G 15 D vrrojc|rR|A|M[ME[R]S

DIVISION OF BENDIX AVIATION CORPORATION
6630 ARBOR VITAE STREET. LOS ANGELES 45 CALIFORNIA

1.

-i -
TABLE OF CONTENTS

The Bendix G-15 Digital Computer: Introduction

Principles of Machine Computation

2.1 Machine Arithmetic
2.1.1 Binary Numbers and Arithmetic
2.1.2 Binary-Coded Decimal
2.1.3 Sexadecimal Notation

2.2 Concept of a Program

2.3 Orgesnization of & Problem for Machine Solution
2.3.1 Subroutines and Libraries
2.3.2 Scaling
2.3.3 Flow Charting

Orientation on the G-15

3.1 G-15 Major Functional Components
3.1.1 Input and Output Devices
3.1.2 Memory with Recirculation
3.1.3 Information Flow

3.2 Programming and Coding for the G-15
3.2.1 Commands
3.2.2 Programming
3.2.3 Minimizing the Access Time
3.2.4 Checking and Debugging

3.3 Examples of Application

Commands for Single Precision Arithmetic Operations
4.1 Addition and Subtraction
4,2 Multiplication and Division

Commands for Double Precision Arithmetic Operations
5.1 Double Precision Numbers and Commands
5.2 Double Precision Addition and Subtraction
5.3 Double Precision Multiplication and Division

Copy and Block Operations
6.1 Copy Operations
6.1.1 Commands for Copy Operations
6.1.2 Effect of C Codes in Commands with D 31
6.1.3 Copy Operations Involving Two-Word
Registers
6.2 Block Operations
6.2.1 Block Copy Commends
6.2.2 Block Commands for Addition and
Subtraction

g
}_‘ Lg
¢4

OO0\ FPDNN

10.

11.

- ii -

TABLE OF CONTENTS (Continued)

Command Sequence Control

Test Commands

Loops

Subroutines

Command Line Selection
Drum Mapping

N1
Ul F W

Input-Output Operations

8.1 Getting Information Into and Out of Computer
Regular Output Commands
Regular Input Commands
Commands for Regular Input-Output Control
Output Format

© @ o @
N EW N

Extract Operations
9.1 Extraction: A Logical Operation
9.2 Extract Commands

Shift and Normalize Operations
10.1 Commands for Shifting, Single Precision
10.2 Double Precision Shift Commands
10.3 Normalize Commands

Steps in the Solution of a Problem

- iii -

LIST OF TABLES

Page

Table 1. Equivalent Representations of Numbers 5
APPENDIX
Table A-l. G=-15D Basic Command List

Arithmetic Operations: Single Frecision 87

Arithmetic Operations: Double Precision 88

Arithmetic Operations: Block Commands 89

Copy Operations 89

Command Sequence Control 90

Extract Operations 90

Input-Output Operations 91

Commands for Optional Auxi liary Equipment 91
Table A-2. Components of a Decimal Command 92
Table A-3. Command Conversion 93
Table A-lj. G-15D Special Commands: D=31 ol
Table A-5. TFormat Characters 95
Table A-6., Punched Tape Characters 95
Table A-7. Typewriter Control Keys and Switches 97
Table A-8, General G-15D Operating Procedures 98
Table A-9, G-15D Operating Procedures with

Program Preparation Routine (PPR) 99

Table A~10. Typical Steps in Using Program Preparation Routine 100

Table A-11l., Instructions for Program Preparation Routine 101

Fig. 1

N

Fig.
Fig.
Fig,

Fig.

o e Fow

Fig,
Fige 7
Fig. 8
Fig. 9
APPENDIX

Fig., A-1

- 1V -

LIST OF FIGURES

Typical Flow Chart

Schematic Representation of Information Flow
in the G-15

Cross Section of the G-15 Magnetic Drum

Converted Command in Binary Form

G-15 Command in Decimal Form

Three G-15 Commands for the Addition of Two Numbers
Indicator Light Panel

Cut and Fill Application to Highway Construction

Steps in the Solution of a Problem

Typewriter Keys and Switches

13
15
16
18
20
21
83

96

Example
Example
Example
Example
Example

Example

Example

6.

Te

LIST OF EXAMPLES

Addition and Subtraction, Single Precision
Addition and Subtraction, Minimum-Access Coded
Multiplication and Division, Single Precision
Arithmetic Operations, Double Precision

Block Addition and Subtraction, Double Precision

Command Sequence Control: Test Commands, Loops,
Command Line Selection, Use of Subroutines

Shift, Single Precision

Page

26
27
30
36
50

59
79

1. THE BENDIX G-15 DIGITAL COMPUTER: INTRODUCTION

The Bendix G-15 is a compact and powerful internally - programmed
general-purpose digital computer of unusual versatility.

To appreciate the wusefulness of such a computer as a practical
mathematical tool, it is first necessary to become familiar with
the technical jargon customarily employed by those familiar with
the machine and its operation. An introduction to the principles,
operation and application of the Bendix G-15 is included here to
provide a general background upon which to build programming,
coding and operational skills.

Terms such as "electronic brain" lead one to expect a superhuman
mechanical monster which not only understands all the problems
but knows how to solve them. Actually, the programmer must know
enough about the problem and the procedure for solving it to pre-
pare a detalled set of directions for each operation the machine
is to perform. Then the machine will perform efficlently just
the tasks planned for it.

An automatic digital computer is designed to execute a sequence

of operations of ordinary arithmetic, to make simple decisions

and to record the results in a useful form. A "general-purpose"
computer can handle an almost unlimited variety of problems for

which the solution can be reduced to & succession of these basic
operations. In computers which are classified as analog devices,
the variations in a physical quantity (such as the presence of a
gas) are represented by continuous changesin some other quantity.
The components and behavior of the real or proposed system under
study are analogous to those of another system which is regarded
as a model. In digital computers, which deal only with numbers,
the model is mathematical and the behavior of the physical system
is determined by the results of operations in arithmetic.

Therefore, describing the BendixG-15 as a general-purpose digital
computer implies that it is a mathematical tool applicable +to
widely diversified tasks involving manipulations with numbers.
To understand how the computer works, something should be known
about the number system in which internal computation is done.

2

PRINCIPLES OF MACHINE COMPUTATION

2.1 MACHINE ARITHMETIC

Probably because ten fingers are standard human equipment,
and because counting or tallying on the fingers comes natu-
rally, we have become accustomed to representing numbers by
a set of ten characters or symbols: O, 1, 2, 3, L, 5, 6, 7,
8 and 9. The derivation from finger counting also leads to
the term "digit" for any one of these symbols, and because
there are ten digits the notation is called "decimal."

Another familiar notation, Roman numerals, emplcys alpha-
betical characters. Although satisfactory for counting
years or chapters, this scheme is seen to be too awkward
for arithmetic when you try to add MCMXIV to DXLVIII.

However, not even the decimal system is the most efficient
when numbers are to be portrayed and manipulated by magnetic
or electronic equipment. Design is simpler and components
fewer when advantage is taken of the opportunity to repres-
ent numbers with elements that can have only two different
values instead of ten. It is easy to recognize that a volt-
age is either relatively high or low, that a current is ei-
ther flowing or not, or that a magnet moves either north pole
or south pole first. If the voltage, for example, is low at
a particular time, this condition may be denoted by "O"; if
the voltage is high, that state is described by "1". With
these two symbols we have a "binary" number language. The
binary digits, O and 1, are called "bits" -- an abbreviation
for "pinary digits."

2.1.,1 BINARY NUMBERS AND ARITHMETIC

Any number can be expressed in binary (bit) form, as shown
in Table 1. There are two basic advantages in expressing
numbers in this way - (1) simple elements can be used to
indicate each of the bits in the binary number, as has been
mentioned, and (2) arithmetic is surprisingly easy when
numbers are expressed in binary form. For example, we need
remember only these two simple rules for performing addition:

Rule 1, O plus 1 dis 1
Rule 2. 1 plus 1 is O and carry 1 to
the next column left.

With these two rules let us add 10 and 11 (binary numbers
equivalent to the decimal numbers 2 and 3):

10

11

1

0 carry 1 left
1 the carried 1
101

The binary 101 is equiv .lent to the decimal number 5,
which is indeed the sum of 2 and 3. It is obvious that

a computer that is required to "remember'" only these two
basic addition rules will be much simpler than one that
must "remember" that the sum of 3 and L is 7, or 4 and 8
is 12, plus all the other rules for addition with decimal
numbers.

For similar reasons, subtraction and multiplication are
also much simpler in the binary system because fewer
combinations are possible. ror example, multiplication
is performed with only the two following rules:

Rule 1. 1x01is O
Rule 2. 1 x1is 1

Let us multiply the same two binaries, 11 and 10:

110, which is indeed equivalent
to binary number 6.

It must be remembered that a given number, or the result of

an arithmetic operation, is the same whether it is expressed
in the decimal system whose base is ten or in the binary
system whose base is two. Any number, integer or fraction,

can be depicted by a succession of bits, with a binary point
separating the integral part from the fractional. The num-

ber of places a binary digit is away from the binary point
indicates the power of two it dontributes, just as the posi-
tion of a decimal digit signifies a power of ten. For example,
the binary number 10.01 equals

1(2) + 002)% + o(2)™ L + 1(2)72 = 2,25

2.1.2 BINARY - CODED DECIMAL

All arithmetic in the G-15 is performed on binary numbers.
However, since it would be too laborious to translate dec-
imal numbers into the binary language before they are fed
into the computer, the conversion is accomplished automat-
ically in two stages, using binary-coded decimal numbers.

A binary-coded decimal number expresses each digit in the
decimal number in binary form. For example, the decimal
number 22 in binary-coded decimal is 0010 0010, where each
of the four-bit binary groups is equivalent to the decimal
number 2. Similarly, the number 97 in binary-coded decimal
is 1001 0111l. As four bits are required to express the
largest decimal digit, 9, each decimal digit is expressed
as & group of four bits. The second column in Table 1 shows
some equivalent representations of numbers in binary-coded
decimal.

In the G-15, each decimal digit enters the computer in the
form of its binary equivalent, as a group of four bits.
Then this intermediate binary-coded decimal representation
is converted in the machine to true binary. A reverse pro-
cedure permits binary results to be converted to decimal
form for output.

2.1.3 SEXADECIMAL NOTATION

Sometimes a record is wanted of the unconverted binary con-
tents of the computer. Then a kind of shorthand is used
which involves a number system with a base of sixteen in-
stead of two or ten. This base is used because a group of
four bits can represent any one of sixteen different numbers
(zero to fifteen). By assigning a symbol to each of these
combinations we arrive at a notation called sexadecimal (usu-
ally hex in conversation because nobody wants to abbreviate
sex). The symbols in the sexadecimal language are the ten
decimal digits and, on the G-15 typewriter, the letters u,
vy, Wy, X, y and z. These are arbitrary markings; other com-
uters may use different alphabet characters for these last
six digits.

Equivalent forms of some numbers in decimal, binary-coded
decimal, binary and sexadecimal are shown in Table 1.

Table 1. EQUIVALENT REPRESENTATIONS OF NUMBERS.
Binary-coded
Decimal Decimal Binary Sexadecimal
0 0000 0 0
1 0001 1 1
2 0010 10 2
3 0011 11 3
kL 0100 100 b
5 0101 101 5
6 0110 110 6
7 0111 111 7
8 1000 1000 8
9 1001 1001 9
10 0001 0000 1010 u
11 0001 0001 1011 v
12 0001 0010 1100 w
13 0001 0011 1101 x
1 0001 0100 1110 y
15 0001 0101 1111 z
16 0001 0110 1 0000 10
17 0001 0111 1 0001 11
18 0001 1000 1 0010 12
19 0001 1001 1 0011 13
20 0010 0000 1 0100 1L
21 0010 0001 1 0101 15
22 0010 0010 1 0110 16
23 0010 0011 1 0111 17
2L 0010 0100 1 1000 18
25 001C 0101 1 1001 19
26 0010 0110 1 1010 1u
27 0010 0111 11011 1v
28 0010 1000 1 1100 iw
29 0010 1001 1 1101 1x
30 0011 0000 1 1110 1y
31 0011 0001 1 1111 1z
32 0011 0010 10 0000 20

2.2 CONCEPT OF A PROGRAM

A complete set of commands to direct the computer's step

by step operation must be stored in the memory before the
automatic process begins. This list of coded instructions
is called a "routine" and is also known as a "program." A
program, in the broader sense, is a plan for the solutien
of a problem. A complete program includes plans for trans-
cription of data, coding for the computer and plans for the
effective use of the results. Thus the program becomes, in
a sense, one of the functional components of the computer,
along with the hardware of the input and output system, the
memory, the arithmetic section and the circuitry for commue-
nication and control.

"Programming" is preparing a program. "Operating" the com-
puter means actually manipulating the hardware: turning on
the master switch, depressing certain buttons and typewriter
keys, moving certain switches and typing in the program. A
“programmer® is a person who plans the program and specifies
the printing format. He may also do the numerical analysis
and systems analysis, integrating the computer into the sys-
tem. He may or may not actually operate the computer or
code the program.

2.3 ORGANIZATION OF A PROBLEM FOR MACHINE SOLUTION

The automation of mathematics pays off by eliminating the
duplication of effort for repetitive processes. Once a com-
puter program has been prepared, it can be used over and over
again each time the same type of problem is to be solved.
The preparation of a program consists of: (1) compiling a
complete and accurate statement of the problem; (2) making
a numerical analysis to select suitable mathematical proce-
dures; (3) drawing a flow diagram (Fig. 1) to indicate the
arrangement of major blocks of commands; (L) planning the
detailed steps of operation; (5) assigning locations in the
computer storage for data and commands; (6) writing each
command in decimally coded form; (7) finding and correcting
the mistakes made in working through the first six steps.

Operation of the computer itself is introduced first in step
(7): the decimal commands written in step (6) are transeribed
on the input typewriter and automatically converted to binary
words on entry into the computer; +then a tape is punched,
containing the program in sexadecimal form for rapid re-entry.
After the inevitable mistakes or "bugs" in the program have

-7 -

been detected and eliminated, little manipulation is needed to
1oad commands and data into the computer for production runs.

A problem must be stated before it can be solved; an auto-
matic machine can't ask, "What do I do now?" when it hits

a snag in the middle of computation. A computer can make
geveral kinds of simple decisions and, as a result, select
between alternative sequences of ensuing commends; but unless
the statement of a problem is initially complete, some con-
ditions are likely to be overlooked. Not only must equations
be written to express the relationships among the guantities
involved in a computation, but every conceivable situation
must be anticipated and its consequences set forth explicitly.

In some types of problems there is Tittle or no uncertainty
about the best method of solution; in others, however, var-

jous formulas or numerical techniques may be available. There
are several good ways, for example, to approximate the solution
of a set of differential equations or to invert a matrix, and
each procedure has features to recommend it in certain instances.
In these cases, depending more on the character of the problem
than on the details of the computer, the application of the
mathematical techniques of numerical analysis alds in the

choice of the most suitable method.

2.3.1 SUBROUTINES AND LIBRARIES

Much of the labor required to prepare and debug a new program
can be saved by incorporating previously checked blocks of
commands called "subroutines". These are filed in a library
of panched tapes from which masters can be withdrawn and re-
produced for compilation with other segments to form a complete
program. Included in a typical library would be subroutines to
convert decimal input data to binary form and binary memory
contents to decimal output; to evaluate square roots, trigo-
nometric and other elementry functions; to perform numerical
integration, matrix operations, and so forth.

In addition to subroutines, which become component parts of
other programs, complete routines are available to reduce
significantly the work of getting a problem ready for the
G-15.

Although there is no substitute for an accurate statement of
the problem and careful planning of solution methods, many
clerical details can be relegated to the computer itself. A
program of the type called "interpretive" permits commands
to be written in a much simplified form. After an entire

program written in the simplified pseudo-code has been stored
in the computer, each command is read in turn and interpreted
as an operation to be performed by a subroutine. Valuable
savings in programming time and effort are achieved at the
cost of some computing speed, a compromise which enables rela-
tively inexperienced personnel to utilize the G-15 effectively
for tasks not repeated often enough to warrant an investment
in more sophisticated techniques.

Whether an interpretive routine for simplified coding is used
or not, the seven steps of program preparation listed above

are fairly typical, not only for the G-15 but for most general-
purpose digital computers, both large and small.

2+3.2 SCALING

Another aspect of analysis intimately associated with most
digital computers is the matter of "scaling"; that is, making
sure that all numbers handled in the computer retain signifi-
cance while fitting into words of fixed length. One of the
techniques involves the use of a number representation called
"floating point", where the position of the decimal or binary
point is specified by a special part of the number, like the
characteristic of a logarithm. The G-15 has been designed to
facilitate arithmetic with numbers of this form, not by in-
clusion of elaborate circuitry or expensive components, but
through the operation of an unusually efficient programmed
subroutine. This subroutine forms an integral part of the
interpretive routine mentioned previously, with the result
that scaling is taken care of automatically.

2.3.3 FLOW CHARTING

Once a problem has been properly stated, the numerical pro-
cedures established and scaling settled, the actual writing
of a detailed program is facilitated by the use of a flow
chart (Fig. 1) showing the sequence of major steps and alter-
native branches dependent on conditions encountered as the
computation progresses. The complexity of a problem deter-
mines how elaborate its flow diagram need be, not only to
aid the programmer but also to serve as a map of the completed
work. Sometimes the operations included in one block of a
comprehensive diagram are djsplayed in more expanded detail
on a separate flow chart.

- 11 =

3.1.1 INPUT AND OUTPUT DEVICES

Obviously the numbers involved in the operations a computer
performs must somehow be fed into the machine. Standard G-15
input equipment includes an electric typewriter (specially
modified) and a photoelectric reader which accepts 200 char-
acters (sexadecimal digits or special control symbols) per
second from punched tape. Permanent records of intermediate
or final results of computations may be obtained by automatic
operation of the typewriter at about eight characters per
second or by a tape punch unit at a higher speed. Up to four
magnetic tape units (Model MTA-2) available as optional aux-
iliary equipment, provide for magnetic tapes as input or out-
put media. Various other optional input-output devices are
available: these include punched card adapters (Models CA-1
and CA-2), a unit for handling alphanumeric information
(Model AN-1), a machine tool control unit (Model AN-2), a
graph plotter (Model PA-2), and a Flexowriter (Model 35-i,
Friden Calculating lMachine Company) for independent prep-
aration and interpretation of tape. Another accessory, the
digital differential analyzer (Model DA-1), provides for the
simplified programming of differential equations.

3.1.2 MEMORY WITH RECIRCULATION

At the heart of any automatic digital computer is some device
in which numbers can be retained to become available when
needed in the course of calculations. This component, called
the "memory'" or storage, consists, in the G-15, of a cylinder
or drum whose surface is thinly coated with a magnetic mater-
ial. About a foot in diameter and a few inches wide, it rot-
ates at 1800 rpm. Binary numbers are written on its surface
by magnetizing a succession of spots around the circumference,
using one polarity to represent "0O" and the opposite polarity
to represent "1". A group of 29 consecutive bits is called

a "word."

Numbers involved in arithmetic operations in the G-15 may
be either one or two words long, with one bit of the 29 or
58 used to indicate the sign (O for +; 1 for -). A one-word
nunber (expressed in 28 bits) can be as large as 268,435,,455.
A "double precision'" or two-word nymber of 57 bits is equiv-
alent to about 17 decimal digits. {The G-15 is outstanding

in its facility to perform double-precision arithmetic, thus
retaining significant figures through long chains of compu-
tations.

- 12 -

Words stored in the G-15 memory are arranged serially on the
drum in circumferential tracks or "lines" (Fig. 3). As the
drum rotates, the magnetized spots in each line pass under a
stationary read head which transmits, to other elements in
the computer, signals representing the information stored in
its line. Amost immediately, either the same or new signals
are sent to a write head and recorded for another ride around
the drum. DBetween the two heads associated with each line
there is an erase magnet which causes the drum surface pass-
ing under it to be cleared (i.e., magnetized with the same
polarity as "0"), so that new writing will not be superimposed
on the old. This process of reading information at one point
on the drum surface and rewriting it at another is termed
"precirculation”. It leads to certain advantages in circuitry.

As one consequence of the recirculation process, it can be
seen that the length of a line (that is, the number of words
it contains) depends directly on the circumferential distance
from the write head to the read head (Fig. 3). Thus, lines
of different lengths are made possible by different spacings
between heads. Since a word written on the drum becomes
available only when it passes under a read head, the "access
time" (delay until a desired word arrives) is less for words
stored in shorter lines.

The main portion of the G-15 memory consists of twenty "long"
lines, numbered OO0 through 19, each containing 108 words.
There are five "short" lL-word lines, one of which is reserved
for special functions during input and output processes, the
other four being available for rapid-access storage. They are
numbered 20 through 23.

In order to represent the 108 word locations using only two
digits, 100 is represented by u0, 101 by ul, ..., 106 by ub
and 107 by u7. Word availability is cyclic: word 00 is
available immediately after word u7 of a long line. In the
short lines, the words are numbered 00 through 03. Word

00 is available immediately after word O3 in a L_word line.

To locate a word of information stored on the drum, it is nec-
essary to specify the number of the line the word is in and
its position in that line. TFor example, 08.32 designates word
22 in line 8. Such a location number is called an "address".

The contents of a location are indicated by placing parenthe-
ses around the address. For example, (08.32) designates the
contents of 08.32.

- 13 -

Long Line

(108 WORDS)

Fig. 3. Cross section of the G-15 magnetic drum. Kach
of 20 "long" lines, or circumferential tracks, contains
108 words of 29 bits. Rapid-access storage consists of
four "short" L-word lines; the arithmetic registers are
a 1- word line and three 2- word lines. The read and
write heads for the shorter lines are staggered between
those for the long lines.

During internal machine computation, all numbers in the com-
puter are assumed to be greater than -1 and less than +1.
This range is obtained by carrying a scale Tactor along with
the number.

Numbers are normally stored in memory in the form of absolute
value and sign. A change of form occurs when negative numbers
are involved in addition or subtraction operations. The change,
called complementation, may be defined as the result of subtrac-
ting the absolute value of a negative fraction from one and re-
taining the negative sign. HNote that complementing the comple-
ment (recomplementation) restores the negabtive number to its
original form.

Arithmetic operations are performed in four "registers"
which are also lines on the drum. Three of these reg-
isters are 2-words long and one is of l-word length. A
- number may be directed to enter the l-word register or

- 14 -

one of the 2-word registers, either replacing or adding
to the previous contents of the line. The 2+word reg-

isters are used also in multiplication and division op-
erations with either single or double precision numbers.

The AR and PN registers are "accumulators"; that is, each
has associated electronics circuitry that enables it to
perform addition and subtraction. The PN register also
holds the Product in multiplication and the Numerator in
division. The MQ register holds the Multlpller in multi-
plication and the Quotient in division. The ID register
holds the multipllcand or "Icand" in multiplication and
the Denominator in division.

The remaining portion of memory is occupied by lines, some
permanently recorded, used for control information and time
ing signals by which all operations in the computer are
synchronized.

3.1.3 INFORMATION FLOW

Words in corresponding positions in all lines are read and
written together. One line may be selected as a "source",
another as a "destination"; a word read from the source is
written in the destination. Meanwhile, all lines except
the one chosgen as the destination continue to recirculate,
their contents unchanged. The "transfer" or copying of a
word, one bit at a time, from a source to a destination,

is accomplished ini 0,27 millisecond. This word time is

the unit for measuring the duration of most G-15 operations.

As soon as one operation has been completed, a new source
and destination may be selected. The next operation begins
either immediately or when a designated word is available
at the read head, and it may continue for one or more word
times. Flexibility in the number of words copied in one
operation is an unusual feature contributiag to the effi-
ciency of the G-15.

3.2 PROGRAMMING AND CODING FOR THE G-15

It is obvious that the machine, in order to function at high
speed, must be controlled automatically, according to a
sequence of operations established in advance and stored in-
ternally. To accomplish this, the contents of & binary word
can be interpreted by the control circuits as a "command”.

3.2.1 COMMANDS

Upon being read, a command is transferred to a special
register in the memory, where it is retained until the
action it specifies has been performed.

Various groups of bits within the word are decoded to
specify (1) a source, (2) a destination, (3) when an
operation starts and how long it lasts, (%) in which

of certain ways words may be modified or delayed during
transfer, and (5) where the next command is to found.

In storage, a command cannot be distinguished in form
from any other word; it may even be modified arithmeti-
cally as a number. A word serves as a command only
after it has been so designated by the preceding command.
Commands may be altered during the course of computation
by the program itself. Since in the computer the form of
a command is numerical, the numbers which make up the
command may be operated upon in the same way as any other
numerical information.

The set of commands and constants that constitute a
program may be entered into the G-15D in decimal form.
The decimal commands are automatically converted before
use by a previously inserted "service" program into bin-
ary form and condensed to fit into the 29 bits of one
word (Fig. 4).

Fig. 4. Converted Command in Binary Form.

In a 29-bit word designated as a command, the first bit at
left (I/D) signifies whether the command is immediate (I=0)
or deferred (D=1); the next 7 bits (T) specify the time of
operation: when a deferred operation begins or an immediate
operation ends; N 1s the location of the next command; CH
is the characteristic operation to be performed; S is the
source; D is the destination; S/D the precision (single
S0, double D=1). The BP bit, if e "1", indicates a break
point.

- 16 -

One such service program, the "Program Preparation Routine",
is furnished on punched tape with the computer. This
routine and its use is described in detail in the oper-
ating manual., Thus, the commands in machine language
programming ere normelly written in the decimal form

(Fig. 5) understood by the Program Preparation Routine.

Location Command
L P | Tor Lk N C S D BP
Range
From: 0 O * 00 00 0O 00 00 >
To: ub u 7 u b 7 31 31

Fig. 5. G-15 Commnd in Decimal Form

*Prefix of u or w may be required; otherwise, P is left Dblank.
*¥Break point is indicated by & minus sign, -, if desired;
otherwise, BP 1s left blank.

The components of & command in decimal form are designated by
the following symbols:

L = Location or word position of a command.

P = Prefix

T = Timing number: specifies the word position of the address
or duration of execution.

I = A number equal to the sum of the word position of the com-

mand plus k. (If the sum is greater than 107, subtract 108.)
L) designates when an immediate or block operation is to end.
N = Word time during which next command is to be read.

- 17 -

C = Code number specifying precision and characteristic.
A single precision (SP) number consists of 28 bits
and sign; a double precision (DP) number has 57 bits
and sign. The characteristic determines if and how
nunbers may be modified or changed during transfer or
copy operations.

S = Source number: specifieg a line or register as a
source or serves as an operation code when D = 31.
D = Destination number: specifies a line or a register

as a destination or, if D= 31, that the source num-
ber has a special meaning.

Break Point: computation can be halted automatically
after the execution of a breakpointed command during
program checking to examine intermediate results.
Break points, though indicated, can be ignored

during production runs.

ST = Source address (line 8, word T).

DT = Destination address (line D, word T).

BP

3.2.2 PROGRAMMING

With the flow diagram as a guide, the detailed steps of
computer operation are planned in terms of individual com-
mands. If two numbers are to be added, for example, three
commands are usually required (Fig. 6). The first number
is brought into an accumulating register to replace its
former contents; the second number is then copied into the
same register so as to add to the first; finally, the sum
is stored in memory, either to be used later in the compu-
tation or to be converted to the binary-coded decimal form
for typeout.

A G-15 command (in machine language, as contrasted to sim-
plified coding) provides for the transfer or copy of a word
or more from one memory line to another; i.e., from a source
to a destination. However, some operations, such as multi-
plication, division, initiation of input or output activities,
and others, do not involve such a transfer per se; these op-
erations are specified by commands in which a special code
takes the place of a destination number and a source code
indicates the operation.

- 18 -

L |P H N [{C[S|DBPf NOTES

00 oL |02 |1] 20 | 28 a = (20.01)-X+ 4R,
02 03 {oy {1]20 |29 b = (20.03)— > AR+
ol 05 |06 1] 28 | 07 ¢ = (AR)-" 07.05

Fig. 6. Three G-15 commands for the addition of two numbers
and the storage of their sum. (1) the command in Loc. 00
causes the number "a" to be copied from its storage location
(1ine 20, word Ol) to the accumulator register AR. The desti-
nation number 28 provides that "a" replaces the previous con-
tents of AR. (2) the command in Loc. 02 copies the number
"p" from line 20, word 03, to AR. The use of destination
number 29 causes an addition to "a", the previous contents

of AR. (3) Loc. Ob contains a command which stores "c", the
sum of "a" and "b", in line 07, word 05. The next command
would be placed in location 06. The time required to read

and execute these three commands is about 1.6 milliseconds.

3.2.3 MINIMIZING THE ACCESS TIME

In operation, the computer is always in one of the four
basic machine states:

(1) Read command

(2) Wait to execute command
(3) Execute command

(4) Wait for next command

States (2) and (4) represent delays. Minimization of
these delays by judicious assignment of storage locations
for commands and data is called minimum-access coding.

A specific word on a long line of the drum is read, and
hence available for use, once every 108 word times. A
word time, the time required for 29 bits (or 1 word) to
pass under the read head, is equal to 0.27 milliseconds.
A drum cycle requires 108 times 0.27 or 29 milliseconds.
The average access time for a word on a long line is one

- 19 -

half of this, or 14.5 milliseconds. However, programming
for minimum access greatly reduces this time.

A word on a short line containing 4 words becomes avail-
able every fourth word time or 1.08 milliseconds (4 times
0.27). Average access time for short lines is O.54 milli-
seconds. There are 27 (108 + 4) opportunities to read a
word stored in a short line during a single drum cycle.

The ID, PN and MQ registers each hold two words; each
word is available every other word time. The AR reg-
ister holds one word of information which is accessible
during any word time.

Minimum-access coding, in addition to reducing delays,
may make use of the short lines and registers for
temporary storage to further reduce access time.

For the G-15 programs with minimum delay times are just
as easy to write as less efficient ones. In most cases,
there need be no pauses between reading a command, exe-
cuting it, and reading the next command. With access
optimized, the three commands in the addition example
can be read from memory and executed in about 1.6
milliseconds.

3.2.4 CHECKING AND DEBUGGING

Whenever a new program is written, it can be expected
not to work at the first trial because even the best
programmer, being human, is inherently fallible. To
detect his mistakes it is essential that a "test case"
be prepared in order that intermediate, as well as final,
results may be verified. Usually the sample will be much
shorter than a typical productive computation, for a
single pass through an iterative sequence of commands
tests them as effectively as many repetitions. It is
important, though, that no condition or branch of the
program be neglected during the check-out process.

Automatic operation of the G-15 can proceed in either

of two modes, selectable by an external switch. 1In
production runs, it will compute until a command to halt
is reached; in checking a program, it can proceed through
a sequence of commands at high speed until a programmed
break point is recognized. Then the contents of any

part of memory can be typed out for examination, alter
which computation may be resumed unvil the next break
point or a command to halt appears. It is possible
also to cause the G-15 to execute a s.ngle command at
a time. When computation stops after a halt command,
a break point, or a single cycle operation, the op-
erator can read from a small panel of neon lights
(Fig. 7) information about the last command the
computer has executed.

Special service routines have been developed to faci-
litate debugging. A "lister" automatically types out
the commands in a line of programming in decimal form,
A "tracer" automatically types out the commands of a
program in decimal form in the order of execution to-
gether with a type-out of the result of each step.

To summarize the procedures for using an automatic
digital computer, there are three principal activities;
(1) problem statement and analysis, (2) program writing
and debugging, (3) productive computation.

LUER P SGN

Fig. 7. Indicator light panel.

Neon lights provide information about the last command
the G-15 has executed when computation has stopped
after a halt command, a break point or a single cycle
operation.

- 2] -

3.3 EXAMPLES OF APPLICATION

There have been so many allusions, in both technical and popular
journals of the past decade, to the spectacular achievement of
million-dollar computers that you may wonder whether real capa-
bility and versatility can be found in a modest tool like the
$49,500 6-15. Actually, the variety of applications to which

it is suited is so large as to defy any attempt at completeness
in a brief listing. To illustrate its usefulness, therefore,
two examples have been chosen because they can be understood
without profound knowledge of specialized technology or advanced
mathematics, The first application, to highway construction,
illustrates how the G-15 can save more than 90% of the time and
cost otherwise required for calculations that must be performed
dozens of times per mile of road.

Building a highway requires the movement of earth: low places
must be filled; ground above roadbed level must be cut and re-
moved., The cost of such work depends, of course, on the volumes
of the cuts and fills, which can be calculated from survey read-
ings. A typical calculation, which requires 30 to L5 minutes
for each cross section when performed manually, can be accom-
plished with automatic type-out of results by the G-=15 in about
15 seconds. Allowing an average of 1% minutes for the transerip-
tion of surveyor's field notes on the input typewriter, the G-15
shows an advantage in elapsed time of as much as 30 to 1.

cevevereeesiesesserssener. JNSTRUMENT .
ELEVATION
LINE OF CONTOUR s
Pl RPZ RP
ey 3
ROADBED LEVEL -« _//_/%: ___ _ _ _homoBED _ __ _
————————— T & ELEVATION
- : |
*Py p, ¢ OF ROAD

Fig. 8, Cut and fill application to highway construction,

A G-15 can compute and record the volumes of cuts and fills from
survey readings in a fraction of the time required for manual
calculations, while avoiding the introduction of human errors.

- o0 -

In addition to quantities which change infrequently, such as the
width of the road, the following data enter the calculations for
each station: (1) survey rod readings and the distance of the
readings from a base line, (2) station number (3) height of the
roadbed, (L4) height of the instrument, (5) left and right side
slope ratios, (6) depth of left and right ditches. From these
data are calculated and recorded: (1) depth of cut or fill at
left and right slope stakes, (2) horizontal distance of left and
right slope stakes from the center line, (3) "cut" volume between
preceding station and present station, (4) cumulative total of
"cut" volumes, (5) "fill" volume between preceding station and
present station, (6) cumulative total of "fill" volumes, (7) net
difference between cut and fill, (8) cumulative difference be-
tween "cut" and "fill" volumes, adjusted to include a shrinkage
factor. Included in the calculations are such operctions as a
determination of the point of intersection between the land con-
tour and the road elevation, decisions whether each element of
volume is a cut or a fill, and many others. Applications of the
Bendix G-15 to this and other problems in highway construction
and traffic control will conserve public funds while expediting
the creation and improvement of transportation facilities.

The automation of an industrial process is a second example of
the practical use of the G-15. Here the computer is coordinated
with other units in a system designed and produced by the Bendix
Aviation Corporation for the automatic control of machine tools.
Numerical data describing the contours and tolerances of work to
be produced by a milling machine are tabulated from engineering
drawings, together with information about radius and feed rate
of the cutting tool. These data, after being transcribed on a
punched tape, are fed into the G-15 to enter calculations
resulting in the specification of the path of the tool center,
with components of motion in either two or three dimensions.
Output from the G-15 consists of a second punched tape which has
the calculated results arranged in the special form required by
a machine-tool-control unit. This tape contains all the infor-
mation necessary to direct the milling machine in high-precision
automatic production.

Other numerous and varied examples could be cited to illustrate
both present and future applications of the digital computer in
private industries and public agencies. The two cases above in-
dicate the increasingly important contributions of an automatic
general-purpose computer of moderate size to the automation of
processes involving the application ofpractical mathematics.

S Vs wewt 9{£dxu&4q

-23 -

COMMANDS FOR SINGLE PRECISION ARITHMETIC OPERATIONS

L.1 ADDITION AND SUBTRACTION

Notes Commands Descriptions
(5.T)—t»AR, T N1 S 28 Clear AR and add (S.T)
(5.T)-%»AR+ TN 1 S 23 Add (S.T) to (AR)
(S.T}—AR; TN 2 S 28 Clear ARand add absolute value of (ST)
(S.Th—AR+ TN 2 S 29 Add absolute value of (S.T) to (AR)
(S.T—AR, TN 3 S 28 Clear AR and subtract (5.T)
(S.T)=+AR+ TN 3 529 Subtract (S.T) from (AR)
(AR)D.T TN128 D Store sumor difference from ARinto D.T
Discussion

(s.T)-»AR, TN1 S 28

The AR register will be cleared to zero. The number in S.T
will be entered into the AR register in preparation for an
addition or a subtraction. If the number is negative, it
will enter AR in complementary form, ready for an addition.
‘A number stored in AR in "normal" form (absolute value and
sign) may be put into suitable form for an addition by the
command T N 1 28 28. The contents of S.T remain unchanged
in storage.

(S.T)-®>AR+ TN1 529

The number in S.T will be added to the number in AR. The
contents of S.T remain unchanged. Addition of a negative
number is accomplished by first complementing it and then
adding this complement. Further additions and subtractions
may be performed on the results in the AR register. If the
sum is greater than 1, or less than -1, or equals + 1, an
"overflow" occurs; this may be tested as described later.
If the resulting sum in AR is negative, it will be in com-
plementary form. Therefore, additions and subtractions
should be followed by a "Store sum or difference from AR"
command which will automatically put the stored sum in the
form @f absolute value and sign. TNIEH L8
ey Ll R

s.T)—*r, TN2 528

The AR register will be cleared to zero. The absolute value
of the number in S.T will be copied into AR. The sign bit
will be O as for a positive number.

- 24 -

(s.T}—ar+ TN 2 529

The absolute value of the number in S.T will be added to the
number in AR.

(S.T)-=>AR, TN 3 5 28

The AR register will be cleared to zero. The number in S.T
will be entered into AR with the sign changed and will be
complemented if the resulting sign is negative. (See dis-
cussion of "Clear and add to AR"™ command.) In effect, the
number in S.T will be subtracted from zero and entered into
AR. This command should be followed by another arithmetic
operation involving the AR register.

(S.T)—=>AR+ TN3 S 29

The sign of the number from S.T will be changed as it goes

to AR and the resulting number, in complementary form if
negative, will be added to the number in AR. (See discus-
sion of "Add to AR" command.) In effect, the number in S.T
will be subtracted from the number in AR. Since the differ-
ence in AR may not be in the form of absolute value and sign,
this command should be followed by another arithmetic opera-
tion involving AR or by a "Store sum or difference from AR"
command which will recomplement a negative result.

(AR)+>D.T TN128 D

The result of addition or subtraction will be entered from
register AR into D.T. If the result is negative, it will be
in AR in complementary form, and this command will automati-
cally recomplement so that the result will be stored in D.T
in the form of absolute value and sign. After the result
has been stored in D.T, it remains in AR as well (in comple-
mentary form if negative).

- 25 -

Example 1: Addition and Subtraction, Single Precision

Write a program to find and store the sum, s, of & - b + |c | .
Assume that & is in line 12, word 05; b is in line 07, word
20; ¢ is in line 07, word 36; and the sum is to be stored in
line 06, word uO0.

Statement of the problem:: s = & - b+ |c |

Storage locations: a = (12.05)
b= (07.20)
c= (07.36).
s = (06.u0)
Flow chart: a—:;—>ARc
7
b —> AR+
Y
le| —> AR+
‘ v
§ = (AR) *—>06.u0

Coding of the program:

ggrgoPosition Command Code Line 00
L -P-Toi.k N |c|s D "BP NOTES |
00 05 01 {1 | 12 | 28 Jl a= (12-05)+—>'ARC
01 20 02 {3107 | 29 b = (07.20) —> AR+
02 36 | 03207 |29 lc|= | (07.36)]—> AR+
03 w | os {1]| 28 |06 x = (AR)—> 06.u0
ok

This program is not minimum-access coded.

- 26 -

Example 2: Addition and Subtraction, Single Precision,
Minimum-Access Coded

Rewrite the program of Example 1 so that storage locations of
commands and data take into account the considerations for
minimum-access coding. Let first command be in 00.00.

Statement of the problem: s=a -Db+ |c|

(12. eor

= (07.)351 word positions to be
(07. Doz’ chosen when coding. -
(06.)o7, 4

Storage locations:

w oo
|

Flow chart:

a——> AR, |-~ b —>AR+ L—»Jl|c| —> AR+ |5 = (AR)—>06.__|

Coding of the program Line 00

L (P To%k N ci{ 8 D |BP | NOTES AND EXPLANATION

oo |7 | o1 fo2 |1]| 12| 28 a = (12.01)-*>AR, Commend is
read at word time 00; earliest
time available to execute com-
mand is Ol. Therefore, let T=01,
making a=(12.01). Earliest time
available to read next command
is 02, so N = O2.

[
o
(]
[@V]
>
=
(V%)

07! 29 b = (07.03)—=>AR+ Command is
read during 02, the N of the
previous command, and executed
during word time 03. Next
command may be read during OL.

ol 05 {06 | 2] 07| 29 |e| = [(07.05)]—= AR+ Command

‘ is read during Ol and executed
during 05. Next command read
during 06.

06 07 1] 28] 06 s = (AR)=»06.07 Command is
read during 06 and executed at
07. Earliest time for next
command is 08, but its operation |
may require another location.

-27 -

L.2 MULTIPLICATION AND DIVISION

Notes Commands
Clear Ly N 0 23 31
T .. NO S25
dd
(s.1)—iIDy { °
Toven N 6 S 25
T .. NO S2i
dd
(S.T)=Qy { °
Toqq NO S 2
(S T)—)PN].
T en N 6 S 26
Multiply 56 N O 24 31
Divide 57 N 125 31
(PN7)—D.T Todd N O 26 D
(MQg)—D.T Teyen N O 2L D

Discussion

Clear L3 N 0 23 31

Descriptions

Clear ID, MQ, PN, sign (IP)

Load multiplicand or divisor

Load Multiplier

Load numerator

(IDl)x(MQl)——éPNO,l (Location odd)
(PN7)+(IDy)—MQg (Location odd)
Store product in D.T

Store quotient in D.T

The contents of the ID, MQ and PN registers will be cleared
to zero. IP will also be cleared to zero. IP is a special
storage element (a flip-flop) which holds one bit of infor-
mation: the sign bit associated with multiplication.or di-
vision. The two-word registers should be cleared before
loading them for multiplication. However, when a multipli-
cand is loaded into ID from an even word location (Teven)s
the clear command is unnecessary. TLhe two-word registers
must be cleared before loading them for division. This
command operates during word times Ly and Lj.

(S.T)—IDy {:

Toaqg N ©

S 25

Teven N 6 S 25

The absolute value of the number in S.T will be copied into
the odd half of the ID register, IDj, ready to serve as the
multiplicand in multiplication or as the divisor in division.

- 28 -

The sign bit from S.T will enter IP, replacing the previous
contents of IP. If T is odd, the command must be in the

form T NO S 25. This command will also clear the odd half
of the PN register, PNj, and will operate during word time T.
If T is even, the command must be in the form T N 6 S 25,

S must be less than 28, and this command will operate during
word times T and T+l. This form of the command will also
cause the even side of ID to be cleared, both sides of PN to
be cleared; and the information originally stored in AR to be
lost. ID should be loaded before loading MQ (multiplier) in
multiplication, or before loading PN (numerator) in division.
ID should not be loaded from the MQ or PN registers.

Toqg N O S 2l

Teven N 6 S 2L

The absolute value of the number in S.T will be copied into
the odd half of the MQ register, MQ), ready to serve as the
multiplier in multiplication. The sign bit from S.T will be
added to (IP): a positive sign (0) will leave (IP) unchanged;
a negative sign (1) will change (IP). If T is odd, the com-
mand must be in the form T N C S 24, and it will operate dur-
ing word time T. If T is even the command must be in the
form TN 6 S 24, S must be less than 28, and this command
will operate during word times T and T+l. Also, if T is even,
the even side of MQ will be cleared and the information orig-
inally stored in AR will be lost. MQ should be loaded after
loading ID for a multiplication. MQ should not be loaded
from the ID or PN registers. -

Toagg NOS 26

(S.T)—PN; {
N6 S 26

Teven
The absolute value of the number in S.T will be copied into
the odd half of the PN register; PNy, ready to serve as the
numerator in division. The sign bit from S.T;, if positive;
will leave (IP) unchanged; a negative sign will change (IP)
from O to 1 or from 1 to O, If T is odd, the command must
be in the form TN 0 S 26, and it will operate during word
time T. If T is even, the command must be in the form
TN6S 26, Smust be less than 28, and it will operate
during word times T and T+l. Also, if T is even, the even
side of PN will be cleared and the information originally
stored in AR will be lost. PN should be loaded after load-
jng ID for a division. PN should not be loaded from the MQ
or ID registers. —__

Multiply 56 N0 24 31

The number in ID will be multiplied by the number in M{, and
the product will be developed in the entire PN register, PNO 1°
The sign bit associated with this product is in 1P. The locd=
tion of this command must be odd, and it will operate during
word times L1 through Lgg. The contents of ID and MQ will be
altered during multiplication.

Divide 57 N1253 or 57TN5Z25 31

The number in PN will be divided by the number in ID, and the
quotient will be developed in the even half of the MQ register,
MQ0. The sign bit associated with this quotient is in IP. The
location of this command must be odd, and it will operate dur-
ing word times Lj through Lg7. The contents of PN will be
altered during division, but the contents of ID remain unchanged.
(PN) should be smaller in magnitude than (ID). The least sig-
nificant bit of the quotient will always be equal to 1; this
approximation to rounding will usually be more accurate than
truncation.

(PNl)—)D.T Todd NO26 D

The most significant 28 bits of the product, from the odd
half of the PN register, together with the sign bit from IP,
will be copied into a storage location, D.T. D should not
be a two-word register; T must be odd. -

The quotient, from the even half of the MQ register, together
with the sign from IP, will be copied into a storage location,
D.T. D should not be a two-word register; T must be even.

- 30 -

Example 3: Multiplication and Division, Single Precision

ax+b
c *

Write a program to find and store y =

Assume that a is in line 21 word Ol, b is in line 21 word 03,
¢ is in line 06 (word location to be chosen conveniently), x
is in line 23 wo.d 00, and y is to be stored in a convenient
location in line O7. First command is to be in line 00 word 00.

+
Statement of the problem: y = a::c o

Storage locations: ‘a = (21.01)
b = (21.03)
c = (06.82 A Word locations for
x = (23.00) ; c, ¥y, and ax+b
y —07.38 j chosen when coding.

Flow chart: ax + b—»23,01 A more detailed

breakdown with a step
corresponding to each
command appears in
the NOTES column of
the coding sheet.

————-(23("301) —07.38

Coding of the program, together with recommended form of
writing NOTES, is on the facing page.

FORM
108-5.0

G-15D
PROGRAM PROBLEM:
3 1 2 3
4 5 8§ 1
8 9 W W
2 13 U 15
B 17 18 19
20 2 2 2
24 25 26 2
28 29 30 3
32 33 M 3%
¥ W B 3
0 4N 2 4
M 45 46 4
48 49 50 51
52 53 54 55
5 57 58 59
60 61 62 63
64 65 66 67
B8 WM
172 < R [
w o
B0 B 82 83
B 85 86 B
86 89 90 91
92 93 94 95
9% 97 98 99
W W u2 u3
U4 u5 U6

- 31

Los Angeles 45, California

Page 1_ of 1_
Prepared by G. M. Silvern Date:
3) y = aiﬁb Line ___00
T — 1
L (P |NJC[S|D|BP NOTES
F 00 oy | 066 | 2% | 25 x = (23.00)—IDy
06 09 | 11 {0 |21 |2k | a = (21.01)—MQy
1 56 | 6810 |2y | 31 Multiply
68 69 | 70 {0 | 26 | 28 ax = (PN;)—AR
70 71 | 72 (1| 28 | 28 (AR)—2AR,
72 75l 61|21 |2 b = (21.03)—HAR+
76 77 | 1811 | 28 | 23 ax + b = (AR)-23.01
78 81 8L |o |23 | 31 Clear M@ 4 |D o,
81 82 8Ly |6 | 06 | 25 c = (06.82)—ID ‘
8Ly 85 | 87 |o | 23 | 26 ax + b = (23.01)—PNy
87 ST 37125 |31 Divide
37 38 O 2L |or | vy = (MQy)—>07.38
II
50 04| 06|60 |25 |
O & oG I |lo|lo|24q

- 32 -

COMMANDS FOR DOUBLE PRECISION ARITHMETIC OPERATIONS

5.1 DOUBLE PRECISION NUMBERS AND COMMANDS

A single precision (SP) number consisting of 28 bits and sign
occupies one word in memory; a double precision (DP) number
consists of 57 bits and sign and occupies two consecutive words.
The less significant 28 bits and the sign of the DP number are
stored in location T, and the more significant 29 bits in loc-
ation T+1, where T must be even.

Sign Sign
(SP only) (SP or DP)
l (Bit 1)
~
T+ 1 T v
TYTT T I Y I T T e rtrrrrriroyd ISERBAERERERRNNEMENERREEERRE
: 0DD Word ! EVEN Word !
G b ey bbb v b e
N | /
Most T Least
Significant Middle Significant
(Bit 58) (Bit 30) (Bit 2)

Most of the commands for arithmetic and other operations on
single precision numbers can be modified slightly to operate
on double precision numbers. In the DP commands for opera-
tions other than multiply, divide, shift, and normalize, the
C code is four greater than in the corresponding SP command.
This causes the execution of the command to continue for two
word times (the first even, the second odd), recognizing a
sign bit during the even word time only.

Additions and subtractions of double precision numbers require
a 2-word arithmetic register; PN is used for this purpose. The
DP operations of multiply, divide, shift, and normalize are
performed in the same registers as the corresponding SP opera-
tions, except that both halves of the registers are necessarily
involved. The T numbers in the commands for these latter op-
erations must be even, and generally are greater than in the
corresponding SP commands, but the C codes may be the same.

- 33 -

5.2 DOUBLE PRECISION ADDITION AND SUBTRACTION

(T must be even; 00=S==23; 00&=D<23; each operates for 2
word times, T and T+1)

Notes Commands Descriptions
(5.T,T+1)—2>PN TNS S 26 Clear PN and add (S.T,T+l)
(S.T,T+1)-*»PN+ T NG5 S 30 Add (S.T,T+1) to (PN)
I(s.T, T+ }—>PN TNL S 26 Clear PNand add abs. value of (ST,Pd)
[(S.T,T+1)]—PN+ TN 6 S 30 Add abs. value of (S5.TT+1) to (PN)
(S.T,T+1)—=>PN+ T N7 S 30 Subtract (S.T,T+1) from (PN)
(PN)—t3D.T, T+l TNS5?2 D Store sum or diff. from PN into D.T, T+l
Discussion

(5.T, T+1)—1>PN TN5 S 26

The PN register will be cleared to zero. The double precision
number in S.T,T+1 will be entered into PN in preparation for
an addition or subtraction. T must be even.

(S.T,T+1)-tsPN+ TN S S 30

The double precision mumber in S.T,T+l will be added to (PN).
T must be even.

|(S.T,T+1}—PN T NL S 26

The PN register will be cleared and the absolute value of the
double precision number in S.T,T+l will be copied into PN.
The sign bit in PN will be O (positive). If the sign bit of
the number in S.T,T+l is negative, it will change (IP), but
this will not affect the sign in addition or subtracticn.

T must be even. |

(S.T,T+1}—PN+ TN 6 S 30

The absolute value of the double precision number in S.T,T+l
will be added to (PN). T must be even.,

(S.T,T+1)—=>PN+ TN 7 S 30

The double precision number in S.T,T+l will be subtracted from
(PN). T must be even.

(PN)—D.T,T+1 TN526 D
The result of a double precision addition or subtraction in PN

will be stored in D.T,T+1l in the form of absolute value and sign.
T must be even.

- 34 -

5.3 DOUBLE PRECISION MULTIPLICATION AND DIVISION

(T must be even; 00££8<23; 00£D<=23)

Nctes Commands Descriptions

(5.T,T+1)—1ID TNL S 25 Load multiplicand or divisor
(S.T,T+1)—MQ TNL S 24 Load multiplier
(S.T,T+1)—PN TNL S 26 Load numerator

Multiply vy N O 24 31 (ID)x(MQ)—PN (Location odd)
Divide vé N 125 31 (PN)+(ID)—MQ (Location odd)
(PN)—>PN TNL 26 26 Clear and add product to PN
(PN)—D.T,T+1 TNL 26 D Store product

(MQ)—>D.T, T+1 TNL 24, D Store quotient

Discussion

(S.T, T+1)—>ID TNL S 25

A double precision multiplicand or divisor will be loaded from
S.T,T+1. Its sign enters IP and its absolute value enters the
ID register, replacing the prior contents of each. PN will be
entirely cleared, so the "clear" command (L, N 0 23 31) is not
necessary before loading the registers for DP multiplication.
Before division, however, certain bits of the 2-word registers
must be zero; hence, the registers should be cleared before a
divisor is loaded. ID should be loaded before MQ or PN. T
must be even; execution times are T and T+l.

(S.T,T+1)—MQ T NL S 24

A double precision multiplier will be loaded into MQ from
S.T,T+1 while its sign combines with the sign of the multi-
plicand to form the correct product sign in IP. T must be
even; execution times are T and T+1l.

(S.T,T+1)—>PN TNL S 26

A double precision numerator will be loaded into PN from S.T,T+l.
Its sign combines with the sign of the divisor to form the cor-
rect quotient sign in IP. T must be even; execution times are

T and T+1.

Multiply viy NO 24 31

(ID)x(MQ)—»PN. This command differs from that for single
precision multiplication only in T, the length of time during
which it operates. For efficiency, N;éL7. The location must
be odd.

- 35 -

Divide v6 N125 31 or v6 N5 25 31

(PN)+(ID)——MQ. This command differs from that for single
precision division only in T, the duration of its execution.

The quotient will fill MQ. For efficiency, NaaLg. The
location must be odd.

(PN)—PN TNL 26 26

This command will prepare a product for double precision addi-
tion in PN. The sign in IP will be copied into the register;

if it is negative, (PN) will be complemented. (IP) does not
change. T must be even.

(PN)—D.T,™1 TNL 26 D

The sign from IP and the absolute value of a double precision
product from PN will be stored in D.T,T+l. T must be even.

(MQ)—D.T,™1 TNL 24 D

The sign from IP and the absolute value of a double precision
quotient from MQ will be stored in D.T,T+l. T must be even.

- 36 -

Example L4: Arithmetic Operations, Double Precision

Given: a = (21.00,01)
b= (21.02,03)
c = (06.82, 83)
x = (23.00,01)

Find y = i’é‘_"}l store in 07.38, 39

Flow chart: |ax + b — 23.02,03

ﬁéi@.@ﬁ}). —_— 07,38,39

c

Coding: (see coding sheet on facing page)

Note that storing y in 07.u0,ul would be more efficient.

The selection of command locations was based on the word
positions given for c.

FORM
108-5.0

- 37 -

Los Angeles 45, California

3
1

n
15
19
23
2]
3
35
39
43
4
ol
55
59
63
67
n
15
19
83
87
91
95

99
ul

Page N Y
axsp, Presared by G. M. Silvern Date:

L) y= S (Double Precision) Line 00
Polel g n]c]s NOTES

L7 48 50 |4} 23| 25 x = (23.00,01) —> ID

50 52 st 4% | 21 | 24 a = (21.00,01) — Mg

57 vk eh o | 2k | 31 Multiply

6l 66 68 |k | 26 | 26 [I ax = (PN) — PN

68 70 | 7215] 21| 30 b= (21.02,03) Y+ PN+

T2 h 7815 | 26 | 23 ax + b = (PN) —>» 23.02,03

78 81 810 | 23 | 31 Clear

81 g2 | eulu|osles || || c= (06.8283 —» 1D

84 86 84| 23 | 26 ax + b = (23.02,03) — PN

89 v6H 9811 | 25 | 31 Divide

98 38 L oek] o7 y = (MQ)—07.38, 39

====&==;

“&endi”
G-15D

PROGRAM PROBLEM:
0 1 2
4 5 6
8 9 10
2 13 "
6 171 18
0 2 2
4 25 2
28 29 30
32 33 N
3/ 37 38
0 4«
4 45 46
48 49 50
52 53 54
56 57 58
60 61 62
64 65 66
686 63 70
7 B M
% 17 718
80 81 82
84 85 86
88 89 90
92 93 94
9% 97 98
u u w2
U4 us ue

6.

- 38 -

COPY AND BLOCK OPERATIONS

6.1 COPY OPERATIONS

The purpose of a copy operation is usually one of the following:

(1) Distribution of input date to permanent storage.

(2) Entry of numbers into arithmetic registers.

(3) Storage of the result of an arithmetic operation.

(4) Relocation of date for more efficlent accessibility.

(5) Placement of data in preparation for output.
To accomplish these purposes, numbers are sometimes transmitted
without delay or chenge in form; sometimes they are modified in
passage from the source line to the destination; and sometimes
they are routed via AR, either to interchange the contents of
AR with the contents of a storage location or to introduce a
one-word delay in transmission. The "C" code in a command
determines whether or not information will pass through AR or
be modified in transit. Information stored in the source line

is never altered or lost unless, because of modification or
delay vie AR, the same line is eelected as the destinstion.

Among the arithmetic operations previously discussed, those
with D<31 mey be considered special cases of coples, in ac-
cordance with (2) and (3) above. In the following discussion
of basic copy commands, certain limitations on 8 and D are
imposed only to exclude commands which are discussed specifi-
cally elsewhere in this manual. Copies involving two-word
registers are discussed separately.

-39 -

6.1.1 COMIANDS FOR COPY OPLRATIONS

Notes Commands Descriptions

(00£5<23, or S=28; 00£D<23,
(S.T)—D.T TNOSD %or D=28. Copy a single preci-
sion number into D.T
Q0L 3&26, or S=28, 00&LDL6,
+ or D=28. Copy a positive num-
(5.7)—=>D.T TNL1SD o er into D.T; enter complement
of a neg. number into D.T
(AR)=—*D.1 TN2SD {0043423, 00&=D=2 3
(S.T)—»AR Interchange storage with (AR)
00&&Sea23; 00aDaa23
(AR)——#D.T} TN 3§D (Interchange storage with (AR),
(S.T)~t»AR entering complement of (S.T)
into AR if (S.T)<0
00 S£23; O0aeD&23
Jopy a double precision number
J0ESE26; 00&=Da26
+ Jopy a pos. double prec. num-
(5.T,T41)"5D.T,T+1 Tgyeq N 5 5 D ber; enter complement of neg.
double prec. number

(S.T,T+1)—3D.T, ™1 T, en N L 5D {

Discussion
(S.T)—+D.T TNOSD (00£5£23, or S=28; 00£D£23, or D=28)

This general form of the copy command, with C=0, will copy &
single precision number from S.T into D.T; replacing the pre-
vious contents of D.T. There will be no change in the form of
the number and no delay. (S.T) will not be destroyed by this
operation.

Note that the contents of any location may be copied into any
other location with a different T address by two commands:
Copy from source to AR (T N O S 28), followed by Copy from AR
to destination (T, N O 28 D)

(S.T)—#>D.T TN 1S D (00£S5L26, or 5=28; 00&D<L26, or D-28)

This command, with C=1, will copy a positive number into D.T,

or enter the complement of a negative number into D.T, with no
delay. This command may be us~d for the temporary storage of

& number in a two~word register, providing that the same form
of command is used when the number is returned to a longer line:
(8.7)=>two-word register, and two-word register-9D.To. In
this pair of commands, both T; and Tp must be even or both must
be odd.

{E‘;—R%)__’BAQ} TN2SD (00£L5<€23; 00<D<23)

This command, with C=2, will cause the original contents of
AR to be copied into D.T, replacing the previous contents of
D.T, while at the same time the contents of S.T are being
copied into AR. There will be no change in the form of the
numbers. (S.T) will not be destroyed by this operation unless
S=D, This command, called "Interchange storage with (AR)",
will operate for word time T only.

If either S or D or both28, and DF31, then this command will
copy into D.T the absolute value of (S.T).

(AR)—D.T £85£07: 00<LD<

{(S.T)—*-*AR} TN3SD (00£5<23; 00<D<23)
This command, with C=3, will cause the original contents of
AR to be copied into D.T, while at the same time a positive
number in S.T will be copied into AR or a negative number in
S.T will be entered into AR in complementary form. This com-
mand will be executed during word time T only.

If ejther S or D or both>28, and DF31, then this command
will change the sign coming from the source. If the new
sign is positive, the absolute value of the number will be
copied into D.T; if the new sign is negative, the complement
of the number will enter D.T.

(S.T,T+1)—>D.T,T+1 T, . NL 5D (00&5&23; 00&=De=? 3)
This command, with C=l, will copy a double precision number
from S.T,T+1 into D.T,T+1. This command will operate during
word times T and T+l, but otherwise it is similar to the
corresponding single precision operation: T N O S D. T must
be even.

(S.T,T+1)—5D.T, T+ Toyen N 5 S D (00£5=26; 00£D=226)

This double precision command, with C=5, is similar to the
corresponding single precision command: T N 1 S D. A posi-
tive double precision number will be copied; a negative DP
number will be complemented. T must be even.

- 41 -

6.1.2 EFFECTS OF C CODES IN COMMANDS WITH D <31l

Single Precision: Sign
occurs every word time

Double Precision: Sign
in even word times only

Copy numbers;
C=0 P———m—> No modifications; €< C= L4
No delay.
Copy positive numbers;
|C -3—-’Complement neg. numbers; [&«——— C= 5
No delay.
= Each word time: C=16
8< 25 SAR)—-D.T. lcopy] [€ s< 28
D< 28 S.T)—=AR [Copy] p< 28
= Copy absolute values; | C=06
S>28 or D228 No delay. S> 28 or D> 28
Each word time:
c = a AR)—>D.T. [Copy] C =
8< > {éS.T)—»A.R < 8< 2%
p< 28 [Copy positive numbers, D< 28
complement neg. numbers]
C=3 Change sign and P C=17
S> 28 or D> 28 proceed like C =1 or 5 S>28 or D28

6.1.3 COPY OPERATIONS INVOLVING TWO-WORD REGISTERS

The two-word registers My (line 2i;), ID (line 25), and PN (line 26)
are unique among G-15 memory lines, not only because of their func-
tion in arithmetic operations, but also because provision is made

for the external storage of a bit representing the sign of their
contents. The chief functjon of this one-bit storage element (IP)

is to combine properly the signs of factors entering a multiplication
or division to yield the correct sign for the product or quotient.
The basic commands necessary to program these operations have already
been discussed; below is a complete summary of the conditions govern-
ing the entry of numbers into the two-word registers, the transmission
of their contents to storage, and the effects of commands to copy in-
formation from one register into another.

C CODE| SOURCE |DESTINATION EFFECT
00«5« 23 Sign copied into IP; abs. value copied
or D=25 (ID) |into ID. During each word time, the
27485 £31 czorresponding half of PN is cleared.
S=2L (MQ) ' (IP) unchanged; abs. value copied into
S=25 (ID) | D=25 (ID) | ID. During each word time, the corre-
S=26 (PN) sponding half of PN is cleared.
00£S<23 | D=2L (MQ) | (IP) unchanged by negative sign; abs.
cr or value copied into destination;
2748431 | D=26 (PN) | No other register affected.
s=2l (MQ) _ (IP) unchanged;
C=0 |S=25 (ID) | D=2L4 (MQ) |Absolute value copied into MQ;
S=26 (PN) No other register affected.
or
S=2); (MQ) (IP) unchanged;
C=L or D=26 (PN) |Absolute value copied into PNj
S=25 (ID) No other register affected.
(IP) unchanged, but copied into sign
S=26 (PN) | D=26 (PN) |bit in PN. (PN) unchanged if positive,
complemented if negative. No other
register affected. Normally C=l.
S=2l (MQ) | 00<D<£23 | (IP) unchanged, copied into sign bit
S=25 (ID) or in destination with absolute value
S=26 (PN) | 284D <30 |copied from the source register.
'S=2 (MQ) (IP) unchanged;
S5=25 (ID) | D=27 Absolute value of the source contents
S=26 (PN) tested for non-zero.

- 43 -

When the operation copies an absolute value (C=2 or 6 and S or D
equals or exceeds 28), IP is not changed or otherwise involved;
and PN is not cleared if S£28 and D=25 (ID).

When the destination is 30 (PN+), the sign bit enters the register
without affecting IP, regardless of C.

EFFECT l

C CODE| SOURCE [DESTINATION
— —
Sign copied into IP; absolute value
00£8<23 copied into AR.
or D=25 (ID) | EVEN word time: IDg and PNp cleared.
5=27 ODD word time: (AR) copled into IDy;
T PNy cleared. If C=6, 29 bits from
source copled into AR, (IP) unchanged.
(IP) unchanged; absolute value copied
S=2L, (MQ) into AR.
S=25 (ID)| D=25 (ID) | EVEN word time: IDp and PNp cleared.
S=26 (PN) ODD word time: (AR) copied into IDp;
PN1 cleared. If C=6, 29 bits from
source copied into AR.
(IP) changed by negative sign; absolute
00<£5423 | D=2, (MQ) value copied into AR.
or or EVEN word time: MQp or PNgp cleared.
5=27 D=26 (PN) |ODD word time: (AR? copied into MQy
C=2 or PNy. If C=6, 29 bits from sourcey
copied into AR, (IP) unchanged.
or
(IP) unchanged; absolute value copied
C=6 S=2; (MQ) | D=24 (MQ) into AR.
S=25 (ID) or EVEN word time: MQQ or PNp cleared.
S=26 (PN) | D=26 (PN) |ODD word time: (AR) copied into MQ;
or PN1, If C=6, 29 bits from source
copied into AR.
(IP) unchanged, copied into bit 1 of
S=2L (MQ) AR with absolute value copied from
S=25 (ID) | 00£D<£23 source register.
S=26 (PN) If C=6, 29 bits copied from source into
AR during odd word time. (AR) copied
into destination each word time.
(IP) unchanged; absolute value copied
s=2); (MQ) into AR.
S=25 (ID) | D=27 If C=6, 29 bits copied from source in-
S=26 (PN) to AR during odd word time. (AR)
tested for non-zero each word time.

- 4 -

A command with C=1, 3, 5, or T operates on the contents of a two-
word register, either as source or, destination, exactly the same

as on the contents of any other memory line. If C is odd, IP is
not involved: 1Its content is unchanged when MQ, ID, or BN is the
destination, and it does not contribute the sign when one of these
registers is the source. A sign is stored in Bit 1 of the reglster
jtgelf: in each word if C=1 or 3, or in only the even word if C=5
or 7. Also, if D=25 (ID), then PN is not cleared.

To summarize copies involving two-word registers in another manner,
the following rules may be applied:

1. Even characteristics involve the IP flip-flop when a two-word
register is either a source or a destination, but not when
both source and destination are two-word registers (see rule 3).

2. 0dd characteristics never involve the IP flip-flop; sign 1s
taken from bit 1 of source and put into bit 1 of destination.

3. Passage of information between one two-word register and another
does not involve the IP flip-flop for any characteristic with
one exception: PN —» PN with & C code of O or 4 enters the
sign from IP into bit 1 of PN and prepares PN for addition.

L, With a C code of O or 4 and destination ID, PN is cleared
during each word time of operation.

5. With a C code of 2 or 6, a copy via AR is performed with the
followlng differences:

a. During an even word time, a two-word register desti-
nation is cleared instead of getting the contents of
AR.

b. If the destination is ID, PN is also cleared during
each word time of operation.

c. If S or D equals 28, the command is an "add absolute
value" and the usual rules apply.

6. Rules for IP flip-flop: (even C, source not a two-word register)
a. If destination is ID, IP takes the sign of the source.

b. If destination is MQ or PN, the sign of the source is
edded to the sign in the IP.

- 43 -

6.2 BLOCK OPERATIONS

A G-15 command contains information which not only specifies the operation
to be performed, but also controls the time of its execution. In some
cases, the operation begins immediately after the word time corresponding
to the location of the command; in other cases, the execution is deferred
until a time later in the 108 word-drum cycle.

A command in which D=31 is normally immediate in operation. The commands
for multiplication and division initiate operations which last for as many
word Times as specified by the number in the T position of the commands.

In the shift and normalize commands, this number is an upper limit for the
number of word times of execution. These four commands (S=2l,25,26,27;D=31)
constitute a group in which the T number is relative; i.e., it indicates the
length of the operation, regardless of the specific word time in which the
execution begins. In other immediate commands with D=31, such as "clear"
(discussed above), a number L, is written in place of T. This specifies
the first word time following the end of the execution which then occurs
during word times Ly, Lo, «.ey Lyg-_].

For a command with D< 31, the operation is normally immediate only if T=Lj;
otherwise, it is normally deferred. In either case, the execution lasts
for one word time, T, if the operation is single precision (C<L4) or if T
is odd; it lasts for two word times, T and T+l, if the operation is double
precision (C24) and T is even. [he time of execution is independent of the
location of the command.

One of the virtues of the G-15 is the possibility, by slight modification

of a command with D< 31, to extend its execution time so as to cause it to
operate on a sequence, or block, of numbers stored in consecutive locations
in the same line of memory. The command must be located exactly one word
position sarlier than the first of the sequence of numbers, though not
necessarily in the same line. The modification consists of including a
prefix "u" with the command and specifying T as a number one greater than
the location of the last word entering the operation. A command so modified
can be written to operate on a block of any length from one to 108 single
precision, or 54 double precision, numbers.

For example, if the sum of the single precision numbers in the block stored
in consecutive locations 08.35, 08.36, ..., 08.LL is to be added to the
contents of AR, this may be accomplished by one command in location 3L:

u 4S N 10829, In general, if a command in L; is written u Lxs+3 N C S D,
its execution will occur during word times L., Ly, «ee, Ly. If D=31, the

prefix "u" is unnecessary and may be omitted.

Note that the execution times for a block command do not depend on whether

the command is to operate on single or double precision numbers. The
distinction between single precision (SP) and double precision (DP) in a block
command consists in the recognition of signs every word time for SP (C<L), but
only during even word times for DP (C®4). Resultant complementation, if it

is to occur, will affect individual words in a block containing negative SP
numbers or pairs of words in a block containing negative DP numbers,

- k6 .

6.2.1 BLOCK COPY COMMANDS

Notes Commands Descriptions

00%5&23; 00<D&23,

Block copy; Copy block
(SeLqyeeesly)=>Delg, el u L,y N O SD S of k numbers from line S

into corresponding posi-

tions of line D.

(SeLyyeeesly)=>Deloyee s ylyy 00£S5<23; 00£D£23,
ulyey N2SD

Block copy k numbers with
(AR)—>D.Ly;(S.Ig47) —>AR delay of 1 word time.

Copy number track
N.T—>18 IpN13131 {ini}c: line 18.

Discussion
(SeLyseoeslye)—>Dalyyeuaylyy uly,; NOSD (00=5=23; 00£D<£23)

This command, with C=0, will copy a block of k single precision
numbers from line S into the corresponding positions of lipe D,
with no change of form. If Ly is odd and k is even, then 7 double
precision numbers will be copied. ~The contents of line S remain
unchanged. This command operates during word times Ll through I‘k'

Example: Clear line 19.

L|pfl " w|c| s | D |BP NOTES
R DA

L7 50| 50 |0 23 | 31 Clear 2-word registers
50 flu]l s1|{Nx51|0| 24 | 19 0= (MQ)—19

The first command clears both words in MQ (as well as ID and PN).
The second command operates for 108 word times. The odd-numbered
positions in line 19 are cleared by copying zero from MQ1; the even-
numbered positions are cleared by copying (MQp).

(S.LlLQ,ou.,Lk) D.L23L3’oo.,Lk+l
ul,, N285D (00£5£23; 00€D£23)

(AR)—»D.Ly; (S.Ip4q)—=AR

During each word time that this block command operates, the contents
of AR will be copied into line D while being replaced in AR by the
contents of line S. Thus, after two word times, the original contents

- 47 -

of AR have been copied into D.Lp, (S.L7) have been copied into
D.Lp, and AR contains a copy of (S.Lp). The shift in word pogi-
tion between S and D is called a precession. S and D may be
the same line, but not necessarily so.

Example: Command in loc. 71: u 77 N 2 21 21.

Word Time | Initial (21) | Final (AR) | Final (21) | Word Position
71 d X d 03
72 a ——1 = a = x 00
73 b — 1 b T a 01
N c —t= ¢ T~ b 02
~
75 d —= d c 03
76 X —1 = X \\\\\55 d 00
7 a X a 01

The table illustrates the operation by showing the contents

of line 21 and AR before, during, and after the execution of
the command. The entire contents of line 21 are precessed one
word position; the original contents of AR are restored. There
is no change in the form of any number involved.

NT —-18 L N1 3131

This special command will copy into line 18 the contents of a

line (not otherwise addressable) called the Number Track. The
contents of the Number Track, loaded automatically from punched
tape when the DC power is turned on, are used by the control
circuits to identify the word times corresponding to word posi-
tions®in the memory lines. This command makes the Number Track
available to a programmer for checking purposes or for convenient
output to a new punched tape. Line 18 must be cleared before

this command is given; otherwise, the Number Track is superimposed
upon the contents of line 18. Superposition does not occur in any
other copy operation.

- L8 -

6.2.2 BILOCK COMMANDS FOR ADDITION AND SUBTRACTION (00<£5<23)

Notes Commands Descriptions

k /Add k numbers
> (5.Lj)-*>AR+ ulpsp N1S 29 l(s Lp) 4ot (S.ly),
i=1l .to (AR)

[Add the abs. values
(5.1 |—>AR+ Wy N28S29 iof k numbers, [(S.Ly)l
1 teeet |(S.Ly)|, to (4R)

MW

.
]

“Subtract k numbers,
(S.Lj)—>AR+ wlpe; N385 29¢[(S.Iq) +...+ (.)] »
1 \\from AR)

v M

"Add k double precision
fnumbers, (S.Lq,Lp) +...+
(S.Lgi_l,L2i)—i+PN+ u Lop+y N5 S 30/ (S.Lok- 1,L2k), to (PN)
1 (Location, Lg, odd)
\ (Lo is even)

.r/]x

#

i

Add the abs. values of
> |(5.Lp5_1,Tp3 l—>PN+ u Lpeug N 6 S 30 k dowble precision nun-
1 \ bers to (PN) (Loc. odd)

MN‘

[N
"

/Subtract the sum of k
(5.Los_15Log)—=>PN+ u Loy N 7 S 30 ydouble precision numbers
Lfrom (PN) (Location odd)

MW‘

1

4}

i

Discussion

c

k
S (S.Lj)—trAi+
i=1

Leep N1S 29

The sum of k single precision numbers, (S.Ly) + (8.L,) +...+ (s.Ly),
will be added to the contents of AR.

k
;:ikS.Liﬂ——)AR+ W Igsy N 2 S 29
:],=

The sum of the absolute values of k single precision numbers,
[(5.17)] + 1(S.Lo)] ++..+ [(5.1y)], will be added to (AR).

- Lo -

I\/IPT

(S.Ly)—=»AR+ ulygsp N385 29
i=1

.
1t

The sum of k single precision numbers, [(S.Ll) + (8.Lp) +euu+ (S.Lk)],
will be subtracted from (AR). .

k
S (8.Lpjys Lpg)—®>PN+ u Lpeyy N55 30

i=1

The sum of k double precision numbers, (S.L1,Lp) + (S.Ls,L) 4e..*
(S.Log-1,Lok)s will be added to the contents of PN. The location
of this command must be odd; Lox+1 must be even.

K
Zjlks.ng_l,LQij—->PN+ U Lyesy N 65 30
l=

The sum of the absolute values of k double precision numbers,
ks.Ll,ng + ks.L3,LhM +eeot |[(8.Loo1,Lok)| 5 will be added to (PN).
The location of this command must be odd; Lpk+1 must be even.

k
Z (S.sz _1,1521)—-)PN+ u L2k+1 N7S 30
i=1

The sum of k double precision numbers, ES.Ll,Lz) + (S.L3,Lh) teoet
(S.Lok-1,Lok)|, will be subtracted from (PN). The location of this
command must be odd; Loy4] must be even.

Example 5: Block Addition and Subtraction, Double Precision

Given: x; = 520.00,01), xp = (20.02,03)
vy = (12.08,09), ¥z = (12.10,11), ...y ¥go = (12.46, 47)

Find the sum of the 20 double precision numbers, y) + Yo + ... + ¥20,
and subtract x; and xp from this sum.
Store the result in 21.00,01.

T
L || P] or N |C 8 D NOTES
oL or | o7 o} 23 | 31 Clear
=)
07 ull 48 | 49 |5 12 | 30 S (y1) = (12.08,09...46, 47)
i=1 2+ 5 PN+
49 ull s4 | 5% |7| 2 | 30 Xp + Xqp =

2
(20.02,03)+(20.00,01)=>» PN+

5k 56 N§58 51 26 | 21 (PN) 4+ 21.00, 01

- 51 -

7. COMMAND SEQUENCE CONTROL

7.1. TEST COMMANDS

Each command has within it the location of the next command, N.
The next command will normally be read from word N of the same
command line.

Under certain conditions, however, it is possible to deviate
from this sequence and take the next command from location
N+l of the command line. When such a test command is exe-
cuted, the location of the next command depends upon whether
or not the test conditions are met. If the condition does
not-exist, the next command is taken from N; if the condi-
tion does exist, the next command is from N+1. Thus, the
computer has the ability to meke comparisons, cholces and
decisions, the succeeding sequence of commands depending
upon the result of the test.

Yes
Test Command from N+1

No

l Command from N

Test Commands

Notes Commands Degcriptions

(Test for non-zero (single word)

(8.T) — test TNO 827 (If (8.T) = O, next comm. from N
iIf (8.T) 4 0, next comm. from N+1

(AR) —> test {Test (AR) for non-zero, then
{(S.T) — AR TNz 827 copy (8.T) into AR [§ < 28]

(8.7, +1) —» test T N L4 S 27 {Test for non-zero (double pre-
cision). T must be even.

If (AR) not negative, next com-

Test for (AR) negative
AR sign — test L2 N O 22 31
\ mard from N

If (AR) negative, next command
from N+1

output operation. If not ready,
next command from N

If ready, next command from M1
Set NI, to repeat test until
ready

Test for end of regular input-
Ready — test NNO 28 31

Test for overflow
Overflow —» test L, N0 29 31 JIf no overflow since last test,
next command from N
If overflow, next command from
N+l
Test for PUNCH switch ON
Thli rings bell; T= does not
N=L., repeats test i switch ON
N1, repeats test if switch off

PUNCH sw.—> test TNI1I17 31

"

- 53 =~

Discussion
(8.T) — test TNO S 27

In this test for non-zero, if the contents of S.T are equal to
zero, then the next command will be taken from word N of the
command line; if (S.T) # O, then the next commend will be taken
from word N+1 of the command line.

This test command is particularly useful for leaving a loop
when a tally is kept. The tally is compared with the final
count desired. As long as the difference is not zero, the
next command from N+1 effects a return to the loop. When the
difference equals zero, the next command is taken from N and
a new sequence of commands is followed.

{(AR)—*test TN2 527
(8.T)— AR

This command will test (AR) for non-zero (as in the previous
command) and then will copy (S.T) into AR. S must be less
than 28. This command will operate during word time T.

(8.T, T+1) — test Teven N 4 8 27

This double precision command will test (S.T, T+1) for non-zero,
in the same manner as the corresponding single precision command.
It will operate for word times T and T+1l; T must be even.

AR sign — test Lo N O 22 31

The sign bit of AR will be tested for non-zero BAR) negative]
If this sign bit is zero [(AR) positive or zero| , then the next
command will be taken from word N of_the command line; if the
sign bit is not zero (AR) negative] , then the next command

will be taken from word N+1 of the command line. This command
will be executed during word time Ll'

This test command is useful in determing when a limit has been
reached by detecting a change of sign.

- 54 -

Ready — test NNO 28 31

The "ready" state is a condition such that no input or output opera-
tion is in progress and that any input or output operation may be
initiated.

This command will test for the end of a regular input or output opera-
tion. If the input-output circuitry is still processing earlier in-
formation, the next command will be taken from location N of the com-
mend line. If N=Iy, this is the commend itself, so that if written

0 28 31, this test will be repeated as many times as necessary
until the information has been completely processed. If the input-
output circuitry is ready to handle new information, the next command
will be executed from location N+1 (or Ll) of the command line.

Overflow —— test L2 N O 29 31

An overflow condition exists when, as a result of addition, sub-
traction, or division, the contents of AR, PN or MQ are incremented
beyond the limitation that they may not equal or exceed 11 in magni-
tude. The overflow indicator light will go ON when an overflow
condition exists and will remain ON until an overflow test is made.

In the test for overflow command, if there has been no overflow
since the last overflow test (the contents of the registers have
remained between +1 and -1), then the next command will be taken
from location N of the command line. If an overflow has occurred,
the next command will be executed from location N+1 and the over-
flow indicator light will be turned off. This command will be exe-
cuted during word time L.

Setting N=L_ (one less than the location) will turn the overflow
light off whether or not there has been an overflow.

PUNCH sw. — test TN117 31

This command will test the position of the PUNCH switch for ON. If
the switch is off, the next command will be taken from location N of
the commnd line; if the switch is ON, the next command will be taken
from N+1 of the command line. This command will operate during word
times Ly through T-1.

This test is most valuable when it is used to alert the operator to
turn the switch on or off. If T is made equal to L,, this command
will ring a bell in addition to testing the punch switch; T = L,
will not cause the bell to ring. If N is made equal to L_, (one
less than the location), the test will be repeated if the switch is
ON, and it will continue to repeat until the switch is turned off.
If N1y, the test will be repeated if the switch is off, and it will
continue to repeat until the switch is turned ON.

T.2 LOOPS

It is possible to select as the next command one that had previously
been executed, causing the sequence of commends to form a loop. In
order to leave the loop after going through it the proper number of
times, it is necessary to include one or more tests. When the tested
condition changes, the exit is meade from the loop and a new sequence
of commands may be followed.

Yes
<j Test

o l

T.3 SUBROUTINES

A subroutine is a sequence of operations stored apart from the main
routine and called in when necessary. The subroutine may be a
service routine supplied by Bendix. A list of available subroutines
together with their specifications, flow charts, coding sheets and
other information, is provided with. the computer. Additional sub-
routines are composed by the programmer when needed.

In using a subroutine, the input data called for in the subroutine
is first stored in the proper locations according to the specifi-
cations, and then control is transferred to the first command of
the subroutine as specified. A return command at the end of the
subroutine returns control to the main routine.

- 56 -

7.4 COMMAND LINE SELECTION

Commends must be executed from one of eight lines, called commend lines,
or from the AR register. The command lines are long lines 00, 01, 02,
03, O4, 05 and 19, and short line 23. However, insofar as posaible,
line 05 should be reserved for certain useful service routines which
are executed from this line. Also, words OO0 through 03 of lines 02
and 03 serve special format functions to be described later, and these
words should not be used for commands. A command mey be stored in any
memory location, but it must be transferred to one of the specified
command lines or to AR before it can be obeyed by the computer.

In order to deviate from the sequence of taking succeeding commends
from the same command line, a command msy be given to transfer control
to & new command line. This may be necessary when there are too many
commands for one line or when a subroutine already stored in another
line is to be used.

Notes Commands Descriptions
Mark — C wT N C21 31 Next command from C.N;
» Merk word T
L2 Ll C 20 31 Next command from C.T.
- 1 (marked word in line C)
Return — C N N C 20 31 Next commend from C.N

i
L. N C 20 31 if L, N marked T;

Next command from C.N
other wise from C.T

N.C. from AR L2 N O 31 31 Next command from AR.N
Halt ‘ Ly N 016 31 Halt

Discussion

Mark — C wTNC 21 31

This commend will select a new command line and will "mark" T (remember
word position T) to be used if the "Return" command below is given at a
later time. The next command will then be taken from location N of new
line C. C ranges from O to 7 according to the following table:

c o | 1 2 3 4 5 6 1
Line 00 01 02 03 ok 05 19 l 23

All subsequent commands will be taken from line C until another comm-
and is specified.

T should be noted for later use with the return command. The command
is executed during word time T. In the case where T=L,, the form

w L, N C 21 31 would cause an unnecessary extra drum revolution, so
tha% in this event it would be better to omit the prefix and use the
block form L2 N C 21 31.

- 57 -

Return —= C L2 Ll C 20 31

This form of the return command will cause the next command to be
taken from location T (the marked word specified in the last "Mark"
command given) of line C (& line specified by the return command) .
All subsegenent commands will be taken from line C until ancther
command line is specified.

Line C mey or may not be the same command line as that being used
wvhen T was marked.

This return commend mey be used as an exit command from a subroutine
with control returned to the main control line., This command should
not be break-pointed. Single cycle operation may also cause the next
command to be taken from the wrong location.

Return — C Lo NC 20 31

This form of the "Return" command is conditional and depends upon the
relationship between L, N and the marked T. If L,€N and N £ marked
T, the next command will be taken from location N of line C. Other-

wise, the next command will be taken from the marked word T of line C.

When L, is mede equal to N, the next command will be taken from loca-
tion N of line C. Thus, the form N N C 20 31 can be used as an uacon-
ditional transfer; taking the next command from C.N without leaving a
merk or losing any existing mark.

If any form of the return command is single cycled, or if it is break-
pointed and BP operation is used, the next command will be taken from
C.T and the halt will occur after the execution of the command which
follows the return command.

N.C. from AR Lo N O 31 31

At word time N the contents of AR will be read and then executed as

if it were & command in location N of the original command line. After
the command in AR has been obeyed, control will return to the command
line containing the "N.C. from AR" ccmmand.

This command is often used when a command has been modified in AR by
addition or subtraction before it is to be executed, or when one of
gseveral commands is selected by the program in accordance with exist-
ing conditions.

- 58 -

Halt L, N O 16 31

The "Halt" command will cause computation to stop. To resume operation,
the COMPUTE switch must be switched to the middle position and then
back to the GO or BP position. Computation will resume with the com-
mand in the location N specified by the halt command.

Break-point operation: The computer may be programmed to come to
a halt after performing & specific command. To order the computer
to do so, a minus sign (-) is added as a suffix to the command and
the COMPUTE switch is set to the "BP" position.

The "COMPUTE" switch has three positions: BP, or break-point; the
middle position, which is HALT; and "GO", which is the normal posi-
tion in which computation occurs. If the switch is set to "GO",
computation will proceed and any coded break-points in commands
(minus signs) will be disregarded. If the switch is set to "BP",
computation will proceed but will cease after a commend coded for
break-point is obeyed.

To re-continue computation after a break-point has been reached,

the switch is set to "HALT" and then again to "BP" or "GO". The
computer will then obey the command in the "N" address of the break-
pointed command.

7.5 DRUM MAPPING

A record should be kept of where commends and constants are located,
where the various subroutines are stored, and where data and other
information are to be found in memory. This drum mapping should be
planned along with the coding of the program. A Memory Allocation
Work Sheet prepared by Bendix is also useful in keeping track of the
locations of commands, constants, data, intermediate and final results
and temporary working storage.

- 59 -

Example 6: Commeand Sequence Control: Test Commands, Loops
Command Line Selection, Use of Subroutines

Given: 100 values of &, obtained and stored in words 1 through u0
of line 12.

Find srd type the 100 values of Jan

Storage locations: & = (12.01), &, = (12.02), ..., 8100 = (12.u0)
Square root subroutine is in line 01
Output subroutine (including binary to decimal conversion)
is in Line O2. :

Flow Chart, Method 1l: Precessing Line 12

Compute a
Store in T2.n

1
> 890 — AR

D

(AR sign —» test -XXXxxxxX —» AR

y Pcs. ‘[

—» PN

a
R:eja'%(.) Comm. = AR Type (AR)

Mark — 01.9k4

Square root S.R.

Vajoo = (PN}) —21.01

Scale factor —= 21.00

Return Command — AR

Mark — 02.06

Conv. and Output S.R.
<

[Precess Line 12 |

(AR) - flag—s AR
or
100 - n— AR

v
\io—qAR) —> test)
l=0

Halt, or continue

Flow Chart, Method 2: Modification of Command

Compute a,
Store in 12.n
i |
-) l ~ Neg.
. AR sign —test 44/% -XXxXxxxX —> AR
Pos.
an————>-PNl y
Ret. Comm. - — AR Type (AR)

Mark —> 01.9k4
Sguare root S.R.

Ve = (PN;) —= 21.01 1
Scal fac%or-—+-2l.00

Return Comm. —= AR '
Mark —> 02.06 |
Conversion and Output S.R.|

]4 -

<

g
Comm. + Mod. —> AR, Store

Terminal Comm.—=—> AR+

L
&j?—\ (AR) — > test)
J/: 0

Continue Program, or Halt

Coding of Method 2 is on the facing page.

FORM
108-5.0

A

E - 61 -

Los Angeles 45, California

Page _1 of 1 _

G. M. Sil ate:
PROGI!GA-IWISPEOBLEM: 6) ey :““ —0
uxxxl?g;‘ncs D |BP NOTES
X 3 X [0 Seate factor e 2500,
X X)(il oL 05 1 09 1oloo: |22 Initial Comm, = (00.05)—»22.01
X1)(Y| o 13| 15 {022 |28 (22.01) —> ARg
LU N T 17 117 jol31 | N.C. from AR <
€.a n n ﬁ?) 01 187 Jol12 |28] [al - (12.01) —» R,
4 2% 2% 21| g 89 | 89 |o|22 |n AR sign—» test
28 29 0 AN |y 91 | 92 | 2] oo |26 %&#c&%?xd%wm]i&mﬁ}_
33 M By 9 | 97 | 0]oo |28 % = (00.96)-—> AR,
B3 B | o s9 | 02 |olos |n Type (AR)
w 4 a2 8\, 02 | 02 | o]28 |31 | dReady —» test
4 4 46 47 o oL |on |1]21 |3 park v 019 (S.80) €
48 - 48 50 51 | o wl | w ol |21 Jay = (PN7)—> 21,01
32 8 54 55 || uh | us o222 |21 Scale tactor = (22,00)—»21.00
% 57 58 59 || .o w6 | or |o]oo |28 Ret. Command = (00,u6)—> ARe
60 61 62 B3 | oy |, c |os|o]n|n Mark > 02,06 (Output S.R.)
64 65 66 67 03 05 106 |ojz22 |28 Comm. = (22,01)—>AR.
68 69 70 71 | 07 {08 |1]o0 |29 Modify = (00.07)-F> AR+
12 1B U g 09 |10 [oles (2 Command + Modify = (AR)—» 22,0
1 77 18 18| 4 11 |12 {300 {29 Terminal Comm.=(00.11)—=—» AR+
80 81 82 83 | v 13 | w |2]ee |7 e s N
84 85 86 B || 16 | oo |oj1s |31 :QJHalt —
88)(N 05 0L | 87 |oj12 |28 Initial Command:a3=(12,03)—»AR.!
M 93 94 95|, ul | 87 Jo 12 |28 Terminal Comm. ajgy=(12.ul)—>
B8] 9 9|, w | w |olor |: Return Command, ~/ S.R.
Moow P ws 16 38 |37 lol2o |31 Return Command, Qutput S.R.
wowm [0]| e

- 62 -

8. INPUT-OUTPUT OPERATIONS

8.1 GETTING INFORMATION INTO AND OUT OF THE G-15

Commands and input information may be fed into the computer from a
specially modified typewriter or from punched tape. The results of
computation may be typed out and/or punched on paper tape. Also
available but not necessary, are special input-output accessories:
magnetic tape units (up to four units may be used, each with 300,000
word storage), punched card input-output converter, greph plotter or
graph plotter/follower (for use with DA-1 Digital Differential Ana-
lyzer), and alphanumeric punched tape accessory.

Internal computation may prcceed simultaneously with the insertion
or read-out of information. However, certain lines should not be
programmed for use during input or output. Line 23 is used by the
computer during any input and during magnetic tape or fast punch
output; therefore, line 23 should not be programmed for storage
during times which may coincide with the execution of those opera-
tions. Line 19 is involved in input, and either line 19 or the AR
register is involved in output.

Information read intc the computer goes into line 19. Input enters
into the lower numbered word positions of the line. Four words of
information are read into locations 00 through 03; all words in line
19 are then shifted to the next higher numbered group of four word
locations; and the process is repeated. The shifting is automatic
and need not be programmed.

The read out of information is from either line 19 or the AR reg-
igter. The order of read out is from highest numbered to lowest
numbered word and from mcst significant to least significant digit.
For line 19, the contents of word u7 are read out first; all the
other words in the line are shifted to the next higher numbered
word locations; and the process is repeated. A special control
register (called the format register) controls the form or appear-
ance of the typeout. Certain digits may be ignored, tabs and car-
riage returns may occur and pericds may be inserted into the copy
through format control. Formsat will be discussed later in more
detail. The codes for the format characters are listed in the
appendix (Table A-5) together with "standard" formats. Words 00
through 03 of line 02 are used to hold the format words which
determine the form of typeout from line 19; words 00 - 03 of line
03 hold the format words which determine the form of typeout from
the AR register. The line or register is cleared of its contents
by the readout. The line 19 output operations is self-halting
only after line 19 has been cleared of all non-zero information.

- 63 -

When a command is given to initiate an input or an output operation,
the computer stays in the "execute” state just long enough to trans-
mit a code number to the input-output unit, and then it reads the
next command. The input-output unit interprets the code as an
instruction and, after obeying the instruction, clears the code
number from a static register. Since the input-output section
operates independently of the rest of the computer, an input or
output operation may proceed while the computer is carrying out
computation.

Before any input-output operations may be initiated, however, the
computer must be in the "ready" state. The "ready" state is de-
fined as the state the computer is in after it has fully completed
its last input-output operation, and therefore it is ready for the
next one. The command "Test for Ready" should follow input. If
two or more input-output operations are to be carried out in one
program, the command "Test for Ready of Input-Output” should pre-
cede all but the first operation.

Commands are usually entered into the computer in decimal form and
converted to binary form by a service routine, the "Program Prep-
aration Routine™ (PPR). This routine and how it is used is de-
scribed in detail in the operating manual. However, a summary of
the PPR instructions appears in Table A-11 of the Appendix, to-
gether with a summary of operating procedures with the PFR (Table
A-9) and typical steps in using the PPR (Table A-10).

Data is usually entered into the computer in decimal form and
converted to binary form by a subroutine incorporated into the
program. The binary results of computation are normally con-
verted to decimal form for output by the program or a subroutine
incorporated into it.

External control may be exercised from the typewriter keyboard and
the control switches mounted on the base of the typewriter. The
functions of each of these keys and switches are summarized in
Table A-7 of the Appendix; the operating manual contains more
complete descriptions. This section will deal with the commands
for input and output operations which can be programmed. Commands
to be used with optional auxiliary equipment are listed in the
Appendix and will be described in greater detail elsewhere in the
literature for the specific equipment to which they refer, al-
though some of the more common ones are included here.

- 64 -

8.2 REGUIAR OUTPUT COMMANDS

Notes Commands Descriptions
Type (AR) L, N 0 08 31 Type (AR) 1f{and punch with
Type (19) L, N 0 09 31 Type line 19)|PUNCH switch ON
Punch (19) L, N0 10 31 Punch line 19 on tape
Punch cards Iy NO 11 31 Punch line 19 on cards
M. tape write wO0O N C O1 31 ‘Write on magnetic tape
~ (c=# of magnetic tape unit)
File code L5 N C 30 31 fWrite file code on magnetic
tape. (C=#f of m. tape unit)
Discussion
Type (AR) L, N 0 08 31

The contents of the AR register will be typed out under control of
the AR format. If the stendard AR format is used, AR will be cleared.
If the PUNCH switch is ON, the contents of AR will also be punched on
tape. The order of type-out is from the most significant to the least
significant digit. The rate of type-out is approximately 8 characters
per second.

Type (19) L, NO 09 31

The contents of line 19 will be typed out under control of the line 19
format. The order of type out is from the highest numbered to the
lowest numbered word, and from the most significant to the least signi-
ficant digit. The rate of type-out is approximately 8 characters per
second. If the PUNCH switch is ON, the contents of line 19 will also
be punched on tape, with the punch-out slowed down to occur simultane-
ously with the type-out at the same rate. Line 19 will be cleared by
the execution of this command.

For each word typed out of 19.u7, the rest of line 19 is precessed one
word, so that 19.u7 will then contain the next word to be typed. The
output process will continue until all non-zero information has been
typed out and line 19 contains only zeros.

Punch (19) L, N0 10 31

The contents of line 19 will be punched on paper tape under control of
the line 19 format, starting with word u7. The punch-out will continue
until line 19 contains only zeros. The tape punch operates at approxi-
mately 17 characters per second. Line 19 will be cleared by the exe-
cution of this command.

- 65 -

Punch cards In] N O 01l 31

The contents of line 19 will be punched on IBM cards through an
IBM 026 card punch and a Bendix CA-1 card adapter, A program
card will control the punching. The rate of output is about 11
characters per second, with column skipping at the much faster
rate of 80 columns per second, Line 19 will be cleared by the
execytion of this command.

Mag. tape write wOO N C 01 31

The contents of line 19 will be written on magnetic tape at the
rate of about 30 sexadecimal characters per second, When line
19 is empty, a stop code will be written on the tape.

If a "M, tape write" command follows a search magnetic tape com-
mand, at least 16 drum cycles must elapse after the "Ready"™ state

is reached to allow the capstan drive motor to slow down. If this
command follows a previous "M. tape write" or "Read m. tape" command,
at least 15 word times must elapse between the time that the mag-
netic tape unit is stopped and the time that this command is given.

The number of the tape unit, 0, 1, 2 or 3, is put in the "C code"
position of the command.

File code LS N C 30 31

This command will cause a file code to be written on the magnetic
tape. The tape will not be moved by this command, and it must not
be moving when this command is given. The file code should be
written between two blocks. The number of the tape unit involved,
0, 1, 2 or 3, is put in the "C" position of the command.

8.3 REGULAR INPUT COMMANDS

Notes Commands Descriptions
Type-in Lo, NO 12 31 Read typewriter input
Read p. tape Lo NO 15 31 Read punched tape
Read m. tape Lo NC 13 31 Read magnetic tape

' (g=# of mag. tape unit)
Read cards Ly N O 1k 31 Read punched cards
Discussion
Type in Lo NO 12 31

This command readies the computer to accept typewriter input.
Information which is then typed will go into line 23. Up to four
words may be filled, after which a slash (/) is necessary to copy
the information from line 23 into line 19 before entering additional
words. The striking of the "s" key will inform the computer that
the input is ended. If the computer has been "sitting on a Ready'
test", it will now continue with the next command.

The "Read tyoe-in" command is also known as "Permit typewriter
input", "Permit Type-in" and "Gate Type-in".

After a type-in is completed, at least three drum cycles must elapse
vefore another input or output command can be obeyed.

Type-inJ—m»<§ead¥£)——a{§'drum cycles\—~'rznput or output

Read p. tape Lo NO 15 31

The punched tape will be moved in the forward direction and read
into line 19 until a stop code appears. Tape is read at approxi-
mately 200 characters per second. After this command, a Ready test
must be programmed before information can be taken from line 19.
This command may then be repeated to read in another block of tape.

A loading routine consists essentially of a "Read tape" command,
followed by a "Ready test" and a "Store (19) into line x", repeated
for each block of program tape to be loaded into the computer.

Read mag. tape Lo, N C 13 31

The magnetic tape is run in the forward direction and read into
line 19 until a stop code appears on the tape. File codes have
no effect. Magnetic tape is read at approximately 430 characters
per second.

- 67 -

If this command follows either a "M, tape write" or "File code"
command, at least four drum cycles must elapse after the "Ready"
state is reached between the two commands, After a search mag-
netic tape command, at least sixteen drum cycles must elapse after
reaching the "Ready" state before a "read m. tape® command can be
obeyed. At least 15 word times must elapse, after reaching the
"Ready" state, between two "Read m. tape" commands.

The number of the tape unit is put in the "C Code" position of
the command.

Read cards L; NO 14 31
This command will cause punched cards to be read into line 19 from

an IBM 026 unit with a CA-1 card adapter. Input rate is 17 char-
acters per second.

- 68 -

8. COYMANDS FOR REGULAk INrUT-OUTPUT CONTROL

Notes Commands Descriptions

P. tape back Lo, N O 06 31 Reverse punched tape

M. tape search Lig NC 0531 Search magnetid tape, forward

M. tape reverse Lig N C oL 31 Search magnetic tape, reverse
(C=# of magnetic tape unit)

Set ready Lo NOOO 31 Set “Ready®™ for regular input-
output

Ring bell I; NO17 31 Ring bell (Special command)

Discussion

P. tape back L2 N 0 06 31

This command to reverse punched tape will cause the punched tape to
run in the reverse direction for one block. Although the photo reader
light will come on, no information is read into the computer.

In order to reverse one block, the computer will actually read back
for two stop codes and then read forward one. Thus, the tape will
stop in the leader (blank tape) between two blocks, ready to read
in or to read back again.

M. tape search Llé N C 05 31

The magnetic tape is searched for the next file code: the search speed
is about six times as fast as the read magnetic tape speed.

The magnetic tape is run in the forward direction until a file code
appears. The tape stops in front of the block following the file
code. The information is not read into the memory. If this command
follows a "Write on Magnetic Tape"™ or "Write File Code" command, at
least four drum cycles must elapse after recording has ceased., If
this command follows a "Search Magnetic Tape" or "Read Magnetic Tape"
command, at least 15 word times must elapse after the computer has
reached the "Ready" state.

The number of the magnetic tape unit involved is put into the "C"
position.

The Lyg N C 05 31 form of this command will locate and stop at the
next file code unless it is very close to or under the read head.

It will by-pass such nearby file codes but will stop at one which

is at least four words away.

- 69 -

M. tape reverse Lig N C o 31

The magnetic tape is searched for the previous file code: the speed
of the reverse search is six times as fast as the reading speed.

The magnetic tepe is run in the reverse direction until a file code
appears on the tape. The tape stops in the block before the file

- code., To read the block following the file code, a "Search Forward"
command should be given, followed by a "Read m. tape" command.

If this tommand follows a "M, tape write" or "File Code" command, at
least four drum cycles must elapse after recording has ceased, If
it follows a YM. tape search" or "Read m, tape" command, at least 15
word times must elapse after reaching the "Ready" state.

The number of the magnetic tape unit is put into the "C" position.
Set Ready L2 N O 00 31

This command stops any regular input or output that may be occurring
and puts the computer in the "Ready" state. It will therefore be in
a position to process new input or output information, even though a
preceding input-output operation had not be properly terminated.

The "Set ready" command must be used cautiously, since in stopping
inpur or output before completion it disturbs line 19. Thus, the

input or output cannot later be resumed as if the "set ready" had

not occurred.

This command is useful in a sequence of commands which cause leader
to be punched between blocks of tape.

Ring bell Ll N O 17 31
When this special command is reached, the bell will ring once.

This command should not be repeated more often than once every
three drum cycles, since recovery time is necessary to get a clear
chime. If the bell tries to ring once every drum cycle or every
other drum cycle, it sounds more like a buzzer.

If the Punch switch test is given in the form L; N 1 17 31, the bell
will also ring. However, Lo N 1 17 31 will not cause the bell to
ring since the one word time of execution, L, is not sufficient to
activate the bell driver. T = L provides one drum cycle of execu-
tion time, which is ample to ring the bell,

- 70 -

8.5 OUTPUT FORMAT

Information typed out or punched out from the computer is under
control of a block of four words called the format. If line 19

holds the output, its format is held in the first four words of

line 02; when the AR register is to be typed, its forpat is held

in the first four words of line 03. When an output command is
executed, the format is copied from line 02 or line 03 into a special
format register which then controls the output.

Word u7 of line 19 is the first to be processed in output;, correse
pondingly, the first format character is taken from the three most
significant bits of word 03, with succeeding format characters
being taken from successive three bit groups.

Each format character is represented by & three bit code as shown
in Table A-5 of the Appendix. The eight possible combinations of
the three bits represent the following eight format characters:

Sign (100): This character causes bit 1 of 19.u7 or AR (the bit
which holds sign information) to be typed out as a
space if zero (positive) or as a "-" sign if one
(negative). In each word, the sign type-out should
be first unless it is to be omitted altogether.
(Internally, there is no shift of bits in the out-
put line as a result of sign read out.)

Digit (000): This character causes the information in the four
most significant binary places of 19.u7 or AR to be
read out as & single decimal or sexadecimal digit.
The digit that is read is then shifted out of the
computer. (Internally, the line is precessed in
the more significant direction by four bilts, with
four zero bits entering the least significant posie
tions of word 00.)

Period (011): This character causes a period (decimal point) to
be typed without affecting the information held in
the output line. The period also stops z€ro sup-
pression: that is, any zeros which follow the
period are typed out. If leading digits to the
left of the period are zeros, & space (suppressed
zero) replaces the zero until the first non-zero
digit is typed. Zeros following & non-zero digit
or a period are not suppressed.

Wait (111):

Tab (110):

Carriage
Return (010):

End (001):

Reload (101):

- 71 -

This character will inhibit the type-out of the
next four-bit digit, but will shift the four bits
out of the computer in the same manner as the
digit character. It is useful in preventing the
printing of digits which lack significance. The
wait character will elso cause zero suppression
to start again, until another significant digit
or period occurs.

This character causes the tab key to be pressed,
and also causes the bit then in the most signifi-
cert positinn to be shifted out of the computer.
Thus, after seven digits (28 bits) have been
typed out, the tab will shift out the bit which
originally represented the sign.

This character causes the carriage return key to
be pressed, and also causes the same one bit
shift as the tab character. Thus, either a tab
or a carriage return should normally follow each
complete number.

This character will terminate am output from AR
and put the computer in the "Ready" state. If
line 19 is being typed or punched, the end
character will terminate the output if line 19
is empty; but if there is any non-zero bit
remaining in line 19, the end character will
automatically be changed to a "reload" char-
atter.

The four words of format contain 116 bits which
may be divided into a maximum of 38 format char-
acters (three bits each). The format bits are
precessed out of the format register as they

are used. In the event that more then 38 for-
mat characters are needed, the format may be
recopied into the format register from line 02
or line O3 by this relocad character. This
permits the typing or punching of up to a full
line of 108 words with a single output command
and without interrupting simultaneous computation.
If the format in line 02 is changed before the
reload is reached, the new format will control
the remsinder of the output. The reload char-
acter itself does not normally appear in the
stored format, but results from an automatically
changed end character.

- 72 -

In constructing a format, the three bit codes are strung out and
then divided into sexadecimal words of seven digits and sign each.
The first sexadecimal word belongs in word O3 of the format, fol-
lowed by words 02, Ol and 00, in that order, if there are sufficient
bits to ocecupy them. Anything may follow the end code, but zero
bits are usually used to fill in the remainder of the,word.

Two standard formats are often used for output from AR and line 19
These appear in Table A-5 in the Appendix.

A service routine to assist in the construction of formats is
described in the operating manual.

9.

- 73 -

EXTRACT OPERATIONS

9.1 EXTRACTION: A LOGICAL OPERATION

Although the unit of information transmitted from a source to a des-
tination by a G-15 command is a word of 29 bits, it is sometimes nec-
essary to consider individual bits or groups of bits within a word.
This situation arises, for example, in programs for the conversion
between the binary form of numbers in memory and the binary-coded
decimal form involved in input and output operations, or in programs
for arithmetic operations on numbers represented in "floating point'
form. (A single precicsion floating point number may be represented
by a fraction of, say, 20 bits and a sign, stored together in one
word with eight bits specifying an integral power of the base 2 by
which the fraction is multiplied.)

The separation of certain bits from the rest of a word is accomplished
by an extract operation. At least two memory lines are involved in
forming the resultant word: one line contains a number (called the
nextractor") that specifies which bits are to be copied from the cor-
responding word in the other line. The extractor is composed of “one
bits in selected positions and "zero" bits elsewhere, and is usually

a constant of the program. Both the extractor and the number on which
it is to work must be stored in certain locations before the extract
command is executed.

A typical extract operation is conveniently described in a notation
borrowed from elementary symbolic logic (Boolean algebra). The ex-
pression a.b=c means that word c contains "1" bits in those positions
where "1" bits occur in both numbers a and b, with "O" bits elsewhere.
The expression a.b=c means that c consists of "L" bits in those posi-
tions where "1" bits in b correspond to "O" bits in a, with other po-
sitions in ¢ containing "O" bits. In this notation @ is read "not a",
meaning a number having a "1" bit everywhere a has "O" and "O" wher-
ever a has "1". The expression a+b=c means that "1" bits in ¢ occur
in positions corresponding to "1" bits in a or b or both. Note that
(asb)+(=+b) = (T*+a).b = b.

For example, if
a=.0000,0000,0000,0011,1111,1111,1111,1(binary)=~-.0003z2z hex)
b=.1001,1000,0111,0110,0101,0011,0001,0(binary)= .9876531(hex)
then

a.b=.0000,0000,0000,0010,0101,0011,0001,0(binary)= .0002531(hex)
Z.b=.1001,1000,0111,0100,0000,0000,0000,0(binary)= .9874000(hex)
a+b=,1001,1000,0111,0111,1111,1111,1111,1(binary)=-.98772zzz(hex)

In the following discussiorn of extract commands, examples are given
in the briefer sexadecimal (hex) notation.

-7 -

9.2 EXTRACT COMMANDS (D<31)

Notes Commands Descriptions
(20:21)q ~»D.T TNOS3LD
(20-21)p—>D.T TNO30D Sinel tad

(_ . ingle precision
(20:21)p + (20°AR)p—=D.T TNO27D e trantion
‘((O2°PN)T —1D 2y 11
'and (02-PN)q —FN wTN3233
(20-21)—D.T,T+1 Teyen N 4 31 D)
(20 21) —D.T,T+1 Teven ¥ 4 30 D} Double precision
. (02- PN)T Tel —ID 3 i extraction
“and (02-PN) —>PN} W Toyen N 7 23 31}
: T,T+1

Yy {From special
(20°IR) - ~D.T TNO29 D {""j ot register

. (To special)
(20-ID)—CR wTNOI18 31 outpat register
Discussion
(20:21)p — D.T TNO31LD

This command will copy into location D.T a word composed of ®1% bits
in those positions where "1" bits occur in both (20.T') and (21.T'),
with "O" bits elsewhere., (Here T' is the remainder obtained when T
is divided by L.) The command is executed during word time T.
Although this command will operate on the contents of line 20 and
line 21 in the same way, the extractor is usually stored in line 20
because of its use in other extract operations.

Example: If (20.03) = -,z2zzw00 and (21.03) = -.vwxyz67, then after
The command 51 N O 31 25 is executed, IDq will contain .vwxywOO and
(IP) will be 1 (indicating a negative sign).

(20:21)p —>D.T TNO30D

This command will extract those bits from (21.T') which correspond
in position to "O" bits in (20.T') and will copy the result, with
"O" bits elsewhere, into D.T. (Tt is the remainder when T is divided
by L4.) The command is executed during word time T.

Example: If (20.03) = =-.2z2zw00 and (21.03) = -.vwxyz67, then after
The command 55 N O 30 28, AR will contain .0000367.

(20-21)q + (20°AR)y —> D.T TNO 27D

This command will copy into location D.T a word composed of blts from
(21.T') which correspond in position to "1" bits in (20.T') and bits
from (AR) which correspond in position to "O" bits in (20.T'). (T' is
the remainder when T is divided by 4.) The command is executed during
word time T.

Exemple: If (20.03) = -.zzzzw00; (21.03) = .9uvwxyz; and (AR) ,
-.0004567; then after execution of the command 75 N O 27 22, location
22,03 will contain .9uvwx67.

(02-pPN) —= ID wTN 323 31
and (02:PN)p —>PN

This command will extract and copy into ID the bits from PN which
correspond in position tc "1" bits in (02.T), clearing these bit
positions in PN. In positions correspending to "O" bits in (02.T),

ID will be cleared and (PN) will be unchanged. (IP) will not be
affected.. The prefix "w" i1s necessary because, with De3l, this com-
merd would otherwise be executed as a blcck operation. (If T™=L,, the
command may also be written Lo N 3 23 31 for more efficient execution)

Example: If (02.27) = -.000zzzz; (PN;) = -.7654321; and (In;) ,
.13579vx; then after execution cof the command w 27 N 3 23 31, IDl will
contain -.0004321 and PNl will contain .T7650000.

(20°21) — D.T, T+1 Teven N 4 31 D
(0-21) — D.T, T+1 Teven N 4 30 D

These double precision extract commands will operate for two words
T and T+1, in exactly the same manner as the corresponding single
precision commands above. T must be even.

N~

(02°PN) o, 74y —>ID W Teven 7 23 31
and (Oz-¥N)p pyy —> PN

This docuble precision extract command will operate during word times
T and T+1 on the contents of both halves of PN and ID in exactly the
same manner as the corresponding single precision command discussed
above.” If T=L;, then the command may also be written L3 N 7 23 31
for more efficient execution. T must be even.

(20-IR) —>D.T TNO 29D

This extract command will cperate on the contents of a special input
register which may be attached to the G-15D as optional auxiliary
equipment.

_76..

(20-ID) — OR wTNO 18 31

This command will extract bits from line 20 for transmission to a
special output register which may be attached to the G-15D as
optional auxiliary equipment.

10.

- 77 -

SHIFT AND NORMALIZE OPERATIONS

10.1 COMMANDS FOR SHIFTING, SINGLE PRECISION

Notes Commands Desc:riptions

Todd N O S 25 Load number to be
(8.T)—1Dy {Teven N6S 25 shifted right in ID
Todd NOS 24 Load number to be
(5.7)—MQ {Tewn Né65S2 shifted left in MQ

(T, N126 31 (2P (I0])—»IDy,

Tp=2p (Location odd)
2P (MQ1)—MQ1,

2=p éIDl)——>ID1,
p02- 8——>AR*,

Tp=2p (Location odd)

2P (MQl) —=MQ3;

2-p(IDq)-—>ID
\ Sk N 02631 (T Ty (k) = -p.2-28
O<pg 27 (Location odd)

{2}) (Mql) —M1,

Shift < Tp N O 26 31

(IDy)—D.T Todd NO 25D Store result of right

shift into D.T

(MQ)—D.T Todg N O 24 D {Store result of left
. shift into D.T

Discussion
(T NOCS 25
- d
(S.7) —IDy 7° d N6 S 28

The absolute value of the number in S.T will be copied into the
odd half of the ID register, IDy, ready to be shifted right. The
sign of the number is stored in IP. These commands are the same
as thege previously discussed for leading 1D} with a multiplicand
or divisor.

Todd N O S 24
(8.T) —=MQ {Teven N6S 2,

The absolute value of the number in S.T will be copied into the
odd half of the MQ register, MQ1, ready to be shifted left or
normalized. In order to store the sign properly in IP, and to

- 78 -

prevent the introduction of extraneous bits from the even (less
significant) half of the register during the shift, a "clear"
command (L3 N 0 23 31) must be executed before My is loaded.
Otherwise, this command is the same as that previously discussed
for loading MQ) with a multiplier.

Shift Ip N1 26 31

This command will simultaneously shift the contents of ID p bit
positions to the right and the contents of MQ p bit positions

to the left, where Tp=2p. That is, 2"P(ID) -=ID and 2P (MQ)—MQ.
Zero bits are introduced into the left end of ID and the right
end of MQ; non-zero bits shifted beyond the ends of the registers
are lost.

This command has no effect on AR or PN, nor is it affected by AR
or PN.

The location of the shift command must be odd. It will operate
during word times L) through Ipp. (Lpp=Lg+Tp). Tp<5h.

Shift Tp N 0 26 31

This shift command with C=0 will cause the same shifts of 1D
and MQ as the shift command with C=l1. However, in addition,

as increment of 2-28 is added to the contents of AR for each
bit position of the shift: p-2'28f—’AR+. To avoid early ter-
mination of the shift, the initial contents of AR must differ
(in absolute value) from 1 by at least p.2-28: a positive num-
ber must not be incremented to overflow, and a negative number
must not be increased to zero.

The location of the shift command must be odd. It will operate
during word times Ly through Lopp. Tp;55h.

Shift S4L N O 26 31

This form of the shift command will permit the initial contents
of AR to determine the number of bit positions the contents of
ID and MQ are to be shifted. If AR initially contains the com-
plementary form of -p-2-28, as the result of either a subtrac-
tion or a "clear and subtract" command, then the contents of ID
will be shifted right and the contents of MQ will be shifted
left p bit positions. That is, 2~P(ID)-—ID and 2P(MQ)—MQ,
where O<p=27. If p->27, then the numbers will be completely
lost from IDy and MQy; hence, T = 54 =2p. The location of the
shift command must be odd. It will operate during word times
Ly through Lpp.

- 79 -

(IDy) —D.T Tygq NO25D
The result of a right shift will be copied from 1Dy, together

with the sign from IP, into storage location D.T. D must not
be another two-word register, and T must be odd.

The result of a left shift will be copied from MQ1, together
with the sign from 1P, into storage location D.T. D must not
be another two-word register, and T must be odd.

Example 7: Shift, Single Frecision

Given: y = (06.22)

Find: j%f ; store in 21.03

T
L|P| or | N |C| S | D |BP NOTES
Ly
20 22 |25 | 6| 06 |25 y = (06.22) 1D,
25 08 |3, |1, 26 | 31 Shift
34 | 35 Ol 25 | 21 2=4J = (IDq) 21.03

Remarks:

Since 16=2h, p=li and Tp=08 in the shift command. For efficiency,
N=25+«8+1-=3L

Note that division of a number by an integral power of 2 can be
accomplished more efficiently by shifting the number in ID than
by performing the divide operation. Multiplication by an integer
which is a power of two can be accomplished by shifting a number
left in MQ or by repeated additions in AR as a block command.

The shift and normalize commands are extremely useful in scalinge.

- 80 -

10.2 DOUBLE PRECISION SHIFT COMMANDS

Notes Commands Descriptions

éLoad number to be shifted

(S.T, T+1)—1ID T NL5 25 right in ID.

N

(S8.T,T+1)—>MQ T NLS 24 {Load number to shifted

left in MQ

(2P (MQ) —MQ, 2-P(ID) —ID,
(‘Ip N 12631 | Tp=2p (Location 0dd)

? ®(Mg) ->MQ, 2°P(ID)—~1ID,
Shift (TP NO02631 {p-2-0 >aRs
\ Tp=2p (Location odd)

(2P(MQ) ~MQ, 2-P(ID) ~ID,
\v2 N 026 31 ‘Initially (AR)=-p-2-%0,
0<4p456 (Location odd)

[Store result of right
(ID)—D.T, T+l T NL25D {shift into D.T,T+lg

Store result of left
(MQ)—D.T,T+1 T NL2D {shift into D.T,T+1
Discussion

(5.7, T+1)—ID TNLS 25

The absolute value of the double precision number in S.T,T+l
will be copied into ID ready tc be shifted right. The sign
is stored in IP. This command is the same as that for loading
ID with a double precision multiplicand or divisor. T must
be even.

(S.T, T+1)—MQ TNLS 2

The absolute value of the double precision number in S.T,T+l
will be copied into MQ ready to be shifted left. This command
must be preceded by the "Clear" command in order to store the
sign properly in IP. Otherwise, this is the same as the command
for loading MQ with a double precision multiplier. T must be
even.

- 81 -

Shift Tp N12631

The contents of ID will shift p bit positions to the right and
the contents of MQ will shift p bit positions to the left, where
Tp=2p. This command is identical with that for the corresponding
single precision shift, except that Tp may be greater than Sl
Tp£v2. The location must be odd.

Shift Tp N 0 26 31

This shift command is identical with the corresponding single
precision shift, except that Tp may be greater than sh: Tp<£v2.
This command is also similar to the double precision shift with
C=1 th the additional feature of the tally added to (AR):
pe2”¢° —>AR+.

Shift v2 N0 26 31

This form of the shift command is used when the shifting of
double precision numbers is to be controlled by the initial
contents of AR. Except that 0 p<56, the operation is the
same as that for single precision numbers. The location must
be odd.

(ID) - D.T, T+l TNL 25D

The double precision result of a right shift will be stored,
with the sign from IP, in D.T,T+1l. T must be even.

(MQ)—>D.T,T+1 T NL 24 D

The double precision result of a left shift will be stored, with
the sign from IP, in D.T,T+l. T must be even.

10.3 NORMALIZE COMMANDS

Notes Commands Descriptions

T
{ oad N O S 2h} Load number to be normalized

TevenN 6 S 2L
(S.T,T+1)—MQ ToyenN L S oad DP number to be normalized

2L L
Normalize (MQ1), tally — AR+
Normalize,S.P. s, N O 27 31 { (Location. -odd)

(S.T)—=MQy

Normalize (MQ), tally—>AR+
Normalize, D.P. v2Z N O 27 31 {‘ (Location odd)
(MQl)——+-D.T Togq N O 2L D Store result of normalize in D,T
(MQ)—>D.T,T+1 Tever L 24 D Store result of D.P. normalize
Discussion
(S.T)—=MQy Toga N O S 2b , Topey N 65 2L

(S.T,T+1)—=MQ TeyenN 4 S 24

The number to be normalized is loaded into MQ in the identical manner
to loading MQ for a left shift.

Normalize sy NO27 31(S.P), v2 NOZ27 31 (D.P)

The contents of MQ will be shifted left until the most significant
bit of MQ; is 1. Only leading zero bits are lost. The contents
of ID do not shift. A tally of the number of bit positions of
shift is made by adding increments of 2-28 o the contents of AR,
but the normalize operation is not terminated by overflow in AR.

This operation takes two word times for each leading zero shifted
out of MQ;. Since more than 27 shifts in a single precision word
is meaningless, T is usually made equal to 54. If (MQ7) = O, the
operation will cease after 54 word times., If a "1" bit is encoun-
tered sooner. the operation will cease sooner.

The double precision version of the normalize command, v2 N O 27 31,
is the same as for single precision normalization, except that the
duration of execution may extend to 112 word times (v2) and shift
out up to 56 leading zeros.

The normalize operation is indispensable in floating point scaling.
The location of the normalize command must be odd.

(MQ]_)——D.T Todd NO?24D
(MQ)—D.T,T*I TevenN L2y D

The normalized number in MQ is stored in the identical manner to
storing the result of a left shift in MQ.

- 83 -

11. STEPS IN THE SOLUTION OF A PROBLEM

[Statement of the Problem: Equations, conditionl.J
[
[Analyze the Problem: Select Method of Solut.iog

[]
IPlan the Input: Method, Limits. J
Y

Plan the Storage: Commands, Constahts, Subroutines, Temporary Storage: Drum l‘ppigk_l

(1
l Plan the Scaling. |
]
rPlan the Output: Information Required, Accuracy, Format.]

1]
[Flow Diagran. J

¥
[Detailed List of Steps: Notes.]

.

{ Check Coding, Storage: Exchange Coding Sheets. I

]
r Prepare Check Calculationss Test Case. J

r Insert Temporary Breakpoints.J
|

Use PPR to Convert Commands,
Constants, Punch Out Program Tape

. L]
Program does [
‘mt L [Try to Run Program. |_Er_9.zz:n_inn1
Isolate Error: Single Cycle, Type (AR), -{ Remove Unnecessary Breakpoints. J

Compare with Check Calculations. Y

L { Punch New Ta

p..
I Correct Error: Make Changes and Record. J o j

Pr o8 | |

nogg‘l Prog.
Run N .

no?“wrﬁg_r Run Corrected Programe. I—-—-—x——M » Work un New Tape or!

[Punch Tape Again.]
[]

| Run New Tape.
, morrect Errors. | Pr does
—_ { Ero8hod park Tape:

Prog. Works
ot :ﬂ_{ Run C°"°°"d Program. | L~| Check and Corrgcte| Tfentl%y

| Isolate Errors Further: PPR/Tracer. |
;2

r Correct Errors. J

Pr does Y
n°iiﬂﬂi—r Run Corrected Program JELQLJ‘.&IKI.,

Obtain Hex Typeout: Check Pattern.
Check Scaling, Format, Flow Chart, Notes.

Isolatc Errors Further: PPR/Lister.]

orks

)

¥
rCorrect Errors. Run Corrected Program. k'_"ogzﬂ-m Works

Take Aspirin.
Frfand 2 b

- 85 -

APPENDIX

Table A-1.

-87 -

G~-15D BASIC CQMMAND LIST

Arithmetic Operations: Single Precision (00&£S&£23; 00€D< 23)

(S.T) £ AR,
(S+T) *> ARe
Ks.T)} — AR,
KS.T)—= AR+
(S.T) == AR,
(5.T) => AR+

(AR) > D.T

Clear

(8.T7T) — I

(5.T) —» MQy

(S.T) —= PNy

Multiply

Divide

Shift

Normalize

(PNy) —D.T
(MQg) — D.T
(MQ;) — D.T

(ID]_)—>D.T

T N
TN
T N
T N
T N
T

T N

L3N

{Todd N
Teven N

Teven N

Toaq N
Toven ¥

56 N

ST N

Sh N
sS4 N

rI'odd N
Teven N
Todd N

Todd N

1
1
2

Qo

o O

a0 OO

S

23

w w

L v

2l
25

26

26

26

27

26
2y
2L
25

28
29
28
29
28
29
D

31

25
25

2
24

26
26

31

31

3

31

31

31

Clear AR and add (S.T)

Add (S.T) to (AR)

Clear AR and add absolute value of (S.T)
Add absolute value of (S.T) to (AR)
Clear AR and subtract (S.T)

Subtract (S.T) from (AR)

Store sum or difference from Ak into D.T

Clear ID, MQ, PN, sign (IP)

{Load multiplicand, divisor, or
number to be shifted right

Load multiplier, or number to be
shifted left or normalized

Load numerator

(ID)x (MQ7) —» PN(),l (Location odd)

(P‘Nl) 4+ (ID7) — MQp (Location ggg)

{ 2P(MQ) — MQ1, 27P(1Dq) —-1IDy,
Tp = 2 (Location odd)

fzp(m%) — MOy 2'P(ID1) — 1Dy,
i — AR# ’I‘ = 2p (Location odd)

2P(MQ) — MQ,, 2"P(m1) — ,, 0<£p<27;
Initially, (AR) = -p. .2-28 (Location odd)

Normalize (MQ;), tally — AR+ (Loc. odd)

Store product in D.T
Store quotient in D.T
Store result of left shift or normalize

Storz result of right shift in D.T

- 88 -

Table A-1. G-15D BASIC COMMAND LIST (Cont.)
Arithmetic Operations: Double Precision (00£S «£23; 00£D«23)

(Notes T must always be even for double precision operations)

(S.T,T+1) 2+ PN T NS5 S 26 Clear PN and add (5.T,T+1)
(S.T,T™+1) -+ PN+ T NS S 30 Add (S.T,T*1) to (FN)
KS.T,'Nl)l—-»PN T N4 S 26 Clear PN and add abs. value of (S.T,'l\l)
KS.T,Te1)| —> PN¢ T N6 S 30 Add absolute value of (S.T,T*l) to (PN)
(S.T,Tel) =+ PN+ T N7 S 30 Subtract (S.T,T+1l) from (PN)
(PN)*> D.T,T+1 T N526D Store sum or diff. from PN into D,T,T+l
Load multiplicand, divisor, or
(S.T,T+1) —ID T NL S25 { number to be shifted right
Load multiplier, or number to be
(5.T,Tel)—=MQ T NL S2 { shifted left or normalized
(S.T,T¢1l)—> PN T N4 8 26 Load numerator
Multiply vy N O 24 31 (ID)x (MQ) — PN (Location odd)
Divide v6 N 125 31 (PN)+(1ID) — MQ (Location _gt_i_c_l)
2P(MQ) — MQ, 2 P(ID) — 1D
Tp N 12631 { ? Tp = 2p (Loca{.ion odd)
2P(MQ) — MQ, 27P(ID) —ID,
Shift Tp N 0 26 31 {p-2'28——>lR4';Tp - 2p (Location 22(_1)
2P(MQ) — MQ, 2°P(ID)—ID, 0<p £563
v2 N 0 26 31 Initially, (AR) = -p-2-28 (Location odd)
Normalize vaNO027 3 Normalize (MQ), tally —»AR+ (Loc. odd)
(PN) — PN T NL 26 26 Prepare product for addition in PN
(PN) — D.Ty T+l T NL26D Store product in D,.T,T+1l
Store quotient or result of left
(MQ) —> D.T,Tel T NL2D { shift or normalize in D.T,T+1

(ID) — D.T,Tel T NL25 D Store result of right shift in D,T,TeX

ﬁ Ks.Lpg 1slpg)l =P ulpg N6 S 30

ﬁl (8.Ly,_1,1p4)4>Ple ulpy N5 830

-89 -

Table A-1, G-15D BASIC COMMAND LIST (Cont.)
Arithmetic Operations: Blook Cosmands (00£8 £ 23)

uly, N1 829 {?:?1,:) 0...:'(I.Lk), to (AR)

{Add the absolute values of k numbers,

uly,, ¥2 829 ks.Ly) +...¢ KS.Iy), to (AR)

btract k numbers
wlg N3 829 {Su rac R

fs.1) +..ce (5.10)], from (aR)

(S.Ll,lq) L IYYSd (So k_l,I’zk)) “wo (m)

Add k double precision numbers,
(Location, Lo, 0dd) (Lpye is even)

Add the absolute values of k doubls
precision numbers to (PN) (Loc.odd)

i=]
t Subtract the sum of k double precision
& (8.Lp3.1,1p3) =+ M+ uly N 7 8 30 numbers from (PN) (Location odd)
Co) rations
00£5£23, or S = 283 00£D£23, or D = 28
. D. » »
(8.T) —>D.T TNO SD {Copy a single precision number into D.T
00£S5&26, or S = 28, 00£D£26, or D = 28
(s.1)++>D.T TN1 S D {Copy a positive number into D.T; enter
complement of a neg. number into D.T
(AR) —>D.T TN2 S D [o0&s €233 00£D<£23
(S.T) —= AR Interchange storage with (AR)
(AR) — D.T TN3 S D 00£5«£23; 00<£D<23
(S.T) L+ AR Interchange storage with (AR), entering
complement of (S.T) into AR if negative.

(S.T,T¢l)—+D.T,Tel

(S.T,T+1) ++D.T,Tel

T

00£5£23; 00<D< 23
even N h S D { }

Copy & double precision number

Teven N5 S D Copy a pos. double prec. number; enter

00£8 <265 00£D£26
complement of neg. double prec. number

00£S £23; 00£D<23, Block copyt
(SeLyyeeeslg)*Dly,eee, Ly uly,) NO S D Copy block of k numbers from line S into

corresponding positions of line D
(SeLyyeeesly)*DlRseenlys K2 s D 0045 £23; 00£D&23. Block copys
(AR)-D.Ly; (S.lgyy)—>AR | “lye2 Copy k numbers with delay of 1 word-time

N.T.—'blﬁ

I, N1313 Copy number track into line 18

Table A-l.

(S.T) — test TN
(AR) —> test TN
(S.T,T*l)-—’ test %m N
AR sign —» test Lo N
Ready — test N N
Overflow —> test L N
PUNCH sw,—> test T N
Mark — C wT N

L2 Iy
Return —C 12 N
N.C. from AR L, N
Halt I N
(20°21)p —»D.T TN
(80+21)p —D.T TN

(20°21)p + (20°AR)p —-D.T TN

(02°PN)p —ID }
{md (B32+PN)q —> PN vy
(20421) —= D, T, ™1 Teven"
(20-21)—>D.T,Tv1 Toven®

{(O?-'m)‘r,‘bl — } ¥Tqven¥
and (a‘m)-r’hl—’m

20+.IR) — D.T TN
20.1D) — OR TN

G-15D BASIC COMMAND LIST (Cont.)

Command Sequence Control

0 827

2 S 27

L s 27

02231

028 31

029 31

117 31

c213
C 20 31

C 20 31
0313

016 31

Test for non-zero (single precision)
If (S.T)=0, next command from N
If (S.T)y0, next command from Nel
Test (AR) for non-gzero, then copy
(5.T) into AR [S<28

Test for non-gero (double precision)

Test for (AR) negative
If (AR) not negative, next command from N
If (AR) negative, next command from Nel
Test for end of regular input-output
If not ready, next command from N
If ready, next command from Nel
Set N=L; to repeat test until ready

— e,

Test for overflow

If no overflow since last test,
next command from N

If overflow, next command from N+l

Test for PUNCH switch ON

T=L] rings bell; T=Ly does not
N=L_; repeats test if switch ON
N=L; repeats test if switch off

A e,

Next command from C.N; Mark word T
Next command from marked word in C
Next command from C.N if
Lp<N<marked T; otherwise, from C.T
Next command from AR.N

Halt

Extract Operations

031 D
030 p
027 D
32331
L3a1 D
L3 D
7233
029
018

29 D
18

Single precision extraction

Double precision extraction

From special input register
To special output register

Set ready

Type in
Read p, tape
Read m. tape

Read cards

..-Type- (AR)
Type *(19)
Punch (19)
Punch cards .
M. tape write

File code

P. tape back
M. tape search

M. tape reverse

Ring bell

Fast punch leader
Fast punch (19)

Start DA-1
Stop DA-1
DA-1 —~ test

Start IR
Stop IR
IR — test

OR —» test

-9 -

Table A-1. G-15D BASIC COMMAND LIST (Cont.)

Input-Output Operetions

N OO0 31

NO12 3
015 31
NC13 3l

SRS &
=

[
-
2

0l 31

N 0 08 31
NO0O09 3
N 0 10 31
NOo1l 3
N C Ol 31

ISES AR R I Y

W

Lg NC 3031

I, NO 0631
L16NC0531
LmNCOh,‘il

I; No17 3

Set "Ready* for regular input-outpus

Read typewriter input

. Read punched tape

Read magnetic tape
» (C = # of magnetic tape unit)

Read punched cards

Type line 19| PUNCH switch N

Punch line 1% on tape
Punch line 19 on cards

Write on magnetic tape
- (C = # of magnetic tape unit)

Write file code on magnetic tape

Type AR } and punch with

Reverse punched tape
Search magnetic tape, forward

Search magnetic tapes, reverse

Ring bell

Commands for Optional Auxiliary Equipment

I‘S N 002 31
Lg NOO3 3

00 NO019 31
00 N11931
L, N32831

T N217 31
T N‘31731
N N128 31
N N228 3

Fast punch leader on punched tape
Fast punch line 1y on punched tape

Start Differential Analyser
Stop Differential Analyser
Test for Differential Analyzer off

Start ial input) (let T=Lj to ring bell
spec p“} simultaneously, and

Stop special input T=Lz not to ring bell

Test "Ready" for special input register }

Test "Ready" for special output register

Set N=L; to repeat test until ready.

-

-92 -

Table A-2. COMPONENTS OF A DECIMAL COMMAND
L P T or Ly N c S D) 4
Location Prefix Time of Execution | Next Command Code Source Destination | Break-Point
Word Posi-| | None, Te Word position | Word time Single precision: |00 00 None,
tion of of address. during which C=CH Long Long
command us=block next command to to or
command is to be read| Double precision: lines lines
00 In commands for C=CH+L 19 19 « ® break-
or multiply, divide, | (except for point
to shift, normalize: | test commands | CH = Characteristic
wedeferred when test 1s 20 20
ub command | T= number of word| "set"). CH
times command “0 Copy 21 { L-word | 21 | L-word
is operative. 00 (No change or
delay) 22| 1ines | 22 { lines
In other block to
commands, the 1 Add 23 23
of fective time wb (Preparation
of execution js: for addition:
positive num- {2, MQ 2k M
L+1 to T=1, or bers unchanged,
neg. numbers 25 ID 25 ID
L+1 to Lp~1. complemen ted;
no delay) 2% M 2% P
2 8 and D<28: 27 (20-21+| 27 Test
Copy via 20- AR) for O
(No change,
one~word delay)|28 AR 28 AR,
2 8 or Da23: 29 20-IR | 29 AR+
Absolute value
(Sign = 0O, 30 2021 | 0 PN+
no delay)
31 20-21 | 31 Special

3 S and D<28:
[y
(Neg. numbers
complemented,
one-word delay)

3 Sor D228:
Subtract
(Change sign,
then like CH=1)

-93 -

Table A-3, COMMAND CONVERSION

Sources and Destinations in Sexadecimal Notation

DES TINA TIONS
SOURCES Line Line Line Line Line MQ ID PN Test AR AR+ PNe »
00 - 15 16 - 19 20-24 25 26 27 28 29 30 il
00 000 - 00z 010 - 013 Ol4 - 018 (019 Olu Olv Olw Olx Oly | Ol=
01 020 - 02z 030 - 033 034 - 038 039 O3u O03v O3w O3x 03y | O3z
02 040 - Obz 0SO - 053 0S4 - 058 059 O5u OSv OSw 05x OS5y | 05z
03 060 - 06z 070 - 073 OT4 - 078 079 OTu O7v Ow O07x O7y 07z
oL 080 -~ 08z 090 - 093 O9L - 098 099 0O%u 0O9v O%w 09x 09y | 09z
05 Ou0 - Quz OvO = Ov3 Ovk - Ov8 Ov9 Ovu Ovv Ow Ovx Ovy | Ovz
06 OwO - Owz OxO - Ox3 Oxli - Ox8 O0x9 Oxu Oxv Oxw Oxx Oxy | Oxs
o7 Oy0 - Oyz 0z0 - 0z3 Ozl - 0z8 0z9 Ozu Ozv Ozw Ozx Ozy | Oz3
08 100 - 10z 110 - 113 114 - 118 119 1lu 1ilv 1w 1llx 1y 11z
09 120 - 12g 130 - 133 134 - 138 139 13u 13v 13w 13x 1y 132
10 140 - bz 150 - 153 154 - 158 159 15u 1Sv 15w 15x 15y | 15z
11 160 - 162 170 - 173 174 =178 179 17w 17v 1w 17x 17y | 172
12 180 - 18z 190 - 193 194 - 198 199 1% 19v 19w 19x 19y | 192
13 w0 - luz 1v0 = 1v3 1lvi - 1v8 1v9 1lvu 1lvv 1w 1lvx lvy | 1lve
1 w0 - 1wz 1x0O - 1x3 1xl - 1x8 1x9 lxu lxv 1lxw Lex Ixy | 1x=
15 1y0 - lyz 120 - 123 1z - 128 129 lzu lav lzw lzx lzy | l22
16 200 - 20z 210 - 213 214 - 218 219 2lu 2lv 2w 2lx 21y | 2lz
17 220 - 225 230 - 233 234 - 238 239 23u 23v 23w 23x 23y | 23z
18 240 - 24z 250 - 253 254 - 258 259 25u 25v 25w 25x 25y | 252
19 260 - 26z 270 = 273 274 - 276 279 27u 27v 2™ 27x 27y 272
20 280 - 28z 290 - 293 294 - 298 299 2%u 29v 29w 29x 2%y | 29z
21 200 - 2uz 2v0 - 2v3 2vlh - 2v8 2v9 2vu 2vv 2w 2vx 2vy | 2vz
22 240 - 2wz 2x0 - 2x3 2xly - 2xB 2x9 2xu 2xv 2xw 2xx 2xy | 2xz
23 2y0 - 2yz 220 - 223 2zl - 228 229 2zu 2zv 22w 2zx 2zy 2z2
MQ 24 300 - 30z 310 - 313 314 - 318 319 3lu 3lv 3w 3lx 3ly | 3lz
D 25 320 - 32z 330 = 333 334 - 338 339 33u 33v 33w 33x 33y | 13z
_ 26 340 - 3Lz 350 - 353 354 - 358 359 35u 35v 35w 35x 35y | 35z
2021+20+AR 27 360 - 36z 370 = 373 374 - 378 379 37u 37v 3w 37x 3Ty | 37z
AR 28 380 - 38z 390 - 393 394 - 398 399 3%u 39v 39w 39x 39y | 39z
20-IR 29 3u0 - 3uz 3v0 - 3v3 3vh - 3v8 3v9 3wvu 3vv 3w 3vx 3vy | 3vz
20-21 30 W0 - 3wz 3x0 - 3x3 3xb - 3x8 3x9 3xu 3xv 3w xx 3xy | 3xz
20+21 31 3y0 - 3yz 320 - 3z3 3zl - 328 329 3zu 3zv 2zw 3z2x 32y 3z2

Special Cammands:

characteristics.,

See Table A-4 for operation and for values with various

Note: The characteristic in the above commands is O (except 73z, Divide).
If CH = 1, add L to the first digit; if CH = 2, add 8, 4f CH = 3, add w.

Examples: CH = 1, S = 28, D = 01, last three sexad. digits = 781
CH = 3,3 =21, D = 29, last three sexad. digits = yvx

- 9L -

Table A-4. G-15D SPECIAL COMANDL: D=31
C S HEX
COLE CODE CODE OPERATION
00 0lz Set "Ready"
0,1,2,3 01 03z% | Write on Magnetic Tape h
S 02 05z Fast Punch Leader S FiStaZ?tﬁzt
03 072 Fast Punch (19)) Operatio
0,1,2,3 oL 09z Search Magnetic Tape, ieverse h ,
0:1,?,5 05 Ovz# Search Magnetic Tape; Forward Tape ogarch
06 Oxz Reverse Punched Tape J Operations
08 11z Type (Ak) & Punch with Normal
09 13z Type (15) Punch Switch ON Output
10 15z Punch (1Y) on Tape (P
11 17z Punch (1Y) on Cards | Operations
12 19z Head Typewriter Input
0,1,2,3 13 Lvzk Read Marnetic Tape t Input
3ol 1xz Read Punched Cards / Operations
15 lzz nead Punched Tape J
16 21z Halt
0 17 23z Ring Rell
1 " 63z Ring Bell and "PUNCH ON" to test
2 n u3z kine Bell and Start IR Signals to
3 " y3z Rin- Bell and Stop IX } External Unit
18 25z (20+ID) to Output Hegister
0 19 272 Start DA-i
1 " ATz Stop LA-1
0 to 7 20 29z Select Command Line - & return
0 to 7 21 2vz Select Command Line - & Mark
22 2xz Sign of Ax to Test
0 23 22z Clear My, ID, N, and 5ign
3 (or 7) " y22 (PN+02) to ID, (PN+02) to PN
I 31z Multiply N
1 (or §) 25 73z | Divide) T
1 26 752 Snhift My Left ant ID Hight >
0 " 35z Shift MQ Left and ID Right! Increment L Relative
0 27 372 Normalize MQ , AR Register
0 25 39z "Ready"
1 " 79z "Ready IR"
2 " V92 "Ready OR" To Test
3 " 292 LVA-1 Oft
29 3vz Overtlow
0,1,2,3 30 3xz* Write File Code on Marnetic [ape
0 31 3zz Next Command from AR
1 " T2z Copy Mumber [rack into Line 18

+ Hex Code applies only for C=0.
Where not specified, C is immaterial, but usually written O.

- 95 -

Table A-5. FORMAT CHARACTERS Table A-6, PUNCHED TAPE CHARACTERS
Character Code Character Codse
D Digit 000 0. 10000
E BEnd 001 1l 10001
C Carriage Return 010 2 10010
P Period 01l 3 10011
S 8Sign 100 N 10100
R Reload 101 5 10101
T Tab 110 6 10110
W Wait 111 7 10111
8 11000
9 11001
u 11010
v 11011
w 11100
Standard AR Format X 11101
SPDDDDDDDCE y 11110
(03,03) = =8w0Q000 z 11113
(03.02) = 1000000
Space 00000
Minus 00001
CR 00010
Standard Line 19 Format Tab 00011
SDDDDDDDTSDDDDDDDT - Reload / 00101
SDDDDDDDTSDDDDDDDCE
Period 00110
(02.03) = 800000x
(02.,02) = 000003Y S (end) 00100
(02.01) = 0000Vx0
(02,00) = 0000110 Wait 00111

- 96 -

| Return To
|MARKED PLACE|

l!xecuu One Com.lfnu;:l I

1 PHOTO TAPE READ |
Set: Comm. line to 234Nz 00

- —
Slzgl: l Mark _ Transfer
OUTPUT Place Line 23t019

Set Command

Start PHOTO TAPE

{

Line = 00 Reverse Cycle
7 ENABLE PUNCH COMPUTE |
ON(y) ON'p/ BPg) GO

Fig, A-1.

Typewriter keys and Switches

- 97 -

Table 4-7., TYPEWRITER CONTROL KEYS AND SWITCHES
G-15D Typewriter Control Keys

Key with ENABLE Action

A N Type out (4R)

B ON Reverse punched tape one block

co ON Set command line to 00

Ccl ON Set command line to Ol

c2 ON Set command line to 02

C3 ON Set command line to 03

ch OoN Set command line to OL

(o]1 ON Set command line to 05

cé oN Set command line to 19

c7 ON Set command line to 23

F ON Set N = 00

I ON Execute one command (Single cycle)
M ON Mark place [N —»00.u7; (AR) — Ol.u7]
P ON 1) Read punched tape

2) Set N = 00
3) Set command line to 23
Q ON Read typewriter input
ON Return to marked place
S ON Set "Ready" (Stop input or output)
off Set "Ready" after reading typewriter input

T oN Send N-2-8 (in binary) to AR

G-15D Typewriter Data Input Keys

Key

Description

0, 1, 2, 3, b, 5, 6, 7,}

8y, 95 uy, v, W, X, ¥, 2z

Enter binary equivalent (L4 bits)

Stores minus sign for later insertion

Tab Insert sifm (1 bit)
C.R. Insert sign (1 bit)
/ Reload
G-15D Typewriter Control Switches
Switch Position Action
Left Neutral Right
ENABLE ON (off) Activate control keys; Interrupt typeout
PUNCH ON (off) Punch during typeout (no zero suppression)
COMPUTE BP (off) GO Go to breakpoint; Stop; Go to halt

- 98 -

Table A-8, GENERAL G-15D OPERATING PROCEDURES
et typewriter controls|
in neutral sitions.
¥

N _<:_(ia machine on? 4:} Yes ~

Put on magazine with
rewound test routine

Tarn on master switch
(marked START)

Wait for Voltage to
reach 6.3

Press RESET button until
DC red light goes on.

ait until green “READY"™
light goes on and photo
reader light goes off.
(2 blocks have read in:
number track and loader)

1 t on magazine with
Proceed with test routine rewound program tape,
according to directions:

1, Compute switch to GO. oes tape contain No
"i" will be typed out. a n T8

Wait for lignts steady.

Yes
2, Type "0000005 (tab) s" Hit P key (ENABLE ON)d
Wait for photo-reader Number track is read
off and lights steady. into Line 19 only,

3. Type "0000007 (tap) s"
Test proceeds, bells
ring, suppressed type-
out occurs, tape reads,
test type-out# occurs,

alt until photo tape
reader light goes off

tape rewinds, test Hit P key (ENABLE ON).
repeats automatically. Next block, loader,
L. Wait until test is re- read into Line 19.
peated 3 times or test
fails to work properly. a1t untll pnoto tape
v Compute switeh reader light goes off J
(Is test satisfactori}}——zgg———& off, rewind tape
T Mo remove magazine. | [Set CQMPUTE switch to BP
Tompute switch off, or GO. Loader is copied
rewind test magazine into command line, program
is read in under control
Push DC OFF button. of the loader, and compu-
L (Remember that this tation proceeds until a BP
destroys the entire or halt command is reached
contents of memory. or a type-in is awaited.

% Correct test typeout is: -112233L LL5566.7 776899
—uuvvwwx xxyyzz.0 2345

- 99 -

Table A-9., G-15D OPERATING PitOCEDURES WITH
PROGRAM PREPARATION ROUTINE (PPR)

(Kote: Assume machine is on and number track is in.)

t on mapazine with
rewound PPR tape.

<jboes tape contain number track?i)__EQA__—-ﬂ-\
l Yes

Hit P key (with ENABLE on) to read past number track,

Wait until photo tape reader light goes off. B

!

Hit P key (with ENABLE on) to read loader into L.19. [_

Wait until photo tape reader light poes off.

|

—

numbers, reading punched tape and various forms of output.

Set COMPUTE switch to GO. Four basic PPR blocks
are read in and stored in lines 17, 16, 15 and 05S.

Wait for configuration of indicator itights:
11100 Source
Command Line 101 11111 Destination
01100 Input-Output

Computer is now ready to accept basic R instructions,
These prepare for insertion of commands, storage of hex

Is decimal number conversion or any No R
auxiliary service routine desired ? Qw

Yes

CCHPUTE switch off and hit P key (with ELAELE on),
to read loader for auxi liary control into line 19,

Wait until photo tape reader lirht poes off.

Set CC¥PUTE switch to GO, Auxiliary control and
decimal to binary conversion ro into iines 1L and 13.

Wait for configuration of indicator lishts:
11100
101 11111
01100

| Computer is now also ready to accept the PPR in=-
| structions to convert and store decimal numbers
and to call in PPr's auxiliary service routines.

Computer 1s in Test heady state,)

awaiting type-in of a PPx instruction.

- 100 -

Table A-10. TYPICAL STEPS IN USING PROGRAM PREPARATION RCUTINE

(Notes Assume PPR tape has been read in and type-in is awaited.)

Type: x00 (tab) s (to clear line 18, the line used for working storage with
this service routine) 1
%

[Type: yCD- (tab) 8 (to prepare for entry of a sequence of decimal commands
starting with location CD. These are stored in line 18,
to be copied later into line AB.)

Enter commands, each followed by: (tab) s (The next location is typed out,
plus its contents if not empty.)

Hepeat yCD- for each new sequence or for corrections.

Type: zCD (tab) #ddddddd (tab) s (to enter each hex number, sign and 7 digits,
into word CD of L,18. The location is typed, plus previous
contents if any. Each number must be entered individually.

Hepeat for each hex number or for correction.

Type: EvCD (tab) s (to prepare for entry of a decimal number into locatlon CD
of line 18. E = instruction code as followss

0 for S.P. fractions; 8 digits less preceding zeros. -28
1 for 5.F. integers; up to 8 digits; becomes scaled to 2 " .
L for D.P. fractions; 1 digits less preceding zeros.

S for D.P, intepers; up to 1L digits; becomes scaled to 2'57.

= =
| I I I |

If no number is typed in E position, it is interpreted as E = O,
If double precision numbers are entered, CD must be even, and
converted number is stored in locations CD and CD+l.

The location is typed out, plus previous contents if any.
If decimal to binary conversion is not in line 13, it is
called in automatically from the tape, and ".00" is typed.)

Enter the decimal number, followed by: (tab) s (For incorrect number of digits
or other error, bell rings and the location is retyped.)

Repeat for each decimal number,

x

[Typer x06 (tab) s (to punch prepared line on tape. Line 18 —+1line 19 — out.
L.18 is still intact. Check sum is obtained and typed first:
note for later reference, with line irto which it will go.)

(Notet To return to PPR without completing punch-out, hit g{.)

¥
r'I?pe: ABx03 (tab) s (to copy line 18 into line AE if desired for later use) |

] v
/IS ADDITIONAL LINE TO BE PREPARED?/\r Tes —

2
l No
Type: BCDxOL (tab) s (to obey next command from line b word CD, to run propram with
PPR still in memory. Computer wili proceed to obey commancs,

If COMPUTE switch is set to BP instead of GO before this instruction,
i1t will halt before entering program; paper may now be set; COMPUTE
switch 1s then set to BP or GO depending upon problem requirements.)

TO RETURN TO rtk (for corrections, debupging, or next set of lines to be prepared):
COMPUTE switch offj hit keys scSf (with ENABIE on); set COMFUTE switch to GO.

Table A-11, DSTRUCTIONS FOR PROGRAM PREPARATION ROUTINE
(Wotes All instructions are followed by tab s.)

BASIC PPR INSTRUCTIONS

Read tape into line 18, type check sum, EBP), repeat for next block

Read tspe into line 18, type check sum, (BP), type out (line 18), repeat
Read tape into line 18, type check sum, (BP), punch tape (condensed
format), repeat

Read tape into line 18, type check sum, (BP), type and punch (PUNCH switch
ON after check sum), repeat

& k28

Clear line 18

Number track into line 18, type check sum of number track, (BP), punch
number track

g 8

ABCDx02 (Line AB) to line 18, type word CD as a sexadecimal number
ABCDx02 (Line AB) to line 18, type word CD as a decimal command

ABx03 (Line 18) to line Ab
BCDxOL Next command ‘from line B (B = 0, 1, 2, 3 or L), word CD
x05 Type check sum of iine 18, (BP), type out (line 18)

x06 Type check sum of Line 18, (BP), type and punch (line 18) (PUNCH switch
must be ON after check sum typed)

yCD Decimal command input, into word CD of line 18. Type any previous con-
tents of CD as a sexadecimal number,

yCD- Decimal command input, into word CD of line 18. Type any previous con-
tents of CD as a decimal command.

2CD (tab) + dydpdidjdgdgdy Sexadecimal number input, into word CD of line 18,

Notes To return to PPR after a "w" instruction or an incompleted x01, x05, x06 or x07,
Compute switch off,type "sf" with enable on, compute switeh to GO or BP,

DECIMAL TO BINAXY NUMBER COMVEHSIQK

EvCD Decimal number input, into word CD of line 18:
E » 0 for S.P. fractions; 8 digits less preceding zeros.
E = 1 for 5.P, integers; up to 8 digits; becomes scaled to 2'28.
E = 4 for D,P, fractions; 14 digits less preceding zeros.
E = 5 for D,P, integers; up to Ly digits; becomes scaled to 2‘57.

INSTHUCTIONS FOit AUXILIAKY SEKVICE HOUTINES

01x08 Ereak-Pointer Insert or remove a breakpoint.
02x08 Tracer gxecute and list each command and its result.

03x08 Formater Compile an output format
OLxU8 Auto-lLoader Prepare and punch out a loading routine.

06x08 iepositioner Chanpe S and D numbers to a new line.
07x08 Lister List a program without execution.

