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BSP 

1. INTRODUCTION 

One of the most important features of any computer is its arithmetic. This docu
ment discusses the implementation of floating point arithmetic in the Burroughs 
Scientific Processor (BSP). Data representation in both the BSP memory and 
arithmetic element is described, as are the arithmetic algorithms used in the 
BSP. Of particular interest are the techniques used for error checking in the 
arithmetic element and for rounding in both the scalar processor and the parallel 
processor. The BSP arithmetic operations, including instructions and cycle 
operations, are described in detail in Appendix A, and the accuracy of arithmetic 
operations is discussed in Appendix B. 

1 



~~p ~~~~~~~~~~~~~~~~~~~~~BURROUGHSSCIENTIFICPROCESSOR 

, I 

1 i 



BSP ; ! ~ F 

2. DATA REPRESENTATION IN MEMORY 

The representation of data in the memory of the Burroughs Scientific Processor 
(BSP) is as follows: 

1. Single precision floating point word format, 

2. Integer word format, 

3. Double precision real floating point word format. 

SINGLE PRECISION FLOATING POINT WORD FORMAT 

A single precision floating point number, X, is represented by an ordered pair of 
numbers, E (exponent) and m (mantissa)" such that: 

E 
X = 2 * m 

where E is an integer and m satisfies the condition: 

-1/2 .::. m <- 1 or 1/2'::: m < 1 or m = O. 

In order to meet this condition, that is, 1/2 ':::Iml < 1, the last step in every floating 
point operation is the normalization of the mantissa (removal of leading zeroes). 
The layout of the floating point word in memory is indicated below. The bits are 
numbered from right to left. The least significant bit is numbered 0; the most 
significant bit of the mantissa is bit 35; the least significant of the exponent is bit 
36. The most significant bit of the exponent is bit 45. Bit 46 is the sign bit of the 
mantissa; bit 47 is the sign bit of the exponent. Every group of consecutive bits is 
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called a field. and is denoted by W [x:y]; W is the name of the data unit x is the 
address of the left-most bit. and y is the length of the field. Thus. a data word 
of the data unit. A. is defined as A [ 47:48]. and its null indicator is defined as 
A[48:1]. 

Using field notation X [leading bit:numbers of bits]. the mantissa is represented 
by X [35:36J. the exponent by X [45:10J. the sign bit of the mantissa by X[46:1]. 

47 46 45 36 35 o 

Exponent Mantissa 

Sign of Exponent 

The range of representable numbers in single precision is as follows: 

1. For positive X: 

2-
1023* 1/2 2. X 2.21023 * (1_2- 36 >. where 

2- 1023 * 1/2 ;' 10-308. 25 

2. For negative X: 

_ 2-
1023 * 1/2 ~ X ~ _2

1023 * (1_2-
36 >. where 

INTEGER WORD FORMAT 

An inte~er. I. is defined by its absolute value m (1) and by its sign bit S (1). Field 
I [35:36J contains the magnitude, and the sign bit is in field [46:1]. The unused bits 
of the data word are set to O. The range of integer values is symmetric about zero. 

_2 36 + 1 < 1< 2 36 _1 

46 35 0 

~ ~ Integer I 
Sign of Integer 

( \ 
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DOUBLE PRECISION REAL FLOATING POINT WORD FORMAT 

A double precision floating pOint number X is represented by two single precision 
numbers FIRST (X) and SECOND (X). Both of these numbers are normalized. The 
mantissa sign bits must be the same. Due to normalization, the relationship be
tween exponents is: 

EXPONENT (SECOND (X» < EXPONENT (FIRST (X» -36 

SECOND (X) = 0 is a valid word. 

Thus, a double precision floating point word is the sum D(X) = FIRST (X) + 
SECOND (X). The BSP double precision format is different from the B 7800 
double precision format. In the B 7800" the exponents and the mantissas of the 
two single precision words are concatenated" and the two words form one entity. 

The range of a double precision number X is given as follows: 

1. For positive X: 

2. For negative X: 

The double precision format of the BSP, specifically the fact that the exponent of 
the second word is less than or equal to the exponent of the first word minus 36, 
can lead to an underflow condition in the second word" while there is no underflow 
in the first word. For example: 

The multiplication of the number in brackets by 1/2 will lead to underflow in the 
second word. However .. the underflow condition can be disabled. 

5 
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3. DATA REPRESENTATION IN THE 
ARITHMETIC ELEMENTS 

BASIC DATA REPRESENTATION 

The basic BSP data word consists of 48 binary digits (bits). To this word are 
appended 12 other bits to form a data unit: a one-bit null indicator, three error 
condition bits (underflow1 overflow, and undefined), four guard bits, two modulo 3 
residue code bits for the mantissa, and two modulo 3 residue code bits for the 
exponent. For input and output purposes l only 49 bits are used: the 48-bit data 
word l and the null indicator. The positions or addresses of binary digits within 
the data unit are designated by the decimal numbers 0 to !l9. Within the data 
word, the bits are numbered 0 to 47. The data format in the arithmetic unit is 
given in the following diagram: 

X: 

Sign Exponent 

Sign of Ma 

Exponent 

Mantissa 

Guard Bit 

ntissa 

s 

Underflow 

Overflow' 

Undefined 

4'74645 ..• 3635 •. 0495051525354554856575859 

I I I I I I I I I I I 
T T 1'1' 1'1' I' '1' " I' " I' "I' '" '" 

I 

Null ------------------------------------------------------------~ 

Mantissa Res idue -------------------------------------------------------J 

Exponent Residue---------------------------------------------------------~ 

I 
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REPRESENT A TION OF ZERO 

Integer, single precision, and double precision zero are represented with all bits 
set to zero. So called dirty zeroes are eliminated by hardware action. Operations 
which may result in dirty zeroes, for example: (0) * (-5) or N -N are tested. When 
a zero mantissa is found, sign bits and exponent are also set to zero. 

COMPLEX NUMBER SINGLE PRECISION) 

Complex numbers are implemented implicitly. Two contiguous, single precision 
floating point numbers represent a complex number Z, where the first number is 
the real part of Z and the second number is the imaginary part of Z. No double 
precision complex numbers are provided. Single precision complex operations 
are implemented by software using real arithmetic hardware operators. 
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4. HARDWARE ERROR CHECKING 

Error checking in the arithmetic element is done in three ways: 

1. Errors which result in overflow, underflow, or undefined 
opera tions within arithmetic elements. 

2. Errors within the arithmetic elements are checked by a 
modulo 3 residue code. Exponent and mantissa are checked 
separately (two bits each). A modulo 3 residue code is 
limited; it cannot detect errors which are multiples of three. 
A modulo 3 error results in an interrupt. Errors are re
ported for logging and to the parallel memory control to dis
able parallel memory write. 

3. Errors in data transmission. A Hamming Code generator 
computes seven parity bits of a Hamming Code over the 48 
bits of data. This code is a single error correction/ double 
error detection code (SEC /DED), which protects the parallel 
memory and the data transmission of the alignment networks. 
Input data from the arithmetic elements are encoded by the 
alignment networks; input data from the control processor 
and from file memory are already encoded. 

9 
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Detected errors are logged in the maintenance log. The Hamming Code will re
port bit error, arithmetic element numbers and error type. There are three 
classes of errors: 

1. Tolerable error (e. g., Hamming Code single bit error), 

2. Fatal error (e. g., memory address error during write cycle) 

3. Retryable error (e. g., double bit Hamming Code error, that is, 
conditional, overflow, underflow, undefined). 

These three errors are reported as interrupts to the Master Control Program 
(MCP). It is up to the MCP to determine the appropriate action. 

Fatal and retryable errors will inhibit a write cycle. Depending on error type, 
a retry or a system shutdown as initiated. 

I· \ 
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5. ARITHMETIC ALGORITHMS 

IMPLEMENTATION OF RECIPROCATION AND SQUARE ROOT 

The ESP implements reciprocation and the square root by iterative procedures. Both 
algorithms are applications of the Newton-Raphson method that utilize multiplica
tions and additions only. Both algorithms are partially hardware-implemented. 

The Newton-Raphson procedure has quadratic convergence l and the accuracy which 
can be achieved depends on the choice of the starting value and on the number of 
iterations. 

In order to obtain the machine accuracy of 36 bits in reciprocation and in the square 
root l it was required that the necessary accuracy is to be obtained in three 
iterations. 

HECIPROCA TION 

To obtain the reciprocal of a floating point number A, Newton's method is used 
to solve the equation: 

F (X) = 1/X - A = 0 

The first step is to find the initial approximation Xo- This is done via a table 
lookup from a ROM. Recall that the internal representation of A is as (E . m)1 
where E is the exponent (base 2) and m is the normalized mantissa 1/2 .:: m < 1. 

11 
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Thus" 1/A = 2-E * 11m and reciprocation is reduced to the computation of 11m 
in the interval (1/2" 1). The function 11m in the interval (112" 1) is shown below: 

11m 
I 
I ---,--

I 
I 
I 
I 

---1- --
I 
I 
I 
I 

I 
I 
I 
I 

~O~-------1~/-2------~--m 

l/25 m< 1 
2 ~ 11m>' 

The range of the function of 11m in the interval (1/2" 1) is (2" 1). Since it is re
quired that division and the square root operations be accurate to 36 bits within 
three iterations, the starting value for the Newton-Raphson iteration has to be at 
least five bits" assuming quadratic convergence. However" since the slope of the 
curve is not constant" one has also to consider the maximum slope of the curve. 
The maximum slope of 11m is - 11m2 . At m = 1/2" the slope is -4. Therefore" 
an additional two bits are required to achieve the required accuracy in the neighbor
hood of m = 1/2. For practical reasons" a ROM of eight bits is used" which corres
ponds to a table of 256 entries. 

When Xo has been determined from ROM" Xl and X
2 

are formed using the recursion: 

X = X >:< (2 -A * X ). n+1 n n 

To get the iteration started" seven bits are taken from ROM. The first iteration 
is accurate to 13(14) bits" the second iteration yields 25(26) bits. These 25 bits 
are truncated to 19 bits; the last iteration results in 38 bits. The last two bits 
are used as guard bits. In the present application" the algorithm approaches the 
true value always from below" and hence" the rounding is not unbiased. The round
ing error is less or equal to 2- 36 . If A = 0" the result is undefined; if A < 2-1023" 
the overflow flag is set. 

Double precision reciprocation requires an additional Newton-Raphson iteration. 
All operations are executed in double precision. The double precision reciproca
tion is accurate to 70 bits. 

f1 
! 1 
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DIVISION 

If A and B are single precision floating point numbers~ AlB is found in two steps: 

1. liB is found by reciprocation 

2. R = A * (liB). 

The maximum error in floating point division is: 

where: 

IE11.:: 2-
36 

and 

IE1 + El , < 2 * 2-
36

. 

If A and B are double precision floating point numbers~ AlB is found in two steps: 

1. liB is found by reciprocation 

2. R = A * (liB). 

Double precision division is accurate to 70 bits. 

SQUARE ROOT 

If A is a single precision floating point number~ the reciprocal square root 1/JA 
is found by solving the equation: 

2 
F(X) = 1 Ix - A = o. 

The representation of A is 2E * m. Therefore~ liS = l/fiE * m = liP. * l/~ 
If the exponent~ E.t is odd~ 2E is multiplied by two to make it even. The mantissa 
is multiplied by 1/2. The range of the mantissa is thus changed to 1/4 .:: m < 1. 

As in division~ the first iteration for XO.t 1/rm, is read from a ROM. Subsequent 
iterations are obtained by solving: 

2 
v ::: X * (3-X * ... Ll .. ),'2 • .... n+l n 

13 
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Seven bits suffice to start the iteration. The first iteration yields 13(14) bits, 
the second iteration generates 25(26) bits which are truncated to 19. In the last 
step, 38 bits are generated: 36 bits plus 2 bits for rounding. The rounding is 
biased, because the true value of 1/& is approached from below. The error in 
the reciprocal square root is estimated as E 1 ;: 2 * 2 - 36. The square root itself 
requires an additional multiplication. The total error in the square root is, there
fore, E < 2 ':< 2 - 36. 

The double precision reciprocal square root requires an additional iteration. In 
the last iteration, all operations are executed in double precision. 

The square root of a single precision number is found in two steps: 

1. Y;: l/JA 

2. R;: A * Y. 

To compute the double precision square root, steps 1 and 2 above are done with 
a double precision reciprocal square root computed first, followed by a double 
precision multiplication. 

{ \ 
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6. ROUNDING AND NORMALIZATION 

In the control processor" rounding is done after each binary floating point opera
tion as well as after reciprocation and after reciprocal square root. 

In the parallel processor" rounding is done at the conclusion of each binary float
ing point operation and after reciprocation and reciprocal square roots. This type 
of rounding applies also to the execution of templates such as triads" tetrads" etc. 
The rounding operations correspond to the rounding operations In a sequential 
machine although in some instances the sequence of operations may be changed. 

ROUNDING - SINGLE PRECISION 

The rounding rules in arithmetic operations -- addition" subtraction" multiplication" 
reciprocation and reciprocal square root are: 

1. If the discarded portion of the binary fraction is less than half of 
the least significant bit" leave the least significant bit unchanged. 

2. If the discarded portion is greater than half of the least significant 
bit" add one to the least significant bit with full carry propagation. 

3. If the discarded portion is exactly half of the least significant bit" 
set the least significant bit. 

The number of bits used for rounding in different operations differs" depending 
upon the operation. Addition and subtraction use four rounding bits; multiplication 
uses 18 bits; reciprocation and reciprocal square root use two bits. 

15 
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The following examples demonstrate the rounding rules for addition, using a 
mantissa of four bits and two guard bits. Rounding for the other rounding opera
tions follows the same rules, except that the number of guard bits varies as stated 
previously. 

Example 1a: 1. 0 + 15/16 = 31/16 

1 } 2 * (. 1000) 

+ 20 * (.1111) 

after rounding 

2
1

*(.1000) 

+ 21 * (.0111) 1 

21 * (.1111) 1 

21 * (.1111) 

Example 1b: 9/8 + 11/16 = 29/16 

21 * (. 1001)} 

+ 20 * (. 1011) 
= 

after rounding 

21 * (. 1001) 

+ 21 * (. 0101) 1 

21 * (.1110) 1 

21 * (.1111) 

Example 2: 3/16 + 15/16 = 45/16 

2 1 * (. 1111)} 

+ 2
0 * (.1111) 

after rounding 

21 * (.1111) 

+ 21 * (. 0111) 1 

21 *(1. 0110) 1 

22 * (.1011) 01 

22 * (.1011) 

Example 3: 40/16 + 15/16 = 55/16 

22 * (. 1010) 

+ 2
0 * (.1111) = 

after rounding 

2 
2 * (. 1010) 

+ 22 * (.0011) 11 

22 * (.1101) 11 

22 * (.1110) 

I I 
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ROUNDING - DOUBLE PRECISION 

Double precision operations are not rounded: there are no guard bits. 

NORMALIZA TION 

All real numbers are stored in normalized form, that is, the leading bit of the 
mantissa is always a one. 

1/2 ~ mantissa < 1 

In double precision, both words are normalized. 

17 
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APPENDIX A 

ARITHMETIC OPERATIONS 

Instruction Mnemonic Time in Clocks 

Single Precision, Floating Point Family 

Add 

Subtract 

Multiply 

Reciprocate 

Divide 

Reciprocal Square Root 

Square Root 

Square 

Extract Exponent 

Ins ert Exponent 

Binary Scale to Left 

Binary Scale to Right 

Normalize 

Truncated Add 

Truncated Subtract 

Truncated Multiply 

Maximum 

Minimum 

Absolute Maximum 

Absolute Minimum 

ADD 2 

SUB 2 

MUL 2 

RECIP 6 

DIV 8 

SQRTR 10 

SQRT 12 

SQR 2 

EXTX 2 

INSX 2 

BSCL 2* 

BSCR 2* 

NORM 2* 

TADD 2 

TSUB 2 

TMUL 2 

MAX 2* 

MIN 2* 

AMAX 2 

AMIN 2 

*These operations can be preformed in one clock if they are incorporated in the 
appropriate template. 

19 
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Instruction Mnemonic 

Extended Precision Family 

(Single Precision Operand, Double Precision Resul~) 

Extended Add 

Extended Subtract 

Extended Multiply 

Double Precision Family 

Double Precision Add 

Double Precision Subtract 

Double Precision Multiply 

Double Precision Reciprocate 

Double Precision Divide 

Double Precision Reciprocal Square Root 

Double Precision Square Root 

Double Precision Round to Single Precision 

Integer Family 

Float Integer 

Integer Add 

Integer Subtract 

Integer Multiply 

Integer Divide 

Type Transfer Operations 

Integer with Truncation 

Integer with Rounding 

Integer with Floor 

Integer with Ceiling 

Integer to Floating Point 

Normalize 

Double Precision to Single Precision 

EADD 

ESUB 

EMUL 

DPADD 

DPSUB 

DPMUL 

DPREC 

DPDIV 

DPSQRR 

DPSQR 

SNGL 

FLOAT 

lADD 

ISUB 

IMUL 

IDIV 

FIXT 

FIXR 

FIXF 

FIXC 

FLOAT 

NORM 

SNGL 

Time in Clocks 

5 

5 

4 

8 

8 

11 

16 

27 

21 

32 

2 

2* 

2* 

2* 

3 

15 

2* 

2* 

2 

2 

2* 

2* 

2 

*These operations can be performed in one clock if they are incorporated in the 
appropriate template. 



B S p----.--~---~---------~-------------------------------- BUR R 0 U G HS SC I F NT I F I CPR OCESSO R 

Cycle Operations 

ADD/SUBTRACT 

1. 

2. 

MULTIPLY 

1. 

2. 

RECIP (A) 

1. 

2. 

3. 

4. 

5. 

6. 

DIV 

1-6. 

7-8. 

SQRTR (A) 

1. 

2. 

3. 

4. 

A ±B-R
G 

NORM (RG)-Z 

A * LSH(B) -PP 

A * MSH(B) + PP- Z 

2 - (A * PROM (A) ) - P 1 

P
1 

* PROM (A)-R
1 

2- (A * R )-P 
1 2 

P 2 * R1 -R2 

2- (A *R-)-P ,- ~' - 3 

P * R -Z 
3 2 

RECIP (B)-C 

A MULT B - Z 

A shift if expo odd - A 1 

A 
1 * PROM (A 

1
) - P 1 

3-P * PROM (A 1) _ P 
1 2 

P 2 * PROM (A 1) - R1 

Single Precision 

(Round) 

Single Precision 

LSH(B) = Least Significant Half (B) 

MSH(B) = Most Significant Half (A) 

Single Precision 

Table look-up (7 bits) 

(Round) 

Single Precision 

(Round) 

(Round) 

Single Precision 

21 
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5. 

6. 

7. 

8. 

9. 

10. 

DPSQRR 

1-10. 

11. 

12. 

13. 

14-16. 

17. 

18-20. 

21. 

22 -24. 

25. 

26. 

27. 

A 
1 * R 1 - P 3 

3-P * R 3 1 -P4 

P 4 * R1 --R2 

A
1 * R 2 P

5 

3-P5 * R2 - P
6 

P 6 * R2 - Z 

Double Precision Reciprocal Square Root 

SQRTR(A 1) - B1 & A1 shift if exp odd -A~ 

1 1 
A1 + A2 -A2 (A2 has A1 exponent) 

A1_A1 
2 2 

A1 
2 

shift if exp odd -A; 1 

B1 * (A~ + A;l) 

-C
1 

+ C
2 

3-B * (C + C ) 1 1 2 

-D +D 
1 2 

B1 * (D1 + D2 ) 

- Zl + E2 

Zl -output 

NORM (E
2

) -Z 
2 

n 
I 
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DPMUL Double Precision MULT 

2. -D +D 
1 2 

3. A * B 
1 2 

4. -E
1G 

5. A *B 
2 1 

6. -F
1G 

7. F 1G + E 1G- G1G 

8. G
1G 

+ D
2
_H

1G 

9. H1G + D 1-Z
1 

+ F 2 

10. H1G + D1 -Z1 + C 2 

11. NORM(C 2) - Z2 

23 
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DPREC Double Precision Reciprocation 

(No Rounding) 

7. A2 * B1 

8. -C1G 

9. 2-A * B 1 1 

10. -D
1 

+D
2 

11. -C
1G 

+ D
2
-E

1G 

12. E 1G * B1 

13. -F
1G 

14. B1 + F 1G-Z1 + B2 

15. B1 + F 1G-Z1 + B2 
I 1 

16. NORM(B
2

) -Z2 

SQRT (A) Single Precision 

1-10. SQRTR(A)-C 

11-12. C MULT A-Z 

24 
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EADD/ESUB Extended Add/ Sub 

1. A±B-P
1

+R
1 

2. NORM(P
1
)-P

3 

3. P
3

+R
1
-Z

1 
+P

4 

4. P
3

+R
1
-Z

1 
+P

4 

5. NORM(P 4)-Z2 

EMUL Extended Multiply 

1. A * LSH(B)-PP 

2. A * MSH(B) + PP-Z1 + P 2 

3. Z1-Z 1 

4. NORM(P
2
)-Z2 

DPADD/DPSUB Double Precision ADD/SUB 

2. A1 ± B 1-D1 + D2 

2. ± B2 + D 2-E1G 

3. E
1G 

+A
2
_F

1G 

4. F 1G + D 1_G1 + G
2 

5. NORM(G
1
)-P

1 

6. P 1 + G...,-C 1 + C..., 
J. G J. G 

7. NORM(C
1
)-Z1 

8. NORM(C
2
)_Z2 

25 
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APPENDIX B 

ERROR ESTIMATES FOR ARITHMETIC OPERATIONS 

Floating Point 

Operation Single Precision Double Precision 

Addition/Subtraction A±B (A ± B) (1 + E 1 ) (A ± B) (1 + 4E
2

) 

Mul tiplication A*B (A * B) (1 + E 1 ) (A * B) (1 + 4E
2

) 

Reciprocation l/A l/A (1 + E
1

) l/A (1 + 4E
2

) 

Division B/A B/A (1 + E
1

) ( 1 + E
1

) l/A (1 + 4E
2

) (1 + 4E
2

) 

Reciprocal Square Root 1/.,fA 1 /./A (1 + E 1 ) 1/.,fA (1 + 4E
2

) 

Square Root A/A A/vA. (1 + E 1) (1 + E 1 ) A /JA (1 + 4E
2

) (1 + 4E
2

) 

where: 

I E 
1

1\ ~ 2 - 36 f . I ... or sing e preCiSion instructions, 

or ou e precision instructions. I E21.:: 2 -72 f d bl ... 

27 
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