- 118 -

would be the one in which the search continues for a whole drum cycle.
The mark would be found during word-time 12. During word-time 12 there
will also be a signal telling the computer to read a command from the
next word-time, this signal having been generated by the N specified in
the return command itself., Thus, in the worst possible case both the
mark signal and the N signal will be present during the same word-time,
12, The N signal is interrogated at T21, whereas the mark signal is
interrogated at T13. Therefore, even in the worst case, it will be the
mark signal that picks the next command, and not the N signal.

Drawing 2 shows pictorially the operation of the return command when
coded in a different manner. In this case the command is executed dur-
word-times L + 1 through N - 1. Shown in the drawing, L = 12, N = 27,
and the word-times of execution are 13 through 26, The location of
the next command to be taken from the return command line cannot be
determined by any signal occuring during execution time, unless that
signal occurs during the last word-time of execution. The N signal
does occur during word-time 26, because N = 27; therefore, the loca-
tion = N will arrive earlier than any existing marked location, unless
the mark is also present during word-time 26. In any event, the next
command will be taken from the return command line at word-time N,
This is a convenient way to program a transfer of control to line C,
word N, without setting a new mark, and therefore allowing an already
existing mark to remain.

In drawing 3, where no care has been used in formulating the return com-
mand, L = 12, T = 44, and N = 20. The command will execute from 13
through 43, so the first mark or N signal occuring at 43 or later will
determine the word-time at which the next command will be taken in the
return command line. The drawing shows an existing mark at word-time

37, and we know that the N signal will be, as shown in the drawing, at
19. It is evident, then, that the next such signal will not occur until
the following drum cycle, at word time 19. This will be the N signal,
and so the next command in the return command line will be at 20 (N).
This third case makes it apparent that care should be exercised in making
up return commands. The first method, T = L+ 2, N =1L + 1, is the best,

Up to this point we have been speaking rather blithely about setting
the return command in a subroutine; now we will see how. Every sub-
routine requires, as an input, a return command. Most subroutines
require it to be placed in AR. Regardless of the location specified,
the return command must be placed there prior to transferring control
to the subroutine. One of the first steps in any subroutine, then,
is to pick up the word containing this return command and transfer it
to the proper location in the subroutine, so that, when that location
is finally reached, in the course of the subroutine, the proper return
command will be there to be read and executed. In the case of the
square root subroutine, the return command must be placed in AR prior
to entering the subroutine.

Notice that a command, in this case the return command, can be treated
as data. If it is read during execution time, rather than during read
command time, the computer will be unable to tell the difference between

- 119 -

Drawing 1l:

= NOTES -

] B
Q

)
wl [0

N
S| &
zl D
b5 o
- ¥
SNEES

/2

- 120 -

Drawing 2:

-~ NOTES -

a ~
™M
wl |0
N
o R
N
2l N
& Q
~
1IN
ANEES)

/2

o~
‘- \~ = s *
) / < . ///

“ b / = - -
N > D\ U \ i =

L LA / - .

““ 1 A4 IN // - . P o

X T N\
/ y [)

CASRIERE
R
A
Se ey
2 2%

AP
AN
A

S
/2

- 122 -

it and legitimate data. Thus, a command could not only be placed in
AR, but it could, while there, be modified through the addition of a
constant.

This leads us to a brief discussion of another special command, which
tells the computer to '"take the next command from AR". This, too, is
a special command, containing D = 31, S = 31, and C = 0., Thus, a com-
mand could be transferred to AR, modified there, and executed out of
AR, in its modified form. The N of the "take next command from AR"
command will be the word-time at which the command in AR will be read.

REVISED FLOW DIAGRAM

Having determined which test commands we must incorporate, and how to
set up for, enter, and exit from, the square root subroutine, we can
revise the expanded flow diagram for the solution of the quadratic
equation.

Clear 2-wd. reg.'s
a—)IDl 551-2_21
2 —3MQ, 242
L
&

Multiply

——-)MQO 24.2723

PNo, 1)1

4
Shift MQ left 2 places 2a°2

-21

MQl‘———)memory 25;1-2-21

!

Clear 2-wd. reg.'s

N

Za—)ID1 2a+2
W
2----—9MQ1 22

—
Multiply

l

-21

- 123 -

- -23

«2
PNO,l ———a-MQO,l 4a

Sk -21
Shift MQ left 2 places bag -2

MQl———)memory 4a-2-21

L

Clear 2-wd. reg.'s

Z+a—)IDl 4a-2_21

‘l’ -21
C—)MQl c-2

Multiply

PN —3 memory hac+2 ~42
0,1

!

Clear 2-wd. reg.'s

-

b—->ID1 be2
b—)MQl b2

A|

Multiply b -2

k

Test overflow

on
off

Lac —)PNO 1 (b2-4ac) °2-42
subtract ’

Test overflow

Vi

PNO———-)AR3 C=0 sign of radicand in AR

off

l

- 124 -

3

yes

Test sign of AR (neg.)

Ji o

Return command ——»AR

|

Mark, transfer to
square root subroutine

Return

PN 1 —3 memory

v

b ——3 AR,
Clear and subtract

VbZ-Ltac —3 AR, add

Test overflow

yes

no

AR-—>*AR, recomplement

A

Clear 2-wd. reg.'s

AR-——+$ID1

J \

[shift ID right 21 places|

IDl———> memory

D —>AR
Clear & add magnitude

(\/bz—l\tac)-Z-21

_b_2—21

(—b+vb2—4ac)-2-21

(-b+¢b2—4ac)'2_2l

(—b-i-\/bz—l+ac)'2-42

- 125 -

.
AR ———3memory 'D'
J
N-—>AR, Clear & add mag. |N|
fiof — 4R, subtract In} - ||

¢

Test for sign of AR (neg.)

no l yes

-42
IDO 1 —TMEMOLY (-b+/b2-4ac)-2
3

¥

Clear 2-wd. reg.'s

&

2a '——PIDl 251'2_21
¥ 42
(-btbZ-Gac) —>pN, (-bWb2tac) 2"
Divide
MQ,———> memory X =(1—M)-2'21
0 1 2a
b—> AR bep 72
.} Clear & subtract
b2 -4ac —» AR, (-b~/bZ-4ac)-2 21
Subtract

y

—{E@st overflowl

yes
no

4
AR —> AR,

recomp lement

i

Clear 2-wd. reg.'s

¥

AR—>1D, (-b~bZ dacy.-2 7%t

l

- 126 -

4

-42
Shift ID right 21 places (-b~/b2-bLac) -2
IDl———)nﬁmory N
N|— AR, Nl

Clear & add magnitude

|D] —>AR, subtract Nl - ol

1

Test for sign of AR (neg.)

no
Jl yes

4
D p——>menory (-b-/b2Zac) -2

lClear 2-wd. reg.'s

2a——>1D, 2a-27 2t

2
(-b-vb2-4ac)————§PNO ll (-b~/b2—43c)-2_42
A

Divide

_(-b=V/b2-bac) ,-21
2a

IHalt MQO —> memory X,

This is the complete flow diagram for the main computation part of the
program: it will occupy line 00. The square root subroutine will occupy
line 0l. However, the program still lacks a method or ''scheme' of input,
and any provision for output. We call for a, b, and ¢ from memory, but
as yet have made no provision for initially storing them there. Similarly,
we generate two answers, x] and xp, the two roots of the quadratic equa-
tion, but we have no provision as yet for communicating these carefully
derived answers to the outside world. They're still stored away inside
the computer. We have also made no provision for stopping the computer,
or in any way terminating the main body of the program, although we do
halt the computer in the case of error.

The next step in development of the program, now that we know the exact
form in which we want the inputs, is to devise an input scheme; it, too,
will be flow diagramed, and we will treat it almost as a separate program,
although the input scheme is really an integral part of any program.

- 127 -

Because of their similarities, we will discuss inputs and outputs to-
gether, and then flow-diagram each method chosen for this particular
program. They will, of course, be much shorter than the main body of

computation.
INPUTS/OUTPUTS

A general-purpose computer is worthless unless it can receive inputs
and yield outputs. The requirements of any input or output system
are:

1. compatibility with the central portion of the computer,

2. ability to handle any type of information that may be
needed or yielded by the computer,

3. accuracy,
4, speed.

These four requirements are listed in their relative order of impor-
tance.

Certainly the input system must be compatible with the central portion

of the computer. It must be able to convert, if necessary, incoming
information into a form recognizable by the computer. In the case of

the G-15, the information must be in the form of electrical pulses

which can generate magnetized spots on the surface of the drum, called
"bits'". In special cases, certain inputs to the G-15 may be electronic
"signals', capable of activating a specific circuit or component direct-
ly. Such signals might, for example, cause an operation within the com-
puter similar to that which could be caused by the execution of a command
in a program. Most signals of this sort, you will see later, will call
for an input or output, in the same manner it might be called for by a
command in a program. This will not always be the case, however. In any
event, whether an input of pulses or signals is necessary, a human opera-
tor is not anatomically equipped to supply them directly. He is there-
fore supplied with a set of buttons and switches, which he can manipulate,
and which close and open circuits, supplying the computer with the pulses
and signals it needs.

In some cases, the computer can be linked directly to some other system.
In such a case, the input system receives electrical inputs, rather than
manual inputs, and it must convert these to other pulses and signals in
the form needed by the computer. This type of operation is sometimes
referred to as 'on-line'" operation because the computer is on a line with
the external system. A typical example of this type of operation might
be one in which radar receivers are linked to the computer through some
type of device which converts the range pulses and angle of deviation
from North of the set itself to binary form. Cases of this type, where
the computer is used '"on-line'' require special peripheral equipment for
the computer, which is not supplied as standard equipment. In some cases,
actual modification of the computer itself might be necessary.

- 128 -

The inputs with which we will concern ourselves at present are those
which can be handled by the standard input equipment, supplied with
the computer. These will fall into the "operator' category. We will
hereafter refer to them as 'normal® inputs.

NORMAL INPUTS
Normal inputs to the G-15 can come from either of two sources:

1. an electric typewriter, which supplies the operator with
the buttons and switches he needs, and

2. a photo-electric tape reader, which reads punched tape
somewhat similar in appearance to teletypewriter tape.

Since the second source is merely a speedier substitute for the first
(a reel of tape is punched in codes which simulate the activation of

a typewriter key), and since the typewriter contains a button or switch
for every possible pulse and signal, we will discuss the typewriter
first.

TYPEWRITER INPUTS

The electric typewriter is connected to the G-15 by a cable, which con-
tains many individual lines. Over these lines pass the various inputs
from the keyboard and switches on the typewriter. As has already been
mentioned, there are essentially two types of inputs that can be sup-
plied to the computer. One type is electrical pulses, which set up
information in the memory of the computer; the other type is 'signals',
which cause the computer to act, these signals having the same general
effect as a programmed command.

We will consider first the inputs from the typewriter which enter the
memory of the computer. They are supplied by certain of the typewriter
keys shown in the illustration on page 130. Notice they include

all of the sexadecimal digits, 0 through z, the minus sign, the tab,

the carriage return, and the slash (/) key. Inputs which enter the
memory of the computer, enter at word-times, of course, and they become
parts of words. Therefore, they must be in binary notation. The hex
number system, as was pointed out earlier, is merely a short cut for
binary representation. These inputs could just as well be entered from
only two keys on a differently wired typewriter and with some modification
of the input-system, one key for "0" and another for "1'. It would take
29 punches. of these keys to enter one complete word into memory. With
the use of hex digits, a complete word can be entered through striking
only 7 or 8 keys: seven hex digits and a sign. If the sign is positive,
no key is struck; if it is negative, the minus sign key is struck.

Mounted within the typewriter, beneath the key-board, are a set of switches,
one for each of these keys. As a key is struck, the associated switch is
activated. The corresponding 4-bit code is generated and transmitted to

the computer.

- 129 -

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

NW X £ ¢ v~ PwNEEo

The minus sign, tab, slash (reload), and carriage return key do not
enter 4-bit codes, although they do affect what is stored in memory,
as will be explained shortly.

The 4-bit code, when it is generated, is transmitted into word 00 of
short-line 23, at the least significant end, so that it occupies bits
Tl through T4 of that word. When the next key is struck, assuming
for the moment that it, too, will be a hex digit, a new 4-bit code
is entered into these same bits, and the preceding one is shifted to
the left, into the next four bits, so that the first 'character" of
input will occupy bits T5 through T8, and the second character will
occupy bits Tl through T4, of word 00 in line 23. This process will
continue as long as you keep on striking hex digit keys. Finally,
after seven of these keys have been struck, word 00 of line 23 will
look like this:

T78 - T1

All of short line 23 will have been shifted to the left 28 bits. T1
of 00 will be in T29 of 00, the rest of the bits from 00 will be in
01, and so on, and 28 bits from word 03 will have been lost.

ILf you continue to enter hex digits, line 23 will continue to shift
left, four bits at a time, until eventually, if you enter enough hex
digits, the first characters of input will begin to '"fall out' of
23.03, and will be lost. There must be a stopping-point. But, before
we discuss that, let's continue with the input for a moment, where we
have seven hex digits in 23.00.

Notice that, in this case, Tl of 23.00 (the sign-bit) contains the
least significant bit of the seventh 4-bit code entered. A shift of
one bit is necessary if we want to merely complete word 23.00, without
losing any bits from the first code entered.

- 130 -

PERMIT
ALPHANUMERIC
TYPE-IN EXECUTE ONE COMMAND
RETURN TO READ TAPE &
MARKED PLACE SET COMMAND LINE TO 23, N= 00
STOP PERMIT NUMERIC
INPUT TYPE-IN
OUTPUT y N=——AR

TYPE . SET MARK
AR N = 00 PLACE
SET COMMAND REVERSE TAPE TRANSF ER
LINE=00 LINE 23 to 19

PAPER TAPE

PUNCH 7R rEWAND

TYPEWRITER CONTROL KEYS AND SWITCHES

EXECUTE ONE COMVAND

SETCRY 1O
MARXED PLA

D TAZE &
T GOMMAND LINE O 23,

REVERSE TAPE TRANSFER
LINE 23 to 19

TYPEWRITER CONTROL KEYS AND SWITCHES

- 131 -

Associated with the input system is a flip-flop, which, like all
flip-flops, can be in either of two states. It can contain a 0

or a 1. This particular flip-flop is referred to as the ''sign
flip-flop'". It can be set to 0 (cleared) by striking either the
tab key or the carriage return key on the typewriter., It will
also be cleared after termination of any input. Once cleared, it
can only be set to 1 by the striking of the minus sign key on the
typewriter., When either "tab'" or '"carriage return'" is struck,
line 23 is shifted by one bit, rather than four, and the content
of the sign flip-flop is "dumped" into the sign-bit (T1l) of 23.00.

Therefore, if we desire to shift the seven hex digits we have just

set up in 23.00 to the left one bit-position, causing them to occupy
bits T2 through T29 of 23.00, and place a sign in Tl, we strike either
the tab or the carriage return key. The present content of the sign
flip-flop will become the sign of the binary (hex) number in 23.00.

If the tab key was struck twice in succession, the first input would
cause all of line 23 to shift left one bit, and the content of the
sign flip-flop (call it x, since it could be either 0 or 1, depend-
ing on whether or not the minus key was struck previously) would

be entered into Tl of 23.00. The second input would again shift
line 23 to the left one bit, placing x in T2 of 23.00, and the con-
tent of the sign flip-flop (now known to be 0, since the sign flip-
flop was cleared) would be entered into Tl of 23.00. Any succession
of inputs is permissible, and the result in line 23 will be predict-
able. Notice that a minus sign can be struck at any time, but will
not enter the computer until the tab or the carriage return key is
struck.

Finally, when line 23 is filled as desired, it seems we have run
out of space for the storage of inputs. But this is not correct.
There remains one typewriter key in the illustration, which has
not yet been discussed: the slash (reload) key. Striking this key
will cause all of long line 19 to be shifted towards its upper end
by four full words, and cause the transfer of all four words in
line 23 into the now vacated low-order four words of line 19
(23.00 - 03 —> 19.00 - 03).

These four words will also remain in line 23. Input may continue,
and eventually line 23 will be refilled with new inputs (the old
words will be pushed out of the high-order end of the line; where
they go, nobody knows. It has been said they go where a light goes
when it goes '"out'.), and the slash key may be struck again. Line
19 will shift by four words again, and the four words in line 23
will be transferred into the four low-order words of line 19. Thus
eight words have entered the computer, If we number them in reverse
of the order in which they were entered (call the first word entered
07; the last, 00), then the situation in the computer will look like
this:

- 132 -

07
06
05
04
03] 03
02 02
01 01
00 R 00
Line 23 Line 19

Eventually, with 27 reloads, we could fill line 19 with input. If,
at that time, another reload is struck, the first four words of in-
put will be lost. Provided this is not allowed to happen, and line
19 is filled with input, the first word of input will be in 19.u7.
Four more words of input can be accommodated in line 23, but no re-
load should be given after they have been entered. This is the limit
of one input. No more information can be absorbed by the computer
during one input.

Now we come to the method for stopping any normal input. Any normal
input is stopped by a '"stop'" code. The 's" key on the typewriter will
supply this code. This brings us to the seconc type of input from the
typewriter: signals which control the computer directly.

The "s'" key supplies the computer with a "stop" code, which is a sig-
nal capable of controlling the computer directly. The computer is
capable of handling only one normal input or output operation at one
time. When one is in progress, the input/@utput system will be in a
"not ready" status, which can be determined by inspecting the neon
lights on the front panel of the computer, (See page 208. The bot-
tom row of neons contains a group of five lights pertaining to inputs
and outputs. One of these is marked "R"; it is the '"ready' light.)
If the ''ready” light is not on, the input/output system is not ready,
because.an input or an output is in progress. If the computer's
input/ﬁutput system is not ready, the process currently being carried
out must be stopped before another is begun. The stop code will do
this.

The only way the stop code can be provided to end a typewriter input
is via the striking of this key. It may be done at any point during
the input, even before any information has been placed in line 23.
In that case, of course, line 23 will retain its original contents.

- 133 -

In order for an input or output to be processed by the input/butput
system, it must be called for. This can be done by command in a pro-
gram, but this will be discussed later. It can also be done from the
keyboard of the typewriter.

We now seem to be on the horns of a dilemma. We have just said that
a typewriter input, or, for that matter, any normal input, cannot be
processed until it is called for., We then proceeded to say that we
would originally call for it through an input from the typewriter.

"ENABLE" ACTIONS

Notice again the difference between the two types of input from the
typewriter: one, already discussed, places information from the
keyboard into the memory of the computer; the other, which we are

now discussing, supplies control signals directly from the keyboard
to the computer. The latter type is called for in only one way:
through a switch action. It cannot be called for by a program. In
the preceding drawing of the typewriter, you will notice a switch
mounted on the front of the base of the typewriter, called the "enable"
switch. This switch has only two positions: to the left, it is on;
in the center position, it is off. When the enable switch is on, the
control keys on the keyboard are enabled to send control signals to
the computer; when it is off, these keys are not connected to the
computer,

There is only one exception to this rule, and we have discussed it;
when a type-in of information for the memory of the computer is
_called for, the stop code to end it can be, and must be supplied by
striking the s key. 1In this case, the enable switch need not be on.
In all other cases, including use of the s key to stop any other in-
put or output, the enable switch must be on in order to activate the
control keys .on the keyboard. Because this is the only way these in-
puts can be called for, and because they are not really inputs, in
the sense that they don't place information in the memory of the com-
puter, they are not usually referred to as inputs. Rather, they are
referred to as ''enable actions' or 'control actions'". The custom
adopted as a short-hand for specifying one of these actions is to
underline the appropriate letter (e.g., s). We will drop the refer-
ence to these as inputs, and adopt the name, 'enable actions.

As seen in the diagram on page 130, q will call for a typewriter input.
We have already mentioned that s will stop any normal input or output,
and set the input/ﬁutput system ready.

Two other enable actions should be mentioned here: they are c and f£.
Much earlier in this book, a question was deliberately left unanswe;éd,
with the excuse that it would be covered later. The question was: How
do we initially select a command line, and how do we change control from
one command line to another during the operation of a program, if that
is necessary? The latter part of the question has been answered: we
change command lines under program control through use of either the
mark and transfer control command or the return command. The former

- 134 -

part of the question will be answered now. We can initially select
a command line through the use of the two enable actions, c¢ and f.
You will notice in the drawing that ¢ will signal the computer to
set the command line equal to the following number, or, if no number
follows, to command line 00. This implies that ¢ would be followed
by the typing of a number from O through 7, corresponding to the
desired command line. This is correct. A 0 may follow c or not;
there will be no difference in the effect of the signal.

Selecting a command line, however, does not fully establish the ad-
dress of the first command to be obeyed. There still remains the
word-time portion of the address. 1In the two commands that transfer
control to a specified command line, this is accounted for, either

in the command itself, or in the timing of the command, combined with
the existence of a "mark' in the computer. In the case of enable
actions, a word-time must be supplied by another enable action, f.
This signals the computer to take the next command from word 00 of
the selected command line. Notice, there is no provision to specify
any word-time other than 00. If however, this is not specified, and
the computer is allowed to start operating, it will take the first
command in the selected command line at whatever word-time it received
as the N of the last command read, which, in most cases, will lead to
an erroneous result, since it is a good bet that, when you choose to
change command lines, the desired word-time for the start of the new
sequence will be different.

Because of this feature of the f action, it has been the experience
of many programmers of the G-15 that it is best, wherever possible,
to start a program at word-time 00.

As you can see, in the drawing on page 130, there are many other enable
actions which, as yet, remain uncovered. They will be discussed, one
by one, as they arise during the further discussion of inputs and out-
puts.

Discussion of punched tape input requires some knowledge of what punched
tape contains. Therefore, we will next bring up punched tape output,
followed by punched tape input.

PUNCHED TAPE OUTPUT AND OUTPUT FORMAT

The use of punched tape for output serves two purposes. It preserves
information in a form in which it can be retained for later use as an
input for the computer; in other words, it acts as an interim storage
device. The second purpose is to speed up the output operation of

the computer (the other normal output is via the typewriter, and is

a good deal slower), and yields an output in a form which can be proces-
sed off-line (not involving the computer), on any suitable tape-reading
device which can read this type of punched tape and type out the contents,
much on the order of some teletypewriters.

When a punched tape output is called for, the output information will be
taken from line 19 in a manner prescribed by a format stored in the memory
of the computer.

- 135 -

A format is a series of binary codes, each of which calls for a type
of output character. The types of characters, their abbreviations,
and the related format codes are shown below:

Type of Output Character Abbreviation Format Character
Digit D 000
End (stop) E 001
Carriage Return C 010
Period (point) P 01l
Sign S 100
Reload R 101
Tab T _ 110
Wait (skip one digit) W o 111

The complete format for the punching of tape is contained in four
words in memory, 02.00 - 02.03. The desired format characters are
placed end-to-end, beginning with T29 of word 03 in line 02, and
working backwards, ignoring word-boundaries, towards Tl of word 00.
The format may be any desired length within the limit of four words.
Since all of line 19 may contain information to be transferred to
the tape punch, it is readily apparent that not enough 3-bit format
characters can be placed in the available bits in four words to call
for every digit and every sign of the output. The reload code in
the format will cause all of the preceding format characters to be
reinspected, as the processing of line 19 continues. At this point
we must investigate the processing of line 19.

Each D in the format will call for the output of bits T29 down through
T26 of word 19.u7 (the most significant four bits of the word, and
therefore, the most significant hex digit of the word) as a hex digit.
Line 19 will then be shifted up four bits, losing the four which have
just been inspected, and vacating the four least significant bits (T4
down through T1) of word 19.00. Thus, successive D's in the format
will cause a succession of hex digits in the output, and they will
also cause a succession of shifts in line 19.

Each S in the format will cause an inspection of bit Tl of word 19.u7,
and an output of either a plus, or a minus sign. No shift will occur
in line 19. Notice that the sign of a number will have to be called
for at the time it is in Tl of 19.u7.

Each W in the format will cause a 4-bit shift of line 19, but there
will be no output of the corresponding hex digit; instead, an output
which will be treated as a blank character is substituted.

- 136 -

Each T in the format will cause a special tab code to be punched on
tape. Line 19 will be shifted one bit.

Each C in the format will cause a special carriage return code to be
punched on tape. Line 19 will be shifted one bit.

Each P in the format will cause a period to be punched on tape. Line
19 will not be shifted.

The only two remaining format characters are R and E. Each R will
cause a special reload code to be punched on tape. There will be

no shift of line 19. The inspection of the entire format, beginning
at T29 of 02.03 will be repeated. Thus, once an R has been placed

in a format, the format is essentially closed in a loop. Any remain-
ing bits in the allotted four words in line 02 will never be inspected,
and the output will never end. Use of R in a format requires caution.
A way to stop an output under control of such a format by program com-
mand is available, and will be discussed later. Striking s on the
typewriter keyboard will also stop it.

Use of an E character in a format is the normal method of stopping an
output. In addition to punching a stop code on the tape, it supplies

a stop code for the output. But the operation of this character of
format is very special, and requires closer scrutiny. You have noticed
that, as characters (hex numbers and signs) in line 19 are used up,
during an output, they are shifted out of the line (processing of a

sign does not accomplish this), and bits are vacated at the low end

of the line, in word 00. 1In any shift, the vacated bit-positions are
filled with O's. When line 19 contains nothing but 0's, we want output
to cease. Thus, by clearing line 19 and then properly positioning the
output data in line 19, prior to the output, we can control the duration
of the output. This is made possible through the computer's interpreta-
tion of an E character in a format. When the E character is encountered,
as the format is inspected, character-by-character, line 19 is searched
for at least one non-0 bit. If a 1 is found anywhere in the line, the

E character is automatically interpreted as an R, and causes the same
sequence of events as is caused by an R character. Eventually line 19
will contain all O's. When the E character is encountered, the search
of line 19 is performed, it is found that the entire line is clear, and
the E character is interpreted as calling for a stop code to be genera-
ted on the tape, and for the output to be stopped. At this point, the
input/butput system will be "ready'.

Consider, gs an example, the case of the program we have already devel-
oped, in which two answers will be generated, each a signed single-
precision number, We could first clear line 19. The best method for
this is an immediate command, allowed to work for one complete drum
cycle, with S containing O's in each of its words, and D = 19. We
could, for example, clear the two-word registers (and IP) with the
clear command, then use any one of them as S, with C = 0, and D = 19,
We would make this an immediate command (I/D = 0), and set T (flag)
equal to Lj. During each word-time either the even or the odd half

of the specified two-word register will be copied into the specified

- 137 -

word-time of line 19. After execution of this command, every word in

line 19 will contain 29 0's. After line 19 has been cleared, we could
transfer xj, generated by our program, into 19.u7, and x2 into 19,ub.

Then we set up the following format in line 02.

S DpDpDDDTUDTUDTSDDDDDD D C E

IR ERRA NN,

1000POOOPOOOPOOOPOOOPOOOI1010000%OOOOPOOOPOOOpoquOOIPOOl

02.03 02.02

{1 dddddddddddd

After both the data and the format are properly loaded, we initiate
the output to the tape punch., Let's examine the results.

The first character of the format is inspected, and found to call for
a sign. Therefore, bit Tl of 19.u7 is inspected, and a code for plus
or a code for minus is punched on tape.

The second character of the format is inspected, and found to call
for a digit. Therefore, the hex digit representing the four bits
T29 - T26 in 19.u7 is punched on tape. Call this the first hex
digit. Line 19 is shifted up four bits, so that T29 - T26 of 19.u7
receive the bits which previously occupied bits T25 - T22 of the
same word; call this the second hex digit., Bits T4 - Tl of 19.ub
receive 0's from the previous word (all of line 19 has been cleared
to 0, except words u6b and u7).

The third character of the format is inspected, and found to call for
a digit. The same sequence of events occurs again, the third hex
digit of the number x] arriving in T29 - T26 of 19.u7, while the sec-
ond hex digit is punched on tape. The shift of line 19 leaves bits
T8 - T1 of 19.ub cleared.

The same thing happens for the fourth, fifth, sixth, seventh, and
eighth characters of the format, which all call for digits. After

the eighth format character has been processed, and the character it
calls for has been punched, line 19 is shifted again. The result, up
to and including this shift will be: the sign and seven hex digits
representing x] have all been punched on tape, sign first, followed

by the most significant digit down through the least significant digit.
Line 19 has been shifted so that 28 bits from 19.u7 have been lost,

T29 of 19.u7 contains what was originally the sign-bit of that same
word, bits T28 down through Tl of 19.u7 contain the magnitude bits of
x2 (originally in 19.u6), and T29 of 19.u6 contains the bit that was
originally the sign-bit of the same word. Bits T28 through Tl of 19.u6,
like the rest of the line, contain 0's.

- 138 -

The ninth character of the format is inspected, and found to call
for a tab. A ta' code is punched on tape, and line 19 is shifted
by one bit. 19.u7 aow contains all of xp, while the rest of the
line is cleared.

The tenth character of the format is inspected, and found to call
for a sign. Bit Tl of 19.u7 is inspected, and the proper sign code
is punched on tape.

The eleventh through the seventeenth characters of the format are
inspected, and, since they also call for a series of digits, are
processed in the same fashion as were the second through the eighth
format characters, After the seventeenth character of the format
has been processed, its corresponding character of output has been
punched, and the corresponding shift of line 19 has been carried out,
the result will be: the sign and seven hex digits representing x»
have all been punched on tape, sign first, followed by the most sig-
nificant digit down through the least significant digit. Line 19
contains only one of the original data bits, in T29 of 19.u7, which
was originally the sign-bit of x2 in 19.u6. The rest of line 19 is
clear.

The eighteenth character of the format is inspected, and found to
call for a carriage return. A carriage return code is punched on
tape, and line 19 is shifted one more bit. Now the entire line is
cleared to O.

The nineteenth character of the format is inspected, and found to
call for a stop code, Line 19 is searched, and, since it is found
to contain nothing but 0's, this character is treated as an E char-
acter. The stop code called for is punched on tape. A stop code
is also generated which stops the output and sets the input/butput
system "ready" for another input or output.

At this point there is a tape hanging out of the computer (top,
front). There will be no doubt in your mind where the punch is
after you have once activated it. A toggle switch on the face of
the computer allows you to feed blank tape through the punch until
you can tear off the piece of tape containing the entire contents
of the output you called for. How will you know when you reach
the end of valuable information? You know which character was
punched last; it was the stop code. Therefore, if you can recog-
nize a stop code, you can tell the end of the information on the
tape. The following table shows the codes punched on tape corre-
sponding to each character which can be punched. In the punched
codes, as shown, a 1 represents punch; a 0, no punch. It will be
seen that there are five "channels" on the tape.

The length of tape so generated is referred to as a "block'" of tape.
Every block is ended by a stop code. Its length will be determined
by the lowest-ordered word in line 19 containing non-0 data when the
output is called for which generates the block of tape.

- 139 -

Qutput Character Code Punched on Tape

0 10000

1 10001

2 10010

3 10011

4 10100

5 10101

6 10110

7 10111

8 11000

9 11001

u 11010

v 11011
w 11100

b 11101

y 11110

z 11111
Space 00000
Minus 00001
CR 00010
Tab 00011
Reload 00101
Period 00110
Stop 00100
Wait 00111

The particular block of tape generated in our example will contain
the equivalent of two words, since, by the end of the first inspec-
tion of the format, all of line 19 will contain O's. The order of
punched codes on the tape would be:

1st sign
2nd digit
8th digit
9th tab
10th sign
11th digit
17th digit
18th CR
19th stop

Notice that the tape now contains the same characters that you might
choose to supply, were you to "gate" type-in, and enter the two num-
bers x; and xj as typewriter inputs.

- 140 -

A block of punched tape can be read (by a photo-reader mounted on

the front of the computer), upon command to the computer; this is

the other normal input. Were this block of tape to be mounted on

the drive mechanism of the photo-reader, and a p action taken (see
drawing on page 130); it would be read as a computer input. The

rules governing the entry of its information are the same as those
governing a type-in, The first character entered, being a sign,

would not immediately enter memory, but would enter the sign flip-
flop. Then seven digits would be entered into word 00 of line 23.

The next character of input, the tab, would shift line 23 one bit,
placing the seven previously entered digits in bits T29 - T2 of

23.00. The sign of the number would be dumped into Tl of the same
word from the sign flip-flop, and that flip-flop would be cleared.

The next eight characters would be entered in the same way, the first
complete 29-bit number (x1), being shifted into bits T28 - Tl of 23.01
and T29 of 23.00, while bits T28 - Tl of 23.00 receive seven new digits.
The following character, a carriage return, will have the same effect
as the tab, and the result will be xj in 23.01 and x5 in 23.00. The
next character, the stop code, automatically reloads, shifts line 19
by four complete words, and places words 23.00 - 03 in 19.00 - 03 *.
These words also remain in line 23. Then it terminates the input,

and sets the input/ﬁutput system "ready'" for another operation. This,
then, is the pattern for the entry of a block of tape into the memory
of the G-15. All of line 19 could be loaded in this manner, and the
last four words to be entered into line 19 would remain in line 23.
This fact will be important to us a little later. Punched tape input
is preferable to typewriter input in one respect, at least: speed.

TYPEWRITER OUTPUT

The format which controls the output from line 19 to punched tape
also controls the output from line 19 to the typewriter, in exactly
the same way, except in the case of typing, keys, tabs, and the
carriage return on the typewriter are affected, rather than punch-
heads. You can actually see the keys move as the contents of line
19 are typed out,

The contents of AR may also be typed out, under control of a format
made up in exactly the same way as the format for line 19. The AR
output format must be placed in line 03, words 02 - 03, prior to
calling for the type~out of AR, Again, the inspection of the format
will begin with T29 of word 03 and move toward the low-order end of
the line. During a type-out of its contents, AR will be shifted in
the same manner as line 19.%%

* Note: This automatic reload feature of the stop cude is not true
when the s key is used to stop a type-in.

*% Note: Because four words' worth of format should, in all cases,
be sufficient to '"cover' one word of output, it should be
unnecessary for an "end" code in the format to be automa-
tically changed to a "reload" code. For this reason, the
"end" code in an AR format will never be changed to cause
a reload.

- 141 -

The type-out of the contents of AR brings us to another topic. You
will notice, from inspection of the drawing on page 130, a will cause
the contents of AR to be typed out. You will also notice that this
is the only output of the three mentioned (and these are all of the
normal outputs) which can be called for through an enable action.

Consider for a moment the function of the whole class of enable
actions. It is to enable the operator to give the computer com-
mands directly, not in the normal binary command form. When would
this be useful? Primarily, when the computer does not have loaded
in its memory the desired program. These actions enable the opera-
tor to get a program into the memory of the computer, either one
command at a time, through type-in, or a block of tape at a time,
through the reading of tape. Once the program has been loaded,
control can be given to it, within the computer, and it will operate
the machine, For instance, when the computer is first turned on,
perhaps in the morning, there will be no information in its memory.
Turning it off the night before cleared memory. The enable actions
enable an operator to start the computer, At such a time it is hard
to conceive of the need for an output. Quite the contrary, when out-
puts are required, a program will have generated them, and that same
program can call for them with commands, none of which we have yet
defined.

DEBUGGING

The reason for providing for this one output, the type-out of the con-
tents of AR, through enable action, is to assist the programmer in
"debugging' his program. It has been painfully established by almost
all the programmers who have preceded you, no matter what computer or
programming system has been employed, that very few programs work suc-
cessfully in all respects as originally written. There are usually a
few flaws, perhaps stemming from carelessness, or from lack of knowl-
edge, or from a change in requirements. Finding these flaws by inspec-
tion of the program is sometimes almost impossible, especially in very
long and complicated programs. In such cases, the programmer will
usually resort to making up a '"test case', for which he will calculate
the correct answer(s). He will then enter his program into the computer,
and allow it to operate with the inputs of the test case, He will cause
the program to halt temporarily at various strategic points, and inspect
the partial results he has achieved, In this way he can eventually iso-
late the steps in the program which are causing the trouble. How does
he inspect these results? He stops the program at points where AR con-
tgins vital information, and inspects AR. Thus, the provision for type-
out from AR.

BREAK-POINT
Now we come to the only remaining question which was intentionally left
open earlier, and answer it. In the machine form of a command, bit

T21 was left undefined., This bit in a command is called the BP bit.
BP stands for Break-Point. If a command contains a 1 in this bit, the

- 142 -

computer will halt upon execution of the command, provided a switch
action has been taken previously. (Do not break-point a return com-
mand .)

On the front of the typewriter base is a switch called the ''compute"
switch. Other than performing an enable action, the computer will

not operate until this switch is on. The center position for this
switch is the off position. The switch is on when thrown either to
the left or to the right. If thrown to GO, it will cause the computer
to continue operating until either a halt command is reached or the
compute switch is moved back to the off position. If thrown to BP,

it will cause the computer to operate until a halt command is reached,
the switch is thrown back to the off position, or a command with

BP = 1 (called a '"break-pointed' command) is reached. If you want

the computer to be sensitive to these inserted break-points, then,

you must move the compute switch to BP rather than GO to operate your
program. A rule is that the enable switch and the compute switch
should never be on simultaneously. If you have stopped at a break-
point, turn compute off before turning enable on.

The entire process of debugging encompasses far too many techniques
and far too much effort to be thoroughly discussed here, but one of
the important facets of it is this periodic inspection of AR. Com-
bined with the ability to type out the contents of AR, are certain
other enable actions. For instance, t, will place in AR the address
of the next command the computer will obey if the compute switch is
turned back on. This enable action, followed by a, should help you
determine whether or not your program is following the predicted path.

Notice that the contents of AR will shift as it is typed out. This
means that, following the type-out, AR will no longer contain what

it did. 1If, after inspection of AR, you wish to return tc your pro-
gram, it is quite conceivable that this destruction of AR's contents
will cause errors in the rest of the program. Prior to a, you should
take the m action, which will save the contents of AR and mark the
location of the next command. Following a, r will restore this infor-
mation.

"SINGLE CYCLE"

Another enable action which is of help in the debugging process is i,
which causes only one step to be executed. You could operate a whole
program through a long enough series of i's. If you will look at the
drawing on page 208, you will see that among the neons on the front

of the computer, there is a set for S and another for D. These lights
will contain the S and D number, respectively, of the command being
executed. By following your program, as it is written on paper, and
these lights through a series of i's, you can often spot errors in

the path of your program. Do not single cycle return commands.

INPUT/OUTPUT COMMANDS

It is necessary for most programs to call for their own inputs and
outputs, by command. The commands which will do this are:

- 143 -

"Gate' type-in: D = 31, § =12, C = 0.
Read punched tape: D = 31, S =15, C = 0.
Type AR: D = 31, S =08, C = 0.
Type line 19: D = 31, § =09, C = 0.
Punch line 19 on tape: D = 31, § =10, C = 0.
These inputs and outputs will behave in the manner described. '

The G-15, although it can handle only one normal input at a time, has
no interlock to prevent the initiation of another before the input/out-
put system is "ready'". In such a case, the input or output called for
will be a logical sum of the two special (S) codes of the conflicting
commands. In short, the results of allowing your program to make this
mistake are disastrous. For example, if, during a type line 19 opera-
tion (S = 09), you executed a '"'gate' type-in command (S = 12), you
would suddenly find you were, as far as the computer is concerned, re-
questing an input/output operation with S = 13, their logical sum. It
just so happens that this special

09(10) = 1001 code for an input/output operation
12(10) = 1100 calls for 'read magnetic tape''.
1101 = 13(10) You might not even have a magnetic

tape drive at your installation,
but nevertheless, the computer would attempt to read from one. Of course
it would never receive a stop code, and thus the attempted input would
never terminate, to say nothing of the fact that neither your desired
input nor your desired output will be accomplished.

In order to prevent such distressing occurrences, you are equipped with
a test command which can be incorporated in your program. It was men-
tioned earlier, but not defined: ‘''test for 'ready''". If the input
output system is 'ready', the next command will be taken from N + 1;

if not, the next command will be taken from N. The most common use of
this test is to set N = the location of the test itself, so that the
test will be repeated until the input/butput system is ready for a new
operation, at which time the test will be met, and the program will
proceed at N + 1. At this point another input or output might be called
for. Another use of the ready test so programmed is to prevent the pro-
gram from trying to use a set of inputs until they have been completely
received. 1In order to achieve the most benefit from the ready test you
will usually want to make it immediate, and let it be executed as often
as possible. If N is set equal to L, you want the last word-time of
execution to be L - 1, so that no delay will be involved waiting to

take the next command from N. TIf the last word-time of execution is

to be L - 1, the flag (T) in the test command must also equal L. The
ready command then, programmed in this recommended way, will contain
D=31, $=28, C=0, T=1L, N =1L, and the command will be immediate.
This command should precede all normal input or output commands.

- 144 -

There is a very important implication in what has just been said. The
G-15 continues to operate your program during any normal input or out-
put. In many computers, input and output time is ''dead" time as far

as computation goes, but this is not so in the G-15. While you are
typing out one answer, for example, you can be computing the next. As

a matter~-of-fact, experienced programmers write programs in which almost
none of the input/output time required is left unused as far as computa-
tion goes.

At this point we can develop another program, not very long, which will
handle the inputs and outputs for our main computation program. Let's
assume we want to type the answers we derive, x] and x9, out of line 19,
Since we will have to use a line 19 format (we already developed it;

see page 137), we might just as well use command line 02 for this pro-
sram. Thus, the program and its output format will occupy the same
line.

Clear line 19

i T

Test ready

no
yes
Gate type-in of
a, b, ¢
Test ready
no

yes

Transfer a(23.02) ——>»memory
location for computation program

Transfer b(23.0l)=———>memory
location for computation program

Transfer c(23.00) ——>memory
location for computation program

1

Mark and transfer control to
line 00.

Return

IEype line lﬂ
[

- 145 -

In addition, we must include a command at the end of the program in
line 00, a mark and transfer control command, which will transfer
control back to this program at the correct point, for the type-out
of the answers.

In the computation program, when we generate xi, we will store it in
19.u7. Similarly, we will store x2 in 19.u6, so that these numbers
will be properly positioned, ready for output, prior to returning to
the output portion of the program above.

Notice that the first thing this input/butput program does is to clear
line 19, so that it will always be clear when we attempt to type out
our answers. ILf this were not done, and line 19 contained some garbage,
we would type out this garbage as well as our valid answers during the
first output.

The input/butput program continues in a ''loop'. After completion of
one run of the whole program, it immediately returns to an earlier
command and eventually calls for type-in of a new set of a, b, and c.
(N of last command = L of test.)

In this way, our program will continue forever, alWéys calling for a
new set if inputs after typing out the last set of answers. 'Of course
we can stop this at any time we want by turning off the compute switch
on the typewriter and walking away from the computer. More will be
said later concerning loops and their uses.

Now we know that we can enter our program a line at a time, into the
computer and punch out that line on tape. Suppose we punch line 01
(the square root subroutine) on tape. Then, on the same tape, we
follow it with line 00, the main computation program. Then, still on
the same tape, we follow line 00 with line 02. Finally when we run

the tape out of the punch, we will have a long piece of punched tape
containing three blocks, as shown in the drawing below, where the arrow
indicates the direction in which the tape would be read.

[~

A
Line 02 > Line 007 E Line Ol%

A

BLANK ''LEADER"

Notice that a blank space is located before the first block, between
blocks, and after the last block. When a tape is mounted on the photo-
tape-reader, it must have some leader which can be fed through the
mechanism and onto the winding-spool, similar to the loading of a movie
film. After an input, the drive mechanism coasts to a stop, and we
don't want valuable information from the next block to slip past the
photo-reader during this coast-time. The blank tape at the end will
result simply from manually feeding the tape out of the machine, prior
to tearing off the desired length, after it has been punched. Approx-
imately 9" to 1' of blank tape should be left before the first block

- 146 -

as "'leader™, for initial winding purposes. Approximately 6" to 9" of
blank tape should be left between blocks, to allow the tape drive
mechanism to coast to a stop without allowing any information in the
next block to slip past the photo-reader. This means that, when an
input from punched tape is called for, an indeterminate length of
blank tape will be ''read'" prior to the reading of any valuable informa-
tion. The '"reading' of blank tape will cause no input to the computer.

There is an acceptable method for generating blank leader automatically,

under program control. This method is based on the fact that the 'punch

line 19" command not only initiates the punch operation, but also reloads
the line 19 format (in line 02) into a four-word inspection buffer.

If the punch command is given before the end of the line 19 format has
been reached during its inspection, the format will be automatically
reloaded, and its inspection will begin anew, from the first format
character. In this way, the end code in the format might never be
reached, and the output would continue indefinately. As a matter of
fact, if the punch command is repeated often enough, only the first
character of the output format will ever be inspected.

Therefore, as tape is punched, a series of characters will be trans-
mitted to tape; it will be a series of whatever is called for by the
first format character. Of all data transmitted to the tape punch,
the only one which causes no punch is a + sign. We therefore will
cause a series of + signs to be transmitted, thus causing blank tape
to be fed out of the punch. The first format character in the line 19
format (contained in line 02) must be a sign character, and the sign-
bit of 19.u7 must be 0 (= +). In this manner, for as long as punching
continues we will get only blank tape.

Ten strokes of the punch will yield one inch of tape. Two drum cycles
are necessary for each punch stroke. Therefore, 20 drum cycles are
necessary to generate one inch of blank tape. The generation of nine
inches of blank tape would require 180 drum cycles.

In order to achieve this, the punch tape command should be executed at
word-time 00 of every drum cycle for 180 drum cycles.

- -28
180(10) 2 ————hARC
—_———q
Subtract 1-2_28

|Test AR(neg.%

no

. yes

Punch tape
(executed at 00)
S—— |

""Set Ready"

- 147 -

In the program flow-diagrammed on the preceding page, N in the punch
tape command will equal the word-time in which the subtract command

is located. The program will continue looping and counting the elapsed
drum cycles by subtracting 1 from 180 for each drum cycle. Eventually
AR will contain 40, and when 1 is subtracted from it, it will contain
-1, the answer to the test will be 'yes'", and the program will exit
from the loop. At this point the proper length of blank tape will have
been punched.

You have noticed the use of a "set ready'" command in the flow diagram.
This is a special command with D = 31, S = 00, and C = 0, When this
command is executed, whatever input or output is in progress will be
automatically and arbitrarily stopped. No '"stop" code will be punched
on the tape. This command must be used with caution; it may shift

the contents of line 19. Do not place the valid outgoing information
in line 19 until after the set ready command has been executed.

LOADER PROGRAM

Suppose now, we entered the following program, and punched it on tape,
and then we spliced this block of punched tape onto the other, preceding
line Ol.

Word 00, N = 01 Block Transfer
Line 19——pLine 02
Word 01, N = 03 Mark and Transfer
Control to 02.03
Word 03 Read Tape

Test ReadyI
no

yes

Block Transfer
Line 19——sLine 01

IRead Tapel

lTest Ready}]
no

yes

y
Block Transfer
Line 19 —>»Line 00

}

- 148 -

|Read Tapel

ITest Readyr

yes

no

Block Transfer

Line 19— Line 02
N of this command
equals starting
location of input
program.

This is called a '"loader" program. Its value is derived from the fact
that, if p is used to cause the reading of a block of tape, and if,
after the input has ceased, the enable switch is turned off and the
compute switch is turned to GO, the computer will take its next com-
mand from 23.00, which, as you know, will be the same as 19.00. Now
we can trace the operation of this program.

The loader will be in line 19, and its first four words will also be
in line 23, following the input caused by p.

When the compute switch is thrown to GO, the next command is taken
from 23.00.

This command, word 00 of the loader program, causes the transfer of

all of line 19 into line 02. The next command to be executed, still
in the same command line, (command line 07, which is line 23) is at

word Ol..

This command is a mark and transfer control command, and control is
transferred to line 02. The N number of this command selects the
word-time of the first command to be read from line 02: it is word-
time 03. ’

The program in line 02, beginning with word 03, will now be executed.
But this is the loader program, itself, Word 03 calls for an input
from punched tape. A preceding 'ready" test is unnecessary, because
it can be firmly predicted that no input or output is already in pro-
gress., The block of tape read into line 19 will be the next block on
the program tape, following the loader. This is the block containing
the square root subroutine, destined for line 0l. Therefore, after
this input is completed, line 19 is transferred, word-for-word, into
line 0l. Then the next block of tape is read, still under control of
the loader program in line 02. This block of tape contains the main
computation program, and therefore, upon completion of the input,
line 19 is transferred into line 00. The remaining block of tape is
then read into line 19. This block contains the input/output program
designed to accompany the computation program, and is destined for

- 149 -

line 02. But line 02 is already in use; it contains the loader pro-
gram. After the input is finished, the loader program will execute

one more command, which will be its last. It calls for all of line

19 to be transferred into line 02, The loader program thus destroys
itself, and line 02 contains the input/butput program we desire. The
command line is still line 02; nothing has been done to change that.
The next command, as always, will be taken from the same command line,
at a word-time specified as N of the previous command. Therefore, if,
as indicated in the flow diagram, the N of the last command of the
loader program equals the location of the initial command of the input
output program, during the next read-command time the input/output pro-
gram will start its normal execution, just as we originally planned it.

A loader of this type is called, rightly enough, a "self-destroying"
loader. 1Its purpose is to set up the memory of the computer for the
operation of a given program completely, and yet occupy no part of
memory after the set-up has been completed and it is no longer needed.

This type of procedure, involving the use of a loader program, is some-
times given the picturesque name of "bootstrap', for obvious reasons.
Once such a tape has been mounted on the drive mechanism of the photo-
reader, the only actions necessary at the typewriter are:

1. with the compute switch off, put the enable switch on;
2. strike p;

3. after one block of tape has been read into the computer,
make sure the enable switch is off, and move the compute
switch to GO.

From that point, in our example, the rest of the program will pick
itself up by its own bootstraps, enter the computer's memory at the
proper locations, and proceed to operate until it reaches the point
where it gates the type-in of the first set of a, b, and c. At this
point the S and D neons on the face of the computer will not be flick-
ering rapidly as step after step is executed, because always the same
step is being executed. It is the '"ready’ test. The neons will re-
main steady, indicating D = 31, S = 28, and an input/butput code of

12 (the code for a ''gate type-in'').

You will enter the numbers in the following order, as determined by
the way we originally formulated the input program: a (tab) b (tab)
¢ (tab) s. Each number will consist of seven hex digits and a sign.
The s will set the input/butput system "ready', the test on which the
program was 'hung up'" will be met, and the program will proceed.
Provided the numbers entered don't generate erroneous results, the
computation program will place the two answers in 19.u7 and 19.u6

and transfer control back to the input/ﬁutput program, which will
type them out in the following order: x7 (tab) x2 (carriage return).
It will then hang up again on the 'ready' test, awaiting a new set of
inputs. It will keep on performing this cycle until we simply don't
supply any more inputs.

- 150 -

Notice that we will have to convert decimal numbers for a, b, and c,
to hex numbers, prior to the input, and that, when these hex numbers
are typed in, they will be scaled, to our knowledge, 2-21, The dec-
imal numbers should therefore be converted to binary, rather than hex,
21 bits being allowed for the expression of the integral value, and

7 bits for the fractional value. From the resultant series of bits,

a corresponding hex number can very easily be made up, and it will

be this number that will be typed in.

The output will also be in hex, representing a binary value scaled
2-21, This binary value must be converted to its decimal equivalent,
which can be done quite easily, by inspection. A table of corres-
ponding powers of 10 and 2, as well as corresponding powers of 10 and
16, is located in the back of this book (page 207).

Only two tasks remain to be performed before we can punch a complete
program tape of the type described above.

One is to choose word-locations in the appropriate command lines for
all of the necessary commands. Because of the nature of the memory
in the G-15, as has been pointed out previously, timing becomes a
consideration in the writing of a program. We wish to minimize the
amount of wait-time preceding both the reading of commands and their
execution, in order to enable the program, as a whole, to operate in
the shortest amount of time possible. We therefore will have to
choose wisely the locations into which we place the commands, the
times at which we will execute them, the words in which we store con-
stants used by our program, and its inputs.

The other task is to code, in binary, each command and constant that
our program needs. We know the binary make-up of a command, so this
will not be difficult, From the binary number, we will have to get a
hex number which can be typed into the computer. When this has been
done for all the words in a line, that line's contents will be in line
19. We can then punch a block of tape. We must repeat this for each
block of tape necessary. Although this is not a difficult task, it

is time-consuming.

PROGRAM PREPARATION ROUTINE (PPR)

Fortunately, Bendix Computer Division has developed a program, called
the Program Preparation Routine (PPR), which will do this. As inputs,
it needs commands composed of decimal numbers for T, N, C, S, and D,
in the form shown below.

T N C S D

The decimal number for T will contain two digits, ranging from 00
through u7. Similarly, that for N will also contain two digits,
within the same range. The decimal number for C will contain one
digit, ranging from 0 through 7. The decimal number for S will con-
tain two digits, ranging from 00 through 31. Similarly, for D, the
decimal number will contain two digits, within the same range.

- 151 -

PPR needs to be told the location for the command, as well as being
given the "decimal form'" of the command. From these two facts, it
will cause the proper binary command to be entered into the specified
word-time of the line it uses for storage. This is line 18. Finally,
line 18 will contain all of the commands we want to appear in, say,
line 00, at the appropriate word-times. We can then give PPR a com-
mand to punch a block of tape with this line. It will transfer line
18 to line 19, and then punch line 19 on tape. Now we can give PPR
another command to clear line 18, and then proceed to set up a new
line of our program in the same manner. Eventually, we will generate
the entire program tape we desire.

When reference is made to giving PPR a command to do something, the
question of how this is done arises. PPR gates type-in after comple-
tion of every operation. At that time, the operator types in what
we call a '"pseudo-command'" which can be recognized by PPR, telling

it what is desired next., Some of these are:

"accept a decimal command input, and store it in word __ '

"punch out the program now stored in line 18";
"clear line 18",

There are many more such pseudo-commands for PPR, and they, along
with PPR's functions and capabilities, are discussed elsewhere in
this book.

At the present time, assume the availability of such pseudo-commands,
and we will proceed to see how the commands of a program, in partic-
ular, the program we have developed, are coded, in decimal form, prior
to being supplied to PPR.

The decimal form has already been shown, but some additions must be
made to it:

P T N C S D BP

P is a "Prefix". PPR does not know whether a command, as coded in
decimal form, is intended to be an immediate or a deferred command.
It will assume that all commands with D £ 31 will be deferred, and
all commands with D = 31 will be immediate. If this assumption is
correct as pertaining to a command, the P is left blank. I€ it is
incorrect, in that you wish to make a command with D # 31 immediate,
you must supply a P of "u'". 1If it is incorrect in that you wish to
1

make a command with D = 31 deferred, you must supply a P of "w'.

BP stands for breakpoint. If you wish a command to be breakpointed,
you must supply a minus sign at this point. If you do not wish the
command to be breakpointed, you supply no sign, which is tantamount,
as we have seen, to supplying a plus sign.

- 152 -

Usually the commands of a program are written on standard, printed
forms, called "coding sheets'". The following pages contain our pro-
gram, its loader, and line 02, coded on such sheets. Notice that
the location of each command and constant needed by our program is
also specified, along with the command or constant, itself. This
location will be supplied to PPR, but not as an integral part of

the coded command. You will see that most of the commands are ex-
plained somewhat in a '"NOTES" column on the sheet, just as a matter
of convenience.

Pay close attention to the timing numbers, T and N in each command,
and how they have been chosen to reduce wait time during the opera-
tion of the program.

Following the coding sheets, there will be some discussion of the
timing numbers chosen for individual commands.

You will notice that no coding for line 0l is included. This is the
square root subroutine, It has already been written, and we will use
it in its present form. We will simply reproduce a block of tape con-
taining that subroutine, and include this reproduction in our own pro-
gram tape.

FORM
108-5.0

- 153 -

?”JI/‘/ Los Angeles 45, California
Page 1 of 6
G-15D Prepared by Date:
PROGRAM PROBLEM: Loader Line 02
o 1t 2 3| L (P fi N |C[S | D |BP NOTES
4 5 & 1 00 [ulff o1 JolL jo| 19| 02 line 19 —s1line 02
8 9 0 N 01 03 [03 (2} 21} 31 Mark, Transfer —02.03
12 13 ¥ 15 03 05 Jo5 o] 15| 31 Read Tape
16 17 18 18| o5 05 |05 [0} 28| 31 Test Ready
20 21 22 2 o6 |uf o7 |07 [0} 19 o1 line 19 —line 01
24 25 26 27 07 09 {09 |o]| 15| 31 Read Tape
28 29 30 AN 09 09 {09 Jo| 28| 31 Test Ready
32 33 34 I 10 |ull1r |11 |o| 19] 00 line 19— 1line 00
I 37 B | 11 13 [13 [o] 15] 31 Read Tape
4 4 42 4 13 13 |13 |0 | 28 | 31 Test Ready
4 45 46 4] 14 |ulf15 |00 |0 19| 02 line 19 —>1line 02

(next command 02.00)

48 49 50 51
52 53 54 55
5 57 58 59
60 61 62 63
64 65 66 67
68 63 70 T
1720 < T TR |
% 17 18 19
80 81 82 83
84 85 86 87
B8 89 90 91
92 93 94 95
9% 97 98 99
o ul w2 U3
u4g u5 U

FORM
108-5.0

- 154 -

?’m//)/ Los Angeies 45, California page _2 of _6
G-15D Prepared by Date:

PROGRAM PROBLEM : Computation Line _00
o 1 2 3| L|P[¢|Nfc|s |0 [NOTES

4 5 6 1 00 03 | 03 23 | 31 Clear 2-wd. Registers

8 9 10 1| o3 o5 | o6 21 | 25 a = (21.01)——1D;

12 13 14 15 06 07 | 09 00 | 24 2 = (00.07)—>MQ,

6 17 18 19§ o 56 | 66 24 | 31 Multiply

20 21 22 2| 66 68 | 71 26 | 24 PNy 1M 4

24 25 26 21 71 04 | 76 26 | 31 Shift MQ left 2 bits

28 29 30 3 76 77 {78 24 | 20 2a = (MQ;) —» 21.01

32 33 34 3B 78 8l | 8l 23 | 31 Clear 2-wd. Registers

% 37 38 3N 81 85 | 86 20 | 25 2a = (20.01) —>1ID,

0 4 42 4 86 07 | 11 00 | 24 2 = (00.07) —> MQ,

4 45 46 47 11 56 | 68 24 | 31 Multiply

48 49 50 51 68 70 |73 26 | 24 PN, | —>MQ

52 83 54 55 | 73 04 |79 26 | 31 Shift MQ left 2 bits

5 57 58 58 [79 81 | 82 24 | 28 MQ—> AR (4a)

60 61 62 63 82 85 | 85 23 | 31 Clear 2-wd. Registers

64 65 66 67 | 85 87 | 88 28 | 25 4a = (AR)—>1ID,

68 69 170 T 88 92 |91 23 | 24 c = (23.00) —»MQ,

2 1 14 15| 91 56 | 40 24 | 31 Multiply

6 71 18 19 | 4o 42 | 44 26 | 20 bac = (PNO’I)—520.02,03
80 81 82 83 || 4 47 | 47 23 | 31 Clear 2-wd. Registers

84 85 86. 87 | 47 49 | 50 22 | 25 b = (22.01)—>1ID,

88 89 90 91 50 53 | 55 22 | 24 b = (22.01) —sMQ,

92 93 94 95 || ss5 56 | 05 24 | 31 Multiply

9% 97 98 99| o5 07 | 04 29 | 31 Test Overflow

uw ur w2 W oos 06 | o8 20 | 30 hac = (20.02,03) —=—»PN+
U4 us Ub 08 10 | 12 29 | 31 Test Overflow

FORM
108-5.0

- 155 -

—
Los Angeles 45, California Page 3 of 6
G-15D Prepared by Date:
PROGRAM PROBLEM: Computation Line 00
o 1 2 3| L [P gTL N S| D |BP NOTES
4 5 6 1 12 14 | 14 26| 28 PNO-*—,ARc
8 9 10 N 13 15 | 00 16| 31 Halt
12 13 14 15 14 16 | 16 22 | 31 Test for sign of AR (neg.)
% 17 18 19 16 18 | 19 00| 28 Return Command=(00.18) ——» AR
20 21 2 23 17 19 | 00 16 | 31 Halt
24 25 26 27 18 [uQ 99 20 31 .] Return Command
28 29 30 A 19 21 | 22 20| 03 2a = (20.01) —03.21
32 33 M 3 22 25 | 26 22| 03 b = (22.01) —>»03.25
% 37 3B 26 | wi| 20 | 94 21| 31 Mark, Transfer —> O1.94
4 4 42 4 20 21 | 23 03| 20 2a = (03.21) —>20.01
4 45 46 4] 23 25 | 61 03| 22 b = (03.25) —>22.01
48 49 50 61 61 63 | 60 29 | 31 Test Overflow
52 53 54 5% 60 00 | 27 00 | 00 Go to 27
5% 57 58 59 27 29 | 30 22 | 28 b = (22.01) —>ARc
60 61 62 63 | 30 31 | 32 20 | 29 V' = (20.03) —>AR+
64 65 66 67 32 34 | 34 29 | 31 Test Overflow
68 63 70 71 | 34 35 | 36 28 | 28 AR~ ARc
7 B KB s 37 | 00 16 | 31 Halt
% 17 718 19 36 39 | 39 23 | 31 Clear 2-wd. Registers
80 81 82 83 39 41 | 43 28 | 25 AR —> 1D,
84 85 8 8 43 42 | 87 26 | 31 Shift ID right 21 bits
88 89 90 9 87 89 | 90 25 | 23 N = (ID;) —>23.01
92 93 94 95| 90 93 | 94 23 | 28 IN|=](23.01)}——> ARc
% 987 98 99| o9 95 | 96 28 | 23 [N|= (AR)——>23.03
ug ut w2 W g 97 | 98 20| 28 [pf=1(20.01)] —> ARc
u4 u5 ub 98 ul | w2 28| 23 {p|= (AR) —>23.01

