FOR THE
BENDIX G-15

COMPUTER

~ WYANT and HOWELL

R

LINSLEY WYANT

Mathematics Department

Cabrille College
Watsonville, California

JOHN M. HOWELL

Mathematics Department

Los Angeles City College
Los Angeles, California

| clear and add & .=

position ’pa'p‘éi;“_',‘ ‘

WM. C.BROWN COMPANY P

135 SOUTH LOCUST STREET @ DUBUQUE, IOWA

FOR THE

BENDIX G-15

COMPUTER

NOTES . . LOCATION|[K | OP | ADDRESS ACCUMULATOR
— [
: 1200 30 |00 | 05 ?
(1251) 1 L2 |12 |51 a
2 33 |21 !01 a
3 ”u3 21 ;01 28

Copyright 1961
by

-Linsley Wyant
and

John M. Howell

Manufactured by WM. C. BROWN. CO. INC,, Dubuque, Iowa
Printed in U.S. A.

Preface

With the use of digital computers in business and industry enormously
increasing, colleges, universitlies, and even high schools have been estab-
lishing courses in the programming of these machines. Many institutions have
acquired computers for use by students in such courses, and the Bendix G-15
1s one of the machlnes that is belng rather widely used in this way. One
problem in developling these educational programs, however, has been the small
number of textbooks available. While several books have been written des-
cribing the techniques of diglital computing within the framework of a hypo-
thetical machine, only a very few have been designed around an existing
computer., There now seems to be a strong need for this latter type of book
since so many schools have installed machines. PFurthermore, the ideas basic
to digital computing seem best understood through the actual use of a
computer.

Thls book, then, ls designed to provide the fundamental concepts
necegsary in digltal computer programming and to serve as a text for courses
in which a Bendix G-15 is available to the class. It is hoped, too, that
anyone Interested in digital computing, and the Bendlx Intercom systems in
partlicular, will find the book useful.

The material was developed from two distinet courses taught at

Los Angeles Clty College, one for students majoring in Mathematics, Science,
or Engineering, and the other for Business Administration and Soclal Science
students. Both are offered as sophomore courses. An Important feature of
both 1s a weekly laboratory session for every student during which he learns
to operate the computer and to carry through the solutlon of problems he has
programmed. Experlence so far indicates that thls activity is of very great
value In learning the material. :

The first seven chapters of this book include the fundamental topiles
which have been covered in the courses. Chapters 8, 9, and 10 explain some
Interesting additional features of the Intercom systems and examples of
typlcal applications. This material could be used to supplement a course as
found appropriate. The Appendices contailn reference material including cards
which may be clipped “from the book for quick reference.

It is hoped that the many flow charts, worked examples, and sample
examinations will be found particularly helpful. The number of possible

exercises 1s virtually unlimited; those included have been successfully used

and are generally desighed to keep down the output time requlred in lab
sessions. \

Those famlllar with computing will note that the Intercom systems
operate entirely in floating point so that fixed point programming with its
problem of sgcaling is not included in this book. Also, it 1s not possible
in the Intercom systems to modify commands by direct arithmetic operations,
so that this technique, too, has been necessarily omltted. Students who

i1l

learn Intercom, however, should not experience difficulty in learning these
additional techniques if necessary. With the trend toward floating point,
index registers, and compllers, these omlssions are now less significant than
they would have been five or more years ago.

We are very grateful to Dr. Rosella Kanarik for teaching from the
book in preliminary form and for .offering many valuable suggestions and
corrections. We also wish to thank Mr. Marshall Elder and Mr. Glenn James
for detecting errors and offering suggestions, and Mr. and Mrs. George Wyant
for their work in editing our grammar, Our thanks to Mr. Howard Mark of
Bendlx Computer for reviewing the manuscript and to the Bendix Corporation
for permission to use some of their material,

The authors wish to express speclal appreciation for the valuable
contributions of Mrs. Joan Jack who assumed the responsibility for the
production of the typographical portions of the text.

The Bendix G-15 Computer

iv

OO0 wI e e ev

0O L O VUV

o0 V00 0O

OO0 00O

®

\

0

0 0O 0

(,,

) Pl

®

L

o

. *

o Table of Contents

@

’

P CHAPTER PAGE

l. INTRODUCTION TO COMPUTERS .

o 1.1 Background 4 4 1
1.2 The Schematic Arrangement of a Computer o e e o e o s u 2

o 1.3 Basic Computer Operatlons . . . « ¢ v v v v o v « « o &)Z
1.5, Computers Compared . « « « v o v o o o o o o o o o o »

@ 1.5 Applications . +v +v v v v ¢ 4 4 0 4 e e e e e . . 7

® 2. THE BENDIX G-15 COMPUTER

® 2.1 Description of the Computer « . + + o« ¢ « o o + o o + & 8
2.200mmands...................... 9

\. 2.3 Data L] L] L] . L] . L] L] L] . . L] . L] L] . * lo
2.ly Example of an Intercom Program . . . v ¢ « ¢« o o o o 11

‘ 2.5 Starting the COmputel" e & & e e s e s & ° s & e e o & 12
2.6 Loading Intercom . « « v v o v o 4 & o o o o o o o o o 13

® 2.7 Operation of Intercom . « « &+ v & v &« o o o o « o o o & 1
2.8 Storing and Executing a Program . . . « « o o o o o o & 15

o 3. FUNDAMENTAL ARITHMETIC OPERATIONS. SINGLE PRECISION.

‘ 3.1 Comands [] . [] L] . . . L) L L] . L) L] . L] . 18
3.2 Example of Addition and Subtraction s s e o s o e 20

9 3.3 Commands for Multiplication and Division e e e o o o » 21
3.l Example of Multiplication and Division . . «. . « .« o & 22

‘ 3.5 Intercom [] L] L] L] L] L] . L] . L] L] L] L] ‘. . * * L] . 23
3.6 Commands for Input, Transfer and Halt o e e s s e e e 23

P 3.7 Evaluation of a Polynomial e 4 e s s e e e e e e .. 2L
3.8 Solution of EQUations « « o ¢ v o o o o o o o o o o o o 25

® 3.9 Similar Programs .« « « o o o « o o o o o o o s o o o o 26

® 4. LOGICAL OPERATIONS. DOUBLE PRECISION.
4.1 Double Precision . . . e e e e e e e e e e e 28

o .2 Conditional Transfer Commands. Flow Charts 28
4.3 A Further Word about Flow Charts . . .« « o o« o« o o o 31

o 4.y The Loop Concept. Data Modification. . . « . . o . . . 31
4.5 Command Modification by Replacement . . o o o o o o . . 37

o L.6 Sample Examinabion . . ¢ ¢ v v v o o o o o o o o . . L0

® 5. DEBUGGING
5.1 Basic Principles « « « & « o o o o o o o o o o o o o Lh

o 5.2 Error Indications « & « ¢ v « o v o 4 o o o o o o o o . L5

°® 5.3 Memory Interrogation . . . e e e e e e e e e e 45
5.4 Automatic and Manual ‘I'racmg © s e 6 o s 4 s e e 6 e . L6

P 5.5 Correction of Stored Programs . « « + o« o o o o o o o » L8

@

o

P v

9

CHAPTER
6. INDEX

oo~o~onoNONONONON

0 o= NV W+

TABLE OF CONTENTS (continued)

REGISTERS

The Command Modification Problem . .
The Intercom Index Reglsters . .

Modifying the Word Positlon of a Command .
Modifying the Channel Portion of a Command
Use of Index Registers for Typing Tabulating N

Use of Index Reglsters with Data . .
Output Format Control with Index Regis
Summary . . . e e s e e e e e
Sample Examination e & e o s o s e o

7. SUBROUTINES

General Description ,
Writing Subroutine In Intercom .
The Intercom Subroutine Library .
Loading Library Subroutlnes . . .
Programming with Library Subroutines

Example of Use of Subroutines

8. SOME GENERAL EXAMPLES

Programs for Punching, Loading and/or

Decrementing Index Reglsters

Block Copy Operations . . .

Index Register Operation, Intercom 500
An Important Flow Chart

9. SCIENTIFIC EXAMPLES

9.1
9.2
9.3
9.4

10. BUSINESS, STATISTICAL AND DATA

10.1
10.2
10.&
10.

10.5
10.6
10.7

APPENDICES

INDEX . .

Solution of Quadratic Equatlions . . .
Evaluatlon of an Integral

Newton's Method for Solving Equations
Subroutine for Square Root

Search .,
Sort
Merge . « « « ¢ « o
Business Examples .
Finance Examples .

es

Random Numbers
Statistical Examples

.
.
.
.
[
.
.

vi

ters

.
ers
L]

.

.

L]

Typing Programs

. . L] .
o o ® @
e o o o
e o o
* & o @
e & o @
e o ® o
s o e e

PROCESSING EXAMPLES

* ® e & o o
e o o e o

® & & © o o @
* & e ® o »
s & s © o o
® o & o & e o
e o o * @

e » o e o o o

e s @ o * o ¢ e & o

92
93

96
97

102

103

109

Chapter1

Introduction to Computers
1.1 Background

An Important objective of this course i1s to achieve a rational under-
standing of digltal computers which, while unquestionably remarkable, are
perhaps not so mysterlous as the popular press would have us believe.

Whether or not computers "think" 1s a perilous question but, at least at
present, it seems lnappropriate to term them "giant brains.™ In any case, it
may help to view them as a natural development of our search for more
efficient and rapid means of numerical calculation.

The earllest efforts to ease the burden of computation were not

‘mechanical. The most dramatic of these was doubtless the invention of

logarithms. Others, less well known, began to anticipate mechanization.

One such device was "Napler's Bones," a set of numbered bars invented in the
late 1l6th century by John Napler whereby he attempted to simplify tedious
multiplications.. ,

The mechanlcal stage began with the invention of a numerical-wheel
calculator by Pascal in 1%u2. This device led to the modern adding machines
and desk calculators with which most of us are familiar if for no other
reason than our frequent trips through the check stand of a supermarket.
While these mechanical counters are very useful, they have, from the point of
view of control, at least one major weakness. It 1s necessary to keep
telling them what to do. Even if the same series of calculations is to be
repeated hundreds of times, the desk calculator must be actuated by the
operator at each and every step, and in a lengthy problem this requirement
can be prohibitive.

Thus we come to the development of means of automatic control. The
problem 1is somehow to pre-set a machine to repeat a series of calculations
automatically as many times as desired. One of the most successful ways of
doing this has been the plug board system in which wires are inserted into a
panel rather llke a telephone switchboard, and the pattern of these wires
determines the sequence of operations to be performed. The data may be made
available as a pattern of holes punched in cards or in paper tape, so that
the numbers become available to the machine sequentlally. Such a calculator
is called an externally programmed calculator in that the control of its
operation 1ls, at least by comparison with what is to come, external to the
functloning hardware of the machlne itself. Because of their abllity to
operate automatically and at greater speed than the desk calculator, literally
thousands of such machines were built and many are still in use. But like
the simple desk calculator, they in their turn possess a less obvious but
very serious dlsadvantage. Once set the automatic sequence of operations
cannot be changed automatically. The machlne must be stopped and reset. The
removal of this deTect led to the digital computers of today and to the
stored-program concept which gives them thelr enormous power. The under-
standing of this concept will be developed throughout this book. Simply
stated, 1t means that the manner of Instructing the computer will be
internally stored prior to calculation and these stored "instructions" will

1

1.1 (continued)

be subject to modification during automatic operation. A full appreciation
of this powerful idea can only be achleved through the actual programming and
use of a computer.

Before proceeding, it may be well to point out an Important
distinction. We have been outlining the development of digital computers but
the analogue computers deserve mention as well, although we will not be con-
cerned with them in thls book. Briefly, digital computers count in distinct
steps whereas analogue machines measure quantitles. A familiar and simple
example of a device which uses the digital principle 1s the abacus in which
numbers are handled by positioning counters to represent the digits Involved.
The abacus is exact in that it works with integers. By comparison, a sllde
rule 1s a simple analogue "computer" In that it represents numbers by
measuring off their logarithms on ruler-like scales and is accurate only
withlin the limitations of these measurements. Thus a ten inch slide rule can
be graduated to glve three glignificant digits in general, but a scale about
slxty inches long 1s required to incresase this to four significant figures.
In recent years numerous mechanical and electronic analogue devices have been
bullt and they have found particular application in the solution of dif-
ferential equations. The theoretical basis of analogue machines 1s entirely
different from that of digital computers. Analogue machineg have far less
general application than digital computers. : : ' o

l.2 The Schematlic Arrangement of a Cdmputer

It is not at all necessary to know anything about electronics to
program and operate computers. It is very useful, however, to have in mind
thelr functlonal components and an understanding of the purpose of each.
This material will apply t0 all computers and provides a schematlc framework
in which to vlew them. Throughout the dlscussion the reader should refer to
the dilagram below which: shows the relationships between the wvarious
components. Actually, there is interaction between all units of the com~
puter, but for simplicity we have shown here only lines of flow of
information.

Input ‘ ‘ Output
Unit . ‘ , Unit
Arithmetic [®—— = Storage Unit | | Control
. . or >
Unit > Memory Unlt
Auxiliary
Memory

Schematic Diagram of a Computer,
Arrows show basic paths of Information flow.

1.2 (continued)

Central to the operation of the modern computer 1s the storage unit or
memory. Functionally this 1s nothing more than a set of "pigeonholes" into
which groups of characters may be placed. In some machines these characters
can only be numbers, but in others letters and punctuation symbols may be
stored as well. ZEach plgeonhole 1s called a location and each location has a
unique numerical address. The contents of a Tocatlon are called a word. The
memory 1s, of course, used to hold data for the problem being solved, but it
1s also used to hold numerically coded instructions which, when obeyed in
sequence, will cause the machine to perform the desired operations. These
numerlcally coded Instructions make up a program and computers in which the
program 1s held in the memory along with %Ee data are stored-program
computers,

The means by which the memory storage is accomplished will not be des-
cribed in detail. Several methods have now been perfected. The Bendix G-15
employs a magnetic drum, a type of memory in very common use. The cylindri-
cal drum revolves (in the Bendix G-15 at 1800 rpm) such that its curved
surface passes continuously under units called read-write heads. These heads
magnetize locally the drum surface and the pattern of the magnetized areas
determines the number stored. Conversely, the heads can sense the magnetized
pattern and translate it into a series of electrical pulses. Thus the com-
puter "reads," "writes," and "remembers." Further details of the G-15
memory unit will be given in Chapter 2. Another widely used type of storage
unit is the magnetic core memory in which a series of small doughnut-gshaped
iron cores are magnetlzed to indicate a series of numbers.

Many computers have, in additlion to the regular memory, an auxiliary
memory, usually of large capaclty (say 100,000 words or more), and frequently
in the form of magnetlic tape units. Here again, information is stored as a
pattern of tiny magnetized areas, but this time on the specially coated sur-
face of plastic tape which 1s wound on large reels rather like movie film.

The reader may discern that these storage devices are logically
binary; that 1s, the magnetized areas can have only one of two states, either
"north-south™ or "south-north."™ Hence the number system with base two,
called the blnary system, 1s usually used in computers so that the only
diglts to be stored are zeros and ones. These binary digits are abbreviated
"bits" in computer jargon. Although the Bendix G-15 is basically binary, the
Intercom systems to be discussed in this book allow the programmer to work
exclusively with numbers to the base ten. Therefore, we will not go into the
binary number system, but the reader is advised that it, together with
certaln other number systems, is frequently of importance in computing work.

As the dlagram indicates, data travels from the memory to the
Arithmetic Unit for processing. Which memory locations are involved and the
nature of the operations performed are determined by the stored instructions
which are Interpreted sequentially in the Control Unit. The arrows on the
diagram indicate the basic paths linking these components to the memory.

Clearly, some arrangement must be made for placing numbers in the
memory and for getting numbers out. This 1s accomplished by the input and
output units. On the G-15 an electric typewriter is provided and numbers
typed on 1t may be transmitted to the memory. Conversely, numbers in the
memory may be automatically typed out on this typewriter. A second input
mode 1s avallable in the form of a photoelectric paper tape reader. This
unit translates a pattern of punched holes into electric pulses which are in
turn stored on the drum. The computer has a paper tape output unit which
punches information from the memory as a pattern of holes in the tape.

1.2 (continued)

There are many other input and output methods 1ln use on various computers.
Punched cards are very commonly used and, as in the case of punched paper
tape, units must be provided to translate the pattern of holes in the card to
electrical pulses and to translate a sequence of pulses Into punched holes.
For output, several types of printing units are avallable as well as such
speclalized devices as the cathode ray tube for drawlng graphs..

These various components and their associated circuitry make up the
hardware of a computer. Many books are available describing computer hard-
ware in detall both from an electronic and a logical design point of view,

1.3 Basic Computer Operatlons

From the point of view of circuitry, there are remarkably few things a
digital computer can do. Naturally, 1t can add numbers and this turns out to
be the basic operation for which the machines are designed. In fact, the
other three arithmetic operations are accomplished by additlion with the
assistance of some circultry which can shift numbers with respect to each
other and form what is called the complement of a number., These ideas will
be 1llustrated in some examples.

It is easy to see how multiplication may be done. Consider the
problem 4172 x 213. The machine process may be compared with the usual hand

method as follows:

By hand By machine
L1172 172
x 21 x 21
1
K172 . Lh172
8 172
3 4172
hi72

'%1%23

Except for shifting the multiplicand to take care of place value, only
addition circultry is required.

Subtraction is less obvious. Methods vary, but generally some form of
complementation is involved. The tens complement will be used as an example,
and we will imagine that our machine can hold three decimal digits in each
memory location. (This is not the case iIn the Bendix, but it willl serve as a
simple 1llustration.) In thls case the complement of a number x lis defined
as 1000 - x. Suppose we wish the machine to subtract 135 from 67 and, of
course, obtain 332. This would be accomplished by adding the complement of
135 to 467 thus: '

467 + (1000 - 135) = L67 + 865 = 1332

® © 006 006060 00 ¢ O

1.3 (continued)

Since our machine has a word length of three digits we take the last three,
namely 332, and obtain the correct answer. If the difference were neiative,
the answer would have to be complemented. For example, 86 - 271 = =185,

In the machilne:

86 + (1000 - 271) = 86 + 729 = 815

Then 1000 - 815 = 185 which are the digits in the answer. Obviously, in both
these cases provislion must be made for the correct algebraic sign to accom~
pany the answer. Also, 1t is emphasized that these examples are intended
merely to indicate the basis used to accomplish subtraction by adding. The
detalls vary with each machine and in many, as in the Bendix G-15, the
arlthmetic 1s actually done in base two. Finally, the reason this comple-
mentation method 1s used 1s that it 1s cheaper to include the circultry to
complement in connection with the adder unit than it is to build a separate
subtracter.

Finally, division 1s accomplished by repetitive subtraction. For
example:

By hend By machine
lh 312 lh 12
370 | 3
2 =14
;ﬁ 29
30 %
28 -1
2 17
-1h
30

In additlon to the four arithmetic operations, digital computers have
a primitive decision-making ability. Usually this takes the form of testing
a number (often a computed result) to see if it is positive or negative or
zero. In most machlnes thls test i1s a yes or no alternative. Thus in the
Bendix G-15 we have a "transfer on minus" instruction. At this point two
possible paths or sequences of instructions will be avallable. If the
quantity tested 1s negative the computer will follow one path, if zero or
positive it will follow the other. The precise form of these tests depends
on the particular machlne, but all stored-program computers have them and
they are largely responsible for the remarkable versatility of modern
computers,

1.4 Computers Compared

There are several ways of classifying the computers now 1In use.
Perhaps the most basic comparisons would be in price, speed, and memory size.
Sometimes, too, machines are designated "scientific" or "business™ according
to the area of application in which they are expected to find widest use, but
the distinction is far from absolute and, in fact, machines like the IBM 709
have been used in all types of work. For our purposes 1t wlll be sufficlent
to place the Bendix G-15 in perspective at the present time of writing.

The G-15 is a small machine. Its basic price of $49,500 is low as
computer costs go, although it has several competitors above and below that
figure. 1Its storage capacity of 2,116 words 1s modest now that the largest
machines have in excess of 32,000 words. The Bendix G-15 memory can be
expanded by the addition of magnetic tape units, but, of course, so can the
memories of the larger computers. Speeds are rather difficult to compare in
that different operations require varying amounts of time. Generally the
best way 1s to compare add times (the time required to add two words). The
minimum in the Bendix @-15 is .00054 secs. = .5l _milligegs. A millisecond,
abbreviated as ms., ls ,00l seconds. However, thils speed 1ls not always
achieved in the Bendix G-15. For example, the minimum add time of the
Intercom 500 system discussed in this book is 87 ms. Other machines com~
petitive with the Bendix G-15 have generally comparable speeds although
recent announcements indlcate more speed for the money is on the way. The
IBM 650, a machine generally described as medium 1n size, has a minimum add
time of .48 ms., while the add time of one of the largest and most recent
machines, the IBM 7090, is .0048 ms., but, of course, this computer is in
the over one million dollar class.

One further distinction should be mentioned. Computers vary con-
siderably in "command structure," a term referring to the form of the
numerically coded instructions which they are designed to obey. Typically,
a command or instruction consists of an operation code calling for a certain
manipulation by the machine and one or more addresses specifying the
operands (numbers) involved in the manipulation. The command structure is
distinguished by the number of addresses contained in one command. Many
computers are designated single-address machines in that only one operand is
specified per command. There are two and three address machines as well,
while the SWAC computer at U.C.L.A. 1s a four address machine. The
Bendix G-15 has a three address command structure. It 1s probably falr to
say that the one address system 1ls the most common.

Most computer manufacturers make available additional attachments
called "peripheral equipment" for their machines and Bendix G-15 is no
exception. Magnetic tape units for use as auxlliary storage have already
been mentioned. Alternative input-output equipment available for the G-15
includes high-speed paper tape punches and readers, punched card input and
output devices, a graph plotter, and an alphanumeric typewriter. Finally,
there 1s a special device for handling differentlal equations called a
Digital Differential Analyzer. No peripheral equipment will be described
in this book, however. ‘

In summary, the Bendix G-15 1s to be viewed as a small computer of
moderate speed, but one that has found wide application in business and
industry and in which the basic principles are the same as the largest
machines. Moreover, it 1s certalnly true that once competence 1s achieved
in programming one machine the rest are relatlvely easy. Thus, the
Bendix G-15 and its Intercom programming system provide a very satisfactory
introduction to the fundamentals of digital computing.

| B B BN BN B NN BN BY BN BN BN BN BN BN BN BN BN BN BN BN BN BN

 EHE NN E NN NN NN EEEEEEEEE EEE EE Y

1.5 Applications

Digital computers are belng used in such a large variety of appli-
cations that a comprehensive list is impossible here. Some of the broad
areas of use are in the aviatlon industry, civil engineering, machine tool
design,‘the petroleum lndustry, misslle design, nuclear research, mathe-
matical analysis, and the huge fleld of buslness accounting applications
often referred to as data processing.

A few specific examples may be of Interest. In highway construction
a problem involving considerable caluclation arises in planning for cuts and
fills. After a projected highway has been surveyed, a calculation is made of
the volume of earth to be removed from cuts and to be provided for fills.
Computers have been very successfully employed in making these calculations
from the survey data. In the aviation industry the calculations stemming
from data provided by wind tunnel tests are being conveniently done by
computers., Further, in the mathematical analysis of data 1t 1ls often
desirable to fit a curve to a set of points by the method of least squares
and this problem can be comfortably handled by machine. In the business
field, computers are used for payroll processing, billing, inventory control,
actuarial calculations, and so on,

In addition to these broad areas of use, digital machines have been
programmed to perform in many bilzarre ways which have captured the popular
fancy. The game of checkers has been very successfully set up on several
machines and a great deal of work has been done on chess. Reportedly, the
computers play a falrly good game. There have been some successful efforts
to program the machines to "learn" by thelr mistakes, too. Language trans-
lation has been developing for several years and will undoubtedly be done to
some extent by machines in the future. Of course, the ingenuity of man is
behind these rather strlking developments and i1t 1s safe to say that much
more 1s to come than we have yet imagined.

Chapter 2

The Bendix G-15 Computer

2.1 Description of the Computer

Memory. As Indicated in Chapter 1, this computer uses a magnetlc drum
for its internal memory. This drum 1s divided 1lnto bands around the drum
called lines or channels. The lines are divided Into segments called words.
Some lines are called long lines, containing 108 words, but we shall be con-
cerned with only 100 of these at present. Some lines are short lines
containing one, two or four words. At present we shall be concerned with
only a portion of one of these, the accumulator. This is the locatlon at
which the results of arithmetic operatlions are stored.

A location in memory is speclfied by a four-diglt numoer called an
address. The first two digits refer to a channel or line on the drum and the
last two digits refer to a word position. We shall designate a location
henceforth by ADDR or CHWD. These four letters stand for the four digits of
the location. Remember that a location is like a pigeonhole into which a
command or an ltem of data may be placed. It will occupy that position until
replaced by another ltem.

The long lines of the memory may be diagrammed schematically by
"unrolling"the surface of the drum.

word 20 long lines

number 00 01 02 03 O4 05 06 07 08 o;)16 17 18 19 Line number
00 '
' -
03 v {)]
o Oh) 3
,E e \/—'\-—"‘v“/ L--~-/"\./-—_N—/——l
]
5 of F S e et s s S/ et Bt B
Q 9 3\ \ '
99 /)
2 uo) 3\
5 ul \ \
* {
u
S \ S
= w5 / 1
ub) \
u7 \ [

For simplicity, many of the lines and words have not been marked in.
The shaded section has address 0603.

R EEEEREEREEEX

O © 6 6 0 06 606 0 O

® 0 006 0% 0 0606 060 0 0 0 0

® & ©® & &6 6 0 & O 0 & 00 6 O 0 60 000 00O OO O C OO O 0 o

é.l (continued

) This computer 1s referred to as a STORED-PROGRAM or an INTERNALLY-
PROGRAMMED computer, since commands are stored in and executed from memory.
This memory is a volatile memory. That 1is, when the computer is turned off,
the contents of memory are lost.

Intercom. An intercom program 1s an interpretive program which
occuples a certain portion of memory. It converts the computer from a three~-
address system to a one-address system, which 1s much easler to use than the
machine language of the computer. Three Intercom systems will be considered
here. , :

Locations used Availlable to Accumulator

Intercom by Intercom programmer address
500 (single precision) 0000 to 0899 0900 to 1899 2173
1000 Single Precision 0000 to 0699 0700 to 1899 2101
1000 Double Preclsion 0000 to 0899 0900 to 1899 2100

Single precision (SP) Intercoms work to five significant figures and
double precision (DP) Intercom works to twelve significant figures.

Input-Output. Input and Output on this computer are either by the
typewrlter or by punched paper tape (see Section 1.2). Usually a program is
entered into the computer from the typewriter. After it has been tested it
1s punched on paper tape by the computer, so that it may be used over and
over again.

Since input by tape ls much faster than by the typewriter, even incom-
plete or incorrect programs are punched on tape. These may be entered into
the computer at a later time and completed or corrected. It may take half an
hour to type one channel of commands and/or data, but one channel of tape can
be entered Into the computer in less than a minute.

2.2 Commands

Command Structure. Intercom commands are entered into the computer as
seven-digit numbers. We shall refer to these as KOPADDR or KOPCHWD. The
form of a command 1s as follows:

T T
] i
I

A I

L
|
|
i

Index Operation

reglster code Address

The first dlglt represents an index register. If no index register is
used, the first digit 1s zero and need not be written. Index registers will
be discussed in Chapter 6.

2.2 (continued)

The next two diglts of the command represent the operation to be

" performed. This portlon of the command causes the computer to perform
arlthmetic operations, loglcal operatlong, walt for input or initiate output.
Operation codes will be discussed as they are introduced and are summarized
in the Appendix.

The last four diglts of the command are usually the address or
location to which the operation code applies. With certain operation codes,
however, this portion of the command has a special meaning.

Command Seguence. Commands are normally obeyed in numerical sequence,
but transfer commands are available to change the order when desired. The
transfer may be unconditional, or contingent upon the value of some calcu-
lated quantity or the contents of an index register.

Commands may be stored at and executed from any avallable address.

2.3 Data

Fixed Point and Floating Point Data. Numbers as we usually think of
them (for example, 123.05), will be called fixed polnt data. The computer,
however, works with floating point numbers. The above number would be repre-
sented as 53.12345. This device allows a much greater range of numbers to be
carried in the memory than could be carried 1f the computer was confined to
fixed point numbers.

A floating point number consists of a whole number or integral portion
and a decimal or fractional portion. To convert a fixed point number to a
floating point number, move the decimal point until it 1s just to the left of
the most significant digit. This is the fraction part of the floating point
number. If the decimal point was shifted to the left, add the number of
places shifted to 50. This 1s the integer portion of the floating point
number, If the decimal polnt was shifted to the right, subtract the number
of places shifted from 50.

Data Structure. Although numbers are carried in the computer in
binary form, It Is convenient to think of them in decimal form. A single-
precislion number then is carried as seven diglts and a sign. Two of the
digits are the whole number or exponent part of the floating polnt number and
five digits are the fraction part.

sIgn exponent fractlon

To convert a floating point number to a fixed point number, write the
decimal part of the floating point number, subtract 50 from the integer part,
move the decimal point this many places to the right 1f positive. If the
subtraction results in a negative number, write this many zeros to the left
of the number and place the decimal point to the left of these. Here are
some examples of some fixed point numbers and the corresponding floating
point numbers.

10

® & 0 & 0660600006600 0060600 060 06000 00 00 0 00 0 0 0

2.3 (continued)

Fixed poilnt Floating point Fixed point Floatling point
34.7h 52.3474 34500000, 58.345
1267.365 BL.1267365 ~23.97 -52.2397

~1.23 -51.123 . 0000123 46.123

Range of Values. Either fixed point or floating point data may be
entered Into, or typed out by, the computer. 1In a single preclsion, flve
significant digits may be used. In double precision, twelve significant
digits may be used. If fixed point data 1is entered, it is automatically
converted to floating point by the computer and stored in this manner. A
single precision number with sign may be stored at any address. A double
preclslion number must be stored at an even-numbered address and will also
occupy the next odd-numbered address. The double precision Intercom
accomplishes thls "double storage" automatically.

In either single or double precision, as many as seven digits to the
left of the declimal point may be entered or typed out in fixed point. The
1limit of seven is due to the nature of the computer and the Intercom program.
In floating point, a number as large as 10?’ or as small as 1073 may be
entered. During output, a number larger than 107 will be typed as a floating
point number even though fixed point output was called for. In output, the
number of places after the decimal point in fixed point may be selected by
the programmer. Remember that even though fixed point input or output is
used, the computer carries all numbers internally as floating point numbers.
A part of the Intercom program automatically performs this conversion.

Numbers larger than 10*® are considered tob large to be handled by the
computer, and it will stop if a number larger than this is encountered.
Numbers smaller than 10-?® will be considered zero. :

2.4 Example of an Intercom Program

Following 1s an example of an Intercom program. Commands used here
will be explained in detall in Chapter 3. For the time being, notice that
the program conslists of some commands and some data placed in a portion of
memory avellable to the programmer.

Command
Notes Location K OP CH WD Contents of accumulator
positlon paper 0900 30 00 02 ?
clear and add a 0901 42 09 52 a
add b 0902 43 09 53 a+b=x
type accumulator 0903 33 21 Ol x
halt 090k 67 00 00 X
Location Data
0952 a
0953 b
1l

2.4 (continued)

This program when executed will calculate and type x = a + b. We may
gelect for values of a and b any values such that both and their sum is In
the range of the compuber.

2.5 Starting the Computer
When the computer is turned on, it may be checked for proper operation
by the use of a test routine which is provided in a punched tape magazine.
The procedure to turn on and check the computer 1s:

1. Place the "Test Routine" magazine on the photo-reader. The tape
in the magazine must be rewound.

2. Put the Enable, Punch and Compute swltches on the typewrlter
base in the center (off) positions.

3, Turn on the Start swltch.

Walt for the AC meter to read 6.3 volts or 100% and the
- amber AC light to become bright.

lj. Press the Reset button until the red DC lamp lights.

Wait until the photo-reader light remalns off and
the green "Ready" lamp lights.

5. Move the Compute switch to GO.

® 0 0 ¢ 060606060606 00 0 060 0 0 00

‘The number "1" will be typed out. Wait for the
display panel neons to remaln steady.

6. Type "0 0 0 0 O O 5(tab)s"

Walt for the photo-reader light to remain off
and the display panel neons to remaln steady.

7. Type "0 0 0 0 O O 6(tab)s”.

Bells ring at repeated intervals to signify successful
procedure of each test in the routine. '

Proper computer operation is indicated if no type-
out occurs before the following is typed out:

-1122334 LLh5BE566.7 778899

~UUVVWWX XXY7Y2z2z.0 2345

8. At completion of the type~out put the Compute switch to
the center position, rewind, and remove the "Test Routine"

magazline.

12

2.6 Loading Intercom

An Intercom tape dan be loaded into the computer by following the
steps below., Memory or index registers may be cleared. The number of digits
following the decimal point in flxed polnt type-out may be selected.

Place Intercom magazine on Compute switch to GO.
photo-reader. Rewind.
Compute switch off. Intercom is loaded. Fixed

Enable switch on. Type "p". point type-out for 500 or

Wait until photo-reader light .'IOOODP is get for 7 digits
goes out and panel neons after the declimal point.
remaln steady. 1000SP is set for l.

Compute Sw. Off

Enaeble on. Type "p"
Wait for lights to je——MANUAL CONTROL
become steady.

Compute Sw, to @0

(bell rings
l on entering)
Clear
Memory —ry 3(tab)s o a— obey any
Prepare comand
l I > Memory
' K OP ADDR(tab)s
Clear |g— 2{(tab)s je—
index
registers l
-D(tab)s
or
(taeb)s

:

Select number of digits for fixed point type-out.

D 1s number of digits from 1 to 7, but use 8 for no digits
after decimal point. (Minus sign preceding D, must be typed.)

If no digit 1s typed, number of places will be selected as
In upper right block.

13

2.7 Operation of Intercom

‘Some commands used in storing data and commands are:

From Change of state

manual mode or sequence
Store commands starting at ADDR SOADDR(tab)s OS0ADDR//(tab)s
Store fixed point data starting at ADDR S1ADDR(tab)s OSlADDR//(tab)s

Store floating point data starting at ADDR S2ADDR(tab)s . 052ADDR//(tab)s

Start automatic operation at ADDR 69ADDR(tab)s 069ADDR//(tab)s
Return to manual control ‘ 0670000//(tab)s
Punch channel CH on paper tape 39CHOO(tab)s
Read paper tape into channel CH 55CHOO(tab)s
Obey any command KOPADDR(tab)S KOPADDR//(tab)s

In all of the above, (tab) 1s not to be typed. This Indlcates that
the tab key on the typewriter 1ls depressed.

Manual. When the computer is in the manual mode, which we wlll refer
to simply as "manual," any command may be executed by typing KOPADDR(tab)s.
For example, the program of 2.l could be executed by storing the data as
indicated below and then typing the commands in order as they are given in
the program. However, most programs are executed from the Automatic mode.

Automatic Operation. Automatic operation may be started by the com-
mand given at the beginning of this section. Automatic operation will
continue until a halt command is encountered in the program, or the Compute
switch is put to the OFF position, or an error is encountered. If the
Compute switch 1s put to the OFF position and then returned to the GO
position, automatic operation will be resumed. This is useful for posi-
tioning paper or stopping in a demonstration.

Return to Manual. Return to manual can be accomplished from any state
or mode by:

1. Move the Compute switch to BP. WAIT FOR THE DISPLAY NEONS
TO REMAIN STEADY! Move the Compute switch to OFF.,

2. Hold the Enable switch on and type "scf".
3. Release the Enable switch and put the Compute switch to .GO.
L. If bell does not ring, reload Intercom. ' :

L

L B B I I BN BN BN BN B BN BN BN B OB B BN BN BN BN BN BN BN BN BN BN OB BN B B B BN B BN)
L E K ! E R

°
®
®
o
°
°
°
°
°
°
°
°
°
°
°
°
°
®
o

.
®
°
°
®
°
°
°
®
°
o
°
°
°
°

2.7 (continued)

Storing Commands. In order to store commands, we must inform the
computer that we wlish to store commands and where the first one is to be
located. For example, if we are in manual and wish to store a command in
0900, we type 500900(tab)s. The computer will type 900 and walt for a
command to be typed. If we type 300002(tab)s, the computer will verify
.0300002, execute a carriage return, type 901 and wailt for the next command,
etc. This will continue until we notify the computer to do something else.

Care should be taken in entering commands since the computer will not
know what to do 1f an erroneous command 1is executed. This may cause loss of
Intercom. 1If an error ls detected before tht tab key is depressed, we may
type & few zeros, the correct command then (tab)s. Otherwise we should
return and correct the command. A command stored in any location replaces
the previous contents of that location.

Storing Fixed Point Data. If we are in manual, and wish to store the
number 2.37 in location 0950, we would type 510950(tab)s. The computer would
type 950 and wailt for a number to be entered. We would type 2/37(tab)s. 1In
entering fixed point data, the "slash" key is used in place of the decimal
point. (It 1s possible to wire the typewriter so that the period key is used
for the decimal point.) The computer would verify in floating point, typing
51.23700, execute a carrilage return and type 951, wait for data to be entered,
etc. If double preclsion data is being entered, the typewriter would type
952 instead of 951. This process would continue until we change to another
state or mode or change sequence. The previous contents, if any, of this
location would be lost.

Storing Floating Point Data. If we wilshed to store the above number
as a floatlng polnt number at The same address, we would type 520950(tab)s.
After the computer typed 950, we would type 51237(tab)s. In floating point
input, the decimal polnt is not typed. Otherwise, operation is the same as
above,

Change of State or Sequence. If we were storing commands, and the
last one had been stored at 0932, the computer would verlfy, execute a
carriage return, type 933, and walt for a command to be typed. If we now
wished to change to storing fixed polnt data starting at 0950, we would type
0510950//(tab)s. The contents of 0933 would not be changed, and the type-
writer would type 950, walt for data to be typed, etc., and would continue in
this state until another change was called for.

2.8 Storing and Executing a Program

The following sequence of instructlions will store and execute the
program of 2., It is assumed that the computer 1s in manual at the start.
Numbers typed by the computer are underlined. We will take a = 2.37 and
b = 15.21.

15

2.8 (continued)

500900 s 900 300002 s .0300002
901 420952 s .0420952
02 430952 s .0430953
332101 s .0332101
670000 s .0670000
0510952// s 952 2/37 s 51.23700
15/21 s 52.15210
0690900// s

\O

ERERERI

17.5800

The same program, after data had been stored, executed from manual
would look like this: '

420952 s 430953 s 332101 s 17.5800

Numbers or symbols underlined are typed by the computer, while those
not underlined. are typed by the operator.

® 0 0 & 006606 060 006 0 00 0 0 0 0

16

O O 006 0006060 0 0 0 0 00

2.8 (continued)

Manual'Control

{(bell rings
on entering)

Obey any
command

KOPADDR(tab)s

Changes of mode or state.

S1ADDR(tab)s (fixed)
52ADDR(tgb)s (float)

Oé?OOOO//(tab)s ——

STORE DATA

[

SOADDR(tab)s i

0670000//(tab)s |epmmm—

69ADDR(tab)s = |—»
670000 in
automatic ST—
operation

Compute sw. to BP,
Compute sw,., OFF.
Enable sw. ON,

Type npn . R~ S—

Enable sw. OFF.
Compute sw. GO.

17

OBEY ANY COMMAND

(Use for change of state
: or sequence.)

KOPADDR//(tab)s

|

STORE COMMANDS

AUTOMATIC
OPERATION

Chapter 3

Fundamental Arithmetic Operations
Single Precision

3.1 Commands

- In this and subgequent sections, the commands used in the example to
follow wlll be explalned. A summary of commands 1s given in the Appendix.

Clear and subtract 4OADDR The contents of ADDR are subtracted
from zero and put into the accumulator,
replacing the previous contents of the
sccumulator. The contents of ADDR are
unchanged.

ho2101 After this operation, the accumulator
will contain the negative of the value
it had prior to the operation.

Subtract L 1ADDR The contents of ADDR will be subtracted
from the contents of the accumulator
and the result placed in the
accumulator. The contents of ADDR are

unchanged.
hi2101 The accumulator will now contain zero.
Clear and add [,2ADDR The contents of ADDR will be placed in

the accumulator replacing its previous
contents. The contents of ADDR are
unchanged.

Add LL3ADDR - The contents of ADDR will be added to
the contents of the accumulator and
the sum placed in the accumulator.
The contents of ADDR are unchanged.

1132101 The accumulator wlll contalin twice the
value i1t had prior to the operation.
Clear and add sbsolute 45ADDR The absolute value of the contents of
value ADDR will be placed in the accumulatonrn,

replacing the previous contents of the
accumulator. The contents of ADDR
will be unchanged.

452101 The contents of the accumulator will
be replaced by its absolute value.

18

®© ® 0000060600600 0600060 00006000000 0090 090 90 900

@
L
®
®
®
®
®
®
®
®
®
L
®
@
@
L
|
L
e
@
@
®
@
®
®
®
®
@
®
®
L
@
°
9

3.1 (continued)

Store

Position typeﬁrite paper

Type fixed point data
and tab

Halt

Coding Sheets.

sheets.

9ADDR

30TBCR

33ADDR

332101
670000

The contents of the accumulator will
be stored in ADDR replacing the
previous contents of ADDR. The con-
tents of the accumulator will be
unchanged.

The last four digits of this command
are not a location. If CR is a number
other than zero, the typewriter will
execute CR carrisge returns, that is
return carriage to left margin and roll
up CR spaces, and then will execute TB
tab spaces. Tabs may be set as on any
typewriter. If ALL tabs are set, two
spaces will be given for each tab. If
CR 18 zero, the carriage will move TB
spaces on the same line.

The contents of ADDR will be typed out
in fixed point and the typewriter will
stop on this line.

Type contents of accumulator as above,
Last four digits always zero. Auto-

meatic computation will stop and
control returned to manual.

Programs are usuaily wrltten on forms called coding
On these sheets, we indicate the location of the commands, the

commands, the contents of the accumulator after each operation and notes to

show what 1s done at each step.

writing a good program.

Neatness and orderliness are great helps in
We will use the notation:

a = (0927) to indicate

that the number a is stored in location 0927.

NOTES

LOCATION

OP | ADDRESS

ACCUMULATOR

19

]
|
|
|
i
|
|
!
|

3.2 Example of Addition and Subtractlon

The followlng program for Intercom 1000 SP will calculate and type:
x=48 - 3b - 2 |¢], where & = (0951), b = (0952), ¢ = (0953).

(095l4) is used for temporary storage.

x=a- 3b - 2jc|

Write a program to calculate and type:

2. x=2a + 4b - 2c¢

3. x=a+ |[b-cl

L. x= a+b =~ |e
5., x=-8a-2b - 2¢
6. x=a - 2(b+|c|)

L lal

=2(a + 2b - ¢)

- 4

= -(a + 2b + 2¢)

-bo

Problem:

NOTES LOCA';I'IQVN K OP ADDRESS ACCUMULATOR
position paper 0900 30 OO} 02 ?
clear and add b = (0952) 1 L2 09| 52 b
add b 2 43 21! 0l 2b
add b 3 L3 09; 52 3b
store 3b = (0954) L 49 09! 5L 3b
clear and add|e|, ¢ = (0953) k‘5 L5 091 53 lel
add lel 6 w3 lail o 2 lel
clear and subtract 2lcl 7 s 21| 01 -2 |el
subtract 3b 8 L1 09! S =36 = 2 el
add & 9 431 09| 51 x
type x 10 33 21l o1 x
|halt 11 67 oo!oo x
Problems:

Compare with exemple above.

20

L

® ® 6 & &6 0606 06 0 0 0

' I BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN)

3.3 Commands for Multiplication and Division

Multiply Ll ADDR The contents of ADDR are multiplied by
the contents of the accumulator and
the product is placed in the accumu-
lator replacing the previous contents
of the accumulator., The contents of
ADDR are unchanged.

L2101 The contents of the accumulator will
: ~be replaced by the square of its
previous contents.

Divide L48ADDR. The contents of the accumulator will be
divlided by the contents of ADDR and
the quotient placed in the accumulator.
The contents of ADDR will not be
changed. An error will result if the
contents of ADDR is zero.

482101 © If the contents of the accumulator is
not zero, the accumulator will contain
unity after this operation. ’

Inverse divide L, 7ADDR The contents of ADDR will be divided
, by the contents of the accumulator and
‘the quotlent placed in the accumulator.
The contents of ADDR will not be
changed. An error will result if the
contents of the accumulator is zero.

Commands for output.

Type tabulating number 31TABL TABL will be typed out and the type-
« writer will stop on this line. The
last four digits of the command are
not an sddress, but the actual number
to be typed. Leading zeros are not

typed.
Type fixed point data and 33ADDR © Fixed point number will be typed and
tab , _ typewriter will stop on this line.
Type fixed point data and 38ADDR Fixzed point number will be typed and
return carriage typewriter will execute carriage
return.

(In Intercom 10008P, when fixed point
limit 1is exceeded, carriage does not

return.)
Type floating point data 32ADDR Floating point number will be typed
and tab and typewriter will stop on this line.
Type floating point number 3LADDR Floating point number will be typed
and return carriage and typewriter will execute carriage
return,
21

1. .

3.} Example of Multiplication and Division

The following program for Intercom 1000SP will calculate:

x =5+ 2ba , where a = (1251), b = (1252), ¢ = (1253).

(1054) is used for temporary storage, a, b, c will be typed on
one line and ac/b, b/2a, x on the next.

Problems: Write a program which will calculate and type:

@
)
®
®
®
o
®
Problem: x = -af- + -é-ba ®
o
NOTES LocaTion|| k | oP | ADDRESS ACCUMULATOR
| @
position paper 1200 30 {00 | 05 ? PY
clear and add a = (1251) 1 L2 |12 | 51 a °
type a and tab 2 33 |21 ! 01 a
| @
add a 3 43 |21 | Ol 28
| 2 ®
inverse divide by b=(1252) L 47 |12 ! 52 2a
: i 5 PY
type b and tab 5 33 |12 52 Za
. b
store b/2a = (105) 6 49 {10l 5L 7a g
clear and add & 7 L2 {12 | 51 a o
type ¢ and return carriage 8 38 |12 !53 a ®
i ' |
multiply by ¢ = (1253) 9 bl |12 |53 ac ®
divide by b 10 48 |12 Isaf ac/b ®
bype ac/b 11 33 |21 | 01 ac/b ®
type b/2a 12 33 1104 5h ac/b ®
ladd v/2a 13 L3 |10 |5k x)
type X 1 38 |21 I 01 X ®
halt 15 67 [00] 00 X ®
®
1. X = b2 - Ll.ac o ‘)-‘-u X = %—-::——E '
2. x= (a - 2bc)/3a 82 4 p2 ®
_a _b_ 82 -1 5. X =75 @
3 X5 "3 7@
@
22 ®

0O 0 00 0000000 00 0 00 6 00000 00O OCGOGCOOLOSOPOO OISO

3.5 Intercom 500

Intercom SOO'is=a gsingle precision Intercom similar to, but, in
general, faster than 1000SP. Speed will be increased if the following rules
are observed.

l. Locate commands to be executed in word positions 20 to 43 of
any channel.

2. Locate data in word positions 71 to 78 of any channel.

3. Use 2173 for address of the accumulator.

3.6 Commands for Input, Transfer and Halt

Gate for command SO0ADDR When this command is executed from
automatic operation, the carriage will
return and the computer will type ADDR
and walt for a command to be entered.
The command will be stored in ADDR,
which should not be the same as the
location of the command., After verifi-
cation, the next command in sequence ig
obeyed. Note that this is the same
opersation code that was used from
manual to store commands. It isg
usually desirable to follow this com-
mand with 300001 so that any subsequent
output will start at the left margin.

Gate for fixed point S51ADDR When this command is executed from

data - automatic operation, the carriage will
return and the computer will type ADDR
and wait for input of fixed point data.
After verification, the next command
will be executed. The value typed will
replace the previous contents of ADDR.
Note that this same operation code was
used from manual to store data. It is
usually desirable to follow this com-
mand with 300001 so that any subsequent
output will start at the left margin.

Gate for floating point S52ADDR’ Same as above for floating point data.
data '

Transfer 29ADDR Take next command to be executed from
location ADDR.

Breakpoint halt 680000 Last four digits always zero. The com-
puter will stop. If the compute switch
is moved to the center position and
back to GO, the next command in sequence
wlll be executed. This commend is use-
ful at the beginning of a program to
position paper manually. It is useful
in the middle of a program to check
operation to that point.

Ring bell 630000 Last four digits always zero. 1In a
' long program this command is useful for
keeping the operator awake.

23

3.7 Evaluation of a Polynomlal

The following program for Intercom 500 will gate for X, then
calculate:

y=a+ bx + cx2 + dx3 =a + x[b + x(¢ + dx)], type y, then

return for type-in of another value of x. Note that the

"nested form" requires fewer operations than the original form.

NOTES LOCATION|| K | OP | ADDRESS ACCUMULATOR
transfer to 1020 1000 129 110 :20 o ®
e T e
| position paper 1020 30 oo ! ol ?
gate for x = (1075) [> 21 51 |10 i75 o
clear and add x 22 42 |10 !75 x
mult., by d = (1074) 23 b |10 ;74 dx
add ¢ = (1073) 2l n3 |10l 73 c + dx
mult. by x 25 L, |10 |75 x(c + dx)
add b = (1072) 26 L3.[10 !72 b + x(c + dx)
mult. by x 27 Ll (10 !75_ x[b + x(c + dx)]
add & = (1071) 28 b3 |10 l7a ¥
type y 29 | |8 [o1 193 ¥
transfer to 1021 30 29 |10 :21 v

The location of the transfer command in 1000 is a precautionary
measure since there is a tendency to start at the beginning of a channel.
Automatic operation can be started at either 1000 or 1020.

Problems:

1. Use program of the above example to evaluate y = 2x3 - 3x2 +x-5
for x = -3, 0, 2, -1, B.

2. Use 1 to find root between 1 and 2 to three decimal places.

. Write a program to evaluate a fourth degrée polynomial.

3

<E;) Write a program to evaluate y = ax + bx3 + cx5.
5 2 4 ext
6

. Write a program to evaluate y = a + bx“ + cx'.

. Write a program to evaluate
1

y=ax+ b+ ecx = (ax2

+bx+ ¢c)/x, x# O

2l

L 2 B BN BN BN B BN BE BN BN BN NN BN BN BN BN NN NN BN NN BN BN BN BN ONE BN BN BN BN BN BN BN BN

3.8 Solution of Equations

The following program for 1000SP will solve the equations:
a4X + byy = ¢4
83X + by = ¢, by # 0
for x and y, using x = §N/D, N = (b,c,;/by)=cs, D = (agby/by)-a,,
v = (cy - ayx)/by. Results will be typed: 1 «x

°

®

o

|

®

®

° ;X

®

®

° Problem: a.x + bly = cl,‘ a % + b2y = 02

. NOTES . |LOCATION ‘ K OP | ADDRESS ACCUMULATOR

® position paper 1300 30 |00 : 02 ?

® clear and add b, = (1404) 1 42 |1y | oy b,

() mult. by ¢y = (1402) 2 Wy {1y loall boeq

Y div. by by = (1L01) 3 148 |1k :01 byey/by

® sub. ¢, = (1405) N 4114 | o5 N

® store N = (1406) 5 ué 1 i'oé N

® clear and add b, 6 Lo ,1“,i oly b,

P mult. by a; = (1400) 7 Ly |1h | oof a;b,

° div. by by 8 48 |1k ! orf a,b, /by

° sub. a, = (1403) 9 L1 |1y : 03 D

® inverse div. by N 10 L7 (1L | O§ b d
type 1 1 31 oo |or] = =

¢ type x and ret. 12 38 |21 ! o1 x

: mult. by a; 13 uly 1k i 00 8, x
clear and sub. a,x 1l Lo |21 | o1 -8,%

¢ add cq 15 b3 |14 1 o2 c. - 8.X

Py _ | o 1 1
div. by by 16 48 |1k | o1 ¥

® type 2 17 31 |00 !’02 -

o type v 18 38 |21 i 01 y

® halt 19 67 |00 | 00 y

PY |

e

PN 25

9

3.8 (continued)

Problems:

1l. Write a program to solve two équations in two unknowns using

x = (byeq - b1°2)/(a1b2 - a5b;) instead of the equation of
above example.

& b a b
it t lve th ti : 1 + 1 2 + 2 -
2. Write a program to solve e equations: 7 - Ci1s % 7=)
aj 32

3. Write a program to solve the equations: = + b1y = ¢1, =+ bgy‘= o

. Write a program to solve 3 equations in three unknowns.

-1 1,

. - -1 _ 3 =
5. Solve equations: a;x ™ + b,y c 27" = d;, 1 =1, 2, 3.

3.9 Similar Programs

Similar programs can be executed by writing a program once, then
changing it by storing different commands at a given address depending on the
entry location. In the following program, there are three different entries
to the program. If one would imagine that the program represented here by
the commands in locations 0900 to 090l is a long one, he will see that con-
siderable effort can be saved by writing a program once and then changing it
by storing a command in a given location.

In this section we illustrate a technique whereby commands may be
moved from one memory location to another. This 1s accomplished by placing
the command in the accumulator by means of a l}j2 operation code and then
storing the contents of the accumulator in a given locatlon by means of a
49 operation code. In the following example, this is done at 0905 and 0906
and again at 0908 and 0909. Arithmetic operation codes other than L2 and 49
should not be used with commands in Intercom. In Section 4.5 we will use
this same technique in double precision where a little more care must be

exercised.

Assume that x = (0915), y = (0916). If we enter at 0905, x + y will
be typed out. If we enter at 0908, xy will be typed out. But if we enter at
0913, the computer will type 902, halt and wait for a command to be typed.

The computer will verify
If we then type: and then the following
will be typed out:

,10916(tab)s : X -7

1180916 (tab)s x/y

1L70916(tab)s y/x

LL0915(tab)s x2
26

Problems:

Write a program which will:

l. Type either x2

are selected.

or 2x depending on which of two entry locations

3

2. Type x, x2 or x~ depending on entry location.

3. Gate for x, gate for operation, gate for y, then type result,
4. Type x, then y or type x + y, depending on entrance,
5

. Type 1, 2, 3 on a lihe or type 1, 2, 3 one under the other.

27

|
@
¢ 3.9 (continued)
[
® :
Example of similar programs by alternative entries

L
® NOTES LOCATION|| K | op ADDREss ACCUMULATOR
® I

0900 30 100] 03 ?
¢ L L2 |09 I 15 X
® 2 00 00 ! 00 depénds on entry location
¢ 30 [33]a1]01 "
e 4 67 |00 | 00 "
® entry for x + y 5 L2 |09 : 11 "
[6 49 |09 | 02 |
® 7 29 {09 | 00
) entry for xy 8 L2 |09 ! 12
@ | 9 L9 |09 |I 02
® 10 | |29 |09 | 00
PY 11 L3 |09 { 16
Py 12 I |09 | 16
P entry for "other" 13 50 [09 | 02 |
° 1l 29 |09 !oo
o
L
@
o
®
®
o
o
]
®
@
®

Chapter 4

Logical Operations
Double Precision

li.1 Double Precision

In Sectlon 2.3 we discussed the form of data used in the Intercom
systems and stated the distinction between single and double preclsion. In
Chapter 3 all programs were written in single precision but in this chapter
some will be in double precision. The student must then remember that only
even-numbered addresses may be used for data storage, since the double
preclsion system automatically uses the next odd-numbered locatlon for part
of the 12 significant figures. If an odd numbered address is designated for
data, the.computer will type 5 periods and ring 5 bells, indicating an error.
Command storage is unchanged and the machine obeys commands in sequence just
as in single precision. All the operatlon codes explalned so far are valid.
Finally, refer to the table of Section 2.1 and note the locatlons avallable
for programming and the address of the accumulator in each system. With each
example we will state which system 1is being used. : '

.2 Conditional Transfer Commands. Flow Charts

In this and subsequent sectlons we will study ways of using the
decision-making ability of the computer. The idea 1s simple. The sequence
of commands obeyed by the machine will depend on the outcome of certain
numerical tests i1t will make using data we provide. Let us illustrate this
first in a rather artificial example. We will store two numbers in memory
and then cause the machine to compare them for algebraic size. This will
demonstrate the basic ideas and then later sections will show thelr practical
use. The following new commands will be used:

Transfer on positive 20ADDR If the accumulator contains zero or a
or zZero positive number the next command obeyed
will be taken from location ADDR. If
the accumulator contalns a negative
number the next command obeyed will be
the one following in normal sequence.

Transfer on negatlve 22ADDR If the accumulator contains a negative
number the next command obeyed will be
taken from location ADDR. If the
accumulator containg zero or a positive
number the next command obeyed will be
the one following in normal sequence.

28

4.2 (continued)

Transfer on zero 23ADDR If the accumulator contains zero the
next command obeyed will be taken from
~location ADDR. If the accumulator
contains a non-zero number the next
command will be taken in normal
sequence.

In using these commands remember that the machine is simple-minded.
If 1t does transfer out of normal sequence it will then continue obeying
instructions located in sequence after the one to which it transferred. For
example if the machine encounters in location 1431 the instruction 221766 and
1f the accumulator contains a negative number, the next instruction obeyed
will be the one in location 1766, and the one after that will be the one in
1767, etec., until another transfer is encountered. It is, of course, up to
the programmer to see that meaningful commands are located in all necessary
locations. -

There is a useful technique in writing programs containing several
conditional transfer instructions. Remeber that as soon as you write 20, 22,
or 23 in the OP column there are two possible locations for the next
Instruction which will be obeyed. Both of these alternative paths or
branches must be programmed. Usually it is best to leave blank the address
of the conditlonal transfer instruction and continue writing the instructions
to be obeyed in normal sequence. When that branch is finished select an
available address for the first instruction of the other branch, write 1t in
the blank address part of the conditional transfer and in the location column
at a fresh space on the coding sheet, and proceed to program the lnstructions
to be obeyed should control be transferred.

Example. Tests for positive, negative, and zero.

Thls program for Intercom 1000 Double Precision will test the two !
numbers A = (1400) and B = (14,02) and will do the following:

If A > B, type locatlon of A, type A, type B.

If A = B, type thelr common value.

If A < B, type location of B, type B, type A.

Before writing the program let us outline the steps involved. This is
conveniently done in a form called a flow chart showing at least each ma jor
step as a separate block and their sequénce by means of arrows connecting
these blocks. After this example we will say a few more things about flow
charts. ’

FLOW CHART

enter——;
t Calculate (A - B)]
'
r@<——(Is (A - B) 2 o?)—>
@- Is (A - B) = 0?>——>.j Type 1402, B,N
v

] Type A , \ | Type 1400, &, BN halt
haltb halt
29

.2 (continued)

Problem: Determine which of two numbers 1s greater.

NOTES LOCATION oP | ADDRESS ACCUMULATOR
position paper 1500 30 00; 02 ?
clear and add A = (1400) 1 12 |1k | oo A
‘subtract B 2 41 lu! 02 A -B
transfer if accum Z 0 3 20 15; 08 A -B
type 1402 L 31 |1 !02 A-B<O
type B 5 33 1&: 02 A~-B<O
type A 6 38 lhi 00 A-B<0
halt T 67 OOI 00 A-B<O
transfer i1f accum = 0 S 8 23 15! 13 A-BzO
type 1400 9 31 1ui 00 A-B>0
type A 10 33 |1 | 0o A-B>0
type B 11 38 lu! 02 A-B>0
halt 12 67 OO: 00 A -B>0
type A 13 38 {14 | 00 A-B=0
halt 1l 67 oo! 00 A-B=0
Problems:

1. Three unequal numbers are in consecutlve locatlons in
channel 1llj; write a program to type the largest, then
next largest, then smallest.

2. As 1, but type location of largest number and then the

largest number.

30

L I I BN BN BN BN BN BN BN BN BN BN BE BN BN BN BN BN ONK BN BN BN BN BN BN BN BN BN BN BN BN BN BN

}.3 A Further Word about Flow Charts

While it 1s true that many problems can be programmed without the aid
of a flow chart, experienced programmers use them regularly because they
afford a concise, clear analysis of the way the computer will tackle the
problem., Moreover, the coding of problems involving many transfers is
enormously simplified once a good flow chart has been drawn. Generally, it
will be found that complex problems requiring considerable thought before
coding are best analyzed in flow chart form. The student should make the
effort to learn the techniques of flow charting even if he feels the problems
do not always require it.

Throughout this book the flow chart symbols will be standardized as
follows:

Input or output \\1

Calculation step

Test ()

Yes (:)
No Iﬁl

A good flow chart will always clearly show the beginning or entrance
for the problem and the halt(s) or exit(s) from the problem. Also, the
question involved in a test should be precisely stated such that the answer
1s elther yes or no. Further pointers will be given in subsequent sections.

4.4 The Loop Concept. Data Modification

In digital computing a loop is a set of instructions which are obeyed
repeatedly, probably with certaln aslterations before each repetition.
Normally this set forms a part of a larger program. The term data modifi-
cation means that the data being used in a given problem will be changed or
generated by the computer during automatic computation. These important
ldeas will be illustrated in the next two examples.

Each example is accompanled by an essential aid to good programming
called a storage allocation chart. This chart is used to list quantities and
their locations which are relevant to the program. This list is typically
not completed prior to coding but rather will be used to note down quantities
needed as coding progresses. Thus, if at some point in coding we find we
need a constant of 10, we would decide on a location for it and note this
down on the list. Thus the storage allocation chart is invaluable when the
time comes to place the required numbers in the correct locations prior to
automatic computation. Notice that we distinguish carefully between
constants and variables. In this connection these familiar words refer to
the contents of a memory location. That is, if a certain location, say 1650,
contains a 5 at the beginning of computation and the 5 remains in that

31

L.y (continued)

location throughout the entire process of automatic computation, 1650 and 5
will be listed in the constants column. But if the 5 1s to be replaced by
another quantity during computatlon, then 1650 must be listed as a variable.
This points up the fact that the contents of the locations listed as
variables must be set up properly prior to each use of the program.
Otherwise, incorrect results may be obtained. This initial setup should be
done in the program so that the computer will itself automatlcally set up
these values. The student should carefully observe this in the examples of
this section.

In studying the examples, if the flow charts are not at first clear,
study the programs and then return to the charts. Some of the notation 1s
new and it will take a little time to understand it. Strive to think sequen-
tlally in the way that the machine obeys 1lts instructions.

Example 1. Using Intercom 1000 DP, evaluate y = ax + b for x = -2,0,
-1.9, -1.8, «.., 3.0. Type out rows of the form: X3 W
(This is really a rather general problem in that we
evaluate a linear function on a specified interval of the
independent variable where the varlable takes values in
arithmetic sequence. a and b may be any desired values.)

FLOW CHART

enter

l

Type Xy ﬁ 1503

1
Calculate Y, 1504

4
Type Y; and CR} 1507

| 1511

—(1s %, > 3.017 }——(D——>halt

32

L.ty (continued)

‘Problemﬁ y=8x+ b

NOTES LOCATION|| K OP | ADDRESS ACCUMULATOR
Position paper 1500 30| 00 ; oz ?
| (1 42|15 | 98 -2.0
Set xi 5 2 49{15 | go*— -2.0
) |
Type X ’ 3 33|15 | 80 v
(N 2|15 | 80 X3
Calculate yy 5 Lhl 15 :96 - axy
L 6 43|15 | 94 ax, + b
Type ¥4 7 38} 21 IOO "
(8 42|15 | 80 x5
| _
Increment x4 9 L3115 | 92 Xi4l
| 10 x9l15 | 80 X141—8-X1
(11 41|15 | 90 xi - 3.05
Test Xi e f 12 22|15 ! 03 |~ "
"]) T
halt ' 13 67|00 | 00 “
STORAGE ALLOCATION CHART
Constants i Variables
Loc. Symbol Quantity Loc, Symbol Starting value
1598 -2.0 1580 X1 -2.0
1596 a
1594 b
1592 Ax 0.1
1590 3.05

Some explanation of the example is iIn order. Toward this end the
blocks of the flow chart have been numbered with the command location of the
program which begins the manipulation in the block. This cross referencing
is, incidentally, a very useful scheme as one often has to refer back and
forth from flow chart to program.

Since we plan to have the sequence of x's calculated by the machine,
we will establish an "x cell" which is nothing more than a specific location
in the memory in which we can repeatedly place these values during
computation., Thus thilis location containg a varisble. In block 1501 we show
that this variable must be set initially at -2.0.

33

L.l (continued)

Blocks 1503 through 1511 constitute the loop. It 1is here that the
computer will cycle repeatedly through the same set of instructions. If the
symbol xi is given its initial value -2.0, 1t will be seen that during the
first run through we are calculating y;. In block 1507, C.R. stands for
carriage return. .

Block 1508 indicates that we must increment xj. That is, we must take
the current xj (the first time x3 = -2.0 but not thereafter), add Ax = 0.1
and store the result back in the xj cell. The symbolism xj 1-# X3 1s best
read as "xjy,] becomes x3." Thus we calculate the new value to be used in the
computation and place 1t where the previously used value was stored.

In block 1511 we test to see if xj (which, remember, is the just incre-
mented value) exceeds 3.0, the last value with which we wish to calculate.
If it does, we halt computatlion. If X3 « 3.0 we must return to the first step
in the loop and run through it again, of course with the new xj. Note care-
fully that at the test if xj = 3.0 we are not done for we have just calcu-
lated with x5 = 2.9. The student should follow these details on the flow
chart and the program until he sees clearly the development of the problem.

It will be noticed that in making the test we subtracted 3.05. This
value is called the testing constant and care must be exerclsed in choosing
it properly. A good method Is to follow through the loop mentally using the
final desired xj. Notice that i1f we had used 3.0 as the testing constant the
machine would have halted too soon. For example, when x4 = 3.1 in thls
problem there may be a small error due to the fact that the computer calcu-
lates and rounds off in base two. Thus a testing constant of 3.1 might not
give zero when subtracted from xy = 3.1 as computed by the machine, and the
computer would take one more run through the loop.

Finally, it is well to note that a loop generally involves the fol-
lowing logical sections: Set-up, Compute, Increment, and Test. The last
three sections need not be in the order given but thls order possesses
certain advantages and in general we will use it., In particular, it fits the
use of index reglsters to be presented in Chapter 6.

3l

L.4 (continued)

Example 2. TUsing Intercom 1000DP calculate Sn forn=1, 2, «¢., 20.

Type rows of the form: n sn
FLOW CHART
entry
Set n =1
Set P=1
I
—'

Type n \\ﬁ
1

Calculate 5P = 5%

!
Type 57 \\7

35

L.4t (continued)

Problem: n, 5%

NOTES LOCATION]| K OF;‘ ADDRESS ACCUMULATOR
Position paper 0900 30{ 00 I 02 ?
1 42|09 | 30]" 1
Set P 2 19| 09 | 5ol ! 1
Set n 3 19| 09 ; 52 1
Type n b | 33]09 1 52|
(5 12| 09 : 50 P
Calculate 5P 5 6| |uuloggse 5P = 5%
Type 5" 7 38| 21 | 00 "
S 8 | | 1u9|o9!s0 "
9 L2| 09 ; 52 n
10 13| 09 | 30 n+1
11 19 09!'52‘ " n+ l-en
12 lhl 09 ! 3l n-21
Test n 13 22|09 i‘ou]
1l 67| 00 ! 00
'STORAGE ALLOCATION CHART
Constants Variables
Loc. Symbo.l (ontents Loc. Symbol Starting value
0930 1 0950 P 1
0932 5 0952 n 1
093l 21 _

This program illustrates the use of a product cell in which we store
the next higher power of 5 on each run through the loop. In the flow chart
this cell is symbolized by P. Notice the importance of setting P = (0950) to
the value one initially, so that the first multiplication gives 5 times 1 =5.
Of course, 1t is essential to store the calculated power in the "P" cell
before transferring back for another run through the loop. This step is
shown on the flow chart as 50— P,

36

L.4 (continued)

Similarly, we call cell 0952 in this program a sum cell, for 1lts con-
tents are increased by the addition of one each time around. ' Thus the
machine counts the number of multiplications and types out the correct n. ‘
Again it 1s important to note the necessity of storing back in the n cell the
incremented value.

Notice carefully the use of 21 as the testing constant., The student
should follow through the loop mentally to see that this 1s the correct value
to use. Incldentally, we are not concerned here with a round-off problem for
n is an integral variable. Thus we can safely depend on having zero in the
accumulator when the computer subtracts the testing constant of 21 from the

= 21 which was calculated.

The student should pilck out in thls program the four logical sections
of the loop: Set-up, 0900 - 0903; Compute, 0904 - 0907; Increment, 0908 -
0911; Test, 0912 - 0913.

-

Problems:

1. Rewrite the example of Section 3.7 to evaluate the polynomial for
= =3,0 to + 3.0 with Ax = 0.5. Type out as in example 1 above.
3
2. (@lven that sin z® x - %T + %— where x is an angle in radian measure,

calculate the sines of .1, .2, tety .9, radians, Type rows of the
form: x sinx. (Note that this is only an approximation., The

error for any x, however, 1s less than 7—).
15
3. Write a loop to find S = EE:Xiyi where X, = 2 and Ax = 0.5, v, = -6
and Ay = 0.3. i=1

L. Calculate A = P(1 + r)p for n = 1,‘2, «s++ Type out rows of the

form: n Ano Gate for input of P, r, and the final value of n.

4.5 Command Modification by Replacement

In Section 3.9 we saw that. commands could be moved about in the
memory during automatic computation. We may now apply thils technique to
cause the computer to bulld its own computation loop. The example, in which
we will calculate x + y and x - y, 1s very artificial in that no sensible
programmer would use this scheme if all he had to do was add and subtract
two numbers. In large Involved programs, however, this method of
"reshuffling" commands is sometimes useful. Therefore, we emphasize that
our objective here is to demonstrate a particular technique in a simple,
uncluttered problem.

The program is written for double precision and it 1s necessary to
recall that two locations are used for data. Thus, when the computer obeys
42146ly the contents of 146l and 1465 are placed in the accumulator. In
moving commands, therefore, we must realize that two at a time will be moved.
Moreover, any L2 and 49 operations must have even numbered addresses. The
student should carefully examine how these requirements have been handled in
the example.

37

4.5 (continued)

Observe also that commands appear in the storage allocation chart.
These are the quantities which will be copied appropriately into locations
1410 through 1413 during automatic computation. They are to be entered
manually from the typewrliter as commands. Note that it is unnecessary to
store manually any commands in 1LI10 through 1413.

A flow chart precedes the example, although 1t 1s probably not neces-
sary in this case and may not even be very informative, Remember that flow
charts are convenlent tools to be employed by the programmer as he finds
necessary.

Example. Intercom l1O0ODP. Given x = (1460), y = (1462) write a computation
loop that will be successively altered to type out (1) x + y, then

(2) x - y.

FLOW CHART

entry

|

Set calculation sequence:
(x + y), type, transfer

"y

Calculation sequence —————»halt

'

Set calculatlion sequence:
(x - y), type, halt

38

4.5 (continued)
PROGRANM
NOTES ‘LocaTion|| k | op | ADDRESS ACCUMULATOR
!
1405 30(00 |02 ?
- .
6 L2l |6u X + y sequence
Set sequence for :
X + y, transfer) 7 491, ;10
;
. 8 L2 |1y |68 || type and transfer sequence
L 9 49 1L !12
(|
10 |
T
Set automatically 11 |
12 |
|1 |
(: I
: n 2|1l |66 X - y sequence
Set sequence for T |
x - y, halt 15 b9 |1y l1o
16 L2 |1y !70 type and halt sequence
|
\| 17 49 |1 12
18 29 |14 |10
STORAGE ALLOCATION CHART
Constants v Varlables
Loc., Symbol Value Loc. Symbol Starting value
1460 x
162 y
146l 1421460
1465 31462
1466 L2160
1467 L11462
11,68 382100
1469 291L1L
1470 382100
1471 670000
Problems:

1. Write a program in Intercom 1000DP that will bulld its own
computation loop to calculate and type (1) xy, (2) x/y, (3) y/x.

2. Do as in problem 1, for (1) xy, (2) x2y2, (3) x2/y2.

39

.6 Sample Examination

1. Write a program in Intercom 1000SP to solve the followlng problem:
Three numbers are in storage as follows: a = (1600), b = (1601),

¢ = (1602). If a #b and a # ¢, calculate y = —2& =+ S __, type
, 8 - a - c

y, and halt. If a = b or a = ¢, ring bell, and halt. Use only one

halt instruction and place 1t at the end of your program.

Include a flow chart and storage allocatlon chart.

SOLUTION:
enIry
E.f'_](———-(Ddes a = b?
- - . @1 (Does a = ¢?
Ring bell Calculate y

l

Ty’pé y \

halt

140

®
o
® L.6 (continued)
®
o
o PROGRAM
o
® NOTES LocaTioN|| k | op | ADDRESS ACCUMULATOR
® |
Position paper 11,00 30{00 |02 ?
o 1 L2 (16 |oo a
® 2 L1]16 !01 a - b
i
) transfer if a = b 3 23|14 113 "
® L h?lé!OO a / (a - b)
]
o 5 49 |16 03 "
1
PY 6 L2 16 loo a
P 7 W1 {16 |02 a-c
® transfer 1f a = ¢ [=— 8 23 {14 !13 | "
{
® 9 L7 16 jo2 c / (a - ¢)
10 3|16 los
° L | y
° type ¥ 11 38 |21 o1 Ni
o 12 29 |1l -,m v
o ring bell 1 13 63 [00_|o0
halt il 67 100 !oo
(Y ‘ |
STORAGE ALLOCATION CHART
® .
Constants]
o Loc. Symbol Value
1600 a
® 1601 b
1602 c
® 1603 Temporary storage
®
®
®
o
®
o L1
®

4.6

(continued)

2o

Using Intercom 1l000DP wrlte a program to calculate s = vot + %gtz
for t =0, 1, 2, «++«, 100. Gate for Voo Type rows of the form:
t 8

i 1
SOLUTION:

FLOW CHART

enter

gate iIr v, \\j

set t =0

typjti \

. Y
calculate Sy

y
type s; and cr<\\7

I

[}—(1s ; > 1007 y—#(T)——-halt

h2

o
®
o Lh.6 (continued)
¢ 2
® Problem: s = vt + igt
o NOTES LocATION|| k | op | ADDRESS . ACCUMULATOR
[T
° Gate for v, 1716 51 17| 94 ?
° Position paper 7 30} 00 | 02 ?
Generate zero 8 L1] 21 ! 00 0
T
o Set t1=0 9 49|17 98] 0
® Type ty —= 20 33|17 | 98
I ;
¢ 1 L2f 17, 98| ty
T
® 2| |w17i96] b
o Calculate tj 3 43|17 | | vo + Sgty
o L Ll 17 !98 | voby + —;—gtiz
o
® Type 84 5 38lerjoof "
[6 42|17 | 98 ty + 1
® Increment ti 7 43|17 I 92 T 4+ 1 =ty
® 8 L9| 17 ! 98 ty - k
1
o 9 41117 | 90 n
® Test ty 30 22|17 | 20
° Halt | 31 67| 00 : 00
STORAGE ALLOCATION CHART
® Constants Variables
°® Loc. Symbol Value Loc, Symbol Starting vealue
1796 g/2 6 | 1798 | ty 0
o 1794 v, -
® 1792 t 1
1790 4+ — k 101
‘ ;
®
®
o
®
o
® 43
®

Chapter S

Debugging
5.1 Basic Principlés

It is almost inevitable that long complicated problems will not work
the first time they are run, and frequently enough even the short simple ones
fail to function properly at first. There are many types of errors that can
creep into a program and the process of flnding them is called "debugging."

Perhaps the first major rule in avolding errors on the G-15 is to keep
an eye on the verifications typed by the computer when storing commands and
data. These are true verifications in that the machine stores the infor-
mation and then reads and types what it stored. It 1s possible to type one
thing and store another, though this sort of machine error ls extremely rare.
Sometimes by accident two typewrlter keys may be hit almost simultaneously
and the character that prints will not be the one that 1s stored. This will
show up in the verification. On the whole, however, the operator will find
that if he is careful and accurate he will succeed in entering his commands
and data as written. The trouble then is that he may not have wrltten them

correctly.

Upon starting automatic computation all sorts of things can happen,
including the happy possibllity that everything works fine. But 1t can be
that the program will run and obtain wrong answers. This, of course,
presupposes that the correct answers are known. If they are not, as 1s
generally the case, a trial run should be made with simple numbers so that
the machine answer(s) can be checked by hand. There are several things that
can be done in the case of wrong answers. First, one should proofread the
verifications of the type-in and make sure that all necessary data have bheen
entered. Then, if the problem is not too long, one can follow it through
step-by-=step writing down exactly what the accumulator contains after each
instruction. If the trouble is still not found it will be necessary to
employ the techniques to be discussed in Sections 5.3 and 5.4.

A more frequent difficulty upon starting automatic computation 1s that
the instructions are so wrong that the machine does not finish the program,
For example, control may be transferred lmproperly so that the computer
starts taking commands from locations not used by the programmer. This may
lead to an error indication (see Section 5.2) or, more likely, it will
destroy a portion of the Intercom program. Then the Intercom tape must be
re-entered before anything can be done. o

If all this seems depressing to the reader he will f£ind that, while

debugging is a major problem, experience on the machine will go far to
lighten the burden. Moreover, there are techniques built into the Intercom

systems which are extremely helpful in dlagnosing errors. Before outlining
these techniques, we suggest that the student cultivate a reasonable degree
of humility. It is all too easy to blame errors on the computer. While thils
may occasionally be the case, it 1s far more likely that the trouble lies
with the programmer and operator.

Ll

®
o
|
®
®
o
e
o
o
o
®
|
o
®
o
L
o
o
o
L
o
o
o
®
|
o
@
o
®
o
@
[
|
@

5.2 Error Indlcations

. During automatic computation, certain errors will cause the machine to
halt and, iIn the Intercom 1000 systems, type five periods interspersed with
the ringing of bells. In the Intercom 500 system the computer halts, rings
three bells, and types "z0z yOu" to show these errors. After either such
indication the operator should put the Compute switch to the center (off)
position and then to BP. The computer will then type the address of the
command causing the error. The computer may then be returned to manual con-
trol as described In Section 2.7. Or, 1if desired, computation may be resumed
by moving the Compute switch back to GO.

Error indlcations are caused by the following:
l. 1In all three Intercom systems,

Any internal computation in which the result exceeds 1038
Square root of a negative number (see Chapter 7)

Division by zero

Log of zero or log of a negative number (see Chapter 7)

2. In Intercom 1000 DP only,

An arithmetic or data Input command with an odd-numbered address
Incrementing a command until the word position of an address
exceeds 99 (see Chapter 6)

5.3 Memory Interrogation

It 1is frequently useful to determine the contents of specified memory
locations. In using the procedures below, THE COMPUTER MUST BE IN MANUAL
CONTROL. ; '

Data. Type any of the four type-out instructions, 33, 38, 32, or 3,
followed by the address of a location containing data or by the -address of
the accumulator. Since the computer obeys any instruction typed from manual
control, it will type out the contents as specified. If the address of a
location contalning a command is given there will be a type-out, but it will
not be meaningful.

Commands. Type 35 followed by the address of a location contalning a
command. With Intercom 1000 SP or DP the contents will be typed out in the
form KWDOPCH., With Intercom 500 the type-out will be in the standard form
KOPCHWD. If the address of a location containing data is given there will be
a type-out, but it will not be meaningful.

Hexadecimal Number. Type 37 followed by the address of a location
which contains either a command or data. With Intercom 500, the contents of
the location will be typed out in hexadecimal form exactly as it is stored.

Control. With all three Intercom systems if the instruction 060000 is
typed, the computer will type the address of the last command obeyed in the
automatic computation mode. .

L5

5. Automatic and Manual Tracing

It is possible to execute a stored program one instructlion at a time.
This is useful if a certain portion of a program 1ls suspected to be causing
errors. One can work through this portion, interrogating the memory when
desired. The procedure 1s:

FROM MANUAL CONTROL,

1. Put the Compute switch to BP.

2. Type "69ADDR(tab)s™ where ADDR is the location of the first
command to be executed.
3, Put the Compute switch to the center position and back to BP.

li. Repeat step 3, for each command in the program. Each time
the switch is moved back and forth one command will be

executed.

Throughout, the computer is in the automatic operating mode. To
execute the remainder of the program without halting between commands, put
the Compute switch to G0. To revert to the manual mode, follow the procedure

outlined in Section 2.7.

The Intercom systems are equipped with a trace routine which may be
used to list commands as they are obeyed and the contents of the accumulator
after each command. The output format is:

Location Command Contents of accumulator in floating polnt

(In Intercom 500 only, the third column is typed only when there 1ls a change
in the accumulator contents.)

In essence, then, this routine causes the machine to dlsplay its
behavior thus allowing the operator to watch the numbers belng calculated as
well as the transferring of control. The process, however, is falrly slow
and should only be uged if other efforts to flnd errors have failed.

An important feature of the trace routine is that it 1s selective;
that is, the operator may specify whether he wishes all commands to be traced
or only certain ones. It is emphasized that in either case the computer
obeys all commands in the program during tracing. The selection 1s
accomplished in step 6 below by typing elther (tab)s or two seven character

selectors.

The first selector consists of the digits in their approprilate
positions which speclfy the commands to be traced. The remalning positions
are to contain zeros. For example, if one wishes to trace all 49 operations
the first selector would be 0490000.

The second selector consists of a combination of z's and zeros. The
z's must be typed in the same posltions as the digits of the first selector
which are to identify the commands to be traced.

Examples:

Commands to be traced First selector Second selector
All L49 operations 0490000 0zz0000
All involving channel 1l 0001400 000zz00
All 20 operations 0200000 0zz0000
All transfers of control 0200000 0z00000

L6

5.4 (continued)

To Use the Trace Routine. The compuber must be in the manual operating
mode. The Intercom magazine must be on the photo-reader with the tape at the
manual control position. '

1. Put the Compute switch in the center (off) position. Hold
the Enable switch ON and type p. Release the Enable switch
and wait for the photo-reader light to remain off.

2. Put the Compute switch to GO. Wait for the neon indicator
lights to remain steady.

3. Type "l(tab)s". Walt for the photo-reader light to remain
off.

L. Type "(tab)s". Walt for the bell to ring signaling that
the computer has returned to the manual mode.

5. Type "610000(tab)s"™. Wailt for the input-output neons to be
in the configuration 00000.

6. To list every command, type "tab)s". To list selected
cormands, type "FIRST SELECTOR (tab) SECOND SELECTOR (tab)s".
The bell willl ring signaling that the computer has returned
to the manual mode.

7. Type "69ADDR(tab)s" where ADDR is the location of the command

at which computation is to begin. The computation, with
listing of selected commands, will proceed.

To Terminate Listing.

1. Put the computer in the manual mode (Section 2.7).

2. Type "620000(tab)s". This command terminates listing and
the computer is now in the manual operating mode.

It 1is Important to know that iIn the tracing mode the computer may be
halted and computation restarted as many times as desired and it will
continue to trace. Furthermore, steps 5 and 6 above may be reused from
manual control whenever 1t 1s desired to change the selection.

This point becomes clear if one understands that steps 1 - L
accomplish the reading-in of the trace routine while 5 and 6 specify how
1t is to function. Obviously, it 1s only necessary to read in the routine
once,

Finally, with Intercom 1000 Single Precision the reading-in of the
trace routine destroys the fixed-poInt Input routine so that until the
Intercom program itself is re-read the computer cannot obey a 51 operation
code. Thils means that any 51 gates in the program must be replaced with 52
codes before tracing and all data must be entered in floating point form.
This difficulty does not exist with the Intercom 1000 DP and the Intercom 500
systems.,

L7

5.5 Correction of Stored Programs

The foregoing sections have outlined methods of detectlng errors in
programs which have been entered into the memory. It is natural to ingulre
next how such errors should be corrected once they have been found. The
answer, of course, depends on the type of error and,; since there are so many
possible types, we will not attempt to glve an exhaustilve discussion, but
rather we will indicate what may be done in the most frequently occurring
situations. Much must of necessity be left to the ingenuity of the
programmer.

If a single command is found to be incorrect in the memory, 1t ls only
necessary to re-store that command. Use the 50 operation code from manual
control and specify the location of the particular command -in question. When
the computer types back the address of the location, type the correct command
followed by (tab)s and the previous contents will be replaced by the
correction., Similar remarks apply to items of data which are incorrectly
stored. The whole point is that from manual control the operator may store
anything anywhere he wishes following the procedures of Section 2.7.

Often, however, errors can only be corrected by inserting commands
which have been left out. As an example, suppose we have in the memory a
program starting at 1310 and ending at 1390, and we find i1t necessary to
insert the commands 121100 and L}j1[,08 between the commands located in 1322
and 1323. Obviously, it would involve considerable labor to move everything
from 1323 - 1390 into 1325 - 1392 in order to free two locations for the
insertion. A better method is to "patch" the program using unconditlonal
transfers. We change the contents of 1323 to cause a tranafer to an unused
section of the memory where we place the commands to be Inserted, usually
followed by the command which was in 1323. Then we transfer back to 1324.
The situation may be illustrated as follows, where arbltrary commands are
listed in the relevant locations:

Before R After
Loc.— OF ADDR " Loe.” 0P ADIR
1310 30 0002 1310 30 0002
1322 L9 1410 1322 L9 1410
1323 49 1412 Transfer to patch 1323 29 1391
132, L2 140k 132} L2 1L0L
1390 67 0000 1390 67 0000

1391 42 1400

Patch 1392 4L 1408

1393 49 1412

Transfer back 1394 29 1324

If possible, patches should be placed in the same channel(s) as the
original program for convenlence in punching a tape containing all commands.
Finally, it is essential to write on the coding sheets clearly and completely
all changes before they are made. This practice helps to make the changes
accurately and also provides an invaluable record of the program as it is In
the memory. Remember, the corrections may be wrong and one must know what
they were in order to do any further debugging.

L8

Chapter 6

Index Registers

6.1 The Command Modification Problem

" One of the most powerful features of digltal computers is their
abllity to modify the quentitles being used in a problem during automatic
computation. Dsta modification as defined and 1llustrated in Section L.l is
an example of thils ability. Further, we saw in Section 4.5 how the computer
can be made to alter automatlcally the sequence of commands in the program
before obeying them. This procedure was termed "command modification by
replacement" and l1s only of limited usefulness, Now consider a more typical
sltuatlon requiring command modiflication.

Suppose we have 100 numbers and we wish to form their sum. We could
store them sequentlally in the memory using Intercom SP or DP instructions
depending on the precision required., We could then store 100 instructions in
another part of the memory, the first one being a "§j2" (clear and add)
operatlion and the remaining 99 instructions being " 3" (add) operations. Of
courge, we would also want to type out the answer and halt. The process of
storing this program, however, would be very laborious. Obviously, it is
also a very repetitious program. If-we could use just one "L3" operation and
cause the computer repeatedly to alter 1ts address part and then obey it
(l.e. form a loop) we could effect an enormous saving in the number of
locations occupled by the program in the memory. It 1s possible to do this
in the Intercom systems using a technique called indexing, employing things
called index registers.

Becauge indexing 1s so important let us display more specifically the
problem discussed above. Of course, the reader may not understand all the
detalls of the second program. We are attempting only to clarify the command
modification problem and to arouse curiosity as to the way the index regis-
ters function,

- Suppose, then, that using Intercom 1000SP, 100 numbers are stored in
locations 1700 - 1799. The first scheme suggested to form their sum might
look as follows: .

Loc. K OP ADDR
1500 30 0002

1 L2 1700
2 43 1701
3 43 1702
: ‘ This gap contains 95 commands!
99 L3 1798
1600 L3 1799
1 3 2101
2 67 0000
49

6.1 (continued)
Here is an indexed program which will accomplish the same thing:

Loc., K OP ADDR
1500 30 0002

1 1 73,0000
2 1 72 0098 These four instructions
3 1 71 0001 set up the index reglster
. L 170 0000J :
Set accumulator 5 2 1700
6 143 1701 This 1 instruction accom-
Calculation loop {g 1 76 1506 plishes the incrementing,
34 2101 testing, and transferring.
9 67

0000

For most purposes the 10 instructions of the second method are
preferable to the 103 instructlons required by the first. However, the
first program would be executed more rapidly than the second, since fewer
instructions would actually be executed. It should thus be appreciated that
index registers are very powerful tools; in fact, they have many uses in
addition to the one illustrated above. Some of these uses will be shown
in later sections. First it is necessary to understand how the registers
function,

6.2 The Intercom Index Registers

Perhaps the best way to explain index registers 1s from a schematic
point of view; that is, to emphasize the way they operate rather than how the
Intercom programs cause the manipulatlons to take place. It may be helpful
to state, however, that each index register is nothing more than six
locations in the memory, but it is best at first not to worry about where
they are. Further information on this point 1s given in Chapter 8, as well
as a discussion of certain special features of the Intercom 500 registers.

An index register, ﬁhen, should be thought of as being made up of six
distinct number positions. A simple-minded diagram displaying thls ldea and
the names of the slx numbers follows:

An index reglgter Name of number Abbreviation
' " Word base WB
Six Word difference WD
number » Word limit WL
positions Channel base CB
Channel difference CD
Channel limit CL

In general each number consists of two decimal digits but sometimes
the WB and the CB may be larger than thls. These exceptlons will be dis-
cussed later.

There are avallable ten of these registers designated 1, 2, 3, ***,

9, u. When using a register in a program its symbol 1s written in the K
column of the coding sheet for each relevant command.

50

6.2 (continued)

We will soon see that whenever a reglister is used it 1s necessary to
set up its Initlal values. There are six operation codes for this purpose,
one for each of the six number positions. The address part of commands con=-
talning these codes 1s used to provide the values to be set in the register.
A symbol must be placed in the K position of these commands to designate
which of the ten reglsters is involved. The operation codes are:

When the command is executed:

Set Word Base K 70 OOWB The word base of index register K will
: be set to the two digits found in the
WB position of the command.

Set Word Difference K 71 O0OWD The word dlfference of index register
K will be set to the two digits in the
WD position of the command.

Set Word Limilt K 72 OOWL The word limit of index register K will
. be set to the two diglts found in the
WL position of the command,

Set Channel Base K 73 CBOO The channel base of index reglster K
will be set to the two diglts found in
the CB position of the command.

Set Channel Difference K 74 CDOO The channel difference of index regis-
ter K will be set to the two digits
found in the CD position of the
command .

Set Channel Limit K 75 CLOO The channel limit of index register K
will be set to .the two digits found in
the CL position of the command.

There are two additional operation codes whose execution affects the
designated register. But they do a great deal more besides and it 1is
imperative to have a precise understanding of their function. Therefore we
wlll discuss them in detail, together with examples, in Sections 6.3 and 6.l.

Before proceeding, let us consider how index registers may be used to
modify commands. It should be quite clear by now what will happen when the
machine obeys a command such as 43ADDR. Suppose instead that the command is
indexed; that ls, one of the symbols 1, 2, ..., 9, u, appears in the K
position. When the computer obeys such a command the following happens:

(1) The digits of the CB and WB of register K are added in
the control unit to ADDR thus:

ADDR
+CBWB

(2) The resulting number, often called the effective address,
becomes the address used in obeying the command.

(3) Neither the contents of the register involved nor the
indexed command as recorded in the memory are altered
by the execution of the command.

51

6.2 (continued)

As an example suppose the computer obeys the instruction 1 43 1701
located in 1506, and suppose that at this time register 1 1s as follows:

I. R. 1
WB 00
WD 0l
WL 90
CB 00
CDh 00
CL - 00

The effective address of the command becomes 1701 + 0008 = 1709, so that the
command obeyed will contaln the address 1709. Hence the computer will add to
the accumulator the contents of memory location 1709. After the command l1s
executed, I.R. 1 will look exactly as above and the contents of 1506 will
remain as 1131701.

It should be obvious that whenever a command is indexed, the programmer
must be certailn that the CB and WB of the register designated contains what
he wants it to contain. It 1s astonishing how mary mistakes can be made in
indexing, and the student is advised to re-read this section after studying

Sections 6.3 and 6.4.
6.3 Modifying the Word Positlon of a Command

In order to write a program in which the word positlion of a command
will be repeatedly modified; we require the following instruction:

Increment word base K 76 ADDR

Since this command is so important and does so much, we will state how it
functions step by step. Moreover, the order of these steps is extremely
important. They are: , -

In the index register designated by K,

(1) The WD 1s added to the WB and the sum replaces the previous WB.

(2) The WB (remember, 1t has just been incremented) 1s compared
with the WL, and ‘

If the WB £ WL, the computer takes its next instruction from
location ADDR {that is, the location specifiled
in the address portion of the 76 command).

If the WB > WL, the computer takes its next instruction in

normal sequence (that is, from the location
following that of the 76 command).

52

6.3 (continued)

As an example suppose the computer obeys the instruction 1 76 1506
located in 1507, and suppose that at this time register 1 1s as follows:

I. R. 1
WB 08
WD 0L
WL 98
CB — 00
cD 00
c [0

After the command has been executed we have:

I. RI 1
~WB 09
WD oL’ '
WL 90
CB 00
CD 00
CL 00

Since 09 < 98 (WB<WL), the next instruction obeyed will be the one in 1506.

The reader should now return to the example of Section 6.1 and observe
the behavior of register 1 as the commands are obeyed. Note that after the
instructions in 1500 - 1504 are obeyed we have:

I. R. 1
wB [00
WD oL
WL _96
CB 00
cD i
oL ?

The machine will then cycle repeatedly through the loop formed by the com~-
mands in 1506 and 1507. On each cycle the effective address of the 1431701
instruction will be incremented by 1, for the word base of I.R. 1 is so
incremented each time the 1761506 instruction is obeyed. Thus the sequence
of numbers stored from 1700 - 1799 will be added.

Finally, when I.R. 1 contains a WB of 97, as it eventually must, the
43 command will have an effective address of 1798. The computer will then
obey the 76 command and transfer for the final time to 1506. This is because
the WB of 97 1s incremented to 98, the comparison of WB and WL gives 98= 98,
and -when WB = WL the next command comes from the address part of the 76
instruction.,

We then have the finmal run of the loop in which the effective address
of the L3 command is 1799, the WB of 98 is incremented to 99, the comparison
yields 99>98, and the next command comes from 1508 since for the first time
WB>WL. The student should follow these detalls carefully visualizing the
behavior of the register and remembering that the 1431701 command in 1506
never changes as recorded in the memory. In fact, the only variable i1s the
WB of register 1. Once set inlitially the WD, WL, and CB never change. Note
that 1t was not necessary to set the CD or CL. This point will become clear
in Section 6.}. .

53

6.3 (continued)

We can now unify all the foregoing 1ideas in a further example. The
student should follow carefully all the detalls of this example and also
compare it with Example 1, Section l.l4. As an additional aid, following the
program, the condition at certain times of the register in use will be ghown.
Note also that, since we are using double precislon, the word difference of
the reglster is set at two. Finally, note the selection of 78 as the word
limit. The best way to determine this value is to trace through the problem
mentally for the final run. Thus we see that since the last effectilve
address involving x; must be 1378 the last WB value used must be 78. The
computer then encounters the 76 command, increments 78 to 80, and compares 80
with the WL. Since we now desire WB>WL, we see that the WL must be either 78

or 79.

Example. In Intercom 1000DP evaluate y = ax + b for [0 values of x.
Type out rows of the form: Xy I3

FLOW CHART

enter

Set Xy register

'

e Type x4 \i]

Calculate Iy

'
Type vy \\W
'

Increment WB
of X5 register

[]
In x registe;\\\
N 1 »@ » halt

is WB > WL?

STORAGE ALLOCATION CHART

Constants] Variables
Loc. Symbol Value
1378 Xuo
1398 a
1396 b
5l

6.3 (continued)
Problem: y=ax + b
NOTES LOCATION|| K | OP | ADDRESS ACCUMULATOR
1600 30 OO{OZ ‘ ?
(118173 oo'oo "
Set x4 reglster ‘ 21118 172 00!78 n
38 |71 ooioz "
\ L |8 |70 0oloo "
Type xy 518 33|13 :oo - "
(6| [u2|1sl8 | | a
Calculate y3 { 718 1l 13|OO axy
(8 43 13!96 axqy + b
Type y1 9 38 21;00 "
Increment & test 10 [[8 |76 léiOS "
1l 67 OO!OO "

Index Register 8

Initial set-up During last run When computer
through the loop halts
wB 00 710 60
WD 02 02 02
WL 78 70 78
CB 00 00 | . 00
Ch ? ? ?
CL ? ? ?
Problems:
3 2

1. Wrlte a program In Intercom 1000SP to evaluate y = ax” + bx" = ¢cx + d

for 15 values of x. Type out as in the example above.
2. Do as in 1. for Intercom 100CDP.

3. Given 10 values of x and 10 values of y use Intercom 1000DP to calcu-
late the 10 products X34 and the ZTXiyi. Type out 10 rows of the
form X474 and then in the eleventh row type 2 Xiyi'

L. Given X = (1600), -, Xy, = (1622) and y; = -2.0, Ay = 0.l,
calculate X+ Ty fori=1, 2, ***, 1l2. Gate for yi and A y. Type

out rows of_ the form xi Ji X3 + yi. Use an index register to get
out of the loop.

55

6.3 (continued) -
Problems: (cont.)
5. Re-write problem L using a testing constant and the variable ¥y to

get out of the loop. (Note that this problem neet not contain
a 72 instruction.)

6.l Modifying the Chennel Positilion of a Command

In this section the remaining operation code affecting the contents of
an index regilster will be introduced. This command operates analogously to
the 76 operation described in Section 6.3.

Increment Channel Base ‘ K 77 ADDR

When this command is executed the following steps occur in the order giveni

In the index reglster designated by K,

(1) The CD is added to the CB and the sum replaces the previous CB.
(2) The CB (just incremented) 1is compared with the CL and,

If the CB = CL, the computer takes its next instructlion from
location ADDR (that 1s, the location specified
in the address portion of the 77 command).

If the CB > CL, the computer takes lts next instruction in normal
sequence (that is, from the locatlion following
that of the 77 command).

The 77 command is typlically used when there are too many iltems of data
to store all in one channel. The following example illustrates this and is
followed by some explanation of the new ideas involved.

Example. Evaluate y = ax + b for 100 double precision values of x. Type
out rows of the form Xy Ty

FLOW CHART

enter ————p| Set x, reglster |

— > Type Xy t}d

0
,Calculate Ty

TVPe T; e
L]

Incr, WB, Xy reg.
[1

@4——(Is WB> WL?)—b@—b Incr. CB of xi reg.
Reset WB to 00 f&—| Nj&—(Is CB> CL? @

halt

56

® © 0060006060000 060000 00000000 00900 0 0 0 0

[
L
o 6., (continued) N
® ' | STORAGE ALLOCATION CHART
Constants ‘ Varlables

® Loc. Symbol Value
® 1300 Xy
° :)
° 1498 %100
o % | ¢
° .
. Problem: Y = ax + b
° ‘
°® NOTES . LOCATION|| kK | oP | ADDRESS ACCUMULATOR
® 1500 30|00 :02 ?
° 1 | 1| 7501 |oo "
o 2 | 4] 7hjor ! 00 "
® Set xj register 3 | 4t 73|00 ;OO "
o b | 4| 72|00 !98 "
° 5 || 4] 71|00 !02 "
° — 6 || 4| 70l00 |00 .
o Type x; —= 7 | u|3323 |00 "

8 yol1s !98 a
¢ Calculate y, 9 I 4| h4hifr3 :OO axy
i 10 43|15 i% : ax; + b
® Type ¥i Il '38 21 !oo n
® Incr. WB & test 12 || 4| 76[15 !07 "
® Incr. CB & test | 13 §L|77|15 i06 "
® 1l 6700 | 00
L J The student should notice that the opelration of this program for the
° first 50 values of x4 1s similar to the example of Section 6.3. For this

portion of the problem the contents of I.R. i may be displayed as follows:

® .
[
®
® 57
°

6.4 (continued)

Initial set-up During 50th run Just after execution of

: through loop the 76 for the 50th time.

WB 00 90 100 |«— Note the 3

WD 02 02 02 digit no.
WL 96 96 98
CB 00 00 00
CD Ol Ol 0L
CL [oxl} Ol 0l

Since 100 > 98 (WB > WL), the next instruction obeyed willl be the one
in 1513. ©Note that this is the first execution of the 77 command. This will
cause the CB of register || to become 01, (CB + CD-# CB) and then the compari-
son of CB versus CL will take place, Since 01 = 01, (CB = CL), the next
instruction comes from 1506, which is the location written in the address
part of the 77 instruction. Since we had the foresight to place the "Set
Word Base™ (70) instruction last in the set-up section of the program, the
computer is thus made to reset the WB of register L to 00. It then continues
with the instruction in 1507 and the observant reader will see that it is now
"trapped" in the computation loop for another 50 cycles. But since the CB is
now 0l the xi's stored in channel 1l will be used. Finally the machine

reaches the halt command when it gets by both the 76 and 77 commands on the
last run of the gsecond 50.

We conclude with diagrams of index register lj for the second 50 runs:

After 100th After 2nd
During During execution of execution of
5lst run 100th run the 76 instr. the 77 instr.
WB 00 96 100 100
WD 02 02 02 02
WL 90 BIEL 98 90
CB Ol Ol 0L 02
CD 0l [ox} Ol 0l
CL 0l Ol 0l 0oL
Problems: .
1l. Rewrlte the foregoing example for the followling storage of 30 values
of x:
X = (0900) X1 = (1000) Xpq = (1100)
X0 = (0918) Xog = (1018) X30 = (1118)

2. Do problem 3 Section 6.3 for the following storage of 20 x's and

20 y's:
X, = (1300) ¥y = (1400) Xqq = (1500) Vi1 = (1600)
*10 = (1318) 3, = (1418) X,o = (1818) o = (1838)
58

‘6.u {(continued)

Problems: {cont.)

3. Do as in 2 for the following storage:
X = (1700) Ty (1720) X1

i soe
f oo
[} oo

(1718)

X

Y10

(1800)

Y11 (1820)

(1818) (1838)

J20

6.5 Use of Index Registers for Typing Tabulating Numbers

The following programs in Intercom 1000DP will gate for x then type:

. n, xn, Sn = X + Xy + "0
the first for n = 1 to 20, and the seeond for n

In the first program the constants 0 and
computer, while in the second they are stored,
the difference between the two methods.

enter

*n
= 1 %o 1990

1l are generated in the
This was done to illustrate

gate for x

PR

*

| set registers

!

/L L

—| type tab. no.

'

| calec. and type x"

N

cale. and type Sn

)

!

——————————(irincr. reg. Up to limit?j)

halt

When not using the channel portion of an index register, setting the channel

base to zero 1s a precautionary measure.

59

6.5 (continued)

Problem: n, xn, S, = Xy + Xy v + X 20 values
NOTES LocATION|| k | op | ADDRESS ACCUMULATOR

position paper 1000 30 OO}OM ?
gate for x 1 51 21|OO X
space 2 30 00!02 X
store x = (1050) 3 L9 10}50 X
div. by x Iy L8 21!00 1
store 1 = x 1 = (1052) 5 49 10!52 1
sub. 1 6 41 | 10ls2 0
store 0 = Sp-1 = (1054) 7 L9 10|5u 0
set channel base to 0 8 |1 173 oo!oo 0
set word base to O 9 1l]70 ~OOIOO 0
set word difference to 1 10 1171 OOiOl 0
set word limit to 19 11 1|72 00!19 0
type tab. no. ™| 12 (1 |31 00101 0 or Sp
clear and add x™L 13 L2 lOiSZ %21
mult. by x 1L Ll 10!50 xB
store x 15 49 | 10 }52 xB
typé <2 16 133 21i00 B
add 5, 17 | |u3 |0l S
store S, 18 | |uo |20 s,
type S, (cr) 19 38 | 21 loo Sn
increment register 20 [l |76 10:12
halt 21 67 | 00 iOO

|

i

I

|

60

(A N N N N N NN NN NN ENEEEEEEEEEEEEEENENENYE N

®

®

® 6.5 (continued)

@

o Problem: n, xn, 8. =X + X, %+ *** + x_, 199 values

n 1 2 n

@

® NOTES LOCATION| K | OP | ADDRESS ACCUMULATOR

o position paper 1000 30 oo:ou ?

o gate for x = (1050) 1 51 1o|50 2

9 clear and add 1 = (1052) 2 L2 10!52 1

o store 1 = x°L = (1056) 3 49 10;56 1

® clear and add 0 = (105}) n L2 10!54 0

® store 0 = S,.7 = (1058) 5 L9 10:58 0

P set channel limit to 1 6 {175 OliOO 0

° set channel diff., to 1 7 174 Ol'OO 0

° set channel base to 0 8 1 (73 OO!OO 0

® set word limit to 99 9 1 72 OO;99 0
set word diff. to 1 10 171 OOiOl 0

o set word base to 1 11 1170 OO!Ol 0]

® space 12 30 OO!O2 0

o type tab. no. 13 11|31 ooioo <1 0

o clear and add x2~1 1L L2 10!56 -t

4 mult. by x 15 NN 10:50 x2

o store xU 16 L9 10i56 x2

o type x° 17 33 21!00 <

® add Sp.1 18 43 1oi 58 Sn

9 store S, 19 L9 10!58 Sn

® type S, carr. ret. 20 38 21:00 Sy

® increment word base 21 |1 |76 lO|l3 "

Y set word base 22 |1 |70 OO!OO "

® increment channel bage 23 (1 |77 10:13 "

° halt 2l 67 oo;oo "

®

Py 61

® :

6.5 (continued)

Problems:
1. Compound interest and present value of l.
2. Compound interest and present value of A,
3. Constant percentage depreclation of 1.
li. Constant percentage depreclation of A.
5. Power and reciprocal of power.
6. Reciprocal of power and sum.
7. Factorial and sum.

6.6 TUse of Index Registers with Datsa

The following program for Intercom 1000DP will find the average and
average of squares of numbers in 1800, 1802, ... to 1818.

. 2

typed ocut: i Xy X
X x?

in iIm

B p BB B BB

(1+1)" (1+1)""
A(I+1)® A(+1)”"
(1-r)"® 1-(1-r)'
A(1-7)" A[L1-(1-7)"]

x?

X-a

x!

Sa

b4
Sp = x"H x"4+ L,
= 1! + 2! + ..

Results will be

WX

.nl

Problem: Average and average of squares

NOTES LOCATION|| K OP | ADDRESS ACCUMULATOR
position paper 1500 30 OO: 02 E:
1 173 00| 00 "
2| 172 oo! 10 "
3l 1ln oo; 01 "
L || 1|70 oo! 01 "
set registers 51 2173 18} 00 "
6| 2|72 ooi 18 "
71 2f71 ool 02 "
8 | 2|70 oo! 00 "
clear and add 0 = (1820) 9 Lo lBi 20 0
store 0 = Tx = (1822) 10 L9 | 181 22 0
store 0 = Tx° = (182}) 11 L9 18! 2l 0

(program continued on next page)

62

O 200000000 000009 02000 0909299300990 990

L B B B B BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B B BN BN BN BN BN B I W)

6.6 (continued)

NOTES LOCATION|| K OP | ADDRESS ACCUMULATOR
type tab. no. —| 1012 | 1] 3 oo: 00 ?
clear and add Ix 13 | uo18] 22 Sx
add next x | 2| 43 OO! 00 £x
store back 15 | L9 18; 22 X
type x 16 | 2| 33 OO! oo| X
clear and add x 17 | 21 42 00: 00 x
mult. by x 18 i 21| o0 x2
type x° 19 38 21| 0o %2
add $x° 20 L3 18! 2l s x°
store back a L9 18; 2L s x°
incr. reg. 1 | 22 | 1| 76| 15] 23 5 x°
iner. reg. 2 23 | 2| 76 15! 12 5x°
space 2l 30 05! 02 $x°
clear and add I X 25 L2 18i 22 5 x
div. by 10 = (1826) 26 18181 26 sx/n =%
type x 27 33 21: 00 sx/n =X
clear and add Sx° 28 ‘,h2 18i 24 Zx?
div. by 10 | 29 L8 18! 26 £x%/n
type $x°/n 30 38 21i 00 £x°/n
halt 31 67 oo! 00 "

Problems:

l. Write a program to calculate the average of 50 double precision
numbers in 1800 to 1898. Type the result.

2. Write a program to calculate the average of 50 double precision
numbers in 1750 to 1848. Type the result.

3. Same as 1 for 100 single precision numbers in 1800 to 1899.

4. For x's in 1800, 1802, ... and y's in 1600, 1602, ... (double
precision), write a program to find and type:
2 2
ox on o xy x0Ty

then the sums of these,

63

6.7 Output Format Control with Index Registers

The following portion of a program will type 20 lines with a space
after each 5. Here it is assumed that part of the program is before 1030

and part between 1038 and 1070.

Problem: Type 20 lines with space after each five lines.

NOTES LOCATION|| K | OP- | ADDRESS ACCUMULATOR
/—__,,,—\N_ﬂ,/-__,,ﬁ\\w,,%~\~,/ﬁm\u,,,vﬂm,
1030 | 1| 73] 00|oo

31 {172 00!19
32 |17 00101
33 {172 oo!oo
3 (2|73 oo:oo
35 {272 ooiou
36 [[2]71 oo|01
| 37 [2]70 oo!oo
—| 38 |13 00;01
——
1070 |1 |76 10!72
71 67 oo:oo
| 72 [l2[76] 10]38 [
73 30 00!01
N 29 1o}37

Problems:

l. Rewrite the

three lines.

2. Rewrlite one
five lines.

sbove example to type 30 lines with a space after each

of the pfoblems of Section 6.5 to space after each

6L

O 2 0930920900000 00 0000303290200 9090

6.8 Summary

In Intercom 1000DP 1t 1s possible to get an error indication using
index registers (see Section 5.2). This will happen if the word position of
an address 1s incremented beyond 99. Thus if the WB of I.R. 3 is 100 and we
execute an Ilndexed command, as 3431700, an error indication will be given.
Note carefully that it is not an error to increment the WB to 100 or more as
has been done in previous examples. It is the attempt to execute a command
with an effective address whose word position is more than 99 that causes the
error. Thus if I.R. 2 has a WB of 60 and the machine encounters the command
2491570 an error indication will be given,

Index reglsters seem to give more difficulty than any other concept in
digital computing. There is no simple cure for those who find this to be the
case. Re-reading Sections 6.1 - 6.l many times may help. Make an effort to
think precisely. Ask yourself at each step in a program what the register
contains. Above all, learn exactly what the machine does when it executes a
76 or a 77 command, and when it -executes an indexed command like 7421l00.

It may help, too, to visualize the index register as a counter. The
variables are the word base and the channel base and they count up in incre-
ments specified by the constant word difference and channel difference
regpectively. The word limit and channel limIt are also constants.

In the last analysis there is no substltute for experience. Putting
problems on the computer and making mistakes is one of the best ways to learn
if one takes the trouble to debug the problem and think carefully about the
mistakes which are found.

6.9 Sample Examination

Double precision values of x and y are stored as follows:

X = (0900) ¥, = (0902)
x, = (090L) ¥, = (0906)
%5 = (0996) Vo5 = (0998)
X, = (1000) Yog = (1002)
Xpp = (1004) Yo7 = (1006)
Xeq = (1096) Y50 = (1098)
Type out 50 rows of the form:
1 Xi2 in S xi2/y12

Underneath the last 3 columns, type the sum of each column.
Halt the machine. .
Include a flow chart and a storage allocatlion chart,

65

6.9

(continued)

enter

y

sum cells to zero

v

set tab no. reg.

J,

set daﬁa reg.

'

type tab no., i\.____<

!

cale. xia,

2

add to x4

Y

type Xi2 \\j

l

calc. yiz,

add to y,°

l

2, 2 O\
type X, /yi

carriage return

'

iner. WB, tab reg

i

iner. WB, data reg|

FLOW CHART

halt -

set WB data
register to zero

in data register
is CB > CL?

!

incr., CB, data reg.

in data register
is WB > WL?

!

66

3600‘.00..0060..0060...000‘.0000@.@

6.9 (continued)

STORAGE ALLOCATION CHART (not including x's and y's)

Loc., Symbol Starting value
1198 x° | 0
1196 72 | 0

b9l | x%/y° o

| 1192 temporary | storage

1190 | temporary | storage

Problem: 1, x2, y2, x2/y2
NOTES LOCATION|| K | oP ADDRESS H ACCUMULATOR
1100 30 |00 ;oz ?
Generate zero 1 h1 |21 00| VO
| 2 Lo |11 | 98 "
Set sum cells { 3 L9 |11 .96 "
(L 49 |11 ;9u "
(5 1[73 |00 !oo "
Set tab no. register | 6 | 1|71 |00 :01 "
L 7 | 170 00 ioo ~ "
(8 | 2|75 |01 |oo "
9 || 2|74 01! 00 "
Set data register)\ 10 {| 2|73 oo; 00 "
11 || 2|72 o0 | 97 "
\ 12 | 2{71 |00 !02 "

(program continued on next page)

67

LK I B B B BN B B B B B BN NN NN RN BN NN BN BN NN NN BN BN BN BE N BN NN BN BN BN BN W

6.9 (continued)

NOTES LocaTioN|| k | op | ADDRESS ACCUMULATOR
Set data reg. base zero 13_13’ 2170 |oo ! 00 |
Type tab no. 1 | 131 {oo i oL [[*]
15 | 2Ju2 |09 | 00 x4
16 Ly |21 : 00 x,2
Calc., type, save, 17 33 21| 00
accumulate xiz 18 49 |11 !92
19 43 |11 i 98 x, %+ 1x,°
20 49 {11 | 98 "
21 | 2| 42 09: 02 3
22 Ll| 21|00 752
Calc., type, save, 23 33| 21|00 "
accumulate yiz 2L L9 11:90 "
25 43| 11/ 96 712+ 234°
26 49 112 96 "
27 L2| 11y92 %2
Calc., type, 28 148 11|90 xiE/yi2
accunulate Xiz/yiz 29 '38 21!00 "
30 43| 11j94 x,%/7,% + £x,°/3,°
31 49| 11] 9y
Incr. tab no. reglster 32 |1} 76 11!33
Incr. WB, data reg. 33 2] 76 ll!lu —
Incr. CB, data reg. 3. 2} 77 'llilB
Space 35 31| 00l 0o
36 33 ll: 98
Type sums 37 33| 11 96
38 38 11! 9L
halt 39 67 ooi 00
68

o200 0 00 0099

QP 9000000000 0009 0060 0 00

Chapter ?

Subroutines

7.l General Description

A subroutine is a program which will obtain a frequently needed result
and which is designed so that it may be used as often as necessary in con-
Junction with another program. For example, one often requires the square
root of a quantity. Since the Bendix, like most computers, does not have a
square root command, a subroutine is written to obtain the square root. Once
checked out and placed on paper tape, the subroutine is always available for
use. Computing Installatlions maintain a large file or library of subroutines
which the programmers use as necessary. Also, most computer manufacturers
include with their machines a basic subroutine library. In particular,
Bendlx provides for use with the Intercom systems a library of the most fre-
quently requlred routines. The use of this library will be discussed in
Sections 7.3 through 7.5. :

There are some important fundamental ideas which arise in connection
with subroutines. Obviously, provision must be made for placing any required
subroutines in the memory along with the program which uses them. On the
Bendix this 1s easlly done by having the subroutines punched on paper tape
and then reading in the tapes as necessary. Of more interest are the problems
involved 1n designing subroutines so that they may be conveniently used. A
little thought will indicate that provision must be made for transferring
control from any point In the main program to the subroutine and the sub-
routine must then be able to return control to that point., This process might
take place many times during computation, each time from a different point in

, the main program. The Intercom systems are designed to handle this problem
" 80 that one may write his own subroutines if desired. We will discuss this

point in Section 7.2.

Another major problem 1s that subroutines must be designed so that the
programmer may conveniently make available to the subroutine all parameters
on which 1t is to operate. 1In the case of a square root subroutine for
example, the radicand might be placed in a definite location prior to trans-
ferring control to the subroutine. The subroutine, then, would be designed
simply to take the square root of whatever quantity is in this location. The
instructions required to set up the parameters for the subroutine are usually
referred to as the calling sequence.

Finally, subroutines are to be thought of as convenient tools for the
programmer. If it is found that a certaln calculation is to be performed
many times in solving a problem, a subroutine may well be used. If one is
already written so much the better; if not, 1t will usually pay to write one.
These points wilill become clearer after reading the next sections.

69

7.2 Writing Subroutines in Inpercom

There are some commands in the Intercom systems which are speciflcally
designed for writing subroutines. They are called "mark place and transfer"
commands . :

Mark Place and K 26 ADDR Control is transferred to the command
Transfer I . in location ADDR. The address of the
26 command 1s stored in a special

register.
Return to Marked 16 0000 Control is transferred to the command
Place I located immediately subsequent to the

last 26 command. This command has no
meaning unless it 1s preceded in the
program by a "Mark Place and

Transfer I" command.

Mark Place and K 28 ADDR Control 1is transferred to the command

Transfer II1 in location ADDR. The address of the
28 command is stored in a special
register.

Return to Marked 18 0000 Control is transferred to the command

Place II located immediately subsequent to the

last 28 command. This command is
meaningless unlesg 1t is preceded in
the program by a "Mark Place and
Transfer II" command.

The whole point here 1is that the 26 or 28 commands may be located
anywhere and the computer will unerringly return to the command following
in sequence when it encounters a 16 or lg command respectively. The student
should note carefully the distinction between this transferring scheme and
the simple unconditional transfer command 29.

Example, Write an Intercom 1000 DP subroutine to perform division
such that the integral part of the quotient is obtained
separately from the remainder.

dividend k
divisor r

integral part of quotient
remainder

Wh

o’
nn

We have a/b =k + /b or a = kb + r, Our plan will be to subtract b from a,
repeatedly, counting the number of subtractions until the regult first

becomes negative. The count will be k,and r will be obtained by adding b to
the negative result.

70

O 92 @006 00000000000 9060a0d0060690 0923030000000 00O

7.2 (continued)
FLOW CHART

enter

Set k=0

!

| Calculate a - (k + 1)b

‘ .,
Is a - (k + 1)b < 0?)*»%)

a-(k+ 1l)b—a - kb Calculate r
k+ 11—k return to marked place

It would now seem appropriate to select storage locations for some of
the quantities involved except for the fact that we wish the routine to be as
compact ag possible. Therefore we will write the program using symbols for
some of the addresses. Then, once it is known how many locations the program
requires, we can assign the next sequential cells for data storage.

Program
Notes Loc. || K| OP | ADDR Accumulator
Set k=0 { 0900 41| 2100 0
1 9| k "
Calculate a - (k + 1)b { 2 2| a - a - kb
, 3 41| v a - (k+ 1)b
Is a - (k + 1)b neg.? - L 22 | 0910 n
a ~-(k+ 1)b—»a - kb 5 Lo | a n
6 L2 | k k
k + 1—» k g L3 | one k+1
49 | k "
9 29 | 0902 n
10 L3 | b r
11 16 | 0000 ‘ "

We can now make the following assignments:

Constants _ variables
Loc. Symbol Value Loc. Symbol Starting value
0912 one 1 091l k 0
0918 | b 0916 a the dividend
71

L B B R B B BN B BN NN BN NN NN BN NN NN BN BN RN BN BN BN BN BN BN BN BN BN BN BN B NN W)

7.2 (continued)

In order to place the subroutine in the memory, and so on tape, one
of course must replace the literal symbols by the above values.

Finally, the specifications for using the routine may be stated as
follows:

1. Subroutine uses locations 0900 - 0919.

2. Before transferring control, place a in 0916 and b in 0918.
3. To enter subroutine, use 26 0900.

li. Location of results: k in 091}, r in 2100.

As an example of the use of this subroutine, suppose that at some point
in a program we have calculated a quantity x and we wish to know if it is
divisible by, say, 31. Assuming 31 = (1454), x is in the accumulator, and our
next command locatlion is 1327, we may proceed as follows:

Notes Loc.|]]| K| OP| ADDR Accumulator
. . b 4
X —m 8 1325 L9 | 0916 x
31— b Lo | 1ysh 31
9 L9 0918 3L
30 1 26| 0900 31
Transfer if r = 0 31 23

We would now do whatever might be desired. Note the existence of a
branch depending on whether or not the remainder 1is zero, Of course, the
integral part of the quotient is in 091l and could be obtained if desired.

It may be well to emphasize that before such a program (of which this
last 1s a piece) is run, it is necessary to load the subroutine into
channel 09.

Problems.

l. Write a subroutine to reduce any angle in radians to a positive angle
less than 2% such that the trigonometric functions of the original
angle and the final angle are the same. Include a clear statement of

specifications with your solution.

2. Wrlte a subroutine to accomplish the multiplication of two complex
numbers. Note that a complex number a + bl must be stored in two
separate locations, one for a and the other for b. Thus the sub-~
routine will require four locatlons for initlal data, and two
locations for results. '

3. Extend the subroutine in 2 to accompllish complex division. Have a
separate entry for this but use the same storage locations as in 2
for the I1lnitlal data and for the results. The entire subroutine
for both multiplication and division should employ locations in
only one channel.

72

O 92990 93200093000 0903093 00000932090 006 0000

®
®
®
®
|
®
L
o
®
¢
®
®
®
®
®
®
®
®
@
[
®
®
®
®
®
®
o
®
®
®
|
®
®
e

7.3 The Intercom Subroutine Library

The subroutines made available by Bendix for use with the Intercom
systems may be divided Into two classes: (1) Mathematical Subroutines and
(2) Auxiliary Equipment Subroutines. The latter are required in using such
accegsories as a Flexowriter, magnetic tape, or IBM card equipment, and will
not be dilscussed here.

The Mathematical subroutines are normally supplied in a separate tape
magazine, one magazine for each of the three Intercom systems. (Actually
there are two appendices for Intercom 1000 DP. See problem l, Section 7.5
for an explanation.) These are referred to as appendix magazines or appendix
tapes. Below 1s given a table displaying the mathematical subroutines in
each appendix tape. One horizontal block corresponds to one subroutine which
fits in one channel of the memory, but note that one routine may do several
distinct things; the one which is done is a function of the word position
used when transferring control to the subroutines. This point is illustrated
in the next sections, which explain the use of the subroutine library and the
meanings of the various items in the tables. : :

Table I. Library Subroutine Specifications

= X Word position ‘ N (loading code no,)
Subroutine for entry SP - DP
Fractlion Selector See Table II 1 CHuO 1. CHuO
Square Root 97 2 CHuO 2 CHu0
Log,, X 71
Loge X 17 3 CHuO 3 CHuO
Log, x | 408
o* ’ 22
2* 08 i CHuO 1y CHOO
10% 72
Sin x (degrees) 39
Sin x (radians) L2 5 CHuO 5 CHOO
Cos x (degrees) 23 .
Cos x (radians) 26
rctan x (radians) 2L 6 CHuO 6 CHOO
.Table II. PFraction Table III. Storage Limitations
Selector Entries If the N value of a subroutine ends
0. of decimal in 00, when the subroutine is:
places to be w°§g pgfl,if,“n Placed In OH] Do not uss Index Teglster
typed out r J 09 T
0 00 10 2
1 0l 11 i
2 02 12
; o0 i ¢
0 1
5 05 15 g
6 06 16
7 07 17 9
18 u
73

7.4 Loading Library Subroutines

A library subroutine may be placed in and will operate correctly from
any channel of the Intercom memory. The loading procedure is outlined in the
chart below. The symbol N represents a five digit number. The first digit
is a code for the subroutine, the next two are the channel into which the
subroutine 1s to be loaded and the last two are either u0Q or 00.

Appendix magazine
on reader.®* Tape |
rewound.

Y

Manual control

Compute sw off Bell rings. Ready
> to load subroutines

Enable sw on,

type p
N (tab)s
. See
Subroutines loaded. [: g22%6%3
Tape rewound N-(tab)s

*With Intercom 500, the subroutines are usually included with the basic
tape. In this case it is not necessary to change magazines. Merely follow
the instructions from manual control.

Note that one or more subroutines may be loaded at "one shot," by
typing one loading code number N, followed by (tab)s, for each routine ‘
desired., The computer will retain these N's but will not load until an N is
followed by the minus sign (tab)s, at which point all subroutines specified
by the retained code numbers will be loaded. The following examples should
clarify this point.

Example 1. We wish to load Intercom 1000 DP subroutines as follows:

Logarithm CH 10
Square root CH 12
Sine-~Cogine CH 17

At the appropriate polnt for typing N we type:

3 10u0 (tab)s
2 12u0 (tab)s
5 1700 -(tab)s

The order of these is Immaterial except that the last N must be
followed by the minus sign, then (tab)s.

Example 2. We wish to load the Intercom 1000 SP exponential subroutine
in channel 18.

At the appropriate point for typing N we type L 18u0 -(tab)s.

h

O 9 0930223000300 90000309000 9009 93232929200900900

7.5 Programming with Library Subroutines

The transfer of control to a library subroutine is accomplished with
a speclal command.

Perform subroutine K 08 CHWD The library subroutine in channel CH
wlth word entry position WD is executed
using the value 1in the accumulator as
the argument. The result is placed in
the accumulator and control is returned
to the location next in sequence to
that of this cormmiand.

Exception: TUse of the fraction selector
subroutine does not affect accumulator.

In additlon to thils command, there are some special perform subroutine
commands (see problems l and 5). At this point, however, the student should
concentrate on learning the 08 command, for it 1s of most general use.

Clearly, the 08 operation has no meaning unless the channel designated
does, in fact, contain a subroutine with sn entry at WD. But, as we learned
in Section 7.4, library subroutines may be placed in any channel of the
Intercom memory. Hence in programming we have complete freedom to place the
needed subroutines wherever convenient with the exceptior shown in Table III,
Section 7.3. When a certain channel is selected for a subroutine this should
be recorded in the storage allocation chart.

As a simple example of subroutine progremming, suppose at some point
In a program we have an angle x in degrees in 1426 and we wish to find sin x
and store it in 1480. We select an unused channel, say 17, and reserve it
for the sine-cosine subroutine. The program steps might then be:

Loc. K OP ADIR Accumulator
" 42 1426 x
08 1759 sin x
49 1480 "

where the locations for the commands depend on the rest of the program,

A more complicated example of subroutine programming follows.

75

7.6 Example of Use of Subroutines

from x, =
with one decimal place, X

R

Storage Allocation Chart

> X .
-0

The following program for 1000 DP will calculate and type:

X, to Xy = X, by increments of Ax where X5 X AX are numbers

Constants Variables
Loc. Symbol Value Loc. Symbol _ Starting value |
0948 | Xq .0950 Xy X,
0952 X,
0954 AX
| 0956 3 3
CH. Subroutine
10 fraction selector
11 square root
12 logarithm
13 exponential
76

© 900030000009 000 0000000600600 0000O0O®O0O0Q

7.6 (continued)
Program for x, x2, x3, V¥, VX
NOTES LOCATION OP\ ADDRESS ACCUMULATOR
position paper 0900 30(00 ;OZ ?
cl. & add xg 01 42|09, |18 x,
set xy= x, 02 49 {09 150 x4
cl. & add x; = (0950) % 03 42 {09 ;50 X4
select 1 decimal pl. ol 08|10 !Ol x4
type x4 05 33]|21 :OO X3/
mult. by x4 06 L f21 ioo %32
select 2 dec. pl. 07 08|10 |02 x4°
type x3° | 08 33/21 | oo x;2/
mult. by xj 09 L |09 ; 50 xq3
select 3 dec. pl. 10 08|10 | 03 x,3
type x;° 11 33]21 | 0o x43
select 7 dec. pl. 12 08|10 ! 07 x4
cl. & add x, 13 2|09 iSo x,
find VX 1l 08|11 197 e
type VX3 15 1 33|21 : 00 /'Ei/
cl. & add x4y 16 L2109 iS{O X4
find log 17 0812 !71 log x4
div. by 3 = (0956) 18 48|09 | 56 1/3 Llog x4
exp. 10 19 08|13 | 72. re
type VX 20 38|21 : 00 =/
cl. & add x4 21 L2]09 iSO x4
add Ax 22 L43]09 !Sh. Xy + AX
store x4 + AX 23 49109 : 50 X3 + AX
sub xp, 2l 41{09 ;52 Xy + AX - X
trans if scc < 0 25 22| 09 | 03 x; + Ax - X, =
halt 26 67|00 : 00 x, + Ax - x_Z
17

7.6

1.

(continued)

Problems,

Write a program to type:

X sin x cos X tan x

Write a program to type:
x arc sin x arc tan x

Glven eight values of x, calculate ij forn=2, 3, e, b,
Output format:

. TR %Ei Five such blocks with 3 spaces
between each block and 1 space
between n and the 8 rows.

e ¢+ ¢+ B B

L] ni

X8 tee '\/;1-8

Type n with no digits after the decimal point but the x's and
thelr roots with 7 places.

In Intercom 1000DP, Appendix II subroutines use CH 05 instead of

CH 19 and use of subroutine can be made while output is in progress,
hence will sometimes save some time. These subroutines use OP 02
instead of 08. Rewrite the illustrated example to use 02 subroytines.

In Intercom 500, all subroutines are executed from line 05,

OP code 02 or Oé may be used. In addition, 1f entry is st word 00,
OP code w3 will be faster than the above. The square root sub-
routine has an additional entry at 00. Rewrite the illustrated
example for Intercom 500.

78

992092 00000000000000000000000000060070

Chapter 8

Some General Examples

In the following sections, notes and contents of the accumulator will
not be 1lncluded with all programs. Filling in these details is left as an
exerclse for the student.

It will also be noted that the notes and flow charts for the programs
In this and following chapters tend to be briefer than heretofor. This has
been done purposely to encourage the reader to learn to interpret programs
which are not so completely spelled out. Remember that flow charts and notes
are only aids to be used to the extent felt necessary by the individual. But
remember, also, that short cuts In programming may lead to extra hours of

debugging.
8.1 Programs for punching, loading, and/or typing programs.

0960 1751300 Assume that a program for 1000SP has commands In 0900

61 1740100 to 0937 inclusive and data in 0940 to 0952 inclusive,

62 1730900 there are subroutlines in channels 10 to 13 inclusive.

63 1700000 - The commands of thls sectlion are added to the program,

6L 1390000

65 1770964 If we type from manual: The following will happen.

66 670000

~ 690960(tab)s A tape for the entire pro-

0970 1751300

71 17040100 gram will be punched.

12 i7g%888 Tape on photo~-reader, The program wlill be read

7 [/ 550900(tab)s 690970(tab)s into the computer.

74 1550000

72 127097u 690980(tab)s Commands of the program

7 70000 will be typed out. Bell
0980 300002 will ring twice. Breakpoint

81 1730900 halt.,

82 1720037

83 1710001 Compute switch off, then Data of the program will be

8l 1700000 back to go. typed out.

85 1310000

86 1350000

87 300001 Problem,

88 1760985 ,

89 300002 Add commands to a program already written to punch,
0990 630000 load, and/or type the program.

91 230000

92 0000

9L 1710001

95 1700040 In Intercom 500, commands will be typed out in

96 1310000 usual form KOPCHWD, but in Intercom 1000, commands are

97 1380000 typed out as KWDOPCH.

98 1760996

99 670000

79

* For example:

8.2 (continued) ;

Problems:
1. Write a program to type: 105, 104, ... 96.

2. Write a program to calculate and type:

0
X sin x° cos x° tan x° (90° - x°)

for x = 0 to 45 : ‘ :
3. Write a program to calculate and type:

K Ka (l0-K)a 10 -K
for K =1 to 10

. Write prograsm for a page of trig. tables for a partlicular number
of degrees. Type out functions for each minute.

8.3 Block Copy Operations

Block copy operations (OP 81) are possible with Intercom 1000DP and
500. The execution of command K 81 CHWD will copy the contents of words u2
to u7 and 00 to (WD - 1) of channel CH into the corresponding words of channel

(08 + K). If CH 13’2? ‘the words of channel (08 + K) will be cleared to zero,
in Intercom 1000DP. ﬁloating point zeros are not obtained in tEis waysgét?
: Intercom .

command wlll copy . : 3 , into
2 81 1508 15u2 to 1l5u7 and 1560 to 1507 10u2 to 1l0u7 and 1000 to 1007
3 81 2900 zZeros » index register 3
5 81 29u2 zeros index reg. 5 and ch 13

The following program will clear index register 1, clear ch. 10 except
words u0 and ul, copy channel 11 except words u0 and ul into corresponding
words of channel 13. : :

Intercom 500 has constants stored in words u0 and ul of almost all
channels, so these should not be cleared or copled.

NOTES ‘ LdCATION K OP | ADDRESS ACCUMULATOR
r
position paper | 0900# 30 | 00|02
_cléar index reg. 1 ' 181181 :29|00'
clear ch 10 except u0, ul 212 {81]29,u0
copy ch II Into ch 13 -]
except u0, ul : 305 181 |11luo
halt o 67 | 00 !oo
81

8.3 (continued) \

Problems:
l. Write a program to clear all index registers.
2. Write a program in channel 9 to clear channels 10 to 18 inclusive.

3. Write a program to set index register 1, then set index register
2 to 5 incl. with the same values.

. Write a program to store the number 7 in all locations 0900 to
1899 inecl.

8.4 Index Register Operation, Intercom 500

' In Intercom 500, the word base and channel base may be set independ-
ently to any value as long as the total is not greater than 3199. The index
register accumulator (IRA) has a memory location of 2202.

These operatlions are available:

0P09: KO9CHWD copies [CHEWD + (X)] into IRA
OP78: K78000D copies element of index
reglster into IRA

OP79: K79000D copies IRA into element
index register

element of reglster

word difference

word limit

word base

charnel base

channel difference

channel limit

VFwhHOUO

If the index reglster utilizatlon subroutine is used, a floating point
number may be used to set an index register. A value from an element of an
Index register may be stored as a floating point number.

If the index reglster utilization subroutine is stored in channel CH,
the following portion of a program will convert the value in the word base of
register 7 and store the value in 1772.

Problem: Convert WB of register 7 to floating point
and store in (1772)

NOTES LOCATION|| K lOP ADDRESS ACCUMULATOR
| |
7|78 |00 |02
08 |cu | o1
49 |17 !72
|
82

8.4 (contipuqd) ; :

The followingfpoftion of a program will convert the floating point
number (an integg?)fin 1375 and store this in the word limit of register 3.

Nougi - Locarpuﬁ K | op | ADDRESS ACCUMULATOR
; A | |
b2 [13 175
08 CH |00H
3179 | oo 1 01,

If the word base of reglster 3 contains 375 and the channel base
contains 1172, the execution of the command: ‘ , ,

NOTES LOCATION}|| K | OP ADDRESS) ACCUMULATOR

T
| 4 3]09]10] 21f
enters 375 + 1172 + 1021 = 2568 into IRA.

8.5 An Important Flow Chart

Before continuing, the student should pause at this point and consider
-the following flow chart. '

start course

study
Chaps. 1 to 8 [N

 Understand
Chaps. 1 to 8¢ / .

Titeres
‘ sclentlific
\\¥ examples?

Go to Chapt. 9

Tnterested in
‘ . (business, stat., or
D,P. examples?

1so interested in
business, stat., or
‘D.P. examples?

drop course

Go to Chap. 10

» Take final __>< Pass the course)—*@

(%)———i»,halt

83

Scientific Examples

9.1 Solution of Quadratic Equations

Chapter 9

NOTES LOCATION|| K OP | ADDRESS ACCUMULATOR
transfer to 0920 0900 29 |09 :20 ?
—
position paper 0920 30 (00 !02 ?
cl and add a = (0970) 21 L2 |09 ;70 a
add a 22 ERENLE 28
store 2a = (0973) 23 L9 |09 }73 28
mult., by ¢ = 0972) 2l Ly |09 i72 2ac
add 2ac 25 L3 |21 |73 Liac
store Lac = (0971) 26 | lo [oo 7 Lac
¢l and add b = (0971) 27 2 |09 :71 b
mult. by b 28 by |21 73 b2
sub. Lac 29 L1 |09 !74 be - lac
trans. if acc < O 30 22 109 !ul be - Lhac 2 0
sq. rt. sub. in ch. 10 31 w3 |10 ioo v b2 - Jlac =VD
store vD = (0975) 32 19 |09 !75 Vo2 - Lac = VD
cl and sub. b 33 L0 |09 :71 -b
add VD 3l 113 |09 I 75 -b + VD
div. by 2a 35 L8 |09 !73 Ty
type Ty 36 33 |21 i 73 r,
cl and sub. b - 37 L0 |09 !71 -b
sub., vV D 38 L1 |09 : 75 -b -vD
div. by 2a 39 .8 [09 | 73 r,
type T2 140 38 |1 |73 Ty
halt —] 67 |00 } 00 "

8L

—~~

N

N

an

9.1 (continued)

The preceding program for Intercom SOG\Will solve the quadratic
equation- Aaxz + bx + ¢ = 0 for real roots r; = (-b ++/D)/2a,
= ("b "‘/-_)/23«’ :

b2 - Lhae Z 0, If roots are complex, program will
halt without type-out. : S :

Problems: -

l. Write a program to find complex roots ag well as real roots for
quadratic equations. ; o :

2. Write & program. to solve equation axLL + bxz + ¢ = O :

. Write a program to solvo ax2/3 +,bxl/3 + ¢ =0

3

+ ax + b = 0 for real roots.

3

h; Use DeMoivre's:theorem t0asolveeequation =2 = a + bi.
5. Write a program to solve x

6

. Write a program for IOOODP to solve a quadratic equation.
" Gate for type in of a, b and c.

9.2 Evaluation of an:Integral

' The following program for Intercom 1000DP will find approximation to
the integral: RN

fla+ti Ax), x =P8

= f f(x)dx x AX
a . - i=l : : n

The command in 0913 may be -a transfer command (29) to location to. find

£(x) or mark place and transfer or 08 command to find f(x) by subroutine.

DATA “ATLLOCATION CHART

‘Variables

] Consgtants S t
‘Loc,. “Symbol Value ‘ Loc. Symbol Starting value
- 0950 a - R 0953 X A
52 b 60 n-1 n
5l n ‘66’ 2f(xy) | 0
56 . AXx . , :
62 1 , 7 1
6l o . 0.

9.2 (contlnued)

b
I =J£ f(x)dx

Problem:

NOTES LOCATION OP | ADDRESS ACCUMULATOR
position paper 0900 30 00;02 ?
¢l and add 0 = (096l) 1 L2 | o9lel 0
store 0 = Zf(xy) = (0966 2 149 09166 0
cl and add b = (0952) 3 L2 09 |[52 b
sub & = (0950) 4 41| 0950 b - s
div by n = (095}) 5 148 09:5u AX
store Ax = (0956) 6 L9 O9i56 Ax
add a 7 113 o9l§o a+ AX
store a + Ax = (0958) 8 49 | 09158 s+ Ax
clear and add n 9 L2 O9}5h n
sub 1 10 41| 09 i62 n -1
store n - k = (0960) 11 149 | 09 !60 n -1
cl and add xj 12 L2 | 09 !58 *— x4
find £(xy) 13 i rx;)
add $f(xp) 1, 13 | 09 le6 £r(x)
store back 15 49 09:66 sf(xy)
cl and add a + (k - 1) Ax| 16 Lo o9i58 a+ (k-1) Ax
add Ax 17 43 | 09 !56 a+k Ax
store back 18 49 109 i58 a+kaAx
¢l end add n - k 19 u2 | 09 leo n -k
sub 1 20 41 | 09 ;62 n-%k-1
store back 21 49 |09 |60 n-k-1
trans if acc Z O 22 20 |09 !12 n-k<o0
cl and add £f(xy) 23 L2 [09 :66 Zr(xg)
mult by Ax 2l Ll {09 i56 I
type I 25 38 |21 loo I
halt 26 67 |00 :oo I

86

9.2 (continued)

Problems:
1. Médify example 17 to use 1 = 0 ton == 1.
2. Write a program to evaluate an integral using ﬁrapezoidal rule.
3. Same using Simpson's rule.

L. Write a program for f(x) = x-cos x #.1ln x then find integral
from x = 1 to 2. '

5. Write a program to evaluate ilntegral of e”* from 0 to 1.

9.3 Newton's Method for Solving Equatlons

The following program for Intercom 500 uses Newton's method to find
the roots of an equation, x4 1 = x; - £(x;)/f'(xy). As illustrated here,

this program 1s used to solve the equation x2 - ¢cos x = 0., Thils program
could be used to find roots of some other equation by writing & program for
f(x) starting at 1020 and concluding with the command 160000 and a program
for f'(x) starting at 1120 and concluding with the command 180000. -

Two samples of output are Included. One has a starting point close
to the root, the other with a starting polnt further away.

87

9.3

{continued)

enter

l

set register

'

gate for
starting value

'

find f(xi), store

-

FLOW CHART

!

find f'(xi), store

!

Inv.div. by f(x,)
negate

'

add Xy

'

store x,
i+1

I

increment reg.

'

(:7 i1s WB > WL?

)
J

cl & add Xi+1

type accum.

Y

store X5

—

type register

™~

1

halt

~[x}

|

cl & add Xj

l

88

type accum.

N

]

(i1s accum = 09 ‘>—>'|Jl\l

.

P
]

N

v

9.3 (continued)

PROGRAM STORAGE ALLOCATION SAMPLES OF OUTPUT
900 .0300002 934 .0L2097L 0971) = x 690900 s
01 11700000 93 os6oird | _
902 .1710001 936 .ohgo97i (0972) = fix4)
903 .1720020 937 .0290920 (0973) = £ (x,) 971 /8 s 50.80000
9ol ,1730000 938 ,0420971 (097L) = '
905 .0510971 939 .0382173 TH) = X409 1 . 8244700
906 .0300002 9L0 ,0670000 2 8241300
90 . 0420971 (1071) = 3 . 82441300
908 .0290920 1020 .OL49LOTL)= x4

1021 ,0081226 (1072) = cos x, :

920 .0261020 1022 ,0491072 690900 s
921 .0490972 1023 .0421071
922 .0420971 102l .ohhioyi (1171) = x4
923 .0281120 1025 .O0411072 (1372) = sin x 971 /1 s 50.10000
92L, .0490973 1026 .0160000 " 1
925 .0402173 o 1 3.3852000
926 .0L470972 1120 .04911T71 sin-cos subroutine 2 1.4814000
927 .0430971 1121 .0081242 in channel 12. 3 .9496100
928 .049097L4 1122 .0491l72 L .8317200
929 .0L410971 1123 ,0421171 5 . 82441600
930 .1760932 1124 .0432173 6 .82441300
931 ,0670000 1125 ,0431172 7 8241300
932 .1310000 1126 .0180000
933 .0230938 :
Problems:

l. Write a DP program for Newton's method.

2. Wrlte a program to find roots of a cublc equation by Newton's method.

3. Write a program to find roots of a cubic equation by Horner's method.

li. Write a program to find roots of = 7%,

5. Write a program to find roots

9.4 Subroutine for Square Root

The following program written as a subroutine for Intercom 500 will
find the square root of the number which 1s in the accumulator on entry. To
use this subroutine: clear and add number of which the square root is
desired. Then use the command 261500. If the number is negative, the
computer will type u0 and halt. Otherwise control will be returned to the
marked place with the square root in the accumulator. This subroutine is,
of course, not as fast as the machine language subroutine, but it gives the
student an opportunity to see how a subroutine works.

An alternate entrance is provided at 1535 so that this program may be
used from manual. If we start automatic operation at 1535, the computer will
gate for a number, then type square root, and then geate for another number.

The portion of the program up to the point A of the flow chart is to
give the computer a convenlent starting point. Because of the wide range of
values used by Intercom, several starting values are used.

89

9.4

(continued)

enter

!

gtore x

'

(i1s acec =

FLOW CHART

0?)—-»@——b exit

is acc < 0?)—b@—-h type u0 N

iji:f:
subtract 1

|

halt

7

cl, & add .5

L

B

cl. & add 10°

B

cl & add lOLL

Y

~
is acc <0)
‘ subtract lO5
y
is acc < 07 :)
- subtract 10lo
. N
is ace < 0?)
subtract 1020
>
(is acec < 07)

a

el & add 10°

-

¢l & add 1012

90

store Y3 —

!

cl & add x
div. by ¥i

add ¥y
div. by 2

'

store Ti+1
subtract ¥y

N]
Y
cl & add’yi+1 [|
>l cl & add y4
exit

N

e

9.4 (continued)

PROGRAM

1500 .0L491571 Y= x ¥,.q =%y, +x/y,)
1501 .0231532 i+l i 1
1502 ,0221533

1503 0411583 1520 .0491572 |

1504 .0221519 1521 .0L421571

1505 .o41i574 1522 .0481872 1571 x4
1506 .,0221517 1523 .ouglsgz

1507 .o411575 152 .oL81582

1508 .0221515 1525 .0491573 15712 3y
1509 ,0L4l11576 1526 .0h411572

1510 .0221513 1527 .0231531 1573 V41
1511 .0421581 1528 .0421573

1512 .0291520 1529 .0491572 5
1513 .0421580 1530 .0291520 1574 10
151 .0291520 1531 .0421572

1515 .0421579 1532 .01l60000 1575 1010
1516 .0291520 1533 .03100u0

1517 .0L21578 153 .0670000 50
1518 = .0291520 1535 .0512173 1576 10

1519 .0421 1536 .0261500
g HELSTT 535 .0382173
.0291535

Problems:
Write as a subroutine, a program to find:
l. Square root (double precision).
Sine and cosine.
Arctangent.
Exponential.
Logarlthm,

Binomial coefficients.

\1.0‘\11-{:'\»!\)

Hyperbolic functions.

91

STORAGE

1577
1578
1579
1580
1581

1582
1583

100

Chapter 10

10.1 Search

Business, Statistical and Data
Processing Examples

One of the baslc problems encountered in data processing is to search
a set of datas to determine 1f any are of a given value or in a certain range
of values. ‘

Assume that channel 10 has 100 non-zero values stored in it, or a

smaller number of values with zero, as a flag, after the last one,

The fol-

lowing SP program will determine how many of these values, 1f any, are
exactly 50, and then store all those which are 10 or more but less than 100
in channel 11, and then store a zero after the last.

enter ——®

set registers

» cl & add x4
N { i =
(1s acc 0%)
subtract 50
7—(ig ace = 0%) » Lype register 2
elﬂ reset registers
incr. reg. 2 *
cl & add x4 »a

Teg. 1l over lim.?),(:}

B

inecr. reg. 1

i

incr. reg. 2

A

!

!

incr. reg. 1

t

reg. 1 over 1ﬁé9__

!
C@ (is acc =

0%

)

!

is acc < 07

!

)

add 90

<: 1s acec =2 07 4;)-(@5

!

subtract 100

0 —» Intl

'

halt

92

10.1 (continued)

PROGRAM
0900 300002 0910 230920 0920 2310000 0930 2491100
1 1700000 11 410971 21 1700000 31 2760932
2 1710001 12 23091L 22 2700000 32 176092
3 1720099 13 290915 23 1421000 33 42097
L 1730000 1 2760915 2y 230934 3L 2491100
5 2700000 15 1760909 25 jio972 35 70000
6 2710001 16 290920 26 200932
7 2720099 27 1430973 STORAGE
8 2730000 28 220932 0971 50
9 1421000 29 1421000 72 100
v 7& 90
7 0
Problems:

l. Write a DP program similar to the example of this section.

2, Starting balances of accounts 1100 to 1105 are in those locations.
Numbers are stored in channel 10 in palrs. The even location is the
account number and the following odd numbered location is the amount
of the transactlon. If the number of pairs 1s less than 50, zero is
stored in the even locatlon after the last one. Write a SP program
to add amount of transactions to proper account numbers. Type |
account numbers and new balances.

3. Similar to problem 2, but transactions are on tape rather than in
channel 10,

10.2 Sort

Another problem often encountered in data processing is that of
sorting a set of numbers which are in random order and putting them in
ascending or descending order.

The following SP program will arrange the numbers in the first 20
locations of channel 10 in ascending order.

This program accomplishes the sorting by successively comparing the
number 1n two consecutive locations and placing the smaller in the lower
numbered location. On each pass, numbers are shifted. After one less pass
than the number of items, the items will be in correct order. The reader

should meke up an example similar to the following one, and follow it through
step by step. g .

original first second third fourth
- order pass pass pass pass
7 5 5 5 L
5 7 7 L 5
8 8 Ly 7 7
9 L 8 8 8
4“’ 9 9 9 9
93

10.2 (continued)
Program
0913 2731000
1l 2720018
15 2710001
16 2700000
17 1731000
18 1720018
19 1710001
0920 1700000
21 11120001
22 1410000
23 200930
2L 1420000
25 1190910
26 1120001
27 114190000
28 420910
29 lu9000l,
0930 1760921
31 2760920
32 670000
Storage
0910 Temp.
Problems:
ll
2e
3.
J—L.

enter

[set register 2 |

Y

———{ set register 1 |

—-—-—>| ¢l & add X1 |

subtract e ,I

'

is acec Z 0%)—P
: interchange
>3 and Xi+l

'

inecr. reg. 1.
Over limit?®

-

.' (incr. reg. 2.

Over limit?

halt

Write a DP program to sort a set of data.

Write a sorting program which first finds the smallest number Iin
the set, then finds the smallest in those remalnlng, etec.

Find the median of a set of values.

Write a program to find the largest (L) and the smallest (S) of a
set of numbers, then use these to find the range (L-S) and the

mid-range:

™

~

10.3 Merge

It is sometimes desirable to put two sets of data, which are each in
order into a new set which 1s in order. This process is called merging or
collocating. (Unfortunately, it is frequently called "collating," but this
1s a misuse of the word.)

Twenty items in ascending order are in channel 10 and 25 items also
in ascending order are in channel 1l. The following SP program will put
these together in ascending order and store them in channel 132.

0900 1700000

1l 1710001 enter

2 1720019 A ¥ \ f

3 1731000 set reglisters |—ed cl & add Xy | incr. reg. 3 t&——

N 2700000

5 2710001 , L]

6 2720024 subtract 75

g 2731100 ¥

3700000

9 3710001 is ace, 2 o@-_.@
0910 3720099

11 3731200 store xj; = 2 store yj —Z)

12 290921 + : *

incer. reg. 1;
limit?

- 0920 3760921

iner. reg. 2;
Qver limit? L

21 1120000
22 2110000
23 liggggg iner. reg. 3 iner. reg. 3|
2g 3490000 ; v
27 %;ggggg store yj"'zk store xi——b-zk
28 21120000 ‘ . ‘
29 3&20000 1 - 1 N
0930 2760927 ner. reg. 2; ner. reg. 1;
31 70000 | Sver tisive J=(D= Bals over limit?
32 21120000
33 3490000 :
3L 2760920
35 3760936
36 1420000
3 34190000
3 1760935
39 670000
Problems:

l. Wrlte an SP program to merge two sets of data which are in
descending order.

2. Write a DP program to merge two gets of data.
3. Write a program to merge three sets of data.
L. Twenty pairs of numbers are in channel 10. They are arranged in

order of magnitude of contents of the even locations. Twenty-five
similar pairs are in channel 1l. Merge them and store in channel 12,

- | 95

L N I BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN M I I I I I N N N E E E E E N X
N
=

10.4 Business Examples

The Flim Z Building Co. has 25 employees.
not including this week's, are in channel 10 (Xi).

Social Security tax is 2i% of the first $L,800. The

channel 11 (yi).

Thelr gross wages to date,
This week's wages are in

following DP program wlll calculate Soclal Security tax for each employee and

Ci}————————(: is acc Z 0?)

store in channel 12 (Zi)'
Program
0900 1700000 enter_i
1 1710002
2 1720048 set register
3 1730000
[1421000
5 14410920
6 20091L
7 131100
8 200916
9 1421100
0910 Lho9gz2
11 1491200
12 1760904
13 670000
1 Leogal
15 290911
16 1411100
17 1102100
1 290910

Storage
0920 MBOO.

22
2l

. 025
0

Problems:

l!

The Schock M.

halt -

- cl. & add Xy

4

!

subtract 4800

v

add ¥y

C is acc = 0%)——0?

| |
cl. & add zero subtract Vs
¥
cl. & add y4 negate
mult by .025
store Zq
() [Incr. reg.)
L Over 1limit? >{x]

E

Goode Electric Co.
for last month are in channel 10, this month in 11.
per kwh. with a minimum of $2.

reading, amount used and cost.

The R. E. Klein Furniture Co.
on hand at beginning of period, number sold, number added to stock,

and cost are stored in separate channels,

stocks 100 ltems.

has 100 customers.

Meter readings
Rates are $.08
Write a SP program to type meter

Number of each item

Write a SP program to type

these numbers and the number of each item on hand at the end of the

period, and the value at beginning and end of period.

of values at beginning and end of period.

96

Include totals

10.4 (continued)

Problems: (cont.)

3. The M. Bezzlar Trust & Loan Co., hasgs 100 accounts. 8Starting balance
1s in channel 10, A tape has data in pairs. The even numbered
location 1s account number, and the odd numbered location is the
amount of the transaction. Zero 1s stored in the even location after
the last transaction. Write a SP program to bring the accounts up
to date and type the results,

i. Write a DP program for one of the above.

5. Modify problem 1 to include some accounts which are commercial with
a rate of $.06 and minimum of $5.

6. Modify problem 2 to include a flag if number in stock falls below a
certain minimum, ,

7. Consider the problem involved in a glven business and write a program
to solve it.

10.5 PFinance Examples

Sometimes 1t 1s desired to drop the fractional part of a number. This
can be done in Intercom wlth the followlng procedure, Clear and add N, add B,
subtract B, where B is 65.4 in floating point for double precision and 56 6
for single precision. If N is a poslitive number, after this procedure, only -
the whole number part will be in the accumulator.

In business problems, we often wish to round off to the closest cent.
The procedure would then be: Clear and add N, add .005, multiply by 100,
add B, subtract B, divide by 100.

The following program written as a subroutine will find

(1+42)%-1 1-(1+1)™R
1

(1+1)%, (1+1)7" .

The logarithm subroutine is in channel 17 and the exponential sub-
routine i§ in channel 18. Steps in use of this subroutine are:

1, store n in 1628
2. clear and add 1

3. transfer to subroutines:

for use command
(1+1)" : 26 1600
(1+1)78 ' 26 1605
(1+1)%-1 | 28 1611
A , -

1-(1+1)72 28 1616 _

97 -

0.5 (continued)

n « \ =11
Subroutine for (1+1)%, (1+1)7%, (l+i§ 'l, l-(%+l)
NOTES LOCATION|| K OP | ADDRESS ACCUMULATOR

|

add 1 = 1630 1600 13|16 {30 1+ 1

log 1 08 (17 ‘71 log(l + i)

mult by n = 1628 2 L 116 !28 n log(l + 1)
]

exp. 3 08[18 |72 (1 + 1)™

ret. to marked place I N 16|00 !oo (1L +)8

16 | 30

add 1 1605 13 1+ 1

log 6 08|17 |71 log(l + 1)

mult by n 7 Ll|16 !28 n log(l + 1)

negate 8 Lo|21 EOO -n log(l + 1)

eXp. 9 0818 |72 (1 + 1)

ret. to marked place I 10 16|00 !oo (L + 1)™®
e s e '“\\.,/,L\ L S~

store 1 = 1626 1611 L9 [16 i26 i

trans to 1600 (mark I) 12 26|16 !oo (L + 1)"

sub 1 13 41|16 :30 (1 + 1)%-1

div by i 1l 18|16 i26 [(1+1)" -1]/1

ret. to mark II 15 18|00 :OO "

T N——TT T N—]

'___..—/'——-\I_ L N—T T

store 1 = 1626 1616 119 ' i

trans to 1605 (mark I) 17 26[16 | 05 (1+ 1)
negate 18 Lolea | oo (1 + 1)

add 1 19 L3]16 !30 1-(1+ 1)™"
div by 1 20 48(16 ;26 [1 - (1+1)77)/4
ret. to mark II 21 18 n

— - —

98

X

10.5 (continued)

Problems:

l. Write a program to find value at compound interest, present value,
amount of an annulty of 1, present value of an annuity of 1, and the
reciprocal of the latter. Gate for interest rate and number of
periods,

2. Same as problem 1, but type for number of periods from 1 to 1200
for a gilven interest rate,

3. Write a program to type an amortization schedule.
L4, Write a program to type a sinking fund scheduls.

5. Write a program to type a depreciation schedule.

10.6 Random Numbers

Random numbers are used in statistical work. These numbers are often
used to simulate sampling experiments. On the computer, it is easler to
generate the random number than to store a table of such numbers. These
numbers are usually generated by using some function and omitting a given
number of the most significent digits.

enter suﬁroutine

The following program written as

a subroutine to be used in any channel el and add x
(CH) in 1000DP will find a random num- i-1
ber regardless of contents of accumu- Y

lator by using 26 CH 00, A starti
value of x_ 1s first stored in CH 98, SubtraCt Ax

then subroutine is entered. This sub-
routine uses register u, and this . aceum 2 0%
should not be used for another purpose.

> 3 I addl—e

fx)=2-% 4+ 32
2L 8 store X,
Data: (cH 88) = .1
(cH 90) = 1 Ifind £(x;), set reg}
éCH 92% = 2 87678
CH 94) = 1-e¢ = .999876789997
(CH 92) = Ax = .100000098967 Subtmct -1 f-—
Storage: (CH 98) = x accum ;
(CH 86) = x/2
{add.l, div. by .1
ncrement reg.) >
Up to limit? [ﬁj

exlt (R in accum.)

99

10.6 {continued)

Subroutine for random numbers

NOTES LOCATION OP | ADDRESS ACCUMULATOR
I
cl and add x;_; CHOO L2 CH | 98 X351
sub Ax = (CH96) 1 1| cE| 96 X1 - Ax =3x; if > 0
trans if accum = 0 2 20 | cel oL Xy_1 - Ax
i
add 1 - € = (CH9L) 3 43| cH 9L xg ;- Ax+1-c¢
store x; — 4 4o | cu| 98 "
div by 2 = (CH92) 5 118 CH: 92 x;/2
1
store x/2 = (CHB86) 6 L9 | CH| 86 "
sub 1 = (CH90) 7 L1 CH| 90 x/2 - 1
mult by x/2 8 I CH! 86 x/2(- 1 + x/2)
|
add 1 9 43| CH | 90 1+ x/2(- 1 + x/2)
mult by x/2 10 L | cH| 86 f(x)
(11 73 | 00| 00 "
set 12 72 oo! 02 "
I
register 13 71 OOI 0l "
\| 1 70 | 0o o0 "
sub .1 = (CH88) — 15 L1 CH: 88— f(x) - k(.1)
trans if acc 2 O 16 20 | CH| 15 "
add .1 17 13 CH! 88 "
]
div by .1 18 L8 CH | 88 "
incr. reg. 19 76 CH! 15 "
I
return to mark I 20 16 00 | 00 "
I
I
[
|
|
l
|
[
|
100

/0
/

10.6 (continued)

The following program willl type random numbers found in the preceding
subroutine, five on a line,.

Problem: Type random numbers, five on a line.

NOTES : LocATION|| kK | op | ADDRESS ACCUMULATOR
position paper 0900 30|00 :02 ?
gate for xg ' 1 51|cx |98 ?
space 2 30|00 !02 2
(3 | 1] 73|00 ;oo ?
set 4 {1 72|00 !ou 9
reglster 5 | 1] 71|00 101 ?
_ 6 1] 70100 iOO -+ ?
random number — 7 26|CH IOO R
type R 8 33[21 !oo R
9 | 1| 76|09 }o7 "
10 30|00 |01 "
11 29|09 !Oé "
Problems:
1. Write a subroutine using sin x, O<x<%/l;; to find random numbers.

2. Wrlte a program using another function of x to find random numbers.
3. Write a program to simulate coin tossing.

L. Write a program to simulate die roliing.

5. Write a program to simulate sampling from a binomiszl population.

6

. Write a program to test random numbers found above or to test one
of the sampling problems.

101

10.7 Statistical Examples

The following DP program will calculate and type the average and

standard deviation of a set of numbers, The computer willl gate for type-in
of the data. After the last 811 should be typed. Then calculations will be
made and results typed out. A number larger than any in the data may be used
to exit from a loop when the data may include zeros.

0900 300002 0923 480952 enter
1 420950 2l 332100
2 1490952 25 L42100
3 L90954 26 490958 set counter,
L, 190956 27 1120956 gum cells
5 512100 28 180952 *
: ﬁ%gig 30 ug}.ggg? te f \
7 109 0930 O gate for x .
8 200920 3L 332100 1 .
9 420952 32 670000 '
12 420958 8 80.1(float) []
%ﬁ ﬁggggﬁ 50 0 (?4—(is acc = 0%)‘*@'
15 L20958 0952 n '
ié ﬁuggég g% %i, find mean, incr. counter
lg hgogsé 58 mz std. dev. calc. and
19 290905 %5 type store sums
0920 300002 sq. rt. sub. iIn
21 330952 channel 12. halt
22 L20954
Problems:
1. Write a program to calculate a type the average and standard
deviation of the data 1in channel 10.
2. Write a program to find correlation coefficilent.
3. Write program using random numbers to find random normal numbers
using:
v = x - (2.30753 + 0.27061x)/(1 + 0.99229x + 0.0L4481x%),
x =\/1n (1/8%), 0<R<.5
See "inverse error function" in Hastings, "Approximations for
Digital Computers."
L. Use random normal numbers to simulate sampling experiments.
5. Write a program for test of hypotheses, Chl Square test, or other

statistical test.

102

Appendix |

COMMAND LIST FOR INTERCOM 500 AND 1000

Speclal Arithmetic
06 Type location of last 1,0 Clear and subtract (3.1)
command executed (5.3) L1 Subtract (3.1)
08 Perform subroutine (7.5) L2 Clear and add (3.1)
, I3 Add (3.1)
Return Ll Multiply (3.3)
16 Return to marked place .I (7.2) L5 Clear and add absolute value (3.,1)
18 Return to marked place II (7.2) L7 Inverse divide (3.3)
18 Divide (3.3)
Transfer L9 Store (3.1)
20 Transfer if accumulator Z 0 (L4.1)
22 Transfer 1f accumulator < O (4.1) Input
23 Transfer if accumulator = 0 (4.1) 50 Store commands .
26 Mark place and transfer I (7.2) 50 Gate for command .
28 Mark place and transfer II (7.2) 51 Store fixed point data .
29 Transfer control (3.6) 51 Gate for fixed point data

52 Store floating point data
Output 52 Gate for floating point data

NN P N P P P
W N oW Y
~ O ON—J O
Nt St Sas? St S it et

30 Position typewriter paper (3.1) 55 Read punched paper tape .

31 Type tabulating number (3.3) :

32 Type floating point and tab (3.3) Start and Stop

33 Type fixed point and tab (3.3) 61 start 1list (trace routine) (5.4)

3l Type float, return carriage (3.3) 62 Stop list (trace routine) (5.4)

35 Type command (5.3) 63 Ring bell (3.6)

38 Type fixed, return carriage (5.3) 6g Halt and return to manual (3.1)

39 Punch paper tape (2.7) 68 Breakpoint halt (3.6)
69 Start automatic operation {(2.7)
Index registers
70 Set word base (6.2)
71 Set word difference (6.2)
72 Set word limit (6.2)
73 Set channel base (6.2)
7L, Set channel difference (6.2)
75 Set channel 1limit (6.2)
76 Increment word base, test (6.ﬁ)

(6.4)

77 Increment channel base, test

Additional commands available with Intercom 500 or 1000DP

02 Perform subroutine (g.S) 78 Clear and add index register (8.4
81 Block copy (8.3) 79 Store index register accum. (8.0)

Additional commands available with Intercom 500

09 Set index reglster accum. (8.4) w3 Perform subroutine (7.5)
37 Type hexadecimal number (5.3)

Numbers in parentheses are section in which command is introduced.

103

Appendix il

GLOSSARY OF TERMS USED IN DIGITAL COMPUTING

Access time: The time required to locate a word in
storage and transfer 1t to the arithmetic
or control unit.

Accumulator: A register used to hold the result of
arithmetic operations or to hold words to
be tested. Specific use varies with each
machine,

Adder: The electronic circultry which will form
the sum of two words.

Address: A number which identifies a unique storage
location in the computer.

Alphanumeric machine: A computer capable of handling both alpha-
betic and numerical information.

Arithmetlc unit: The portlon of the machine which accom-
plishes the arithmetic operations.

Agssembly routine: A routine which causes a computer to trans-
late a program from symbolic language to
machine language, such that there 1s a 1
to 1 correspondence between symbolic and
machine language instructions. (See

compiler)
Binary coded decimal: A method of representing decimal digits by
a pattern of bits.
Binary numbers: Numbers Iin the number system with base two.
Bit: A binary digit, either O or 1.
Branching: The selection of one of two alternative

instruction sequences according to the
result of a numerlical test or comparison
during automatic computation.

Breakpoint halt: A halt within a routine, usually used for
debugging.

104

~

Appendix II (continued)
Buffer:

Calling sequence:

Character:
Check sum:
Code: (Verb)

Command:

Compller:

Debug: (Verb)
Doublé precision afithmetic:

Fixed point:

Floating point:

Hexadecimal number system:

High-order'digit:

A register used for temporary storage to

- allow computation to continue while the

stored data is otherwise used. Usually
employed during input and output.

A series of instructions to provide infor-
mation (parameters) for a subroutine.
These parameters may be the addresses of
numbers or they may be the numbers them-
selves on which the subroutine will
operate.

A symbol transmitted within a computer by
a combination of bits. Usually a decimal
digit, letter, or punctuation mark,

- The numerical sum of a block of words.

Often used to check the accuracy of input
or output.

The act of writing coded instructions that
a computer will follow in solving a
problem.

(See instruction)

A routine which enables a computer to
translate a program in symbolic language
into machine language. One compiler
instruction will in general require
several machine language instructions to
perform the required operation. (See
assembly program)

To eliminate errors from a program.

" Arithmetic in which the computer uses 2

words for each pilece of data allowing
twice the usual significance.

The system in which all digits in the
machine carry significance and the
position of the decimal or blnary point
1s fixed.

The system of carrying numbers in a com-
puter in 2 parts: (1) a fraction part
(mantissa) and (2) an exponent (character-
istic) which shows the power of ten by
which the decimal part is toe be multipliled
to obtain the actual number. Contrast
wlth fixed point.

The number system with base 16.

The digit at the extreme left end of a
number

105

Appendix II (continued)

Index regilster:

Input unit:

Instruction:

Interpretive routine:

Language:

Linkage:

Loop:

Low-order digit:

Machine language:

Memory:
Microsecond:

Millisecond:

Octal number system:

Off-1line operations:

On-line operations:

Operand:

Operation code:

A register which acts as a counter to
determine the number of times a given
routine will be executed and as an address
modifier to change the form of instructions
before they are executed.

The device which accomplishes the entry of
numbers to the storage unit of the machine.

A word which is to be interpreted by the
computer such that a deslred operation will
take place.

A machine language routine which may be
regarded as a series of subroutines, one
of which will be executed upon encountering
a "pseudo~instruction" in the program.

The "pseudo-instruction" is a symbol not a
part of the machine's standard vocabulary.

A set of operation codeg and the form in
which they are written.

A set of instructions which will csuse the
machine to leave the main program (usually
to transfer to a subroutine) and return to
the point from which 1t transferred.

A series of instructions to be executed
over and over, usually with a change of
parameters for each repetition.

The digit at the extreme right end of a
number,

The language for which a computer is
originally designed.

{See Storage Unit)
One millionth of a second. Abbreviated us,

One one-thousandth of a second.
Abbreviated ms.

The number system with base 8.

Operations which are independent of the
central processing unit of the computer.

Operations requiring the use of the
central processing unit of the computer.

The word upon which an operation acts.
A numerical or literal symbol which a com~

puter can interpret such that a definite
operation will be performed.

106

Appendix II (continued)
Output:

Program:

Random access:

Read:

Register:

Routine:

Single precision:

Storage unit:

Stored-program machine:

Subroutine:

Trace routine:

Transfer instruction:

Word:

Word length:

Write:

Information received from a machine.

A set of Instructions which are designed
to cause a machine to solve a problem.

A term used to describe a memory unit
having the property that the contents of
any location are immediately avallable.

The action of a machine In translating
recorded information Into electrical
impulses.

A storage location elther separate from or
contained in the maln storage unit which
wlll hold a word of information.

A set of Instructions designed to perform
a definite operation.

Arithmetic in which the computer uses one
word for each dlstinct plece of data.

The unit of the machine which holds
information.

A machine which obeys numerically coded
Instructions taken from its own storage
unit.

A routine which accomplishes a frequently
used result and designed so that 1t may
be filtted into a program as desired.

A routine which monitors the execution of
a program, usually causing to be typed or
printed each instruction as it is ocbeyed
as well as the contents of the accumulator
at the conclusion of each instruction.

An instruction causing the machine to
select alternative sequences of
instructions.

The contents of a storage location.

The number of characters that can be held
in one storage location,

The action of a machine in recording
information.

107

Appendix il &5

Steps in Good Programming

I. Analysis.

1'

State clearly the requirements of the problem including input,
output, and computation.

Make a flow chart indicating the step-by-step development of the
problem. Don't be afraid of too much detall. More steps now
will save errors later.

Introduce a clear system of notation showing loops in general
terms (1l.e., x4 rather than xl).

Explore the possibility of using subroutines for repetitive
calculations.

When branching, state the question clearly such that the answer
igs either yes or no.

Remember the major steps in a loop are SET, COMPUTE, INCREMENT,
TEST. The order of the last three may be changed, but the fore-

going 1s recommended.
Don't forget that a loop must have an entrance and an exit.

II. Coding

10.

11.

As you code, keep a careful list of storage assignments distin-
guishing clearly between constants and varlables.

Try to place constants in the same channel(s) as your program.
Start coding at the begimning of loops, writing the SET
instructions (which precede the loop) last.

If the program is long, break it up into distinct sectlions and
write each as a complete unit. Do not be afraid to use uncondi-
tional transfers to get from one section to another.

Write enough notes to show clearly the purpose of the command(s).
Sometimes several may be bracketed and one note written for the
section.

Keep track of the contents of the accumulator.

When using index registers check the behavlior of the register for
the first run of the loop and for the last run.

In using conditional transfer instructions leave ADDR blank, make
a note of the transfer conditlion in the notes column, and proceed
coding in sequence, Come back later and code the other branch.

Decide on the numerical values of testing constants at the time of

or after writing the transfer command, not before.

When making insertions (splicing) do not erase the replaced
instruction but draw a line through it and write the new
instruction at the side, Later, you may want to know what was
there,

Code on the assumption that you will mske mistakes. The clearer
your work, the easier 1t will be to debug.

Remember that a computer is entirely devold of intuition.
Normally it does exactly what the programmer tells it to do.
Unfortunately, this is not always the same thing as doing what
the programmer wants 1t to do.

108

™

-~

N

Index

accumulator, 8
address, 2

analog computer, 1
arithmetic unit, 2
automatic mode, 1L

bit, 2
block copy, 81

calling sequence, 69

change of state or sequence, 1l
channel, 8

channel base, difference, limit, 50
coding sheets, 18

command list, 103

command modification, 37, 49
command structure, 9

complement of a number, L
conditional transfer, 28

data modification, 31

data processing, 92

data structure, 9

debugging, 4L

decrementing index registers, 80
digital computer, 1

double precision, 8, 10, 28

error’indications, L5

fixed polnt, 10
floating point, 10
flow charts, Eé
format control, 64

glossary, 104

index register,50

indexed commands, 51

input, 1,

integral, evaluation of, 85
Intercom defined, 8
Intercom loading, 13
Intercom operation, 1l

109

lines, 8

location, 8

logical operations,28
loops, 31

magnetic drum, 2
magnetic tape, 2

manual mode, 1l

mean, 102

memory, 2, 8

memory interrogation, L5
merge, 95

Newton's method, 87

operation code, 9
output, 2, 8

payroll, 96

peripheral equipment, 6
product cell, 36
program, 1

program patching, 48

quadratic equation, 84

random numbers, 99
roundoff, 97

search, 92

similar programs, 26
single precision, 8, 10
sort, 93

square root, 89
standard deviation, 102
starting computer, 12
storage allocation chart, 33
storage unit, 1

stored program, 1
subroutines, 69, 73

sum cell,

testing constant, 32
tracing, U6
transfer command, 23, 31

word, 2
word base, difference, limit, 50

INTERCOM
CODING
SHEET

NOTES

LOCATION

orP

ADDRESS

ACCUMULATOR

/

I
|
|
|
i
I
I
i
|
|
|
I
|
]
|
|
|
I
|
I
|
I
|
|
I
|
I
|
f
|
|
|
I
|
|
|
[
|

S

STORAGE

ALLOCATION
CHART
CONSTANTS VARIABLES
Loc. SYMBOL VALUE Loc. SYMBOL INITIAL VALUE
CH. SUBROBTINE CH. SUBROUTINE

© 000000000 000000000006000006000060000

CUT ON LINES FOR HANDY POCKET CARDS

COMMAND LIST FOR INTERCOM 500 AND 1000

Speclal Input
06 Type location of last S0 Store commands
command executed 50 Gate for command
08 Perform subroutine 51 Store fixed point data
51 Gate for fixed point data
52 Store flosting point data
Return 52 Gate for flosting point
16 Return to marked place I . data
18 Return to marked place II 55 Read punched paper tape

Stert and Stop

Transfer . 61 Start list (trace routine)
20 Transfer 1if accumulator Z 62 Stop 1list (trace routine)
22 Transfer if accumulator < O 63 Ring bell
23 Transfer if accumulator = 0 ~ 67 Halt and return to manual
26 Mark place and transfer I 68 Breakpoint halt
28 Mark place and transfer II 69 Start automatic operation

29 Transfer control
Index reglsters
e

t word base

30 Position typewriter paper 71 Set word difference
31 Type tabulating number 72 Set word limit

32 Type floating point and tab 73 Set channel base

gﬁ Type fixed polnt and tab 72 Set channel difference

Type float, return carriage 72 Set channel limit
76 Increment word base, test

Output

3§ Type command
38 Type

ype fixed, return carriage 77 Increment channel base,
39 Punch paper tape : test
Intercom 500 or 1000DP only
Arithmetic 02 Perform subroutine
lltg Clgur and subtract 78 Clear ind add index reg.
Subtract 9 Store lndex reg. accum,
‘ltz Clzur and add Zl Block copy ¢
3 Ad
Ll Multiply Intercom 500 only
45 Clear ‘and add absolute value 09 Set index register accum.
hg Inverse divide 37 Type hexadecimal number
}:9 gt:::’ w3 Perform subroutiné

LOADING INTERCOM

Place Intercom magazine on
photo-reader. Rewind.
Compute switch off, - -
Enable switch on. Type "p".
Walt until photo-reader light
goes out and panel neons
remain steady.

Compute switch to GO.

Intercom 1s loaded. Fixed
»| point type-out for 500 or
1000DP is set.for 7.digitd
.| after the decimal point.
10008P. 1s set for [,

Compute Sw. Off. ..
Enable on. Type "p"
Watt for lights to
bécomo steady.

Compute Sw, to GO

[MANUAL CONTROL

(bell rings
on entering)
Clear -
t 4
Memory 3(lb’)s ¥ . obey any
Prepare command

I . Memory

K OP ADDR(tab)s

Clear c—' E(tnb)ul-—-

index 1
reglisters

~D(tab)s

or =
(tab)s

Select number of digits for fixed point type-out.

D is number of dizits from 1 to 7, but use 8 for no digits
after decimal point. (Minas sign preceding D, must be.typed.)

If no diglt is typed, number of places will be selected as
in upper right bdlock.

TABLE 1. LIBRARY SUBROUTINE SPECIFICATIONS

- N (loading code ‘no.)
Word position 3
Subroutine for entry 53 7
Fraction Selector See Table II 1 CHuO 1 CHuO
Square Root 97 2 CHu0 2 CHuO
I.ogl0 x ¥as
Loge x 17 3 CHuO 3 CHuO
Log, x 08 ’
X 22
2x . 08 iy CHuO 4 CHOO
10% 72
8in x (degrees) 39
Sin x (radians) L2 5 CHuO 5 CHOO
Cos x (degrees) 23
Cos x (radians) 26
Arctan x (radians) 24) 6 CHuO é CHOO
TABLE II. FRACTION TABLE III. STORAGE LIMITATIONS
SELECTOR ENTRIES
If the N value of a subroutine
No, of decimal Word ends 1ln 00, when the
places to be position for subroutine is;
typed out entry Do not use

Placed in CH index register

0 08
01 09 1
2 02 10 2
3 0 11 3
é ol 12 i
0 }ﬁ 5
6 06 & [
7 07 1 .
i §
1 9
1 u

TO USE THE TRACE ROUTINE.

The -computer must be in the manual
operating mode. The Intercom magazine must be on the photo-
reader with the tepe at the manual control position.

1. Put the Compute switch in the center (off) position.
Hold the Enable switch ON and type p. Release the
Enable switch and wait for the photo-reader light
ro remain off,

2, Put the Compute switch to GO. Walt for the neon
indicetor lights to remain steady.

3. Type "1 (tab) a"™, Wait for the photo-reader light
to remain off.

4. Type "(tab)s"™. Wait for the bell to ring signaling
that the computer has returned to the manual mode.

5. Type "610000 {tab) s", Wait for the input-output
neons to be in the configuration 0€600.

6. To 1ist every command, type "(tab)s". To 1ist selected
commands, type "FIRST SELECTOR (tab) SECOND SELECTOR
(tab)s". The bell will ring signaling that the computer
has returned to the manual mode.

7. Type "69ADDR{tab)s" where ADDR is the location of the
command at which computation is to begin, The compu-
tation, with 1listing of selected commands, will
proceed.

TO TERMINATE LISTING.
1. Put the computer in the manual mode (Section 2.7).

2. Type "620000 {tab)s". This command terminates listing
and the computer is now.in the manual operating mode,

(

® e

g2 = 2= =
858128 94 8 § % 2 s B
STARTING THE COMPUTER agl 22233 2 BB
Y I XXX X <
When the computer is turned on, it may be checked for proper ° g E E’ } } > = g % Q
operation by the use of a test routine which is provided in a eal 8 8 8 85 3 q g = g
punched tape magazine, Pl 2 g < « O] 5]
flgadss £ 53
The procedure to turn on and check the computer 1s: ° 8¢ %383 X o & ‘
. +
1. Place the "Test Routine” magazine on the photo-reader. 28
The tape in the magezine must be rewound. i " m % w a w w) o
B ogs s~ A A A A b=]
2. Put the Enable, Punch and Compute switches on the -« 8 & ¢ % % 2 % % 5 2 o g
typewriter base in the center (off) positions. w g EE2LE kL B 2 A
& = EEE ESETE i 3%
3. Turn on the Start switoh. E g8 g8 9 é BEE 9 g 2 :;3 Q
Wait for the AC meter to read 6.3 volts or 100§ ' LA NS an e T a
and the amber AC light to become bright. oo% E & w9 Mo E .g a ?
L] o
L. Press the Reset button until the red DC lamp lights. 8 :"; E 3 '
Wait until the photo-reader light remains off o o =
and the green "Ready" lamp lights. z - 3 8 B°g¢g
a « o o
5.. Move the Compute switch to @0. : = 2 o B * f: 4 .
The number "1" will be typed out. Walt for < 8 4 ° 3 By i B
the display panel neons to remain steady. e - § . ® 2 8
6. Type "0 0 000 0 5(tab)a”, . 2 . g & - - 8 BEE]
Wait for the photo-reader light to remain off °°‘ g g -] 2 2 © é S.gxc o
and the display psnel nsons to remain steady. - 2 2 v % s "é g 5 °38 4
3 2 & 8- g s
7. Type "0-0 0 0 0 O 6(tab)s". =z % 28444 g 3855 ¢ o
Bells ring st repeated: intervals to signify - ¥ a8 5 & &3 g L
successful procedure of each test in the routine. [3 & = g B & o] 03 ° '3 o
% §Sig8sd §Eiafc ®
Proper computer operation is indicated if no type- -] 2 8 9 ° bl & go g0 = i
out occurs before the following is typed out: v w é B ";‘ 8 o ' 88] s 2
B a ol [o o o
1122334 L455667 778899 ‘= vug‘g’i"""’. 2 882:n v
“~UUVVWWNX XXYY2 20 2345 = 5§gg§§_° 5"8253
8. At completion of the type-out put the Compute switch g e m o ° & E e %"; 2 '-0’ e
to the center position, rewind, and remove the w g2 R % S § v m Thom &=
"Test Routine™ magazine. w 3 8§ 8 8 4 8 %28 2
) PR R S " 'y g E . “ o
= n N N B om AR A N
Q
2 8 @
R w
CHANGES OF MODE OR STATE - o
® @
e =
. @ 2
suDDn(:.b)g w @ & o
fixed) g g
*| S2ADDR(tab)s g o f—’*ﬂn 2
float o 3 -~ -~
(£) STORE DATA] 2 2 '
a g o P .
] | - | 3 .. g3
- = 2
Manual Control 5 k- = 5‘; '
1 : 3
oA , -
n A
_ OBEY ANY COMMAND) £ 3 28)
o _
(Use for change é.—c
, of state or) q &
(bell rings) sequence. } & @
on entering o -
KOPADDR//(tab)s g a
a3
a8
Q-
i ®
gl . &
olg o a0
—e] SOADDR(tab)s —>| sTore comMaNs AN 3 R ®
_ Bl '8 2
Obey. any 8o :' : E e .
command 0670000//(tab)s 3l &] $ “3 w
KOPADDR(tab)s | l ' R 7 B g pd
ola 3 e S8 .
2 g g3t |
-g 12} o : o -
& 88°
S s .
o
69ADDR(tab)s 2§ g .
s
AUTOMATIC 3-E
W f
670000 in OPERATION g ‘,
o~ automstic f— g8 ea8g
operation 5 & 9 8 3§
) s b 3 Bab ‘
= 2* g Hed 8
L ° PEids
8
L - el
Compute sw. OFF, 25 '§ 3 *’Hd .
[Enable sw. ON, s &2 5
Type "p". el g a g =
cnable aw. OFF. < O h ‘
_|Compute ,‘s'. GO. -

