CONTROL DATA

3600 COMPUTER §

COMPASS/REFERENCE MANUAL

PRELIMINARY

COMPASS/REFERENCE MANUAL

PRELIMINARY

CONTROL DATA CORPORATION
8100 34th Avenue South

Minneapolis 20, Minnesota

ONTROL DATA 3600 COMPUTER

il

PREFACE

COMPASS is the comprehensive assembly system for the Control Data* 3600 Computing
System. It provides 3600 users with a convenient means for writing machine language pro-
grams. COMPASS operates within SCOPE, the 3600 system for supervisory control of
program execution. The SCOPE reference manual is Control Data publication number 533.

The purpose of this document is to describe the COMPASS language. Details of the assembly
process are presented only when needed to clarify the functions of some of the statements in
the language. Programs written in 1604 CODAP-1 language are acceptable as input to
COMPASS.

It is assumed that the reader has an understanding of the 3600 instruction repertoire described
in Control Data Publication No. 213.

*Registered trademark Control Data Corporation.

eee
11

This is a major revision which obsoletes publication
525. Any comments concerning this manual should
be addressed to:

CONTROL DATA CORPORATION

Documentation and Evaluation Department
3330 HILLVIEW AVENUE
PALO ALTO, CALIFORNIA

August, 1963

©1963, Control Data Corporation
Pub. No. 525a

Printed in the United States of America

CONTENTS

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

DESCRIPTION

1.1 Subprogram

1.2 Data Storage

1.3 Bank Assignhment
1.4 Running COMPASS

INSTRUCTION FORMAT

2.1 Location Field

2.2 Operation Field

2.3 Address Field
2.3.1 Expression
2.3.2 Special Elements
2.3.3 Comments Field

INSTRUCTION PAIRING

3.1 Forcing Upper
3.2 Forcing Lower
3.3 Augments

3.4 Mnemonics

PSEUDO INSTRUCTIONS

4.1 Subprogram Linkage
4.2 Data Storage

4.3 Data Definition

4.4 Assembler Control
4.5 Output Listing

NN =

w o G B

10

11

11
13

19
25

4.6 Macro Definition 26

4.7 Macro Instruction 27

4.8 Program Modification 30

4.8.1 COSY 30

4.8.2 Modification Instructions 30

CHAPTER 5 OUTPUT LISTING 33
CHAPTER 6 CONTROL CARDS AND DECK STRUCTURES 39
6.1 Control Card 39

6.2 Assembly Options 39

6.3 Subprogram Decks 40

LIST OF TABLES

Table Page

1 Mnemonic Codes for 3600 Operational Registers 43
(Source and Destination)

2 Mnemonic Codes for 3600 Operational Registers 44
(Source Only)

3 Mnemonic Codes for Instruction Modifiers 45

4 Mnemonic Machine Instructions 47

5 Pseudo Instructions 54

6 Special Codes for TYPE Entries 55

7 Error Codes 56

8 Address Subfields 57

vi

DESCRIPTION 1

1.1

SUBPROGRAM

The COMPASS assembly program for the 3600 accepts as input, cards or
card images containing symbolic 3600 programming instructions.
COMPASS translates the symbolic instructions into 3600 machine language
programs. These are prepared in a special format, called relocatable
binary, for loading into any portion of memory at run time. The assem-
bler can produce as output any combination of:

1. Output listing of the assembled program.

2. Relocatable binary card output for subsequent loading and
execution of the assembled program.

3. Relocatable binary card images on a load-and-go tape for
immediate loading and execution of the assembled program.

4. Compressed symbolic output deck to be used as input for
subsequent modification and reassembly.

A program is composed of one or more independently assembled subpro-
grams. Each subprogram must be headed by an IDENT pseudo instruction
and terminated by an END pseudo instruction; it must be wholly contained
in one bank of memory. Subprograms communicate with each other by
use of entry points and external symbols. (See ENTRY and EXT pseudo
instructions.) If subprogram 1 references the symbol ABLE which occurs
in subprogram 2, ABLE must be declared as an external symbol in sub-

program 1, and an entry point in subprogram 2.

Any subprogram may be the main subprogram -- the subprogram to which
initial control is given. One, and only one, subprogram must close with an
END pseudo instruction which contains the name of the program transfer
address, an entry point in the main subprogram. When the assembled
program has been loaded by the SCOPE loader, a bank return jump will be
made to this transfer address. If no transfer address has been specified,
the loader will terminate the job. To return control to SCOPE at the end
of the program, the last executable instruction should be either a jump to
this entry point or the EXIT system macro (see SCOPE Reference
Manual).

1.2
DATA STORAGE

1.3

BANK
ASSIGNMENT

1.4

RUNNING
COMPASS

Data storage may be local (BES and BSS pseudo instructions) or non-
local to a subprogram. Non-local data storage may be shared by two or
more subprograms, each of which identifies that storage by BLOCK and
COMMON pseudo instructions. Each block of common must fit within one
memory bank. The two types of common are numbered and labeled; data
may be assembled into labeled common but not into humbered common.

Subprograms and common blocks may be assigned to any memory bank
or combination of memory banks. If the programmer does not designate
the bank assignments (see BANK pseudo instruction), the SCOPE loader
assigns each subprogram or block in turn to the memory bank in which
it most tightly fits.

Any number of subprograms may be assembled together. Ahead of the
first subprogram is a control card, required by the SCOPE operating
system, calling COMPASS and indicating certain assembly options. The
SCOPE pseudo instruction or an end-of-file follows the last subprogram.

INSTRUCTION FORMAT 2

Input to COMPASS is in the form of Hollerith characters punched on 80-
column cards or images of these cards on magnetic tape. Cards are
punched from coding lines written by a programmer on the COMPASS
Coding Form. Input format on the coding form is in terms of the columns
of a card.

Rﬂ“"NE CORPORATION DATE
LOCATION PERATION, MODIFIERS ~ ADDRESS FIELD COMMENTS | IDENT
i [
i g e n g iegzege 22 127 2820 p30)31 139426] 37120 30(40] 41 42| 43|45 487 48| 49]30}3 {52153 {59]55] 58873833 60[|62 316655178 03[0] 72 737073 7777 rageo
i
A T W S SR N R Ll B S Y A S T 2 Y O T S I 0 A A S N O A A S S 0 A A B S A
i i T
IR O S S W R O R O B N VO N O 1 W H N 1
L L i L i L
P
\]l\l(\1llli\|‘I1])\1lllllll\II\lllklllllllll(llllrll\YJ‘l\\!P\l
I
| 1 1 Ll V-l L i 1 111 |
L L ! I L
|
1 i i) L4l 1 Il St L It I 1 L Lt
H i
A4 L) Ll Ll I L1 N S L L i i n RN
1
1 L 1 il 11 i f Lk 1 1 L i1 1 W il P T T B A4 L | S |
| |
T WO S N T OO S S MO O Y | I D O S Y T I P S B N B A A R G I B 11 1
| |
L 1| y I N | I I Lt I 1 1 1 Ll 1 Ll L
| l i
111\1}\11‘!\\»\((\\7‘1\\\l‘l\l\ll Y S O T S T S O S VIS S S T VY N Y B B
| |
IO T Y A N N B | | | i 1l il S N S U Y S Y Y o Y L T '
| ;
| O T T O I oSS S T A T Y O Y O S A B A A O B AN S A AR R A 1l Lol 1 I Ll
t]
) T Y Ll 1 i S S| iy Ll i L SN A il il 1 i
|
11 L il Ll Il 1ol 1 Ld 1) L P 1 Ll 1 - 1 il
i
S Ll i i i Al 1 il I N] Il 11 1 L
|
i L il | Lot 1 S S |
i
G S OO N L L L U
ety 1 Ll g i i ! s
I |
Ty U I S WA W S L O Y SN N W N Y B R A Y B S SO B B S S S A A O TS A R I S Y Ll Li 1 I
1
S T W W T O Y B S I | . 1 ! il
| }
N i
P f
12135 pe T a it ogu iz e e im0z 2720.2330(3 [30133,24/58 36,37 5035 0]z 3 e 145 40 47 a1, 43,30;5 152 jszj6350 18917907 72173170178 v6y77 78 79180
€oC 366 @:aLPra O Q- 2ER0 1:ALPHA T 1= ONE Z-ALPME T 2:TwO

A coding line is divided into four fields: location field, L; operation field,
O; address field, A; and comments field, C.

The location field covers columns 1 through 8. Column 9 must be blank
in COMPASS coding lines; a non-blank character in column 9 signals a

CODAP-1 line (see CODAP pseudo instruction). The operation field be-
gins in column 10 and ends at the first blank column. The address field

follows and must start before column 41. More than one blank column
may separate the address field from the operation field. Column 20 is

a convenient starting point for the address field for all but a few instruc-
tions. The address field terminates at the first blank column or at
column 72. The columns remaining through 72 are treated as comments.
Column 41 may begin the comments field if there is no address field.
Columns 73-80 may be used for identification, but are not printed on the
output listing.

2.1

LOCATION FIELD The location field may be blank, or may contain one of the following
symbol types:

Type 1. A symbol containing 1 to 8 non-blank characters; the
first is alphabetic, and the rest alphabetic, numeric or

period.

Type 2. A plus (+) anywhere in the field and blanks in the remain-
ing columns.

Type 3. A minus (-) anywhere in the field and blanks in the re-
maining columns.

Type 4. A symbol consisting of 8 characters all of which must

be either numeric or blank. This type is used only for
naming numbered common blocks.

2.2

OPERATION FIELD The operation field may consist of one or more subfields separated by
commas. The first subfield may contain one of the following:

One of the machine instruction mnemonics listed in Table 4.
One of the pseudo instructions listed in Table 5.

The name of a macro instruction.

One of the octal numbers from 0 to 77.

Succeeding subfields may contain the operation modifiers listed in Table
3 that are permitted to the instruction.

A blank in column 10 terminates the operation field and specifies an
operation code of zero.

2.3
ADDRESS FIELD

2.3.1
EXPRESSION

The address field of an instruction may contain one or more of the 15
subfields listed in Table 8; however, only a few are meaningful in any one
instruction. Table 4 lists those subfields permitted in the machine instruc-
tions; Chapter 4 gives the subfields of pseudo instructions and macro
instructions. Subfields are separated from one another by commas or
parentheses.

If the address field is blank, each of its implicit subfields assumes the
value zero. An individual subfield may be skipped and assigned the value
zero by giving only its trailing comma or, if it is the last subfield in the
address field, by omitting both its value and the preceding comma. Skipping
a bank subfield enclosed in parentheses gives it the value zero only if the
instruction contains a bank usage bit; otherwise, as in XMIT and IOTR, the
relocatable bank term $ is assumed (see Special Element $).

An address subfield may be defined by an arithmetic expression or by one
of four special elements.

An expression may contain a Type 1 symbol, a constant less than 215, or
the element *, or any series of these joined by the operators + - * /.
Type 1 Symbol
A Type 1 symbol is called relocatable if it is one of the following:

1) external symbol

2) location within the subprogram, called program relocatable

3) location within a common block, called common relocatable

Constant

A constant is a decimal or octal integer. It is interpreted as octal if it is
suffixed by the character B; otherwise it is interpreted as decimal.

d

The element * is interpreted in one of two ways depending on the subfield

in which it occurs. In the 15-bit subfields m, n, and y, its value is the
current value of the location counter, that is, the relocatable address of

the current instruction. In the 3-bit subfields a and i, it is a bank reloca-
table element and implies the bank into which the subprogram will be loaded.

The four operations permitted in an arithmetic expression are: addition
(+), subtraction (-), multiplication (*), and division (/). The expression is
evaluated from left to right, performing all multiplications and divisions
and then all additions and subtractions. Use of parentheses for grouping

is not permitted: 15 * A +5/2 * C - 5 is evaluated: (15 - A) + ((g.) -C)-5

The following rules apply to expressions occurring in address subfields:

a. In a single term, a relocatable symbol can not be an operand
in a divide operation, and no slashes (/) may occur to the
right of a relocatable symbol.

b. In a divide operation, only the integer portion of the quotient is
retained.

In an m, n, w, or y subfield expression the following rules apply:
Lo 15
a. The expression is evaluated modulo 2~ -1.

b. In a single expression, all relocatable symbols must be of the
same kind: program relocatable, common relocatable (array
names in one bleck), or external (one external symbel), The
only exception permitted is that program or common relocat-
able symbols may be matched algebraically to form constants
(P1-P2=kor Cl-C2=k).

c. If each relocatable symbol in an expression is replaced by R,
the algebraic sum of the terms in which R appears must be R,
-R, or zero. If the sum is zero, the value of the expression
is said to be fixed.

An a or i subfield may contain an expression, evaluated modulo 8, or a
single bank relocatable term (* or $).

Expressions in all other subfields must not result in a relocatable value;

. n . . .
expressions are evaluated modulo 27, where n is the number of bits in the
machine word occupied by the value of the subfield.

2.3.2
SPECIAL The four special elements permitted singly in an address subfield are the
ELEMENTS following:

* %

The combination ** gives the value one to each bit occupied by _the sub-
field in the machine word, for instance, an m subfield 77777, The element
normally indicates a subfield to be set during program execution.

Literal

If the operand of an instruction is a single or double precision constant,
it may be written as a literal. The literal is written in the form = MV,
The equal sign identifies the symbol as a literal, M specifies the mode of
the value, and V is a constant which specifies the value. COMPASS
assigns the literal value of the constant to one (single precision) or two
(double precision) words, and assembles the location of the value into the
address portion of the instruction in which the literal appears. Literals
of the same value occurring more than once are not duplicated.

The mode designator, M, may be one of the following:

D Decimal constant. V is written in the format specified by the DEC
or DECD pseudo instructions. The value is terminated by the first
blank character, or comma if another subfield follows.

O Octal constant. V is written in the format specified by the OCT
pseudo instruction. The value is terminated by the first blank

character, or comma if another subfield follows.

H Hollerith codes. The first eight characters following H specify the
BCD value; the ninth character must be a comma or blank.

T Typewriter codes. The first eight typewriter characters following
T specify the value; the ninth character must be a comma or blank.

Mode designators D and O may be prefixed by the letter D to indicate a
double precision literal.

Symbol assignment

A subfield may consist of a symbol assignment, of the form = S <symbol
name >for single precision and =DS <symbol name >for double precision
assignment. COMPASS reserves one (single precision) or two (double
precision) machine words for each symbol, and assembles the location of
the reserved words into the address portion of the instructions in which
the symbol assignment appears.

$

Subfields a and i may consist of the special element $, appearing either
alone or followed by an external symbol or common array name. If the
element appears alone, it implies the bank associated with the name
(external symbol or common array) in the operand address subfield. When
such a name follows $, the element implies the bank associated with that
name. (See BANK pseudo instruction for bank assignment procedures.)

2.3.3

COMMENTS The comments field begins with the first column after the blank column

FIELD terminating the address field, or with column 41 if there is no address
field, and ends at column 72. The comments field is ignored by the
assembler, hut printed on the output listing.

INSTRUCTION PAIRING 3

3.1
FORCING UPPER

3.2

Because some instructions are 24-bits (half-word) and others are 48-bits
(full-word), some precautions should be kept in mind when writing a pro-
gram for the 3600 system.

An instruction is forced to begin in a new location and the preceding lower
half word, if unused, is padded with a NOP instruction when one of the
following conditions occurs:

a. The instruction has a Type 1 or Type 2 location symbol.

b. The instruction is a full word, 48-bits.

c¢. The instruction is one of the following 24-bit half-words: CPJ,
DRJ, EQS, ISK, MEQ, MPJ, MTH, SSH, SSK, THS.

d. The pseudo instruction is one of the following: BCD, BES, BSS,
DEC, DECD, OCT, ORGR, TYPE.

e. The instruction immediately follows a BLOCK, EJECT, or REM
pseudo instruction.

FORCING LOWER An instruction is forced into the lower half of a computer word and the

33
AUGMENTS

upper half of that word, if unused, is padded with a NOP instruction if a
Type 3 location symbol occurs with any 24-bit instruction including those
in condition c. above. If a Type 3 location symbol is used with a 48-hit
instruction, it will be ignored and flagged as an error on the output listing.

The single precision augment will automatically be inserted before a 24-bijt
instruction making it a full-word instruction if modifiers are appended to
the mnemonic operation code, if a hank designator appears in parentheses
in the address field, or if a second index register, v, appears in the address
field.

3.4
MNEMONICS

The double precision augment instruction is automatically inserted for
instructions DFAD, DFDV, DFMU, DFSB, DLDA, DSTA.

All 3-letter mnemonics are normally half-word instructions unless one of
the above conditions requires the insertion of the single precision augment.
All mnemonics of more than 3 letters are full-word instructions. Table 4
lists the mnemonic codes for the machine instructions with the allowable
modifiers; they may appear in arbitrary order. Modifiers which are
mutually exclusive are listed in a vertical column and modifiers may be
omitted except as noted. In the address field, the subfields must appear

in the order specified. The bank designators (a) and (i) are optional. The
symbology in Table 4 is defined in Tables 1, 2, 3 and 8.

10

PSEUDO INSTRUCTIONS

4.1

SUBPROGRAM
LINKAGE

Pseudo instructions are the non-machine language instructions used in
preparing a subprogram for COMPASS assembly. Some of the pseudo
instructions provide required information to COMPASS. Others are
programmer aids for defining portions of a program. The pseudo instruc-
tions are grouped according to function.

These instructions define the name, the beginning, and end of a subprogram.
They also define the subprograms which will be called during execution of
the subprogram, and the banks to which subprograms and common blocks
are assigned.

IDENT L O A

IDENT m

IDENT must be the first card of each subprogram, if it appears anywhere
else it is flagged as an O error. The address field must contain a Type 1
symbol, the name of the subprogram. This name and the length of the
subprogram will appear in the first card in the relocatable binary deck.
A non-blank location field is meaningless.

END L O A

END

END signals the end of a subprogram and causes a TRA card to be pro-
duced as the last card in the relocatable binary deck. A Type 1 symbol
in the address field will appear on the TRA card as the symbolic transfer
address. A non-hblank location field is meaningless.

n

ENTRY L O A

E . R s e e e s
NTRY ml,m2 m3 ,m

n

The address field consists of one or more subfields separated by commas,
naming locations within the subprogram, entry points, which may be
referenced by other subprograms. Each subfield consists of a Type 1
symbol which must be defined within the subprogram. These symbols are
entered into EPT cards for the SCOPE loader. A non-blank location field
is meaningless.

EXT L O A

EXT ml,mz,ms, e ,mn

The form of the EXT address field is identical to that of ENTRY. The
symbols represent entry point names of subprograms called by this sub-
program. The names appearing in the address field are entered into

EXT cards for the SCOPE loader. A non-blank location field is meaningless.

In the output listing of the subprogram where these symbols appear in
address fields, the machine language address will contain the location of
a previous reference to that external symbol. In the column preceding
this octal value, an X will appear.

BANK L 0 A

BANK (al),nameu,name ., (az),name

12’ °° 21 22

BANK declares to which memory banks subprograms and common blocks
should be assigned at load time. COMPASS produces ahead of the IDC
card for the SCOPE loader a control card containing the bank declarations.

There are two kinds of address subfields. The first kind, (a), always
enclosed in parentheses, designates a bank in one of three ways:

12

,hame__, ...

4.2
DATA STORAGE

1. a digit in the range 0 = a = 7, (n)
2. an entry point name, (entry)
3. a common block name enclosed in slashes, (/block/)

When the designator is a name, it specifies the bank to which the sub-
program containing the entry point is assigned, or the bank to which the
common block is assigned. These names are assigned banks either by
other BANK declaration or by the SCOPE loader.

The second kind of subfield names a subprogram or common block assigned
to the bank given by the preceding designator. Several names may follow
a single designator. Common block names are enclosed in slashes.

The entry point and common block names must be defined when the pro-
gram is loaded. However, they need not be defined or referenced in the
subprogram containing the BANK pseudo instruction.

A non-blank location field is meaningless,

These pseudo instructions allocate data storage which is local (BSS and BES)

and non-local. Non-local storage is common to more than one subprogram -
(BLOCK, COMMON).

%)
=
o
-

2 BSS

BSS reserves a local block of consecutive addresses and assigns the
location symbol to the first location of the block. The location field may
be blank. The address field specifies the number of locations to be re-
served. Symbols in the address field expression must be previously
defined. A negative address field is considered an crror and the pseudo
instruction will be ignored. A zero address field leaves no space but
forces the next instruction upper before assigning the location symbol.

13

BES L O A
£ BES

BES is identical to BSS, except that the location symbol, if present, will
be assigned to the last location of the block.

BLOCK L o) A
{ BLOCK m

This pseudo instruction defines a block of common. The name of the block
must be given in the location field by Type 1 symbol which identifies the
block as labeled common or a Type 4 symbol which identifies the block as
numbered common. Each block must have a unique name. If two or more
blocks have the same name, a D error will be indicated on the output list-
ing in each line where the duplicate symbol occurs. BLOCK forces the
next subprogram instruction upper.

The length of the block may be specified by an expression in the address
field; symbols must have been previously defined. The value of the
expression must be greater than or equal to the total length expressed
in the COMMON pseudo instructions which follow this BLOCK pseudo
instruction. I the address field is blank or zero, the length of the block
is determined by the sum of the array sizes within the block. The last
numbered common block defined in a bank may vary in length from one
subprogram to another.

COMMON L o) A

COMMON A (1 3)q), 2(12132;k

1 1 1 1)7 LA 7An(1n’Jn’kn)

2
COMMON defines the arrays to be included in the common block defined

by the last encountered BLOCK. A non-blank location field is meaningless.
The address field consists of one or more subfields, each of which defines

an array to be included in the block. A subfield is terminated by a comma;
the field is terminated by a blank.

14

4.3

DATA DEFINITION

The general form of the address field is:
A(i,j,k),B(l,m,n), . . .

where i, j, k, are the dimensions of the array, i varying most rapidly,
j varying next most rapidly, and so on. An array is restricted to a
maximum of three dimensions; i, j, k, 1, m, and n must be integer
constants. A 2-dimension array has two subscripts. A 1-dimension
array has only one subscript. For a single element, no parenthetical
term should appear.

Example:

COMMON A(15,15),B(3,4,5),C,D(15)

The assembler will sum the expressed sizes of the arrays for all the
common in one block. This sum will be the total number of computer
words reserved for the block. If the address expression of the BLOCK
pseudo instruction gives a number larger than this sum, that number will
be the number of words reserved for the block. The first element of the
first array in the block will occupy the first word of the reserved area.

Where a reference to a common array appears in an address field, a C
is printed in the output listing in the column preceding the octal equivalent
of the address portion.

Data definition pseudo instructions cause data to be assembled into the
subprogram or into a common block. (See ORGR)

ocCT L 0 A

OCT inserts octal constants into consecutive machine words. A location
symbol is optional; if present, it will be assigned to the first word. The

address field consists of one or more consecutive subfields separated by
commas. Each subfield specifies one constant as a sign (+ or - or none),
followed by up to 16 octal digits. Each constant is assigned to a separate
word.

15

DEC L (0] A

g DEC dl,dz,d3, ce .dn

DEC inserts decimal constants into consecutive machine words. Each
constant occupies a full computer word. A location symbol is optional; if
present, it will be assigned to the first word. The address field consists
of one or more consecutive subfields. Each subfield is a decimal constant
consisting of a sign (no sign is assumed the same as +), a value of up to 14
decimal digits, a decimal scaling consisting of a D followed by up to three
signed or unsigned decimal digits, and a binary scaling consisting of a B
followed by one or two signed or unsigned decimal digits. If the value
contains a decimal point in any position, the constant is packed into float-
ing point form; otherwise a fixed point constant results. The magnitude of
a fixed point number must be less than 247 the magnitude of a floating
point number must fall within the range 10%308 A decimal constant of the
form fDdBb is equivalent to the expression f-lOd’Zb.

DECD L O A

DECD d,, ...
)/ C dl,dz, 37 ,dn

DECD inserts double-precision floating point decimal constants. The
format is identical to DEC except that each constant may consist of up to
28 decimal digits, and will occupy two machine words.

BCD L (0] A
Y BCD n, <8n characters >

BCD inserts binary-coded-decimal characters into consecutive words.

A location symbol is optional; if used, it will be assigned to the first word.
The address field consists of single digit n, where 1=n =6, or a previously
defined symbol, followed by a comma and 8n succeeding characters,
including blanks, ending before column 73. This results in n computer
words, each containing 8 BCD characters. Anything after 8n characters is
treated as remarks,

16

TYPE L (0] A
7 TYPE n, <8n characters>

TYPE inserts typewriter codes into consecutive words. The format and
results are similar to BCD, except that resulting codes are typewriter
codes. The typewriter codes are represented by the BCD (keypunch)

characters which corres

ond ito the set of lower cage fvnoewritor oha
nich Corr a

pond to the set of lower case typewriter characters.

Each lower case typewriter character and typewriter function for which no
BCD equivalent exists is represented by two BCD characters, the first of
which is an asterisk. These special codes are listed in Table 6. The
character count, n, pertains to the number of TYPE characters.

VFD L 0 A
2 VFD mn/v, ...

VFD, Variable Field Definition, assigns data in continuous strings of bits
rather than in word units. With this command, octal numbers, character
codes, program locations, and arithmetic values may be catenated regard-
less of word breaks. If the last half-word is not entirely filled with data,
it is padded with zeros.

The address field consists of one or more consecutive subfields separated
by commas. In each subfield, m specifies the mode of the data, n the num-
ber of bits allotted, and v the value.

Five modes are allowed:

O Octal number. May be signed negative, implying the one's
complement form.

H Hollerith character code; n must be a multiple of six. The
number of characters designated (n/6), including imbedded
spaces, follows the slash. Any printable character may
appear in the v field. The last character is followed by a
space or comma.

T Typewriter character code. The same rules apply as in the
Hollerith mode.

17

B Bank term. The n field is omitted and assumed 3. The term
must coincide with one of the five bank designator portions of
a machine word (bits 41-39, 34-32, 26-24, 17-15, 10-8). The
v field may contain an expression, evaluated modulo 8, or one
of the bank relocatable terms '"*" (bank of the subprogram in
which VFD appears; pg. 5) or "$name" (bank associated with
that external or common block name; pg. 7).

Example:
B/2 B/A+B B/* B/$ENTRY
A Arithmetic expression or decimal constant. The v field consists

of an expression formed according to the rules for address field
arithmetic, except for the following:

1. n must be less than 48; the modulus of the arithmetic is
2n—1; constants must be less than 2%,

2. If an expression results in a relocatable value, it must
fit into a 15-bit field right-justified at position 24 or 0.
The modulus of the arithmetic is 215—1, and constants
must be less than 219,

3. If an expression results in a fixed value, n must be sufficient
to contain it, If n is too small, an error is flagged and the
field is set to zero. If the field length exceeds the size re-
quired for a value, the value is right-justified with the sign
extended in the high order bits.

Example:

VFD 012/-737,A27/A*X+B,H18/A3 ,A15/NAME+2,T12/BQ

A, X, and B are not relocatable symbols. Two words are generated, with
the data placed as follows:

47 36 35 98 0
|
7 0 4 0 [A*X+B] 2 1l o0
|
1 |
316 0 [NAME+2] Bl Q|0 0 00
1
47 39 38 24 23 12 11 0

The VFD address field is terminated by the first blank column not within
an H or T valuc.

The location field may be blank, or contain a symbol of Type 1, 2, or 3.

18

4.4

ASSEMBLER The assembly process is controlled or modified by these pseudo instructions.
CONTROL
CODAP L 0 A
CODAP

CODAP causes the assembler to accept cards in CODAP-1 format until a
COMPASS pseudo instruction is encountered. If no CODAP pseudo instruc-
tion occurs, COMPASS format is assumed for all cards except those with

a punch in column 9, which are always treated as CODAP-1 cards. A
location symbol is meaningless. Everything beyond column 15 is treated
as comments.

COMPASS L O A
COMPASS

COMPASS returns the mode of input format to COMPASS if a CODAP
pseudo instruction occurred previously. If the current format mode is
COMPASS this pseudo instruction will be ignored. Everything beyond
column 17 is treated as comments.

EQU L (6] A
L EQU

EQU equates a symbol to the value of the address field expression. The
expression must conform to the rules for m subfields, with the exception
that an external symbol may not be combined with any other element. Any
symbols in the address field must be previously defined. A blank location
field is meaningless.

IFZ L ¢] A
1IFZ m,n

IFZ causes the next n coding lines to be assembled if the value of m is
zero. Only an arithmetic expression may be given in the m subfield and
it must conform to the rules specified for the address subfield m.

All symbols must have been previously defined. The expression is
evaluated modulo 21°-1.

19

The n subfield must contain an expression resulting in a positive
integer. A location symbol is meaningless. Other IFZ (or IFN)
pseudo instructions may fall in the range of an IFZ in order to
impose a series of conditions.

1FN L (0] A
IFN m,n

IFN is identical to IFZ, except that the next n coding lines are assembled
if the value of the m expression is non-zero.

IFT L O A

IFT.s m,n,p

IFT may be used only within the range of an ECHO or MACRO pseudo
instruction. If it occurs elsewhere, it will be flagged as an O error.
An operation modifier, s, is required. The instruction reads as follows:
If it is true that m s n, assemble the next p coding lines. The m and n
subfields may be formal parameter names or character strings. The p
subfield must be a positive integer.

Either or both of the subfields m and n may contain a formal parameter
name of the general form < formal parameter >(i,j). If (i,j) is absent,
the entire actual parameter will be used as the comparison quantity;
otherwise, i and j define the portion of the actual parameter to be used.
(i,j) may follow one of four types, in which p, q, and r are integers and k
is any non-blank BCD character except slash.

Type Interpretation

(p,q) q consecutive characters beginning with the
pth character in the actual parameter.

(r 1=k 1 ,d) q consecutive characters following the r 1th
occurrence of the character kl.

(p,r 2=k2) consecutive characters beginning with the pth
character up to, but not including the r_th
occurrence, following the pth character,of the
character kz.

20

(ry =k

,r2=k2) consecutive characters following the ryth

occurrence of the character k., up to, but not
including the rzth occurrence of the character
Ko.

If r, but not the equal sign, is omitted, r is assumed one.

Either, but not both, of the subfields m and n may contain a character
string for literal comparison enclosed in slashes. The character string
may not itself contain slashes. When the comparison quantities differ
in length, they are matched character—for-character through the length
of the shorter; if the match is identical, the longer is greater; if there
is no match, the larger quantity, regardless of its length, is greater.

The operation modifier, s, may be any one of the following two-character

mnemonics:
mnemonic meaning

EQ m=n

NE m#n

LT m<n

LE m=n

GT m>n

GE m=n

IN m included in n; the character siring n contains the
characters in the string m in sequence, but not
necessarily consecutively.

IFF L 0] A

IFF,s m,n,p

IFF is identical to IFT, except that the next p coding lines are assembled

if m s nis false.

ORGR L

o A
ORGR m

ORGR causes subsequent instructions to be assembled beginning at the
value of the address field. Symbols in the address field must have been

2]

previously defined, and the value of the address field must be program
or common relocatable.

If ORGR is used to originate a sequence of data in labeled common,

the value of the address field is common relocatable. Address fields of
subsequent instructions may not contain external symbols or relocatable
bank subfields. The number of machine words generated by presetting
common must be less than or equal to the length of the common block.
After the presetting operation is completed, an ORGR with an asterisk
(*) in the address field may be used to resume subprogram instructions.
ORGR forces upper.

SCOPE L o A
SCOPE

SCOPE terminates the assembly process and causes COMPASS to return
control to the operating system. The SCOPE pseudo instruction should
follow the END of the last subprogram to be assembled by COMPASS. If
SCOPE follows any card which is not END, control will be returned
immediately to SCOPE but an O error will be flagged on the output listing.
A non-blank L field is meaningless. Everything beyond column 15 is
treated as comments.

ECHO L 0O A
ECHO ,n, =a.,a_, - - . ,a ,p_=0_,0_,
mn(p1 a1 a2 anp2 blb2
ECH , o .op =k Kk, ...,
CHO ,bn . k1 k2 kn)
ECHO causes replication of the following m coding lines n times. In the
first replication the actual parameters a_,b_, ... k. are substituted for
the formal parameters p 1,pz, e Py In the second replication
a ,b2, e ,k2 are substituted for p_,p., . . . ,p, , and so on. The number

of actual parameters given for each formal parameter should be equal to
or greater than the number of replications.

ECHO 3,3,(T1=A,B,C,T2=D,E,F,T3=G, H,I)
ILDA T1

FAD T2

22

STA T3

expands to nine symbolic instructions:

IDA A
FAD D
STA G
LDA B
FAD E
STA H
LDA C
FAD F
STA I

The IDENT, ORGR, END, MACRO, ENDM, BLOCK, and ECHO pseudo
instructions are excluded from the range of an ECHO; all other machine
instructions and pseudo instructions are permitted. The address field
of ECHO may be terminated by a blank column following n if no para-
meters are required.

Example:
ECHO 2,3
OCT 1
oCcT 0

expands to six assembled computer words, in the order:

OCT 1
OCT 0
OoCT 1
OCT 0
OCT 1
OoCT 0

23

This may be condensed to:
ECHO 1,3
oCcT 1,0
which is an equivalent form producing the same six computer words.

Blank columns are permitted within the formal parameter list and will be
ignored by COMPASS. The formal parameter names are local to the range
of the ECHO, and must be Type 1 symbols. The actual parameters may be
any expressions which legally may appear where the formal parameters
occur.

In any actual parameter, except a Hollerith or typewriter literal, blanks
are ignored, and parentheses must be matched; if the parameter contains
subfields separated by commas, the entire parameter must be enclosed
in parentheses.

A location symbol within an ECHO range is assigned only in the first
replication and ignored in successive replications. The ECHO pseudo
instruction may not be ilabeied. If it is, the location symbol will be
ignored. Comments within the range of ECHO will appear on the out-
put listing only in the first replication.

The parameter list in ECHO may be continued on subsequent cards by
repeating the ECHO pseudo instruction on each card. Up to ten cards
may be used for one ECHO. A parameter name must be contained
entirely on one card.

Example:

ECHO 3,2,(P1=A,B,P2=
ECHO C,D,P3=E,F)

LDA P1

The instructions within the range of an ECHO need not generate an
integral number of machine words. Consider the two examples:

ECHO 1,3 and ECHO 2,3
LDA 0 OoCT 1
LDA 0

The first produces three 24-bit sequential machine instructions; the
second produces five and a half computer words.

24

4.5

OUTPUT LISTING These pseudo instructions control the printing of the output listing;
they are not printed on the listing.

EJECT L O A
EJECT

EJECT will produce a character in column one of the next record of the
output listing unit which causes the line printer to eject paper to the top
of the next page. EJECT forces the next instruction upper.

SPACE L O A
SPACE m
SPACE will cause the listing to be spaced the number of lines specified

by the address field. If this spacing would cause an overflow at the
bottom of the page, the page is ejected to the top of the next page only.

LIST L o) A
LIST
COMPASS will resume the output listing when LIST is encountered if it

was previously suppressed by NOLIST. If NOLIST has not been encoun-
tered previously, LIST will be ignored.

TITLE L @] A
TITLE

The legend in columns 16-72 is printed at the top of each page of the
program listing. Any printable character may appear in the legend.

The TITLE pseudo instruction may be given at any point in the pro-
gram; when it is received, a page eject character is written on the
output listing unit and the title is written on that page and every page
thereafter until a new title is given.

25

4.6

MACRO
DEFINITION

NOLIST L o) A

NOLIST

NOLIST will suppress the output listing until a LIST pseudo instruction is
encountered. However, lines with error flags will still be listed.

REM L 0) A

REM

REM produces an output record which contains remarks only. All columns
except 9-13 inclusive are available for remarks. REM forces the next
instruction upper.

L O A

Z MACRO (pl,pz,. .. ,pn)

MACRO delineates an often used set of instructions, a macro, which may
be called by a macro instruction. The pseudo instruction signals a macro
definition. It is not a macro instruction and it does not generate any
machine words.

The location field of MACRO must contain a Type 1 location symbol which
names the macro instruction. This name may not be any of the machine
language mnemonics or pseudo instructions. The address field, which
may not extend beyond column 72, contains the formal parameter list; the
parameters are separated by commas, and the entire list is enclosed in
parentheses. Blanks are permitted within the parentheses, but will be
ignored by the assembler. The parameter list may be continued on sub-
sequent cards by repeating the MACRO pseudo instruction; the location
symbol must not be repeated. A parameter name must be contained
entirely on one card. The address field on the last card terminates with
a right parenthesis. The formal parameter names are local to the macro
definition and may be used elsewhere in the subprogram without ambiguity.

Following MACRO are the input records containing a prototype of the set
of instructions. These instructions may be any of the machine instructions
or pseudo instructions acceptable to COMPASS except MACRO, ORGR,
IDENT, and END. The prototype may also contain macro instructions.
Fields and subfields of instructions within a prototype may be text or
formal parameters. If a location symbol appears within the prototype but
is not a formal parameter, it is local to the macro and may be used else-
where in the subprogram without ambiguity.

26

4.7

MACRO
INSTRUCTION

The three type of macros in COMPASS are programmer-defined macros,
library macros, and system macros. All programmer-defined macros
must be defined by macro pseudo instructions immediately following any
LIBM pseudo instructions. Library macros are contained in an expandable
macro library on the library tape. Any library macro called by a sub-
program must be declared in LIBM pseudo instructions. System macros
are also contained in the macro library but need not be declared by the
programmer, The system macros are calling sequences to routines in the
SCOPE system, described in the SCOPE Reference Manual.

ENDM L o A

ENDM

ENDM signals the end of a macro definition. A location symbol will be
ignored

LIBM L (6] A

L ..
IBM ml,mz,m3,

LIBM provides COMPASS with the names of the library macros to be
called by the subprogram. These names appear in the address field in
the form NAME1, NAME2, NAME3, . .., with the field terminated by
the first blank column.

All LIBM pseudo instructions must occur together immediately following
IDENT. An improperly placed LIBM is ignored and an O error is flagged.
A location symbol is ignored.

A macro instruction causes the macro named in the operation field to be
inserted at that point in the program.

L 0] A

£] PR

<macro name>> (pl,pz, ,pn)
If a location symbol appears in the macro instruction, it will be assigned
to the first word. The address field contains the actual parameter list

in the same order as that of the formal parameter list in the macro
definition. The parameter list may be continued on subsequent cards

27

by repeating the macro instruction name; the location term should not
be repeated. A parameter name must be contained entirely on one
card. The address field on the last card terminates with a right parenthesis.

In any actual parameter, except a Hollerith or typewriter literal, blanks
are ignored, and parentheses must be matched; if the parameter contains
subfields separated by commas, the entire parameter must be enclosed in
parentheses. A macro instruction may also be used as a parameter. All
other symbolic names in the parameter list are assumed to be defined
somewhere within the subprogram. The number of machine words gener-
ated by the macro instruction will depend upon the length of the prototype
and the occurrence of IFZ, IFN, IFT, and IFF pseudo instructions within

the prototype.
Examples:
The following would define a macro called XYZ.

XYZ MACRO (P1,P2,P3,P4,

MACRO P5,P6)

ENI P5,P6
P4 DLDA P3
P1 P2
DFAD SYMBOL1
IFN P5,3

IFT,EQ P1,/DFAD/,2
DSTA SYMBOL3
DLDA SYMBOL2
ENDM
The macro instruction, XYZ, might be used as follows:
XYZ (DFAD,(SYMBOL4,1),((1)SYMBOL3) ,HERE,
XYZ 3,$B4)

The macro instruction above would generate the following set of
instructions:

28

ENI
HERE DIDA
DFAD
DFAD
DSTA

DLDA

3,$B4
(1)SYMBOLS5
SYMBOL4,1
SYMBOL1
SYMBOL3

SYMBOL2

Another call of the macro, XYZ, might be:

Q3 XYZ

XYZ

(DFSB,SYMBOL7,SYMBOLS,THERE,

2,$B2)

This reference to the macro, XYZ, would cause the following instructions

to be inserted:

Q3 ENI

THERE DLDA
DFSB
DFAD

2,$B2
SYMBOLS
SYMBOL7

SYMBOL1

The following would define a macro called GOUT:

GOUT MACRO (M,P)
RTJ GOUT
ECHO 1,M,(Q=P)

+ Q
ENDM

The macro instruction

GOUT

(5,(A,B,C,D,E))

29

4.8

would cause the following instructions to be assembled:
RTJ GOUT

+ A

PROGRAM MODIFICATION

4.8.1
COSsYy

4.8.2

MODIFICATION
INSTRUCTIONS

In addition to listable and relocatable binary output, the COMPASS user
may elect to receive a COSY deck as output from COMPASS. The COSY
deck contains a compressed symbolic form, in binary, of the program
which may be used as input for subsequent assemblies. The COSY option
has four advantages:

The size of the input deck may be reduced by a maximum
ratio of 19:1.

® The time required for subsequent assemblies is decreased.

e Ilhe COSY deck may be modified using the COMPASS symbolic
language.

e An up-to-date COSY deck may be punched with each subsequent
assembly.

The deck consists of COSY text cards and a COSY end card. Starting with
00001 for the IDENT card, a sequence number assigned to each input card

is printed on the right side of the output listing opposite the input line. This
sequence number is used as the reference point when modifying a COSY deck.

The pseudo instructions which may be used to modify a COSY deck are
punched in the COMPASS symbolic format. All modifications must
precede the COSY identification card, but need not appear in the order of
occurrence on the associated output listing.

30

DELETE L o) A
DELETE m,n

This pseudo instruction deletes symbolic input lines m through n where
m and n are sequence numbers.

REPLACE L o A
REPLACE m,n
REPLACE causes COMPASS to replace lines m through n with the lines

which follow, up to the next modification pseudo instruction or up to the
COSY identification card. The replacement need not be one to one.

INSERT L O A
INSERT m

This pseudo instruction inserts the lines which follow up to the next
modification pseudo instruction or up to the COSY identification card.

The lines are inserted after input record m in the COSY deck.

The address subfields, m and n, of the modification pseudo instructions
must comply with the following rules:

1. m and n must be less than or equal to the sequence number
of the END record.

2. The modified deck must contain an END card.

3. In the address field of DELETE or REPLACE, m must
be less than n.

4. If only one input card is to be affected, n should not appear;
only line m will be deleted or replaced.

An address field error will void the modification.

31

The formats of the COSY text and end cards are given below:

COSY Text Cards

]

(1 12,7,9 punch

rows 4-6 contain the high order digit
of a 5-digit card sequence number

Columns 2 4 lower order digits of 5-digit card
sequence number

3-4 24-bit checksum
K 5-80 19 words of compressed symbolic
COSY End Card
1 12,3,7,9 punch

rows 4-6 contain the high order digit
of a 5-digit card sequence number

Columns 2 4 lower order digits of 5-digit card
sequence number

3-4 24 -bit checksum
5-80 Zeros
COsYy L (0] A
COSY

The COSY identification card signals the end of the modification deck and
the beginning of the COSY deck. The location and address fields are
ignored.

32

OUTPUT LISTING S

The output listing produced by COMPASS consists of the input card images
preceded, on the left, by a column of error codes, a column of machine
locations, and the assembled contents of the machine locations. If a COSY
deck is requested, a sequence number will appear to the right of each
input line. The error code column may contain up to eight of the error
codes described in Table 7.

The machine location column appears in octal, opposite the upper half of
each assembled machine word.

The machine contents column contains three terms, a 2-digit operation, a
1-digit index designator, and a 5-digit address term. The address term
will be preceded by P if the address is a program location. If the address
is relocatable with respect to common, it will be preceded by C. If the
address term of the input line references an external symbol, the address
term of the machine contents column will contain the assembled machine
location of a previous reference to the same external symbol; this address
will be preceded by an X.

COMPASS will always produce a list of entry points, block common names,
external symbols, undefined symbols, doubly defined symbols, nulls (location
symbols which have not been used), the length of the subprogram, any flagged
coding lines (regardless of the list option), and number of errors in octal.

33

ORIGINAL SOURC K LISTING
IDENT SENSLESS
A BLOCK 0
COMMON ARRAY1(100B), ARRAY1A(20B)
PROGRAMA SLJ Hox
STA TEMP, 1
STQ TEMP,2
LDA ,MG TEMP, 1
RTJ PROGRAMB
EXT PROGRAMB
+ LDQ =07700000
STL TEMP
ENTRY PROGRAMA
Liu PROGRAMB, 3
SIL ARRAY 1+208, 3
SLJ PROGRAMA
B BLOCK 0
COMMON ARRAY2 (100)
ORGR ARRAY2
ocT 0,1,2,3
ORGR *
EXCH SLJ Ho
LBYT,AQ,E6,RI,CL 0,3,4
INI 1,3
ENI 42,4
SLJ EXCH
END

34

PROGRAM LENGTH
BLOCK NAMES

ENTRY POINTS

EXTERNAL SYMBOLS

00000
00100
00000
00001
00002

00003

00004

00207

00301

00000
00000
00001
00002

00003

75
20
21
50
77

12
£

75

50
16
L7

52
57

75

00
00
00
00
00
00
00
00

[oNeNe] I e ON=O

wW W

[eNe)

inNeNoNoNoNoNoNol

OUTPUT LISTING FROM ABOVE SOURCE DECK

A
B

PROGRAMA

PROGRAMB

77777
P00221
P00221

00000

00004
poc221
X77777

00000
P00306
P00221

X00003
€00020

P00000
00000

€c00000
00000
00000
00000
00001
00000
00002
00000
00003
P00302

00307

00120
00 144

00000

A

PROGRAMA

IDENT

BLOCK

COMMON

SLJ
STA
STQ

LDA ,MG

RTJ
EXT

LDQ
STL

ENTRY

LIU
SIL

SLJ

BLOCK

COMMON

ORGR

ocT

ORGR

35

SENSLESS

0

ARRAY1(100B) ,ARRAY1A(20B)

ARRAY1A(208B)

el
WK

TEMP, 1
TEMP,2

TEMP,1

PROGRAMB
PROGRAMB

=07700000

TEMP
PROGRAMA

PROGRAMB, 3

ARRAY 1+208,3

PROGRAMA

0
ARRAY2(100)
ARRAY2
0,1,2,3

1

2

3

*

00001

00002
00003

00004
00005
00006

00007

00008
00009

00010
00011
00012

00131
00132

00178
00179
00180

00181
00182

00183

00302 75 0 77777 EXCH
56 © 00000
00303 63 3 L0006
52 0 00000
00304 51 3 00001
50 4 00052
00305 75 0 PO00302
50 0 00000
00306 00 O 00000
07 7 00000

SLJ

LBYT,A0,E6,RI,CL

iNT
ENI
SLJ

END

1,3
42 L
EXCH

0,3,4

00184
00185
00186

00187
00188

00189

CORRECTION DECK TO BE ASSEMBLED WITH COSY DECK ASSOCIATED

WITH ABOVE LISTING

OUTPUT LISTING FROM
COSY DECK WITH COSY

PROGRAM LENGTH 00310
BLOCK NAMES
A 00121
B 00143

ENTRY POINTS
PROGRAMA 00000

EXTERNAL SYMBOLS

PROGRAMB
A
00000
00120
00000 75 0 77777 PROGRAMA
50 O 00000
00001 77 2 00000
20 0 P00220

REPLACE
COMMON
COMMON
DELETE
DSTA
INSERT
ADD
DELETE

ASSEMBLY OF ABOVE CORRECTION
OUTPUT OPTION SELECTED

COMMON
COMMON
STA
STQ
DSTA
ADD
Liu
IDENT

BLOCK
COMMON
COMMON
SLJ

DSTA

36

3
ARRAY1(1208B)
ARRAY 1A

5,6

TEMP+2

10

=0400000

131

ARRAY1(120B)
ARRAY 1A
TEMP, 1
TEMP,2
TEMP+2
=0400000
PROGRAMB, 3
SENSLESS

0
ARRAY1(1208B)
ARRAY 1A

PO s
W

TEMP+2

DECK AND

Fedesk [INSERTED
Fok INSERTED
DELETED
DELETED

Hkk INSERTED
4% [INSERTED
DELETED
00001

00002
#%%00003
#*%%00004

00005

*%*00006

00002

00003

00004

00005

00207

00302
00303
00304
00305
00306

00307

77
12

75

50
16
14
L7

57

75
50

n
A\

00
00
00
00
00
00
00

75
50
63
52
51
50
75
50
00
07
00
00

= =

OO OO0

[eNoNeoNoNoNolNoNe)

FO~NOOCORFWOWOO

00004
P00216
X77777

00000
P00306
P00307
P00216

€00020

P00000
00000

€00000

0000

00000
00000
00001
00000
00002
00000
00003
P00302
77777
00000
L0006
00000
00001
00052
P00302
00000
00000
00000
00000
00000

EXCH

LDA,MG TEMP,]

RTJ PROGRAMB

EXT PROGRAMB

LDQ =07700000
ADD =0L00000

STL TEMP

ENTRY PROGRAMA

SIL ARRAY1+20B,3
SLJ PROGRAMA
BLOCK 0
COMMON ARRAY2(100)
ORGR ARRAY2
CCT 0,1,2,3

1

2

3
ORGR *
SLJ *k

LBYT,AO0,E6,RI,CL 0,3,4

INI 1,3
ENI L2 4
SLJ EXCH
END

37

00007

00008
00009

00010

*%%00011

00012
00013

00131

00178

00179
00180
00181

00182

00183
00184

00185
00186

00187
00188

00189

CONTROL CARDS 6
AND DECK STRUCTURES

6.1

CONTROL CARD The control card appears immediately before the first card of the first
subprogram to be assembled. Column 1 of the control card contains
punches in rows 7 and 9. Starting in column 2, the word COMPASS
appears, followed by a comma and up to 6 free field parameters separated
by commas. The control card is terminated with a period or end of card.

6.2

ASSEMBLY

OPTIONS There are six options which may be specified on the control card; each

option has the general form O=o0, where O isthe parameter and o is the
value. The parameter must begin with one of the following characters,

I, Y, P, C, X, L; any characters following, up to an equals sign or comma,
may be specified by '""'=0" where o is a decimal integer; if ""=0'" is absent,
COMPASS will assume a value as described below.

I=1 Hollerith input medium where the logical unit i may assume values
1-49, 60; if the parameter is absent, input from unit 60 (standard
input unit-INP) is assumed.

Y=y COSY input medium where the logical unit y may assume values
1-49, 60; if the parameter is absent, input from unit 60 (standard
input unit-INP) is assumed.

P=p Punch option where the logical unit p may assume values 0-49,
62; if the parameter is absent or equal to zero, no binary output
will be produced. If only P appears, binary output will be
produced on unit 62 (standard punch unit-PUN).

C=c COSY output option where the logical unit ¢ may assume values
0-49, 62, if the parameter is absent or equal to zero, no COSY
output will be produced. If only C appears, COSY output will be
produced on unit 62 (standard punch unit -- PUN).

X =x Binary output for load-and-go option where x may assume values
0-49, 69; if the parameter is absent or equal to zero, no load-and-
go tape will be written. I only X appears, binary output for load
and go will be produced on unit 69 (standard load-and-go unit —-
LGO).

39

L=1 List option where £ may assume any value; if the parameter is
absent or equal to zero, no listing will be produced; otherwise
the listing will be produced on unit 61 (standard listable output-
ouT).

I and Y need be explicitly declared only if input from a unit other than
the standard input is desired.

An unrecognizable option is ignored.

Examples:

g COMPASS, L,P.C. equivalent to 9 COMPASS,LIST,PUNCH, COSY.

The above will produce a listing on unit 61 with COSY output and binary
output on unit 62.

¢ compass, Y=1,L,c=2.
The above will read COSY input from unit 1 and produce a listing on
unit 61 with COSY output on unit 2.

6.3
SUBPROGRAM

DECKS One or more subprograms follow the control card. Subprograms may be
input in Hollerith or Hollerith/COSY; the two forms may be mixed within
one batch of assemblies.

A Hollerith subprogram consists of Hollerith punched cards, or magnetic

tape images of Hollerith cards; the parameter Y on the control ¢

meaningless in an assembly of a Hollerith subprogram.

A Hollerith/COSY subprogram consists of Hollerith corrections followed
by a COSY deck obtained from a previous assembly. The Hollerith portion
of the subprogram consists of modifications to be made to the COSY deck
and is terminated by a COSY card (see page 31). If there are no modifi-
cations, the COSY card comprises the entire Hollerith portion of the sub-
program.

The Hollerith portion of the subprogram is read from the unit defined by I
on the control card, or from unit 60 if I is not declared.

The COSY portion of the subprogram follows the COSY card which terminates
the Hollerith portion. The COSY portion is read from the unit defined by Y on

the control card, or from unit 60 if Y is not declared.

I may differ from Y.

40

Examples:

3 compass,L,p.
~
Hollerith IDENT A
Subprogram
A
END
Hollerith IDENT B
Subprogram
B
END L
. — unit 60
Hollerith DELETE 10 Standard input - unit 6
portion of
Subprogram
C .
COSY C
Cosy Deck
of
Subprogram C
Hollerith IDENT D
Subprogram
D .
END
END A
SCOPE)

In the above example, subprograms A, B, C, and D would be assembled from unit 60 with
listings produced on unit 61 and binary output on unit 62.

41

Subprogram
A

ia

Hollerith
portion of
Subprogram

Subprogram
D

Cosy Deck of
Subprogram
B

Cosy Deck of
Subprogram
C

In this example, subprograms A and D would be assembled from Hollerith on unit 60, and

I compass, Y=1,L.

IDENT A
END

DELETE 15, 16
COSY B
COSsY C
IDENT

END

END A
SCOPE

\

Standard input - unit 60

Unit 1

subprograms B and C from Hollerith/COSY on units 60 and 1.

42

TABLE 1

MNEMONIC CODES FOR 3600 OPERATION REGISTERS

(Source and Destination)

Mnemonic Code Register Name
LM Limit Register
B1 B! (Index Register 1)
B2 B? (Index Register 2)
B3 B® (Index Register 3)
B4 B* (Index Register 4)
BS5 B® (Index Register 5)
B6 B® (Index Register 6)
AL) A -Lower Address
AU A - Upper Address
QL @ - Lower Address
QU Q - Upper Address
A A —Full 48 bits
Q Q - Full 48 bits
D D Register
BR Bounds Register
M Interrupt Mask Register
OB Operand Bank Register

43

TABLE 2

MNEMONIC CODES FOR 3600 OPERATIONAL REGISTERS

(Source Only)
Mnemonic Code Register Name
IR Interrupt Register
PZ All Zeros
P1 Plus One
MZ Minus Zero (all ones)
1B Instruction Bank Register
NC Normalization Count Register
MS Mode Selection Register
P P Register
CK Clock

44

AND

AUG

CL

CM

cQ
CR
CW

CWA

Ee

EO

EQ

GE

TABLE 3

MNEMONIC CODES FOR INSTRUCTION MODIFIERS
Register and -- ROP instruction

Use A register in the LBYT or SBYT instruction; o is a one or two digit
decimal integer which specifies the right most bit of the byte in A,

Augment -- XMIT instruction
Chain to next control word -- I/O control words

a) Clear source -- augmented instructions
b) Clear unused portion of destination -- LBYT, SBYT instructions

c) Clear bit g in register p after testing -- NBJP, ZBJP instructions

a) Complement operand -- augmented instructions
b) Complement bit g in register p after testing -- NBJP, ZBJP instructions

¢) Transmit complement -- XMIT instruction

Clear unused portion of q in RSW and RXT instructions
Clear unused portion of r in RSW and RXT instructions
Control Word to A -- COPY instruction

Control Word Address to Q@ -- COPY instruction
Conditional decrementing -- RGJP instruction

In the LBYT, SBYT, and SCAN instructions, e is a one or two digit decimal
integer which specifies the byte size in bits.

End Off; shift is end off and no sign extension -- augmented instructions

Equal test -- RGJP, IFF, IFT instructions, register equivalence --
ROP instruction

Greater or equal test ~- RGJP, IFF, IFT instructions
Greater test -- RGJP, IFF, IFT instructions
Indirect addressing -- SEQU, SMEQ, SEWL, SMWL instructions

Register implication ROD instruction

45

IN Inclusion test -- IFF, IFT instructions

LE Less or equal test -- RGJP, IFF, IFT instructions
LI Left indexing -- LBYT, SBYT instructions

LT Less test -— RGJP, IFF, IFT instructions

MG Magnitude of operand -- augmented instructions
MI Minus -- AJP, QJP, ARJ, QRJ instructions

MK Transmit masked -- XMIT instructions

NE Not equal test -- RGJP, IFF, IFT instructions

NZ Non-zero -- AJP, QJP, ARJ, QRJ instructions
OR Register or -- ROP instruction

PC Transmit plus constant (in A) -- XMIT instruction
PL Plus -- AJP, QJP, ARJ, QRJ instructions

Qo Use Q register in the LBYT, SBYT, or SCAN instruction; o is a one or two

digit decimal integer which specifies right-most bit of the byte in Q.

RI Right indexing -- LBYT, SBYT instructions
RP Replace operation -- augmented instructions
SS Signed shift -- (Direction of shift determined by sign of shift count) --

augmented instructions

ST Set to one -- NBJP, ZBJP instructions
TR Truncated -~ DVF instruction
UN Un-normalize arithmetic -- augmented instructions
UR Unrounded arithmetic -- augmented instructions
XOR Register exclusive or -- ROP instruction
ZR Zero -- AJP, QJP, ARJ, QRJ instructions

+ Register sum -- ROP instruction

- Register difference -- ROP instruction

46

TABLE 4

MNEMONIC MACHINE INSTRUCTIONS

Operation Field Address Field Instruction

Inter-Register

ROP, OR p.q, T Register operation
XOR r=p op q
AND
IMP
EQ
+
RSW, CQ, CR q, T Register swap
RXT, CQ, CR q, T Register transmit

Full Word Transmission

LDA, CM, MG (@) m, b, v Load A
LAC, CM, MG (@) m, b, v Load A complement
LDQ, CM, MG @) m, b, v Load @
LQC, CM, MG (@) m, b, v Load Q complement
STA, CM, CL, MG (a) m, b, v Store A
STQ, CM, CL, MG (@)m, b, v Store @
XMIT, CM, AUG @a)m, i) n Transmit*
MK
PC

*If either bank term is missing, it is assumed (8).

47

Operation Field Address Field Instruction

Address Transmission

LIU, CM, MG (aym, b, v Load index upper

LIL, CM, MG (@ m, b, v Load index lower

SIU @ m, b, v Store index upper

SIL (@) m, b, v Store index lower

SAU, CM, MG (@) m, b, v Substitute address upper
SAL, CM, MG (a)m, b, v Substitute address lower
ENI @y, b, v Enter index

ENA, CM @)y, b, v Enter A

(@) y, b, v Enter Q

Fixed Point Arithmetic

ADD, CM, MG (@) m, b, v Add

SUB, CM, MG (a)m, b, v Subtract

MUI, CM, MG (a) m, b, v Multiply integer
DVI, CM, MG (@)m, b, v Divide integer
MUF, CM, MG (aym, b, v Multiply fractional
DVF, CM, MG, TR (@) m, b, v Divide fractional

Address Arithmetic

INA, CM @)y, b, v Increase A
INI @y, b, v Increase index
ISK @)y, b, v Index skip

Single Precision Floating Point Arithmetic

FAD, RP,CM, MG, UN,UR (@) m, b, v Floating add
FSB,RP,CM, MG, UN,UR (a)m, b, v Floating subtract
FMU, CM, MG, UN, UR (a)m, b, v Floating multiply
FDV, CM, MG, UR (a) m, b, v Floating divide
ADX W Add to exponent

48

Operation Field Address Field Instruction

Double Precision Floating Point Arithmetic

DLDA, CM, MG (a)m, b, v Double precision load A

DSTA, CM, CL, MG (a) m, b, v Double precision store A
DFAD, RP, CM, MG, UN, UR f(a)m,b, v Double precision floating add
DFSB, RP, CM, MG, UN, UR (a)m, b, Vv Double precision floating subtract
DFMU, CM, MG, UN, UR (@) m, b, v Double precision floating multiply
DFDV, CM, MG, UR (@) m, b, v Double precision floating divide
logical Operations

SST, CM, MG (@) m, b, v Selective set

SCM, CM, MG (a) m, b, v Selective complement

SCL, CM, MG (a)m, b, v Selective clear

SSU, CM, MG @a)m, b, v Selective substitute

LDL (@)m, b, v Load logical

ADL, RP, CM, MG (a)m, b, v Add logical

SBL, RP, CM, MG (@a)m, b, v Subtract logical

STL, CM, MG (a)m, b, v Store logical

Shifting Operations

ARS, EO, SS (a)y, b, v A right shift

ALS, EO, SS @)y, b, v A left shift

QRS, EO, SS @)y, b, v Q right shift

QLS, EO, SS (a)y, b, v Q left shift

LRS, EO, SS @y,b, v Long right shift

LLS, EO, SS @y,b,v Long left shift

SCA @)y, b, v Scale A

SCQ @y,b, v Scale AQ

49

Operation Field

Replace Operations

RAD, CM, MG

RSB, CM, MG

Storage Test

SSK
SSH

Search

EQS
THS
MEQ
MTH
SEQU, I
SMEQ, I
SEWL, I
SMWL, I
LSTU
LSTL

Jumps and Stops

AJP, ZR
NZ
PL
MI

QJP, ZR
NZ

PL

MI

Address Field

(@ m, b, v

(@) m, b, v

(@) m, b, v
(@) m, b, v
@ m, b, v
(a) m, b, v
(a) m, n
(a) m, n
() m, n
(a) m, n
b, v

b, v

(a) m, v

(a) m, v

Instruction

Replace add
Replace subtract
Replace add one

Replace subtract one

Storage skip
Storage shift

Equality search

Threshold search

Masked equality search
Masked threshold search
Search for equality

Search for masked equality
Search within limits

Search magnitude within limits
Locate list element upper

Locate list element lower

A jump*

Q jump*

*In AJP. QJP, ARJ and QRJ a modifier is required and does not cause insertion of the single precision

augment instruction.

50

Operation Field Address Field Instruction

ARJ, ZR @ m,v A return jump*
NZ
PL
MI

QRJ, ZR (@)m, v Q return jump*
NZ
PL
MI

*In AJP, QJP, ARJ and ORJ a modifier is required and does not cause insertion of the single
precision augment instruction.

IJP (a) m, b, v Index jump
SLJ (@) m, b, v Selective jump
SJ1 @) m, v Selective jump key 1
SJ2 @ m,v Selective jump key 2
S5J53 aym, v Selective jump key 3
RTJ (a) m, v Return jump
RJ1 (@) m, v Selective return jump key 1
RJ2 (@ m,v Selective return jump key 2
RJ3 (@ m,v Selective return jump key 3
SLS (@) m, b,v Selective stop
SS1 (a) m, v Selective stop jump key 1
SS2 (@) m, v Selective stop jump key 2
SS3 (@) m, v Selective stop jump key 3
SRJ @) m, v Stop return jump
SR1 (@) m, v Selective stop return jump key 1
SR2 (@) m, v Selective stop return jump key 2
SR3 (a) m, v Selective stop return jump key 3
EXEC (a) m, b, v Execute
RGJP, EQ p,y,m, b Register jump*
GT
LT
NE
LE
GE
1LT,D
GE, D

*In RGJP modifier is required.

51

Operation Field

UBJP
BJPL
BRTJ
BJSX

NBJP, ST
CL
CM

ZBJP, ST
CL
CM

Variable Data Field

LBYT, Ao, Ee, LI, CL

Qo

SBYT, Ao, Ee, LI, CL

RI

Qo RI

SCAN, Qo, Ee, EQ
GT
LT
NE
LE
GE

Address Field

(aym, b, i
(@)m,b,i
(@) m, b, i
(a) m, b
p, g m,b
p,g m,b
%

m, b, v
m, b, v
m, b, v

Instruction

Unconditional bank jump
Unconditional bank jump lower
Unconditional bank return jump
Bank jump and set index

Non zero bit jump

Zero bit jump

Main product register jump

Q

hannel product register jump

D Register Jump

Load byte*

Store byte*

Scan byte**

*In LBYT and SBYT, the modifiers Ao or Qo and Ee are required; if neither LI or RI appears,

no indexing will be assumed.

**In SCAN, the modifiers Qo, Ee, and one of the comparison modifiers are required.

Input/Output

CONN
EXTF
BEGR
BEGW

X, (@) m, n

X, (@) m, n

*If the bank term is missing, it is assumed (§).

52

Connect
External function
Begin read*

Begin write*

Operation Field Address Field

COPY, CW, CWA X, b
CLCH X
IPA

ALG w

Input/QOutput Control Words

IOSW, C (a) m, w
IOTW, C (a) m, w
IOSR, C (a) m, w
IOTR, C (a) m, w
I0JP (a) m

*If the bank term is missing, it is assumed (§).

Others

INF w

NOP

ENO a

00 m, b
or

77 (a) m

53

Instruction

Copy status
Clear channel
Input to A

Perform algorithm

Skip words (write zeros under word
count control)*

Transmit data under word count control*

Skip words (write zeros) under word
count or to end of record (and write end
of record)™

Transmit data under word count or to end
of record (and write end of record)*

Jump to (a) m for next control word*

Internal function
No operation

Enter operand bank register (single pre-
cision augment instruction in upper or
lower half word)

Octal instruction from 00-77

Mnemonic

BANK
BCD

BES
BLOCK
BSS
CODAP
COMMON
COMPASS
COSY
DEC
DECD
DELETE

TABLE 5

PSEUDO INSTRUCTIONS
Use

Declare subprogram and common block banks
Insert BCD characters

Reserve block of storage

Specify block of common

Reserve block of storage

Change input to CODAP-1 format
Declare array in common

Change input to COMPASS format

COSY identification

Insert single precision decimal constants
Insert double precision decimal constants
Delete portions of program

Replicate a sequence

Eject a page on the output listing

Specify the end of a subprogram

Define entry points in a subprogram
Equate an undefined symbol to a defined symbol
Define external symbols

Identify the subprogram by name
Control pseudo instruction

Control pseudo instruction

Control pseudo instruction

Control pseudo instruction

Insert changes in a program
Declare library macros

Resume output listing

Define a macro

54

Page

12
16
14
14
13
19
14
19
32
16
16
31

25
11
27
12
19
12
11
21
20
20
19
31
27
25
26

Mnemonic

MACRO Instruction
NOLIST
OCT
ORGR
REM
REPLACE
SCOPE
SPACE
TITLE
TYPE
VFD

Characters

TABLE 5 (cont'd)

Use

Call a macro

Suppress output listing

Insert octal constants

Set location counter

Insert remarks on the output listing
Replace portions of a program
Terminates assembly process
Insert spaces in the output listing
Title pages with program name
Insert typewriter codes

Assign data in variable byte sizes

TABLE 6

SPECIAL CODES FOR TYPE ENTRIES

BCD

*R
*U
*L
*B
*T
*X
*A
*S

Carriage Return
Shift to Upper Case
Shift to Lower Case
Backspace

Tab

55

Type Equivalent

Page

27
26
15
21
26
31
22
25
25
16
17

TABLE 7
ERROR CODES

Address Field Error. An A error will occur if there is a format error in the
address field.

Presetting Common Error. A C error will occur if the subprogram attempts to
preset numbered common or if data overflows a labeled common block. Processin
and listing continues, but binary output is suppressed until an ORGR record occurs.

Duplicate Symbol. A D error results if a symbol occurs more than once in a loca-
tion field of a subprogram. The symbol will be ignored on the second and subsequent

occurrences.

Full Symbol Table. No assignment is made if a table entry would cause overflow of
the symbol table, the block common name table, or linkage address table.

Location Field Error. An L error occurs if a symbol appears where none is allowed,
if a symbol is absent where one is required, or if an illegal type symbol appears.

Modifier Error. An M error will result if an illegal modifier appears, if modifiers
appear where none are allowed, or if a required modifier is absent.

Operation Code Error. An O error occurs if an illegal operation code is used. Zeros
are substituted.

Range Error. The range of lines within IFF, IFN, IFT, or IFZ tests exceeds range of
macro, echo or subprogram.

Undefined Symbol. A symbol referenced in the address field has not been defined;
zeros are substituted.

56

Relocatable or fixed

Fixed only

N Q0 T 09

=]

TABLE 8

ADDRESS SUBFIELDS

first bank designator
second bank designator
first operand address
second operand address

operand

first index register
equipment designator
bit designator

first source register
second source register
destination register
unit designator

second index register
operand

channel number

57

Number
of Bits

15
15
15

w © U o > W W

—
o o

PROGRAMMING TRAINING CENTERS

3330 Hillview Ave.
Palo Alto, California

8100 - 34th Ave. South

Minneapolis, Minnesota

11428 Rockville Pike
Rockville, Maryland

Room 223, Terminal Building
Newark Airport
Newark, New Jersey

5630 Arbor Vitae
Los Angeles 45, California

Errata

COMPASS Reference Manual October 21, 1963

Publication #525 a

Page

12

Literal

A double precision decimal constant must be in floating point format.

FORCING UPPER Should Read: '"The instruction has a TYPE 1 or TYPE 2
symbol in the location field.,"

Replace the discussions of ENTRY and EXT with the following:

ENTRY

Symbols to be referenced by other subprograms must be declared as

entry points within the subprogram that defines these symbols, (A

symbol is defined when it appears in the location field of a machine

or pseudo instruction or as array name in a COMMON instruction.)

Symbols are declared as entry points by placing them in the address

field of one or more ENTRY pseudo instructions. Two or more symbols

in the address field are separated by commas. No spaces (blanks) can

appear within a string of symbols, as a space indicates the end of the

string. The address field of the ENTRY pseudo instruction may be

extended out to column 72. The location field must be blank.

Example:
ENTRY SYMl, SyM2, SYM3
SYM1, SYM2, and SYM3 can now be referenced by other subprograms.

EXT
Symbols used by a subprogram which are defined in another subprogram are
declared external symbols by placing them in the address field of one or
more EXT pseudo instructions contained in the user subprogram. For
example, to use the symbols SYMl, SYM2 and SYM3 declared as entry symbols
in another subprogram, the pseudo instruction would be written as:

EXT SYM1, SYM2, SYM3
The address field may be extended to column 72; symbols are separated
from each other by commas. No space (blanks) can appear in a string of
symbols, as a space indicates the end of the string. The location field

of an EXT must be blank.

Include the discussion below as an introduction to BLOCK and COMMON:
BLOCK and COMMON pseudo instructions reserve storage areas that can be
referenced by more than one subprogram. They are placed at the beginning

of a subprogram,

If the location symbol in the BLOCK pseudo instruction is alphanumeric, the
storage area is reserved at the beginning of the subprogram and is termed
labeled common. If the location symbol is numeric or blank, the storage
area is assigned a separate portion of core storage termed numbered common.
Constants can be assembled into a labeled common area, but not into a

numbered common area.

COMMON pseudo instructions describe data arrays within an area assigned by
BLOCK. To reference a block of common storage reserved in another sub-

program, the location field symbol of the BLOCK pseudo instruction must be
identical in each subprogram, and the length of the two blocks must be the

same.
A location symbol of BLOCK is never referenced by any other instruction.

Add, after the last sentence in the OCT description:
"If fewer than 16 digits are written, they will be right-justified in the

word with leading zeros inserted."

DEC
In the sentence beginning "Each subfield is a decimal constant...'", delete
"a value of up to 14 decimal digits'" and replace it with: "a string of

decimal digits".

DECD

Second sentence, delete 'may consist of up to 28 decimal digits, and will".

BCD_and TYPE

If a BCD or TYPE statement appears in the range of a MACRO or ECHO
instruction its address field may consist of a single formal parameter
name. The octal parameter which corresponds to this parameter must have

the form n, 8 n characters.

In the vange ~Ff a MACRN nr WOHO dinetructinon the following statements arce

illegal; P is a formal parameter: BCD P, characters; TYPE P, characters.

Page .

16

17

23

25

27

32

b

17

BCD and TYPE

Delete "where < n <« 6" under BCD. The value of n is limited
only by the number of characters which can be punched into a single
card. The characters may begin immediately after the comma but must

end before column 73.

VED
Add after the O mode description: 'n may not exceed 48."

In the next to the last sentence, the H mode description should read:
"Any printable character may appear in the v field unless the VFD
instruction appears in the range of a MACRO or ECHO instruction; in

this case, blanks are not permitted in the v field."

The first corplete sentence on the page should begin:
"The IDENT, EQU, END, MACRO, ENDM, BLOCK and ECHO pseudo instruction

"

are excluded from the range of ECHO;.....

OUTPUT LISTING

Title: Replace the TITLE discussion with the following:

A TITLE pseudo instruction may appear anywhere in a program between the
IDENT and END instructions. Columns 16-72 of the first TITLE instruc-
tion, no matter where it appears, will be printed on top of the first
page of the program listing and on the top of all subsequent pages until

another TITLE instruction is encountered.

MACRO INSTRUCTION
The following SCOPE mnemonics used in system macros to indicate standard
units, interrupts, and equipment designation may not be used in system

macros for any other purpose.

ACC EXUN LO PUN
ADDR HY M1604 RO
BCD ICM MANUAL RW
BIN INP oCM SCR
BY INST OPER SHIFT
DIVIDE LGO OouT SV
EXON LIB OVER TRACE

COSY Text Cards

Change all occurrences of the phrase: 'high order digit'" to "high order
octal digit" and change '"lower order digit'" to '"lower order octal digits'.
In the COSY text cards format, columns 5-80 should be defined: "19 words

of compressed symbolic program instructions."

_3-

CONTROL DATA SALES OFFICES

Pub. No. 525a

INTERNATIONAL OFFICES

ALBUQUERQUE + BEVERLY HILLS ¢« BIRMINGHAM « BOSTON

CHICAGO » CLEVELAND « DALLAS « DAYTON

DENVER » DETROIT « HONOLULU » HOUSTON

HUNTSVILLE » ITHACA « KANSAS CITY + LOS ALTOS « MINNEAPOLIS « NEWARK

NEW YORK CITY « NORFOLK » ORLANDO « PALO ALTO « PHILADELPHIA - SAN DIEGO

SAN FRANCISCO « SEATTLE « WASHINGTON, D.C.

BAD HOMBURG, GERMANY « MELBOURNE, AUSTRALIA » LUCERNE, SWITZERLAND
STOCKHOLM, SWEDEN « ZURICH, SWITZERLAND « PARIS, FRANCE

MEXICO CITY, MEXICO « OTTAWA, CANADA

CONTROL DATA

CORPORATION

8100 34th AVENUE SOUTH, MINNEAPOLIS 20, MINNESOTA

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	_1
	_2
	_3
	xBack

