
Introduction To

Bendix G-20

PrograIllIlling

SPAR
A LCOM
COBOL
E XECUrrrVE

Introduction to

-
PrograIllIlling

SPACE 6

sPAR 10

ALCOM 14

COBOL 16

EXECUTIVE ••...... •.... 18

SNAP 20

OTHER SySTEMS 23

2

-20 PrograIllIlling

The Bendix G-20 general purpose, automatic, data processing
system represents a decisive advancement in computing machin­
ery. Associated with the equipment is a sophisticated program­
ming system that fully uses the features built into the physical
equipment. The equipment and the programming system comple­
ment each other and give the user powerful computing facilities
at minimum cost.

SPACE, the G-20 Programming System, is a comprehensive
system that includes a symbolic programming assembly rou­
tine, an algebraic compiler, a business compiler incorporating
COBOL, and an Executive routine. As additional programming
routines are developed, they will be made compatible with the
SPACE system . In addition to SPACE, Bendix provides a self­
contained assembly program, SNAP, which is particularly
designed for those users having a modest configuration of
equipment. SNAP includes all elements necessary for the
translation and execution of programs.

The information contained in the following pages describes
the Bendix programming systems. For a description of the per­
formance characteristics of the equipment in the G-20 System,
see A Technical Introduction to the Bendix G-20 System.

SysteIlls ~ III Ib

3

4

1
J

G-20
SysteIll

Configurations

G-20 system configurations vary in a
modular fashion from the minimum system
listed below to systems of virtually un­
limited size_ A minimum system consists
of a central processor containing 4,096
words of core memory storage, the asso­
ciated console, and paper tape or card
input/output equipment. From the mini­
mum configuration, the user may expand
the system by the addition of magnetic
tapes, line printers, control buffers, data
communicators and additional core storage_

A control buffer added to the system
permits the independent use of various
elements of peripheral equipment either
"on-line" or "off-line"_ A data communica­
tor added to the system permits simultan­
eous reading, writing and computing with
complete input/output independence_ A
control buffer can control equipment con­
nected to two communication lines ; a data
communicator can control equipment con­
nected to 4 communication lines_

Magnetic tape units and control buffers
can be switched to secondary lines under
program controL A fully buffered, solid
state, line printer is available which con­
nects directly to a communication line and
has direct communication with the central
processor and other controlling units_

5

.

G-20 ~~SPACE"

.!. •
. -

6

·1

•

SPAR

A LCOM

COBOL

GENERAL PURPOSE LANGUAGE ... SPAR, the Symbolic Programming
Assembly Routine, gives the programmer direct control of all operations built
into the G·20 system. SPAR is ideal for scientific and logical programs which are
most conveniently written in "machine language". In the use of the G·20 in on·line
computation and control, SPAR is an easy.to.use tool which provides maximum
flexibility and efficiency in the processing of data.

SCIENTIFIC LANGUAGE ... ALCOM, an ALgebraic COMpiler based on the
international ALGOL, gives the scientist and engineer an easy method of express­
ing problems for the G-20 system. The scope of ALCOM programs covers any
problem readily expressed in algebraic and logical formulas. For example, an
engineer may easily program matrix operations in the ALCOM language. ALCOM
does not require a specialized or previous knowledge of computers or program­
ming systems.

BUSINESS LANGUAGE .. . COBOL is the COmmon Business Oriented
Language to describe business problems for computers. As a business program­
ming language, COBOL has received nation-wide acceptance. The COBOL
language includes full flexibility in the use of alphabetic words, decimal numbers
and special characters. Inventory accounting, production scheduling, payrolls and
billing are among the many applications for which COBOL is particularly
designed.

PROGRAMMING

E XECUTIVE

SYSTEM CONTROL ... The Executive Routine directs the opera­
tions of the SPACE Programming System in conjunction with the G-20
computer. The Executive Routine coordinates the computer activity in
the translation and execution of all problems in a direct and efficient
manner. The Executive Routine has the ability to direct parallel
processing of programs and data by spreading the tasks among the many
processing elements which comprise the system. For example, the
Executive Routine may direct the printing of a report while the central
processor independently processes another program.

7

0:
q;
0..
(f)

..J
o
al
o
U

A c E
o

SP PrograIllIlling __

8

~
o
U
..J
q;

IJ.J
>
j:
~
U
IJ.J
><
IJ.J

RELOCATABLE PROGRAMS

All translators in the SPACE system produce a program assembled in a
relocatable form as output. The Executive Routine can allocate the relocat·
able program to any available memory locations. The relocatable form
allows one source language program to incorporate a program written in a
different language of the SPACE system. Thus, the programmer has at his
disposal a constantly expanding library of sub·programs. In order to
efficiently use the library, the Executive Routine can handle all the details
necessary to locate the library program.

COMMON METHOD OF INPUT AND OUTPUT

The advanced interrupt facilities of the G·20 system permit internal
computati on simultaneously with input and output operations. Card reading
and punching equipment, magnetic tape units, and controlling units can
interrupt the central processor for required servicing. The separate translators
in the SPACE Programming System allow the programmer to write simple
input/output statements which are translated into the common language for
input/output control.

,

l

EXPANDABILITY WITHIN "SPACE" SYSTEM

In designing the SPACE system, Bendix provided for the addition of

translators for future programming languages . The SPACE system has one
major requirement for future translators-the output must follow the rules
prescribed for the linkage to the Executive Routine at the beginning and
end of the program run.

Since programs written in the present languages will always be available
to future translators, the programmer has at his disposal a constantly expand­

ing library of languages.

EQUIPMENT REQUIRED

In order to use the SPACE Programming System, an equipment system
configuration must have a central processor with 8,192 words of core memory,
its associated control console, two magnetic tape units, a card reader and
punch, and a line printer. One magnetic tape unit holds all elements of the
SPACE system and also contains the library of programs that have been
assembled in relocatable form. A running program may use the space on the
tape not needed by the system and library for intermediate storage if
necessary. The various routines in the system use the other magnetic tape units
during the actual translation of the program languages into relocatable
ma chine commands. The Executive Routine requires only the system tape
during program execution. The remaining tapes are ava ilable for program use.

Anoth~r magnetic tape unit added to the system increases e ffi ciency in
program translation . Adding a data communi ca tor or a control buffer
increases the overall effi ciency by allowing card operations, line printing,
and parallel processing to occur simultaneously with computations in the
central processor.

9

10

lJ.I

>
r­
:J
u
lJ.I
X
lJ.I
...J
o
OJ
o
U
::':E

8 General Purpose Language
...J
«
0::
«
a.
U)

SPAR

SP AR, the Symbolic Programming Assembly Rou­
tine, allows the programmer to use the full capa­
bilities of the G-20 equipment, yet releases him
f rom the burden of many bookkeeping details in­
herent in machine language programming. The pro­
grammer references variables in symbolic notation,
and uses subscripts and indirect and relative ad­
dresses with ease. SPAR is particularly designed to
express problems requiring direct control of all
operations of the G-20, and which are not easily
written in the algebraic and logical notation of
ALCOM. In order to use SPAR with maximum
efficiency, the programmer must be familiar with
machine commands.

SPAR uses a single address command structure
similar to the one used in the G-20 processor, which
specifies an operation code and an operand. The
operand is normally combined with the contents
of the accumulator leaving the results in the
accumulator.

Operation Codes

The SPAR operation codes include the complete
set of operations of the G-20 processor. See A Tech­
nical Introduction to the Bendix G-20 System for a

list of the mnemonic codes and a brief description
of their functions. Another set of SPAR codes, called
macros, allows the programmer to:include functions
used repeatedly which may require more than a
single G-20 command. SPAR contains a built-in set
of macros defined particularly for efficient input/
output operations.

Each macro code causes a sequence of G-20 com­
mands to be inserted in the program and results in

the proper operation performed under control of
the Executive Routine.

The macro codes which control input/output
through the Executive Routine include :

INPUT I (Unit/List);
The macro inserts the commands to InItIate
input from the peripheral equipment desig­
nated as Unit. The processing of input proceeds
under control of a previously defined format
designated by I. The central processor stores
the input in the memory locations specified in
the List.

OUTPUT I (Unit/List);
The macro inserts the G-20 commands to
initi ate output from the memory locations spe­
cifi ed in the List. The central processor sends
the words of output to the designated Unit in
the prescribed format.

SPAR has built-in formats for transmitting data in
Hollerith or row binary form. The programmer
may define other formats.

READY Address
The macro inserts the necessary commands to
determine if the input/ output operations using
the memory locations defin ed by Address are
complete. Further processing waits for the com­
pletion of the input/ output and resumes at the
next command in sequence.

The programmer may also define his own macros
for use within hi s current program.

1
I
I

I

Declarations
Another group of codes, called declara tions, appear
in the operation field of a SPAR program. The
information in the declarations enables SPAR to
construct an efficient program. The set of declara ·
tions include :

BEGIN, END, ENTRY
The BEGIN and END designate the boundaries
of a program or subroutine. The ENTRY indi­
cates the point in the program or subroutine
where computation begins.

INDEX, RESERVE
Both declarations reserve memory locations in
th e program. Index r egi ster s u se th e space
reserved by INDEX and data uses the space
reserved by RESERVE.

ALF, LWD, SPC, DPC
The declarations indicate that th e constants fol­
lowing are in a given fo rmat. ALF indicates
alphabetic ; L WD indicates octal ; SPC indicates
single precision ; and DPC indicates double pre­
cision. On the coding sheet, the information is
written on the same line as the declaration.
SPAR automatically converts single and double
precision numbers to computational form.

FORMAT
The FORMAT declaration specifies the form of
the data processed in input / output operations.
The declaration identifies the type of data and
indicates the number of characters and their
position.

Operand Assembly
The values which enter into computation are called
operands. The translator may place the operand
directly in the command using it or may place it in
memory locations and refer to it by the address of
the location. The value or its address is often a com­
bination of several quantities. The calculation of
the value or its address is called operand assembly.

Examples

MPY - 2356.14 means multiply the value in the accu­
mulator by the d ecimal number
2356.14. SPAR allocates a memory
location for the number, enters the
number into the location, and places
the location address in the command.

MPY - 834 means multiply the value in the accu­
mulator by the integer 834. SPAR
places the number 834 in the actual
G-20 command.

If th e value is n~ t given directly, th e programmer
must symbolically designate the operand.

MPY ABLE means multiply th e value of the accu­
mulator by the contents of a memory
location represented symbolically by
the name ABLE. SPAR places in th e
command the address of the variable
ABLE.

The name ABLE may refer to the actual value of
a variable. The value of the va riable must be less
than 32,768. In this context:

MPY - ABLE means multiply the value in the accu­
mulator by the integer whose sym­
bolic name is ABLE. SPAR inserts
the integer directly into the command .

The programmer may use indirect addressing as
follows:

MPY (ABLE) means multiply the value in the accu­
mulator by the number whose address
is found in location ABLE.

A command has unlimited indexing facilities. That
is, the address of the operand can be modified by
the contents of any number of other memory loca­
tions. Each location which holds a value tha t modi­
fies the address of the operand is put in parentheses.
If a single memory location from 1 to 63 is used to
modify an address, the entire command will fit in
a single word position.

MPY ABLE + (I) means multiply the value in the accu­
mulator by the contents of a location
who se a ddress i s de termined a s
follows :

Add the contents of the index mem­
ory location represented by I to the
number represented by ABLE. The
sum is the address of the operand .
Assume that ABLE represents 1300
and the contents of I is 43. The ad­
dress of the operand is 1343.

The prog ra mmer m ay form complex operand
addresses by repeated combinations of these address
elements with "+" and "-" signs connecting them.

11

S /

/

12

Illustrative Example
Calculate the absolute value of the innerproduct of
two vectors A and B, each having 100 components.
The components of the vectors are key·punched on
cards in decimal numbers, four per card. The for­
mula is:

The three-letter mnemonic codes in the Operation
Field are G-20 machine language code representa­
tions. The commands Input, Output, Ready are
macros included in the SPAR system. The remain­
ing words in the Operation Field are declarations.

SPAR programming commands are key-punched in
cards using a standard algebraic set of Hollerith
codes. These cards are entered into the computer
under control of the Executive Routine along with
the SPAR assembly routine. The assembly routine
translates the commands to machine instructions
and records them for immediate or future use. The
translation process is necessary only once. The ma­
chine instructions resulting from the translation
are recorded in a compressed, relocatable form on
cards for external storage, or in a magnetic tape
library of programs and subroutines. Either form
may he entered into the computer under the control
of the Executive Routine for production runs.

Calculate the absolute value of the innerproduct of two vectors
A and B, each having 100 components. The components of the
vectors are key-punched on cards in decimal numbers, four per
card. I The formula is:

100

Y=I L: AiBil
1=1

BETSY
CAR 0 L

INNERP R O

S TAR T

B EG I N

RESERVE

INN E R PRO Due T ;

A (100) , B (100) ,S U M , A N S W E R ;

IND E X I;

FOR MAT
FORMAT

ENTRY
I N PUT

I N PUT

S T Z

LXP-

READY

REA D Y
C LA

4F1 8 ,JJ
E 1 2 • 3 J

B EGINNI N G OF P R O GRAM
BET S Y , CAR D 1 , A , 100 J

BET S Y , CA R D 1 , B , 100 ;

S UM ;
100 , I ;

A ;

B J

A •
B •

(I)

(I)

1

M P Y

ADD

S T S

S X T -
T R A

SUM J

SUM ;

1, I;

S TAR T
4

A D A -

S T S

OUTPUT
RE A D Y

T R A

E N D

A N S W E R

CAll O L,PRI N 1, ANSWER, l
A N S W E R ; I IS
(I NN E R P RO) ;

, ~ .. -.I'
; . IS/fl U U OEGIN

~IIII

I !

• •
L. £L ~.

[J I NN ERPRODUCT; ".. ..

=

• "~ . '. • i •
) I

<
O"£"'ATION .DOR~~"OI"';" •

' o:r~l '
I-T- LA B EL '''k OPER 0 AODRESS, REO ISTER CO MENT·

I NNERPRODUCT CALCULATI ON L LABE L , OPERAT ION ADDRESS, REGI STER COMMENTS PROGF

II 00000000000 800000000 1000000000 1 0 1 00000000000000000000000000000000 00000 1 , , J • , • J •• 10 n 2 I) 1511 11 II 1.2Ill22 ~~anll~.JlnU~~~n.~~'IUU4'~~4,q~~5IU~~»~51~U~'IUU~U"" ",, 1\ n J

I I 11111111111 11111111 1 11111111111111111 1 11111111111 1 1111111111111111 1111 1

1 2 12222222222 212222222 2222222222222222222222 222222 2222222222222 2222 2 1 222 :

33 S3333333333 333333333 33333333333 11 33333333333333333333333333333333 33 1 33 :

44 44444444444 444444444 444444444 11 44 1 44444444444444444444444444444444 4414 '

'" 55 55 5 5 5 5 5 5 5 5 555 1 55 1 555 55 111 55 55555 !

~
66 6666666616 6666666 6 6 66 6 6 6 6 6 61 6666 1

2
, 11 11111111111 111 1 11111 717171 1 11111111111111111111111117111111111111 11111

x 881 8888888818 18 8 8 8 8 8 8 8 18 8 8 8 8 8 88 8 8 8 81 a 8 a a 8 a 8 a 8 a 8 a a 8 a 8 a 8 8 a 8 a 8 8 a 8 a a a 8 81 8888

>G '
Of
",
' f
2 ;

3 :

4 .

5 !

6 1

. ;

.~ .

13

-
.~

14

w
>
I-
:J
U
W
><
W
.J
0
OJ
0
U
:E
0
U
Scientific Language'

.J
«
0::
«
D. ALCOM
(/)

The ALCOM ALgebraic COMpiler permits the ex­
pression of scientific and engineering problems in
scientific notation and allows the scientist or engi­
neer to program the computer by expressing prob­
lems in a familiar notation.

For scientific computation, the G-20 computer equip­
ment provides a number of outstanding features:
fast internal computation; floating point arithmetic;
single and double precision facilities; 63 special
index register loca tions; and direct, indirect and reI.
ative addressing of any memory location. ALCOM
incorporates and automatically uses all of these
features . The index registers provide easy handling
of vectors, matrices and arrays ; relative addressing
provides for efficient u se of subroutines in a
program.

Application of ALCOM extends beyond the alge­
braic field into the area of logical programming
through th e use of expa nd ed logic facilit ies.
ALCOM's logical programming retains all the sim­
plicity of algebraic programming.

The heart of the ALCOM language is the assign­
ment statement. A typical assignment statement is :

Y :=A + B * SIN (X);

ALCOM automatically generates the G-20 com­
mands which assign to Y the evaluation of the
expression to the right of the equality.

Control statements in ALCOM specify the sequence
of computation in a program. The words IF, THEN,
ELSE, GO TO, and FOR are control statements.
An example of an ALCOM control statement is :

IF X = ALPHA + 15 THEN GO TO STEP 1
ELSE IF X > ALPHA + 15 THEN GO
TO STEP 2;

In an ALCOM program, the programmer writes
the formulas in their natural order and includes the
necessary control statements to direct the proper
sequence of computation.

Declarations, another element in an ALCOM pro­
gram, provide information to the translator con­
cerning the contents of the program. Representative
declarations are:

ARRAY and INDEX

The declarations identify and reserve memory
space for data and index registers, respectively.

INTEGER, SINGLE, LOGICAL, and BOOLEAN

The declarations INTEGER, SINGLE and
LOGICAL specify that th e following variable is
either an integer, a single precision number, or
an octal number. BOOLEAN indicates that a
variable has only two possible values.

FUNCTION, PROCEDURE, and ENTRY

FUNCTION and PROCEDURE specify the
type of subroutine and ENTRY specifies the
entry point for execution of the subroutine.

In addition to the normal algebraic statements,
ALCOM contains the logical operators 1\ , V ,-, ,
and $. The $ operator represents a shift in the
accumulator. These operators, combined with logi­
cal variables, form logica l assignment statements.
For exam pIe,

F:=ALPHA $ 5 1\ BETA;

means to assign to the logical variable F the result
of shifting the variable ALPHA left 5 hits then per­
forming an "extract" operation with BETA.

Q

4

A programmer may divide an ALCOM program
into any number of subroutines, called procedures.
Each p roced u re is a self· conta ined prog ram
requi ring only input/output vari ables fo r compu·
tation. Dividing a program into procedures has a
distinct advantage fo r programs which may be too
la rge for the internal memory of the central
processor. Only the procedures necessary to one
phase of computati on need be in the memory at
one time; the other procedures may be read into
memory, when needed, replacing those which have
already been run. The programmer , through an
overlay statement , may automatically cause the
overlay to occur at program execution time.

ALCOM example :

Find the temperature at the end of a given interval
of time at each of 1000 equidistant points along a
bar from tempera tures previously recorded at each
point.

Use the formula : Y i = 2/ 3 X i + 1/ 6 (Xi- 1 + X i +1).

The ends of the bar are kept at OaF. The interval
of time is from 0 to 1 second in increments of
1/ 600 second .

Lines 6 th rough 15 of the cod ing sheet are the state­
ments which ALCOM translates into machine lan­
guage. The other. li nes are declarations which in­
struct ALCOM to reserve space for the variables,
and determine the format in which ALCOM reads
data from cards and the form at in which ALCOM
prints the results on the line printer.

The informa ti on on the coding sheets is key­
punched on cards using the existing standard set
of Holleri th codes. The cards are read into the
G-20 under control of the Executive Routine. The
ALCOM translator processes the statements and
forms relocatable machine commands. Instructions
to the Executi ve Routine specify whether executi on
is to occur immediately or whether the program
is to be stored for later execution.

Find the temperature at the end of a given interval of time at each

Heat Distribution I of 1000 equidistant points along a bar from temperatures previously
recorded at each point. Use the formula:

A /

/

~

PR (~DI'Rf

Y\=2/3 XI + 1/6 (XI-1 +X\ +l).
The ends of the bar are kept at OaF. The interval of time is from 0
to 1 second in inerement. of 1/600 second.

TRU(T "

P R O C E D U R E H E AT E Q U A T I D N ;

BEG I N

A R R AY X , Y [1 0 0 1];

F O R M AT A B L E (F 6 • 2 , 5 E 1 2 • 3 / (6 E 1 2 • 3))

F O R MA T B A K ~ R (8 Fl O • 3) ;

E N TR Y H EA T E QU A T I D N ;

X(l] :- X [1 0 0 1J ,- Y [lJ :_ Y (1 00 1) , -0 ;

I N P U T BAK ER(CAR D 1/ (I : -2 B Y 1 T O 1 000 DO X [I])

R E A D Y X;

F O R T : -O B Y 1 / 60 0 T O 1 D O B EG I N

FOR I: - 2 B Y 1 T 0 1 0 00 D 0

Y [IJ : - . 6 667 * X [I] +. 166 7 * (X [I - 1] .. X
ARRAY X, ¥ [1001];

OU TP U T A B L E(P R 1 N l/ T , Y); .-____ ~I~,I II I
FOR I : - 2 BY 1 T 0 1 0 O DD 0 X CgI~..!:;:;!;:;:i'J,:xk:.b!::::
R E T U RN H E A T E Q U A TI D N ; ~---

u.alt .11 1' .• ' U .U.CTIOIil

~ ~ r~~~~~~~~~;~~~==~~~~~~~~~~~::~~::~::~ E N D H EAT E Q U A T I D N ; Frl:::j e , • • TIIUCT'O.

/ '1 /

/ L

(~
01 , , ..
22

33

44

5 5

66
RO ,RAM

~ 11
~

88
2

PROCED URE HEATEQU AT ION j

.--_ _ -,�11 I III I I I
L ABEL.

LABEL

00000000
4 S. J •• 1111

111111 1 1

22222222

33333333

44 44 44 44

55555555

66666666

11111111

.8 8 8 8 8 8 1 8

, •• , IN ST..,CTION • II
INSTRUCTI ON PROG RI

000000100000010010100 1
" I. IS li n 11 1'2IZI !2n)4 ZS ll n 2l 2!l XlJ' n13 :W ~JIi 3J]I D 40 4141 4l 44 45 • • 1 ... »51 Ull54S,.SJS •• ' lIfUW as .IJM " 10'11 nit J

11111111 1111111111111 I 1111111111111111111111 I 1111111111111111 .

22222222222222222222222222222 22 222 2 2222222222222222222222 2 222 :

33313333333331333 3133 :

4444411444444444144444144444444444444444444444444444444444444 '

55551555155155155555515555555555 5 5555 5 555555555 5 5555 5 5 5 5 5 5 5 55 !

6616666666666666666616 666666666666666666J666666666666666666661

11 11111 :

88888888881811118818881888888818881118888181111111811888188881

.,.

\.0 , ,

16

w
>
I­
::I
U
W
><
W
..J
o
m
o
u
~
o Business Language
u
..J
c(

0::
c(
a.
III

COBOL
COBOL is the business data processing language
of the SPACE Programming System. The COBOL
language is English. COBOL accepts, processes,
and transmits data in alphabetic, alphanumeric, or
decimal form. The programmer need have no spe­
cialized knowledge of either programming or elec­
tronic computers. In addition, COBOL gives the
business executive the ability to obtain first hand
knowledge of business programs processed by the
G-20. COBOL permits the rapid generation of re­
ports, special analyses, and surveys in a fraction
of the time form erly required.

COBOL is th e business language system resulting
from the coordinated efforts of the U. S. Government
through th e Department of Defense, users of com­
puters for business, and co mputer manufacturers.
COBOL u ses th e feature s built into the G-20
eq uipm e nt which make th e co mputer powerful
in data processing applications . These features
include :

Fast Magnetic Tapes which are capable of read­
write speeds up to 120,000 alphanumeric char­
acters per second , or 240,000 decimal digits
per second;

Bendix Line Printers which operate at speeds
up to 1000 lines per minute with full horizon­
tal and vertical format control without wiring
boards;

Data Communicators which permit simultane­
ous input/output independently of the central
processor; and

Flexible equipment configurations which in­
stantly may form off-line sub-systems con­
trolled by a program in the Control Buffer.

The flexibility of the system makes all components
available to the central processor when needed.

A Control Buffer may switch tapes to form an off­
line system to perform the merge part of a sorting
operation. Simultaneously, the central processor
computes another totally unrelated problem. Both
operations - the one controlled by the buffer and
the one in the central processor - continue con­
currently with and independently of one another.

Generalized Business Routines
In addition to the COBOL compiler, SPACE con­
tains a set of standard business routines which
perform basic business operations. The routines
include File Assembly and Maintenance; General­
ized Sorting, and Report Generation. These routines
are prepared to be used in conjunction with or
independ ently of the COBOL compi ler. The lan­
guage for describing th e files, records, and fi eld s is
the language of COBOL.

COBOL Language
The COBOL language permits the business pro­
grammer to write problem statements in English
using ordinary sentence structure and punctuation.
He uses English phrases to describe the records and
files of his problem.

A COBOL program has four divisions : Identifica ·
tion, Environment, Data and Procedure.

The Identification division conta ins information to
identify a problem. The information enables the
Executive Routine to refer to the problem in library
searches, in program scheduling and execution . It
permits easy external recognition .

The Data division specifie s all information pertain­
ing to fil es necessa ry to solve the problem. Files
cover a broad representation of data which may
exist in core memory, on card s, on magnetic tape,
or on the line printer.

A symbolic name represents each item of data.

A typi cal name might be HOURLY-RATE-OF­
PAY. The programmer uses English phrases to
give information about each item. Such phrases
might be : CLASS IS NUMERIC; POINT LOCA­
TION IS LEFT 2 PLACES; SIZE IS 4 CHARAC­
TERS.

The Procedure divi sion contains the English sen­
tences defining the necessary computation. Some
key verbs for the divi sion are : ADD, SUBTRACT,
MULTIPLY , DIVIDE, OPEN (file s), READ,
WRITE, CLOSE, MOVE (data), STOP, ENTER,
and EXIT.

The programmer may cause a direct transfer from
one point in the program to another point by using
the word GO. A conditional transfer results by
using the word IF followed by an expression which
mayor may not be true.

COBOL automatical ly converts all decimal data to
computational form and performs necessary edit­
ing operations for input and output. Label reading,
writing, and checkin~ of tapes is automatic with

use of the verbs OPEN and CLOSE.

The Environment division specifies the equipment
and its configuration on which a program is to run
and the number of peripheral units to which spe­
cific files are assigned. The information enables
COBOL to generate the most efficient program with
the available equipment. In addition, the Environ­
ment division specifies the points at which informa­
tion is saved to enable reruns and to continue
operation if the program is interrupted.

The example illustrates typical sections from the
Data and Procedure divisions.

The information on the coding sheets is keypunched
on cards using the existing standard set of Hollerith
codes. The Executive Routine oontrols the reading
of the cards by the G-20. The COBOL translator
processes the statements into a relocatable form.
Instructions to the Executive Routine specify whe­
ther execution is to occur immediately or whether
the program is to be stored for later execution.

An example illustrating typical sections from the Data and Procedure divisions.

1 DATA DIVISION PREPARED FOR BEND IX G-20.
2 FILE SECTION.
3 FD TAPEACCTS; LABEL RECORDS ARE STAJlIDARD; DATA RECORDS ARE ACC OUNTS .
4 SUMMARY; SEQUENCED ON TBRANCH, TACCT-NO.
S 01 ACCOUNTS.
b 02 RCODE; SIZE 1; USAGE IS COHPUTATIONALj CLASS IS NUMERIC .

-
7 tltl ACCOUNTS VALUE IS 1.
tl 811 SUMMARY VALUE IS 2.
9 02 TBRANCH; SIZE 2; USAGE IS COMPUTATIONAL; SYNCHRONIZED RIGHT:

10 CLASS IS NUMERIC . -
~

17

.,. ... :"
... ,

18

I.1J
>
I­
:J
U
I.1J
><
I.1J
..J
o
m
o
u
~

o SysteIll Control u
..J
«
It
«
0-
w

EXECUTIVE

The Executive Routine coordinates SPACE data
processing activity in the G-20. The activities con­
trolled by the Executive Routine include communi­
cation with the operator to receive new tasks and
to give information on the status of current process­
ing. The Executive locates and loads into available
memory locations programs and subroutines for
computation. It monitors the status of running pro­
grams, directs the input/output for maximum data
flow, and performs "overlay" when a complete
program must be brought into memory in segments.

Many of the tasks that the Executive performs are
necessary in any computing installation. Recogniz­
ing the common functions and centralizing them in
a single modular routine eliminates considerable
duplication of effort and programming.

The Executive Routine is divided into two segments,
called the Supervisor and the Monitor. The Monitor
may be one of several specialized monitors which
fit the translator employed. That is, ALCOM,
SPAR, and COBOL may have different monitors
which are connected to the common Supervisor.
Each of these is referred to as the Monitor.

THE SUPERVISOR

The Supervisor is called into core from the system
tape whenever major functions must be performed
or when extended communications with the opera­
tor are required. The routine arranges a schedule
for computation, obtains the programs to be run,
and prepares them by relocation and parameter
assignment. The Supervisor also transmits messages
via the console to the operator regarding assignment

of reels of magnetic tape and concerning the status
of equipment and program computation. In addi­
tion, the Supervisor performs diagnostic checks
on programs and equipment when problem solution
is interrupted .

When all requirements for beginning or continuing
computation are satisfied, the Supervisor loads the
Monitor and the programs to be executed into core
memory. The Supervisor thereby replaces itself.

THE MONITOR ROUTINE

The Monitor is the smaller of the two segments of
the Executive Routine. It remains in core during
the time problems are being processed. The primary
functions of the Monitor are:

To handle program interrupts;
To expedite the flow of information among
input/output units; and
To recall the Supervisor when additional con­
trol is required.

Interrupt Servicing

The G-20 permits interruption of computation when­
ever an illegal command is encountered, whenever
the results of computation exceed prescribed limits,
and at the programmer's option. Additional inter­
rupts provide for input/output servicing and for
timekeeping by means of an interval timer included
as standard equipment. At the moment of interrup­
tion, the G-20 stores the location of the last com­
mand executed and transfers control to a fixed
location in core memory. This location contains the
beginning of a stored program routine, called the
Interrupt Service Routine.

The SPACE Interrupt Service Routine provides
four classes of exits : to the Input/Output Control
routine; to the Monitor; to· subroutines requested
by the programmer; and to the point in the program
at which the interruption occurred.

The Input/OutputControl determines the peripheral
units requiring service. If the current task is not
complete, the I/ O routine continues the tasks for
the unit; if there are additional tasks to be per­
formed, the I/ O routine initiates them.

The interrupts designed for the Monitor include
those for timekeeping and calling the Supervisor
if illegal operations prevent further problem proc­
essing. The Monitor controls parallel processing in
the system.

A "flag" on data or commands can cause an inter­
rupt. The programmer may specify entry into one
of six special subroutines associated with his prob­
lem when a "flag" causes an interrupt. The only
requirement is that each of the special subroutines
must return control to the Interrupt Service Routine
(ISR) to handle other interrupts which may have
occurred.

Finally, when all interrupts have been serviced,
ISR returns control to program computation. The
user has the option of specifying the priority of
interrupts when his system is installed and of chang­
ing the priority as his needs change.

The SPACE Interrupt Service Routine occupies
about 150 memory locations in the central proc­
essor. It contains all the coding necessary for de­
termining which interrupt has occurred and for
transferring to one of the exits mentioned above.
Depending on the priority of request, 150 to 600
microseconds elapse from receipt of interrupt to
exit.

Other programming systems designed to make ade­
quate use of the equipment may use the SPACE
Interrupt Service Routine.

Input/Output Control
The Monitor contains the Input / Output Control
routine which handles all requirements for data
transmission. The routine includes a table contain­
ing status information of peripheral units and an­
other table containing the tasks which each unit
must perform. When a task is to be done, it is
entered into the table and immediately initiated
if the specified unit is free. If the unit is a "slow"
device such as card equipment or if the task can
be done independently of the central processor,
computation in the main program proceeds with
the task. If the unit is not free to initiate the task,
computation proceeds in the main program. Nor­
mally, the peripheral units interrupt the computer
when they become available for further tasks. Proc­
essing of the program halts if the program requires
the completion of data transmission before con­
tinuing. On receiving a "READY" instruction, the
I/ O Control routine interrogates the tables for com­
pletion of the required tasks. If the tasks are not
complete, control is transferred to the monitor for
possible alternate problem processing.

The I/ O Control requires routines for efficient han­
dling of only the peripheral units required by the
problem and routines necessary for automatic data
conversion to computational form. The minimum
group consists of the console and magnetic tape
routines. If the problem requires line printers, card
or paper tape equipment and if conversions are
required from decimal to computation form, the
Supervisor loads these routines with the problem
and the Monitor. Thus, SPACE automatically as­
sembles only the programs required for problem
solution and for Executive control.

The number of memory locations required by the
Monitor varies with the problems being solved. If
parts of a problem require only magnetic tapes,
no conversions, and no alternate problems in mem­
ory for parallel processing, the Monitor needs
about 1000 locations including magnetic tape­
handling routines. For larger problems requiring
additional peripheral equipment and parallel proc­
essing of other programs, the Monitor requires
more core storage.

19

-

....
t

20

SNAP PrograInIning

G-20

SNAP is an independent programming system
which may be used with the smallest G-20 system.
The SNAP system permits programs to be written
in a symbolic language which retains the flexibility
of G-20 machine language. SNAP contains all
facilities required for program translation, load­
ing, and execution.

The SNAP system consists of:

A convenient source language which is a sym­
bolic form of machine language. This SNAP
language, in which programs are coded, com­
bines all features of machine language with
an ex trem ely flexible SNAP addressing
system.

A Director program through which all opera­
tions are performed. The Director contains
the SNAP loader and an interrupt service
routine. The Director is kept in memory during
any SNAP operation.

An assembly routine which translates SNAP
source language to machine language.

A group of standard subroutines for input!
output operations and debugging.

Labels

Alphanumeric labels may be used in SNAP to
represent addresses or numeric values. Convenient
symbolic labels may be assigned to commands,
constants, and storage areas. These program ele­
ments then may be addressed by use of the labels.
For example, the constant 7r may be stored in a
program with the label PI. In that program, oper­
ations using 7r may simply address the constant by
use of the symbolic address PI.

Relocatability

The SNAP loader has the ability to load programs
assembled by SNAP into any area of memory for
execution. This feature, called relocatability,
means that any number of inter-related programs
can be loaded into memory at one time for execu­
tion. The first program loaded goes into the first
available locations; subsequent routines, as they
are loaded, are relocated, by the loader, into
adjacent areas of memory.

The SNAP assembler and all subroutines are
relocatable. In addition, any program written in
SNAP will be relocatable if it uses labels for
symbolic addressing.

When a label is used in a relocatable program as
an address, that address represents a given number
of locations beyond the starting point of the
program. Therefore, although an entire program
may be relocated in loading, symbolic addressing
within a program remains constant relative to that
program.

SNAP Command Structure

The source language of SNAP consists of a group
of alphabetic commands meaningful to the assem­
bler. These . commands consist of the SNAP sym­
bolic form of machine commands and of constant
declarations and other instructions to the assembler.

SNAP source language commands have the follow­
ing form:

Label Flag Op Code Mode Address-Register

..

The Label field of commands, constants, and
memory reservation commands is used to assign
symbolic labels, for use in addressing, to the
command, constant, or data storage area.

The Flag field is used to store one or two flags in
commands or constants to permit branching in
execution.

The Op Code field contains the alphabetic oper·
ation codes of SNAP source language. Operation
codes consist of instructions to the assembler and
of a mnemonic form of machine commands.

Assembler instructions define the beginning and
end of a program, reserve and label index regi­
sters and storage areas, and control the labels used
in symbolic addressing.

Constant declarations permit any number of con­
stants to be stored and assigned labels for sym­
bolic addressing. Numeric constants may be
entered in octal or decimal notation in floating or
fixed point form. Alphanumeric information and
logic words may also be entered as constants.
Machine commands are written in a mnemonic
form which makes all machine operations avail­
able in a simplified notation.

Mode may be indicated in source language in a
variety of ways. However, when commands are
written in their "normal" mode, no indication of
mode is required.

Addressing in SNAP is especially powerful. The
features inherent in machine language are oom­
bined with arithmetic operations available during
assembly to produce an extremely flexible method
of addressing. Address notation permits a string
of any number of elements to be written in the
address of a command. These elements may be
numbers or numeric addresses or they may be
labels representing numbers or addresses. Such
labels may represent relocatable commands, con­
stants, and data storage areas.

These elements of a SNAP address may be con­
nected with symbols indicating addition, subtrac­
tion, multiplication, and division. These indicated
arithmetic operatons are performed during assem­
bly and the result is output as a number in the
assembled, machine language program.

Example of an address string :

BETA +19+ ALPH A - $147
In assembly, the decimal number 19 will be
converted to octal and added to the sum of the
values represented by ALPHA and BET A;
from this sum the octal number 147 will be
subtracted. ·The result of this operation will
be one nu~ber which will be output in the
assembled, machine language program.

The Address-Register field of a SNAP source
command may contain one string of elements to
represent a basic address and another string to
refer to an index register modifying that basic
address. A comma separates two strings.

Example of a SNAP command using address
strings:

Label
INPUT
TALLY

F Op Code
RZO
RLX

CLA

M Address-Register
100

3

INPUT + 12, TALLY + 1

In this example, 100 words have been reserved
for' an input area and the label INPUT is
assigned to the first word of the area. Three
index registers have been reserved and the
label TALLY has been assigned to the first.
The third operation code is a machine com­
mand in which simple address strings have
been used. The basic address referred to is
the 13th word of the reserved input area and
the index register referred to is the second of
the three reserved. The command assembled
from the source language command above
will clear the accumulator and add to it the
contents of the word in the input area which
is beyond the 13th word by the amount con­
tained in the second index register reserved.

Assembly

To operate with SNAP, the Director is first loaded
into memory. Then, if it is desired to assemble a
program written in SNAP, the assembler is loaded

21

with a console instructi on to the Director. The
assembler reads cards containing SNAP source
language and translates thi s symbolic program
into a machine language program. The result of
assembly is a deck of punched cards, called the
object language deck, whi ch is in a relocatable
machine form. In this form the program may be
loaded and executed as required under Director
control.

Programs may be assembled on a G-20 system
consisting of only a Central Processor with one
memory module, a CC.l0 Control Console, a
reader and punch unit , and a line printer. The
assembly process automati cally prints a li sting of
the source language, the resulting object language,
and irregulariti es in the source language. Irregu­
lariti es are flagged and identified by type to aid
in debugging.

After assembly, programs may be executed on a
G-20 system of any size . Thi s fl ex ibility permits

programs for large systems to be assembled and
partially debugged on a minimum system.

Subroutines

A standard group of subroutines for input/output
operations and debu~ginl!; is avai lable in relocat­
able binary form for SNAP. In addition , any
SNAP program . with minor modifi cations, may
be used as a subroutine of any other SNAP pro­
gram. Because of the feature of relocatabi lity, any
number of standard subroutines, any program, and
any number of programs used as subroutines can
be loaded into memory for coordinated execution.
SNAP source language permits any number of
index regi sters and memory locations to be used
in common by two or more pr·ograms. These
common locations facilitate communication be­
tween subroutines and between the control program
and any subroutine.

An example of SNAP Programming: Assume that 100 numbers are to be stored
in adjacent memory locations. These numbers, if smaller than 7T, are to be re­
placed by their squares. Numbers equal to or larger than 7T are to be replaced
by the product of 2.5 and the original number. Input/output commands have
been omitted for brevity.

CON S T

P r
D A T A

C 0 U W T

S TAR T

S Q ARE

P LAC E

BE a I I

H P C

H P C

R L S

RLI

LIP -

C LA
, L 0

T R A

M P Y

S T S

T R A

M P Y

S T S

SIT -

T R A

T R A

END

2 • 5

J .14159

100

1

lOO ,C OU NT

D ATA-l,C OUN T

P I

S Q J. R E

CON S T

DATA-l, COUNT

P LAC E

DATA-l,C OU NT

DATA-l, COUN T

1,COUNT

S TAR T

C NT R L

S T A R T

SAMPLE PR OG RAM

STORE CONSTANT

ST ORE PI

R E SERV E D ATA L O C

R ES ERVE REG

L O AD R EO

A CCESS N U MB E R

L ESS THAN P I ?

YES , GO TO SQAR E

N O ,TIM ES 2.5
R E PLACE

S Q U ARE N U MB E R

R E PLA CE

D EC R EG ,D ONE ?

NO,REP E AT

YE S , GO TO DRECTR

ENTER AT ST A R T

-- -
I

lr
.0 S E Q T

22

LAML , OP III AtIbIf[SS !I(GIS CO"""fNT$

1.. ... 91:1.. Of" "'001'1£815, REGlSTEAi COMMENTS 1 0 B EQ
11.1111111 01" 111111111111'" I •• 1110 D II 0 10 0 0 18 GillIG a I 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 ~ • I D D D" D D
I I I , . , 1 1 . ,. nn MII. " .".l'II1D ••• JI ••• JI :III •• JI ••• "ct<l "' •• 'HI' •• 11 1I1I .1 I1SI21'1~"CCI' I:c.'lf·t! .. ;· " IP""lIn~ 1

11 '11:111111 1 111 1111 11 I 11111 11111111 .

1 Z Z 22 Z 1112222222211121212222222 22122 222222 Z 2 2 212 2 2 2 2 2 12! 12 1 2 2 ~ 2 2 2 2 212 ~ 2 2 2 2 2 2 2 2 Z ,
II J J J J J J J J J J I I J J I J J J J J J J J J I J J J J J J J I 1111-)) I 3 3) J I III I I J I J .13333 J 1 3 31 l l J 1313 J 3 J J J 1311

UU. U 4.4 •• 4444.444 U 4 U 4 U 4 uluuu. U 414 4:4 4 4 4 U 4 4 4 4 .4444444 ' 4 4 4 ~ 4 4 4 4 4 4 4 4 4

l 5515 IS SiS 5.5 55 5 5551 5 5 5 5' 5 5 5 5 5:' 5 5 5 5 5 S 5 5 5 ~ 5 5 ~ 5 5 5 S 5 5 S 5 S 5 5 5 5 5 5 5 5 5

o ".111'1" ,1"""""1111.1 ••• ' ••• 1111.1 •• ' •• 1 •••••• S6665666ti.5 &o666 Ge •••• 'II'.
N I

ok 11111717171111171' l' 1111111}}}} 111111111111, J 11 1111111 T J 111171 J 11 1 1 1 111 J J J J J 111"

;: "I" I I 11'111111""'" ""'" I"" 1 .. , 111111.: ' 5 a 8 818 8 61! 8 ~ a a e ~ 0; ... 1 II11I
ill '

~: ~!: II :: :!~ I~~ ~~~, ~~!!!!!!!!!!!!! I !~~~!!!!!!!!!!!I!!!!! I ; !~I ~~~? ~ ~.~ 5 ~:: ~ j !!~ ~!!~!

, II , ~~!! OI n
111 111111

122 2222 .

JUS nU ll

l 44 4 444444

) 555 55555

~ UI """
iJ17 111117

nil 111111

~~IIUI! n lt ll n ll

~
~9

~raEQ"T
I

!D!~!!DD
~; 1111"

22 2 2 2 2 2

uuul

~ r 444444
5555 55

.,,", ..
11J11111
1,,11"
n 1111 11 11 •

I-----i

Other G -2:0 Programs

Bendix. provides its users with other special pro­
grams to serve particular functions_

A library of routines is avai lable for the SPACE
and SNAP Programming Systems. The library
includes elementary mathematical functions:

Sine Bessel Functions
Cosine Numeric Integration
Tangent Square Root
Arctangent Matrix Handling
Exponential Polynomial Evaluation
Logarithm Roots of Polynomials

In addition, the library also contains Number Con­
version Routines and General Service Routines.

SNAP to SPACE
Relocatable Form

Bendix will provide a program to translate the out­
put of SNAP programs to the SPACE relocatable
form. SNAP programs must use symbolic coding
exclusively. The user, therefore, does not need to
reprogram any error-free problems symbolically
coded in SN AP language.

Fortran

Bendix provides a routine to compile for the G-20
any program written in the Fortran II language.

650 Simulator

Bendix will provide a routine to simulate the 650
machine. The G-20 with the simulator may run any
error-free program coded for the basic 650 with
floating-point, index registers, added drum mem­
ory, magnetic tapes, card and tabulating equipment
designed for the 650.

23

Offices:

BOSTON 18

607 Boylston Street
COngress 2·9110

CHICAGO II

919 N. Michigan Avenue
Michigan 2·6692

CLEVELAND 13

55 Public Square
CHerry 1·7789

DALLAS I

1511 Bryan Street
Riverside 7·8805

DENVER 3

655 Broadway
Suite 910
ALpine 5·1403

DETROIT 37

12950 West Eight Mile Road
JOrdan 6·8789

HUNTSVILLE. ALA.

Holiday Office Center
Memorial Parkway, South
539·8471

KANSAS CITY II. MO.

3430 Broadway
VAlentine 1·8681

LOS ANGELES

291 S. La Cienega Blvd.
Beverly Hills, California
OLeander 5·9610

NEW YORK 17

205 East 42nd Street
Room 1205
ORegon 9·6990

SAN FRANCISCO

1330 Broadway
Suite 1121
Oakland 12, California
GLencourt 2·3664

TULSA 14

1754 Utica Square
Riverside 3·6485

WASHINGTON 8. D . C.

1000 Connecticut Avenue, N.W.
STerling 3·0311

CANADA

Com puling Devices
of Canada
P. O. Box 508
Ottawa 4, Ontario, Canada
TAlbot 8·2711

OTHER COUNTRIES

Bendix International
Division
205 E. 42nd Street
New York 17, New York
MUrray Hill 3·1100

Bendix Computer Division
LOS ANGELES 45 . CALIFOR NIA

T~ncf~
CORPORATION

BSP·12601·1161

