WORD REGISTERS

The multiply command contains: D = 31, § = 24, and "C" code = 0. Before
this command is executed, however, the proper numbers to be multiplied
together must be in the two-word registers ID and MQ, as mentioned before.
Therefore, the multiply command must be preceded by two other commands

in the program, which load these two registers. The product, after mul-
tiplication, will appear in PN. The programming method for performing

a multiplication can be derived from a further study of the two-word
registers and how they operate.

Any two-word register can be loaded with either a single-precision num-
ber (via a single-precision transfer) or a double-precision number (via

a double-precision transfer), but the two-word registers will always

word in double-precision when a multiplication is called for. Two 57-

bit magnitudes will be multiplied together. If a single-precision mul -
tiplication is really desired, it can be achieved by only loading the

most significant bits of ID and MQ, making sure that the remaining,
least-significant bits are cleared to 0. A 56-bit product (to be expected

- 71 -

when two 28-bit numbers are multiplied together) will appear in PN in
double-precision form. TIf a single-precision product is desired, it

will be in the most significant word of PN. So, in the case of a single-
precision multiplication, the two-word registers must be cleared to O
before they are loaded with the multiplier and multiplicand. Of course
the product will be the same, regardless of which of the two numbers is
treated as the multiplier and which as the multiplicand.

The G-15 is internally wired in such a way that each bit (of the 58
bits) in PN may be cleared as the corresponding bit in ID is set.¥
Therefore, if all 58 bits of ID are set, regardless of how they're
set, prior to a multiplication, all 58 bits of PN will automatically
be cleared, and PN will be ready to receive the product. The setting
of MQ will affect no other register, nor will it be affected by the
setting of any other register.

In a multiplication, although the magnitudes of the two numbers are to
be multiplied, we know that the signs must be added, if the laws of
signs are to be obeyed. A product is usually worthless if it contains
the wrong sign. The G-15 knows this, too. Therefore, when the two-
word registers are being loaded, via a normal operation (transfer),

+ - 0 1
+ + - 0 0 1
- - + 1 1 0

if the "C' code is even, (0, 2, 4, 6), the sign of the number is
divorced from the magnitude and sent to a special "flip-flop" asso-
ciated with the two-word registers, called IP. A flip-flop is a two-
state device, one state equalling 0, the other equalling 1, and it
can remember which state it is in. It can also be read, or "sensed',
to determine which state it is currently in. The bit in the two-word
register which would normally receive the sign will not; it will be
set to 0. When ID is loaded, IP will be set with the sign of the num-
ber going into ID. When MQ or PN is loaded, the sign of the number
being transferred will be added to the present value of IP, and the
result will remain in IP. Similarly, when a number is transferred,
via a normal operation, out of a two-word register, and the "C" code
is even, the magnitude will come from the register specified as S,
but the sign will come from IP. This function of IP is automatic.
The only special precaution the programmer must take in order to in-
sure its operation is to transfer numbers to and from the two-word
registers with even "C" codes. So, in the setting of ID and MQ prior
to a multiplication, the program will have to set ID first, then set
MQ, thus insuring the correct sign of the product in IP. Then the
multiply command may be given.

)

* Note: this feature is automatic if ID is set with any even C
code (0, 2, 4, 6).

- 72 -

When the computer is commanded to multiply, the following will be the
state of affairs in the two-word registers:

ID - Multiplicand

MQ - Multiplier

PN - cleared to O and ready for product
IP - correct sign (0 or 1) of product

It has been stated that the two-word registers will multiply in double-
precision fashion, regardless of whether or not double-precision opera-
tion is really desired. Remember that, in double-precision numbers the
most significant bits are in the odd-numbered word (in the case of the
two-word registers, we refer to these as IDj, MQ1, and PN1). ALl 29
bits are magnitude bits. 28 of the bits in the even-numbered word (IDg,
MQqp, and PNg) are the least significant bits of the magnitude, and the
sign-bit of this word is the sign of the number, or 0, if the sign went
to IP.

In the case of double-precision multiplication, then, we would want the
initial conditions to be as follows, where x's represent significant

bits of magnitude.

Word 1 Word O

ID: XXXXXXXXXXXXXXXXXKXXXXXXXXXXXK XXXXXKKKXXXXXKXXXXXKXXXXKXKKO
MQ: XXXXXXXXXXXXXXXXXXXXXXXXXKXKXK KRKKKKXKKXKXKKXXKXXXXXXXXXXXXXX0
PN: 00000000000000000000000000000 00000000000000000000000000000
IP: O or 1, whichever is the correct sign of the product.

To transfer the double-precision multiplicand from its resting place in
memory to IDQ 1, we would use a straight double-precision transfer (C = 4),
with D in the command equal to 25 (ID). Because the C code is even, the
sign will be disengaged from the magnitude, and sent to IP. Because ID

is the destination, IP will be loaded with this sign. Then, to load MQg,1,
we would transfer the double-precision multiplier, also with a C = 4, with
D in the command equal to 24 (MQ). Because the C code is even, the sign
will be disengaged and sent to IP. Because MQ is the destination, IP

will add this sign to its present contents, and the result, which will
appear in IP, will be the correct sign of the product. When the signs

are disengaged, the bits in the two-word registers which would normally
have received them are cleared to 0, as shown above. When ID is loaded
(each of the 58 bits is set with some value, replacing what was origi-
nally there), each corresponding bit (and therefore, all 58 bits) of PN

is cleared to 0. Thus the desired initial conditions will be achieved
through the execution of two commands, the first of which loads ID, the
second, MQ.

- 73 -

In the case of single-precision multiplication, we would want the ini-
tial conditions to be as follows, where x's represent significant bits
of magnitude.

Word 1 Word O

ID: XXXXXXXXXXXXKXXKXKXXXXxxxxxxx0 00000000000000000000000000C00
MQ: XXXXXXXXXKXXXXXXXXXXXxxxxxxxx0 00000000000000000000000000000
PN: 00000000000000000000000000000 000000000600000000000000000000
IP: O or 1, whichever is the correct sign of the product.

To transfer the single-precision multiplicand from its resting place

in memory to ID] (the most significant half of the two-word register),
we would use a straight single-precision transfer (C = 0), with D in
the command equal to 25 (ID). Because the C code is even, the sign
will be disengaged from the magnitude, and sent to IP. Because ID is
the destination, IP will be loaded with this sign. Then, to load MQi,
(again, the most significant half of the two-word register), we would
transfer the single-precision multiplier, also with a ¢ = 0, with D

in the command equal to 24 (MQ). Because the C code is even, the sign
will be disengaged and sent to IP. Because MQ is the destination, IP
will add this sign to its present contents, and the result, which will
appear in IP, will be the correct sign of the product. When the signs
are disengaged, the bits in the two-word registers which would normally
have received them are cleared to 0, as shown above. These are bit 1
in both ID] and MQp (remember, this is a single-precision transfer from
an odd-numbered location in memory, thus congruent to 1 mod 2, to word
01 in ID and MQ). When ID is loaded (the first 29 bits are set with
some value replacing what was originally there), each corresponding

bit (and therefore, the 29 bits of PNy) of PN is cleared to 0. The
desired initial conditions will not be totally achieved unless something
further is done to clear the remaining bits of ID, MQ, and PN. It will
do no good to follow the two commands which load ID] and MQp with two
more which load IDg and MQQ, because this will cause the resetting of
IP, and destroy the sign of the product. But the two-word registers
could be cleared first, and then ID] and MQ] set with the desired num-
bers. This is the procedure to be followed, and there is a special
command which clears all bits in the two-word registers and also clears
IP to 0. Since it is a special command, it has D = 31. Since it is
going to operate on two-word registers, it must operate for two word-
times. Its source (S) = 23. The C code = 0. Since the C code = 0, it
will operate for only one word-time, unless it is made immediate by set-
ting the L/D bit in the command = 0. The T number in this command, as
in any other immediate command, then becomes a flag, telling the computer
when to stop execution of the command. Remember that an immediate com-
mand will be executed starting in the word-time after that in which the
command was read, and it will continue to be executed during each suc-
ceding word-time up through the one immediately preceding the flag. It
will not be executed during the word-time whose number equals the flag.
If we refer to the location of a command as L, then, in the case of the

- 74 -

command which clears the two-word registers, T = L + 3. 1In order to
simplify the writing of flags for T numbers, we drop the plus sign,
and use the desired number to be added to L as a subscript for L. In
the case of the command we are presently considering, then, T = L3.

Three commands, then, are necessary to establish the desired initial
conditions for what we might call a single-precision multiply, although
that really is a misnomer. The first will clear the two-word registers
and IP, the second will load IDj, and the third will load MQj.

The special circuitry associated with the two-word registers does es-
sentially two things. We have already seen that it enables PN to act

as an accumulator. The other feature accomplished through this special
circuitry is a "shifting" process. A shift is the movement of bits
toward the high-order or the low-order position within a register. In
the G-15 it is accomplished one bit-position at a time. 1ID shifts to-
ward the low-order (T1) position (this is usually referred to as shift-
ing to the right). MQ shifts toward the high-order (T29) position (this
is usually referred to as shifting to the left).

Multiplication involves both the shifting and the additive features of
the two-word registers, in the following way. The contents of ID are
shifted right by one bit-position, moving all 57 magnitude bits to the
right one place. The right-most bit (T2 of IDg) is lost. The left-
most bit-position (T29 of ID1) is filled-in with a 0. Simultaneously
MQ is shifted left by one bit-position, moving all bits to the left
one place. The left-most bit enters an inspection station, where it
is inspected for 1 (it will, of course, be either 1 or 0). The right-
most bit-position is filled-in with a 0. After such a simultaneous
shift, during a single-precision multiplication, ID and MQ would con-
tain:

Word 1 Word O

ID: OXXXXXXXXXXKXXXXXXXXXXXxXxXXxX 00000000000000000000000000000
MQ: XXXXXXXXXXXXXXXXXXxxxxxxxxx(00 00000000000000000000000000000
Compare these with the initial conditions shown on page 73.

If the bit from MQ which is inspected is a 1, the new contents of ID
are added to PN; if it is a O, the addition is not performed. The
first addition in PN will, of course, be to 0, since PN was initially
cleared. This process requires two word-times; because it is essen-
tially a double-precision process, it must begin with an even word-
time. It can be repeated as often as desired (28 times for a full
single-precision multiplication). The multiply command must be im-
mediate, and it will perform the process over and over again, for the
indicated number of word-times. T in the command is a ''relative
timing number'. It will be set equal to the desired number of word-
times of execution of the command; this should be an even number, and
the execution should begin at an even word-time, requiring the imme-
diate multiply command to be located at an odd word-time. TIf the

process is allowed to continue for 28 times (T = 56), two full single-
precision words can be multiplied together, and their product, a series
of sums, will appear in PN. Notice that at least one shift is perform-
ed prior to the first addition, and the product will actually occupy the
56 most significant bit-positions in PN. In any number system, if two
28-digit numbers are multiplied together, a 56-digit product, counting
any leading O's, will result. If the initial shift in the computer were
not performed, it would be possible, in the case of large numbers, to
generate an overflow and an erroneous result.

After a single-precision multiplication, the most significant bits of
the answer will appear in PNy, bits 29 - 2. Bit 1 of PNy and bits

29 - 3 of PNp will contain the least significant bits of the product.
Assuming that a single-precision product is all that is required, the
least significant bits are merely excess accuracy, and can usually be
ignored.

In ordinary pencil-and-paper multiplication, if you were to multiply
two 28-bit numbers, you would inspect the multiplier from right to

111111311311111111111111111111
1100101010000000001111000001
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111111111111111111111
1111111111113 111111111111111
1111111111111111111111111111
1111111111111111111111111111
11111111111111111123111111111
11111113113131111111313111111111
11001010100000000011110000000011010101111111110000111111

left, one bit at a time. If you found a 1, you would add the multi-
plicand to what you already had in the way of a partial sum. If you
found a 0, you would not add the multiplicand. You would then shift
the multiplicand to the left one place, and inspect the next bit in

the multiplier. You would do this 28 times, once for each bit in the
multiplier, and you would generate, as a result, a sum, which repre-
sents a product of the two original numbers. The computer does the
same thing, in reverse. It starts with the high-order end of the
multiplier and inspects toward the low-order end. The shifts are
exactly the reverse, therefore; you shifted to the left, but the com-
puter shifts to the right. A double-precision multiply command causes
exactly the same sequence of events, but the relative timing number

(T) in the command is set to allow the process to continue for 57 times
(T = 114). Notice that the multiply command may be allowed to operate
for any number of times, merely by setting T = 2k, where k = the num-
ber of times desired. The resultant product will always be predictable.

- 76 -

DIVISION AND THE TWO-WORD REGISTERS

Division is somewhat similar to multiplication, in that it also utilizes
the shifting and additive features of the two-word registers in order to
reach a result.

The divide command contains: D = 31, § =25, and C = 1 or 5 (these are
interchangeable: the setting of the S/b in the command has no bearing
on the operation). As in the case of multiplication, the numbers to be
divided must be set up in the two-word registers. The rules governing
the initial set-up of the two-word registers apply here as well as in
the case of multiply, except that the denominator will be loaded into
ID, the numerator into PN, and the quotient will appear in MQ. Because
PN is cleared as ID is set, the denominator must be loaded first, then
the numerator. In order to clear MQ, preparatory to receiving the
quotient, the clear command will have to be given. The proper sign of
the quotient will be generated in the same manner as it is for a product.

When the computer is commanded to divide, the following will be the
state of affairs in the two-word registers:

ID - Denominator

PN

Numerator
MQ - cleared to 0 and ready for quotient
IP - correct sign (0 or 1) of quotient

In division, as in multiplication, the two-word registers will operate
in double-precision fashion. The most significant word is the odd-
numbered word (ID7, PNj, and MQj). If single-precision division is
required, the single-precision denominator usually will be in IDj,*
bits 29 - 2 (remember its sign will be in IP), followed by insignif-
icant O's in bit 1 of ID] and all 29 bits of IDg. Wherever the denom-
inator is in ID*, the single-precision numerator should be similarly
positioned in PN.

In the case of single-precision division, usually we want the initial
conditions to be as follows *, where x's represent significant bits

of magnitude.

Word 1 Word O

ID: XXXXXXXXXKXKXKKXxxxxxxxxxxxx(0 00000000000000000000006000000
PN: XXXXXXXXXXXXXKXXXXXXxxxxxxxx0 00000000000000000000000000000
MQ: 00000000000000000000000000000 00000000000000000000000000000
IP: O or 1, whichever is the correct sign of the quotient.

% The reason for making this indefinite statement will follow a descrip-
tion of the machine's divide process.

- 77 -

In order to get MQ cleared, the first command in the set-up for a divi-
sion would be the clear command. This would be followed by two straight
single-precision transfers from memory to ID; and PNy, in that order.
The signs of these two numbers will be disengaged and sent to IP, where
the proper resultant sign will be generated. O0's will occur in the bits
in ID (bit 1 of IDy) and PN (bit 1 of PNj) which would normally have
received the signs.

When the desired initial conditions have been established, the divide
command may be given. 1In order to understand the computer's division
process, we must first inspect the pencil-and-paper method, to deter-
mine what process is involved there; we're so used to doing it, that
we usually don't consciously analyze the process as we do it, but
there is an underlying, reasonable pattern to the process of "long
division". Consider the following long division in binary arithmetic.

‘ 0101000
101000/011001000000
000000

0110010
101000
0010100

000000
101000
101000
0000000
000000
0000000
000000
0000000
000000
000000

In division we are attempting to find the ratio of one number to another.
We call one of these numbers the denominator, and the other, the numera-
tor, The resultant ratio, which we call a quotient, is the ratio of the
numerator to the denominator: N/D. 0

The first step is to subtract the N -1D 20 = -r

denominator, in its present form N - 0:D-2 = +R1

(D:20), from the numerator. We 1

find that this yields a negative R, - 1:D.2 = +R
; 1 2

result. (In the decimal system -9

we would inspect each possible R2 - l'D-Z__2 = I,

multiple of D, starting with 9.D, R2 - 0-D-2 = +R3

but, in the binary system, the -3

only possible multiples of D are R3 - 1-D-2 = +R4

1.D and 0-D). We therefore dis-

card the coefficient of 1, and

say that N contains 0'D plus a remainder, R]. We now shift D to the
right one place (in the binary system, this yields D-2-1), and attempt
to subtract it from this remainder. This remainder, of course, equals
N, since N - 0 = R;j. In effect, what we are doing, knowing that N does
not contain D, is attempting to discover whether or not N contains D/2.

Tt does, and we know that because we get a positive result after the
subtraction. Rjp contains 1-p-2-1 plus a remainder, R2. We continue
this shifting and subtracting process until we arrive at a remainder
of 0 or until we achieve the desired accuracy in the resultant quotient.

N =0-0-20 + R,

N =020 + 1027 4 R,

N =002% + 1.p-27F ¥ 00272 R,

N =022+ 1027t + 0pe27% 4 10p27°

The reason we have taken a close look at the way you divide is that,
contrary to popular belief, the designers of digital computers are
"just plain folks"; they think the way you do, and when they were
faced with the problem of designing a division operation for the
Bendix G-15, they followed the same reasoning we have followed here.
They noted one important exception to it, however, from the stand-
point of the computer: the computer cannot 'inspect' prior to a
subtraction; it must subtract, and then inspect the result. Since
the numerator is in PN, and since the subtraction will also be per-
formed in PN, it is obvious that, after the subtraction, the orig-
inal numerator will be lost in any event, and either a positive or

a negative remainder will be in PN. The computer will have to be
able to determine its future course on the basis of the sign of the
remainder in PN. The bit that goes in the quotient is easily deter-
mined: if the sign of the remainder is negative, a O goes in the
quotient; if the sign of the remainder is positive, a 1 goes in the
quotient. If the remainder is positive, there is no problem: the
denominator must be shifted right one more place and a new trial sub-
traction performed. But, in the case of a negative remainder, the
problem is a bit more difficult. We know that the division yielded

a 0 at this point, and the remainder actually indicates the quantity
by which the denominator exceeded the numerator (or previous remainder,
if this is not the first subtraction). If we shift the denominator
right one more time, obtaining 1/2 its previous value, and add this
to the negative remainder, we will know whether or not an original
subtraction of D/2, rather thapn D, from N would have yielded a positive
result. (N - D + D/é =N - D/é). In short, we can devise the follow-
ing rule: subtract D from N; if the result (Ry) is positive, place a
1 in the quotient, and subtract D/ﬁ from Ry, continuing the process.
If the result is negative, place a 0 in the quotient, and add D/2 to
R1, continuing the process.

The designers worried about one other point: the necessity for carry-
ing many insignificant trailing 0's along with N, in order to perform
the long division process. They realized that, after subtracting D
from N, and arriving at a remainder R, the ratio of Rj to D/2 is the
same as the ratio of 2°R] to D (R1:D/2::2-Ry:D). Therefore, rather
than shift D right to obtain D/2, they decided to shift R] left to
obtain 2+R]1, and do this successively, with each remainder, always
adding (in the case of a negative R) or subtracting D (in the case

of a positive R) from the new value. Although it seems that overflow

- 79 -

might be caused by shifting a remainder to the left (if the remainder
has a 1 in the most significant bit position prior to the shift), this
will not cause overflow, because of the manner in which the numbers
are treated by the circuitry employed during a divide operation. Any
temporary overflow condition will right itself in the next step of the
continuing process. Such a temporary overflow will not set the over-
flow indicator. The algorithm upon which this division process is
based is that N will never equal or be greater than 2-D. The long
division in binary, as shown on page 77, will look like the following,
as it is performed by the computer.

0101000
101000/011001 N
sub 101000 D
0) - 001111 Ry
- 011110 2-R]
add 101000 D
1) 001010 Ry
010100 2°Ry
sub 101000 D
0) - 010100 R3
- 101000 2-R3
add 101000 D
1) 000000 R4
000000 2-R4
sub 101000 D
0) - 101000 Rj
-1010000 2-Rj
add 101000 D
0) - 101000 R¢
-1010000 2-Rg

Notice that the overflow caused by 2-R5 is corrected by the next addi-
tion. This is a temporary overflow.

At the beginning of the division process, MQ is shifted left one bit-
position, while D is subtracted from N. MQ, then, if it were not
cleared prior to the division, would look like this, where Y's re-
present the original contents of MQ.

Word 1 Word O

MQ: YYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYO

In the case of division, although MQ shifts left, ID does not shift
right, so D29 remains in ID. R} is inspected: if it is positive, a
1 is placed in T2 of MQp; if it is negative, a O is placed in the same
bit. PN, containing R;, is shifted left one bit-position, so that it
now contains 2-R1. The sign of R} is used to control the inverting
gates during the next transfer of D to PN for addition or subtraction.
(Notice that D will pass through the inverting gates because the C

code of the divide command contains a 1.) If the sign of Ry is positive,
it will be reversed and combined with D from ID on the next pass, so that,
as D passes through the inverting gates on its way to PN, the effect will

- 80 -

be to subtract D from 2-Rl1. If the sign of R] is negative, it will be
reversed, combined with D from ID, and cause the addition of D to 2+Rj.
A complete step such as the one described above will require two word-
times, since division is essentially a double-precision operation, even
though single-precision numbers may actually be involved. The next step
in the process will begin with the shifting of MQ left by one bit-posi-
tion again, so that the first bit in the quotient will occupy T3 of MQ,
and T2 will be ready to receive the next bit. During the second step,
2:Rq] will be in PN, and D will be added to, or subtracted from it. This
process will continue for as many word-times of execution as are allowed
by the divide command. The command will be immediate, and the relative
timing number in T will te set to allow 57 word-times of execution

(T = 57) for a single-precision divide.

After 56 word-times of execution, at 2 per step in the division process,
28 bits of quotient will be generated in MQp, and MQ will look like this,

where Y's represent original bits, and x's represent quotient bits.

Word 1 Word O

MQ: YYYYYYYYYYYYYYYYYYYYYYYYYYYYY XXXXXXKXXKXXKXXKXXXXXXKXXXXXXXXXX0

If only 56 word-times of execution are allotted, the first x in the
drawing above (in T29 of MQg) will represent x-D-20, while the remain-
ing bits in MQQ will represent a fractional quotient. If a 57th word-
time of execution is called for, during that word-time MQQ will be
shifted left one bit-position, and a new bit will be placed in T2 of
MQO, so that MQ will look like this.

Word 1 Word 0

MQ: YYYYYYYYYYYYYYYYYYYYYYYYYYYYY XXXRXXXKXXXKXXKXXKXXXKXXKXXKXXKKKXO

Notice that MQ] did not move, while MQp did. The first bit in MQg
(x-D-ZO) is shifted into a flip-flop which detects overflow. The bit
now in T29 of MQp represents x-D-2‘1, and the whole word is a fraction-
al quotient. This is the normal form for a ratio, and it is the form
most desirable when programming the G-15. Overflow will be indicated
if the quotient actually equals or exceeds 1, since, in that case, a 1
will reach the overflow flip-flop during this last shift. If T = 56 in
the divide command, the overflow indicator may be erroneously set, and
should never be depended upon.

The rule, then, for a single-precision division is:
1. Never divide an N which is greater than, or equal to D.
2. Use a T = 57 in the divide command.

3. As in the case of multiply, the divide command must be located
at an odd word-time.

- 81 -

You can see that there are exceptions to this rule, but that a thorough
knowledge of computer logic and much experience are required. 1In no
case will division work if N is greater than or equal to 2-D.

Double-precision division involves exactly the same operations as does
its single-precision counterpart. Of course, the execution time of the
command must be greater. With 57 bits of quotient to be generated, 114
word-times would be necessary. If this is the time allotted, the first
bit of the quotient (T29 of MQ]) will represent x.D-20, In the case of
double~-precision, two more word-times are necessary to shift the entire
quotient one bit-position to the left., If T = 116, all 57 bits of the
quotient will be fractional, T29 of MQ] representing x:D-2-1, and T2 of
MQp representing x+D.2-57, In this case, the overflow flip-flop will
be set with x.D-20, If the quotient equals or exceeds 1, x will equal
1, and overflow will be indicated. If T = 114, erroneous overflow may
be indicated,
The rule, then, for double-precision division is:

1. Never divide an N which is greater than, or equal to D.

2. Use a T = 116 (v6) in the divide command.
Again, exceptions are possible, but thorough knowledge of computer logic
and much experience are required. In no case will division work if N

is greater than or equal to 2-D.

Remember that a quotient is nothing more than a ratio of one number to
another. It stands to reason that, if 2/17 = 4/34, etc.,

00000000000000000000000000000 OOOOOOOOOOOOOOOOOOOOOOOOOO140
divided by

00000000000000000000000000000 OOOOOOOOOOOOOOOOOOOOOOO10004@
equals

00000000000000000000000000000 OOOOOOOOOOOOOOOOOOOOOOOOO100b
divided by

00000000000000000000000000000 OOOOOOOOOOOOOOOOOOOOOO1000IOF,
which, in turn, equals

00000000000000000000000000000 OlOOOOOOOOOOOOOO0000000000040
divided by

00000000000600000060000006000010 OOlOOOOOOOOOOOOOOOOOOOOOOOO4L

- 82 -

and any of these quotients equals the quotient derived by dividing

00010000000000000000000000000 OOOOOO00000000000000000000040

by

10001000000000000000000000000 OOOOOOOOOOOOOOO00000000000040,

So long as the denominator and the numerator occupy corresponding bit-
positions in ID and PN, respectively, which bit-positions they occupy
will have no effect on the quotient. For each denominator and numera-
tor, regardless of their positions in these two registers, provided

the above requirement is met, there will be one correct quotient appear
in MQy for single-precision division, and one correct double-precision
quotient, if that is called for, in all of MQ,

Tt would be desirable to round off a quotient to the nearest figure in
the last digit carried, but this is not possible, because there is no
way of examining the remainder in the G-15. Truncating the quotient,
i.e., ignoring the value of digits beyond the one carried, will result
in the quotient reported being somewhere between correct and one unit
low, and averaging a half unit low. This would give a systematic error
which could seriously affect accuracy after a large number of opera-
tions. One way of avoiding this is to add an average of one half to
all quotients. This is simply done by making the last bit always 1,
i.e., adding one unit to half of the wotients: those originally end-
ing in zero. This is called the "Princeton Round-off'. A truncated
quotient is between zero and ome unit low, while a Princeton-rounded
quotient is between one unit low and one unit high.

There is no way to program the elimination of the Princeton round-off;
it will always occur. If you desire a single-precision quotient without
this round-off, you can carry the division out as a double-precision
operation, making T = 116 (v6) in the divide command, in which case the
single-precision quotient will be in bits 29 - 2 of MQ1, and the rest

of the bits in MQ will contain the remainder. The Princeton round-off
will occur at T2 of MQg.

Notice that, in either single-precision multiplication or single-precision
division, four commands are necessary to set up for, and perform, the op-
eration. One command clears the two-word registers, two others load each
of the two-word registers containing the numbers to be operated on, and
the fourth command actually calls for the desired operation. The clear
command can sometimes be eliminated by utilizing special circuitry con-
necting AR and the two-word registers.

In the table of normal operations (pages 64 - 66), it was pointed out
that, if both S and D are less than 28, codes 2 and 6 call for exchanges
of AR with memory. So do codes 3 and 7, under similar circumstances,
except that, in these two cases, complementation of negative numbers is
involved. If any one of these four commands is used to load ID (25),

MQ (24), or PN (26) from some other location in memory (S less than 28),
during all even word-times AR cannot load any of these three registers.

- 83 -

In other words, the contents of AR will be blocked off from IDg, MQ,
and PNg. In the place of the contents of AR, the even half (word 00)
of the specified two-word register will receive 29 0's. 1If the C

code = 6, during the following odd word-time, the contents of AR will
be transferred to the odd half of the sgpecified two-word register.
Because the C code is even, the sign of the double-precision number
will go to IP, according to the rules discussed earlier. Notice that
during the even word-time of execution, the original contents of AR
attempt to reach the even half of the specified two-word register,

but are blocked off, and O's are transferred instead. During the same
word-time, the even-numbered word from memory goes to AR. During the
following odd-numbered word-time, the contents of AR (originally an
even-numbered word from memory) goes to the odd half of the specified
two-word register. The fact that this word was delayed one word-time
because of its transfer via AR does not alter the fact that it is the
first word of a double-precision number. Therefore, even though it
reaches the two-word register at an odd word-time, its sign will be
divorced, and sent to IP, in accordance with the rules already mention-
ed.

Consider, then, a single-precision multiplication: A:B, where A is
stored in an even-numbered word. If a transfer of A to ID via the AR
register is called for (C = 6), during the first word-time (an even
numbered word-time), the original contents of AR attempts to reach IDg,
but is blocked off, and all 29 bits of IDy are cleared to 0. During
the same time, A is transferred to AR. During the next word-time (an
odd word-time), A is transferred from AR to IDj, but, since A is the
first half of what the computer believes to be a legitimate double-
precision number, its sign, being treated as the sign of the number, is
disengaged from the magnitude bits, and it is transferred to IP. Tl of
IDy, which normally would have received this sign, is cleared to O.
Since every bit in ID has been set during this operation, every bit of
PN has been cleared. The only initial condition remaining to be satis-
fied is the placing of the multiplier, B, in MQ;. If B is in an odd
word in memory, a straight single-precision transfer to MQ] will accom-
plish this. Since the C code for this is O (therefore, it is even), the
sign will be disengaged from the magnitude portion of B, and it will be
sent to IP, to be combined with IP's present contents. Notice that the
initial conditions in this case will be:

Word 1 Word O

ID: XXXXXXXXXXXXXXXXXxxxxxxxxxxx0 00000000000000000000000000000
MQ: XXXXXXXXXXXXXXXXXXXXXXXXXXXX0 YYYYYYYYYYYYYYYYYYYYYYYYYYYYY
PN: 00000000000000000000000000000 00000000000000000000000000000
IP: 0 or 1, whichever is the correct sign of the product.
In the above layout of the two-word registers, the Y's in MQy represent

the original contents of that word, remaining after MQ; has been set.
Since, during a multiplication, MQ is shifted to the left one bit-position

- 84 -

at a time, each succeeding bit being inspected to determine whether
or not the contents of ID should be added to the contents of PN, and
since, if a single-precision multiplication has been called for, only
28 bits from MQ will be inspected, the remaining ''garbage' in MQ will
have no effect on the multiplication. There is no need to clear MQg
prior to a single-precision multiplication. However, if the multi-
plier were in an even-numbered word in memory, it would be perfectly
permissable to use a transfer via AR (C = 6) to get it into the odd
half of MQ. 1In this case, of course, MQp would be cleared.

In the case of a single-precision division (N/b), if D is stored in
an even word in memory, and transferred into ID] via AR, this will
succeed in properly preparing ID for the division and setting up IP
for the addition of signs. But setting ID clears PN, and not MQ.

PN could be set with the proper value (N), either by a straight
single-precision transfer, or by a transfer via the accumulator, and,
in either case, it would also be set up properly. If PNj were set
by a straight single-precision transfer (C = 0), PNQ would still have
been cleared because each bit in IDg was set (to 0). MQ will remain
unaffected, containing its original contents.

Word 1 Word O

ID: XXXXXXXXXKXXXXXXXXXXXxxxxxxxx(0 00000000000000000000000000000
PN: XXXXXXXKXXXAXXXXXXXXxxxxxxxxx0 00000000000000000000000000000
MQ: YYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYY
IP: O or 1, whichever is the proper sign of the quotient.

The Y's in the above layout of MQ represent its original contents,
remaining after both ID and PN have been set. This is perfectly

all right, however, since MQ is shifted to the left one bit-position
at a time, as each bit of the quotient is placed in T2 of MQp. Tl
of MQg is cleared by the initial shift, preparatory to the placement
of the first quotient bit in MQQ. If a full 28-bit quotient is gen-
erated, all the Y's shown above in MQm will be shifted out to the
left, and all 28 magnitude bits of that word will contain quotient
bits.

REVIEW

At this point, we pause to review what has been covered. We first
pointed out that, in order to effectively use the computer, the
programmer must analyse the problem:

1. determine the formula(s) by which a solution can be reached,
or in some way define exactly what is called for;

2. discover the form, magnitude, and ranges in values, of the
data which will be available as input for the program;

- 85 -

3. choose an appropriate method of solution;

4, outline, very briefly, the logical path to be followed in
this method, such an outline being called a flow diagram.

We then analysed a sample problem, that of solving for the roots of

a quadratic equation of the form, a-x%+b.x+c. After we developed a
flow diagram for its solution, we saw that we needed more thorough
knowledge of available computer operations, especially the arithmetic
operations.

This lead us to a discussion of commands as they appear, in binary, in
the computer. The first part of a command we studied was the C code,
consisting of a two-bit characteristic and a one-bit indicator for
either single- or double-precision operation. We saw that the various
possible C codes in three bits run the gamut of 0 - 7, where 4, 5, 6,
and 7 are essentially the double-precision counterparts of the single-
precision codes 0, 1, 2, and 3, respectively.

Each of these operations is a transfer of some type, and it may call
for the use of special circuitry during the transfer, such as invert-
ing gates, or circuitry which can change a sign, drop a sign, or add.
The various types of transfers that were seen to be available were:

1. straight single- or double-precision transfer from one
place in memory, including either the single- or double-
precision accumulator, to another, also including the
accumulators; C = 0, 4;

2. single~ or double-precision transfer via the inverting
gates (to accomplish complementation of negative numbers,
preparatory for addition) from one place in memory, in-
cluding either of the accumulators, to another, also in-
cluding either of the accumulators; C = 1, 5;

3. exchange of memory with AR, both single-precision words,
and the transfer in each direction, a straight single-
precision transfer; C = 2;

4, transfer of a double-precision number via AR, in which,
during the even word-time, the even word of the double-
precision operand goes to AR while the original contents
of AR go to the even word of the double-precision desti-
nation; during the odd word-time, the new contents of AR
go to the odd word of the destination, while the odd word
of the operand goes to AR; C = 6;

5. transfer either a single- or a double-precision magnitude
to or from the appropriate accumulator, the sign being
dropped during the transfer; C = 2, 6;

6. exchange memory with AR, both single-precision words, the
transfer from AR to memory being a straight single-precision

- 86 -

transfer, but the transfer from memory to AR being via the
inverting gates; C = 3;

7. transfer of a double-precision number via AR, as in (4),
above, except that each word of the double-precision operand
as it enters AR, enters via the inverting gates; C = 7;

8. transfer either a single- or a double-precision number to or
from the appropriate accumulator, but with a change of sign,
and subsequent passage through the inverting gates, for com-
plementation, if necessary, preparatory to addition (changing
the sign of a number and adding it accomplishes the same end
result as subtracting it); C = 3, 7.

After discussing the normal operations (each one actually a different
type of transfer of words available in the G-15), we examined the
various addresses contained in a command.

One of these is the address of the operand, the word(s) to be transferred.
All addresses in the memory of the computer are composed of a line num-
ber and a word number, or word-time, within that line. An address is
denoted in the following manner, where LL stands for line number, and
TT, for word-time: LL.TT. The line containing the number to be trans-
ferred is called the Source, and the address of the operand is SS.TT,
usually written S.T. The address of the word(s) receiving the number

to be transferred is also composed of a line number and a word-time,

and is written D.T, where D stands for Destination. In a command, the
word-time (T) involved in both these addresses is the same, and is given
only once. Therefore, a transfer of a word(s) from one line to another
will place the number being transferred in the Destination at the same
word-time it occupies in the Source, or (in the case of transfers be-
tween lines of different lengths) in a word-time congruent to the word-
time it occupies in the Source.

The functions of S and D were described. They control selectors which,
in turn, modify the normal recirculation of memory at the proper word-
time in the proper line.

We then discovered that a series of individual commands, each with the
same S, D, and C, but with successively increasing T's, can be replaced
by one immediate command, in which the T number is a flag, telling the
computer when to stop the operation. In such a case, the operation com-
mences in the very next word-time after the command has been read, so
the location of an immediate command helps to determine how many, and
which words will be transferred. We called these immediate commands
"block" commands, since they work on blocks of congruent words in given
lines.

If it is not desired that a command be immediate, it can be made defer-
red, in which case it will operate only on the word (or two words, in

the case of double-precision) indicated by the T number. A bit indicating
whether the command is immediate or deferred is included in the command,
itself. It is the I/D bit, (T29).

- 87 -

It was pointed out that, when we say a G-15 command contains within
itself the address of the next command to be obeyed, and thus the
program sequence is determined by the programmer when he makes up
the individual commands in his program, we are only partly correct.
Each command contains the word-time at which the next command is to
be read, but the line number in which that next command is located
is not contained within the current command. The reason it is not,
is that, once a sequence of commands is started in any "command"
line, the line will remain the same, and thus, need not be specified
from command to command. Only word-times need be specified. It was
also pointed out that not all lines in the memory of the G-15 are
"command" lines. Commands can only be read out of lines 00, 01, 02,
03, 04, 05, 19, and 23. These are called "command' lines 0, 1, 2, 3,
4, 5, 6, and 7, respectively.

Two points remained open, although they were discussed:

1. how a command line is initially chosen, and how a program
can switch from one line to another, should that be nec-
essary; and

2. the meaning of the BP bit in a G-15 command, this being
the only bit not defined.

After the discussion of the various parts of a command, the concept

of special commands was introduced. It was pointed out that not all

of the operations necessary for the solution of the quadratic equation
were, as yet, described. The two most apparent of these omitted opera-
tions were multiply and divide.

If D is set equal to 31 in a command, since there is no line referred
to by that number, the G-15 treats this command as a special command.
In this case, the S number in the command will become a special opera-
tion code, and the C code will usually be treated in the light of the
special operation called for. Having thus defined special commands,
we proceeded to discuss two of them, multiplication and division.

We saw that the command calling for a multiplication contains D = 31,

S =24, C =0, and T = a relative timing number, which indicates for

how many word-times the execution of the command is to be carried out,
where two word-times are necessary for each bit in the product. The
duration of operation of this command can be of any length, provided

T is a multiple of 2, and, in any case, the results will be predictable.
This command must be an immediate command, and, because its operation

is always double-precision in nature, it must be located at aan odd word-
time, so that the first word-time of execution will be an even word-time.

We also saw that it is necessary to place the multiplicand and the
multiplier in the two-word registers, ID and MQ, respectively, prior

to giving the multiply command. Certain clearing of the two-word
registers is also necessary. The rules for setting up these registers,
and how they operate during the multiplication were discussed, but suf-
fice it to say here that the product will appear in PN: if a full single-

- 88 -

precision multiplication is called for (T = 56), the product will be
in PNy; if a full double-precision multiplication is called for (T =
114), the product will be in PNo,1. In any case, the correct sign

of the product will be generated in IP. In this regard, we saw that,
if a number, either single- or double-precision, is transferred to

any two-word register with an even C code (0 is treated as even), the
sign will be divorced from the magnitude, the sign going to IP, and
the magnitude going to the magnitude bits of the appropriate word(s)
in the appropriate two-word register. Similarly, when a number is
transferred out of any two-word register, if the C code is even, the
magnitude bits of the number will be picked up from the register it-
self, while the accompanying sign will be picked up from IP. Although
this makes ordinary use of the two-word registers for storage slightly
confusing, it is necessary for proper operation during multiplication
and division.

After multiplication, we discussed division, and saw that it, too,
utilizes the two-word registers and IP. The divide command contains
D=31, S =25, C=1or 5 (the operation will be exactly the same,
regardless of which is used), and T = a relative timing number. For
a single-precision divide, T must equal 57; for a double-precision
divide, T must equal 116, Exceptions to this rule are possible but
require thorough knowledge of the internal logic involved and extreme
care in treatment of the quotient. This command must be immediate,
and, because its operation is always double-precision in nature, it
must be located at an odd word-time, so that the first word-time of
execution will be an even word-time.

The denominator and the numerator are placed in ID and PN, respec-
tively, prior to giving the divide command. Certain clearing of the
two-word registers is also necessary. The quotient will appear in

MQ; a single-precision quotient will appear in MQQ; a double-precision
quotient will appear in MQp 1. The correct sign of the quotient will
be generated in IP. The least significant bit in a quotient will
always be 1; this is called the Princeton round-off.

A quotient represents the ratio of one number to another. In the G-15,
this ratio should be in the form of a proper fraction, less than 1. If

a quotient less than 1 is to be obtained, care must be taken to insure
that, prior to the division, the numerator, as it appears in the machine,
is less than the denominator, as it appears in the machine. Since a
ratio is desired in a division, the location of the numbers to be divided,
in ID and PN, is immaterial, provided they occupy corresponding bit-posi-
tions in those two registers.

Because of a unique circuit connecting AR and the two-word registers,
use of a C code equal to 6 in the transfer of a single-precision number
from an even location in memory (S less than 28), via AR, and into the
odd half of ID (IDy), will accomplish all the clearing necessary for a
single-precision multiplication or division, eliminating the necessity
for a clear command. This same circuit will cause the same clearing to
occur whenever S is less than 28, D equals 24, 25, or 26, and the C code
equals 2, 3, 6, or 7.

- 89 -

MACHINE FORM OF A NUMBER AND SCALING

Several times reference has been made to the machine form of a number,
and, in the Introduction to the G-15, it was implied that the following
numbers in machine form are equal to the decimal numbers shown below:

Binary number in machine Decimal equivalent
00000000000000000000000000010 1.
OOOO0000000000000000000000140 2.
OOOOOOOOOOOOOOOOOOOOOOOOOOl40 3.
OOOOOOOOOOOOOOOOOOOOOOOOOO141 -3.

This implies that the binary point in a machine number is usually be-
tween the least significant magnitude bit and the sign bit.

0000000000000000000000000001 .+ = +1.

(2) (10)

This would mean that usually a machine number is entirely integral,
and has no fractional bits. But if this were the case, the result

of a multiplication or of a division is most disconcerting, for a
multiplication will result in a product smaller than either the multi-
plicand or the multiplier, and a division will result in a quotient
larger than the numerator, and, in some cases, also larger than the
denominator. These statements are verified by the fact that multi-
plication of even the very largest possible numbers cannot cause over-
flow, and division of a number by another can cause overflow.

In short, it would seem, from inspection of these results, that num-
bers in the computer are actually fractional rather than integral.

If two fractions are multiplied together, the resultant product will
be smaller than either of the original numbers, and if a fraction is
divided by another fraction, the result will in all cases exceed the
value of the numerator, and may exceed the value of the denominator.

Actually, the computer treats every binary number in its memory as a
28-bit fraction with a sign., The binary point in the machine, some-
times referred to as the machine-point, precedes the most significant
bit of a number. If this is the case, then:
0 ,-28 -28

. =1-2"-2 =12
0OO000000000000000000000000lb(2) 2 (10) (10)
27 . -28 _ -1

2 a0 TP a0

We can interpret any 28-bit binary value in the machine in any way
we want; that is to say, we can understand the true binary point for
our purposes to follow T2 if the machine holds l/ézsth of what we
intended. The maximum value we can express in 28 bits is:

.1O0OOOOOOOOOOOOOOOOOOOOOOOOOP(2) = 1-2

- 90 -

111111111lllllllllllllllllll.(2),

which equals

1-20+l-21+1'22+...+l-226+l°227,

and this is 1 less than 1'228. Therefore, the machine will always be
able to make a fraction out of whatever we give it, not by changing
any bits, but merely by assuming the binary point to always precede
T29 of the word.

Of course addition and subtraction will yield the same, familiar
results, as we interpret them, since these operations will be per-
formed on fractions all of which have the same denominator.

If a+ b = c, then E%g'+ E%g = E%g .

Regardless of the fact that we might be considering a and b as inte-
gers, and the computer is considering them as fractions, the fraction
which results in the computer must represent the integer c, as we
interpret it. We will be able to convert the bits of the result as

a binary integer and arrive at the decimal integer equivalent.

a 000000000000000000000000000140
b 000000000000000000000000001
c OOOOOOOOOOOOOOOOOOOOOOOOOOlqO

If a =1, b =2, c will equal 3. We can so place a in a word in memory
that it will be of the form shown above. We interpret this as a.2728,
We can similarly place b in another word, knowing that it will be sim-
ilarly interpreted. We can then transfer a to AR (D = 28), and b to
AR (D = 29), and they will be added in AR. The sum in AR will appear
as shown above., We know it is really c-20.2-28 and we interpret it

as c*2¥, or 3.

Suppose, in the example above, we wanted to add numbers containing
fractional as well as integral bits. Let a = 1.5 and b = 2.75. The
sum of these, c, must equal 4.25. We must first determine how many
bits will be required to express the longest fraction in the binary
equivalents of these numbers. .5(10) = .1(2), which is 1/2. -75(10) =
.11(2 , which is l/b + 1/2 = 3/ . .25(10) = .01(2), which is l/h. The
most bits required by any fraction involved are two. Therefore, if

two fractional bits are reserved, each number involved can be fully ex-
pressed. Note that not all decimal fractions will convert evenly to
binary fractions. Sometimes a programmer must decide what accuracy is
needed, and let this determine the number of fractional bits needed.

When we speak of fractional bits, as in the paragraph above, we are
referring to bits which we will interpret as fractional, as opposed to
those which we will interpret as integral. When we say that the com-
puter holds a-2728, we are saying that we know that a, as it appears

in the machine, is in the form, a-20-2‘28, meaning that the true binary
point, for us, is 28 bits to the right of the machine binary point.

- 91 -

This means there are no bits left to express any fractional value for
a. If we were to place a in a word in memory in such a way that two
fractional bits followed the true binary point, and do the same for b
and ¢, then the conditions of the problem in the above paragraph would
be met. This means that a, as it appears in the machine, must be in
the form, a.22.2-28, For a = 1, the value in the machine would appear
as

OOOOOOOOOOOOOOOOOOOOOOOOOHpqo,

where the true binary point would be known to be at the point shown
by the arrow. In such a case, we say that the machine holds a-2-26
(note that this equals a-22.2-28), or, that the true binary point is
26 places to the right of the machine binary point.

Now, using the same process for placing b, and for interpreting c,
let's add, using our new values, and check the result.

000000000000000000000000011 = a-2_26
000000000000000000000000101 = b-2—26
-26
000000000000000000000001000 =c-2 = 100.01(2) = 4.25(10),
which is
correct.

If we let A* be the machine representation of any binary number A,
then

where n may range from O through -28, depending on the fractional
accuracy being carried with A.

The entire subject we have just discussed is called '"'scaling'. In

the above expression, 2" is called the "scale factor" of A. Every
number is ""scaled" somehow when it is placed in the computer. A is

said to be scaled 2" in the machine. From now on, we won't have to

make long, cumbersome references to the true binary point in a number

as it appears in the machine; we can simply say the number is scaled

in a certain manner, and you will immediately know where the true binary
point is.

As you can see, the concept of scaling is really quite simple and straight-
forward; scaling is a short-hand method of iriterpreting the numbers that
appear in a digital computer.

In ordinary decimal arithmetic, you know that you cannot add

100.962
6.75401,

- 92 -

because the decimal points are not lined up correctly. Rather, you can
add them, but you shouldn't; the result will be meaningless. Similarly,
in ordinary binary arithmetic, you cannot, or at least you sould not,
add

110.111
1.00011,

because the binary points are not lined up correctly. In the computer,
you should not add two numbers which are scaled differently, for the
same reason. You can, and occasionally programmers have, but the
result is meaningless, as they have found out, much to their chagrin.

Suppose we are to add a + b, where a is scaled 2-15) and b is scaled
2-13 1t's obvious that one or the other of these numbers will have

to be moved, in order to line up the true binary points prior to the
addition. You already know how numbers are moved back and forth within
a word in the computer: they're shifted in one direction or the other.
In the case of pencil-and-paper arithmetic, the job of lining up the
base points of two numbers, in order to add them, is simple: we rewrite
the numbers. In the previous binary addition, we would rewrite the num-
bers as

110.111
1.00011,

and proceed to add them. Unfortunately, as we shift numbers in a com-
puter, we must lose bits. 29 bits are allotted to each single-precision
number; after it is shifted, there will still be only 29 bits allotted
to any single-precision number. Thus, if the number is shifted to the
left, bits will be lost from the most significant end; if the number is
shifted to the right, bits will be lost from the least significant end.
In the case under consideration, a can be shifted left two places, in-
creasing it by a factor of 22, and thus rescaling it from 2-15 to 2-13,
and making it compatible with b. Or b can be shifted to the right two
places, decreasing it by a factor of 2-2, and thus rescaling it from
2-13 to 2'15, making it compatible with a.

Which would be the better scheme can be determined from consideration of
a number of factors:

1. the desired scaling of the answer, if any particular scaling
is desired;

2. the number of integral bits that must be allowed to insure
that overflow will not occur when the numbers are added (this
can be determined by considering the largest possible sum of
a and b, and in all events, this number of bits must be allowed,
regardless of what shifting is necessary to insure it; other-
wise, the answer will be erroneous);

3. the fractional accuracy desired in the sum.

- 93 -

From these considerations and perhaps others, unique to a given problem,
you will determine the shifting that is required prior to the addition.

It may be that both numbers will have to be shifted. 1In any event, once
you have decided that shifting is necessary prior to an addition in your
program, you will, of course, need a command which will direct the com-

puter to do it.

The shift command is another special command, with D = 31, S =26, C =1
(or any other non-zero number), and T = a relative timing number (similar
in function to T for a multiply or divide command). The command will be
immediate, and, like multiplication and division, it is double-precision
in nature. Two word-times are required for each shift of one bit-position.
Therefore, two times the number of bit-positions desired in the shift = T.
If you wished to shift a number 10 bit-positions in either direction, T

of the shift command would equal 20. Because this operation is immediate
and double-precision in nature, it must be located at an odd word-time.

You have already seen that shifting can take place in the two-word reg-
isters, and this is where the shifting caused by this command will occur.
When this command is executed, ID will shift to the right the indicated
number of bit-positions, and, simultaneously, MQ will shift to the left
the same number of bit-positions. If you have one number you want to
shift, prior to giving the shift command you must place that number in
the appropriate two-word register. Either half of the register will do
for a single-precision number. You might have a number in each of these
registers, one moving to the right, the other to the left.

Notice, if you have a single-precision number you wish to shift to the
right, and you load that number in IDj, then execute the shift command,
the number will move to the right, and the vacated bits will be filled
in with 0's, which, of course, would be fine. But, under the same con-
ditions, if you loaded that number in IDgp, the vacated bit-positions in
IDg would be filled in with bits from IDj, and unless ID had been pre-
viously cleared, the single-precision word containing your number would
receive '"garbage'", which could very well contain l's. Of course this
would change your number, making it erroneous. A similar situation, but
in reverse, holds true for the shifting of a single-precision number to
the left in MQ.

You are probably wondering why any non-zero C is permissible in the com-
mand discussed above, and why a C of zero is not permissible. The only
function of a C in this command is to distinguish it from a similar com-
mand, with D = 31, S = 26, and C = 0. The latter is also a shift com-
mand, calling for the exact operation described above, but if C = 0, a
tally of the shifts performed will be kept in AR. For each complete
shift of the registers by one place, 1.2-28 will be added to the present
contents of AR.

Of course the operation called for by this second shift command will
cease at the end of the indicated number of word-times, just like any
other command. But it will also cease if an end-around-carry is gen-
erated in AR, regardless of whether or not the indicated number of word-
times have been consumed. In other words, this shift is performed under
control of AR.

- 94 -

An example of the usefulness of such a command might be the following:
rescale the binary number x, in the computer, by a factor of z(a-b)’
where a and b will also be available in the computer. Assume all num-
bers are single-precision. When you originally write your program,
you won't know how many shifts to call for to be performed on x. As

a matter of fact you won't even know in which direction x is to be
shifted. All this depends on the current values of a and b.

You could subtract b from a in AR, and, depending on the sign (+ or -)
of the answer, you could load x into the proper half of the proper two-
word register: 1IDj if x is to be shifted to the right, because the sign
of (a - b) is negative; MQp if x is to be shifted to the left, because
the sign of (a - b) is positive. There is an implication here that
some provision is available to programmers to cause their programs to
automatically determine which of two alternate logical paths to follow,
based on inspection of a given condition in the computer. This is
correct, and the method available for doing this will be discussed
shortly, in pages 105 - 109, For the moment, you may assume that such
a decision has been made, and x is in the proper two-word register.

The problem now is to use the number in AR to control the shifting
process. We know that the shift command we want has D = 31, S = 26,
C =0. It's operation will cease either when an end-around-carry has
been generated in AR or when the number of word-times called for by T
has been consumed, whichever occurs earlier. We will set T with some
maximum number, so that, unless (a - b) is useless (due to the fact
that it calls for so many shifts that all of x will be lost), (a - b)
will effectively control the process. Assuming that we want only a
single-precision answer, x'2(a‘b), from either ID} or MQgp, the maximum
number of shifts that can be performed in either direction, without
losing all significance, will be twenty-seven. On the twenty-eighth
shift in either direction, all twenty-eight magnitude bits of the
original x will be lost. We will therefore set T = 54 (= 2:27). And
thus we have the shift command that will be included in our program.

The problem now is to so set AR that, after (a - b) shifts have been
performed, and (a - b)-l-2‘28 has been added to AR, an end-around-carry
will be generated. Any positive number plus its negative complement
will yield +0 in the computer. Therefore, if we start with the nega-
tive complement of ’(a - b)l in AR, and if we add 1-2-28 to it](a - bﬂ
times, we will have generated, in AR, the quantity,

- ’(a - b)l -2_28 + I(a - b)’ ~2-28,

and this must be +0. Because we cannot know that (a - b) will always be
positive, we use its absolute value, which of course will be positive.
After the last shift, there will be an end-around-carry, and the sign
will be changed to +. The end-around-carry will halt the shifting proc-
ess.

Of course the same scaling rules that apply to addition of single-preci-
sion numbers apply as well to the subtraction of single-precision numbers.

- 95 -

Multiplication is a slightly different case. If a*b is desired, a is
scaled 2-15, and b is scaled 2'13, ab will be scaled 2-28, in accord-
ance with the rule of exponents.

a.2 "ebe2 = a-b-2728,

A very simple rule governing the scaling of a product in PN is, follow-
ing the multiplication of one number by another, the product will be
scaled by a factor equal to the product of the scale factors of the two
numbers.

Consider now a multiplication of 1.2-28 by 4.2-28, The product will
be 4, scaled 2756, The initial condition of the two-word registers
would be:

Word 1 Word O

ID: 00000000000000000000000000010 00000000000000000000000000040
MQ: 00000000000000000000000001000 YYYYYYYYYYYYYYYYYYYYYYYYYYYYF
PN: 00000000000000000000000000000 000000000000000000000000000q0
IP: O or 1, whichever is the correct sign of the product.

Each bit in MQ, starting with T29 of MQj, will be checked for O or 1.
If it is 0, nothing will be added to PN; if it is 1, the present con-
tents of ID will be added to PN. The T number of the command will be
56, allowing the inspection of 28 bits from MQ. Thus the Y's in MQg,
shown above, representing the original contents of MQp before the
multiplier was loaded, will have no bearing on the process. The bits
in MQ are made available for inspection by being shifted out of MQ,
to the left, to an inspection station. A shift is performed before
the first bit from MQji can be inspected. For each shift to the left
of MQ, ID is shifted to the right. 25 0's will be inspected before
the 1 in MQ] is sensed at the inspection station. Then the 1 will

be shifted into the inspection station, making a total of 26 shifts
to the left, before ID is to be added to PN for the first time. This
means that ID will have been shifted to the right 26 times before it
is added to PN, 1ID will then look like this:

Word 1 Word O

ID: 00000000000000000000000000000 000000000000000000000000lOOOP

Since this is the only 1 that will be found in MQ, this is the only

addition to PN that will take place. Therefore, upon completion of

the multiplication, PN will also look like the above. Notice that,

in the full double-precision magnitude of the two-word register (we

previously stated that, during both multiplication and division, the
operation of the two-word registers is essentially double-precision

in nature, even if single-precision numbers are actually involved

in the operation), the answer is 4+2-56_ This is to be expected;

- 96 -

the computer was given two fractions to multiply togethar, each of
which was very small. Naturally, the resultant fraction will be even
smaller, and, in fact, it is so small that, if you demand a 28-bit
expression of its value (take the single-precision answer from PNj),
the nearest value to it that can be expressed in 28 bits is O.

Notice, then, that multiplication can result in an answer whose scale
factor will require more than the 28 bits of PNj for expression. As
long as you are aware of this, and can devise methods for using the
answer, fine, But, if you want the answer expressed in 28 bits, re-
scale the two numbers entering into the multiplication before you
multiply, in such a way that the scale factor of the product (equal
to the product of the scale factors of the two numbers) will lie in
the range 20 - 2-28,

In division, the scaling rule is: the quotient, in MQ, will be scaled
by a factor equal to the quotient of the scale factors of the numbers

being divided. For example, if a/b is desired, a is scaled 2-15, and

b is scaled 2-13,

a2 a2
b-2—13 b
Another example:
3‘2-28 =a . 2_28
b-2O b
And finally, one more example:
ao2-28 - a . 20
b.p28 P

In each of the above examples, there is a basic assumption that a
appears in the machine to be smaller than b, in accordance with the
rule for division. Notice that a can appear smaller than b, in the
machine and yet, as in the second example above, we interpret it as
being of greater magnitude than b. The scaling we associate with a
number in the machine is unknown to the computer; it merely aids us
in interpreting the numbers the computer works with. In the second
example, we know that a, as it appears in the machine, represents a
28-bit binary integer, counting any leading 0's (because the true
binary point is 28 places to the right of the machine binary point),
while b, in the machine, represents a 28-bit binary fraction, count-
ing any trailing 0's, (because the true binary point coincides with
the machine binary point). In reality, then, as we interpret these
numbers in the machine, we are dividing a relatively large magnitude
by a relatively small magnitude. The computer, not realizing this,
will perform the division correctly, without generating overflow, as
long as the 28-bit value in the machine representing a is less than
the 28-bit value in the machine representing b.

- 97 -

We have discussed scaling in the light of single-precision numbers in
order to minimize the number of bits you have to keep track of. All of
the principles and rules of scaling that have been mentioned apply equal-
ly well to either single- or double-precision numbers -

Now all four basic arithmetic operations (+, -, x, #) are available, and
you know how to arrange numbers in the computer to suit your purposes.
You also know how to interpret the results. In the solution of the
quadratic equation, there is one operation that has not, as yet, been
described: it is taking the square root of a number (v/b¢-4ac). There
is no one command that will cause the computer to do this, because the
computer is not wired to do it directly. We can generate the square
root of any number through a combination of the four basic arithmetic
operations, repeated over and over again, but we will, for the present,
postpone a discussion of this.

We are ready to expand the original flow diagram of our solution of the
quadratic equation, as it appears on page 4, but first, we must decide
on what ranges of values we will allow for a, b, and c. Remember the
formula is:

x = -bT /b2-4ac
2a

We previously decided to use single-precision, so the scale factor for
each value must lie in the range 20 to 2728, Let's arbitrarily allow
7-bit fractional accuracy in the binary numbers, so that a, b, and c
will be scaled 2-21, 1In terms of decimal equivalents, this means that
our program will be able to process values accurate to the nearest
1/100th, since 1/é7 = 1/128, and this is even a smaller value than
1/100. Notice that 6 fractional bits would not give accuracy to the
nearest 1/100, since l/é6 = 1/64. Now let's also assume that we want

X to the same accuracy, scaled 2721, We could do whatever shifting is
necessary to insure that the numerator, prior to the division, is scaled
2-21, The question, therefore, is, how do we determine what scaling the
denominator needs? We will find the answer from the following equation:

The solution of the above equation is: n = 0. This means that the true
binary point of D would have to coincide with the machine binary point,

meaning that -1 <D < 1. Since D = 2a, -1 < 2a < 1, or -1/2 < a < 1/2.

This is, of course, tco great a restriction on a; our program could, in

no sense, be called a general program.

Let's go in the other direction:

- 98 -

-21 _ Ne2"
Xe2 =Ty
D-2
The solution of the above equation is: n = -42. We know that we can

position N in such a way as to meet this requirement, through shifting.
This would seem to work out quite well, so let's do it.

This means that the integral portion of 2a is going to be expressed in
21 bits. 2a is scaled 2721 in the machine. Since this is so, we better
make sure that the integral portion of a does not, in any case, exceed
20 bits, even though a will originally be scaled 2-21 (in other words,
a, as originally stored in the machine, will always have at least one
leading 0). In 20 bits we can express all integral values up to, and
including, 220 -1; this, then, becomes the limit for a. 220=1048576(10).
Therefore, -1048575 a § 1048575, Now that a set of limits has been
found for a, let's find a similar set for b and c. Notice that we are
going to generate 4a, If 2a requires 21 bits, 21.2a will require 22
bits. We would like to shift the product 4ac in such a way as to scale
it 2742, The reason for this is, if b is scaled 2'21, as it was agreed
it would be, beb will be scaled 2742, If 4ac is scaled the same way,

we can subtract immediately, without having to rescale b2. If 4ac is

to be shifted to be scaled 2‘42, its integral value must not, under any
conditions, require more than 42 bits for expression. We have already
seen that 22 bits will be necessary for 4a. If ¢ = 220, 4a+-220 i1l
require 42 bits for expression. Therefore ¢ cannot exceed 220 =
1048576(10)-

It is possible that what looks like a subtraction in the formula,
b2-4ac, might very well become an addition, if either a or c, but not
both, is negative. Therefore, it might be possible, if we allow 42

bits for the integral portion of both b2 and Lac, that the combination
of b% and 4ac will cause overflow. Since this is undesirable, we must
prevent it. We can do this by limiting the integral value possible,

in the generation of 4ac, to 41 bits, thus being sure that in all cases,
as it is expressed in 42 bits, it will have at least one leading 0. If
we similarly limit b2, no overflow will be possible when we add b2 and
-4ac. Therefore, we will revise our limit for c¢. Whereas we originally
suggested that ¢ not exceed 220, we will now say that c may not exceed
219 = 524288 14y

If we limit both b2 and -4ac to 41 integral bits, the result of b2-l4ac
will be limited to 42 bits. When we take the square root of that num-
ber, we will get a number whose integral value is limited to 21 bits,
and this number will be scaled 2'21, since the square root of 2742 g
2721, When this is combined with b, however, to form the final numer-
ator, overflow might result. The square root will have to be limited,
in its integral portion, to 20 bits, scaled 2‘21, meaning that it will
have a leading 0. If this is so, the radicand, b2-4ac, will have to
be limited, in its integral portion, to 40 bits. This means that b2
and -4ac will have to be limited to 39 integral bits, to assure no
possibility of overflow when they are combined. The limits on a and c,

- 99 -

up to this point, will limit the integral value of 4ac to 41 bits.
To reduce this to 39 bits, we could further cut down on c, but it
would be preferable to cut the limit on a, assuming that, in the
equation, ax2+bx+c, greater values will be desired for c than for
a. We have previously seen that presently 4a will require 22 in-
tegral bits. If we cut this down to 20, and c retains its limit of
19, the limit of the integral bits in 4ac will be the desired 39.
Since 4a = 2.2.a, to get a result limited to 20 integral bits, we
must limit a to 18 integral bits, meaning that the maximum a expres-
sable will be 218-1, 218 = 262144(10); therefore -262143 £ a <
262143,

Similarly, the integral portion of b2 is limited to 39 bits. If b
contains 20 integral bits, b2 may contain 40. If b contains 19
integral bits, b2 may contain 38, which meets our requirement. So
we will limit b to 19 integral bits, the maximum b then being 219-1,
-524287 & b £ 524287.

Now no overflow will be pogsible in either the generation of b2-b4ac
or the generation of -bt vbZ-4ac.

We have thus set up the following limits and scale factors, for this

program:
-b T Vb2-4ac
2a

where:

-262143 < a € 262143, or
21

—(218—1)<;a1<§ (218-1), where a is scaled 2 ;
-524287 £ b € 524287, or

1 -
-(2 9—1) <b g (219-1), where b is scaled 2 21;

-524288 ¢ 524288, or

‘(219) < Cc S (219), where ¢ is scaled 2~

x will be scaled 2 21

21

.
3>
.

With these ranges of values for a, b, and ¢, we can truly say that
this program can be used in almost any application, in order to
solve for the roots of a quadratic equation. There is one further

restriction:
if
t -bt /b2 hac
X = —
2a , then

as a approaches 0, _
x approaches bgb = % or — s

- 100 -

and the division will yield an erroneous result. In any case, a must
be unequal to 0. If la' < 1/2, the limit for 'bl will decrease in
proportion.

FLOW DIAGRAM

We can now go on to expand the original flow diagram, as it was
developed on page 4.

Clear 2-wd. reg.'s
a——31D, a-2"2t

2—ANQ 242
o

Multiply

-23
PNO,l—-—-—)MQO’1 2a-2

g

Shift MQ left 2 places 2a+2

-21

MQl———abmemory 2&1~2—21

)

[Qlear 2-wd. reg.'é]

2a —» ID 24.2721

1
)
2 —>MQ, 2.2

!
Multiply

i

PN
¥
Shift MQ left 2 places bLa-2

—q, ha 223
b

-21

MQl—-> memory 4a‘2—21

y

- 101 -

[
Clear 2-wd. reg.'s

4

ha —>1ID, La2

. 221

c-——)MQ1 c-2

¥
Multiply

PN0 l-—ﬁbnmmory l+ac-2-42
b

—k

Clear 2-wd. reg.'s
b —-—)IDl be2
M
b—-—-—)MQl b2

L 2 a2
Multiply| b".2

-21

-21

4ac m————p PN 1 (b2-4ac)-2-42

subtract ’

s

Compute VbZ-tLac
VbZ-tac ——Pmemory (\/b2-4ac)-2_21

]

b—> AR(28), op. code = 3 -b-2
(Clear & Subtract)

VbZ-tac —>3 AR, add (-b+vb2-éac)-2-21

-21

AR =3 AR(28), op. code =1 (-b+\/b2-l&ac)'2-21

(Recomplement answer)

Clear 2-wd. reg.'s

AR —5 ID (-btv/bZkac) -2t

¢

- 102 -

—k -42
Shift ID right 21 places (-b+vb2-4ac)-2
IDO | —»memory (-b+/b2-4ac)'2_42

b
Clear 2-wd. reg.'s
2a —>ID; 222721
-b+/bZ-Lac ———>PNO L (-b+vb2-4ac)-2-42
2
¥
Divide
-b+/b<-4ac) .-21
M _(zbtbZ-bac),
QO————4>memory X (22) 2
¢ -21
b —>AR(28), op. code = 3 -b-2
(clear & subtract)
bZ2-4ac —>AR, subtract (-b-\/b2-4ac)-2_2l
AR —>AR(28), op. code = 1 (-b~/b2-Gac)-2 2L
(recomplement answer)
Clear 2-wd. reg.'s
AR —> 1D, (-b-/bZ-4ac) 272t
¥ =42
Shift ID right 21 places (-b-vbZ-kac)-2
L -42
IDO 1 —memory (-b—wbg—aac)-Z
3
N
Clear 2-wd. reg.'s
2a —>1D, 242721
L -42
-b-/b4-bac -——9PNO L (-b-/b2-kac)+2
2

{

- 103 -

Divide

;i . *(—b—¢b2—4ac).2—21

LMQO——-. memory 5 (2a)

In this expanded flow diagram you can see the program begin to take
shape. The arrows connecting the boxes indicate the logical path of
the program, from step to step. Each box in this flow diagram re-
presents one command, with perhaps one or two exceptions, one of
which is the box containing 'Compute vb2-4ac". A former statesman
once said, "My job is to reduce problems to manageable proportions."
That is exactly the function and purpose of a flow diagram. Initially,
a problem may seem quite complicated and unmanageable, but, when it is
disected into individual little parts, each part becomes easily under-
standable and manageable. Each programmer develops his own method of
flow-diagramming. The diagram above is perhaps a little more detailed
than need be, but limiting the logical size of the boxes in a flow
diagram to approximately one command per box is a fine idea when
starting out as a programmer.

Notice that arrows have been used inside boxes to indicate the direction
of a transfer.

Certain transfers are usually named in order to simplify references to
them. The transfer of a number into AR or PN, replacing what was orig-
inally there (D = 28 for AR, 26 for PN), prior to an addition (the char-
acteristic will usually equal 0 or 1), is called "clear and add'". The
transfer of a number into either of the same two registers, to be com-
bined with their present contents (D = 29 for AR, 30 for PN), thus
performing an addition, is called "add'". The transfer of the magnitude
of a number into AR (C = 2), replacing what was originally there (D = 28
prior to an addition, is called '"clear and add magnitude'. The transfer
of a number into AR or PN with the same characteristic and D = 29 or 30
is called "add magnitude". The transfer of a number into AR with a C =
and D = 28, is called "clear and subtract", The transfer of a number
into AR or PN with the same characteristic and D = 29 or 30, is called
“"subtract'". The transfer of the result of any of these operations from
either AR or PN to some storage location in memory is referred to as
"storing' the result.

Remember that if any two-word register, with the exception of PN = 30,
(which is greater than or equal to 28), is the destination of a transfer
whose C code is 2, 3, 6, or 7, the operation called for will be a trans-
fer via AR, and the even half of the two-word register will be cleared.
Therefore, '"clear and add magnitude'" into PN, which would require a
destination of 26, is out. But a transfer of a number into PN with

C = 4 will divorce the sign from the magnitude and load it into IP.

This leaves the magnitude of the number in PN, with a positive sign (0),
in Tl of PNg, where we want the sign of a double-precision number which
is to be involved in an addition.

)s

3

- 104 -

Similarly, 'clear and subtract” into PN is out, since its C code is 7,
and PN must be referred to as 26. But the same thing can be accomplished
by first clearing PN, and then subtracting a number from O.

THE NEED TO AUTOMATICALLY CHECK COMPUTATIONS

There are certain conditions which might arise in the operation of this
program, as it is written, which would result in erroneous answers.
Despite the scaling and the limitations on a, b, and c¢ that we have
chosen, in either of the two divisions we have incorporated, the nu-
merator could exceed the denominator in apparent value in the machine.
As has been pointed out, this would cause an overflow and an erroneous
quotient. But how will the person using the program know when this has
occurred? How will he know which answers can be trusted, and which
cannot? We must include something in our program which will prevent
the output of an erroneous answer.

We have been very careful, in our choice of scaling and limitationms,

to prevent the possibility of overflow in any of the necessary addi-
tions or subtractions. Does this mean that no overflow can occur as

a result of any of these? Ideally, yes; practically, no. If the
limitations, as we set them, on a, b, and c, are obeyed, no overflow
will occur. But, never trust anyone else to follow your limitations
when using your program. Anyone who knows how to operate the computer,
without knowing why it does what it does, might try to use this program
for his purposes. To him, because he might not understand why the limi-
tations have been imposed, they may be meaningless. If he attempts to
use values outside the prescribed ranges, overflow might result. He
will, of course, be unaware of this, and treat the answers he receives
as accurate, unless they are obviously wrong. To prevent this sort of
thing from happening, even though we have taken steps to prevent it,

we must include in the program something which will prevent an output
in the case of overflow resulting from addition or subtraction.

Qur program, as diagramed, includes a computation of a square root. It
is possible that the radicand might be negative. We will assume that
we do not want imaginary numbers as answers. We must, therefore, make
sure the radicand is not negative before proceeding to compute and put
out an answer.

In short, there are two types of
deleterious conditions that might
arise during the operation of
almost any program. One is that
type of situation that cannot
adequately be prevented through
an ''ounce'" of caution, because
it might arise from given data
which, on the face of it, seems
to be perfectly acceptable. The
other is that type of situation
that arises when someone other

- 105 -

than the programmer, himself, attempts to twist the program to suit his
own needs, heedless of warning. In this case, the programmer might very
well like the output to consist of a few well-chosen four-letter words,
but, for our purposes, we will be content with merely frustrating the
offender by refusing to give him an answer.

TEST COMMANDS

The G-15, like many other digital computers, has the ability to deter-
mine the presence or absence of any one of several conditions, and a
program can be written with two alternate logical paths, either of which
will be followed, during operation of the program, depending on the deci-
sion made by the computer. The program itself will tell the computer
when to '"test'" a particular condition, and the commands which do this
are called '"test'" commands. Depending on which state the tested condi-
tion is in (off or on), the computer will take its next command from N
(as it usually would) or N + 1, respectively., Always remember that only
one of two answers to the test is possible: there is no 'maybe' in the
computer.

This simple ''decision-making' power of computers is what has led laymen
to use the term "electronic brain', and other equally erroneous terms,
when referring to computers. You can see that, actually, the G-15 does
not "think'; it merely tests, upon command, the condition of a circuit

or component as to '"on' or "off", and, in this respect only, it can
answer '"Yes' or '"No' to a particular, properly chosen, question or "test'.

A limitless number of tests can be included in any program, each with

two alternate paths, so a program's flow diagram, unlike the straight,
unswerving one we generated, can take on the shape of a '"tree''.

The following tests are available in the G-15:

1. test for overflow, D = 31, S = 29, C

0;

o

2. test for sign of AR (neg.), =31, S =22, C =0;

3. test for 'ready', D = 31, S = 28, C

]
o

4, test for punch switch on, D = 31, S =

|
—
~
"
(@]
|
-
-

- 106 -~

S5 test for non-zero, D = 27, S = any memory line.

Test for overflow:

You can see that this is a special command (D = 31). It commands the
computer to test the condition of the overflow flip-flop. If it is off
(no overflow), the next command will be taken from N (as usual). If it
is on (overflow), the next command will be taken from N + 1 (thus chang-
ing the path of the program). 1In our program, this path will not contain
further computation, but will halt the program (the command to halt com-
puter operation has not yet been discussed).

We will use this test immediately following additions and subtractions.

The manner in which the computer determines the existence of an overflow
condition is somewhat indirect, and should be understood. We will dis-
cuss it in relation to a single-precision addition in AR.

Three questions are automatically asked by the computer when the addition
is performed:

1. Is the intermediate sign of the result 0 (= +)?

2. Did the inverting gates complement the last number to enter
AR?

3. Was there an end-around-carry out of bit T29 of AR?

The computer uses the answers to these questions in order to determine
whether or not an overflow was generated in the following way:

1, If the answer to question (1) is "no', the intermediate sign
of the result is 1 (= -), the two numbers added were of unlike
sign, and overflow could not result. If the answer is '"yes',
the intermediate sign of the result is 0 (= +4), the two num-
bers added were of like sign (both + or both -), and overflow
could result. 1In this case only, proceed to (2).

2, If the inverting gates did not complement the last number to
enter AR, both numbers were positive; if the inverting gates
did complement the last number to enter AR, both numbers were
negative. In either case, proceed to (3).

3. If both numbers were positive, and an end-around-carry did occur,
overflow is present; if both numbers were positive, and an end-
around-carry did not occur, overflow is not present,

Examples:

if a+ b =c,

- 107 -

Overflow No Overflow
a——3dp a

b —=——1b0 b

c <P c
M

c dL

If both numbers were negative, and an end-around-carry did
occur, overflow is not present; if both numbers were nega-
tive, and an end-around-carry did not occur, overflow is
present,

Examples:
if a+ b = ¢,
No Overflow

q ———q]

b——-0h

|C ¢

(o3 g

(= =M@} ==

The importance of understanding the method in which the computer
determines the presence or absence of overflow is pointed up by the
following example:

Assume we wish to double a negative number by adding it to itself:
2¢(-a) = -a + (-a) = -2a.

We could transfer the number (-a) into AR, replacing the original con-
tents of AR, with a properly coded command containing C =1 and D = 28.
The number will be complemented on its way to AR, and it will be ready
for addition. Now we could transfer the contents of AR to AR, calling
for an addition (S = 28, D = 29). 1In this latter command, however, C
must equal O, so that the complement form of the negative number will
be retained. We would therefore write a command with C = 0, S = 28,

D = 29,

But look at what happens to us when we attempt to check overflow.
-28

Assume the number was -2.2 :

OOOOOOOOOOOOOOOOOOOOOOOOOOlOb.

After execution of the first command mentioned above, AR will contain:

llllllllllllllllllllllllllth,

- 108 -

which is the complement of the original negative number, ready for ad-
dition. Because of the C = 0 in the second command discussed above, the
following addition will be performed in AR:

1111111111111111111111111110f
11111111111311111111131111101L
lllll111111111111111111111100p
>

il

>

1111111111111111111111111100
and this is a valid answer, being the complement of -4°2 28. We can
see that no overflow occurred. But the computer believes that two
positive numbers were added, because (1) the intermediate sign of the
result is 0 (= +), and (2) the inverting gates did not complement the
last number to enter AR (indeed they could not, because C = 0, and the
number did not pass through them at all). The computer is aware that
an end-around-carry has occurred in AR, through the addition of two
positive numbers, and overflow is indicated, the overflow flip-flop
being automatically turned on. Therefore, if we test for a possible
overflow after this addition, the test will be answered ''yes', even
though, in reality, no overflow occurred.

Therefore, if we have a number, a, whose sign could be either + or -

at the time the program is operated, and if we wish to generate 2a by
adding a to itself, and if this could result in a true overflow, neces-
sitating an overflow test following the addition, the best method would
be to transfer a from its storage location in memory to AR twice, each
time with C = 1. 1In the first transfer D will be 28, and in the second
transfer D will be 29. ©Now the sum can be checked reliably for overflow.

Test for sign of AR (neg.):

This, too is a special command. It commands the computer to test the
sign-bit of the number in AR.

If it is off (0), the next command will be taken from N (as usual). If
it is on (1), the next command will be taken from N + 1 (thus changing
the path of the program). In our program, this path will not contain
further computation, but will halt the program.

We will use this test to determine the sign of the redicand prior to
taking the square root; we want to halt rather than take the square

root of a negative number.

Test for '"ready'':

This is a special command. It commands the computer to test for the pres-
ence of the 'ready' state of the input/butput system which we have not,

as yet, discussed. We will explain the effect and use of this test later,
when we discuss inputs and outputs.

- 109 -

Test for punch switch on:

This is a special command. It commands the computer to test the setting
of an external switch. Again, since this test is associated primarily
with outputs, we will discuss it later.

Test for non-zero:

Notice that D = 27; this is the only possible line number that has not
yet been discussed. This is the only case in which this number is per-
missible as a destination.

If C 0, 29 bits of S.T will be tested for non-zero.

If C = 4, 58 bits from the double-precision number contained in S.T
and T + 1 will be tested for non-zero.

If C =1, 29 bits of S.T, after passing through the inverting gates,
will be tested for non-zero.

If C = 5, 58 bits of the double-precision number contained in S.T and
T + 1, after passing through the inverting gates, will be tested for
non-zero.

If S =28, and C
non-zero.

It

2, the magnitude of the number will be tested for

If S <28, and C = 2, all 29 bits of the original contents of AR will
be tested for non-zero, and the contents of S.T will be placed in AR.

If C = 6 (S < 28), during the first word-time of execution (even), all
29 bits of the original contents of AR will be tested for non-zero, and
S.T will be placed in AR. During the next word-time of execution (odd),
AR's contents (S.T) will be tested for non-zero and S.T + 1 will be
placed in AR,

If S =28, and C = 3, the sign of AR will be changed and all 29 bits,
after passing through the inverting gates, will be tested for non-zero.

If C =7 (S < 28), the operation will be the same as for C = 6, except
that numbers entering AR will enter via the inverting gates.

In the case of two-word registers, IP will never be tested for non-zero.

Now that we know the test commands that are available, we can incorporate
them into-our program at strategic places, in order to prevent the output
of erroneous answers.

One situation we want to prevent is the division of a number by another
which appears to be smaller in value in the computer. 1In the case of
each of the two divisions we have called for, we generate the numerator
by shifting (-b t VbZ-4ac)2-21 right 21 places, arriving at a double-

- 110 -

precision value in ID equal to (-b T ¢b2-4ac)2_42. We want to assure
ourselves that this value is less than the double-precision value,
2a.2-21, To do this we must subtract the absolute value ositive
magnitude) of 2a-2-21 from the absolute value of (-b T b ~4tac)2-42,
and inspect the sign of the result,

TO SUBTRACT A MAGNITUDE

You probably noticed, in the discussion of the various transfers
possible in the G-15, there was no mention of "subtract magnitude"

or of "clear and subtract magnitude', although mention was made of

"add magnitude' and "clear and add magnitude'. The reason for this

is that no single transfer available will cause the subtraction of

a magnitude. This is most easily accomplished through a series of
transfers. We can clear and add the magnitude of D into AR, then

store AR's contents in memory. In memory, then, we will have JD} .

Now we can clear and add the magnitude of N into AR. AR will now
contain ’N' . Now we subtract from AR the number in memory which
equals | D} . The result in AR is {N| - [D| . This number may be
either positive or negative, depending on whether | D} exceeds | N} or
not. Notice that the result in AR will be positive if the two magni-
tudes are equal (+0). If we subtract the absolute value of the de-
nominator from the absolute value of the numerator, and get a negative
result, we know that the magnitude of the denominator exceeds that of
the numerator, and division is permissible. If the result is positive,
we know that the magnitude of the numerator either exceeds, or is equal
to, that of the denominator, and in either case division is not permis-
sible.

We therefore want to clear and add the absolute value of the numerator
into AR. But, the numerator is a double-precision value, scaled 242,
The denominator, likewise, will be treated as a double-precision value,
scaled 2‘21, but we know that, when D is in ID, all the least signifi-
cant magnitude bits, from Tl of IDj through T2 of IDg, will be O's,
because all we do to generate it is to transfer the single-precision
number, 2a-2-21 into ID1, being careful to clear the rest of ID. If

the most significant 28 bits of magnitude of the numerator equal or
exceed the most significant 28 bits of the denominator, we can be sure
that the numerator at least equals the denominator, and we cannot divide.
We can pick up the first 28 magnitude bits of the numerator from ID],
following the shift, and leave Tl of that word behind, by transferring
out of ID] with a C = 0. Carried with the 28 magnitude bits will be the
original sign of the numerator, from IP. We'll store this number in
memory. Then we'll clear and add the magnitude of D (= 2a-2-21y into
AR, and store it back in memory, calling it | D} . Now we can clear and
add 'Nl (C = 2) into AR, and subtract lDl . The result, in AR, will be
[Nl - }D,. If this result is positive, we cannot divide; if it is nega-
tive, we can. Therefore, we will use the '"test for sign of AR (neg.)"
command. Our computation will proceed with the command located at an
address one greater than the N of the test command. The command at the
location with an address equal to N of the test command will call for

a halt.

- 111 -

The "halt'" command is another special command; D = 31, S = 16, C = 0.
This command is very easy to explain: 1its execution causes the computer
to stop.

Now we can rewrite those two portions of the flow diagram preceding the
divide operations.

Clear 2-wd, reg.'s

AR—--——)ID1 (-tib2—4ac)-2-21

Shift ID right 21 places (—tib2-4ac)'2-42
X

IDl———>n£mory N

|'D]———->AR' |p|

AR ———3y memory iD‘

M —>ar v
¥

ﬁﬂ —» AR, subtract &N ‘— ‘D‘

+) I}
Test for sign of AR (neg.)

Halt (=)

(continue)

As for overflow errors, unfortunately we cannot test for overflow after
shifting MQ left in order to rescale 2a and 4a, since the overflow flip-
flop is not connected to MQ during a shift operation, although it is
during a divide. If the limit for a is exceeded, an overflow may occur
at either or both of these times, and we will be unable to detect it.
But we can prevent computation from proceeding if any of the additions
or subtractions causes an overflow.

The first point in the program where we can detect an overflow is the
generation of b2-4ac in PN. If we follow this subtraction with an over-
flow test, the computer will test for the overflow flip-flop being set.
Unfortunately, it could have been set earlier, by another program. Once
the overflow flip-flop has been set, it can only be turned off in either

- 112 -

of two ways. One is to turn off the computer (not with a halt command,
but through an actual switch action which turns off the power). The
other way it can be turned off is by the overflow test itself, In ad-
dition to testing the flip-flop, this command resets it to the '"off"
position if it was on. A previous program run in the computer may have
turned on the overflow flip-flop and never tested it. In such a case
it will remain on.

In order to be sure the overflow flip-flop is off prior to the execution
of those steps in our program which could turn it on, we will precede
them with an overflow test whose only function is to turn off the flip-
flop. The fact that this test command will start either of two alter-
nate paths through our program now becomes a hindrance rather than a
help, because we want to continue with the same sequence, regardless

of the condition of the overflow flip-flop. We can solve this problem
by placing the same command at both N and N + 1, so that, no matter
which will be taken as the next command, the same operation will be
performed. These two commands will have the same N, so that, following
either of them, the same path will be followed through the logic of our
program.,

Another method is commonly used, however, to achieve the same net effect.
We will use it in this program, in order to familiarize you with it. We
know that, if the overflow flip-flop is on, the next command will be taken
from N + 1. Suppose we choose an N for the test command such that N + 1 =
the location of the overflow test command itself, TIf the overflow flip-
flop is off, the program will continue with the command located at N,
which is one word-time earlier than the test command. This is fine; the
test command will not be read and interpreted again. If the overflow
flip~flop is on, the next command will be taken from N + 1, which is the
location of the overflow test command itself. This means the test will

be repeated. But, the first time the test was made, the flip-flop was
reset to the "off" condition. Therefore, this time, when it is tested,

it will be found to be off, and the program will continue at N. No matter
which condition the flip-flop is in when the test is initially given, the
program will eventually continue at N,

|

¥

Test Overflow

on
lv off

If we precede the generation of b2—4ac with this operation, we can follow
the subtraction with another overflow test. This time, the program will
halt if overflow is found (N + 1), and it will continue if overflow is

not found (N). Notice that, from now on, if the program continues, we
need not reset the overflow flip-flop in the manner described above, prior
to testing it after a series of arithmetic operations.

Other points at which we want to test for overflow will be following the
generation of:

- 113 -

1. -b + v/b2-4ac ;
-b + Vb2-4ac

2a ;
3. -b - Vb2-4ac ;
-b - vbz bac

2a ¢

4.

We want to include one other test in the program; a test of the sign of
(b2-4ac) prior to attempting to compute the square root of it. If this
difference is negative, we want to halt. We will, of course, use the
command which tests the sign of AR (neg.). If the answer is yes, the
next command will be taken from N + 1, where we will place a 'halt'.

If the answer is no, the program will continue at N.

This completes the use of test commands in the computation.
SUBROUTINES

Up to this point we have very neatly evaded the issue of computing a
square root in a computer not wired to do it directly. It must be

done through a series of basic arithmetic operations. We can no longer
evade it, however; it's the only portion of the computation remaining
unplanned. How are we going to do it? A mathematician-turned-song-
writer-and-performer has answered our question in one of his songs:

"Plagiarize, plagiarize, plagiarize.
Let no one else's work evade your eyes."

Bendix Computer Division, of course, does not recommend or condone plagi-
arism, but it does supply a standard "package' of programs designed to
make life easier for its customers. This package is standard equipment
with every G-15 computer. Each of these programs is designed to perform
a commonly needed function among computer users. Typical examples are
calculation of square roots and trigonometric functions. These programs
are called "subroutines'., A subroutine operates out of a prescribed
command line in memory, with certain inputs, which are also prescribed,
and it is usually designed to generate a solution, or set of solutionms,
which will appear at a prescribed location in memory.

There is a square root subroutine available. The command line prescribed
for its execution is line 0l. The input, the number whose square root

is desired, must be placed in PNp,], prior to execution of the subroutine.
The first command is at word-time 94. The answer will appear in PNg,1.
All of these facts, and others, can be found on a specifications sheet
which accompanies a write-up of the subroutine. All subroutines are
written-up, and specifications similar to those above are supplied.

- 114 -

If this subroutine is to occupy line 0l, certainly our program should
not., Assume that our program will occupy line 00. The question, then,
is, at the right point in our program, after we have the number whose
square root we desire in PNg,1, how do we cause the computer to change
command lines from 00 to 01, and take its next command from word 94 in
the new command line?

There is a special command (D = 31), whose function is to cause the com-
puter to change command lines. This is called the "mark and transfer
control'" command. 1In it, S = 21, and C = the line number to which con-
trol is to be transferred. The line number specified could be 0, 1, 2,
3, 4, 5, 6 (referring to line 19), or 7 (referring to line 23). The
word in the new line at which the new sequence is to start will be lo-
cated, as usual, in the N portion of the mark and transfer control com-
mand .

The mark and transfer control command that we want to incorporate in
our program, then, will contain D = 31, S =21, C =1, and N = 94,

The word "mark' in the name of this command has special significance,
other than just making the command sound complicated. 1In the case of
a subroutine, be it one from the '"'standard package', or one that you
write for yourself, there will come a time, after the subroutine has
done its work, when you would like it to return to your own main pro-
gram, in whatever line that might be (in this case, line 00), at a
given word-time. Each of the subroutines in the standard package is
equipped with a 'return" command, which is similar in nature to a mark
and transfer control command. In the return command, which is also a
special command, D = 31, S = 20, and C = the line number to which con-
trol is to be returned. We will call this the "return line'. The
determination of the word-time at which the sequence in the return line
will begin, however, is a bit different than in the preceding case.

When a mark and transfer control command is executed, a '"mark'" is gen-
erated electronically in the computer, at the word-time immediately
preceding the word-time of execution. 1In other words, if the command
is executed at word-time 10, the mark will be at word-time 09. If the
" return command is properly made up, it will cause the computer to sense
this mark, after the return line has been selected, and the computer
will take its next command, in the return line, from the next location.
If the mark is at word-time 09, the next command will be taken in the
return line from word-time 10. Notice that this was the time of execu-
tion of the original mark and transfer control command in that same
line: it was not the word-time in which that command was located.

Thus, if the mark and transfer control command and an accompanying
return command are properly made up, a transfer of control to a new
line will be effected at the proper word-time in the new line, and,
while still taking commands from the new line, the computer gets a
command directing it to return to a return line (which usually will

be the line from which control was originally transferred, in our case,
line 00, although this does not have to be the case); it will return
control to the command line specified, and take its next command at

- 115 -

a word-time corresponding to the word-time of execution of the original
mark and transfer control command.

In the following drawing the spiral indicates the passage of time, in

the direction shown by the arrow, which is outward. As the spiral passes
the heavy vertical line, which represents word-time 00, a complete drum
cycle has elapsed, Ten complete drum cycles are shown, in the center of
the spiral a fraction of another cycle is shown, and, on the outside of
the spiral, a fraction of still another drum cycle is shown.

00
10 09

Let us refer to that drum cycle of which only a fraction is shown in the
center of the spiral as drum cycle 1. Then, counting outward, drum cycles
2 through 11 are completely shown, followed by a fraction of drum cycle 12.

- 116 -

During drum cycle 1, assume control of the computer is in command line 00.
It remains there up through word-time 10 of cycle 2. Sometime before word-
time 10 of cycle 2, a mark and transfer control command is read in line 00,
calling for a transfer of control to line Ol at word-time 94. This com-
mand is executed at word-time 10 of drum cycle 2, shown in the drawing.
Beginning with word-time 11 in drum cycle 2, control is in command line

01, and the computer is waiting for the next command, which it will read
at word-time 94 of drum cycle 2. This command will come from word-time

94 in command line 01. An '"electronic mark' was generated by the mark

and transfer control command, at the word-time whose number is one less
than that of the word-time of execution of the command itself.

If the command is executed, as we say, at word-time 10, this mark will
be at word-time 09, as shown in the drawing. Such a mark will last in-
definitely, being turned off, or erased, only by either the creation of
another "mark'" by a similar command, or turning off the computer. The
square root subroutine, in line 0l, is now operating, starting at word-
time 94 of drum cycle 2. It continues for approximately 9 drum cycles
(stated in the specifications), through word-time 99 of drum cycle 11,
in the drawing. At word-time 98 in command line 01, which is finally
reached in the last drum cycle of execution during the square root sub-
routine, a return command is located. This is specified in the write-
up of the subroutine, and will be, for all subroutines. This command
specifies the command line to which control is to be transferred (re-
turned), in our case, line 00, and it enables the computer to sense the
mark (currently coming up at the next word-time 09). Beginning at word-
time u0 (100) in drum cycle 11, control has been returned to line 00,
and the computer is looking for the next command., It will find the next
command at either of two locations: the location specified by the N of
the return command, or the marked location. Which of these will contain
the next command the computer will read is determined by which arrives
earlier. The early word gets control.

It therefore becomes the programmer's responsibility to see to it that
the return command in the subroutine is timed in such a way that the
marked location cannot be missed. He cannot place this return command
in any location in the subroutine other than the one specified, which,
"in this case, is word-time 98. But he can set up the command so that
the marked word-time will have to come up before the word-time specified
by N in the return command,

We have set word-time 10 as the next command in our program, upon the
return from the square root subroutine, for purposes of example. We
want to be sure that word-time 09, which bears the mark, will come up
before N of the return command. We could set N of the return command
in the subroutine equal to 10. 1In that way, the location picked by

the mark and the location picked by N of the return command would coin-
cide, and there would be no doubt as to which word in line 00 would be
the first to be interpreted as the next command.

But notice, if we could make up a general return command in such a way
that we would always return to the marked word-time in the same return
line, no matter what that marked word-time might be, we could then use

- 117 -

the same return command in the subroutine, no matter how many times in
the course of the program we wanted to enter the subroutine. In our
particular example, we only use the square root subroutine once, but

it is not inconceivable that some programs would use it literally
dozens of times. It is possible to make up a return command for any
subroutine in such a way that it can be used over and over again, each
time returning control to the same line, but at a different word-time,
depending on where the mark is currently located. Remember it was

said that a mark is erased by the setting of a new one. Only one mark
may exist in the computer. This general return command is ideal, be-
cause now the place at which the main program picks up, after receiving
control back from the subroutine can, in each case, be picked through
the setting of the mark and transfer control command which transfers to
the subroutine. One time we could set the T of the mark and transfer
control command equal to 10, the next time, to 90, and so on. The main
program will pick up at word-time 10 after the first use of the subroutine,
at word-time 90 after the second use of the subroutine, and so on.

Such a general return command is made up in the following manner, for the
reasons indicated. Make the command immediate, and let it be executed
for one word-time. This can be done by setting T equal to the location
plus two. In this case, the immediate command will be read at word-time
L (location), and the immediate execution will begin in the next word-
time, L + 1. The T number will act as a flag, as mentioned previously
in the discussion of immediate commands. Since T =L + 2, the opera-
tion will be stopped after word-time L + 1, and therefore will last only
one word-time. During this word-time, the computer will begin to search
for the existing mark. The mark, when found, will be rejected unless

it is in the last word-time of execution of the return command or later.
Since there is only one word-time of execution of this command when
coded in this form, it is also the last. Therefore, the search for a
mark will begin at L + 1 and continue until the mark is found, and the
next command in the return command line will be specified by the loca-
tion of the mark. Let N = L + 1 in the return command; it cannot specify
the next command in the return command line, because N = L + 1 and can-
not be effective for one whole drum cycle. The mark must be found and
become effective at some time during the drum cycle; the worst case
would be the one in which the mark is at L, determining L + 1 (= N) as
the location of the next command. (A detailed description of the occur-
rence of machine signals in this regard follows: do not attempt to
master it on the first reading of this text.)

Drawing 1 shows pictorially what will be the effect of a mark when the
return command is coded properly: T =L+ 2, N =L + 1. The return
command is locdted at word-time 12 and executes during word-time 13,
as shown on the time-spiral. Because word-time 13 is also the last
word-time of execution a mark sensed at that time will be effective.

The first possible location of the next command in the return command
line, therefore, is 14, as indicated by the X in the drawing. If the
mark is not found at 13, the search will continue until it is found, and
in the drawing this is seen to be word-time 37. The next command there-
fore, in the return command line, will be taken at 38. The worst case

