

algebraic compiler

for the

BENDIX G-15

general purpose

digital computer

Algo follows the principles laid down for the
universal algebraic computer language,
Algol, proposed for international use by com-
puter organizations in America and abroad.

The Bendix Corporation is happy to co-
operate with the Association for Computing
Machinery and with the other members of
the Algol committee in being the first manu-

facturer to introduce a programming
system patterned on their proposal.

THE ALGO LANGUAGE

INTRODUCTION

The Algo language closely parallels Algebra and
may be learned in a few hours. The similarity may
be seen by examining a few relationships. For ex-
ample, to add quantity x to quantity y, the relation-
ship in Algo language is: x + y; similarly,

to subtract: X —y
to divide: x/y
to find the sine of x: sin x

to find the logarithm of x: log x

Thus, without a special knowledge of programming
for electronic computers, anyone with a background
of high school Algebra may express a problem in
the Algo language for the G-15 computer. There are
two steps to obtaining a complete solution for the
problem written in Algo language. First, the problem
is entered into the computer and is cutomatically
transformed by the Algo routine into a program
called the "object’” program, expressed in the com-
puter’s internal language. Secondly, the computer
solves the problem by executing the object program.

EXAMPLE OF ALGO LANGUAGE PROGRAM
Problem

Find: u; — e*i + x;,° + sinx;
where,
Xi,1=1Xj + .01
Print x; and u; in floating-point notation.

The programmer specifies at the time of execu-
tion the initial value of x and the limit of the
subscripti.

Algo Language Program

001. TITLE Find uli]

002. LIBRAry SIN (0101000
003. SUBSCript i

004. BEGIN

005. x = KEYBD

006. FORi=0{(1)KEYBD BEGIN

007. u=EXPx 4+ x75 -+ SINXx
008. PRINT (FL) =x

009. PRINT (FL)=u

010. CARR (2)
011. x=x+ 01 END
012. END

The lines of the Algo language program may be
broken into two groups, declarations and statements.
The declarations are announcements to Algo regard-
ing the contents of the program. The statements
describe actions taken by Algo either while compil-
ing the object program or during the execution of
the object program. In the example, the lines num-
bered from 001 thru 003 are declarations, the others
are statements.

The components of a statement may be: identifiers
which are names for the various quantities; numbers
which represent quantities whose numeric values are
tixed; and operators which indicate the relationship
between two quantities.

In the sample program, Line 007 has two identifiers,
u and x; four operators,exp, +, 1, and sin; and one
number, 5.

ALGO ALGEBRAIC STATEMENTS

As shown, the programmer writes x + y to express
the addition of x to y. He then replaces or assigns

- the relationship x + y to another quantity z.

I=X-+Yy

Table 1 lists the operators for the most common
arithmetic operations, the ‘definitions and an ex-
ample of each.

Table 1

PARENTHESES

As some algebraic statements may be incorrectly
interpreted, the programmer should use PAREN-
THESES () whenever ambiguity may result in the
statement of a problem.

,Exdmpie I
A programmer requires the evaluation of the equa-

tion:

<
" be

If the Algo Algebraic statement were written:
d — a/b+c,
the equation becomes:
d = (—E—)c
which is not the original problem.

The correct Algo algebraic statement is:

d = a/(b+c)

Example 2
A program requires the equation:
y=x{a + b)=oqax + bx
If the algebraic statement were written:
y=x+a+b
the equation would become:
y=ax t+b
which is not the required relationship.
The correct Algo algebraic statement is:

y=x+{a+Db) or
y = a=x -+ bs«x

The programmer may nest up to 8 pairs of paren-
theses, one pair within the other.

SPECIAL ARITHMETIC OPERATIONS

The operators previously described are the founda-
tion for computation using Algo. However, most
problems require more complex operations.

Another group of operators complete the list of arith-
metic operations. Table 2 lists the operators, an alge-
braic equation and the Algo dalgebraic statement of
each.

The quantities following the operators in the Algo
algebraic statements must be enclosed in paren-
theses if composed of more than one variable or if
preceded by a “—" sign. If the quantity is a single
variable, the parentheses may be omitted; however,
a space must separate the variable and the operator.

. AlgoAlgebraic

ator Equation Statement

t—afbte| foa o ABSH O

a— w2

RT Y= bt (k—acP*y——b+SMRTl —ase)

i asSWRTebd)
xy/(SORT z+2)

' y:: EXPx

y~BPfastia

e

0 a
A=+l »«LOG‘XT(”;‘*’:,I’);
06 (EXP x/(1 + EXPx)

Table 2

In this manual, upper case letters designate the
characters which Algo recognizes of alphabetic
operators, multi-character identifiers, and declaration
names. The other characters need not be typed.For
example; in the word SUBSCript, the first five char-
acters are recognized by Algo. The programmer may
or may not type the last four characters. The pro-
grammer may type either upper or lower case alpha-
betic characters with no difference in effect.

If the quantity following the SQRT operator is nega-
tive, an error results. If the quantity following the
LOG operator is zero or negative, an error results.
Errors may be detected as described in the Algo
Operating Instructions.

LIBRARY ROUTINES

The library contains a group of trigonometric rou-
tines which are not a part of the basic Algo system.
The routines in the library require a library declara-
tion which is discussed in Chapter 5. Table 3 lists the
operators, an equation and an example of each.

Table 3

For the sine and cosine routines, the angles must be
expressed in radians. The arctangent routine finds
the angle in radians.

If the quantity following the operator of each routine
contains more than one quantity, the quantity must
be enclosed in parentheses. If the quantity is a single
variable, a space must separate the operator and the
quantity.

IDENTIFIER

An identifier is a name by which something may be
recognized. Identifiers may be of any length; how-
ever, only the first five characters are recognized by
Algo. The first character must always be an alpha-
betic. Successive characters may be alphabetic or
numeric. Typical identifiers are: ALPHA, BETA, X,
Y, Z, AB123, and C345D.

Any arbitrary identifier, such as, a, b, x, y, gamma,
or epsilon, may represent a variable. As in Algebra,
a variable in an Algo algebraic statement is a quan-
tity which is free to assume different values.

A constant is a quantity whose value is fixed. Nor-
mally, a C or K represent constants in algebraic
statements. However, the programmer may use any
identifier desired. For instance, the programmer may
wish to represent the universal constant, =, with the
identifier, PI. A programmer may also write a con-
stant as a numeric value in the algebraic statement.

EVALUATION OF
ALGO ALGEBRAIC STATEMENTS

Between any two relationships, expressions using 1,
*, and / are evaluated before expressions using +
and . For instance,

y —=a-— b/c
Algo first evaluates b/c and then a -- b/c.

Algo evaluates relationships involving the special
arithmetic functions, library routines, and the } before
relationships involving * and /.

y=oa*b]2
Algo first evaluates b 7 2 and then a<b 1 2.

As the — operator assigns the quantity from the right
side to the left side, Algo performs the — operation
after all other operations in an algebraic statement.

Algo evaluates algebraic statements in the same
manner in which a person evaluates an algebraic
equation. For example, the equation:

y =a; + x* + SIN 3=
would be in an Algo statement:
y—alil - x12 + SIN (3+PI)

To find the value of y, the mathematician would find
x* and sin 37 and then add the values of a,, x*, and
sin 3=. In general, the same rules apply to Algo and
the order in which Algo evaluates algebraic state-
ments is called precedence.

Table 4 lists the operators and their order of evalu-
ation.

Table 4

Where two operators of equal precedence follow
one another, the first one encountered, when pro-
ceeding from left to right, is processed first. For ex-
ample, a*b/c, the relationship a«b is evaluated
followed by the evaluation of asb/c.

In Example], d=—

The programmer may write: d = a/b/c, and the
statement will be correctly interpreted by Algo.

Equation Algo Language Statement
3
S ——
z=o0x + by 7= a*X + bxy
T 72

A close analysis of the problem shows the pre-
cedence.

1. a+x is the first relationship on the right hand side
of the — operator and is therefore evaluated first.

2. The + operator follows the a+x relationship and
serves to add bsy to asx. However, b and y are
related to one another by the + operator which
takes precedence over the + operator. Therefore,
b«y is the second evaluation.

3. The last evaluation is asx + bay which is as-
signed to z.

Equation

Algo Language Statement

z —ax? + 2by + ¢? Z=2axX12+ 2+hxy +¢12

Order of Evaluation

/x12 |1

axx T2

/ 2+b

/ 2+bvy
/. a2+ 2ebny
c1?2

axx 12+ 2«bsy +¢c 12
Z==axx1 2+ 2+bxy + ¢ 12

V| N O W] N

Figure 1

The order of evaluation is illustrated in Figure 1.
The entire sequence of operations is as follows:

1. The first relationship on the right hand side of
the — operator, preceding from left to right, is
asx; however, the next relationship is x 7 2. From
the rules previously discussed, the relationship
x 1 2 is the first evaluation.

2. The next evaluation is asx T 2.

3. The relationship 2+b+y follows and is related to

asx T 2 by the + operator. From Table 4, the «
operator has precedence over the + operator.
Therefore, 2+b and 2+b+y are evaluated and then
added to a*x T 2,

4. The last two relationships are: ¢ 1 2 and asx 1 2
+ 2+bxy+c12. The ¢2 relation is evaluated next.

5. Findlly, the last relationship is asx T 2 + 2+bsy
-+ ¢ 1 2 which is then assigned to z.

NUMERICAL DATA

INTRODUCTION

Numerical data for Algo programs may be in fixed-
point or floating-point notation. A fixed-point number
is a number written in common decimal notation. A
floating-point number is a number written in the
scientific form of numerical notation, for example,
.345 - 10°

FIXED-POINT NUMBERS

A fixed-point number may be an integer or a mixed
number and may have as many as 14 digits in the
entire number. The range of values is from 10** up
to 10*¢—1. The decimal point on the typewriter key-
board is represented by a small, hollow circle , ,
called a hollow point. The decimal point may occur
anywhere in the number.

Integers Integers are whole numbers, that
is, numbers which have no frac-
tional part. Typical integers are:
8, 23, 354, 5500, 7893000. As there
is no fractional part, the program-
mer has the option of writing or

omitting the decimal point.

Mixed numbers have an integral
part and a fractional part. If a
number consists of only the frac-
tional part, the number is consid-
ered to be o mixed number. Typi-
cal mixed numbers are: 12,5,
365,789, ;553,1,64329.

Mixed Numbers

Leading and trailing zeros need not be typed during
data entry. The leading zero refers to the integral
part of the number; the trailing zero refers to the
fractional part of the number.

12,5 not 00000012,500000
365,789 not 00000365,789000
/683 not 0000000,6830000

FLOATING-POINT NUMBERS

A floating-point number has two parts: a mantissa
and a characteristic. Two hollow dots, ., , represent
the decimal point which separates the mantissa and
the characteristic.

Mantissa The mantissa is a decimal num-
ber of the form: .6823; .12568943;
.108.

Characteristic The characteristic designates the
power of 10 which multiplies the
mantissa. To write the power of
ten, say n, as a characteristic, the
programmer adds the exponent to
50, (50 + n).

Meaning in Common
Characteristic 50 4 n Notation
52 50 + 2 102 = 100
48 50 + (—2) 10+ = .01
50 50 + 0 100 =1
49 50 + (1) 101 =.1

FLOATING-POINT TO
FIXED-POINT NUMBERS
To express a floating-point number as a fixed-point

number, multiply the mantissa (decimal part) by the
power of 10 indicated by the characteristic.

Floating-point Fixed-point
Number Conversion Number
52,0125 o125 X 102 12.5
51,.6834 6834 X 10 6,834
48,7385 o7385 X 10-2 007385

FIXED-POINT TO

FLOATING-POINT NUMBERS

To express a fixed-point as a floating-point number:
If the number is an integer or a mixed number

with both a fractional and integral part, count
the number of significant places to the left of

the decimal point. The number of digits indi-
cates the positive exponent of 10. Add the ex-
ponent to 50 to obtain the characteristic. Move
the decimal point left in front of the first sig-
nificant digit to obtain the fractional part, the
mantissa.

If the number is a fractional number, count the
number of zeros immediately to the right of the
decimal point. The number of zeros indicates
the negative exponent of ten. Add the negative
exponent to 50 to obtain the characteristic. Move
the decimal point right in front of the first non-
zero digit for the fractional part, the mantissa.

Fixed- Floating
point point
Number Conversion Method Number
12,5 2 places to left of decimal point 52,125

125 X 102—=50 + 2 + .125

17500 5 places to left of decimal point 5560175

17500 X 105 = 50 + 5 + .17500

06835 1 zero to right of decimal point 49,.6835

6835 X 101 =50 — 1 +- .6835

,008305 2 zeros to right of decimal point 43,8305

8305 X 102 =50 — 2 + .8305

TYPEWRITER INPUT-OUTPUT

INTRODUCTION

Input and output may be in fixed-point or floating-
point numerical notation. The input variable KEYBD
permits input via the alphanumeric typewriter. The
PRINT statement provides output via the alphanu-
meric typewriter. The PRINT statement may need a
declaration, called FORMAT.

TYPEWRITER INPUT

KEYBD KEYBD is an input variable which per-
mits the introduction of a numerical
value for a program variable. When
assigned to a program variable, the
KEYBD variable causes the computer
to halt during the execution of the ob-
ject program, to ring a bell, and to wait
for the programmer to enter a value for
the program variable.

Example 5

Problem
Find the value of y in the equation:
y=ax+b

where a, x, and b are to be supplied by the
programmer during program execution. There
are two possible methods of using the KEYBD
variable.

Algo Program, One Method

a— KEYBD
x =— KEYBD
b — KEYBD
y=axx +b

Algo Program, Another Method
y = KEYBD =KEYBD + KEYBD

Example 6
Problem

Find the slope M of a straight line which goes
through (0, 1) and the point (%, y). Find the point
P where the line crosses the x-axis.

M=X—1
X

~ L

P= M
x and y are to be entered from the typewriter
keyboard.

Algo Program,

x = KEYBD
y — KEYBD
M=y —1)x
P=-—-1/M

TYPEWRITER OUTPUT

PRINT () The PRINT statement causes the quan-
tity to the right of the = operator to be
typed in either floating-point or fixed-

point notation.

If the type-out is in floating-point nota-
tion, the identifier in the parentheses is
FL. The letter F precedes the type-out
and the typewriter carriage is automat-
ically moved to the next tab stop.

If the type-out is in fixed-point notation,
the programmer must specify the form
of the type-out. The form consists of the
number of digits, periods, tabs or car-
riage returns and is called a format. A
declaration identifies and specifies the
form of the format. Chapter 5 discusses
the format declaration.

The format identifier is enclosed in the

porentheses and specifies the desired

format for the fixed-point output.
Exam}ile 7

The programmer wishes the output for Example 6 in
floating-point notation.

Algo Program

x = KEYBD
== KEYBD
M=y — 1)/x
= —1/M
PRINT (FL) = M
PRINT (FL} =P

MECHANICAL OPERATIONS

The following statements cause Algo to perform
mechanical operations during the execution of the
object program.

BELLS (n)
PERIOd (n)
CARR (n)
TABS (n)

The number n in parentheses following each state-
ment specifies the number of times the operation is
performed. The quantity n must be a number from
I to 15. The parentheses must be present for the
statement to be interpreted correctly. The statements
may occur anywhere in the Algo language pro-
gram.

The BELLS statement causes a bell in the computer
to ring. The PERIOd statement causes a period to be
printed. The CARR and TABS statements concern
movement of the typewriter carriage. CARR causes
the carriage to be returned and the TABS causes the
carriage to be moved to the next tab stop.

CONTROL STATEMENTS

INTRODUCTION

Algo processes the statements of an Algo language
program one after the other in the order written.
However, statements exist which either by-pass or
return to a certain section of the program or which
repeat a certain section a number of times. These
statements are control statements.

GO TO AND STOP STATEMENTS

The statements which transfer control uncondition-
ally are GO TO and STOP statements. Associated
with GO TO statements are identifiers, called labels.
To process a statement out of sequence, the pro-
grammer precedes the statement with an identifier
and later writes a GO TO control statement.

Algo recognizes the statement by means of the iden-
tifier, called a label. A colon, : , must immediately
follow the label. Several statements illustrating the
use of a label follow:

Alib—al2+ SINz
START: x — KEYBD
BETA: PRINT (FL) — y

The statement with the preceding label is a labelled
statement. Algo processes the successive statements
following the labelled statement in the normal se-
quence.

GO TO The GO TO statement directs Algo to
by-pass or return to a section of the
Algo language program. A label with-
out the following colon follows GO TO
and identifies the section to be proc-
essed. To process out of sequence the
labelled statements illustrated above,
the programmer would write GO TO
statements as follows:

GO TO Al
GO TO START
GO TO BETA

Example 8 shows the use of labels and
GO TO statements in a program.

STOP The STOP statement halts the execu-
tion of the program. Computation will
proceed if the programmer moves the
Compute switch on the base of the type-
writer to off and then returns it to GO.

The statement may be used as an indication of the
progress of the program. Another use is to tem-
porarily halt compution while the programmer re-
places a tape magazine.

IF STATEMENTS

IF An IF statement is the comparing of
one quantity to another quantity. If the
condition expressed in the IF statement
is true, the compiler proceeds to the
next successive statement. If the condi-
tion expressed in the IF statement is
false, the compiler continues to the next
successive statement.

There are three operators associated
with IF statements. Table 5 lists the op-
erators, their meaning and ilustrates
their use.

Table 5

The IF statement consists of the IF op-
erator followed by a quantity related
to another quantity. A space must fol-
low the IF.

IFx=al2+b

Fx<ztzt2

IF x > LOG ALPHA + BETA 12
The quantity to the left of the operator
may be a mathematical expression as

well as the quantity to the right of the
operator.

10

For example:
IFXT2+ 2%k +b=asz +y
IFc12+ EXPz < d12+ COSPHI
Fy+z—x>a2+bxa+b12

However, the quantity to the left of the
relational operator may not contain
more than one quantity if the quantity
to the right is a single quantity. For in-
stance,

IFat+b<c
may not be written; but
IFc>a+b

may be written.

BEGIN AND END STATEMENT
PARENTHESES

The statement parentheses, BEGIN and END, provide
a means of bracketing a segment of a program. The
BEGIN corresponds to the left hand parenthesis,
and the END corresponds to the right hand paren-
thesis,).

The statement parentheses have the effect of treating
a group of statements as one statement, a complex
statement. The "true” condition of an IF statement
may be made a complex statement by use of the
BEGIN and END statement parentheses.

The BEGIN statement parenthesis always occurs at -
the end of the statement immediately preceding the
complex statement. The END statement parenthesis
follows the last statement of a complex statement
and is written on the same line as the statement.

For example,

006. IFx<y BEGIN
007. ¢=—LOGX + x13

008. d—EXPc+ct2 END
009. ¢—LOGy+y713
010. d—SORT ¢

In statement 006, the BEGIN, which follows the IF
statement, indicates that the next statement consists
of more than one statement. The END in statement
008 terminctes the complex statement which consists
of 007 and 008. Therefore, when x is less than vy,
statements 007 and 008 will be processed. When x is
equal or greater than y, Algo skips one statement
for the IF' statement; the one skipped statement is a
complex statement consisting of statements 007 and
008, and proceeds to statement 009.

Statement parentheses may be nested 4 deep.

Example 8
Problem
Find: {(x)
IFx < d {x) =ax?— bx + ¢
IFx=4d,ix) =0
IFx>d,i(x) =cx* — bx + «
Algo Program
005. a=KEYBD
006. b= KEYBD
007. ¢ =KEYBD
008. d=KEYBD

009. Al x — KEYBD
010. IFx<d BEGIN
011, FX—asx 12 — bex -+ ¢
012. GOTOA2 END
013. IFx—d BEGIN

014 FX=0 -

015. GOTOA2 END;'

016. FX—rcxx12 —bxx + a
017. AZ: PRINT (FL) = x~c
018. PRINT (FL) = FX

019. CARR(2)

020. GOTOAl

DISCUSSION OF EXAMPLE 8

The following discussion gives a complete analysis
of Example 8. As the statements 005 through 008
proceed in a straightforward manner, our discussion
will not spend any more time explaining them.

Statement 009 is a labelled statement. Note that the
colon immediately follows the label Al. The reason
for labelling statement 003 may be seen by looking
at statement 020 which is a GO TO statement. After
solving for one value of x, the program returns to
statement 009 and waits for another value of x to be
entered. These two statements permit the program-
mer to solve the problem for many values of x during
program execution.

Statement 010 is an IF statement which compares x
to d. When x is less than d, the “true” condition, the
object program proceeds to the next successive state-
ment. Because of the statement parentheses, BEGIN
and END, the compiler treats statements 011 and 012
as one statement. The compiler after evaluating FX,
statement 011, proceeds to statement 012 which is a
GO TO statement by-passing statements 013 through
016 and going directly to statement 017.

When x < d is false, the object program skips one
statement and goes to statement 013. Note the one
skipped statement is a complex statement consisting
of statements 011 and 012. Statement 013, the false
condition of statement 010, is another IF statement
which compares x to d and which essentially asks
the question, "Is x equal to d?”

When x = d, the "true’’ condition for statement 013,
the object program proceeds to the next successive
statement which is a complex statement consisting
of statements 014 and 015. Statement 015 directs Algo
to statement 017. Statement 018, the false condition,
is by-passed because of the GO TO statement, 015.

When x = d is false, the object program skips one
statement and proceeds to statement 016. The skipped
statement is a complex statement consisting of state-
ments 014 and 015. Statement 016 is a statement
which evaluates FX for x greater than d. There is no
IF statement involved, as x < d and x — d have
been eliminated; x can only be greater than d.

After executing statement 012, 015 or 016, the object
program proceeds to type out x and FX in floating-
point notation. The object program executes two
carriage returns, statement 019, and proceeds to
statement 020. Statement 020 is a GO TO statement
which directs Algo to return to statement 009 and
accept another value of x.

ENTRY NUMBERS

The numbers to the left of Algo statements in
Example 8 are entry numbers. The compiler as-
signs the entry numbers as the programmer en-
ters the Algo language program. Entry numbers
have the form DDD and start with 001 and continue
to 511.

FOR STATEMENTS,

SUBSCRIPT AND ARRAY DECLARATIONS
Often a programmer desires to execute one state-
ment several times for different values of a variable.

The FOR statement provides the means of repetitively
executing a statement or group of statements.

FOR The FOR statement repeats a part of the
program a given number of times. The
statement consists of the FOR operator
and an identifier related to three quanti-
ties designated as base, difference, and

limit. The form is:
FOR Identifier = Base (Difference) Limit

For each value of the identifier the FOR
statement causes the statement immedi-
ately following to be repeated until the
specified limit of the identifier is exceeded.
When the limit is exceeded, Algo by-
passes the iterated statement. Through the
use of the BEGIN and END statement pa-
rentheses, the iterated statement may be a
complex statement.

The number of times that the statement
following the FOR statement is executed
may be determined as follows:

Limit — Base + Difference
Difference

Number of Executions =

If the quotient is a fractional number,
then the number of executions is equal
to the integer part of the number.

Example 9

Problem
Find: u; = e*i + x;2
foxx, = —2tox; = 10

where A\ x = 1.5

Algo Program
FORx = —2(1,5)10 BEGIN
u=EXPx +x172
PRINT (FL) =u END

Initially, x equals —2 and is incremented by 1.5 for
each iteration. Algo repeats the complex statement
following the FOR statement 9 times.

There are two methods of using a FOR statement. In
one method, illustrated in Example 9, the FOR state-
ment operates on a program variable and in the
other method, on a program subscript.

In Algebra, a subscripted variable A; where i varies
from j to j + n is an array, that is, a list of quanti-

11

i2

ties. In Algo, arrays may be either data or constant
arrays. Both subscripts and arrays require a declara-
tion to be used in an Algo program.

SUBSCripts

The declaration announces that the
identifier, or identifiers, following is for
use as a subscript for program vari-
ables or for use as a counter with FOR
statements. The numerical values of
subscripts are always non-negative in-
tegers.

The subscript may be used to control
the number of iterations through a seg-
ment of a program or to form a counter
for the number of times a section of
the program is executed.

A succession of up to 20 single identi-
fiers separated by commas may follow
SUBSCript.

SUBSCript ij. kL m

When an identifier, declared a sub-
script, is used with a program variable
in subsequent statements, the declared
subscripts are enclosed in brackets [1.

The equation: u; = e*i + x;? is to be evaluated for i
values of x.

The declaration would be:
SUBSCript i

Subsequent statements might be:
u il == EXP x[i] + x[i]1 2

PRINT (ALPHA)= u [i]
DATA A data array is a list of subscripted
variables, each of which is free to as-
sume « numeric value. The DATA
declaration reserves space in memory
for the array. The declaration also
identifies the array and the size of the
array. The form of the declaration is:

DATA identifier (n)

The number specifying the size of the
array must be enclosed in paren-
theses. For instance, an array ALPHA
has 5 elements. The declaration would
be:

DATA ALPHA (5)

A data declaration may specify more
than one array. To declare two arrays,
MU and NU, each of which has 10 ele-
ments, the declaration would be:

DATA MU (10), NU (10)

CONSTant The declaration identifies an array of
constants and the size of the array.

The form of the declaration is:

CONSTant Identifier (n)

The number in parentheses specifies
the number of elements in the array.

When the Algo language program is
entered into the computer, the com-
puter halts after the declaration is
typed and waits for the programmer
to type each element of the array.

Normally, a subscript declaration must accompany
an array declaration. To refer to a particular ele-
ment of an array, the programmer writes the array
identifier and encloses in brackets the number of
the element. The computer numbers the elements
from zero; therefore, to refer to the sixth element of
an array BETA, the programmer writes: BETA [5].

FOR STATEMENT —METHOD 1

In the first method the identifier to the left of the
equals operator is a subscript used as a counter. The
base would then be the initial value of the counter;
the difference would be the increment by which the
base is increased; and the limit is the value to which
the base may be increased. The numerical values
for the base, ditference, and limit of the subscript
must be non-negative integers.

The quantities for the base, difference and limit of
the FOR statement may be a variable, a subscript, a
constant or the input variable KEYBD.

Table 6

The quantities for the base, difference and limit in
Table 6 may occur in any combination.

Problem

Find:

u = e%i + x;%

forx, =0
and A x = .01
tox, = 1.00

A total of 101 values for u.

Algo Program
SUBSCript i

DATA u(101)

x=10
FORi=0(1)100 BEGIN
ulil] =EXPx + x12
x=x + 01 END
STOP

FOR STATEMENT —METHOD 2

Using the second method, the identifier is a variable.
The base is the initial value of the variable; the
difference is the increment by which the base is
increased; and the limit is the maximum amount to
which the base is increased.

The programmer may specify either a variable, sub-
script counter, or constant for the three values B, D,
and L.

Table 7

The KEYBD variable may not be used when the
identifier is a variable. The quantities for base, dif-
fence, and limit in Table 7 may occur in any com-
bination.

Problem

Evaluate the equation:
u; = e¥i + x;?
for increments of x = .01
The programmer wishes to supply the base and
limit of x at the time of program execution.
Algo Program
B — KEYBD
L = KEYBD
FORx =B (,01)L BEGIN
u—EXPx +x12
PRINT (FL)=u END

Problem
Find:
S AB,
Algo Program

002. DATA ALPHA (3), BETA (3)

003. SUBSCript i

004. SUM =20

005. FORi=0(1)2

006. SUM — SUM + ALPHA[i] »BETA[il
007. PRINT (FL) = SUM

i3

14

PROGRAM COMPLETION

INTRODUCTION

In the analysis of a problem, before starting the
detailed work, a person organizes the general in-
formation, such as, the precision of caleulations, the
project name, and the necessary reference material.
The programmer, preparing an Algo language pro-
gram, also organizes the general information and
presents the information to Algo in the form of
declarations. In the Algo language program, the
declarations precede the program statements.

TITLE

LIBRAry

The programmer supplies the title
which identifies a program for future
use. A program to solve for the roots of
a quadratic equation might have « title
as follows:

TITLE QUADRATIC

A program to solve for the surface tem-
peratures of a jet aircraft might have a
title:

TITLE Surface Temperature — Jet Aircraft

A title may not include the characters:
(.), and =.

As the analyst requests a reference
book from the library, the declaration
tells Algo that a routine contained in «
special library is necessary to the pro-
gram.

The identifier of the routine follows
LIBRAry in the declaration. Following
the identifier is a code word enclosed
in parentheses. The code word has the
form: 0abc000, where abc differs for
each library routine.

The trigonometric routines in Chapter 1
need a library declaration. The identi-
fier for each routine and the code word
are:

SIN 0101600
C0S 0168000
ARCTN 0164000

Note the identifier used to declare the
routine becomes the operator in the

Algo algebraic statements.

FORMALt

Example 14

To declare the sine routine, the declara-
tion would be:

LIBRAry SIN(0101000)

More than one routine may be declared
in the library declaration. For instance,

LIBRAry ~ COS (0168000), ARCTN (0164000)

The library declaration must be the
second element in an Algo language
program.

Machine language routines may be
added to the library. The directions are
given in the Algo Operating Instructions.

The FORMALt declaration specifies the
form in which the programmer desires
the data to be typed for fixed-point nu-
merical output. The programmer indi-

cates the form by the characters S, D,
P. T, and C.

S indicates the sign of the number;
D indicates a digit;

P indicates a period;

C indicates a carricge return;

T indicates that the carriage is to be
moved to the next tab stop.

The characters D, P, C, and T may be
preceded by a number from 2 to 14. The
number specifies the number of digits,
periods, carriage returns or tabs. A
single character dees not need a num-
ber. A tab or carriage return may not
precede a digit or digits. There may be
up to 26 characters in a format.

The form of the declaration is:
FORMA!1 Identifier (format characters)

The declaration may contain several
formats.

The programmer wishes output to be a mixed num-
ber with 5 places to the left of the decimal point and

3 places to the right of the decimal point. The output
is to be followed by a tab.

Declaration

FORMAt ALPHA (S5DP3DT)

BEGIN AND END STATEMENTS

The BEGIN and END statements indicate the bound-
aries of a mathematical process. The BEGIN follows
the program declarations and precedes all other
statements. The END statement is the last statement
in a program. The BEGIN and END statements are
two distinct statements differing from the BEGIN and
END statement parentheses which are part of the
algebraic statements.

The BEGIN statement signals Algo that the informa-
tion following is the arithmetic and operational por-
tion of the program. The END statement indicates
that the Algo language program is completed. If the
BEGIN statement is omitted, Algo will detect an error
while compiling the object program. If the END state-
ment is omitted, Algo will not process the program.

The Algo Operating Instructions discuss the errors.
Sub-programs must also have the BEGIN and END
statements as discussed in Chapter 6.

Example 15

Example 7 becomes a complete program with the
insertion of the BEGIN and END statements and the
declarations.

Algo Pregram
001. TITLE SLOPE
002. FORMAt GAMMA (S3DP2DT)

003. BEGIN

004. x = KEYBD
005. y = KEYBD
006. M—{y — 1)/x
007. P=—1I/M

008. PRINT (GAMMA) — M
009. PRINT (GAMMA) =P
010. END

15

16

INTRODUCTION

In solving a complex problem without the aid of an
electronic computer, standard formulas for the solu-
tion of portions of the problem may be found in
reference books and the formulas substituted in the
problem equations. A similar situation occurs in
programming. Once a program has been written, it
may be incorporated as a sub-program in another
program.

An Algo language program is a process, that is, a
series of actions and operations which solve a prob-
lem. An Algo sub-program is also a process, specifi-
cally, a subordinate process.

For his problem, the programmer may choose from
two types of subordinate processes, Procedures and
Functions. The difference between the two is the
method of communication between the subordinate
process and the program. The programmer must de-
cide which type is the best method for the require-
ments of his problem. The differences between
Procedures and Functions are discussed in detail in
a later section.

Prior to use, the programmer announces the sub-
ordinate process in the general information of the
program. At the same time, he writes the elements
of the subordinate process.

SAMPLE PROGRAM

The following example is a simple application of the
use of subordincte processes.

Problem

Evaluate for several values of x:

a? + cy + b?
y
where,y =ax + b

2z =

The programmer will write a subordinate proc-
ess to evaluate:

y=ax +b

and will call the subordinate process LINEAr.

SUB-PROGRAMS

Algo Language Program
001. TITLE GBS
002. FORMAt ALPHA (S3DP2DT)
003. PROCEdure LINEAr (f, g, h —1i)
004. BEGIN
005. i=f+g+h
006. RETURn
007. END
008. BEGIN
009. a—KEYBD
010. b=—KEYBD
011. ¢ = KEYBD

012. Al:x = KEYBD

013. LINEAr (a,x,b=—1y)

014 z—(@72+cxy+b12y
015. PRINT (ALPHA) — z

016. GOTOAl

017. END

The line numbered 003 is the process declaration;
the lines 003 through 007 are the process elements;
line 006 is a control statement; and line 013 is «a
process call statement. Each of these will be dis-
cussed in detail in the accompanying sections.

PROCESS DECLARATIONS

The process declarations precede the statements of
a program and may precede the subscript and array
declarations. In the Sample Program, the process
declaration for the Procedure Linear on line 003 pre-
cedes the statements of the program, lines 008
through 017.

The process declaration serves three purposes:
to specify the type, either Procedure or Function;
to identify the particular process; and
to identify any input-output variables.

The programmer writes a process declaration in one
of the three forms below:

PROCEdure or FUNCTion Identifier (Input =

Output)

PROCEdure or FUNCTion Identifier (= Output)

PROCEdure or FUNCTion Identifier

In the Sample Program, the process declaration on
line 003 specifies a procedure whose title is Linear
and whose input-output variables are f, g, h, and i.
The quantities f, g, and h are the input quantities
necessary to solve the problem of the subordinate
process. The quantity i is the output quantity calcu-
lated by the subordinate process and transmitted to
the program.

The input-output variables of the process declaration
are the formal names of the parameters of the sub-
ordinate process. Parentheses must always enclose
the input-output variables in the process declaration.
A comma must separate multiple input variables
from one another and multiple output variables from
one another. If the subordinate process has only out-
put parameters, the = operator must be present.

The number of input parameters of a subordinate
process does not have to equal the number of output
parameters. For instance,

PROCEdure MU (x =y, 2)
FUNCTion NU (a, b= ¢)
PROCEdure RHO (a, b, ¢, d = z,v.%)

In this manual, a “program” refers to a complete
process which may include subordinate processes.
A "master process” refers to the specific process
which provides the inputs and uses the outputs of
the subordinate process. A "process” refers to either
a moster or a subordinate process.

PROCESS ELEMENTS,
RETURN STATEMENTS

As a subordinate process is really a small program
contained in a larger one, all the elements necessary
to a program must be present in the subordinate
process. The one exception is the library declaration.
All library routines, used in either subordinate or
master processes, must be identified in the library
declaration on line 002 of the program.

Every subordinate process must have a BEGIN state-
ment following its declarations, an END statement as
the last statement, and a RETURn statement. In the
Sample Program, the elements of the subordinate
process are on lines 003 through 007. Note that the
process declaration is one of the elements of the
subordinate process as is the TITLE of a program.

Exct a5

RETURn The RETURn statement directs Algo
to exit from a subordinate process
and to re-enter the master process.
The section on Process Call State-

ments discusses the re-entry point.

The RETURn statement is normally
the next to the last statement in a
process. (The END statement is the
last statement.) If the RETURn state-
ment occurs at some other point in
the process, the next to the last state-
ment must be a GO TO statement.
There may be more than one RETURn
statement in a process.

The elements of a subordinate process follow the
declaration and must be complete before the state-
ments of the master process. The Sample Program
illustrates the placement of the elements of both the
master and subordinate processes.

Problem
Declare and write a procedure BETA which
finds the values of x = 2.5

y = LOGx
and for values of x > 2.5
y=20

The statements of the subordinate process could be:
PROCEdure
BEGIN
IFx > 2.5
y=0
RETURn END
y = LOG x
RETURn
END

BETA (x —)

BEGIN

CHARACTERISTICS OF PROCEDURES
AND FUNCTIONS

The primary difference between procedures ond
functions is the method of communication between
the individual process and the master process. Be-
cause of the difference, procedures are designated
as independent processes and functions are desig-
nated as dependent processes in the Algo language.

17

18

PROCEdure Communication between the master
process and a procedure is normally
limited to the procedure parameters.
These parameters are the input-out-
put variables of the PROCEdure dec-
laration and are defined in the
procedure.

In general, information contained
within the procedure is not available
to the master process. However, the
procedure and master process may
use the declared subscripts and for-
mats of one another.

PROCEdure ALPHA (x,y =12)

BEGIN

=x12+y

i =Yy72+xey +X

z=h-+i

RETURn

END

The master process may communicate with Pro-
cedure Alpha only through the input-output param-
eters x, v, and z via a process call statement. The
quantities h and i are at no time available to the
master process.

At the time of execution the procedure parameters
are replaced by program variables via a process call
statement.
FUNCTion Communication between the master
process and a function is not limited
to the function parameters, Informa-
tion generated within the master is
available to the function and infor-
mation generated in the function is
available to the master.

The master process must provide
program variables for the function
parameters identified in the declara-
tion. Algo at the time of execution
replaces the function parameters
with the program variables.

A function ond a master process may

use the declared formats, subscripts,
and arrays of one another. The
master must call the function at least
once before using the quantities of
the function in the statements of the
master process.

B

If Example 17 were declared a Function, the quan-
tities h and i would be available to the program. It
the master needed the quontities h and i in an ex-
pression, Algo would supply the values of h and i
calculated in the Function.

Algo Program

Only the statements pertaining to FUNCTion ALPHA
are illustrated.

005. FUNCTion ALPHA(x,y—12)

006. BEGIN

007. h=x12+Yy
008. i =Yy12+ xsy +X
009. z=h+i

010. RETURn

011. END

012. BEGIN

013. a=HKEYBD

014. b—=KEYBD

015. ¢=KEYBD

016. d = KEYBD

017. ALPHA(a,b=¢)
018. t—SQRTe

019. g—EXPh+10Gc+d

The statement on line 019 uses the quantity h from
the Function. Note that the master process has pre-
viously called the Function, statement 017.

The Function may also use the quantities of the
master process. For instance, the programmer could
have written for statement 007:

h=xtc+Yy

where c would indicate the power of x.

PROCESS CALL STATEMENTS

A process call statement directs Algo to perform a
subordinate process. There are two types of process
call statements, one for subordinate processes which
have input-output or only output parameters and
another for subordinate processes which have no
formal parameters.

A process call statement refers to a subordinate proc-
ess by its identifier. The process call statement also
contains the quantities in parentheses which Algo
supplies for the formal parameters.

In the Sample Program, the process call statement
on line 013 refers to the Procedure by its name,
LINEAr. The statement also contains the quantities
a, x, and b which Algo supplies to the subordinate
process.

The quontities in parentheses in a process call state-
ment must occur in the sequence specified in the
subordinate process declaration. For instance, in the
Sample Program (see Page 16) the quantities a, X,
and b replace and occur in the same sequence as the
formal parameters f, g, and b, respectively. If the
programmer wrote:

LINEAr (a, b, x =)
Algo would assign:
atof
b to g, and
x toh.
The evaluation would become:
y=ab +x

In a process call statement, the quontities in paren-
theses may be program variables, numbers, or an
element of an array. However, the array itselt may
not be used. A space must always separate the
identifier and the opening parenthesis.
Exampléf 19
Problem
An Algo program evaluates the equations:
A =¢e* + e
B=v?+logv
and has a Procedure SIGMA which evaluates:
z=x"t+vy

Only the statements and declarations pertaining to
the PROCEdure SIGMA are illustrated.

Algo Program

007. PROCEdure SIGMA (x,y =12)
008. BEGIN

009, z=xT2+Y
010. RETURn

011. END

012. BEGIN

013. U= KEYBD
014. V = KEYBD
015. C=EXPU
016. D—EXP (V)
017. E=LOGV

018. SIGMA(C,D —=A)
019. SIGMA (V, E—B)

When o subordinate process has only outputs, the
process call statement is written without the input
quantities.

BETA (=1Y)

The = operator must be present within the paren-
theses.

For subordinate processes having no declared
parameters, the programmer writes a DO statement.

DO A DO statement directs Algo to perform a
subordinate process. The identifier of the proc-
ess follows the DO. For instance, a program
has a procedure to ring the bell a number of
times. The process call statement might be:

DO RING
A space must separate the DO and identifier.

The return statement in the subordinate process
directs Algo to the statement immediately following
the process call statement. Inthe Sample Program,
Algo re-enters the master process at Statement 014.

The programmer may also use a process call state-
ment as part of an algebraic statement. The sub-
ordinate process called in this manner may have
more than one input, but may have only one output.
In the Sample Program (see Page 16), the program-

ie

20

mer may omit line 013, the process call statement.
Instead, he may include the process call as part of
the algebraic statement, line 014,

014. z={a?2+ c«LINEAr (&, x,b—y) + b1 2)y

The process call is written only once although the
quantity y appears twice in the statement. The proc-
ess call must occur the first time the quantity is used.

The RETURn statement in the subordinate process
causes Algo to re-enter the master process. The
re-entry will be in the expression which contained
the process call.

NESTED PROCESSES

A program may have subordinate processes which
are nested one within the other up to 3 deep. A
program may have o total of 9 subordinate processes.
In our discussion, the nested processes will be re-
garded as being on different levels. Level 1 will
indicate the outer process; level 2, the middle proc-
ess; and level 3, the inner process.

level 2

Figure 2

In Figure 2, level 2 contains level 3, and level 1 con-
tains levels 2 and 3. Therefore, a process on level 1
becomes the master for a process on level 2 and a
process on level 2 becomes the master of a process
on level 3.

The declarations for nested processes correspond to
the order of the levels. The declaration for a process
on level 1 is written first; level 2 is written second;
and level 3 is written last. However, as all the ele-
ments of a subordinate process are written prior to
the statements of its master, the order in which the
elements of nested processes are written is the re-
verse of the process declaration.

Process A Declaration

Process B Declaration

Process € Declaration
} level 1
Process C Elements

> level2 > level 3

Process B Elements

Process A Elements

Note that the elements of Process B contain the ele-
ments of Process C and the elements of Process A
contain the elements of Process B.

A program has three Procedures A, B, and C. Pro-
cedures B and C are on level 2 and are subordinate
processes of Procedure A. The process declarations
and elements would occur as follows:

Procedure A Declaration
Procedure B Declaration

} level 2
Procedure B Elements
Procedure C Declaration

} level 2
Procedure C Elements

Procedure A Elements

> level 1

Procedure B Procedure C

level 2

level 2

Figure 3

In a program, if there is more than one subordinate
process on the same level, procedures must be de-
clared before functions. In a nest of subordinate
processes only the innermost process may be a func-
tion. A function may not be a subordinate process
of another function.

In Example 20, Procedure C may be a Function. The
declarations and elements would occur as follows:

Procedure A Declaration

Procedure B Declaration
} level 2
Procedure B Elements —

Function C Declaration
} level 2
Function C Elements

> levell

Procedure A Elements

A program has 5 subordinate processes, ABLE,
BAKER, CHARLie, DOG, and EASY. Processes ABLE,
CHARLie, and EASY are on level 1. ABLE and
CHARLie are Procedures and EASY is a Function.
BAKER and DOG are Functions on level 2 and are
subordinate processes of Procedures ABLE and
CHARLie, respectively.

Procedure ABLE

level 1

level 1

Figure 4

The program skeleton would be:

Program Declarations

Procedure ABLE Declaration
Function BAKER Declaration
Function BAKER Elements
Procedure ABLE Efements

fevel 2 > levell

\ Program
Procedure CHARLie Declaration ————

Function DOG Declaration

level 2 L level 1

Function DOG Elements

Procedure CHARLie Elements
Function EASY Declaration

] } fevel 1
Function EASY Elements

Program Elements

PROCESS CALL STATEMENTS
FOR NESTED PROCESSES

The process call statements for nested processes
have the same form as the call statements for «
single process.

The programmer may direct Algo to any process by
writing a process call statement in the master proc-
ess. For instance, a program has three procedures,
ALPHA, BETA, and GAMMA, each nested one within
the other. In the program, the programmer may write
a process call statement for either ALPHA, BETA, or
GAMMA as needed. However, the elements for Pro-
cedures ALPHA and BETA may contain a process
call statement.

The following program is « simple program with 3
nested procedures.

Algo Program
001. TITLE Nest of 3 processes
002. LiBRAry SIN (0101000)
003. FORMAt AA({S2DP3DT)
004. PROCEdure ALPHA (M —X)
005. PROCEdure BETA(N =Y)—
006. PROCEdure GAMMA (Q = Z)

007. BEGIN
08 z=arz+a level 3

009. RETURn

010. END

011. BEGIN - level 2

012. GAMMA (N — B)

013. Y—B+B"13 > level 1
014. RETURn

015. END

016. BEGIN

017. BETA(M = C)
018. X—=M=LOGC

019. RETURn
020. END

021. BEGIN

022. F=KEYBD

21

22

023. U—EXPF + ALPHA(F =G)
024. H=KEYBD

025. GAMMA(H=V)

026, W=U-+YV

027. PRINT (AA) =

028. PRINT (AA) =V

029. PRINT (AA) =W

030. CARR(2)

031. END

DISCUSSION OF EXAMPLE 22

Statements 001 thru 006 are the declarations of the
Program. Statements 006 thru 010 are the elements
of Procedure GAMMA; statements 005 thru 015 are
the elements of Procedure BETA; and statements 004
thru 020 are the elements of Procedure ALPHA State-
ments 021 thru 031 are the statements of the master
process.

The elements of Procedure ALPHA contain a process
call statement for Procedure BETA. The statement on
line 017 also provides the quantities M and C as the
input-output parameters for Procedure BETA. The
quantity M is the formal input parameter for ALPHA.
Thus, when Algo provides a program variable for
M, the quantity also becomes the input to Procedure
BETA. Similarly, the elements of Procedure BETA
contain a process call statement for Procedure
GAMMA. The statement, on line 012, provides the
quauntities N and B as the input-output parameters
for Procedure GAMMA. The quontity N is the formal
input porameter for BETA. Thus, the input quantity,
supplied to BETA by ALPHA, becomes the input to
GAMMA.

The elements of the master process have two process
call statements 023 and 025. Statement 023 calls for
Procedure ALPHA and provides the quantity F for
the input parameter. Algo assigns the output of Pro-
cedure ALPHA to the variable G.

Calling for Procedure ALPHA has the effect of exe-
cuting all three processes. Algo passes the input
quantity F to the inner Procedure GAMMA through
the process call statements in Procedures ALPHA
and BETA.

F2+F=8

Qutput — Procedure GAMMA
P+F+F+FP=C

Output — Procedure BETA

FLOGE* +F+(F+D))N=G
Output — Procedure ALPHA

Statement 025 calls for Procedure GAMMA by-pass-
ing Procedures ALPHA and BETA. Algo provides the
quantity H as the input parameter.

ARRAYS

INTRODUCTION

An array is a series or list of values which occur in
a given sequence. Algo provides for “data” arrays
and “constant” arrays. A data array is a list of sub-
scripted variables, each of which is free to assume
a numeric value. A constant array is a list of num-
bers. To declare an array, the programmer writes
either a DATA or CONSTant declaration.

Both types of arrays may be one dimensional or two
dimensional. A vector is an example of a one dimen-
sional array and a matrix is an example of a two
dimensional array. Each individual quontity in an
array is an element. The total number of elements
is the magnitude of the crray.

In o two dimensional array, the elements arranged
horizontally are rows and the elements arranged
vertically are columns. The magnitude is equal to
the number of rows times the number of columns.

Table 8

In Table 8, B is a two dimensional array whose mag-
nitude is 12. Array C is a one dimensional array
whose magnitude is five.

DATA The DATA declaration reserves space
in memory for an array. The declara-
tion identifies the array and the size
of the array. The form of the declara-
tion is:

DATA
The number or numbers specifying the
size of the array must be enclosed in
parentheses.

Identifier (n) or (m, n)

A single number indicates a one di-
mensional array and specifies the
magnitude of the array. In Table 8,
array C is a one dimensional array of
magnitude 5. The declaration would
be:

DATA C{5)

Two numbers, m and n, separated by
a comma indicate a two dimensional
array. The first number indicates the
number of rows in the array, and the
second number indicates the number
of columns. In Table 8, B is a two di-
mensional array. The declaration
would be:

DATA B4, 3)
A data declaration may specify more
than one array. To declare both arrays
B and C from Table 8, the declaration
would be:

DATA B(4,3),C(5
The declaration identifies an array of
constants and the size of the array.

CONSTant

The form of the declaration is:
CONSTant

The number or numbers specifying the
size of the array must be enclosed in
parentheses.

Identifier (n) or (m, n)

A single number indicates a one di-
mensional array and specifies the
magnitude of the array. Two numbers
indicate « two dimensional array; the
numbers m and n indicate the number
of rows and the number of columns,
respectively.

When the Algo language program is
entered into the computer, the com-
puter halts after the declaration is
typed and waits for the programmer
to type each element of the array. The
elements must be typed by column.

Normally, a subscript declaration must accompany
an array declaration. If the array is two dimensional,
parentheses must enclose the subscript identifiers.
There may be up to 10 pairs of identifiers in a sub-
script declaration. Both single and paired subscripts
may be present in the declaration. The form is:

SUBSCript i, j, (k, 1), (m, n), q, r

To refer to a particular element of a one dimensional
array, the programmer writes the array identitier
followed by a number which is equal to the number
of the element minus one. He encloses the number
in brackets. To refer to the sixth element of an array

23

24

A, he writes A [5].

To refer to a particular element of a two dimensional
array, the programmer writes the array identifier
followed by two numbers enclosed in brackets. The
first number is equal to the number of the row
minus one in which the element is located. The
second number is equal to the number of the column
minus one, multiplied by the total number of rows.

Identifier [A, B]

where

A=1i—1and iis the row number of
the particular element.

B =m({ — 1) and j is the column num-
ber of the particular element and
m is the total number of rows in
the array.

To refer to the element B;, from Table 8, the pro-
grammer would write: B [2, 4].

The reason for subtracting one may be seen when
examining the way the array enters the computer
memory.

Consider a 3 X 3 matrix A:

Row 1 Ay, A, A,

Row 2 A, A, A,

Row 3 A A, A,
Columnl Column2 Column3

The array enters the computer memory column by
column. The first element in column 1 enters some
memory location assigned by Algo. The program-
mer need have no knowledge of the memory loca-
tion and may consider it zero. The second element
of the array enters the next sequential location which
may be considered as one. Each successive element
of the array then enters the next sequential memory
location. Figure 5 illustrates the placement of the
elements of the matrix on the memory drum of the
computer. The number of elements in matrix A is 9.
However, by numbering the elements from 0 to cor-
respond to the memory placement, the magnitude of
matrix A may now be considered as 8.

Problem

Raz | Mas

32 ‘:33

Figure 5

Matrix A;; — Allocation in Memory

As stated previously, to refer to a particular element
of an array, the programmer may write the array
identifier followed by two numbers. However, the
sum of these numbers will also give the proper loca-
tion of the element.

Identifier [A + B]

where,
A=i—-1
B=m(i—1

For element A,; of Matrix A from Figure 5, the pro-
grammer may write: A [7]. The location of element
A,; is 7 in Figure 5. The programmer now has the
option of referring to a particular element in one of
two ways.

Multiply a vector B by a mairix A. Store results
as vector C. Both A and B are entered from the key-
board. Vector C will be printed. The matrix A is «
3 by 3 matrix. The formula is:

Ci - Z A.jj X BJ
Algo Program
001. TITLE MATRIX
002. FORMAt ETA (S3DP4DC)

003. DATA A(3,3),B(3),C(3)
004. SUBSCript (1, J),K

005. BEGIN

006. FORI—0(1)2 BEGIN
007. FORJ=0(3)8 ‘
008. All, J] — KEYBD
'009. CARR(2) END

010. FORK=10(1)2

011. BI[Kl— KEYBD

012. CARR(2)

013. FORI1=0(1)2 BEGIN
014, S=0

015. K=0

016. FORJ=0(3)8 BEGIN
017. S=3S + All, Jl = BIK]
018. K=K+ 1 END

019. Cll=S END

020. FOR1=10(1)2

021. PRINT (ETA)=Cl]
022. END

DISCUSSION OF EXAMPLE 23

Statements 001 and 002 are the title and format dec-
larations. Statement 003 is an array declaration.
The declaration identifies arrays A, B, and C as Data
arrays. The array A is a two dimensional array of
3 rows and 3 columns. Arrays B and C are one di-
mensional arrays each of whose magnitude is 3.
Vector C is the result of computation and the declara-
tion reserves memory space for the array.

Statement 004 is a subscript declaration. The sub-
scripts for the matrix A are enclosed in parentheses
indicating paired subscripts. Statement 005 BEGIN
indicates the beginning of the program statements.

Statement 006 is a FOR statement which establishes
a counter for the subscript 1. As a statement paren-
thesis, BEGIN, follows the FOR statement, the next
successive statement for the iterative processing of
I is a complex statement consisting of statements
007, 008, and 009. Statement 009 has the END state-
ment parenthesis. Statement 007 is another FOR
statement which establishes the counter for the sub-
script J. For each value of], statement 008 is repeated
until] exceeds the limit 8. Statement 008 is an input
statement which permits the entrance of the values

for the Matrix A from the typewriter keyboard at the
time the object program is executed.

Statement 009 directs the computer to execute two
carriage returns. The statement parenthesis END in-
dicates the end of the complex statement for state-
ment 006.

To visualize what the statements 006 through 009
accomplish, first examine Figure 5. When I equals
the base 0, J equals 0, 3, and 6. When] exceeds 8,
statement 009 is processed and the program returns
to statement 006. Therefore, when I =0 and J = 0,
the first element of matrix A is entered into memory
location 0. To determine the memory location, add
together the values of I and J. While I still equals 0,
T is incremented and the second value for matrix A
is entered into memory location 3. (I +J = 0 + 3).
] is again incremented to 6 and a third element of
matrix A enters memory location 6. (I + 7 = 0 + 6).
Incrementing] again, exceeds the limit 8 which
directs the program to statement 009. By holding the
value of I and incrementing the value for J, the ele-
ments of row 1 of the matrix were entered into the
computer memory. By incrementing] by 3, the ele-
ments in row 1 entered into the proper memory loca-
tions as if the elements were entered by columns.

After executing 2 carriage returns, I is incremented
by 1 and statements 007 and 008 are repeated. When
1= 1, the elements in row 2 of matrix A enter the
memory locations 1, 4, and 7 for]=0, 3, and 6,
respectively. Again, the elements enter the proper
memory locations which correspond to the position
of the elements in the columns of the matrix. The
process is repeated o third time for I = 2 and then
proceeds to statement 010 when I = 3, that is, ex-
ceeds 2.

Note that by incrementing J while holding the value
for 1, the programmer types the matrix A by row
and enters the elements by column in the computer
memory.

Statements 010 and 011 provide the means for enter-
ing the vector B into memory. For each value of X,
a value of B enters memory until K = 3 at which
time statement 012 is executed.

The reason for assigning the subscript K to B may
be seen by examining Statement 007. The subscript
I is increased by 3 whereas the subscript for B must
increase by only 1.

Statement 013 is the FOR statement which estab-
lishes a counter for I. The BEGIN statement paren-
thesis indicates that the statement for the iterative
process is a complex statement. Statement 014 sets
S equal to 0 where S is the sum. Statement 015 sets

25

26

the subscript X equal to zero.

Statement 016 is a FOR statement establishing «
counter for the subscript J. The BEGIN statement
parenthesis indicates the statement for the iterative
process is a complex statement. Statement 017 is an
algebraic statement which directs the computer to
replace S with S + A, ; « Bi. Statement 018 is an
algebraic statement which adds 1 to the value of K.
The END statement parenthesis indicates the com-
pletion of the complex statement for statement 016.

Statement 019 is an algebraic statement which re-
lates S to C;. The END statement parenthesis signals
the end of the complex statement for statement 012.

When I equals the base 0, the program has three
iterctions for J and K. For eoch iteration there is a
new value for S, K, and |.

For the first iteration of I,
S=A,B, +A.B, + A.:B;

When] exceeds the limit 8, the program processes
Statement 019.

C; =8 = A11B1 + szBz + AISBS

The program then increments I by 1, resets S and K
to zero, and repeats the iteration for J.

For the second iteration of I,
S = A,B, + A,B, + A,.B;

Where] exceeds the limit 8, the program processes
statement 019.

Ci =8 = A21B1 + Angz + A23B3

The program then increments I by 1, resets S and K
to zero, and repeats the iteration for J.

For the third iteration of I,
S = A31B1 + A32B2 =+ AssB3

When] exceeds the limit 8, the program processes
statement 019.

Ci=8=A;B, + A;B, + A;:B;

Now when I is incremented, I exceeds the limit 2 and
the program proceeds to statement 020.

Statement 020 is a FOR statement for the subscript L
Statement 021 is on ouiput statement which directs
the computer to type the value of C; in the format
ETA. The statement is executed for three values of L
Statement 022 is the program closing statement .

TAPE INPUT-OUTPUT

Two statements, READ and WRITE, govern tape
input-output. The statements are for use with data
and constant arrays.

READ (P) The statement causes a block of data
punched on paper tape to be read into
the G-15 memory. An identifier follows
the closing parenthesis and identifies
the data on tape. In Example 23 the
statement to read array A from tape

would be:
READ (P) A
Note the absence of the = operator.

The data on tape must be in floating-
point binary form. The data is read in
blocks of 100 words. If an array has 100
elements or less, there must be one block
of tape; between 100 and 200 elements,
there must be two blocks of tape; be-
tween 200 and 300 elements, there must
be three blocks of tape.

WRITE (P) The statement couses an array to be
punched on tape. Numbers are punched

in floating-point binary form.

The array is identified by an identifier
which follows the P. In Example 23, the
PRINT statement may be replaced by a
WRITE statement whose form would
be:

WRITE (P) C
Note the absence of the — operator.

No FOR statement is necessary and the
array identifier is not subscripted. The
data is punched in blocks of 100 words.

INDEX

The numbers in parentheses refer to Examples, Tables, and Figures illustrating each topic.

Alphabetic 2, 3
Alphanumeric (See Identifiers)
Arithmetic (See Operations)
Arrays (See Declarations)
BEGIN (See Parentheses, Statements)
BELLS (See Operation — Mechanical)
Brackets 12 (E10)
CARR (See Operation — Mechanical)
Constants (See Identifier)
Control (See Statements)
Conversion
Fixed-point to floating-point 5
Floating-point to fixed-point 5
Declarations
Array, CONSTant
One Dimensional 12
Two Dimensional 23
Array, DATA
One Dimensional 12
Two Dimensional 23, 24 (E23)
FORMALt 14, 15 (E14, E15)
LIBRAry 14, 21 (E22)
Process, FUNCTion 16,17
Process, PROCEdure 16, 17
SUBSCript
Single 12 (E10)
Paired 23
TITLE 14, 15 (E15)
DO (See Statements — Control)
END (See Parentheses, Statements)
Entry Numbers 10 (E8), 11
Evaluation, Order of 3 (T4), 4 (E3, E4)
Fixed-point Numbers 5
Floating-point Numbers 5
FOR (See Statements — Control)
FUNCTion (See Process)
GO TO (See Statements — Control)
Identifiers
Constants 3
Labels 9, 10 (E8)
Variables 3
IF (See Statements — Control)
KEYBD (See Statements — Input)
Labels (See Identifier)
LIBRAry (See Declarations)
Mechanical (See Operations)

Nested Processes (See Process)
Operations

Arithmetic 1 (T1)

Mechanical 8

Special Arithmetic 2 (T2)

Trigonometric 3 (T3)

Qutput (See Statements — Qutput)
Parentheses

Nested 2

Use 1, 2 (E1, E2)

BEGIN and END 10 (E8)

PERIOd (See Operation —— Mechanical)
PRINT (See Statements — Qutput)
Process

Call (See Statement -— Process Call)

Declaration (See Declaration)

Elements 17

FUNCTion, Characteristics of 18 (E18)

Nested 20 (E20)

PROCEdure, Characteristics of 17, 18 (E17)
READ (See Statements — Input)
RETURn (See Statements — Control)
Statements

Algebraic 1

BEGIN and END 15 (E15)

Control

DO 19
FOR 11 (E9), 12, 13 (E11, E12, E13)
GO TO 9, 10 (E8)
IF 9, 10 (E8)
RETURn 17 (E16)
STOP 9, 13 (E11)
Input
KEYBD 7 (ES, E6)
READ 26
Output
PRINT 7, 7 (E7)
WRITE 26

Process Call 19 (E19)

STOP (See Statements — Control)
SUBSCripts (See Declaration)
Sub-programs (See Process)

TABS (See Operation — Mechanical)
Trigonometric (See Operation)
Variables (See Identifiers)

27

28

TYPICAL PROGRAM

FIND: THE SoLuTioN OF THE DIFFERENTIAL EQUATION
py/bx = Y 4+ SIN X + POLYNOMIAL (x)

WHERE ,

POLYNOMIAL (X) = Az + Agx + ApxZ + A7xS + agx4
xmin =0

Ax = ,001

Xmax = 1

PRINT VALUES OF X AND Y FOR INCREMENTS ofF x = ,01,

ALco PROGRAM

THE
THE
THE
THE
THE

Te

2.

3e

4,

5.

.

Te

8e

9
10.
1.
12,
134
14,
15,
16,
17,
18.
19.
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30.
31.
32.
33.

PROGRAM IS SHOWN IN THE FORM IN WHICH IT IS TYPED INTO
G-15 coMPUTER. THE OPERATOR TYPES THE ® sSYMBOL TO INDICATE
END OF EACH LiINEe THE COMPUTER THEN AUTOMATICALLY RETURNS
CARRIAGE, TYPES OUT THE NEXT ENTRY NUMBER, AND WAITS FOR
OPERATOR TO TYPE THE NEXT LINE.

TITLE DIFFERENTIAL EQUATION soLuTioN ©
L1BRARY sIN (0101000) ®
FORMAT Esw(pP4pT), RNG(DP4DC) ®
PROCEDURE POLYX (R = suM) ©®©
CONSTANT A(5) ©

o5 ®

o4 ©

03 ®

02 ©®©

o1 ©®

SUBSCRIPT | ©®

BEGIN &

sum = A[0] ©

FoR 1 = 1(1)4 ©

suM = suM ¥ R + A[1] ©

RETURN ©

genp ©

BeGIN @

START: DX = o001 ©

XPRINT = 001 ©

x=0 ©

y=0 ©

FY: Y =Yy 4+ bx * (v + sIN x + poLyx (x = sHirL)) ©
X=x+0x ®©

IF X < XPRINT = o005 ®
Go To Fry ©

PRINT (Esw) = x ©®
PRINT (RNG) = ¥ ©®
XPRINT = XPRINT + 001 ®

IF x<1 ©
Go T0 FY ©
BeLLs (5) ©
END ©

. sf'w:wfz?f:» émi' ..
s ;»3“ .
e *@
r . .
J::Z;"ﬁﬁ!eﬂ;:& .
Gra :’i'su:i?/«:ﬁkt;a; 3,“; .
th =

. w - e e o
Tl e
S :e,re,vuy».:f:;,,: o
. « ’~A» -
o fsw:m;ﬁwg

...
e e
. Ha "x:;é»iw;»m S

AR
-
TR 'Ez'f[‘v:;fij,: e e
,:;;;5{2,;; /3rm(w?':&'v¢ e
- .
N vy vr«wm L
g TORM L ...
»,?§~ OSTOR «f“égwm '*?'« §,¢@ = éw,ew,,& . -
& ‘w«:‘a\g@«;e’:riﬁ:g:a,e,g,?m;«,y o . &
.. o
L

-
-

. xw
“*'"*“'**’*'*w’*»i”w«r »:;«w,u;u,;;u;,;,«,v,mw, e
. .. .
. .. -
onen *M««"*wa o «(xx
f - x o ;,:;;Taw»rarm«"«»' },zj;:ut,(,“;w, cioine
. « ASSAC .
o - 'égw - “':a we Ww w b
. ~' YLST fo 3 Z'h .
e - o w
S i
. ~~e¢k~ﬂr“ .

. «« o e»»i S
...
Mm«wwmf«;@g@ <& L
.
o g;:&;:g;;;f;i;;w"w i
° o = r¢,y,~,§)\;,~3z5 S
. «*wa‘ S
: = s
. re;,:@» ~;~,‘,,A:s~,;~““‘;;v L |
L s N
 eAsiiG o 20 st 5 - xﬂé%”w
L rARITOL e A ;““,«,% . we e ;,rfzt;,;,:;“,& Me« %?%ﬁ
y’***m* . 3”‘5*”%» ... = - ‘f:, ~,;*~,;xﬁf,:z;y i »:,;r / L ’F OF ﬁ"xw L
'A;m”;mMMM‘U""”3"““"“ e o = o Seen e G o g]j 8 C, énw b n e
s o . o e somesses s s RLY F | £ Lo i
:N“ e «x f - LE! xx - «V,wg - W S F »1 B ‘VE .- o -
TR J 108 e EVARD BEV) ;.“‘",
g - - ;. LA CIE Ww o el &
4o - . ‘ - ﬁwz ENEG
F M&\»@»%%RWMM . 9 'é % LA CIENEGA
E e ém o g «()Mé? . aw
i Awr,_»w . ~ .
xmw,é EANDER ;-w é}tm .
o OL wn,,_ S
E ct?»*au(cpah M . “5”
N - «mv@ .
e 'YT"G?{?'?{?::&B'@ . WWM -
x:;m i .
s ? ;«j;:f\“z,,;;,&,; -

. .. =
. a0 .
e eue f«} D
= 2,

sesesnaase xwwrr o ~~yé”
- . ,,,=;«:,«,K,;»w,ajxrwy(;iM,@;;g:g,,;,@,:;{Fgﬁ;(%i;ﬁ’:'W”‘ﬁ;‘wwu :
- a,«mmww»w»?zww ?‘i‘;’*"m&' ww“h~M;~w;M -
- c . o -
EmEsE s }@mwwﬂ “:WM;;,%,V,g;.g/,@m,gu:;»5,qgﬁrm . .
Sy M: ’:fr‘s‘.f,ixém,e;, o «y&g;m;*@ S *emw .
s ssE e eww
. e quMMW?”) 13 0 W:wﬁé? -
‘ y(’v;ﬁw - ... i _CLEY D8 A mw» e

e . g 2 &“‘/M? i ‘
& . ??(?~»V(,,v~ o L 10 1 ;,,,mw,,,,:;;:gg L 4
. .. e s
~wé~m¢x¢,w@$¢é 5 PUBLIC sQU
P . :;@;mgw,;eg,:rw;m;mgggmm_,ﬁ = .
e }:@rﬁ,:,w:,wc(5@?,mﬁ,g;;z,,;»mwue:;rqngzy{w,@;;y;ru».:,:r;« vem s
k. - :.mr; - .. e 0 o

F - »uae - -
s ~**r;g; &xg~»~e« . &xg o — *x . .
é”? e 7 CHICAGO . e ”W,wx .
R e dni i ﬁ,\,ma&www S . '
S :n:d,t:,&m:}w;ir‘zf:,;,&;’r!v:3{;&:&5»’(3r@&»ragrg%,&z@@:gr@,V,?,w;w& UMMMWW
. .. -

q) e eég?egixjm
. L k(‘\4“‘ S
. ”*””
= . - M'w'!f Q}’ x Ms*,w.:}em -
”” '”' uwu;,»&,W,M,,‘,,,M wisn
- ew " A ¢ ,:;r; “ ,m MN '”' ,.,;« e
L “~ v o « J_M . g, 'a%w =
 MICHIGAN | “sf N uE el
- N MIC s e
... . 9» Q &}a B iex S
e %%~3?M ;;a;m» ,ma;,,;,w& s
m*xe;uem o e
Toai

| Michiean 2.6692

e M»MMMW,N;,
sibienand -
. -

S
-
. st ‘7;&;‘!"~:::»r;f;fé««w?ri‘@'w«w* .
. P .
SRR aswf’a'/;% . - s R 3v'u'?’r‘»LK,,&jors::zr“‘,y,r‘;,;:}[,‘;:;h:, e ~~!??1”é' FEJ& ?'l”e’ré’ r%
e o e j'wv o ~"M&',‘j’a%;}’rxr}?;;\»g;ﬁwzg;?@f;,x;M;,;;?””"ﬁtntw - .
R’Qfﬁf»’“{kg L - »N,“MW(h)»mgw'y:wxwédW ””“e &@? o ;fr;,@ww
el e - e 2 “*“‘)wzzxwa»‘ e
s s - oL oo ... S
e — ;~“ - ;m;m w, - e
“ o o y?, ~~s*ﬁ - ? ~ ~ ‘5?*‘ “ ?‘s‘;"z@'~~f§ | é& *% ':w; i,» = %;ai;tzyr""«*f LR
&;,gz,pmé i mw:@@;“ m,;ifym@,m3@,,z@«::.;;;g,fgg;m mw@" W ’Ya Ul &LP, &‘,wa, We M ? e
. ma e e
rl,xwiv’3@'!'{"&‘s"3'3'5»’1«::‘,’3”?'5?‘:FE'R’L . . a«,yxi%é > ,z,,,,a,(g;uw ..
- . - -
,’;,t,‘n’f’sx"f’?‘,’%:’E',»'7',{'1“",}'3%,'5~A:',’~L:’,ﬁ{',it . S —
... - e
... . =]
Y%r?,,g,g(k?::i' o ;,&,;,,g,f,:;;w@,g, o oo ey . S '?;?WA: Gotman o et
£ . 5.1403 s, st *”x;?aﬁxew”fm “5@
~» ~& o LESaEae ¢ y,e;f;;w; 5, o - 2?:» . rw“~ .
e . g ﬁk I A .,&’»%uf‘%’vy - - ~~w,u5,; - . > 1L 1E o w wr &g;,w, -
R v G = ey S ,e, . v~ L ‘“'x .
Wil . K x,(m,l,,,,yf,:«,;,y,,ﬁﬁrgiﬁ:»ﬁvawgmzwr»mzr,rg?:a;@w«c> »? - *‘** ; E W o eww e
e . e e ;w:gw,w o zw@
o '?u'w:}’(ﬁu@w@r o 'zr[x‘;rija‘:;:;mswpre:r:{,mi:;z:gr:u@mg%(@:er:’& y: R e
. ...
G . -
E
G IDE /- e ——
“ RIvE - isearaianan
e ¢~~~m i - 'ﬁ.,;;;",’""?«;l‘?,w':'y"v'? ;]
3*@;““"““&5:“?,“ J— e»vm"”a:'{tiix“gx g*ww e;wie%»mm
SR, e W~M?>a~ew smsmesy : o ’a&ﬁ;“?“@“{ Xat;’wffegge%«? . fii“;i;,;';'*:;a:‘ e
s e SRR S - ... - L
S e - N .
. ‘“u“x«*‘4 - ?‘? M - % . .
"WMM~M »~~ew”~ mkg,,c;;ks;:,@ fqr zﬂ '*v;mog “,;,, ﬁ * f?} W, W . ',&Jg}mei»,ﬁ'ﬁ?a% S
a e o o ;« O DET L w mER R
C L e B s ~ . M y Al . DE pf e :,~ S
s e) Sormaseaas Am,aws ey ,x DA L
. LB e e . e .. M,,MW, L
,\%,ly,,},hwc,;,_,,,,,k,?Lw,z%;,,;;1,,(,y,},ﬁyze,,,,m.;;WW,,,XM - ; s IGk @&?, =
. .. O WES » . o =
. . 1;"&{&xr:ir?'gl“('qng‘y:Em';:y{ém«y»«w&:wm"Q?’q' ﬁwww o x -
&xexwu .. e -
... . L
L ?'z:‘é'g‘s(g*ﬁ'»%?‘ R
w:“fz Lo 37] —
S . 687889 - .
. e o - o . K, e,
. e . - . N
-~ . - N
E . & a“myw ;,;,;,,\e Mm,
s g
TR e g
i S .

. MW,W&; .
G Y ,,.i .
oo b

EsaEmEese
L
s 's:«mﬁmm&«é yi& &M -
s R c”:« o . e
e o . < '“*‘Zi'f‘:‘“m .
L im (org
o A . 17, MEY . avm»,m e
e 3%»’ *i o wﬂ@"ﬁ %"%:(Q»«,,vw;’r;@g,mi,;:{’ v«mwaw«. e
s @g;ﬁ!ﬂy&»w,wm o 1208 -
A = T - T ~~""w"“*fJY‘,’M‘,’T'PJ“’?%@'«@. .
i 5wv~r5:§ e ;,wm - %@iﬁ”’ hee e
»‘f:;‘;; - 5%;(\“6»&&12 - »Jé;,m,;;éfg@;{@ 205 E ST 4 e e
. w»xy,‘x@g . 2c e
... . s
tE... ..
T o .
S ;, @,3 , W w% M;% x;k:
. prgidols EG ;», «em .
"”'2“' ‘"* 3“’ . ?w_w -
o % o w”m‘w =
o » o i

o i,

saE ,,@,; . é ;rw o

a0 .. N
. N

© KANSA ‘? ﬂ :

v s é,f,ﬁ
3 s
. {mw

.

- T
L senommee
@ﬁ : - *M -
. UMN, .
N =
-

e
sErEREsR e
-

e

T e

Shmasns i

e

-
e

-

s
. o
SR

. . o

e
-
e o
e é;f@ag@ - Jiﬁw:x
- ~::~-Msx,,,z,f;&:,@%m .
. wewe . e L
. . . m‘mé;‘}’w:w o
b - rmw«»wtw e -
e o f,,w, irixh:f”wgwx,y;f«rg?ﬂ3«&@%‘ .
- mm:wwww%‘ “) - ~?~~)wr*h»~.ma~aﬁ et
- ""*‘“""*'”“" 11 . L
i 1 W o »' Ty 11, 2 ~w&«> S B
- "’ C M’x o /?,Y,'”w“,x:ywwa,m o
- 2
‘ ¢ e e
' - “’“” 1 ¢ ;, rmuwaw w -
. ;"W - . L ~~w » * S
- . ,» 26 ,»é,f M e
”m_,yea,«:e;wK,N,S,%,, .
. o

|
e o —

- ;”“3’(1,”@,14 - - .& e,

. o "‘"‘"' ;‘ «7~ . N

. . ;«,m, ..

. -
.
.

cosEsT
- Ln s
. - ~
=
s
. s S;;M,FQWW o
NADA X e ,
NAD 5 s e s
NALA S i”)'u«é@wpm&h
. .
.

: : Nie,é
s Jw;,:m L %gw% -
s M;{w»@ Le‘ w*sx’ - wmﬁm@ o Qm”g» .
“Q BOX 5¢ «@‘i&gy*» .
M"W r’ \NA “? PO = o a = =

= '" r&:m & s

i e u s

e ; wg%&& * e

L ,)M i gﬁia@g;;f {A,»W,,,x

£ E e

.

i

-
.

-

.
-
.

M,

[|
.
7 . i

o s

v:f”fm «»m,w .

e -

.

i

L
e
(,M” ;;wé

b MMW\ S
e ,,*

=

,»w i
.

|
s
T
o s
- % {ﬁf::; g
.,,e o

-
— w‘;mw e g .
' ” o - o ,;

e ‘,; «g@am‘ o o 3 L BN =

w» «‘» é«&% - ww%l

-
.
-
’9\(

.
.
.

-

u} .
o
 bonats &%’”w:
e
N LI NS WW,,

. = e
= e ma@ «;sw“;@an e
= =
. e

o

-

- . L
o . M&w*ﬁww e
..
L

Ws

S

b
M«,;a»;ft - :zf;f .
- S

e~*~
e
s
o =
%&'&-»,zi@m&vw:, -
. - e
o -

. i te& e >,7, s
s
s

- i
.
e - . ’~ .
- . - {WJJ
e Q e ,M, >, "5)3‘?_:) gﬁ&az‘ RR 17 .
_mr ;,amm u,x,v@ ' . T 4 ND S1 ,¢
IR Mw 5 ”M 4c
g«;}i&fa;‘»fi%a””,}‘&,x& - ﬁiﬁﬁf NZ MQ ,iw o
R w , -
N A NI =
; -

e - 35 =
e 3,»@ o
- . e
. -
7 G . -

o

s

-
b

AR R

e
- wa e
SEneae
-

k&«’&z«églﬁ,p)\rn;z

.
N

Mo, N

e, .

s

&&Eaf . .

s

e
messsusmsaes
e
5“} i — .
o v' "1 ,&,

e mwwmw;,
sEmasmesee . W ?i .
3 -
*; ! w coss

s
e
o
Wmm .
e
=

-
i
e mmw@? 335‘}‘%&
e wz;srx: ',*éuf :m& o
;s e . D
o -‘AW KK“Z&W;AWM ,ﬁ ﬁ = H
o - ,«Lﬁ, Lé it)

-
.
o .
.
-
e
o ,mw Y : L
o «ew -
s e
xww:‘zmw ﬁu, .
: = :
e e e
e
o - L
. ..
. www:eﬂ:‘::w@ .
. 33 -
. Gi

.
TERLING
. ey
e wx»»a»
. - &) . ,»,;@YW o

-

o
-

-
‘@tﬁ

v ?“M e
i r;ns;r L

s e?[{‘s»n!" o

L
«%,

ELES ASICALIECRNIA
S TANGELES AL

i v

Sy 5

T21
AUG1960

