3600 COMPUTER

CONTROL DATA
| 3600 compuTER.

FORTRAN 63/GENERAL INFORMATION

CONTROL DATA 3600 COMPUTER

FORTRAN 63/GENERAL INFORMATION

CONTROL DATA CORPORATION
8100 34th Avenue South

Minneapolis 20, Minnesota

AUGUST 1962
Pub. No. 514 ©1962, Control Data Corporation

CONTENTS

FORTRAN-63 LANGUAGE

INTRODUCTION . . v v v vttt h e e e e e e e e e e e e e e e e e e e
CHARACTER SET . . . i v v i i v i v e v v i e et e e e e e e e e e e
SPECIAL SYMBOLS o i i e i e v v e v e e e e e e e e e e
CONSTANTS . o v vt e
STATEMENTS o i it e i i e e e et e e i i e e e e e e e e
Replacement Statements 0000000
Declarative Statements 0000000000 e
Program Name 0 v e v e e e e e e e e e e e e e
Subroutine name L0 L 0w s e e e e e e e e e e
Function name o 0 0 0 s e e e e e e e e e e e e e
Dimension L0 0 e s s e e e e e e e e e e e e e e e
COMIMON & v v v v v v v v e v et t e e e e e e e e e e e e e e
Equivalence v« i o i e e e e e e e e e e e e

Type Declarations o 00 c o c e e e

Format Statement 000000000 o e
External Statemento o 00000 s

Data Statement 0000000000 s

Control Statements 0000000 e e
If(@)n;,Np, N3 o L v v v v v b e e e e e e e e e e e e e e e e

2 T P o7

L Fault
If Divide {Check} 13 B

If Overflow Faultn,,n,« v v v v v v v e

If Exponent Fault n;, Ny . - o v v v v o v v v e e e e

iii

CONTENTS (Continued)

Page
Sense Lighti s 9
If Sense Lighti)n; ,nyg ¢ o v v v v v e . 9
If (Sense Switchj)n;,ny, o L L. 9
Doni=m;,me, Mg . . v v v v v v vt i it e s e e e e e e e 9
GoTon « v v v v v v i e e e e e e e e 10
GoTomn, (N;, Mo, vo. D) v v v v v e e e e e e e e e e e e 10
GoTo (ny, No, woy), 1 v v 0 v s o e s e e e e e e 10
AssigniTon . . v v v v v it i s e e e e e e 10
Continue L e e e e e e e e e e 10
Pauseno e e 10
Stopn . .. e e e e e e e e e e e 10
Input/Output Statementso 10
Buffer In (i,p) (A,B) . .« &« o o e e e e e e e 11
Buffer Out (i,p) (A,B) . .« . . . o o o o e e e e 11
If (Unit, i) n;, Ny, ng.ny . . . o o Lo Lo 12
If(EOF, i) ny, Dy« v v v v e e e e s e e e e e e e e e e 12
If Iocheck, i) n;, N2+ v . o v v v 0 0 v o s s e e e 12
Decode (i,n, V)L o . o e e e e e e 13
Encode (i,n,v)L e 13
FORTRAN-63 IMPLEMENTATION NOTES
Page
INDEXING o e e e 17
ARITHMETIC STATEMENTS 20
LOGICAL ARITHMETIC 22
ARBITRARY MODES OF ARITHMETIC ., 24
COMPILER STRUCTURE 27

iv

INTRODUCTION

The FORTRAN-63 language contains all of the features of its predecessor, FORTRAN-62,
and forms an overset of the FORTRAN II language. This manual presents the complete
FORTRAN-63 language with the new and more powerful features of the language presented in

some detail.

The FORTRAN-63 compiler adapts current compiler techniques to the particular capabili-
ties of the Control Data Corporation 1604 and 3600 computér systems. Emphasis has been placed
on producing highly efficient object programs while maintaining the efficiency of compilation
of FORTRAN-62. This manual describes some of the more important implementation features --

especially those pertaining to index functions and the interpretation of arithmetic statements.

The FORTRAN-63 compiler is part of a complete operating system -- the CO-OP Monitor
System for the 1604, and the Master Control System for the 3600.

For the reader who is unfamiliar with the FORTRAN language or its implementation on
Control Data Corporation equipment, the following publications may be found helpful:

FORTRAN Autotester, Publication No. 186A; FORTRAN-62 Reference Manual, Publication

No. 506; CO-OP Monitor Programmer's Guide, Publication No. 508.

CHARACTER SET

A character is defined as that mark obtained by striking one key on a typewriter or
keypunch machine.* The FORTRAN-63 character set comprises:
26 letters (A through Z)
10 digits (0 through 9)
space (blank)
10 special characters +—*/)(=,.$
The special character = denotes replacement. $ is used as a statement separator.
Thus statements without statement numbers that are conventionally written one per line

may be compacted by using the $ operator.

In addition to the conventional arithmetic symbols +, —, *, /, the following compound

symbols are provided for use in arithmetic /conditional statements.

O OTATION MEANING " eYMBOL
[exponentiation *k
= equal EQ.
not equal ‘ NE.
> greater than .GT.
= greater than or equal to .GE.
< less than LT.
= less than or equal to .LE.
A logical and .AND.
logical or .OR.
- not NOT.

* "key" includes the space bar.

CONSTANTS

The mode of a constant is determined from context. Let

n be a concatenated set of the digits 0-9

be a scalar

w

be a concatenated set of the digits 0-7
be a length of a Hollerith field
be a Hollerith field

L

be a single precision floating point number
Then:
n denotes either an integer or a statement number
nn n. .n nEs nnEs .nEs n.Es
denote single precision floating point numbers
nnD nD nD nDs n.nDs .nDs n.Ds
denote double precision floating point numbers
oB denotes an octal integer
hHf denotes Hollerith literals, left justified with blank fill
(R,R) denotes a complex constant
E and D are floating point designators, B is the octal designator, and H is the Hollerith

designator.

STATEMENTS

Replacement Statement

The replacement or arithmetic statement specifies a calculation resulting in a value.

In the statement

a is any variable name, simple or subscripted, and b is any arithemtic expression. The right-
hand side of the statement must obey the mode rules of arithmetic expressions.* The left-hand
side of the statement may be of a mode different from that of the right-hand side. Briefly, the
expression b is evaluated and its value is assigned to the variable name a. The significance of

the operator = is replace by.

Declarative Statements

The declarative statements of FORTRAN-63 are described below. All declarative state-

ments (except FORMAT) must precede the first executable statement of a program.

PROGRAM name
SUBROUTINE name (fp1 , fp2,..)
FUNCTION name (fp; , fp2,..) where fp; is a formal parameter

These three statements form the left bound of programs or subprograms (the END

statement forms the right bound).

An identifier followed by a parenthesis is assumed to be a subroutine if the identifier is not

declared in a DIMENSION statement.

The naming conventions for functions and subroutines are the same as those for vabriables.
That is, the mode may be declared in a TYPE statement (page 6). Or, in the absence of a
TYPE REAL or TYPE INTEGER statement, the mode is determined by the first letter of the
identifier (A through H and O through Z for REAL; I throughyr for INTEGER).

The mode of the arguments of a function or subroutine is determined by the declared TYPE
of the arguments. If the argument is an expression, the mode is determined by the rules of

precedence governing arithmetic with mixed operands.*

*Arithmetic Statements, page 20.

In the 3600 system, any single (sub) program or subroutine will be executed from a single
bank. The parameters or data associated with the (sub) program or subroutine may occupy

any bank. (See COMMON below.)

DIMENSION
COMMON
EQUIVALENCE

From these statements (together with TYPE) are derived the data storage requirements.
In the DIMENSION statement, provision is made for declaring array dimensions as formal
parameters. Thus the statement DIMENSION A(m,n), is permissible if A,m and n are formal

parameters.

Bank allocation for data in the 3600 must be declared in the COMMON statement. The format
for designating bank is:
COMMON/1, (B)/LIST/1, (B)/..
where I is a block identifier and B is a bank designator (0 = B < 7). If B is not stated, it is

assumed to be bank zero. The bank designator is ignored in the 1604 system,

The block identifiers distinguishbetween two types of COMMON block storage: Labeled and
Numbered*. Data may be prestored in labeled COMMON (via the DATA statement), but not in
numbered COMMON. The block identifiers may be up to eight characters in length. For labeled
COMMON, the identifier characters are alphanumeric, with the first character alphabetic. For

numbered COMMON, the identifier characters are all numeric.

* Sometimes referred to as Blank COMMON.

The COMMON statement may be written in a variety of forms. For example:

COMMON A,B
identical in meaning

numbered COMMON //A,B

labeled COMMON /LIDO3/A,B
numbered COMMON /10/A,B /10/ interpreted
as /10(0)/ in
the 3600
numbered COMMON /10(2)/A,B /10(2)/interpreted

as /10/ in the 1604

TYPE Declarations

FORTRAN-63 is designed to accommodate eight distinct modes of arithmetic and/or operands.
The general form of the type declaration is:
TYPE name (A) (identifier list)
where Ais the element length of entities appearing in the list. Ais either w words or f bits per

element and is of the form w or /f.

Five of the types are standard; the routines or instructions required for these arithmetic

modes are provided with the system. Adoes not appear explicitly in the standard types. The

remaining three types are arbitrary,* both in mode and execution.

Formats for the standard type declarations are:

0. TYPE INTEGER (identifier list). Integer variables,

array names, and integer functions.
1. TYPE REAL (identifier list). Single precision floating point

variables, array names, and functions whose value is real.

* Arbitrary Modes of Arithmetic, page 24.

2. TYPE DOUBLE (identifier list). Double precision floating

point variables, array names, and functions.

3. TYPE COMPLEX (identifier list). Complex variables

(represented by two reals), array names, and functions.

4. TYPE LOGICAL (identifier list). Logical variables, array

names, and functions.

Identifiers not declared in TYPE statements are REAL or INTEGER according to the

first letter of the identifiers (for REAL: A through H and O through Z; for INTEGER: I through N).

For types 0 and 1, the element length is one word: for types 2 and 3, the element length is

two words; for type 4, the element length is one word for non-dimensioned variables, or one bit

for dimensioned variables.

Thus a non-dimensioned variable, Y, declared TYPE LOGICAL, will have one word allocated

to it. A dimensioned variable, Z(96), declared TYPE LOGICAL, will have two words allocated

to it, each bit being an element of the array Z.

FORMAT Statement

This statement controls formating to and from external media. The conventional FORMAT

conversions are:

Em.n
Fm.n
Im
Om
Am
mX
mH

Four conversion types have been added:
DEm.n
DFm.n

denoting E type single precision
denoting F type single precision
denoting Integer conversion
denoting Octal integer conversion
denoting Alphanumeric conversion
denoting m spaces (no conversion)

denoting m BCD characters (no conversion)

denoting E type double precision

denoting F type double precision

C(om.n, @m.n) denoting complex conversion where @ may
be either E or F conversion
Sm.n denoting a mode of conversion determined by the

TYPE of variable which corresponds to this

designator. m denotes length of field. n is a

free parameter to be utilized by the conversion

routine provided for variables of this TYPE.*

EXTERNAL Statement

This statement declares the identifiers following to be function names. It is required only
if those names are used exclusively as actual parameters to subroutine calls. This statement

replaces the function of an F card.

DATA Statement

The DATA statement assigns constant values to variables at load time. Its format in
FORTRAN-63 is:

DATA (identifier = value list), (identifier = value list),.. where identifier is a single

1) non-subscripted variable, (I =7)

2) array variable with constant subscripts, (A(1)=7.5)

3) array name, (A=1.,2.,3.)

4) array element with constant quantifiers,

((A(1), 1=1,3) = 1.0,2.0,3.0)

The value list is either a single constant (for 1 and 2) or a set of constants

whose number is equal to the number of elements in the named array (for

3 and 4). The conversion is determined by the mode of the value list and

includes the six types enumerated under Constants on page 2.

* Arbitrary Modes of Arithmetic, page 24.

CONTROL Statements

These statements direct the flow of the program.

IF (a) n; ., ny, ng

For negative values of the arithmetic expression a, a jump to n; is executed: for zero

value, a jump to ny ; and for positive values, a jump to nj. n; . ny , nz are statement numbers.

IF (/) n,, n,

This is the logical IF statement. A jump to n, is executed if the logical expression s is
TRUE, and to n, if it is false. If /is an arithmetic expression, non-zero is assigned TRUE and

zero I'AISE,
EXAMPLE: If a*b is greater than c, and if either d is greater than zero or

e equals f, goton; . If not, go to n, .
In FORTRAN-63 this is written:
IF (((A*B).GT.C).AND.D.OR.(E.EQ.F)) n, . ns .

fFAULT

IF DIVIDE § (oo gy

Ny

Either statement checks the status of the divide fault indicator and executes a jump to n 1
if it has been set (and turns it off), or a jump to n,if it has not been set.
IF OVERFLOW FAULT n, , n,

This statement checks the status of the overflow fault indicator and executes a jump to n,

if it has been set (and turns it off), or a jump to n, if it has not been set.

IF EXPONENT FAULT n,; , n,

This statement executes a jump to n, if exponent overflow has occurred, or a jump to n, if

it has not occurred.

SENSE LIGHT i
IF (SENSE LIGHT i) n; , n,
IF (SENSE SWITCH j) n, , n,
For the 3600, i may assume the values 1 through 48, corresponding to the number of bits

in the D (display) register. j may be 1 through 6, corresponding to six console switches. In the

1604, the functions are simulated with programmed binary flip-flops.

In either case SENSE LIGHT i (for i # 0) sets the light i flip-flop, and SENSE LIGHT 0
turns off all sense lights. If light i is set (ON) when it is tested, it is turned OFF and a jump
to n;is executed. Similarly, a jump to n; is executed if SWITCH j is set. (In the 1604, the
setting of FORTRAN switches is a Monitor function.)

DOn i =m;.m,, mg

The various properties below describe the implementation of the DO statement in
FORTRAN-63.

1) m; , m,, m;are either fixed point constants or integer non-subscripted
variables.

2) m;, m,, mzassume positive values only.

3) The values of m, , m, , m; are assumed to remain constant until the DO
is satisfied.

4) If m; > m, (initially) the loop is not executed.

5) Within the range of statements bounded by the DO statement, i cannot appear

in any statement assigning a new value to it.

6) i has an identity and value local to the statements in the range of the
DO statement if it is
a) Not used as an operand.
b) No transfers out of the (physical)range of the DO exist.
Otherwise, its definition and value are global.

7) Nesting of DO statements is permitted to reasonably arbitrary levels.

GO TO n

GO TO n, (n;,nz, .., Ny)
GO TO (n; , nz , .., Ny),i
ASSIGN i TO n

CONTINUE

PAUSE n

STOP n

These statements are implemented according to their conventional definitions. PAUSE n

and STOP n will be implemented according to local requirements (return to monitor control,

etc.).

Input/Output Statements

The following statements are implemented according to their conventional definitions.

10

FORMAT

READ n,L

READ INPUT TAPE in,L

READ TAPE i,L - . .
i is a logical unit number

PUNCH n,L n is a FORMAT statement number,

a simple variable, an array identi-

PRINT n,L .
fier or a formal parameter
WRITE OUTPUT TAPE i,n,L L is an output variable list

WRITE TAPE i,L
END FILE i
REWIND i
BACKSPACE i

Four alternative forms for the READ/WRITE statements given above are:

READ (i,n)L Alternate form of READ
INPUT TAPE i,n,L and READ n,L
READ (i)L Alternate form of READ
TAPE i,L
WRITE (i,n)L Alternate form of WRITE OUTPUT
TAPE i,n,L,, PUNCH n,L and PRINT n,L
WRITE (i)L Alternate form of WRITE
TAPE i,L

The new data transfer statements which have been added are described below.

BUFFER IN (i,p) (A,B)
BUFFER OUT (i,p) (A,B)

i is a logical unit number (1 = i = 49)

p is the parity key

A and B are simple or subscripted variable
names defined in the same block of COMMON
or in unique storage. The address of B must

be greater than that of A.

11

BUFFER IN reads (with buffering) one physical record from logical unit i into memory
locations corresponding to A through B. The record is read in odd parity if p = 0, or in even

parity if p = 1.

BUFFER OUT writes (with buffering) the words from the memory locations corresponding
to A through B into one physical record on logical unit i. The record is written in odd parity if

p ~ 0. or in even parity if p = 1.

IF (UNIT, i) n; , n,, n3, Ny
i is a logical unit number

n; are statement numbers

This statement checks the status of previously initiated buffered operations. It also checks
for certain errors. The statement jumps control to:
n, if the previously initiated buffered operation
is not complete.
Ny if that operation is complete and NO errors
occurred.
ng if that operation is complete and an EOF or EOT
was encountered.
ny if that operation is complete and parity or
buffer length errors occurred.

IF (EOF, i) n,, N,
IF (IOCHECK, i) n,, n,

iis a logical unit number

n, , n, are statement numbers

12

IF (EOF) checks the previous READ or WRITE operation performed on unit i for an end-

of-file (end-of-tape) during that operation. If an end-of-file or end-of-tape was encountered,

statement n, is executed. If not, statement n, is executed.

IF (IOCHECK) checks the previous READ or WRITE operation performed on unit i for

parity errors. If a parity error occurred, statement n, is executed. If not, statement n, is

executed.

NOTE:

DECODE (i,n,v)L
ENCODE (i,n,v)L

L

The IF (EOF) and IF (IOCHECK)
statements may be used in any order,
but during an even parity READ check,
an end-of-file will produce both EOF
and IOCHECK error indications.

is the unit record length in characters
is a FORMAT statement number
is a simple variable or an array name

is a variable list

Two statements, ENCODE and DECODE, have been added to the language to permit the

transfer of information from an array to list variables and vice versa.

DECODE: the information in array v is converted according to FORMAT statement n and

stored in the list variables.

ENCODE: information in the list variables is converted according to FORMAT statement

n and stored in array v.

13

FORTRAN-63
IMPLEMENTATION NOTES

15

INDEXING

One of the principal considerations in the implementation of FORTRAN-63 is the efficiency
of the object code, particularly in regard to indexing. Although subscript expressions of arbitrary
form and type are permitted, emphasis is placed on the efficient implementation of the standard

subscript forms. These are:

C*i =d

The method employed by the compiler involves the concept of the index function.

Consider the three-dimensional array A(I,J,K). The address of an element of A, A(, j, k),
is given by
Locn A + (i—1) + (j— 1)*I + (k— 1)*I*J,
where i, j, k are subscript variables, and I and J are the values of the first and second dimen-

sions provided by a DIMENSION statement.

The above equation can be written:
Locn A — (1 + 1 * I + 1¥I*¥J) + (i + j*I + k*I*J)
Let
Locn A be the base address
—(1+1I+1%J) be the constant addend

i+ j*I+ k*I*J) be the index function, ¢,

The address of A (i,j,k) for a particular set of values of i, j, k is given by an address

(established by adding the constant addend to the base address) modified by a B-box containing

the value of the index function. Furthermore, if and when i, j, k change, only the value of the

index function need be changed, irrespective of the number of appearances of A (i,j,k) in the

17

program. This use of index registers for address modification is the principal way in which

indexing efficiency is obtained.

An index function is generated for every unique combination of subscript variables/multi-

pliers. For a change in i, the form of its evaluation is:

(L oy = Io)g) (multiplier) + &, ~ ¢,

thus necessitating at most one multiply per index function per change. The multiply is replaced
by an add if either the first or the second factor in the product is one. The first factor is

tested at execute time; the second is determined at compile time.

Subscript variables occurring as quantifiers in DO statements have certain restrictive
properties that can be utilized by the indexing algorithms. Furthermore, the nature of the
legitimate DO statement is such that, in many cases, all information pertinent to optimum
indexing is known at compile time. Thus, in a DO loop, or a nest of DO loops, if no branches
out of the range of the DO exist, then all indexing, counting, and testing is done in the index

registers. The following example illustrates the application of these criteria.

1 5 7 72

DIMENSION A(40,40),B(40,40),C(40,40)
DO 12 I = 1,40
DO 12 J = 1,40

caQd = 0.0
DO 12 K = 1,40
12 c(@,Jd) = C(Jd) + A(K)*B(K,J)

The above source program sequence is evaluated by the compiler as shown on the following
page.

18

Al

A2

A3

ENI
ENI
ENI
ENI
ENI
INI
ENA
STA
ENI
INI
INI
LDA
FMU
FAD
STA
INI
INI
1JP
INI
INI
1JP
INI
INI
1JP

o DN =T W R WON e e WY W NN O =W N = O

39
1641
1641
39

81
—1600

C-41
39
—1600

A-41
B-41
C-41
C-41
40

A3
40
40
A2

Al

Imax—1

Imin + (Jmax + 1)*40
Imin + (Kmax + 1)*40
Jmax —1

(Kmax + 1) + Jmin *40

(Jmin — Jmax —1)*40

Kmax — 1
(Kmin — Kmax — 1) *40

(Kmin —Kmax — 1)

19

ARITHMETIC STATEMENTS

The translation of arithmetic expressions by FORTRAN-63 follows the classical rules of
precedence: exponentiation, multiplication-division, addition-subtraction. The ordering is
left to right between parenthesized expressions. Within an expression, the compiler will
generate the most efficient ordering of operations governed by the rules of precedence and

commutativity.

Twelve instruction types are generated by the translator (exclusive of the index commands):

0 Load operand

1 Load negative operand

2 Add operand

3 Subtract operand

4 Multiply operand

5 Divide operand

6 Complement accumulator

7 Power -—=

8 Call function

9 Parameter -—-
10 Convert accumulator or operand
11 Store operand

Instructions are generated independently of the arithmetic mode and the type of operand.
The appropriate machine order, or a jump to a routine which executes the particular intent,

then replaces the generated instruction type.

The arithmetic mode of an expression is determined as follows: The arithmetic mode
corresponds to the highest order type of any operand within the expression. The order of the

types, from lowest to highest, is:

20

TYPE Integer
TYPE Real
TYPE Double
TYPE Complex

As an example, given TYPE declarations

a
TYPE Integer

c TYPE Real
d TYPE Double
e TYPE Complex

The expression ((((a + b) + c¢) + d) + e) is evaluated as follows:

LOAD a

ADD b (integer add)

CONVERT (2 + b) in accumulator to Real

ADD ¢ (floating add)

CONVERT ((a + b) + ¢) in accumulator to Double

ADD d (double floating add)

CONVERT (((a + b) + ¢) + d) in accumulator to Complex, i.e.,
(Real, 0)

ADD e (complex add)

The word CONVERT indicates that the conversions are effected by jumping to appropriate sub-
routines. In the 1604, ADD d is performed by a double precision floating add subroutine. In

both the 1604 and the 3600, ADD e is performed by a complex add subroutine.

21

LOGICAL ARITHMETIC

To provide consistency with earlier FORTRAN systems, a 48-bit Boolean arithmetic has
been implemented that is not dependent on the column 1 B-designator. In this arithmetic, the
operands must be real or integer, and the operators .AND. , -OR., .NOT. replace * + —

?

respectively., A statement previously written as:

1 b} 7 72
B A

B+ C*(—D)

is written in FORTRAN-63 as:

>
Il

B .OR. C .AND. .NOT. D

A logical expression is a proposition involving relational operators and logical connectors.
Relational operators are:
= # > < = =
A relation consists of two arithmetic expressions connected by a relational operator, and its

value is either true or false.

A logical connector is either A or v representing AND (conjunction) and OR (disjunction),

respectively. The unary operator — (NOT) permits negation of propositions.

These properties of relational operators and logical connectors are used in the two-branch

(logical) IF statement. This statement has the general form:
IF ((erel o) L(arela) L..) n,,n,

where « is an arithmetic expression
rel is a relational operator
L is a logical connector
n; is a statement number, executed if the proposition is TRUE

Ny is a statement number, executed if the proposition is FALSE

22

To express the values TRUE and FALSE, the compiler implements the expression in relation

to the numbers 1 (for true) and 0 (for false).

Let p be a relation such that if a is related to b as demanded by P, the a p b is true and
a true, 1, branch is executed; if the converse obtains, then a p b is false and a false, 0, branch

is executed. Further, let

a, b designate arithmetic expressions
and define
JNE jump if (expression) not equal to zero
JEQ jump if (expression) equal to zero
JLT jump if (expression) less than zero
JGE jump if (expression) greater than or equal to zero

The table shows the branching-logic for "Is a p b?"

Logical Expression True False
Relation Evaluation jump (1) jump (0)
a a JNE JEQ
a=»>b a -b JEQ JNE
a#b a -b JNE JEQ
a<b a -b JLT JGE
a=bhb a - b JGE JLT
a >b —a + b JLT JGE
a=» —a + b JGE JLT

23

Now recall the example given for the logical IF statement on page 8. That is:

If (((@*b) >c)Adv (e=f)) is true, go to n;; if not, go to nz.

The compiler implementation, based on the branching logic described above, is:

Expression True False
Evaluation Jump Jump
—a*b+c JLT o, JGE a5,
oy d JNE n, JEQ a5
oy e-f JEQ n, JNE n,

In expressions of the form — (£; A £ v £3) the negation is taken inside the parentheses:

(—4yv—L3)A—43). Here £ denotes branch; — 2 denotes reverse branch.

The arithmetic in a logical statement may be of any mode; all testing, however, is done
on single precision values (values appearing in the accumlﬂator). Thus, to test the real and
imaginary parts of a complex expression C for non-zero, an appropriate FORTRAN-63 logical

expression would be

(C A (C*(0., —1.))

ARBITRARY MODES OF ARITHMETIC

FORTRAN-63 provides the capability for generating calls to arithmetic library routines
from criteria based on the basic arithmetic symbols. Further, all control, input-output, data
allocations, and indexing is provided automatically from considerations derived from the

declarative statements.

To introduce a new type of arithmetic, no changes are required in the compiler. The
user indicates the type in a TYPE declaration and provides the library routine which executes
the instruction types generated. No more than three types (other than the standard five) are
permitted in any one program or subprogram. The same type, with different w and f desig-

nations, may be declared arbitrarily many times. The compiling technique is the following.

24

When a TYPE statement which is not standard is encountered, a call is generated to a
library routine whose identifier is name. The space requirements are calculated from w or
(the length of an element) and the DIMENSION statements; w and f also provide the length-per-

element parameter required by the indexing and input-output routines.

When an operand declared to be TYPE name (non-standard) occurs in an arithmetic
statement, the mode of arithmetic for that statement becomes that type. Mixed arithmetic
is permitted with standard operands. For each instruction type generated by the translator a
jump to routine name is placed in the object code. Associated with each jump are the param-

eters w or f, operand, instruction type.

In addition to the 12 instruction types,two I/O jumps are generated and invoked whenever
Sm.n is encountered in a FORMAT statement. The particular I/O jump is determined from the

type of operand associated with the S designation, and the statement type (INPUT or OUTPUT).

Thus, each library routine for a non-standard TYPE consists of 12 (instruction types)
+ 2 (I/O) sections, each implementing a particular instruction type. If some of the operations

are not defined, the number of sections can be correspondingly limited.

An example of an arbitrary mode of arithmetic is derived from J. H. Wegstein and
W. W. Youten, ' A String Language for Symbol Manipulation Based on ALGOL 60,"
Communications of the ACM, Vol. 5, No. 1, p. 58.

This subroutine translates a fully parenthesized arithmetic expression into Lukasiewicz' s
parenthesis-free notation. The input string is in S(1) through S(n), the output in P(i + 1) through
P(n).

25

Examples of output by the routine are:

b ouT
(((a + b)—c)*d) * — + abed
(a + (b — (c*d))) +a-—b *cd
(((a +Db) = (c*d))/e) / —+ ab * cde
(((@a + (b — c))*((d/e)+))—g) —* +a—bc + /defg
((@a + b) * (c —d)) * + ab — cd

Source Program
1 5 7 72

SUBROUTINE POLISH (S,P,T,N)
TYPE BYTE (/6) S,P,T
DIMENSION S(N), P(N), T(N)
COMMON, I
K=13%$I=N$J=N

IF (S(J)=1H))8,2

IF (S(J)=1H+vS(J)=1H-V S(J)=1H*VS(J)=1H/)3,4
T(K)=S(J) $ K=K+1 $ GO TO 10

IF (S(J)=1H()5,6

P()=T(K—1) $ K=K—1$ GO TO 7

P(I)=S(J)

I=I-1

IF (J=1)9,10

RETURN

J=J-1$% GO TO 1 $ END

O Lo =T U WN

bt

The BYTE library routine for this routine would require four sections: Load, Convert,

Subtract, Store; the codes would be:

Load: Load the 6 (f) bits of the operand into the
lower part of the accumulator.
Convert: Store the 6 (f) lower bits of the operand

in erasable storage.

26

Subtract: Fixed point subtract the operand
(erasable storage).

Store: Extract the 6 (f) lower bits of the
accumulator and store them in the

operand location.

COMPILER STRUCTURE

The FORTRAN-63 compiler consists of a translator and an assembler. The translator
reads the source language (once) from an input tape. The translator and the assembler operate
on memory contained lists and communicate with each other via these lists: The output (object

program) is relocatable binary card images on magnetic tape.

Compilation proceeds subprogram by subprogram, each subprogram being independently
compiled. If, during the compilation process, the lists generated for a subprogram require
more than the available core, the excess is recorded on and read back from a scratch tape.

4
¥

Only for very large subprograms will a scratch tape be required.

27

Other publications concerning programming and pro-
gramming systems for the Control Data Corporation
3600, 1604, and 1604-A Computers are:

PERT #133
1604 Programming Manual #167A
Fortran Auto Tester #186A
Satellite Programming #187
Fortran-62 Reference Manual #506
CO-OP Monitor/Programmer's Guide #508
CO-OP Monitor/Operator's Guide #509
CODAP-1 Reference Manual #510
CDM2 Linear Programming System #511
3600 Preliminary Reference Manual #523

28

CONTROL. DATA SALES OFFICES

ALBUQUERQUE, N. M., 937 San Mateo, N.E., Phone 265-7941

BEVERLY HILLS, CALIF,, 8665 Wilshire Boulevard, Phone OL 2-6280

BIRMINGHAM 13, ALA,, 16 Office Park Circle, Phone TR 1-0961

BOSTON, MASS., 594 Marrett Road, Lexington, Mass., Phone VO 2-0002

CHICAGO, ILL., 840 South Oak Park Avenue, Oak Park, lli., Phone 386-1911
CLEVELAND, OHIO, Center Building, 46 West Aurora Road, Northfield, Ohio, Phone 467-8141
DALLAS 35, TEXAS, 2505 West Mockingbird Lane, Phone FL 7-7993

DAYTON 29, OHIO, 10 Southmoor Circle, Phone 298-7535

DENVER 3, COLORADO, 655 Broadway Building, Phone AC 2-8951

DETROIT, MICHIGAN, 12800 West Ten Mile Road, Huntington Woods, Michigan
HOUSTON 27, TEXAS, 4901 Richmond Avenue, Phone MA 3-5482

ITHACA, NEW YORK, Cornell University, Rand Hall, Phone AR 3-6483

KANSAS CITY 6, MISSOURI, 921 Walnut Street, Phone HA 1-7410

MINNEAPOLIS 20, MINN., 8100 34th Avenue South, Phone 888-5555

NEWARK, NEW JERSEY, Terminal Building, Newark Airport, Phone MI 3-6;1-46
NORFOLK 2, VIRGINIA, P.O. Box 1226, Phone 341-2245

ORLANDO, FLORIDA, P.O. Box 816, Maitland, Florida, Phone 647-7747

SAN FRANCISCO, CALIF,, 885 North San Antonio Road, Los Altos, Cal., Phqne 941-0904
WASHINGTON 16, D.C., 4429 Wisconsin Avenue N.W., Phone EM 2-2604

WASHINGTON 10, D.C., 1515 Ogden Street N.W,, Phone RA 6-4983

CONTROL DATA

CORPORATION

8100 34TH AVENUE SOUTH, MINNEAPOLIS 20, MINNESOTA

PUB. NO. 514

	000a
	000b
	001
	002
	003
	004
	005
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	xBack

