G»

60100000

CONTROL DATA
CORPORATION

CONTROL DATA®

6000 SERIES

' COMPUTER SYSTEMS

HARDWARE REFERENCE MANUAL

New fea‘c].lres, as we?ll as changes, deletions, and additions to information in this manual, are indicated
by bars in the margins ar by a dot near the page number if the entire page is affected, A bar by the page
number indicates pagination rather than content has changed.

REVISION RECORD

REVISION DESCRIPTION
This mapual obscoletes the 6600 Computer System Reference Manual, Pub. No. §0045000.
A Publication Change Order CA13186, Addition and deletion of information for technical accuracy.
(4-5-66) Title changed to 6400/6600 Computer Systems Reference Manual. This edition obsoletes all
previous editions.
B Publication Change Qrder 14568, Pages 3-13, B-4, B-9, B-12, B-13, B-14, B-15, B-16, -5
(9-1-66} and Index~-2 revised,
C Publication Change Order 15036, Page D-6 revised.
(10-27-66)
D Publication Change Order 15866, Addition of 8500 information; title chanped to 6400/6500/6600
{2-21-67) Computer Systems Heference Manual, The following pages revised: cover and title page, iv, v,
frontispiece, 1-1, 1-3, 1-3, 1-4, 1-5, 1-7, 1-8, 3-1, 3-2, 3-6, 3-7, 3-12, 3-16, 3-20, 3-51, 4-1,
4-13, 4-24, 4-35, 4-20, 4-30, 4-36, 5-1, 6-1, 6-4, Appendix A title papge, A-1, A-2, A-3, A-4,
A-5, A-6, B-2, 3-3, B-5, B-6, B-7, B-8, C-1, D-1, D-2, -3, D-4, D-6, and Comment Sheet.
E Frield Change Order 15829. Chenges included in Publications Change Order 19635,
(5-16-87)
F Publications Change Order 19635, Deletion of ECS information, addition of COMPASS mnemonics,
{b-16-67) miscellaneous additions and corrections. The following pages revised: Title Page and Record of
Revisions, iii, jiv, v, 1-3, 1-8, 3-8, 3-11, 3-23, 3-46, 3-47, 4-7, 4-10, 4-25, 4-26, 4-28, 4-30,
4-31, 4-37, 4-38, 4-38, 6-2, 6-4, A-3, A-4, B-6, Appendix D Title Page, D-1 through D-6,
Index-1, and Index-2.
G Manual revised; includes Engineering Change Order 20617, publication change only. Papes 3-8,
{0-26-68) 3-13, and 4-8 revised,
H Manual revised; includes Engineering Change Order 21720, publication change only. Pages iii, v,
(2-21-69) 3-3, 3-4, 3-5, 3-6, 3-7, 3-34, 3-35, 3-42, 3-43, D-2, D-4 and D-5 revised.
J Manual revised; includes Engineering Change QOrder 23887, publication change only, FPages iv,
(11-17-69) 1-8, and 6-1 revised, Pape ¥-1 and Appendix E (Title page) added.
K Manual revised; includes Engineering Change Order 25288, publications change only. The following
(8-4-70) pages revised: Covers, iv, v, Frontispiece, 1-1 through 1-6, 1-8, 2-1 through 2-3, 3-1 through
3-8, 3-21, 3-22, 3-23, 3-25, 3-28, 3-27, 3-39, 3-41, 3-42, 3-48, 3-47, 3-48, 4-1, 4-2, 4-5,
4-10, 4-24, 4-25, 4-2b, 4-31, 4-33, 4-34, 5-1, 6-1, 6-3, 6-4, A-1, A-2, A-3, A-4, B-1, B-6
through B-13, Appendix D, divider, D-1, D-2, D-3, D-5, and E-1, The following papes added:
1-9, 1-10, Appendix F.
L Manual revised; includes Engineering Change Order 26843, publications change only. Pages
{1-10-71) revised: inside front cover, 1-3, 3-13, 3-18, 1B-6 and B-8. '
M Mznual revised; includes Engineering Change Order 28208 covering 6000 Station and 6200 System.
{6-20-71) Publications change only. Pages revigsed: Cover, Titfle Page, Record of Revision, iii, iv, v,

Frontispiece, 1-1 through 1-11, 2-1, 3-1, 3-2, 3-6, 3-7, 3-9, 3-39 through 3-42, 4-1, 4-24,

Puhlication No.

60100000
Address comments concerning this
REVISION LETTERS I, 0, @ AND X ARE NOT USED manual to:
Control Data Corporation
Fublications and Graphics Division
4201 North Lexington Avenue
© 1966, 1967, 1968, 1889, 1970, 1871, 1972, 1973, 18974, 1975, 1976, 1878 3t. Paul, Minnesota 55112

by Conirol Data Corporation

or use Comment Sheet in the back of

Printed in the United States of America this manual,

REVISION RECORD (CONT'D)

REVISION DESCRIPTION .
M 4-25, A-1, A-2, A-3, B-2 through B-8, B-14, E~1, F-2, Index-1, Index-2, Comment Sheet,
{6-20-71) Back Cover. (Revision authorized by Engineering Change Order 26925 but changes made according
to Engineering Change Order 28208.)) I
N Manual revised; includes Engineering Change Order 26379, Pages iv, 3-15, 3-36, 3-37, 3-41, 3-42;
(3-10-72) 3-43, 4-27, 6-3, B-6, B-14, Appendix C (divider), C-1, C-2, F-6, ¥-7, and Index 1 are revised.
Page b'-8 is deleted. L)
P Manual revised; includes Engineering Change Order 32482, Inside front cover, and pages 3-6,
(9-8-72}) 3-13, 3-22, 3-23, 4-10, 4-35, B-6, B-7, B-B, Index 1 and Index 2 are revised, Inside back
cover and appendix D are deleted. (Revision authorized by Engineering Change Order 28208
but changes made under revision M.)]] L
R Engineering Change Order 30817; publication change only. Changes have been covered under
{1-15-73) revision N.]] : o o)
5) Manual revised; includes Engineering Change Order 30638, Page 3-41 is reviged.
{1-15-73) . .
T Engineering Change Order 30866; no effect to this manual.
{1-15-73)) . .
u Manual revised; includes Engineering Change Order 31028, Page 3-41 is revised.
(1-15-73)
v Engineering Change Order 324885; publication change only. Changes have been made under
(1-15-73) revision P.) .
w Manual revised; includes Engineering Change Order 33032. Page 3-41 is revised.
(1-15-173)
Y Manual revised; includes Engineering Change Order 33606, Papges 3-21, 3-25, 4-7, 4410, 4-28,
(3-14-74) 4-30, 4-31, 4-32, and F2 are revised.) o]) ’
Z . Manual revised; includes Engineering Change Order 35100, Page 6-3 is reviged.
- {7-2-74) _ o
AA Manual revised; includes Engineering Change Order 35196. Page 4-31 is revised,
(7-2-74) _ N
AB ‘Manual revised; includes Engineering Change Order 35579. Page 6-3 is revised.
(9-9-74) _ _
AC_ Manual revised; includes Field Change Order 34717. Pages iv, 4-25, 4-26, 4-27, 6-3, 6-4, and
{(10-24-74) =T are revised.] o _) .)
AD Mamual revised; includes Engineering Change Order 35678, Pages iii, v, 3-16, 3-17, 3-21, 3-40,
(12-3-74) 3-41, 4-8, and 4-9 are revised, Pages 4-9.0 and 4-9.1 are revised, ‘
‘ AR Manual revised; includes Engineering Change Order 36046, Page 3-48 is revised.
{2-7-75}) _ .
AF Manual revised; includes Engineering Change Order 36469, Pages 3-16 and 3-35 are revised.
. {B-14-75). L
AG) Manual revised; includes Engineering Change Order 36700. Front Cover, Title Page,: iv, 3-2%,
{10-23-75) and Appendix D {divider) are revised. Page D-1 is added. . .
AH Manurl revised; ineludes Fngineering Change Order 368584, Page B-13 is revised,
{3-4-76)))
Al . Manual rgﬂsgdﬂnﬂndgﬂnghgexiﬂg_ﬂbﬂng&ﬂnﬂgLHTBSE. Page 4-7 is reviged
(2~15-78)

50100000

Publication No,

REVISION RECORD (CONT'D)

REVISION _ DESCRIPTION
AK Manugl revised; in_cludes Engingering Change Order 38414, Papges iii, 2-2, 2.3, 2.4, 3-3 3-12
{2-15-78) and 3-13 are revised. : ‘
AL Manual revised; includes Engineering Change Order 39088, Pages 3-31, 3-33, 3-41, and 4-7
{B-29-78} are revised. : ’

5AVID E LEE

Publication No.
60100000

ii-h

1. SYSTEMS DESCRIPTION

Introduction
Systems Characteristics Summary
6000 Station |
6200 Computer
6400 Computer
6500 Computer
6600 Computer
6700 Computer

6416 Augmented I/O Buffer
and Control

TUnified Central Processor

CONTENTS

Description of Central
Processor Instructions

Program Stop and
No Operation

Increment
Fixed Point Arithmetic

10 Functional Unit Central
Processor

Peripheral and Control
Processor

-4 Logical

-5 Shift

-6 Floating Point Arithmetic
L Branch

: Extended Core Storage
1-8 Communication
1-9

4. PERIPHERAL ANDCONTROL

1-9 - PROCESSORS

1-9 Organization

Central Memory
System Options

2., CENTRAL MEMORY

Organization
Address Format
Centiral Memory Access

Memory Protection

3. CENTRAL PROCESSOR

Organization
Central Processor Programming -
Functional Units
Instruction Formats
Operating Registers
Exchange Jump
Exit Mode
Floating Point Arithmetic
Fixed Point Arithmetic

3-22

3-23
3-24
3-28
3-29 -

" 3-32

3-37
3-43

3-46

4-1

1-10 Peripheral Processor Programming 4-6

1-11 Instruction Formats
Address Modes
Registers
Description of Peripheral
2-1 Processor Instructions
-1 No Operation
-1 Data Transmission
-3 Arithmetic
Shift
Logical
3-1 Replace
3-4 Branch
3-5 Ceniral Processor and
3.5 Central Memory
3§ Input/Output

Access fo Central Memory

3-9

3.11 Input and Output
3_15 Real-Time Clock
3-21

iii

4-6
4-8
4-8

4-9,1
4-10
4-11
4-13
4-16
4-16
4-19
4-22

4-24
4-27
4-32
4-55
4-39

Rev AK

5. SYSTEM INTERRUPT Dead Start 6-1

Introduction _ Load Mode -1
Hardware Provisions for Interrupt = 5-1 Sweep Mode o 6-2
Exchange Jump - Dump Mode - 6-2
Channel and Eguipment Status 5-1 Console . G4
Exit Mode _ Program/(l‘onstant Mode . 6-4
Keyboard Input : . 6-4
6. MANUAL CONTROL __ ‘Display e Bg
Introduction 6-1
Appendix A Augmented I/0 Buffer and Control (64 16)
Appendix B _ " Instruction Execution Times
Appendix C Floating Point Arithmetic Operatlon Tables'
Appendix D Increment Adder
Appendix E 6415-7,:6415~8, and 6415-9 Computer Systems
Appendix F Central Exchange Jump (CEJ) and Monitor Exchange '
Jump (MET) o
...Central Memory Access Priority (CMAP)
Rev AG iv

Block Diagram
Block Diagram
Block Diagram
Block Diagram
Block Diagram
Block Diagram
Block Diagram
Memory Map

of 6000 Station
of 6200 System
of 6400 System

of 6500 System

of 6600 System
of 6700 System
of 8416 Unit

FIGURES

Central Processor Instruction -

Formats

Central Processor Operating

Registers

TABLES

Central Processor Differences

Functional Units
Exit Mode: Address Qut of

Bounds

Range of Permissible

Exponents

5 Indefinite Forms

Overflow and Underflow

Conditions

3-1 3-7

35

Exchange Jump Package

Detecting and Handling
Central Processor Stops

Flow Chart: 6000 Systems
‘Peripheral and Control

Processors

Slot Block Diagram

Dead Start Panel
Display Console
Sample Display

Central Processor
Instruction Designators

Addressing Modes for
Peripheral and Control
Processor Instructions

Peripheral and Control
Processor Instruction

.Designators

3-14
4-1

4-5
4-9 |
6-3

' 6-5
6-6

3-22
4-8

4-10

Rev AD

otoer

A CONTROL DATA 6000 SERIES COMPUTER SYSTEM

Display console {foreground) - includes a keyboard for manual input and operator
control and two 10-inch display tubes for display of problem status and operator
directives.

Main frame (center} - contains 10 Peripheral and Control Processors, Central Pro-
cessor, Central Memory, some I/O aynchronizers. The main frame in this photo is
that of the 6600 Computer System: the main frames for the other 8000 series systems
differ in physical appearance depending on options included in the systems.
CONTROL DATA 607 Magnetic Tape Transport (left front) - 1/2-inch magnetic tape
units for suplementary storage; binary or BCD data handled at 200, 556, or 800 bpi.

CONTROL DATA 626 Magnetic Tape Transport (left rear) - 1-inch magnetic tape
units for supplementary storage; binary data handled at 800 bpi.

CONTROL DATA 405 Card Reader (right front) - reads binary or BCD cards at 1200
¢ard per minute rate,

Disk file {right rear) - supplementary mass siorage device; holds 500 million bits of
information.

1. SYSTEM DESCRIPTION
INTRODUCTION

The CONTROL DATA® 6000 Series Computer systems consist of a main frame and a
variable assortment of peripheral equipment. A complete system requires input and
output peripheral equipment such as card readers, magnetic tape units, mass storage
units (disk or drum), printer units and in most systems a console. Extended Core

Storage (ECS) can be included in some systems to augment rapid access MmMemory.

The main frame contains the Peripheral and Control Processors {(PPUU's)and the data
channels which provide access to and from peripheral equipment. The Central Core
Memory (CM) and Centtal Processor or Processors (CPU's) are also on the main

frame, Optional couplers or controllers are included in some system main frames,

This manual gives descriptions and programming information for the main frame.
Descriptions and programming information for the peripheral equipment (and their

controllers) is covered in separate manuals which are provided for each equipment

type.

1-1 Rev M

SYSTEM CHARACTERISTICS SUMMARY

6000 Station

. Basic'Uniﬁed Arithmetic Central Processor

e 7, 8, 9, or 10 Peripheral and Control Processors

s Central Memory of 32K or 65K 60-bit words

e 9, 10, 11, or 12 Input/QCutput Data Channels (dependent on number of

Peripheral and Control Processors)

e Interface for one 7600 Computer System PPU Channel

INTERFACE
FO
7600 CHANNEL

iy
-2
-y
COMMON
TO/FROM] oy DATA
==
PERIPHERAL CHANNELS
EQUIPMENT <> 9,10,1I
«s] OR
{2 USED
-
g
-2
L

Rev M

PERIPHERAL AND

CONTROL PROCESSORS
7,8,9 OR 10 USED

Figure 1-1.

CENTRAL
MEMORY
32K OR
65K

e UNIFIED
OPERATING
ARITHMETIC
REGISTERSH SECTION

CENTRAL PROCESSOR

Block Diagram of 6000 Siation

6200 Computer

e Basic Unified Arithmetic Central Processor
e 7, 8, 9, or 10 Peripheral and Control Processors

¢ Central Memory of 32K or 65K of 60-bit words
e 9, 10, 11, or 12 Input/Output Data Channels (dependent on the number of

Peripheral and Control Processors)

- !_‘___——-__—'-“—--“_-_'[
a 1
-] comer | |
TO/FROM - o [cENTRAL|) BASIC i
PERIPHERAL __| T o memory) | | 24 UNIFIED | |
EQUIFMENT S, 10,1 32K OR I REGISTERS ARITHMETIC '
- OR 65K ! SECTION | . |
< 12 USED | '
- | !
- " 'l
e I_-_____-..._-_.______.-.___l
CENTRAL PROCESSOR

PERIPHERAL AND
CONTROL PROCESSORS
7,8,9 OR 10 USED

Figure 1-2. Block Diagram of 6200 System

1-3 Rev M

6400

TO/FROM’
PERIPHERAL
EQUIPMENT,
CONSOLE

Rev M

Computer

Unified Arithmetic Central Processor

7, 8, 9, or 10 Peripheral and Control Processors

Central Memory of 32K, 65K, or 131K 60-bit words

Peripheral Processors)

Interface Coupler for Extended Core Storage

COUPLER FOR
EXTENDED CORE
STORAGE OPTION

h

8, 10, 11, or 12 Input/Output Data Channels (dependent on the number of

PERIPHERAL AND
CONTROL PROCESSORS
7.8,9 OR (0 USED

Bigure 1-3.

1-4

< !_'_'_'_'_'"'_'
- / [
g n T
<] COMMON _ : [
DATA [cENTRALE |
= UNIFIED
CHANNELS MEMORY [OPEF?:TING ARITHMETIC
=» 9,00, 32K, 65K | REGISTERS SECTION
- OR OR 131K .
i2 USED
- I
- i
-]
-

CENTRAL PROCESSOR

Block Diagram of 6400 System

6500 Computer

TO/FROM
PERIPHERAL
EQUIPMENT,
CONSOLE

Two Unified Arithmetic Ceniral Processors

10 Peripheral and Control Processors

Central memory of 65K or 131K §0-bit words .
12 Input/Output Data Channels

Interface Coupler for Extended Core Storage

COUPLER FOR
EXTENDED CORE
STORAGE OFTION

UNIFIED

ARITHMETIQ
SECTION

" PERIPHERAL AND
CONTROL PROGESSORS
10 USED

UNIFIED
ARITHMETIC

= !— _ i
-3 i | 29
< t | OPERATING
<s| coMMON | [REGISTERS
DATA '
<3 CHANNELS ey I
< 12 USED 65K i
sl OR
131K ‘)
-] I3
i |oPERATING
- | |Resisters
- 1
< ’_..-_______._.

|

|

l

|

|

SECTION I
]

CENTRAL PROCESSORS

Figure 1-4. Block Diagram of 6500 System

1-5

Rev M

6600 Computer

TO/FROM
PERIPHERAL
EQUIPMENT,
CONSOLE

Rev M

10 functional Unit Type Central Processor

10 Peripheral and Control Processors

Central Memory of 32K, 65K, or 131K 60-bit words

12 Input/Qutput Data Channels

Interface Coupler for Extended Core Storage

COMMON
DATA
CHANNELS

2 USED

Lo 0 080000

PERIPHERAL AND
CONTROL PROCESSORS
10 USED

Figure 1-5,

COUPLER FOR
EXTENDED CORE
STCRAGE OPTION

]

MULTIPLY

MULTIPLY
DIVIDE

1
|
|
i
20 L ——fToNe Ao]|
)
I
1
|
1
I
]
|
]

CENTRAL

MEMORY
e—— OPERATING
3212; 65K REGISTERS
R
131K —{"BODLEAN |

|

b

| [

) INCREMENT
| |
| [BRanch]

CENTRAL PROCESSOR

Block Diagram of 6600 System

1-6

6700 Computer

e 10 functional Unit Type Central Processor

e BSecondary Unified Arithmetic Central Processor

o 10 Peripheral and Control Processors

e Central Memory of 60K or 131K 60-bit words

s Central Exchange Jump/Monitor Exchange Jump {CEJ/MEJ) Capability
e 12 Input/Qutput Data Channels

e Interface Coupler for Extended Core Storage

Y U

e
! ADD
COUPLER FOR' ! MULTIPLY
Tp%m_?&% _ EXTENDED CORE .I MULTIPLY
_ STORAGE OPTIO i
EQUIPMENT, . N % o DIVIDE
CONSOLE
! 24 LONG ADD
| OPERATING
- i REGISTERS SHIFT
<o , | BOOLEAN
< ! INCREMENT
<y COMMON i INCREMENT,
CENTRAL |-
B e MEMORY | [BrANGH]
< 12 USED 85K | L BRANCH
= on i
B3Ik [,
- l
-~ 1
- |
- g 24 UNIFIED
|—=4 OPERATING ARITHMETIC
i REGISTERS SECTION
PERIPHERAL AND L
CONTROL PROCESSORS vl s TS
i0 USED CENTRAL PROCESSORS

Figure 1-6, Block Diagram of 6700 System

1-7 Rev M

6416 Augmented 1/0 Buffer and Control

e 10 Peripheral and Control Processors
e Central Memory of 16K 60-bit words

e 12 Input/Qutput Data Channels

) (o
L 8
-
7
-
COMMON ~
o <
DATA s < b
TO/FROM <> CHANNELS % e
PERIPHERAL _ | 15" 1skp BARREL
EQUIPMENT G 16K
- 2 0
g3l
- 4
- 3
i 2 i

PERIPHERAL AND
CONTROL PROCESSORS
10 USED

Figure 1-7. Block Diagram of §416 Unit

Rev M 1-8

Unified Central Processor

e 60-bit word 1length

e Computation in Floating Point and Fixéd Point, Single and Deuble Precision
e 24 operating registers per Central Processor

e Memory transfer rate of up to one word each 100 nsec

e 60-bit instrﬁction Bu_ffér register

NOTE

For programming purposes the basic and the regular
unified processors differ only in their speed of operation.

10 Functional Unit Central Processor

e 60-hit word length

e Computation in Floating Point and Fixed Point, Single and Double Precision
e 24 operating registers per Central Processor

e Independent arithmetic functional units for concurrent operations

e Memory transfer rate of up to one word each 100 nsec

e Instruction stack which holds up to 27 instructions for simplified access

Peripheral and Control Processor

e 12-bit word length
e Computation in Fixed Peint arithmetic
e Time-shared access to Central Memory

e Internal memory of 4, 096 12-bit words

1-9 Rev M

Central Memory

Capacities of 16, 384, or 32, 768, or 49,152, or 65,536, or 98, 304, or 131,072
60-bit words

Independent bank construction, to allow separate overlapped access to each
4K bank (called phasing)

e Transfer rate of up to one word each 100 nsec in phased operation

Rev M

SYSTEMS OPTIONS

Various options can be added to increase the capabilities of a system or to upgrade one
system to another higher configuration, The list of options shown here is not neces-

sarily complete, since new options are continually being introduced.

e Addition of Central Exchange Jump/Monitor Exchange Jump Capability.
(S8TD Option 10103 for 6400 and 6500 Systems or STD Option 10104 for 6600
Systems.) This is standard on 6700 Systems. See appendix F.

e Central Memory increase to 131K (STD Option 10105 for 6600 Systems)

o Central Memory increase to 65K (STD Option 10112 for 6400 Systems)

e Conversion of 6400 to 6500 System (STD Option 10117)

e Central Memory increase to 131K (STD Option 10119 for 6400 or 6500 Systems)
e Central Memory increase to 65K (STD Option 10161 for 6600 Systems)

e Addition of Central Memory Access Priority capability {STD Option 10169 for
6400, 6500, 6600 Systems)

e Addition of 10 Peripheral and Control Processors and 12 Data Channels (STD
Option 10173 for 6400, 6500, 6600, 6700)

e Addition of Secondary Central Processor (STD Option 10174 for 6600 Systems)

e Ceniral Memory Increment of 16K (STD Option 10177 for 6000 stations, 6200,
6400 Systems)

e Central Memory Increment of 32K (STD Option 10178 for 6400 Systems)
e Central Memory Increment of 16K (STD Option 10179 for 6600 Systems)
e Central Memory Increment of 32K (STD Option 10180 for 6600, 700 Systems)

e Addition of one Peripheral and Control Processor to systems with less than 10
(STD Option 10201) See appendix K,

e Conversion of 6200 to 6400 or of 6000 to 6400 system (STD Option 10225)

e Addition of Extended Core storage (standard product; see ECS Reference Manual)

i-11 _ Rev M

2. CENTRAL MEMORY

ORGANIZATION

Ceniral Memory is organized into 32K, 49K, 65K, 98K, or 131K words (60-bit) in
banks of 4096 words each, The banks are logically independent, and consecutive
addresses go to different banks. Banks may be phased into operation at minor cycle*

intervals, resulting in the high Central Memory operating speed. The Central
Memory address and data control mechanisms permit a word to move to or from

Centiral Memory every minor cycle

ADDRESS FORMAT

The location of each word in Central Memory is identified by an assigned number
{address), which consists of 18 bits. Address formats are shown below for 8-bank
(32K), 12-bank (49K), 16-bank (65K), 24-bank {98K), and 32-bank (131K) systems.
Within the address format, the bank portion specifies one of 8, 16, or 32 banks; the
12-bit address defines one of 4096’ separate locations within the Spet:lfled bank,

V/A‘ ADDRESS !BANKI 8-Bank {32K) Format .
iT 1514 32 0

**% i I ADDRESS IB“NK] 12- Bank (4‘]!\) Format

L ITIEI51413 32 0 .
% ADDRESS :IBANK] * 16-Bank (65K) Format
71615 43) :
T

-**.m !] - ADDRESS ’BA"K [24-Bank {98K) Format
17 181514 43) -
% ADDRESS | BANK I 32-Bank {131K) Forrmat
716 54 0

Addresses written or compiled in the conventional manner reference conseciitive
banks and hence make most efficient use of the bank phasing feature.

CENTRAL MEMORY ACCESS _
References to Central Memory from all areas of the é'ystem (Central Processor and
Peripheral and Control Processors) and Extended Core Storage go to a common
address clearing house (called a stunt box in the 6600/6700) and are sent from there
to all banks in Central Memory. The stunt box accepts addresses from the various

sources under a priority system and at a maximum rate of one address every minor
cycle.

-ernor cycle - 100 nsec, 15 14 18 15
**One bit of bank portion is supplied by address Bit2™" or 277 (49K)or 27 + 277, (88K},
depending on the Section{Chassis configuration selected.

2-1 Rev M

An address is sent to all banks, and the correct bank, if free (the bank ignores the
address if it is busy processing a previous address)}, accepts the address and indicates
this to the stunt box., The associated data word is then sent to or stored from a central
data distributor. The stunt box issues addresses at a maximum rate of one every

minor cycle,

The stunt box saves, in a hopper mechanism, each address that it sends to Central
Memory and then reissues it (and again saves it) under priority control in the event-
it is not accepted because of hank conflict, The address issue-save process repeats
until the address is accepted, at which time the address is dropped from the hopper
and the read or store data word is distributed. A fixed time lapse from address-issue

to the memory-accept synchronizes the action taken,

The hopper (i, e., a previously unaccepted adﬁress) has highest priority in issuing ad-
dresses to Central Memory. The Ceniral Processor and Peripheral and Control
Processors {all 10 share a common path 1o the stunt box) follow in that order. In the
6700, the 6400 type Central Processor is ha.ndled as ﬁ l’c were a Perlpheral and

Control Processor (i.e., third prlorlty)

A data distributor Which‘is .con.:tmer:l. to all proces sors"hanﬂleé all Idata words to and
from Central Memory (the Peripheral and Conirol Processors share one read path
and one write path to the distributor}), A ser_iee' of buffer regis_‘l:ei's in the distributor
provides temporary storage for words to be written into storage when the addresses

are not immediately accepted because of bank conflict.

Each group of four banks communicates with the distributor on separate 60-bit read
and write paths, but only one word moves.on the data paths at one time, However,
words can move at minor cycle intervals between the dlstrlbutor and Central Memory

or dlstrlbutor and address- sender

Data words and addresses are correlated by control mformatmn (tags) entered in the
stunt box with the address. The tags define the address sender orlgm/destmatlon

of data, and whether the address is a Read, Write, or Exchange Jump address.

The {irst Ceniral Memory Write after a dead start on a 6600 with more than 10 PPU-,
may not be valid due to Master Clear not clearing the PPU B Write Distributor. The

Write operation after dead start could OR data with the data lefi in the Write Distributor

Rev AK 2-2

!

at dead start time. The system can control this problem by rewriting the first word
written to Central Memory by PPU B. All Ceniral Memory Writes thereafter will be
valid,

The first Central Memory Write after a dead start may not be valid due to Master
Clear not clearing the PPU A Write Distributor on a 6400. The Write operation after

& dead start could OR data with the data left in the Write Distributor at dead start time.
The system can control this problem by rewriting the first word written to Central
Memory. All Central Memory Writes thereafter will be valid. '

MEMORY PROTECTION

All Central Processor references to Central Memory for new instructions, or to read
and store data, are made relative to the Reference Address. The Reference Address
defines the lower limit of a Central Memory program. Changes ic the Reference

Address permit easy relocation of programs in Central Memory.

During an Exchange Jump, an 18-bit Réference Address and an 18-bit Field Length
{parts of the Exchange Jump package) are loaded into their respective registers to
define the Central Memory limits of the program initiated by the Exchange Jump.

The relationship between absolute memory address, relative memory address, Refer-
ence Address (RA), and Field Length (FL) is indicated in Figure 2-1.

MEMORY MAP

ooo 000

FIRST LOCATION

IN PROGRAM AREA
ABSOLUTE RELATIVE
MEMBORY MEMORY RA
ADDRESS ADDRESS
RA P=0 MRS -—#—
RA+P P<FL NSNS FL PROGHAM AREA
RA 4-FL P=FL ALY

SOME ARBITRARY
LOCATION IN
FROGRAM AREA

N P

377 1T I

Figure 2-1. Memory Map

T

LAST LOCATION +1
IN PROGRAM AREA

2-3 Rev AK

The following relationships must be true if the program is to operate within its bounds:

RA < (RA + P) < (RA + FL) (Absolute Memory Addresses), or
0< P<FL {Relative Memory Addresses)

NOTE
1) FL is the number of §0-bit words comprising the program. It is not an address.
2) To avoid possible "artificial" range faults, instructions should not be stored
near the upper limit address of the Field Length. For example, using
ahsolute address [(RA + FL) - 1] for an instruction produces a range fault
when the {look-ahead) Read Next Instruction occcurs to (RA + FL). Data should

always be stored in addresses near or approaching absolute location (RA + FL),
rather than instructions. EETEE PR : _

An optional exit condition (EM in the Exchange 'Jump package) allows the Central Pro-
cessor to stop on a memory reference outside the 1imits expressed above.

System Dump Routines performed at dead start time may contain invalid register data,

because Master Clear changes the CPU registers before they are exchanged into
Central Memory,

Rev. AK 24

ORGANIZATION

3. CENTRAL PROCESSOR

The Central Processor is an extremely high-speed arithmetic processor which com-

municates only with Central Memory. It consists (functionally) of an arithmetic unit

and a control unit., The arithmetic unit contains all logic necessary to execute the
arithmetic, manipulative and logical operations. The control unit directs the arithmetic

operations and provides the interface between the arithmetic unit and Central Memory.

It also performs instruction retrieving, address preparation, memory protection, and

data retrieving and storing,

The Central Processor is isolated from the Peripheral and Control Processors and is

thus free to carry on high-speed computation unencumbered by input/output require-

ments,

The organization of the unified arithmetic Central Processor differs from the 10

functional unit type Central Processors.

TABLE 3-1.

The differences are tabulated in ‘Table 3-1.

CENTRAL PROCESSOR DIFFERENCES

System Instruction Registers Arithmetic Section
Unified Instruction Buffer Register: Executes instructions in
Arithmetic holds one 60-bit instruction | serial order. Requires no
Central word, reservation control,
Processors

10 Functional
Unit Type
Central
Processor

Instruction Stacl:: holds eight
80-bit instruction words.

Ten functional (arithmetic &
logical) units operate con-
currently on unrelated instruc-
tions, Require reservation
control,

Rev M

With the exception of differences noted in the above table, the unified arithmetic
Central Processor operation i=s identical to the operation of the 10 Functional Unit
Central Processors. Each of the two 6500 Central Processors operate exactly alike.

Programs for the Central Processor are held in Central Memory. A program beging
with an Exchange Jump instruction from a Peripheral and Control Processor. This
instruction specifies a SEgmént of Central Memory for the central program, specifies
the mode of exit (normal or error) of the program, and sets initial guantities in the
X, B, and A registers.

High speed in the Central Processor depends first on minimizing memory references,
Twenty-four registers are provided to lower the Central Memory requirements for

arithmetic operands and results, These 24 are divided into:
e 8§ address registers of 18 bits in length
e 8 increment registers of 18 hits in length

e 8 operand registers of 60 bits in length

Eight 60-bit registers are provided to hold instructions (6600/6700), thereby limiting
the number of memory reads for repetitive instructions, especially in inmer loops.
Multiple banks of Central Memory are provided to minimize memory reference time,

References to different banks of memory may be handled without waiting.
In the 6600/6700 Computer System operational speed is maximized by providing 10
arithmetic {functional) units and reservation control. TUnrelated instructions are

executed simultaneously, providing no conflicts exist in the arithmetic units,

The systems with unified arithmetic sections, executie instructions serially, with

little concurrency.

Rev M 3-2

Programs are written for the Central Processor in a conventional manner, specifying

a sequence of arithmetic and control operations to be executed, Each instruction in a
program is brought up in its turn from one of the instruction regisfers. These registers
are filled from Central Memofy in a manner sufficient to keep a reasonable flow of

instructions available,

A branch to another area of the program voids the old instructions iﬁ-th‘e’fégi"sters :
and brings in new instructions. When a new instruction’'is brought up, a test is made
to determine which of the 10 arithmetic units is needed, if it is busy, or if reservation
conflict is possible. If the unit is free and no conflict is present, the entire instruction
is given to the specified arithmetic unit for further action. Another instruction may

then be brought up and issued,

The original sequence of the program is established at the time each instruction is
issued. Only those operations which depend on previous results prevent the issuing
of instructions, and then only if the steps are incomplete. The reservation control

keeps a running account of the address, increment, and operand registers and of the

arithmetic units in order to preserve the original sequence,

On occasion, a program may use an Increment Store instruction to modify the contents
of a memory location holdiilg a subsequeht instruction. In the ‘6600/6700, this rmodifi-
cation must occur before the instruction is read from Central Memory into the stack,
for once in the stack the instruction can not be so modified, To avoid this potential
problem, modification of any subsequeﬁt instruction words should be restricted to
relative locations > (P} + 8. This_rule'applies equally to both in-stack loops and to
other programs where, under. certain confliect conditions, the Centrai Processor of
the 6600/6700 may continue reading instruction words from Central Memory while

delaying execution of a previously issued Increment Store instruction. In sequential
processors, 6400/6500 and 6700 second CPU storing in P+1 from some parcel other

than the first, causes the same problem as storing in stack for parallel processors.

Nearly all Central Memory references for information or instructions are made on an
implicit or secondary basis. Instructions are retrieved from memory only if the instruc-
tion registers are nearly empty (or when ordered by a branch). Information is brought

to or from the operand registers only when appropriate address registers are referenced
during the course of a program, Such references are also accounted for in the reserva-

tion control.

3-3 | Rev AK

All Central Processor references to Central Memory are made relative to the lower
boundary address assigned by a Peripheral and Conirol Processor. A Central Processor
program may therefore be relocated in Central Memory by modifying the boundaries
only. Any attempt by the Central Processor to reference memory outside of its bound-
aries causes an immediate exit which can be readily examined by a Peripheral and

Control Processor and displayed for the operator,

The Exchange Jump instruction starts a central program. This instruction starts a
sequence of Central Memory references which exchanges 16 words in memory with

the contents of the address, increment, and oﬁerand registers of the Central Processor.
Also exchanged are the program address, the Central Memory and Extended Core
Storage boundaries, and choice of program exit. This instruction may be executed by
any Peripheral and Control Processor and acts as an interrupt to an active central
program as well as a start from an inactive state. The Exchange Jump is used by the
operating system to switch between two central programs, leaving the first program

in a usable state for later re-eniry,.

CENTRAL PROCESSOR PROGRAMMING

Central Processor program instructions are stored in Central Memory. A 60-bit mem-
ory location may hold 60 data bits, four 15-bit mstructlons, two 30-bit instructions
or a combination of 15 or 30-bit instructions, Flgure 3-1 shows all instruction com-

binations in a 60-bit word and ‘the two instructioh word formats,

The Central Processor reads 60-bit words from Central Memory and stores them in

an instruction stack which is capable of holding up to eight 60-bit words.

Each instruction in turn is sent to a series of instruction registers for interpretation
and testing and is then issued to one of 10 functional units for execution, The functional
units obtain the instruction operands from and store resulis in the 24 operating N
registers. The reservation control records active operating registers and functional

units to avoid conflicts and insure that the original instructions do not get out of order.

Rev K 3-4

Functional Units

The 10 functional units in the 6600/6700 system handle the requirements of the various
instructions, The Multiply and Increment units are duplexed, and an instruction is
sent to the second unit if the first is busy. The general function of each unit is listed
in Table 3-2,

TABLE 3-2. FUNCTIONAL UNITS

Unit General Function
Branch Handles all jumps or branches from the program.
Boolean Handles the basic logical operations of transfer, lecgical

product, logical sum, and logical difference,

Shift Handles operations basic to shifting. This includes left
(circular) and right (end-off sign extension) shifting, and
Normalize, Pack, and Unpack floating point operations.
The unit also provides a mask generator,

Add Performs floating point addition and subtraction on floating
point numbers or their rounded representation.

Long add Performs one's complement addition and subtraction of
60-bit fixed point numbers,

WMultiply Performs floating point multiplication on floating point
numbers or their rounded representation.

Divide Performs floating point division of floating point quantities
or their rounded representation, Also sums the number of
""1's" in a 60-bit word.

Increment Performs one's complement addition and subtraction of
18-bit numbers.

Instruction Formats

Groups of bits in an instruction are identified by the letters f, m, i, j, k, and K
(Figure 3-1). All letters represent octal digits except K, which is an 18-bit constant,
The f and m digits are the operation code and identify the type of instruction. In a

few instructions the i designator becomes a part of the operation code,

3-5 _ Rev K

In most 15-bit instructions the i, j, and k digits each specify one of eight operating
registers where operands are found and where the result of the operation is to be

stored. In other 15-bit instructions, the j and k digits provide a 6-bit shift count.

In 30-bit instructions the 2 and j digits each specify one of eight operating registers
where one operand is found and where the result is fo be stored, and K is taken directly

as an 18-bit second operand.
NOTE

Figure 3-1 shows all the proper instruction
combinations. 30-bit instructions must be con-
fined to a single 60-bit instruction word.

If the upper 15 bits of a 30-bit instruction were
entered into the lower 15 bit positions on a
6600 or 6700 CPU-0, the lower 15 bits for

the instruction would be taken from the upper
15 bit positions of the same 60-bit ingstruction
word, On other 8000 systems, the instruction
would be executed as an Error Exit with no
error flag bit being set.

INSTRUCTION FORMATS

INSTRUCTION COMBINATIONS f m 1 k
[3]3f3]a]z] isas

(N CENTRAL MEMORY
2 ——— [
OPERATION
CODE
E_ls s s | su BITS ReT

REG.
{1 OF B)
15
[X
l 5 | 20 I 'SJ 2pd OPERAND
REG (I OF 8]

[5 E_“-”I 30 |

[s0 | 30 $
3

m
3

i
| 3]3] |a |30 Bits

j
3
upsannan
RESULT 2 nd DPERAND

REG.
{1 OF B)

| 81 DPERAND
REG (| OF 8)

Figure 3-1, Central Processor Instruction Formats
Operating Registers

In order to provide a compact symbolic language, the 24 operating registers are identi-

fied by letters and numbers:

A = address register (A0, Al . . . A7)
B = increment register (B0, B1. . . B7)
X = operand register (X0, X1 . . . XT7)

Rev P 3-6

The operand registers hold operands and results for servicing the arithmetic section.
Five registers (X1 - X5) hold read operands from Central Memory, and two registers
(X6 - X7) hold results to be sent to Central Memory (Figure 3-2), Operands and results
transfer between memory and these registers as a result of placing a quantity into a

corresponding address register (Al - A7),

Placing a quantity into an address register Al- A5 produces an immediate memory
reference to that address and reads the operand into the corresponding operand register
X1 - X5, SBimilarly, placing a guantity into address register A6 or A7 stores the word

in the corresponding X6 or X7 operand register in the new address,

X OPERAND
(60 BIT)

X0

x|
X
OPERANDS x3

|

X5

X5

RESULTS X6

E

A ADDRESS
{1 1T}

AG
Al

| ARITHMETIC
A2 SECTION

UNIFIED
a3 oR

OPERAND

CENTRAL ADDRESSES

MEMORY

A3 10 FUNCTIONAL

uNITS
RESULT
ADDRESSES AT

B INCREMENT
L BTy

BO

=

INSTRULTIGN
WORD REGISTER.
(1IN UNIFIED
Be B-WODRD STACK
IN 6EOD/ETRD)

INSTRUCTICNS T

Itigure 3-2. Central Processor Operating Registers

3-1 Rev M

The increment instructions place a result in address register Ai (where "i" = 0-7) in

three ways:

e By adding an 18-bit signed constant K to the contents of any A, B, or X

register,
e By adding the content of any B register to any A, B, or X register.

e By subtracting the content of any B register from any A register or any

other B register,

The A0 and X0 registers are independent and have no connection with Central Memory.
They may be used for scratch pad or intermediate results. Note the special use of A0

and X0 when executing Extended Core Storage communication instructions,

The B registers have no connection with Central Memory. The B0 register is fixed to
provide a constant zero (18-bit) which is useful for various tests against zero, provid-
ing an unconditional jump modifier, etc. In general, the B registers offer means for
program indexing, For example, B4 may store the number of times a program loop

has been traversed, thereby providing a terminal condition for a program exit,

An Exchange Jump instruction from a Peripheral and Control Processor enters initial

values in the operating registers to start Central Processor operation. Subsequent -
address modification instructions executed in the increment functional units provide

the addresses required to retrieve and store data.

Program Address

An 18-hit P register serves as a program address counter and holds the address for

each program step, P is advanced to the next program .step in the following ways:

1} P is advanced by one when all instructions in a 60-bit word have been
extracted and sent to the insiruction registers.

2) P is set to the address specified by a Go To . . . (branch) instruction. If
the instruction is a Return Jump, (P) + 1 is stored before the branch to
allow a return to the seguence after the branch.

3) P is set to the address specified in the Exchange Jump package.

A1l branch instructions to a new program start the program with the instruction located

in the highest order position of the 60-bit word.

Rev K 3-8

Exchange Jump

A Peripheral and Control Processor Exchange Jump instruction starts or interrupts

the Central Processor and provides Central Memory with the first address (which is

the address in the Peripheral and Control Processor A register) of a 16-word package
in Central Memory. The Exchange Jump package (Figure 3-3) provides the following

information on a program to be executed:

1)
2)
3)
4)
5)
6}
7)
8)
9)

10}

Program address (FP)

Reference Address for Central Memory (RA cM)

Field length of program for Central Memory (FLCM)
Reference Address for Extended Core Storage (RApcs)
Field length of program for Extended Core Storage (FLECS)#
Program exit mode (EM)

Initial contents of the eight A registers

Initial contents of the eight X regisiers .

Initial contents of B registers Bl - B7 (B0 is fixed at 0}
Monitor Exchange (MA); Optional Instruction

CENTRAL MEMODAY

PERIPHERAL AND
CONTROL PROCESSOR 6 8 T3 0
A REGISTER Lae, n P 20 _
CENTRAL Meuunv,/ Lac. n+1 RAcm Al B!
Loc. n Loc n+2 FlLew a2 B2
14 a Loc. n +3 EM a3 B3
RA c.':r'l 33!5 A BT B4 [2]
FL gcs a0 AS BS
MA AB e
AT BY
Xt
Xl
X2
X3
x4
%8
x5
Loc, n+18 X7
59 Q
MA= MONITOR ADDRESS
P= PROGRAM ADDRESS A= AODRESS REGISTERS
RA: REFEREKCE ADDRESS g= INCREMENT REGISTERS
FL= FIELD LENGTH X- OPERAND REGISTERS
EM= EXIT MODE = [0OD00C DISABLE EXIT MODE
010000 ADDRESS OUT OF RANGE
020000 OPERAND OUT OF RANGE
030000 ABDAESS OR OPERAND
QUT OF RANGE
CONTENTS 7 {040000 INDEFINITE OPERAND
-53, 1350000 INDEFINITE OPERAND OR ADDRESS
LOCATION n +3 QUT OF RANGE
060000 INDEFINITE OPERAND OR OPERAND .
QUT OF RANGE
070000 INDEFINITE GFERAND OR ADDRESS
OUT OF RANGE OR OPERAND OUT
OF RANGE

Figure 3-3. Exchange Jump Package

*In the unified arithmetic systems the upper three bits of RA{ECS) are not transferred
to the RA(ECS) register.

3-9 Rev M

The Central Processor enters the information about a new program into the appropriate

registers and stores the corresponding and current informationfrom the interrupted pro-

gram at the same 16 locations in Central Memory. Hence, the controlling informaticn

for two programs is exchanged. A later Exchange Jump may return an interrupted pro-:

gram to the Central Processor for completion.

The normal relation of the A and X reg-

isters (described earlier) is not active during the Exchange Jump go that the new entries

in A are not reflected into changes in @

PROGRAMMING NOTE

When an Exchange Jump interrupts the Central Processor, several -
steps occur to insure leaving the interrupted program in a usable

state for re-entry:

1) Issue of instructions halts after issuing all instructions
from the current instruction word in the instruction stack.

2} The Program Address register, P,
of the next instruction word to be executed.

is set to the address

3} The issued instructions are executed, and then

4) The parameters for the two programs are exchanged.

A subsequent Exchange Jump can then re-enter the interrupted pro-
gram at the point it was interrupted, with no loss of program continuity.

To preserve the integrity of an "in-stack'' loop (in the event of an

Exchange Jump),

it is illegal to modify the contents of any memory

address which holds an executable instruction (or instruction word)

contained within the loop.

EXAMPLE:

Y

Y+

Y+2

Y+3

Y+4

Y+5

Y+ &

Y+ 7

////////////////////\

i

Xg = Xz + Xg

Ag = Y + |

\

A

Assume Exchange Jump
comes in at this point

Rev, A

-

These instruction
words in stack
{(from memory
locations [Y + 1]
through [Y + 5]}
consgtitute a loop.

3-10

After executing the
lower instruction at
[Y +-3], the contents
of memory location
[v + 1ldiffer from the
contents of [Y + 1] in
the stack, If the Ex-
change Jump comes
in as indicated, sub-
sequent reeniry will
call up the modified
loop from memory,
rather than the stack
loop in ifts original
un-moeditied form.

All Central Processor references to Central Memory for new instructions, or to fetch
and store data, are made relative to the Reference Address, This allows easy reloca-
tion of a program in Central Memory. The Reference Address or beginning address
and the Field Length define the Central Memory limits of the program. An Exit Selec-

tion allows the Central Processor to stop on a memory reference outside thege limits,

The Program Address register P defineg the 16("::3:1011 of a program step within the limits
preseribed. FEach reference io memory to fetch instructions is made to the address
specified by P + RA. Hence program relocationis conveniently handled through a single
change to RA.

A P = 0 condition specifies address zero and hence RA.. This address is reserved for
recording program exit {(error) conditions and should not, therefore, be used to store

data or insiructions of a program.

Exit Mode

The Exit mode feature allows the programmer to select Exit or Stop conditions for the
Central Processor. Exit selections are loadedinto bits 36-53 of memory location ''n+3"
of the Exchange Jump package {Figure 3-3). When the Exchange Jump ocecurs to that
package, the exit selections are stored in the Central Processor and the exit occurs as
soon as the gelected condition is sengsed. The Exit conditions,: as stored in bits 36-53

of address ""n+3" in the Exchange Jump package, are shown below in octal format:

c00000 Disable Exit mode - no Exit selections made,

610000 Address out of range -
a) an attempt to reference either Central Memory
or Extended Core Storage outside established
limits, or

b) the word count, [(Bj) + K] , in an Extended Core
Storage Communication instruction is negative.

EM

It

{For details on action when an address is out of range,
refer to the Increment and Extended Core Storage instruc-
tion descriptions.)

it

020000 Operand out of range - floating point arithmetic unit
received an infinite operand (see Range Definitions
under Floating Point Arithmetic following).

3-11 . 'Rev. F

= 030000 Address or operand out of range

= 040000 Indefinite operand - floating point arithmetic unit (Add,
Multiply, or Divide} attempted to use an indefinite operand
(see Range Definitions, page 3-17).

= 050000 Indefinite operand or address out of range
= 680000 Indefinite operand or operand out of range
= 070000 Indefinite operand or operand or address out of range

Typically, the Reference Address (RA) for any program is left cleared to all zeros.
When an error exit is taken, the Central Processor records at RA the exit condi-
tion (upper 2 octal digits only)andthe Program Address atexittime (refer to the format
‘below). ' ' '

: NOTE

The Exit condition{s) recorded at RA comprises all the
Exit conditions detected since the last Exchange Jump,
regardless of whether they were selected, Thus, com-
binations of error Exit conditions (03, - 05, 06 or 07} can
appear at RA:

a) When at least one Exit condition was selected and
the selected condition plus another condition occur-
red since the last Exchange Jump, or

b) When more than one Exit condition was selected
and each occurred in the same minor cycle.

The contents of RA are then read up, 'interpreted -as a Stop instruction, andthe Central

~ Processor stops.

ss - 5453 447 . 3029 0
o—o0 | o—x | x . . —x | o——)f}—o |

I .

v

sTOP. EXIT - p . - ZEROS

P=(P) -+ 1, AT TIME OF ERROR EXIT.

For error stops, {P)+ 1 gives only an.approximate location of the error since the Cen-
tral Processor may have issued other instructions to the functional units (one of which

may have been a branch) before .the exit was sensed.

An exchange can interrupt an Error Exit condition from Parcel 3 in a 6400 and cause
the Error Exit condition to be lost due to P advancing before the Error Exit condition
'is sensed. When the exchange. package is exchanged back in, P will have been advanced

beyond the Error Exit condition, causing the Error Exit to be lost.

On an Address‘Oﬁt of Range, .hardwére action differs from that outlined above. In some
cases, a stop cccurs when an address is out of bounds even though an Exit mode stop is
not selected for this condition. Table 3-3 summarizes hardware action for operations

which may reference addresses that are out of bounds.

- Rev AK 3-12

TABLE 3-3. EXIT MODE: ADDRESS OUT OF BOUNDS

HARDWARE ACTION

OPERATION £XIT MODE SELECTED FXIT MODE NOT SELECTED
RNI to an ad- | 1. Detect error condition 1. Detect error condition
dress that is : . A AZ)%
out-of bounds 2. Clear P 2. Stop by reading ()
{occurs when | 3. Write EM and (P) + 1 into RA 3. Nothing stored in RA
an instr, is _
located in 4, Siop by reading (RA) 4, 8‘;; ; i:ut of range P or
absolute ad- |Note: If FL = O on a 6400/6500 the first
dress (RA + | RNI will be out of range and the CPU
FL) - 1). will hang up.
Branch to an | 1. Detect error condition’ .' Detect error condition
address that .
15 out-of- Clear P Stop by reading (AAZ)
hounds. 3. Write EM and execution address + . Nothing stored in RA
1in RA

Note: On a 6400/6500 Write EM and

jump address in RA.

4, Stop by reading (RA) 4, (P) = execution address

: or (P)+ 1
Note: On a 6400/6500 (P) =
- out of range P,
Read 1. 'Detect error condition 1. Detect error condition
Operand
oo 12, Clear P _ 2., Read (AAZ) mto X

3. Write EM and {F) + 1 into RA A;= Increment Result

4. Stop by reading (RA)

5. (Xi) = {AAZ)
Write 1. Detect error condition 1. . Detect error condition
Operand - :

2. Clear P 2. Read (AAZ), but (X)

3. Write EM and (P} + 1 into RA

4. Stop by reading (RA)

not stored; (X) u.uchanged.
A:. Increment Result

Continue program

Action After Exit Mode or Normal Stop

Typically, a Peripheral and Control Processor periodically searches for an unchanging

Central Processor Program Address register (any value) to determine if the Central

Processor has stopped. Once it has been determined that the Central Processor has

stopped, the examining Peripheral and Control Processor can transfer control to an error

routine to determine the nature of the condition causing the Stop. %‘igure 3-4 illusirates

sample steps for processing Central Processor stops {either Exit mode or normal),
¥ AAZ = Absolute Address Zero

3-13

Rev. AK

Rev. A

¢

Via P & CP, read

1

May be other

|

h

Branch to Error

Routine to Recover
From Error.

CP Program steps in this |
Address Register | routine |
Lo
Are (P) \
unchanged from No
last test? /
Yes
Stop is due to either:
1) Normal:{instr.)
Are (P) = \ ND > » stop, or
/ 2) Stop because of
ves RNTI or Branch to an
| out-of-bounds address
(with Exit mode un-
Stop-is due to an error selected).
and the error stop
was selected.
=
Branch to routine to
determine nature of
" stop. :
Examine (RA) to . .
determine approxi-
mate location of error- y
producing ;nstruc;tlc_)n. Yes Is stop due to an

out-of-bounds error?

No

A

. Take appropriate

action for a stop
condition.

Figure 3-4, Detecting and Handling Central Processor Stops

3-14

Floating Point Arithmetic
Format

Floating point arithmetictakes advantage of the abi]ity to express a number with the gen-
eral expression an, where:

k = coefficient
B = base number

n = exponent, or power to which the base number is raised

The base number is constant (2) for binary-coded quantities and is not included in the gen-
eral format. The 60-bit floating-point format is shown below. The binary point is con-
sidered to be to the right of the coefficient, thérebyproviding a 48-bit integer coefficient,
the equivalent of about 14 decimal digits. The sign of the coefficient is carried in the
highest order bit of the packed word. Negative numbers are represented in one's com-
plement notation.

COEFFICIENT BIASED INTEGER
SIGN EXPONENT COEFFICIENT
1 oon , 48 S ;
59 58 48 47 0
BINARY

POINT

The 11-bit exponent carries a bias of 210 (20008) when packed in the floating point word
(biased exponent sometimes referred to as characteristic). The bias is removed when
the word is unpacked for computation and restored when a word is packed into floating
format, Table 3-4 lists (in decimal and octal notétion) the complete range of permissible-
exponents and the octal form of the corresponding positive and negative floating‘ pointwords.

Thus, a number with an exponent of 3428 would appear as 23428; a number with an
exponent of --1608 would appear as 16178. Exponent arithmetic is done in one's

complement notation, Floating point numbers can be compared for equality and
threshold,

3-15 -Rev, N

TABLE 3-4. RANGZE OF PEZRMISSIBLE EXPONENTS

EXPONENT (n) | PACKED FORM OF KXBMOCTALY: | UNPACKED FORM
- OF n (OCTAL}*
POSITIVE NEGATIVE CONTENTS of Bj=
DECIMAL | OCTAL| COEFFICIENT |COEFFICIENT (UNBIASED-SIGN EX -
TENDED)

+ 1023 + 1777 3771X. ... % | 4000X..,.X Bj=001777

+ 1022 + 1776 3776X....X | 4001X....X Bj=001776

+ 1L {+ 1 2001X....X | 5776X....X Bj=000001

+ 0 + 0 2000X....X | 57717X....% Bj=000000

- 0 {- 0 1777%....X | 6000X....X Bj=T7TT17T

-1 -1 1776X....X | 6001X....X Bj=7T1776

- 1023 - 1777 0000X....X | 7777%....% Bj=776000

Normalizing and Rounding

Normalizing a floating point quantity shifts the coefficient left until the most signifi-
cant bit is in bit 47. Sign bits are entered in the low-order bits of the coefficient as

it is normalized, Each shift decreases the exponent by one. wa normalized input
operands cannoct be used during an integer multiply operation; they will be treated

like floating point operands and will cause the storage of positive underflow results.
To insure that floating point operands are not mistaken for integer multiply operands, -

floating point gquantities used as operands should he normalized.

A round bit is added (optionally) to the coefficient during an arithmetic process and has
the effect of increasing the absolute value of the operand or result by one-half the value
of the least sigmificant bit. Normalizing and rounding are not automatic during pack or

unpack operations so that operands and results may not be normalized.

Single and Double Precision

The floating point arithmetic ingtructions generate double~precision results, Use of un-
rounded operations allows separate recovery of upper and lower half results with proper
exponents; only upper half results can be obtained with rounded operations.

See pages 3-35 and 3-36 for Central Processor Instructions to pack and unpack floating

point quantities.

Rev, AF 3-186

Double length registers appear as follows:

| MOST SIGNIFICANT BITS | LEAST SIGNIFICANT BITS

95 48847 o]

\ T A - /

v v
UPPER HALF LOWER HALF
RESULT RESULT

BINARY
POINT

Range Definitions

A result with an exponent so large that it exceeds the upper limit of octal 3777 (overflow
case) is treated as an infinite quantity. A coefficient of allzeros and an exponent of octal
3777 or 4000 is packed for this case. An optional exit is provided when an attempt is
made to use an infinite operand in the floating arithmetic units since itsuse may propagate
an indefinite result ag shown in Table 3-5. No error exit occurs when an infinite or inde-

finite result is generated in a functional unit.

TABLE 3-5. INDEFINITE FORMS

o — © = INDEFINITE ® 4 N=o@
o - o = INDEFINITE @ -~ N=w
@ e 0 = INDEFINITE ®w — N=z@
o +0 = INDEFINITE N+0=m
INDEFINITE +,—,-~, » {X) = INDEFINITE 0+m=0
m 4 © = Oe O0=0
o e m T m 0+N=0
w0 = @ N+ ®=0
WHERE: ® = INFINITY , N = INTEGER,
X =zmow, N OR O,

A result the exponent of which is less than the lower limit of octal 0000 (underflow
case) is treated as a zero quantity. This quantity is packed with a zero exponent and
zero coefficient. WNo exit is provided for underflow. A partial underflow result with
an exponent of octal 0000 and a coefficient which is not zero is a non-zero quantity
and iz packed with a zero exponent and the non-zero coefficient, A precaution must
be taken to normalize when using partial underflow resulis as operands in subsequent
floating point multiply operations. This will prevent these operands from being in-

terpreted as integer operands resulting in an integer multiply operation,

3-17 Rev. AD

Use of either infinity or zero as operands may produce an indefinite result. An exponent
of octal 1777 and a zero coefficient are packed in this case, and an optional exit provided.
Note that zero, infinite, and indefinite results are generated or regenerated in floating

arithmetic operations only. The branch instructions test for infinite or indefinite quan-

tities.

In all floating arithmetic operations, an attempt to normalize an indefinite guantity re-
turns the original quantity, e.g., if the number 17770237...were to be normalized, the
result would be the same as the original number. Exit mode can be made to occur on

detecting an indefinite quantity even though the Shift Unit is used.
Exit mode tests for infinite and indefinite operands are made only in the Floating Add,

Multiply, and Divide Units. The 12 most significant bits of each operand are tested for
these special forms.

In the Multiply and Divide Units (but not in the Floating Add Unit) there is a special test
for zero operands as determined by the 12 most significant bits.

Thus the special operand forms (in octal) are:

3777X. .. X (+ o)

4000X...X (- @) infinite operands

1777%...X (+IND)

6000X X (‘IND) indefinite operands

0000X...X (+0) } zero operands for
- Multiply and Divide

TR X (-0) units only

Whenever infinite, indefinite, or zero results are generated in accordance with the rules

given in Table 3-5 and Appendix C, only the following octal words can occur as results:

37770...0 =4+ o (result)
40000...0 = - {result)
17770...0 = +IND (resuit)
00000...0 =40 (result)

Rev. L 3-18

Note that in these cases the 48 least significant bits of the result are zercs. Indefinite
and zero results generated in accordance with Table 3-5 and Appendix C are always pos-
itive, but the sign of infinite results is determined by the usual algebraic sign conven-

tion. For example:

(+0)/(-0) =+IND = 17770...0
(+N)*<(-0) =+0 = 00000...0
(-0){(-0) =+ = 37770...0
(+@)/(-0) =-m ='40000...0

There is no special treatment of zero operands in the Floating Add unit. Zero coeffi-
cients and the forms 0000X...X and 7777X...X are not specially detected, and unstand-

ardized zero results can be produced. ({See description of 30 instruction, page 3-37.)

Overflow and Underflow

Exponents lying outside the range —1'7”77B to +177'?8 cannot be generatéd during execution

of a floating point arithmetic instruction or during execution of a Normalize instruction.

An attempt to generate an exponent greater than +1777, yields an infinite result (overflow

8
case}), An attempt to generate an exponent less than -17'77B yields a zero result {(under-

flow case). All cases of overflow and underflow are listed in Table 3-6.

Converting Integers to ¥Floating Format

Conversion of integers to floating point format makes use of the Shift Unit and the zero
constant in increment register B0. The B0 quantity provides for generation of exponent

bias in this case. For example, the instructions:

e Sum of Bj and Bk to Xi (wherei= 2, j=3, k=4)
e Pack Xi from Xk and Bj (wherei=2, j=0, k= 2)

form an 18-bit signed integer in operand register X2 as a result of the addition of the
contents of increment registers B3 and B4. The integer coefficient with its sign, plus
the octal 2000 exponent is then packed into the floating format shown earlier., The coef-

ficient is not normalized; normalizing may be accomplished with a Normalize instruction.

3-19 Rev. A

TABLE 3-6. OVERFLOW AND UNDERFLOW CONDITIONS

OVERFLOW
INSTRUCTIONS OVERFLOW CONDITION RESULT

Normalize (24, 25) None -
Upper Sum (30, 31, 34, 35)| None (see Note 1} -
Lower Sum (32, 33) None o -
Upper Product (40, 41) *ni + ng + 60g > 2000g X;=37770,...0g or

4000 0....0g
Lower Product (42) nj +ng > 20008 (True Sign)
Quotient (44, 45) o nj - ng - 57g > 2000,

UNDERFLOW
INSTRUCTIONS UNDERFLOW CONDITION RESULT
Normalize (24 only) - - Initial coefficient = +0 - X; = 0000 Q....0g, (Bj) =
60
. 8
Normalize (24, 25) Final Exponent < -2000g X; = 0000 0....0g, (B;)are
. correct. {See Note 2.

Upper Sum (30, 31, 34, 35) None ~———
Lower Sum (32, 33) Final Exponent < -2000g X; = 0000 0....0g
Upper Product (40, 41) ny +ng +57g < -20008
Lower Product (42) ng +ng -1%< -20008 X;=00000,... 08
Quotient (44, 45) nj - ng - 60g < - 20004

*np and ng are the initial exponents.

Note 1, Overflow of Upper Sum: Overflow cannot occur unless one operand is infinite.
In this case the resulf is as indicated. If a one-place Right Shift occurs when
the larger operand exponent ig equal to +1776g, a correct result with exponent
+17717g is generated.

Note 2. Underflow of Exponent During Normalization: The final (B;) are the same as if
underflow had not occurred., In particular, if the initial cdefficient is zero, (Bj)
are equal to 60g.

Rev, D 3-20

Fixed Point Arithmetic

Fixed point addition and subtraction of 60-bit numbers are handled in the Long Add

Unit (6600/6700). Negative numbers are represented in one's complement notation,

and overflows are ignored. The sign bit is in the high-order bit position (bit 59) and
the binary point is at the right of the low-order bit position (bit 0).

The Increment Units provide an 18-bit fixed point add and subtract facility, Negative
numbers are represented in one's complement notation and overflows are ignored.
The sign bit is in the high-order bit position (bit 17), and the binary point is at the
right of the low-order bit position {bit 0). The Increment Units allow program index-

ing through the full range of Central Memory addresses,

Fixed point integer addition and subiraction are possible in the Floating Add Unit
providing the exponents of both operands are zero and no overflow occurs, The unit
performs the one's complement addition (or subtraction) in the upper half of a 98-bit
accumulator. If overflow occurs, the unit shifts the result one place right and adds cne
to the exponent, thereby producing a floating point quantity. Thus, care must be used
in performing fixed point arithmetic in the Floating Add Unit.

Integer multiplication is handled as a subset of the unrounded Floating Multiply (42)
instruction. The integer multiply requires that both of the 47-bit integer operands
have zero exponents (0000 + 7777) and one or hoth operands are not normalized. The
result is 48 bits with sign extension. Both operands normalized will cause positive
underflow results to be reported. If the result exceeds 48 bits, overilow will not be

detected. {(See 40 instruction description for detection of overilow.)

An integer divide takes several steps and makes use of the Divide and Shift Units. For
example, an integer quotient X1 = X2/X3 is produced by the following steps:

Instructions Remarks
1} Tack X2 from X2 and B0 : Pack X2
2) Pack X3 from X3 and BO Pack X3
3} Normalize X3 in X0 and BO Normalize X3 (divisor)
4) Floating quotient of X2 and X0 to X1 Divide
5) Unpack X1 to X1 and B7 Unpack quotient
6) Shift X1 nominally left B7 places Shift to integer position

3-21 Rev AD

The divide requires that:

1) both integer (247 maximum) operands be in fleating format
and 2) the divisor be shifted 48 places left
or 3} The quotient be shifted 48 places right
or 4} any combination of n left-shifts of the divisor and 48-n right shifts of the
quotient be accomplished, .

The Normalize X3 instruction shifts the divisor n places left (n > 0), providing divisor

exponent of -n. The quotient exponent then is: 0 - {-n) ~ 48 = n - 48 < 0.

After unpacking and shifting nominally left, the negative {(or zero) value in B7 shifts
the quotient 48 - n places right, producing an integer quotient in X1. A remainder may
be obtained by an integer multiply of X1 and X3 and subtracting the result from X2.

Description of Central Processor Instructions

Instruction grouping follows a somewhat pedagogical approach (i. e., simple to complex)
and does not necessarily relate instructions to the functional units (6600/6700 system)
which execute them. Central Processor instructions as related to functional units

are tabulated in Appendix B, Instruction Execution Times,

NOTE

The codes which are not defined here are considered
illegal. The resultis obtained from an illegal code
are not specified and cannot be guaranteed.

TABLE 3-7. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A Specifies one of eight 18-bit address registers.

B Specifies one of eight 18-bit index registers; B0 is fixed and
equal to zero,

fm A B-bit instruection code.

i A 3-bit code specifying one of eight designated registers
(e.g., Ai).

i A 3-bit code specifying one of eight designated registers
(e.g., Bj.

ik A 6-bit constant, indicating the number of shifts to be taken.

k A 3-bit code specifying one of eight designated registers
{e,g., Bk).

K An 18-bit constant, used as an operand or as a branch

desgtination {address},

X Specifies one of eight 60-hit operand registers.
Rev P 3-22

Preceding the description of each instruction is the octal code, mnemonic code and
address field, the instruction name and length. Mnemonic codes and address field

mnemonics are from COMPASS,

EXAMPLE:

12 W BXi Xi+Xk Togical Sum of Xj and Xk to Xi (15 Bits)
St S _.J_V_/ . g ;] 22 R
QOctal Mnemonic Address : Instruction

Code Code Field Instruction Name Length

Instruction formats are alse given; parallel lines within a formatf indicate these bits

are not used in the operation.

Program Stop and No Operation

00 PS Program Stop E (30 Bits)

IR 77/ /A,

29 24 23

This instiruction stops the Central Processor at-the current step in the program. An

exchange Jump is necessary to restart the Central Processor.

46 ‘NO No operation (Pass}) =~ = . (15 Bits)

fm AN,

14 9 8 0

- This instruction is a "do-nothing'" instruction that is typically used to pad the program

between certain program steps,

3-23 ' Rev P

EXAMPLE:

P+1

59

30-BIT INST-

15~ BIT INST. PASS

30-BIT INST,.

30-BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word

at P. Since the next instruction is 30 bits, it cannot fif in P and must be placed

in P+ 1,
Increment

50 SA7
51 SAi
52 SAi
53 SAi
54 SAi
55 SAi
56 SAi
57 SAi

Rev A

Aj + K Set Aito Aj +K
Bj + K Set AitoBj + K
Xj+ K Set Aito Xj + K
fm I i K
29 2423 2120 18 I7
Xj+ Bk Set Ai to Xj + Bk
Aj+ Bk Set Ai to Aj + Bk
Aj— Bk Set Ai to Aj — Bk
Bj + Bk Set Ai to Bj + Bk
Bj — Bk Set Ai to Bj — Bk
L fm i k
14 6 5 3 2 o]

(30 Bits)
(30 Bits)

‘(30 Bits)

(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)
(15 Bits)

These instructions perform one's complement addition and subtraction of 18-bit operands
and store an 18-bit result in address register i. Overflow, in itself, is ignored, but

an address range fault may result from overflow in this set of instructions,

Operands are obtained from address (A), increment (B), and operand (X) registers as
well as the instruction itself (K = 18-bit signed constant)., Operands obtained from an
Xj operand register are the truncated lower 18 bits of the 60-bit word.

Note that an immediate memory reference is performed to the address specified by

the final content of address registers Al - A7. The operand read from memory address
specified by Al - A5 is sent to the corresponding operand register X1 - X5, When A6
or A7 is referenced, the operand from the 'correspondj_ng X6 or X7 operand register

is stored at the address specified by A6 or AT,

NOTE

If, in this category of instructions, the result placed

in address register Ai is an address out of range, the
following occurs: (Note that this action is independent
of an Exit selection on Address Out of Range.)

If i = 1-5: Operand register Xi is loaded with the
contents of absolute address zero and the contenis of
memory location (Ai) are unchanged,

Ifi =6 or 7: Operand register Xi retains its original
contents and the contents of memory location (Ai)
are unchanged.

EXAMPLE:

Initial Quantities:
4 K = 234587

50 SAi = Aj+K i

8
SA = Ag+K j=6 A, = 3211104
SA, = 032100, + 234567, | A, = 052100,

. SA, = 266667, X, =00..... 00,

Storage location 266667 = 7 ,,, 75342104600
Final Quantities:

8

A4 = 266(:’|6"r"3
AB = 0321008
X4 =7... 753421046008

3-25 Rev Y

60 SBi Aj + K Set Bi to Aj + K (30 Bits)

61 SBi Bj + K SetBitoBj + K : {30 Bits)
62 SBi Xj+ K Set Bito Xj + K (30 Bits)
fm i j K

29 24 23 2120 1817 o)
63 SBi Xj+Bk Set Bi to Xj + Bk . (15 Bits)
64 SBi Aj -+ Bk Set Bi to Aj + Bk (15 Bits)
65 SBi Aj— Bk Set Bi to Aj — Bk (15 Bits)
66 SBi Bj+ Bk Set Bi to Bj + Bk (I5 Bits)
67 SBi Bj— Bk Set Bi to Bj — Bk (15 Bits)

fm i poow]

4 g B8 6 5 3 2 o]

These instructions perform one's complement addition and subtraction of 18-bit

operands and store an 18-bif result in increment register Bi. An overflow condition

is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers as
well as the instruction itself (K = 18-bit signed constant). Operands obtained from an

Xj operand register are the truncated lower 18 bits of the 60-bit word.

70 SXi Aj + K Set Xito Aj + K (30 Bits)
71 SXi Bj + K SetXitoBj +K (30 Bits,
72 SXi Xj+K Set Xi to Xj + K (30 Bits)
tm |]| K
29 2423 2120 18 17 Q

Rev K 3-26

73
74
75
76
77

SXi

SXi

SXi
SXi
SXi

Xj+Bk Set Xi to Xj + Bk (15 Bits)

Aj+Bk Set Xi to Aj + Bk (15 Bits)
Aj—Bk Set Xito Aj — Bk (15 Bits)
Bj+ Bk Set Xi to Bj + Bk (15 Bits)
Bj— Bk Set Xi to Bj — Bk (15 Bits)

These instructions perform one's complement addition and subtraction of 18-bit

operands and store an 18-bit result into the lower 18 bits of operand register Xi, The

sign of the result is extended to the upper 42 bits of operand register Xi, An overflow

condition is ignored.

Operands are obtained from address (A), increment (B), and operand (X) registers

as well as the instruction itself (K = 18-bit signed constant), Operands cbtained from

an Xj operand register are the truncated lower 18 bits of the 60-bit word.

EXAMPLE:

73

8Xi

SX2

SXZ

SXZ

Initial Quantities:

Xj + Bk i=2 X, = 0... 0745321402
Xq + By j=3, k=1 Xy = 0.,. 0852224310,
=0... 06522243108 + 511245, B, = 511245

871 8

1

7... 7777735555

8
Final Quantities:
X, = (A 7777735555'8
X:3 =0,.. 06522243108
B1 = 5112458
NOTE
See Appendix D for futher information. I

3-27 Rev AG

Fixed Point Arithmetic

36 IXi Xj+Xk Integer sum QfXJ and Xk to Xi _ (15 Bits)

L m [v T 5 T «]

14 9 8 & 5 3 2 0

This instruction forms a 60-bit one's coinplement sum of the gquantities from operand
registers Xj and Xk and stores the result in operand register Xi. An overflow condition
is ignored.

37 IXi Xj—Xk Integer difference of X§ and Xk to Xi © (15 Bits)

R

This instruction forms the 60-bit one's complement difference of the quantities from op-
erand registers Xj (minuend) and Xk (subtrahend) and stores the result in operand regis-
ter Xi. An overflow condition is ignored.

47 CXi Xk Count the number of “1's” in Xk to Xi (15 Bits)
| fm | v o] «
|4 9 8 6 5 3 2 0

This instruction counts the number of "1's" in operand register Xk and stores the count
in the lower order 6 bits of operand register Xi. Bits 6 through 59 are cleared to zero.

Rev. A 3-28

11 BXi

EXAMPLE:

47 CXi Xk

CX4 X

CXy - 11

Logical

10 BXi Xj

Initial Quantities:

i=4 Xl =0 05433'218
k=1 X, = 23420... 0005547,
Final Quantities:
Xl =0 S 05433218
X, =0 0000011,
Transmit Xj to Xi
fm i R,
14 8 6 5 3 2 0

(15 Bits)

This instruction trangfers a 60-bit word from operand register Xj to operand register

Xi.

registers Xj and Xk and places the product in operand register Xi.

Xj * Xk

Logical Product of Xj and Xk te Xi

fm

(15 Bits)

. This instruction forms the logical product (AND function) of 60-bit words from operand

Bits of register Xi

are set to '"1"" when the corresponding bits of the Xj and Xk registers are "1" as in the

following example:

Xj = 0101

Xk = 1100

Xi = 0100
3-29

Rev, A

12 BXi Xj+ Xk Logical sum of X and Xk to Xi (15 Bits)

L m [v T3 T &

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand reg-
isters Xj and Xk and places the sum in operand register Xi. Bits of register Xi are set
to '"1"'if the corresponding bit of the Xjor Xk registeris a '"1" as in the following example:

Xj = 0101
Xk = 1100
Xi=1101
13 BXi Xj - Xk Logical difference of Xj and Xk to Xi (15 Bits)

[tm 1 i [3 [x |

14 9 B8 6 5 3 2 o

This instruction forms the logical difference (exclusive OR)of 60-bit words from operand
registers Xj and Xk and places the diiference in operand register Xi. Bits of register Xi
are set to ""1" if the corresponding bits in the Xj and Xk registers are unlike as in the

following example:

Xj = 0101
Xk= 1100
Xi= 1001

14 BXi —Xk Transmit the complement of Xk to Xi (15 Bits)

fm 7277

14 9 8 6 5 3 2 o

Rev. A . 3-30

This instruction extracts the 60-bit word from operand register Xk, complements it, and

transmits. this complemented quantlty to operand reg15ter Xi.

15 BXi —Xk = Xj Logical product of Xj and complement of Xk to Xi (15 Bits)

fm |« | 1 1 «
14 _ 3 8, 6 5 : 3 2 0

This instruction forms the logical product (AND function) of the 60-bit quantity from op-
erand register Xj and the complement of the 60-bit quantity from operand register Xk,
and places the result in operand register Xi. Thus, bits of Xi are set to ''1" when the
corresponding bits of the Xj register and the complement of the Xk register are "1"as in

the following example:

| Xj = 0101
Complemented Xk= 0011

Xi= 0001
16 BXi —Xk+Xj " Logical sum of Xj and complement of Xk to Xi (15 Bits)
fm i Loy] ok]

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand
register Xj and the complement of the 60-bit word from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to '"'1" if the corresponding

bit of the Xj register or complement of the Xk register is a "1"as in the following exam-

ple:
, X} = 0101
Complemented Xk = 0011
Xi = 0111

3-31 Rev. AL

17 BXi —Xk—Xj Logical difference of Xj and complement of Xk to Xi (15 Bits) | _

fm T 1 ok]

14 g B 6 5 3 2 o

This ingtruction forms the logical difference (exclusive OR) of the guantity from operand
register Xj and the complement of the 60-bit word from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to "'1" if the corresponding
bits of register Xjand the complement of register Xk are unlike as in the following exam-

ple:
Xj = 0101
Complemented Xk = 0011
Xi = 0110
. Shift
20 LXi k Left shift Xi, jk places (15 Bits)
14 g 8 6 5 0

This instructieon shifts the 60_—Bit___word in opérand registerXi left circular jk places. Bits
shifted off the left end of operand register Xi replace those from the right end.

The 6-bit shift count jk allows a complete circular shift of register Xi.

21 AXi jk Arithmetic right shift Xi, jk j}laces (15 Bits)

fm | i | jk

Rev. A 3-32

This 1nstruct10n shifts the 60~ bit word in operand register Xi right 3k places. The right-
most bits of Xi are dlsca.rded -‘and the sign bit is extended H

92 LXi Bj Xk Leftshift XknominallyBjplacestoXi (15 Bits)

mo | i | 7] o« |

This instruction shifts the 60-bit quantity from operand register Xk the number of places
specified by the quantity in increment register Bj and places the result in operand regis-
ter Xi.

1y I B] is positive (i.e., b1t 17 of Bj = 0), the quantlty from Xk is shifted left-
cu'cular. (The 1ow order six blts of B] spec:fy the shift count.)

2) I Bj is negative (1. e., bit17 of Bj = 1), .the quantify from Xk is shifted fight
~{end off with sign extension). (The one's complement of the low order eleven ..
bits of Bj specify the shift count.) If any of bits 26-210, after complementing, -

are '"1's'", the shift is not performed and the result register Xi is cleared to

all zeros.

23 AXi Bj Xk Arithmetic right shift Xk nominally Bj places to Xi (15 Bits}

fm I k

This instruction shifts the 60-bit quahtity from operand-reéister-r}{k =;1:1'1e number of places
specified by the quantity in inerement register Bj and places the result in operand regis-
ter Xi.

1) I Bj is positive (i.e., bit 17 of Bj = 0), the quantity from register Xk is

3-33 . Rev. AL

shifted right (end-off with sign extensmn) (The low order eleven bits of BJ D

specify the shift count.) If any of bits 2° 210 are Mg ", the shift is not

performed and the result register Xi is cleared to all zeros.

2) If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from register Xk is shifted

left circular. (The complement of the lower order six bits of Bj specify the

shift count.)

24 NXi Bj Xk ~~ NormalizéXkinXiandBj = : (15 Bits) ’

This 1nstruc1:10n normalizes the ﬂoatmg point quantlty from operand register Xk and

places it in operand register X1 The number of left shlfts necessaryto normallze the
quantity is entered in increment reglster BJ A Normallze operatlon may cause under-
flow which will clear Xi to all zeros regardless of the origiral 5ign of: Xk. Normalizing
" either a plits or minus -'zg{ro coefficient sets the: shift count (Bj) to 48i0 and clears Xi to

all. zeros.

If Xk contains an infinite quantity (3777X...X or 4000X...X) or an indefinite quantity
(1777X...X or 6000X...X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set egual to zero. Optional error exits do occur.

25 ZXi Bi Xk Roundand normalize Xk in Xi and Bj (15 Bits) :

[. tm o k
14 59.8 6 5 3 2 4]

This instruction performs the same operation as instruction 24 except that the quantity

Rev. f 3-34

from operand register Xk is rounded beforeitis normalized. Rounding is accomplished
by placing a "'1" round bit immediately tothe right of the least significant coefficient bit.
Normalizing a zero coefficient places the round bit in bit 47 and reduces the exponent

by 48. Note that the same rules apply for underflow.

If Xk contains an infinite quantity (3777X...X or 4000X.. X) or anindefinite quantity
(1777X...X or 6000X. . .X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do occur,

26 UXi Bj Xk Unpack Xk to Xi and Bj ' (15 Bits)

fm i 1 k

This instruction unpacks the floating point quanﬁty from operand register Xk and sends
the 48-bit coefficient to operand register Xi and the 11-bit exponent to increment '
register Bj. The exponent bias is removed during Unpack so that the quaniity in Bj is I

the one's complement representation of the true exponent.

The exponent and coefficient are sent to the low-order bits of the respective registers as

shown below:

SIGN BIASED EXPONENT COEFFICIENT
PACKED QUANTITY l i I I r 48 Xk
59 58 438 47
UNBIASED
EXPONENT
o gemenn
UNPACKED ij _ 0| z/////////////////% Xj
48 47 ' o

3-35 Rev, AF

27 PXi Bj Xk Pack Xi from Xk and Bj - | (15 Bits)

| tm [7 i | ok]

This instruction packs a floating point number in operand register Xi. The coefficient of
the number is obtained from operand register Xk and the exponent from increment regis-
ter Bj. Bias is added to the exponent during the Pack operation. The instruction does

not normalize the coefficient,

Exponent and coefficierif are obtained from the proper low-order bits of the respective
registers and packed as shown in the illustration for the Unpack (26) instruction. Thus,
bits 48 to 58 of Xk and bits 11 to 17 of Bj are ignored. There is no test for overflow or

underflow,
Note that if Xk is positive, the packed exponent occupying positions 48 to 58 of Xi is ob-

tained from bits 0 to 10 of Bj by complementing bit 10; if Xk is negative, bit 10 is not com-
plemented but bits 0 to 9 are,

43 MXi 7k Form mask in Xi, jk bits (15 Bits)

| fm i ik

14 g B 6 5 o}

This ingtruction forms a mask in operand register Xi. The 6-bit quantity jk defines the

number of ''1's" in the mask as counted from the highest order bit in Xi.

The contents of operand register Xi = 0 when jk = 0.

Rev. N 3-36

Floating Point Arithmetic

30 FXi Xj+Xk Floating sum of Xj and Xk to Xi (15 Bits)

fm] i]] w
14 g 8 66 5 3 2 0

This instruction forms the sum of the floating point quantities from operand registers
Xj and Xk and packs the result in operand register Xi. The packed result is the upper

-half of a double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the
smaller exponent is entered intothe upper half of a 86-bit accumulator. The coefficient
is shifted right by the difference of the exponents, The other coefficient is then added
into the upper half of the accumulator. If overflow occurs, the sum is right-shifted one
place and the exponent of the result increased by cne. Theupperhalf of the accumulator
holds the coefficient of the sum, which is not necessarily in normalized form. The ex-

ponent and upper coefficient are then repacked in operand register Xi.
If both exponents are zero* and no overflow oceurs, the instruction effects anordinary

integer addition. For treatment of special operands and/or indefinite forms, referio
Table 3-5 and Appendix C,

31 FXi Xj—Xk Floating difference Xj and Xk to Xi (15 Bits)

fm,ililkl
i4 9 8 6 5 3 2 0

This instruction forms the difference of the floating point quantities from operand reg-
isters Xj and Xk and packs the result in operand register Xi. Alignment and overflow
operations are similar to the Floating Sum (30) instruction, and the difference is not
necessarily normalized. The packed resultistheupper half of a double precision differ-

ence.

An ordinary integer subtraction is performed when the exponents are zero. For treat-

ment of special operands and/or indefinite forms, refer to Table 3-5 and Appendix C,

*A zero exponemnt is 20008.

3-37 Rev. N

32 DXi Xj+Xk Floating DP sum of Xj and Xk to Xi (15 Bits)

fm.[ij|k

This instruction formsthe sum oftwo floating point numbers as in the Floating Sum (30)
instruction, but packs thelower half of the double precision sum with an exponent 48less

than the upper sum. For treatment of special operands and/or indefinite forms, refer

to Table 3-5 and Appendix C,

33 DXi Xj—Xk Floating DP difference of Xj and Xk to Xi (15 Bits)

m] 0] i | «

This instruction forms the difference of two floating point numbers as in the Floating
Difference (31) instruction, but packs the lower half of the double precision difference
with an exponent of 48 less than the upper sum. Fortreatment of special operands and/

or indefinite forms, refer to Table 3-5 and Appendix C.

34 RXi Xj+ Xk Round floating sum of Xj and Xk to Xi (15 Bits)

fm o 0 T o«]

This instruction forms the round sum of the floating point quantities from operand regis-
ters Xjand Xk and packs the upper sum of the double precision result in operand regis -

ter Xi. The sum is formed in the same manner as the Floating Sum instruction but the

Rev. A ’ 3-38

operands are rounded before the addition, as shown below, to produce a round sum.
1) A round bit is attached at the right end of both operands if:

a) both operands are normalized, or

b} the operands have unlike signs,

2) A round bit is attached at the right end of the cperand with the larger exponent
for all other cases. In the event that the operands have equal exponents, a

round bit is attached to the coefficient for only one of the operands.

For treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

.35 RXi Xj—Xk Bound floating difference of Xj and Xk to Xi (15 Bits)

fm i | 0 |«

This instruction forms the round difference of the floating point quantities from operand
registers Xj and Xk and packs the upper difference of the double precision result in
operand register Xi. The difference is formed in the same manner as the Floating
Difference (31) instruction but the operands are rounded before the subtraction, as

shown below, to produce a round difference.

1) A round bit is attached at the right end of both operands if:

a) both operands are normailized, or

b) the operands have like signs.

2) A round bit is attached at the right end of the operand with the larger exponent
for all other cases. In the event that the operands have equal exponents, a

round bit is attached to the coefficient for only one of the operands.

For treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

3-39 Rev M

40 FXi Xj « Xk Floating product of Xj and Xk to Xi (15 Bits)

im0] i e]

This instruction multiplies two floating point quantities obtained from operand registers
Xj (multiplier} and Xk {multiplicand) and packs the upper product result in operand
register Xi,

The two 48-bit coefficienis are multiplied together to form a 96-bit product. Theupper
48 bits of the product (bits 48-95} are then packed together with the resulting exponent.
Note that when using unnormalized quantities, the entire result could lie in the lower-~

order 48 bits of the product; hence, this result would be lost when packing occurs.

The result is a normalized quantity only when both operands are normalized; the
exponent in this case is the sum of the exponents plus 47 (or 48). The result is
unnormalized when either or both operands are unnormalized; the exponent in this
case is the sum of the exponents plus 48. For treatment of special operands and/or

indefinite forms, refer to Table 3-5 and Appendix C,

This instruction is not meant for integer multiplication, however it can be used to
detect overflow resulting from operands too large for integer multiplication. Any

non-zero resultant from an attempted integer multiply indicates overflow.

41 RXi Xj Xk Round floating product of Xj and Xk to Xi {15 Bits,

fm[ilj]k

This instruction multiplies the floating point number from operand register Xk (multi-
plicand), by the floating point number from operand register Xj. The upper product re-
sult is packed in operand register Xi. (No lower product available.) The multiply oper-

ation ig identical to that of instruction 40 with the following exception:

Rev AD 3-40

Before the left shift of the final product and during the merge operation to form the
final product, a "1" bit is added to bit 2%% The following rounded result is the net

effect of this action:

e for products > 295, round is by one-fourth

e - for all other products, round is by one-half
e when one or both operands are unnormalized, round.-is by one-fourth,

"The result is a normalized quantlty only when both operands are normalized; the

exponent in th1s case is the sum of the exponents plus 47 {or 48),
The result is unnormallzed when either or both opera.nds are unnormalized; the

exponent in this case is the sum of the exponents plus 48, For treatment of sper_'lal

operands and/or indefinite forms, refer to Table 3-5 and Appendlx C.

42 DXi Xj+Xk. Floating DP product of Xj and Xk to Xi (15 Bits)

“tm I 3 | i l K J

This instruction multiplies two floating point quantities obtained from operand
registers Xj and Xk and packs the lower product in operand regisfer Xi. The two
48-bit coefficients are multiplied together to form a 96-bit product, The lower-order
48 bits of this product (bits 47-00) are then packed together with the resulting exponent.
The result is not necessarily a normalized guantity. The exponent of this result is

48 less than the exponent resulting from a 40 instruction using the same operands.

For treatment of special operands ar;:d/ or indefinite forms, refer to Table 3-5 and

Appendix C,

Integer Multiply

The 42 code performs short word integer multiplication of 47-bit operands if the -
upper 12 hits (exponents) of both operands are + sign extended and the operands are
not normalized. The 48 bit result is entered into Xi with sign extension. To ensure
a resultant integer of 48 bits or less, the sum of the non-sign bits in the two oper-
ands should not exceed 48 bits. Normalized operands will cause positive underflow
results to be reported., -To detect overflow, see the 40 instruction description. See

Appendix C for a tabulation of operations.

3-41 Rev AL

py FXi Xj/Xk Floating divide Xj by Xk to Xi a5 Bis)

Lt T T .1«
14 g 8 € 5 3 2 p

This mstructlon divides two normahzed ﬂoatmg pomt quanhtles obtamed from operand

registers Xj (dividend) and Xk (d1v150r) and packs the quotient in operand register Xi.

The exponent of the result in a no- overflow case is the dl_fference of the d1v1dend and

divisor exponents minus 48,

A one-bit overflow is compensated for by adjusting the exponent and right shifting
the quotient one place In thls case the exponent is the difference of the d1v1dend and

divisor exponents minus 47,

The result is a normalized quantity when both'the dividend and the divisor are normal-
ized. A divide fault occurs when the coefficigﬁt of the dividend is two or more times
as large as the coefficient of the divisor. This forces an indefinite result (17770...0).
To avoid this, normalize both operands hefore executing this instruction. For treat-

ment of special operands and/or indefinite forms, refer to Table 3-5 and Appendix C.

45 | BXi . Xj/Xk Round floating divide Xj by Xk to Xi . - . {15 Bits) *

r - ™] | : ,

This instruction divides the floating quantity from operand register le (dividend) by
the floating point quantity from operand register Xk (divisor} and packs the round
quotient in operand register Xi., Rounding is accomplished by adding one-third during
the division process. In effect, the quantity ''2525.,.. 25258” resides immediately to
the right of the dividend binary poini prior to starting the divide cperation, On the
first iteration, a ''1'" is added to the least significant bit of the dividend, After each
iteration (subtraction of divisor from partial dividend) a two-place left shift occurs
and a '"1" is again added to the least significant bit of the partial dividend. Thus,

successive iterations gradually bring in the one-third round ''quantity" (25.... 25g).

The result exponent in a no-overflow case is the difference of the dividend and divigor
exponents minus 48,

A one-bit overflow is compensated for by adjusting the exponent and right shifting the
gquotient one place; in this casethe exponent is the difference of the dividend and divisor

exponents minus 47,

The result is a normalized quantity when both the dividend and the divisor are normal-
ized. A divide fault occurs when the coefficient of the dividend is two or more times
as large as the coefficient of the divisor. This forces an indefinite result (17770.- . 0).
- To avoid this, normalize both operands before executing this instruction, For
treatment of special operands and/or indefinite forms, refer to Table 3-5 and

Appendix C.

Branch

010 RJ K Return jump to K {30 Bits)

fmi Y K

29 2120 1817 0

The instruction stores an 04 unconditional jump and-the current address plus one [(P) +.
1] in the upper halfofaddress K, then branches to K + 1 for the next instruction. Note
that this instruction is always out of the instruction stack, thus voiding the stack.

" The octal word at K after the instruction appears as follows:

UNCONDITIONAL

JUMP P+l
—N 7 A \ '
k| o4 oo - XXXXXX - B
59 N 30 29 0
8i = Bj

A jump to address Kat the end of the branch routine returns the program tothe original
sequence,

3-43 Rev, N

02 JP Bi + K Jump to Bi +K g (30 Bits)

m | i W] K

29 24 23 212018 |7 o

This instruction adds the contents of increment register Bi to K and branches to the
address specified by the sum. The branch address is K wheni=0. Addition is per-

formed modulo 21 8—1 .

Note that this instruction is always out of the instruction stack, thus voiding the stack.
For anunindexed, uncenditional jump, the 04 instruectionwith i = j = 0 is a better choice.
Thus, if this instruction is contained in a tight loop, the instruction at K can be obtained

from the stack, if possible.

030 ZR Xj K Jump to Kif Xj =0 (30 Bits)
031 NZ Xj K Jump to K if Xj =0 (30 Bits)
032 PL Xj K Jump to K if Xj = plus (positive) - {30 Bits)
033 NG Xj K Jump to K if Xj = negative " (30 Bits)
034 IR X K Jump to K if Xj is in range (30 Bits)
035 OR Xj K Jump to K if Xj is out of range (30 Bits)
036 DF Xj K Jump to K if Xj is definite {30 Bits)
037 D Xji K Jump to K if Xj is indefinite (30 Bits)

[fmi | i l K

29 212018 17 . 0

These instructions branch to K when the 60-bit word in operand register Xj meets the
condition specified by thei digit. The instruction allows zero, sign, and indefihiteforms

tests for fixed or floating point words.

Rev. A 3-44

The following applies to tests made in this instruction group
a) The 030 (ZR) and 031 (NZ) operations test the full 60-bit word in Xj. The"
words 000... 000 and 777... 777 are treated as zero. All other words are
non-zero.
b) The 032 {PL) and 033 (NG) operations examine only the sign bit (259) of Xj. If
the sign bit is zero, the word is positive; if the sign bit is one, the word is
negative., Thus, the sign test is valid for fixed point words or for coefficients

in floating point words,

c¢) The 034 (IR) and 035 (OR) operations examine the upper-order 12 bits of Xj.
Both plus and minus infinity are detected:

37TT7TXX. .. XX and 4000XX...XX are out of range; all other words

are in range.

d) The 036 (DF) and 037 (ID) operations examine the upper-order 12 bits of Xj.
Both plus and minus indefinite forms are detected:

17TTTXX. .. XX and 6000XX. .. XX are indefinite; all other words are

definite.
04 EQ BiBj K Jump toKif Bi=Bj - {30 Bits)
05 NE BiBj K Jump to K if Bi = Bj (30 Bits)
06 GE BiBj K Jump to K if Bi = Bj (30 Bits)
07 LT BiBj K Jump to K if Bi < Bj (30 Bits)
fm | 1] K
29 24 23 2120 B 17)

These instructions test an 18-bit word from register Biagainst an 18-bitword from reg-
ister Bj (both words signed quantities) for the condition specified and branch to address

K on a successful test. All tests apaingt zero (all zeros) can be made by setting Bj = BO.

3-45 Rev, A

The following rules apply in the tests made by these instructions:
.a). Posgitive zero is recognized as unequal to negative zero, and
b) Positive zero is recognized as greater than negative zero, and

c) A positive number is recognized as greater than a negative number.

Note that the 06 and 07 instructions first perform a sign test on Bi and Bj and the
Branch/No Branch determination is based on the above rules, If Bi and Bj are of the
same sign, a subtract test is performed (in the Increment Unit) and the sign of the
result (Bi-Bj) determines whether a Branch is made.

Extended Core Storage Communication

This category of instructions provides the ability to communicate with Extended Core
Storage (ECS). This section briefly describes Extended Core Storage itself, and a
full description of the instructions is to be found in the Extended Core Storage
Reference Manual, .

These instructions must be located in the upper order position of the instruction word,

I the instructions are used in a system that does not have ECS they will do a return

jump.

011 RE Bj + K Read Extended Core Storage - {30 Bits)

fmi i ' K
59 5150 48 47 30

This instruction initiates a Read operation to transfer [(Bj) + K] 60-bit words from
Extended Core Storage to Central Memory. The initial Extended Core Storage address

is [{X0) + RAp~gl the initial Central Memory address is [(A0) + RA sl

Rev AE 3-486

012 WE Bj + K Write Extended Core Storage (30 Bits)

[tmi | i1 K |

59 5150 48 47 30

This instruction initiates a Write operation to transfer [(Bj) + K] 60-bit words from
Central Memory to Extended Core Storage. The initial Central Memory address is

[(A0) + RACM]; the initial Extended Core Storage address is [(X0) + RAECS]'

3-47 BRev K

ABSOLUTE ABSOLUTE
ADDRESS ADDRESS

CENTRAL EXTENDED
100 MEMORY 100 CORE
$TORAGE

26500 -E-—RAECS - K

RACM

27303

t—%XDlRAEcs

ul

F—l400 2;;4222

EAD
1500 [/] L PROGRAM

4 FLECS 1600

FL = 5300
cM S

6200

6700 (—HACM + FLCM

Figure 3-5. Memory Map (Read ECS Example)

-:——(AOHRA je= R A

cM g65T Fleps

Address Range Faulis: Four address range fault conditions can arise when executing

the Extended Core Storage Communication instruciions:

Word count fault
Central Memory address out of range
Extended Core Storage address out of range

Last 60-bit word {word 7) in FL ig referenced

ECS

3-49 Rev K

a) Word Count

H, in forming the word count [(Bj) + K], the result is negative, an
address range fault occurs. If the Address Out of Range bit is set in the
Exit Mode register, an error stop occurs; if this bit is clear, the Central

Processor passes to the next instruction word at (P)+1 withno data transfer,

b) Central Memory Address

Central Memory address out of range is checked by comparing FLCM
with the sum [(A0) + (Bj) + K. FL
or an address range fault occurs. If the Address Out of Range bit is set

must be greater than this sum

in the ¥xit Mode register, an error stop occurs; if this bit is clear, the
Central Processor passes to the next instruction word at(P)+1 withno data

transfer.

¢) Extended Core Storage Address

Extended Core Storage address out of range is checked by comparing FLECS
with the sum [(XO) +(Bj) + K] . Inthe comparison, FLop.gis a

24-bit quantity with 36 upper-order bits of sign extended; X0 holds

the 24-bit address guantity with 36 zeros occupying the upper-order bit
positions. The result of this subtraction should always be negative;

if positive, an address range fault occurs. If the Address Out of Range

bit is set in the Exit Mode register, an error stop occurs; if this

bit is clear, the Central Processor passes to the next instruction word at

{P)}+1 withnodata transfer.

d) Word 7 reference in FI"ECS

If, after formation of the ECS address, the address format specifies a
reference to word 7 in relative address FLECS’ an address range fault
occurs. If the Address Qut of Range bit is set in the Exit Mode register,
an error stop ocecurs; if this bit is clear, the Central Processor passes
to the next ingtruction word at {(P) + 1 with no data transfer.

Note that address range checks are made onthe entireblock of both Extended Core Stor-
age and Central Memory addresses before the transfer (Read or Write)is begun. If any
address in the block to be transferred is out of range, either in Central Memory or Ex-
tended Core Storage, no data is transferred, regardless of whether or not the Address
Out of Range bit is set in the Exit Mode register.

Rev, A 3-50

Error Action: An error exit is an exit to the lower-order 30bits of the instruction word

containing the ECS Read or Write insiruction., These 30 bits should always hold a jump

to an error routine.

Three error conditions cause an error exit:

1}

2)

3)

. Parity error(s) when reading ECS, If a parity error is detected, the

entire block of data is transferred before the exit is taken.

The ECS bank from/to which data is to be transferred is not available
because the bank is in Maintenance mode, or the bank has lost power.
If either of these conditions exists on an attempted Read or Write, an

immediate error exit is taken.

An attempt to reference a nonexistent address. On an attempted
Write operation, no data transfer occurs and an immediate error
exit is taken. If the attempted operation is a Read, and addresses
are in range, zeros are transferred to Central Memory. This is a

convenient high-speed method of clearing blocks of Central Memory.

Exchange Jump During ECS Communication: If an Exchange Jump occurs while an Ex-

- tended Core Storage transfer is in progress, the exchange waits until completion of a

record. Action is then as follows:

a)

b)

c)

If the record just completed is the last record of the block transfer, and
the transfer was error-free, the Central Processor exits to (P)+1, The
Exchange Jump then takes place.

If the record just completed is the last record of the block transfer, and
an error condition exists, the Central Processor exits to the lower in-

struction, executes it, and the Exchange Jump is performed.

If the record just completed does not complete the block transfer, the
Exchange Jump occurs, and (P) are stored in the Exchange Jump package.
A return Exchange Jump to this progrdm begins execution with the ECS
Read or Write instruction and restarts the transfer. Note the transfer

 does not resume at the point it was truncated; rather, the entire transfer

must be repeated.

3-51 Rev. D

4. PERIPHERAL AND CONTROL PROCESSORS.

ORGANIZATION

The Peripheral and Control Processors are identical and operate independently and
simultaneously as stored-program computers. Thus up to ten programs may be run-
ning at one time. A combination of processors can be involved in one problem, the
solution of which may require a variety of I/0O tasks plus use of Central Memory and

Central Processor(s). Figure 4-1 shows data flow between I/O devices, the pro-

cessors, and Central Memory.

The Peripheral and Control Processors act as system control computers and IO
processors, This permits the Central Processor to continue high-speed computations
while the Peripheral and Control Processors do the slower I/O and supervisory

operations,

rg 2H0 e
CENTRAL _PHOCESSOR
INPUT = OUTPUT ~—
10 FUNCTION
START LTS
OR
UNFIED
ARITHMETIC
uNIT
AEAL
TIME .
CLOEK 1] - tp
CHANNEL PERIPHERAL PERIPHERAL
L B e cenrna | (8, conTro,
WEMOAY 24 AEGISTERS MEMORY
12 BRERAT (NG 1
I/0 - > /o
CHANNELE EACH 131,072 + B ADDAEES 13,072 EALH CHANNELS
RERISTERS &a-miT
PERIFHERAL E4-BIT i PERIPHEAAL
f B COHTHOL WaADs + B INCAEMENT WoRDS B COHTROL l
PROCESSTH REGISTERS PROCESSOR
HAS & 4095 . HAS 4 4048
PERIFHERAL WORD CORE anng;r?nus WORD CDRE PERIPHERAL
EQUIPNENT MEMORY NMEMaRY EGUIPMENT
FHioMm:
« 32 INSTRUCTION
DISK FILES STACK |BEOG/E700] DisK FILES
MAGHETIC oR MAGHETIC
TAPES TAPES
+ | INSTRUCTION
LARD REGISTER Lamp
READERS . PUHCHES
CONSOLES CONSTLES
LINE
PRINTERS

ETC,
ETC.

Figure 4-1. Flow Chart: 6000 Systems

4-1 Rev M

Each processor has a 12-bit, 4096 word random-access memory (not a part of Central
Memory) with a cycle time of 1000 ns (major cycle). Execution time of processor
instructions is based on memory cycle time. A minor cycle is 1/10 of a major cycle

and is ancther basic time interwval.

All processors communicate with external equipment and each other on 12 independent,
bidirectional I/0O channels., All channels are 12-bit (plus control) and each may be
connected to one or more external devices, Only one external equipment can com-
municate on one channel at one time, but all 12 channels can be active at one time.
Data is transferred into or out of the system in 12-bit words; each chamnel has a
single register which holds the data word being transferred in or out, Fach channel

operates at a maximum rate of one word per major cycle,

Data flows between a processor memory and the external device in blocks of words
{a block may be as small as one word). A single word may be transferred beitween

an external device and the A register of a processor,

The I/O instructions direct all activity with external equipment. These instructions
determine the status of and select an equipment on any channel and transfer data to
or from the selected device. Two channel conditions are made available to all
processors as an aid to orderly use of channels,

e Each channel has an active/inactive flag to signal that it has been selected
for use and is busy with an external device.

e Each channel has a full/empty flag to signal that a word (function or data) is

available in the register associated with the channel.

Either state of both flags can be sensed. In gerieral, an I/O operation involves the

following steps:

1) Determine channel inactive-
2) Determine equipment ready
3} Select equipment
4) Activate channel
5) Input/Output data

6} Disconnect channel

Rev K 4-32

One processor may communicate with another over a channel which is selected as
output by one and input by the other. A common channel can be reserved for inter-

processor communication and order preserved by determining equipment and channel
status.

A real-time clock reading is available on a channel which is separate from the twelve
1/O channels. The clock period is 4096 major cycles. The clock starts with power
on and runs continuously and cannot be preset or altered. The clock may be used

to determine program running time or other functions such as time-of-day, as required.

Each processor exchanges data with Central Memory in blocks of n words. Five
successive 12~-bit processor words are assembled into a 60-bit word and sent to
Central Memory. Conversely, a 60-bit Central Memory word is disassembled into
five 12-bit words and sent to successive locations in a processor memory. Separate
assembly (write) and disassembly (read) paths to Central Memory are shared by all
ten processors. Up to four processors may be writing in Central Memory while

another four are simultaneously reading from Central Memory.

The processors generally do not solve complex arithmetic and logical problems susually
they perform I/O operations for running Central Processor programs andorganize pro-
blem data (operands, addresses, constants, length of program, relative starting ad-
dress, exit mode), and store it in Central Memory, Then, an Exchange Jump instruc-
tion starts {(or interrupts) the Central Processor and provides it with the starting ad-
dress of a problem on file in Central Memory. At the next convenient breakpoint, the
Central ‘Processor exchanges the contents of its A, B, and X registers, program ad-
dress, relative starting address, length of program, Exit mode and Extended Core Stor-
age parameters with the same information for the new program. A later Exchange Jump
may return to complete the interrupted program.

Programs for the ten processors are written in the conventional manner and are exe-
cuted in a multiplexing arrangement which uses the principle of time-sharing. Thus,

the ten programs operate from separate memories, but all share a common facility for
add/subtract, I/0O, data transfer to/from Central Memory, and other necessary instruc-
tion control facilities. The multiplex consists of a 10-position barrel, which gtores in-
formation (in parallel) about the current instruction in each of 10 programs, and a com-
mon ingiruction control device, or slot (Figure 4-2). The 10 program steps move

4-3 Rev. A

around the barrel {n series, and each step is presented in turn fo the slot. A portion
of or all of ihe instruction steps are performed in one pass through the slot, and the al-
tered instruction (or next instruction in a program) is reentered in the barrel for the
next excursion. One or more trips around the barrel complete execution of an instruc-
tion. Thus, up to 10 programs are in operation at one time, and each program .is acted
upon once every 1000 ns.

One cycle of the multiplex is 1000 ns, with 300 ns consumed in the barrel and 100 nsg
(minor cycle) in the slot. Instructions in the barrel are interpreted at critical time
intervals so that information is available in the slot at the time the instruction is ready
to enter the slot. Hence, a reference to memory for data is determined ahead of time
so that the data word is available in the slot when the insiruction arrives. Similarly,
instructions are interpreted before they reach the slot so that control paths in the slot

are established when the instruction arrives.

The slot contains two adders as part of the instruction control. One adder is 12 bits,

and the other is 18 bits, Both adders treat all quantities as one's complement.

For 1/0 instructions or communication with Central Memory, one pass through the
slot transfers one 12-bit word to or from a peripheral memory. Thus, block iransfer
of data requires a number of trips around the barrel,

The barrel network holds four guantities which pertain to the current instruction in
each of the programs. The quantities are held in registers which require a total of
51 bits. (The barrel can be considered as a 51 x 10 shifting matrix which ig closed
by the slot.) The barrel registers are referred to implicitly in the instruction steps

and are discussed under Registers, page 4-8.

Rev, A 4-4

10 MEMORIES, 4096 WORDS EACH, i2-BIT

0 | el 3 {4516 |T|w0OINI

A

10 PROGRAMS
IN BARREL

SLOT

(TIME- SHARED
INSTRUCTION
CONTROL}

|
|

— READ WRITE
PYRAMID PYRAMID _
CENTRAL 5l- 5|8 CENTRAL
MEMORY Y P =+ MEMORY -
{60} 2l {60)
& (12) J (2]

{12}

__»REAL=TIME

(o]
n
o
ES
w
~
<]
n

3|14

I/0 CHANNELS

1(!2]
EXTERNAL EQUIPMENT

Figure 4-2, Peripheral and Control Processors

4-5 Rev K

PERIPHERAL PROCESSOR PROGRAMMING

Instruction Formats

An instruction may have a 12-bit or-a 24-bit format. ‘The 12-bit format has a 6-bit

operation code f and a 6-bit operand or operand address d,

OPERATION OPERAND OR

CODE OPERAND ADDRESS
. f d
6 &]
1 - B 5 o

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program

address (P + 1), with d to form an 18-bit operand or operand address.

OPERATION OPERAND OR OPERAND ADDRESS

CODE . - A \

f o m

& 2
" o I 0
f\ /

¥ : : v

(P} LR+

Address Modes

Program indexing is accomplished and operands manipulated in several modes. The
two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit or 18-
bit addresses.

No Address

In this mode d or dm is taken directly as an operand. This mode eliminates the need
for storing many constants in storage. The d guantity is considered as a 12-bit num-
ber the upper six bits of which are zerc. The dm quantity has d as the upper six bits

and m as the lower 12 bits.

Rev. A 4-6

Direct Address

In this mode, d or m + (d) is used as the address of the operand. The d quantity
kspecﬁles one of the first 64 addresses in-memory {0000~ 00778) The m +-(d) quantity
generates a-12-bit- address for referencmg all p0551b1e peripheral memory 1ocat10ns
(0000-7777) (Note. that ‘I:he addition of m + (d) is on 12 bits. Overflow is not recog-
nized al‘l:hough end-around carry does occur.) If d'# 0, the content of address. d is
added to m to produce an operand address {indexed addressing). I d = 0, m is taken
as the operand address, (1f m = 7777 the address is 0). Address 77778 1is: only
accessﬂale if (d) = 77778 and m = 77778. : o

EXA MPLE : Address Modes

Given : =-25.
=100 . . :
conteuts of locanon 25 = 0150
" ~contents of location 150 = 7776

contents of location 250 = 1234

Then '+

'MODE . INSTRUCTION =~ A REGISTER -
“NoAddress -~ .-~ LDNd. . =~ - 000025
IDCdm © 250100
Direct Address ~ ~ LDD{d) . 000150 -
. LDM(m+@@) 001234
Indirect Address = IDI((d)) - © 007776

Indirect Address

In this mode, d specifies an address the content of which is the address of the desired
operand. Thus, d specifies the operand address indirectly. Indirect addressing and
indexed addressing require an additional memory reference over direct addfé.s.'s.iiig;; a
Address 7"[77 is only accesmble if({d)) = 7777 and m = 77778. The Descrlptlon .
of Instructlons section, page 4-93, uses the expres Slon (d) to defme the contents of ‘
memory location d. An expression with double parentheses ((d)) refers to indirect
addressing. The expression (m + {d)) refers to direct addressing when d = 0 and to -
indexed direct addressing when d # 0. Table 4-1 summarizes the addrélséing “n:ic';dés

used for the various Peripheral and Control Processor instructions.

4-7 Rev. AL

TABLE 4-1, ADDRESSING MODES FOR PERIPHERAL - -
AND CONTROL PROCESSOR INSTRUCTIONS

ADDRESSENG MODE

. INSTRUCTION.. - -

TYPE DIRECT | INDIRECT | NO ADDRESS
-~ Liogical Difference 33, 53 - 43 11,723 - R
. Store 34, 54 44 /// WM '
| " Replace Add 35, 55 45 W
- || Replace Add One - 38, 56.. 46 | ///////////////////
: Replace Subtract One 37, 87 47 //////W
 LongJump - | O "//////////// W72

i Return Jump

: U_nconditional Jump

//////////

27

v Ze‘r_'o Jump

000002 O

Non-Zero Jump

D277/ ks

¢ Positive Jump

47277777/ ek

- Mings J ump

© Shift

77777/
7024

. Logical Product

0 12,22

¢ Selective Clear

07
it/ Ex

- Load Complement

REGiSTERS o

. The four reglsters in the barrel are A, P Q, and K
the executlon of processor mstructlons '

A Reglster (18 bits)

////////////////////, o

& EachI plays an important part in

The Arlthm etic or A register is an adder QHELntltlE‘.S are treated as positive

and over flows are not recognized, although an end-around carry does occur.

No s1gn extension is provided for 6-bit or 12-bit quantities which are entered

in the low order bits. However, the unused high-order bits are cleared to

Rev. AD

4~

8

zero. Zero is represented by all zeros. The A register holds an 18-bit Central
Memory address during several instructions. The A adder is used to execute add,
subtract, selective clear, logical product, and logical difference instructions. Parts
of the A adder are also used to enter a word into the shift network and gate the result
back to the barrel. The quantity of A in the barrel is always complemented when it
enters the slot. When no operation on A is called for, {A) is complemented, enters
the A adder, is added to zero, and the result is recomplemented at the output. The
Add gate is always enabled except when Selective Clear, Logical Product, or Shift

gates are enabled (see Figure 4-3).

SLOT
BARREL NETWORK BARREL
. I
AN
ReG|STER | ADDER
/r

B REG

Figure 4-3. Slot Block Diagram.

Add:
For an add instruction, (A) is complemented and entered into the
A input register. The second operand is also complemented and
entered into the B input register. The two quantities in the input
registers, taken as positive, are added and the sum is recom-

plemented as it is gated out of the adder to the barrel.

Subtract:
For subtract instructions, the minuend, (A) is complemented as
it enters the adder, The subtrahend is entered into B without
being complemented and the two quantities are added as in an add

instruction.

4-9 Rev AD

Selective Clear;
For selective clear, the complement of A and the true value of d
are entered into the adder and both the selective and the logical

product gates are enabled,

Liogical Product:
For logical product instructions, both A and d (or dm) are com-
plemented before entering the adder and both the logical product

and the selective gates are enabled,

Logical Difference;
For logical difference instructions, the complement of A and the.
true value of the second operand enter the adder and only the

seleciive gate is enabled.

GENERATE SATISFY

1 a 1+6

1 0 0+1
GENERATE SATISFY ENABLE

SATISFY = GENERATE OR ENABLE

P Register (12 bits)

The Program Address register or P register holds the address of the current in-
struction. At the beginning of each instruction, the contents of P are advanced by one
to provide the address of the next instruction in the program. If a jump is called for,

the jump address is entered in P,

Q Register (12 bita)

The Q register holds the lower six bits of a 12-bit instruction word, or, when the six
bita specify an address, @ holds the 12-bit word which is read from that address, Q

is an adder which may add +1 or -1 to iits content.

I Rev AD 4-9,0

K Register (9 bits)

The Kregister holds the upper six bits (operation code) of an instruction and a 3-bit trip
count designator. The trip count is a sequencing scheme to lend control to the sequential

execution of an instruction.

There are other registers which provide indirect or transient control during execution

of instructions. These include registers associated with the I/O channels, the registers
in the read and write pyramids which assemble successive 12+bitwords into 680-bit words
or vice versa, and registers which hold the storage address and the wordat thataddress

for each peripheral memory.

Description of Peripheral Processor Instructions

This section describes the Peripheral and Control Processor instructions. -Table'4-2
lists designators used throughout the section.

4-9.1 Rev AD l

TABLE 4-2. PERIPHERAL AND CONTROL PROCESSOR
INSTRUCTION DESIGNATORS

Designator Use
A The A register, |
d A B6-Dbit operand or operand address.
f A §-bit instruction code.
m A 12-bit quantity used with d to form an 18-bit operand

or cperand address,

P The Program Address register,

The @ register.

() Contents of a register or location

(0) Refers to indirect addressing.

Preceding the description of each instruction is the octal code, mnemonic code and
address field, the instruction name and instruction length, Mnemonic codes and
address field mnemonics are from COMPASS, a Peripheral and Control Processor

Agsembly language,

EXAMPLE:
52 SBM md Subtract + (d 24 Bit
Octal Mnemonic Address Instruction Instruction
Code Code Field Name Length

Instruction formats are also given; hashed lines within a format indicate these bits
are not used in the operation,
No Operation

00 PSN Pasy {12 Bits)
24 PSN Pass (12 Bits)
25 PSN Pass (12 Bits)

[Loz

I 0

These instructions specify that no operation be performed. They provide a means of
padding out a program.

Rev Y 4-10

Data Transmission

14 LDN d Load d (12 Bits)

This instruction clears the A register and loads d. The upper 12 hits of A are zero.

15 LCN d Load Complement d (12 Bits)

This instruction clears the A register and loads the complementof d. The upper 12 bits

of A are set to one.

30 LDD d Load {d) (12 Bits)

Thig instruction clears the A register andloads the contents of location d. The upper
six bits of A are zero.

34 STD d Store (d) (12 Bits)

| f | d
X & 5 0

This instruction stores the lower 12 bits of A in location d.

4-11 Rev. A

40 LDI d Load ((d)) (12 Bits)

This insiruction clears the A register and loadsa 12-bit quantity thatis obtained by in-
direct addressing. The upper six bits of A are zero. Location d is read out of mem-

ory, and the word obtained is used as the operand address.

44 STI d Store ((d)) (12 Bits)

This instruciion stores the lower 12 hits of Ain the location specified by the contents of

location d.
20 LDC dm Load dm {24 Bits)
f d m
23 18 IT 12 1 0
\ I\ /
V v
{P) {P+1)

This instruction clears the A repgister and loads an 18-bit quantity consisting of d as
the higher six bits and m as the lower 12 bits, The contents of the location following

the present program address are read out to provide m.

Rev. A 4-12

- 50 - LDM md Load(m+(d) : (24 Bits)

] 4] i
23 817 12 1 o
A - i\ v

{P} (P+1}

This instruction clears the A register and loads a 12-hit quantity. The upper six bits
of A are zero. The 12-bit operand is obtained by indexed direct addressing. The
quantity "'m', read out of memory location P + 1 serves as the base operand address
to which (d} is added. If d = 0, the operand address is simply m, butif d # 0, then
m + {d) is the operand address. Thus location d may be used for an index quantityto

modify operand addresses.

54 . 8§TM - md Store (m +(d}) (24 Bits)
f I d | ' m
23 18 17 42 11 . [¥]
\ M ;
v v
{(P) (P+i)

This instruction stores the lower 12 bits of A in the location determined by indexed ad-

dressing (see instruction 50).

Arithmetic

16 ADN d Addd " \ (12 Bits)

This instructionadds d (treated as a 6-bit positive quantity) to the content of the A reg-

ister.

4-13 Rev. D

17 - .~ .SBN d Subtractd . . Co . {12 Bits)

T .]

1} ’ R - _0

This instruction subtracts d (treated as a 6-bit positive quantity) from the content of the

A register,

31 ADD d Add(d) ' (12 Bits)

i 6 3 0

This instruction adds to the A register the contents of leocation d {treated as a 12-bit

positive .quantity) .

32 SBD d Subtract(d)’ | (12 Bits)

f | d
11 ’ ’ 6 5 ’ o]

This instruction subtracis from the A register the contents of location d (trea't'ed. asa

12-bit positive quantity).

41 - ADI d Add ((d)) o . (12 Bits)

]
I -6 5 N o

This instruction adds to the content of A a 12-bitoperand (treated asa positive quantity)
obtained by indirect addressing. Location d is read out of memory, and the word ob-

tained is used as the operand address.

Rev, A 4-14

42 SBI d Subtract ((d)) (12 Bits)

L ¢ I ¢ |

1 6 5 ' o

This instruction subtracts from the A register a 12-bit operand (treated as a positive
quantity) obtained by indirect addressing. Location d is read out of memory, and the

word obtained is used as the operand address.

o1 ADC dm Add dm : (24 Bits)

[¢t [¢ T ~—m

23 1817 21 0

A FAY /
v V

(P (P+1)

This instruction adds to the A register the 18-bit quantity consisting of d as the higher
§ix bits and m as the lower 12 bits. The contents of the location following the present

program address are read out to provide m.

al ADM md Add (m + (d)) (24 Bits)

[¢t [o« [m

23 18 17 12 (o]

A\ FAN
v v

(P} (P41}

s

This instruction addsto the content of A a12-bit operand (treated as a positive quantity)
obtained by indexed direct addressing (see instruction 50).

4-15 Rev. A

52 SBM m d Subtract (m + (d)) - : ' (24 Bits)

f I d I m. |

23 8 17 e 11 o

1 v I\ /
(P) (P +1

This instruction subtracts from the A register a12-bit operand (treated as a positive

quantity} obtained by indexed direct addressing (see instruction 50}.

Shift

10 SHN d Shift d (12 Bits)

This instruction shifts the contents of A right or left d placeé. If d is positive (00-37)
the shift is left circular; if d is negative (40-77) A is shifted right (end off with no sign
extension). Thus, d = 08 requires & left shift of six places. A right shift of six places

results when d = 71,

Logical

11 LMN d Logical difference d (12 Bits)

This instruction forms in A the bit-by-bit logical difference of d and the lower six bits
of A, This is equivalent to complementing individual bits of A that correspond to hits

of d that are one. The upper 12 hits of A are not altered.

S
1

Rev, A 16

12 LPN d Logical product d (12 Bits)

This instruction forms the bit-by-bit logical product of d and the lower six bits of the A
register, and leaves this quantity in the lower 6 bits of A. The upper 12 bits of A are

Zero.

13 SCN d Selective clear d (12 Bits)

-This instruction clears any of thelower sixbits of the A register where there are correg-

ponding bits of d that are one. The upper 12 bits of A are not altered.

33 - LMD d Logical difference (d) (12 Bits)

Thig instruction forms in A the bit-by-bit logical difference of the lower 12 bits of A
and the contents of location d. This is equivalent to complementing individual bits of-

A which correspond to bits of (d) that are one. The upper six bits of A are not altered.

4-17 Rev. A

43 M1 d Logical difference ((d)) (12 Bits)

f] d |

t 6§ 5 o .

This instruction forms in A the bit—b'y—bit logical difference of the lower 12 bits of A
and the 12-bit operand obtained by indirect addressing. Location d is read out of mem-
ory, and the word obtained is used as the operand address. The upper six bits of A

arei; not altered.

22 LPC dm Logical product dm (24 Bits)
f d m
23 18 |7 12 ii 0
hY i\ }
v v
(P) (P+11

This instruction forms in the A register the bit-by-bit logical product of the contents
of A and the 18-bii quantity dm. The upper six bits of this quantity consist of d and

the lower 12 bits are the content of the location following'the present program address.

23 LMC dm Logical difference dm (24 Bits)
Lt | ¢ | m
23 1817 12 0
Y AN J
v v
(P) (P+1})

This instruction forms in A the bit-by-hit logical difference of the contents of A and
the '18-bit quantity dm. This is equivalent to complementing individual bits of A which
correspond to bits of dm that are one. The upper six bits of the quantity consist of d,
and:the lower 12 bits are the content of the location following the present program ad-
dress,

Rev. A 4-18

53 LMM md Logical difference (m + (d)) {24 Bits)

f d m
23 B 17 2 1 0
\ I\ /
\" vV
(P} (P+1)

This instruction forms in A the bit-by-bit logical difference of the lower 12-bits of A
and a 12-bit operand obtained by indexed direct addressing. The upper six bits of A

are not altered.

Replace
35 RAD d Replace add (d) (12 Bits)

This instruction adds the quantity in location d to the contents of A and stores the lower
12 bits of the result at location d. The resultant sum is left in A at the end of the oper-
ation and the original contents of A are destroyed.

36 AOD d Replace add one (d) (12 Bits)

The quantity in location d is replaced by its original value plus one. The resultant sum
is left in A at the end of the operation, and the original contents of A are destroyed.

4-19 Rev. A

37 SOD d - Replace subtract one (d) (12 Bits) -

The quantity in location d is replaced by its original value minus one. The resultant
difference iz left in A at the end of the operation, and the original contents of A are

destroyed.

45 RAI d Beplace add ((d)) (12 Bits)

It & 5 o

The operand which is obtained from the location specified by the contents of location d,
is added to the contents of A, and the lower 12 bits of the sum replace the original oper-

and. The resultant sum is also left in A at the end of the operation.

46 AOL d Replace add one ((d})) {12 Bits}

The operand, which is obtained from the location specified by the contents of location

d, is replaced by its original value plus one. The resuliant sum is also leftin A at

the end of the operation, and the -original contents of A are destroyed.

Rev. A 4-20

47 501 d Replace subtract one ((d)) (12 Bits)

The operand, which is obtained from the location specified by the contents of location

d, iz replaced by its original value minus one. The resultant difference is also left

in A at the end of the operation, and the original contents of A are destroyed.

55 BRAM md Replace add (m + (d)) {24 Bits)
f d | m
23 81T 12 11 o
\ N /
Vv VT _
(P} (P+1)

The operand, which is obtained from the location determined by indexed direct _:ad-
dressing, is added to the contents of A, and the lower 12 bits of the sum replace the
original operand in rneinqry. The resultant sum is also left in A at the end of the 6per-

ation, and the original contents of A are destroyed.

56 AOM md Replace add one (m + (d)) (24 Bits)
P e | m |
23 1817 12 Il 0
\ _ /
v v
(P (P+1)

The operand, which is obtained from the location determined by indexed direct address-
ing, is replaced by its original value plus one (see instruction 50, page 4-13 for explana-
tion of addressing). The resultant sum is also left in A at the end of the operation, and

the original contents of A are degiroyed.

4-21 Rev. A

57 SOM md Replace subtract one (m + (d)) {24 Bits)

| f | - d :| m

23 18 17 12 1 D

\ FAY)
R W .
3 (P+1)

The operand, which is obtained from the location determined by indexed direct address-
ing, is replaced by its original value minus one (see instruction 50, page 4-13 for ex-
planation of addressing). The resuliant difference is also left in A at the end of the op-

eration, and the original contents of A are destroyed.

Branch
03 UnN d Unconditional jump d (12 Bits)

This instructionprovides an unconditional jump toany instruction up to 31 steps forward
or backward from the current program address. The value of d is added to the current
program address. If d is positive (01 - 37), theﬁ 0001 (+1) - 0037 (+31) is added and the
jiu_mp is forward. If d is negative {40 - 76} then 7740 (-31) - 7776 (-1) is added and the
jump is backward. The program stops (a Dead Start is necessary to restart the

machine} when d = 00 or 77.

04 ZJN d Zero jump d {12 Bits)

Il 6 5 o]

This instruction provides a conditional jump to any instructionup to 31 steps forward or
backward from the current program address. I the content of the A register is zero,

the jump is taken. I the content of A is non-zero, the next instruction is executed. Neg-

ative zero (777777) is treated as non-zero. For interpretation of d see instruction 03.

Rev., A 4-22

05 NJN d Nonzero jump d C {12 Bits)

f d |
il 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
nonzero, the jump is taken. If A is zero, the next instruction is executed. Negative

zero (7777177 is treated as nonzero. For interpretation of d see instruction 03.

06 PIN d Plus jump d _ (12 Bits)

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is
positive,” the jump is taken. I A.is-negative, the next instruction is executed. Pos-
itive zero is treated as a positive guantity; negative zero is treated as a negative quan-

tity. For interpretation of d see instruction 03.

07 MJN d Minus jump d (12 Bits)

R 6 5 0

This instruction provides a conditional jump to any instruction up to 31 steps forward
or backward from the current program address. If the content of the A register is

negative, the jump is taken. If A is positive, the next-instruction is executed. Pos-
itive zero is treated as a positive quantity; negative zero is treated as a negative:quan-

tity. For interpretation of d see instruction 03.

4-23 Rev. A

01 - LM md Long jump to m + (d) ' - (24 Bits)

l f] g | . m
23 1817 T o

ThlS instruction jumps to the sequence beginning at the address given by m + (d). If

d = 0, then m is not modified,

02 RIM md . Return jump to m + (d) (24 Bits)
Lt [¢ | m |
23 18 17 12 i 0
\ FAY /
v v
{P) . {P+1)

This instruction jummps to the sequence beginning at the address given by m + (d). I

d = 0 then m is not modified, The current program address (P) plus two is stored at
the' jump address. The nev&lar program comménces at the jump éddress plus one, This
program should end with a 16ng jump to, or normal sequencing into, the jump address
minus one, which should in turn contain a long jump, 0100. The latter returns the

original program address plus two to the P register, -

Central Processor and Central Memory

26 0 EXN Exchange jump (12 Bits)

| f | 72 < (BuAL CP BIT)

I 6 5 3

This instruction transmits an 18-bit (absolute) address {only 17 bits are used) from
the A register to the Central Processor with a signal which tells the Cenfral Processor
to perform an Exchange Jump, with the address in A as the starting location of a file

of 16 words containing information about the Centrai Processor program ito be executed,
The 18-bit initial address must be entered in A before this instruction is executed.

The Central Processor replaces the file with similar information from the interrupted

Central Processor program. The Peripheral Processor is not interrupted.

In Systems with dual Central Processors, the lowest order bit of the instruction format

specifies which Central Processor the Exchange Jump will interrupt. In other 6000

gystems, this bit is not interpreted.

Rev M 4-24

27 RPN Read program address (12 Bits}

-

L

{DUAL CP BIT)

v -

This instruction transfers the content of the Central Processor Program Address
register, P, to the Peripheral Processor A register; this allows the Peripheral
Processor to determine whether the Central Processor is running. In a system with
dual Central Processors, the lowest order bit of the instruction format specifies
which Central Processor P register is to be examined. In other 6000 systems, this
bit is not interpreted. The largest value that (P) may be is 17 bits. The remaining
bit (bit 17} will appear set to this instruction when an ECS transfer is in progress.

However, bit 17 is not set in P.

60 CRD d Central read from (A) to d (12 Bits)

This instruction transfers a 60-bit word from Central Memory to five consecutive
locations in the processor memory. The 18-bit address of the Central Memory
location must be loaded into A prior to executing this instruction. (Note that this is
an absolute address.) The 60-bit word is disassembled into five 12-bit words begin-
ning at the left. ILocation d receives the first 12-bit word. The remaining 12-bit
words go to succeeding locations., This instruction will not interrupt an ECS transfer
unless bit 17 of the A register is set (Access priority) or Constant Mode is switch
selected on the deadstart panel.

61 CRM md Central read (d) words from (A) tom (24 Bits)
¢ d | m |
23 i8 I7 12 U 0
\ FAY /
v ' ¥
(P (P+1)

This instruction reads a block of 80-bit words from Central Memory. The content of
location d gives the block length. The 18-bit address of the first central word must be
loaded into A prior to executing this instruction. {Note that this is an absolute address.)
During the execution of the instruction, (P) goes to processor address 0 and P holds m.
Also, {d) goes to the Q register where it is reduced by one as each central word is

processed. The original content of P is restored at the end of the instruction.

4-25 Rev AC

Each central word is disassembled into five 12-bit words beginning with the high-order
12 bits. The first word is stored at processor memory location m. The content of P
(which is holding m) is advanced by one to provide the next address in the processor
memory as each 12-bit word is stored. I P overflows, operation continues as P is ad-

vanced from 77778 to 0000,. These locations willbe writteninto asif they were conse-

cutive,

The content of A is advanced by one to provide the next Central Memory address after
each 60-bit word is disassembledandstored. Also, the contents of the Q register are
reduced by one. The blocktransfer is complete when®@ = 0. The block of Central Mem-
ory locations goes from address (A) to address (A)+ {d) -1. The block of processor
memory locations goes from address m tom + 5(d) ~1. This instruction will not
interrupt an ECS transfer unless bit 17 of the A register is set (Acess priority) or

Constant Mode is switch selected on the deadstart panel.

62 CwWD d Central write to (A) fromd (12 Bits)

f | ¢]

H & b 0

This instruction assembles five successive 12-bit words into a 60-bit word and stores
the word in Central Memory. The 18-bitaddress word designating the Central Memory

location must be in A prior to execution of the instruction. (Note that this is an absolute

address.)

Location d holds the first word to be read out of the processor memory. This word
appears as the higher order 12 bits of the 60-bit word to be stored in Central Memory.
The remaining words are taken from successive addresses. This instruction will not

]

interrupt an ECS tranefer unle=s »it 17 of the A rerister is set (Access priority) or

Constant Mode is switch selected on the deadstart panel.

Rev., AC 4-286

63 CWM md Central write (d) words to (A) fromm (24 Bits)

f a | m |
23 8 17 f[2 il 8]

This instruction assembles a block of 680-bit words and writes them in Central Memory.
The content of location d gives the number of 60-bit words. The content of the A reg-
ister gives the beginning Central Memory address, (Note that this is an absolute ad-
dregs.) During the execution of this instruction (P) goes to processor address 0 and P
holds m. Also, (d) goes to the Q register, where it is reduced by one as each central

word is assembled. The original content of P is restored at the end of the instruction.

The content of P (the m portion of the instruction) gives the address of the first word
to be read out of the processor memory. Thisword appears as the higher order 12 bits
of the first 60-bit word to be stored in Central Memory.

The content of P is advanced by one to provide the next address inthe processor memaory
as each 12-bit word is read. H P pverﬂows, operation continues as P is advanced from
77’?78 to ODOOB. These locations will be read from as if they were consecutive.

The content of A is advanced by one to provide the next Central Memory address after
each 60-bit word is assembled. Also, Qis reduced by one. The blocktransfer is com-
plete when Q = 0. This instruction will not interrupt an ECS iransfer unless bit 17 of
the A register is set (Access priority) or Conztant Maode is switch zelected on the

deadstart panel.

4-27 Rev.AC

Input/Cutput

In systems with additional 10 PPU's, the channels are in a remote cabinet, so delays
in channel status gensing result, A PPU does not recognize a status change made

by any of the four PPU's immediately preceding it in the barrel until the next major
cycle (barrel trip). Therefore, for normal 1/O, the Monitor PPU must assign only
one PPU to a channel or group of channels during a given time period. Two PPU's
can be assigned to the same channel for PPU to PPU communication, cne for input,
the other for output. The PPU's should communicate over a double rank channel

(248 through 338) to ensure the maximum possible transfer rate,

Note that the channel sensing instructions {64, 65, 66, 67) are valid for a PPU only
when that PPU is sensing a channel assigned to it by the Monitor PPU. PPU hang-

ups or functioning a channel by more than one”PPU at the same time can result when

PPU's sense channels not assigned to them.
64 AJM md Jump to m if channel d active (24 Bits)
| Lt] ¢] m]
23 ig I7 12 1 0
v — 1 ~ /
(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by the contents of m. The jump is taken if the channel specified by d is

active. The current program sequence continues if the channel is inactive.

4-27.1 Rev N

65 M md Jump to m if channel d inactive (24 Bits)

[¢ [o | m |
23 18 17 2 1 0
: FAY

v v
(P} {(P+1

This instruction provides a conditional jump to a new program sequence beginning at
an address given by m. The jump is taken if the channel specified by disinactive. The

current program sequence continues if the channel is active.

66 FIM md Jump to m if channel d full (24 Bits)
[« [¢ | m]
23 18 17 12 il] 0
\ I\ /
'a v
(P} (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by m. The jump is taken if the channel designated by disfull. The pres-
ent program seguence continues if the channel is empty.

An input channel is full when the input equipment has placed a word on the channel and
that word has not yet been sampled by a processor. The channel is empty when a word
has been accepted. An output channel is full when a processor places a word on the

channel. The channel is empty when the output equipment has sampled the word.

67 EJM md Jump to m if channel d empty (24 Bits)

[¢ | d | m
23 18 17 12 11 0
A FAY /
v A
(P (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address specified by m. The jump is taken if the channel specified by d is empty. The
current program sequence continues if the channel is full. (See instruction 66 for ex-

planation of full and empty.)

Rev. A 4-28

70 IAN d Input to A from channel d (12 Bits)

L f | d

i 6 5 8]

This instruction transfers a word from inpu't channel d to the lower 12 bits of the A

register. The upper § bits of the A register are cleared to zeros.

NOTE

This instruction will hang up the Peripheral Processor
if executed when the channel is inactive unless bit 5 is
set. With bit 5 set, an inactive channel will cause an

‘ exit.
71 IAM md Input (A) words to m from channel d (24 Bits)
L ¢] ¢] m |
23 18 17 12 11 o
. N /
v v
(e {P+1)

This insiruction transfers a block of 12-bit words from input channel d to the processor
memory. The content of A gives the block length. The first word goes to the processor
address specified by m. The content of A is reduced by one as each word is read. The
input operation is complete when A = 0 or the data channel becomes inactive, If the
operation is terminated by the channel becoming inactive, the next location in the
processor memory is set to all zeroes. However, the word count is not affected by

this empty word. Therefore, the contents of the A register gives the block length -

minus the number of real data words actually read in.

During this instruction address 0000 temporarily holds P, while m is held in the P
register. The content of P advances by one to give the address for the next word as

each word is stored.

NOTE

If this instruction is executed whenthe data channel is
inactive, no input operation is accomplished and the
program continues at P + 2. However, the location
specified by m is set to all zeroces.

4-29 Rev Y

72 OAN d Output from A on channel d (12 Bits)

This instruction transfers a word from A (lower 12 bits) to output channel d.

NOTE

This instruction will hang up the Peripheral
Processor if executed when the channel is
inactive unless bit 5 is set. With bit 5 set,
an inactive channel will cause an exit.

73 OAM md Output (A) words from m on channel d (24 Bits)
f d m
23 18 17 i2 1l o
\ FAN]
v v

(P) (P+1}

This instruction transfers a block of words from the processor memory to channeld. The
first word comes from the address specified by m. The content of A specifies the num-
ber of words to be sent out. The content of A is reduced by one as eachword is read out.

The ouiput operation is complete when A = 0 or the channel becomes inactive.

During this instruction address 0000 temporarily holds P, while m is held in the P reg-
ister. The content of P advances by one to give the address of the next word as each

word is taken from memory.

NOTE

If this instruction is executed when the data
channel is inactive, no output operation is
accomplished and the program continues at
P+ 2.

Rev. Y 4-30

74 ACN d Activate channel d (12 Bits)

This instruction activates the channel specified by d. Activating a channel (must pre-
cede a 70 - 73 instruction) alerts and prepares the I/O equipment for the exchange of
data.

NOTE

Activating an already active channel causes the

Peripheral Processor to hang up unless bit 5 is sget.
With bit 5 set, an active channel causes an exit.

75 DCN d Disconnect channel d (12 Bits)

This instruction deactivates the channel specified by d. As a result, the I/O equipment
stops and the buffer terminates.

NOTE

1} Do not deactivate an already inactive channel or

the Peripheral Processor will hang up unless bit
5 is set. With bit 5 set an inactive channel will
cause an exit,

2) I an output instruction is followed by a disconnect
instruction without first establishing that the infor-
mation has been accepted by the input device
(check for channel empty) the last word trans-
mitted may be lost.

3) Do not deactivate a channel before putting a useful
program in the associated processor. Processors
other than 0 are hung up on an Input instruction
(71). Deactivating a channel after Dead Start causes
an exit to the address specified by the contents of
location 0000 plus 1 and execution of that program.
If the channel is deactivated without a valid program
in that processor, the processor will execute what
ever program was left in memory; it could, there-
fore, run wild,

4-31 Rev AA

76 FAN d ~ Function (A) on channel d {12 Bits)

The external function code in the lower 12 bits of A is sent out on channel d.

NOTE

Do not execute this instruction when the channel is
Active or the Peripheral Processor will hang up
unlegs bit 5 is set. With bit 5 set, an active channel

causes an exit.

77 FNC md Function m on channel d (24 Bits)

Lt | ¢ m_]

23 18 17 12 11)

The external function code specified by m is sent out on channel d. With bit 17 set,

an active channel will cause the Peripheral Processor to exit.

Access to Central Memory

The Peripheral and Control Processors have access to all Central Memory storage lo-
cations, Four of the instructions (60, 61, 62, 63 - described previously) trangfer one
word or a block of words from a peripheral memory to Ceniral Memory or vice versa
Data from an external equipment is read into a peripheral memory and, with separate
instructions, transferred from there to Central Memory where it may be used by the

Central Processor. Conversely, data is iransferred from Ceniral Memory to a peri-
pheral memory and then transferred by separate instructions to external equipment.

Note that all addresses sent to Central Memory from Peripheral and Control Proces-

s0rs are absolute addresgses, rather than relative addresses.

Read Central Memory

The 60 and 61 instructions read one word or a block of 60-bit Central Memory words.
The Central Memory words are delivered to a five stage read pyramid where they are
disassembled into five 12-bit words, beginning with the high-order word. Successive

Rev. ¥ 4-32

stages of the pyramid contain 60, 48, 36, 24 and 12 bits. The upper 12 biis of the
word are removed and sent to a peripheral memory as the word is transferred through

each stage. Thus, a 60-bit word is disassembled into five 12-hit words.

Words move through the pyramid when the stage ahead is clear, One pass through the
slot determines that the next stage is clear, sends 12 bits of the word to a peripheral
memory, and moves the word ahead to the cleared stage. The pyramid is a part of the
slot and may be time shared by up to four processeors. Thus four Ceniral Memory
words may be in the pyramid at one time in varying stages of disassembly. With a
full pyramid, Read instructions from other processors are partially executed (house-
keeping) and circulated unchanged in the barrel until the number of pyramid users
drop below four, Waiting processors are serviced in the order in which they appear

at the slot. * Other instruction control provides address incrementing and keeps the

word count,

The Central Memory starting address must be entered in A before a Read instruction
is executed, A Load dm (20} instruction may be used for this. For a one word transfer,

the d portion of the Read (60) instruction specifies the following:

d = peripheral address (0000—00778) of first 12-bit word; remaining words
gotod+ 1, d+ 2, etc,

For a block transfer, d and m of the read (61) instruction specify the following:

{d} = number of Central Memory words to be transferred; reduced by one
for each word transferred.

m = peripheral starting address; increased by one to provide locations for
successive words. (A) is increased by one to locate consecutive Central
Memory words,

Write Central Memory

The 62 and 63 instructions assemble 12-hit peripheral words into 60-bit words and
write them in Central Memory. Peripheral words are assembled in a write pyramid
and delivered from there to Central Memory. As in Read Central Memory, the pyramid
is a part of the slot and is time-shared by up to four processors, Write pyramid

action is similar to Read pyramid action except for the assembly.

*Refer to Central Memory Access Priority (Appendix F) for exceptions.

4-33 Rev K

The starting address in Central Memory is entered in A before the Write instruction
ig executed. For a one word transfer, the d portion of the Write (62) instruction

specifies the following:

d = peripheral address (0000- 00778) of first 12-bit word; remaining words
are taken from d + 1, d + 2, etc.

For block transfer, d and m of the Write {63) instruction specify the following:

{d) = number of Central Memory words to be transferred; reduced by one

for each word transferred,

m = peripheral starting address; increased by one to locate each successive
peripheral word. (A) is increased by one to provide consecutive Central

Memory locations,

Access to the Central Processor -

The Peripheral and Control Processors use two instructions to communicate with the
Central Processor. One instruction starts a program running in the Central Processor

and the other instruction monitors the progress of the program.

Exchange Jump

The 260 instruction (described previously) starts a program running in the Central
Processor or interrupts a current program and starts a new program running. In
gither case, the Central Processor is directed to a Central Memory file of 16 words
which stores information about the new program to be executed (see Exchange Jump
section). The 18-hit starting address of this file must be entered in A before the Ex-
change Jump instruction is executed. The Central Processor replaces the file with
similar but current information from the interrupted program. A later Exchange Jump
instruction referencing this file returns the interrupted program to the Central Pro-
cessor for completion. This exchanpge feature permits the Peripheral Processor to

time-share the Central Processor.

Rev K 4-34

Read Program Address

The 27 instruction (described previously) transfers the content of the Central Processor
P register into a peripheral A register. The peripheral program tesis the A register
content to determine the condition of the Central Processor. I A # 0, the Central Pro-
cessgor is running a program, may have come to a normal (instruction) stop, or may
have stopped due to an ocut-of-bounds error (unselected). (Refer to Exit Mode section,
page 3-11.} If A =0, the Central Processor has stopped due to a selected Exit mode
error; the reference address for the Central Processor program is then examined to
determine which error condition exists. A Stop instruction (OOB)in the upper sixbits of
the reference address signals a stop; the next lower six bits define the nature of the exit
({see Exchange Jump section, page 3-9).

input and Output

There are 12 instructions to direct activity on the I/O channels. These instructions se-
lect a unit of external equipment and transfer data toorfrom the equipment. The instruc-
tions also determine whether a channel or external equipment is available and ready to
transfer data. The preparatory steps insure that the data transfer is carried out in an
orderly fashion.

FEach external equipment has a set of external function codes which are usedby the pro-
cessors to establish modes of operation and to start or stop data transfer. Also, the
devices are capable of detecting certain errors (e.g., parity error) and provide an in-
dication of these errors to the controlling processor. The external error conditions can
be read into a processor for interpretation and further action. Details of mode selec-

tion and error flags in external devices such as card readers and magnetic tape systems

are presented in the appropriate 6000 Series Peripheral Equipment Reference manuals.

Data Channels

Each channel has a 12-bit bi-directional data register and two control flags which indi-
cate:

™ The channel is active or inactive

L] The channel register is full or empty

The 64 and 65 instructions determine the state of the channel, andthe 686 and 87 instruc-
tions determine the state of the register. The flags provide housekeeping information
for the processors so that channels can be monitored and processed in an orderly way.

The flags also provide control for the I/0O operation.

4-35 ' Rev, PP

Word Rate: Each processor ig serviced by the slot once every major cycle., This sets
the maximum word rate on a channel at one word each 1000 ns, a 1 megacycle word
rate. Up to 10 processors can be communicating with I/O equipment over separate

channels at this rate since each processor is regularly serviced at major cycle intervals.

Channel Active/Inactive Flag: A channel is made active by a Function (76, 77) instruc-

tion or an Activate Channel (74) instruction.

The Function instruction selects a mode of operation in the external equipment. The
ingtruction places a 12-bit function wordinthe channelregister and activates the channel.
The external equipment accepts the function word, and its response to the processor
clears the regisier and drops the channel active flag. The latter action produces the

channel inactive flag,

The activate channel insiruction prepares a channelfor data transfer. Subsedquent input
or cutput instructions transfer the data. A disconnect channel instruction after daia

transfer is complete returns the channel to the inactive state.

Register Full/Empty Flag: A register is full when it contains a function or data word

for an external equipment or contains a wordreceivedfrom anexternal equipment. The
regigter is empty when it is cleared. The flags are turned on or off as the register

changes siate.

On data output, the processor placesa wordinthe Channel register and sets the full flag.
The external device accepts the word, clears the register, and setsthe emptyflag. The
empty flag and channel active flag signal the processor to send ancther word to the reg-

igter to repeat the sequence.
On input, the external device places a word in the register and sets the full flag. The

processor stores the word, clears the register, and seis the empty flag. The empty
flag and channel active flag signal the external device to deliver another word.

Rev, D 4-36

Data Input

Several instructions are hecessary to transfer data from external equipmentinto a pro-
cessor. The instructions prepare the channel and equipment for the transfer and then
start the transfer. Some external equipment, when once started, send a series of words
(record) spaced at equal time intervals and then stops automatically between records.
Magnetic tape equipment is an example of this tiype of transfer. The processor canread
all or a part of the record and then disconnect the channel to end the operation. The
latter step makes the channel inactive. Other equipment, such as the display console,
can send one word {or character) and then stop. The input instructions allow the input
transfer to vary from one word to the capacity of the processor.

. An input transfer may be accomplished in the following way:

1) Determine if the channel is inactive. A J ump to m on channel d
Inactive (65) instruction does this. Here, m can be a function

instruction to select Read mode or determine the status of the equipment.:

2} Determine if the equipinént is ready. A Function m on Channel d (77)
instruction followed by an Activate channel d (74) followed by an Input to A
from Channel d (70) instrﬁction loads A with the status response of the
desired equipment. Here, m is a status request code, and the status response

-in A can be tested to determine the course of action.
3) Disconnect Channel d (75); this avoids hanging up the processor.

4} Select Read mode in the equipment. ' A Function m on Channel d {(77)
instruction or Function (A) on Channel d {(76) instruction will send a code

word to the desired device to prepare it for data transfer.

5) Enter the number of words to be transferred in A. A Load d (14) or Load
(d) (30) instruction will accomplish this,

6) Activate the channel, An Activate Channel d {74} instruction sets the

channel active flag and prepares for the impending data transfer.

7) Start input data transfer. An Input (A) Words to m on Channel d (71)
instruetion or an Input to A from Channel d (70) instruction starts data
transfer. The 71 instruction transfers one word or up to the capacity
of the processor memory. The 70 instruction transfers one word only.

4-37 Rev. F

8) Disconnect the channel. A Disconnect Channel d (75) instruction makes

the channel inactive and stops the flow of input information. -

The design of some external equipment requires timing considerations in issuing function,
é.ctivate, and input instructions. The timing consideration may be based on motion in the
equipment, i.e., the equipment must attain a given speedbefore sending data (e.g., mag-
netic tape). In general, timing considerations can be resolved by issuing the necessary

ingtructions without an intervening time gap. The external equipment literature lisis

timing ceonsiderations to be taken into account.

Data Output

The data output operation is similar to data input in that the channel and equipment

must be ready before the data transfer is started by an output instruction.

An output transfer may be accomplished in the following way:

1). Determine if the channel is inactive. A Jump to m on Channel d
Inactive (65) instruction does this, Here, m can be a function instruction

to select Write mode or determine the status of the equipment.

2) Determine if the equipment is ready. A Function m on Channel d (77)
followed by an Activate channel d (74} followed by an Input to A from Channel
d (70) instruction loads A with the status response of the desired equipment.
Here, m is a status request code, and the status response in A can be

tested to determine the course of action.
3) Disconnect Channel d (7 5); this avoids hanging up the processcr.

4) BSelect Write mode in the equipment. A Function m on Channel d (77)
instruction or Function (A) on Channel d (78} instruction will send a code

word to the desired device to prepare it for data transfer.

5) Enter the mumber of words to be transferred in A, A Load d (14) or Load d
{30) instruction will accomplish this.

8) Activate the channel. An Activate Channel d (74} instruction signals an

active channel and prepares for the impending data transfer.

7) Start data transfer. An Cutput (A) Words from m on Channel d (73} instruction

or an Output from A on Channel d (72) instruction starts data transfer. The o

Rev, F 4-38

73 instruction can transfer one or more words while the 72 instruction

transfers only one word.

8) Test for channel empty. A Jump to m if Channel d Full (66) instruction
where m = current address, provides this test. The instruction exiis to
itself until the channel is empty. When the channel is empty, the processor
goes on to the next ingtruction which generally disconnects the channel. The
instruction acts to idle the program briefly to insure successful transfer of

the last output word to the recording device.

9) Disconnect the channel. A Disconnect Channel d (75) instruction makes
the channel inactive. Data flow in this case terminates automatically when

the correct number of words is sent out,

Instruction timing congiderations, as in a data input operation, areafunction of the ex-

ternal device.

Real-Time Clock

The real-time clock runs continuously; its period is 4096 cycles (4. 096 ms). The clock
may be sampled by any Peripheral and Conirol Processor withanInputto A {70) instruc-
tion from channel 148. The clock ig advanced by the storage sequence control and can-

not be cleared or preset,

4-39 Rev. F

5. SYSTEM INTERRUPT

INTRODUCTION

Essentially, detecting and handling interruptible conditions involves both hardware
and software. This section describes hardware provisions for detecting and handling
interrupt. The salient features of an operating system for implementing interrupt

handling are described in the operating system reference manual,

HARDWARE PROVISIONS FOR INTERRUPT

Exchange Jump

Within a Peripheral Processor, execution of an Exchange Jump instruction initiates
hardware action in the Central Processor to interrupt the current Central Processor
program and substitute a program, the parameters of which are defined in the Exchange
Jump package, Note that the Exchange Jump is also used to start the Central Processor
from a Stop condition. {(Refer to the Exchange Jump section).

Channel and Equipment Status

Within the Peripheral Processors, hardware flags indicate the state of various
conditions in the data channels, e, g., Full/ Empty, and Active/mactive. External
equipments are capable of detecting certain errors (e.g., parity error) and hold
status information reflecting their operating conditions (e.g., Ready, End of File, etc.)
Channel and equipment status information may be examined by instructions in the

..... Peripheral Processors, The Input/QOutput section describes these instructions. For
detajled status information on external devices such as magnetic tape units and card
readers, refer to literature associated with these devices.

o-1 Rev K

Exit Mode

Ceniral Processor hardware provides for threetypes of error halt conditions (Exit mode):

» Address outf of range {i.e., out of bounds)

e Operand out of range (i.e., exponent overflow)
e Indefinite result

Detecting the occurrence of one or more of these conditions is accomplished by the
hardware and causes an error halt. Note that halting on any of these conditions is

selectable;selection is performed by setting appropriate flags in the Exit mode portion
of the Exchange Jump package. (Refer to Exit Mode, page 3-11.)

Rev. A 0-2

6. MANUAL CONTROL

INTRODUCTION

Manual control operation is provided through 1) the dead start panel and 2) the console
keyboard, The Dead Start circuit is a means of manually entering a 12-word program
{normally a load routine) to start operation. The console keyboard provides for the

manual entry of data or imstructions under program control.

DEAD START

The dead start panel* (Figure 6-1) contains a 12 x 12 matrix of toggle switches, a
MODE switch to select SWEEP, LOAD, or DUMP, a2 DEAD START switch, and a
CEJ/MEJ and a PPU-A switch, % The panel also contains memory margin switches
which are used for maintenance checks. The three modes of operation {L.oad, Sweep,

Dump) selectable via the dead start panel are described below.

l_.oad Mode

To initially load programs and data into the computer system, the MODE switch is
placed in the LOAD position. The mairix of toggle switches is set to a 12-word {or
less) program (switch up = '"'1", switch down = "0"). The program set in the switch
matrix is normally a load routine used to load a larger program from an input device

such as a disk file or magnetic tape unit,

The DEAD START switch is turned on momentarily, then off, Turning on the DEAD
START switch initiates the following operations:

1) Assigns processors 0-11_ to corresponding data channels,

8

2) Sends a Master Clear to all I/O channels. A Master Clear removes all
equipment selections except the dead start panel, and sets all channels to
the Active and Empty condition (ready for input).-

*See Appendix E for Dead Start operation in 64XX-7, 64XX-8, and 64XX-9 Systems.
**CEJ/MEJ and PPU-A switches are for 6700 only or those systems which have the
applicable Standard Options,

6-1 Rev K

3} Sets all processors to the Input (71) instruction.
4) Clears the P register and sets the A register to 10000B in all processors.

5) Transmits a zero word followed by the 12 words from the toggle switches into
memory locations 0000 - 00148 of peripheral processor 0, and then disconnects
data channel 0 causing word 00158 of peripheral processor 0 to be zeroed and
causing peripheral processor 0 to start execution with the instruction at loca-
tion 0001.

After the switch matrix program is read from the dead start panel, the panel is auto-
matically disconnected. Processor 0 reads location 0000, adds one to itg content, and
begins executing the program at address 0001. The other processors are still setto the

‘Input (71) instructionand may receive data from processor 0 via their assigned channels.

Sweep Mode

Placing the MODE switch in the SWEEP position and momentarily turning on the DEAD
START switch results in the following:

1) Sets all processors to instruction 50X,

2} Clears all processor P registers to zero.

The transiationof the 50X instructionin each processor causes each processorto sweep
through its memory, reading and restoring the contents of each location, without execut-
ing instructions. Sweep mode is a mainienance tool useful in checking the operation of

memory logic,

Dump Mode

Placing the MODE switch in the DUMP position and momentarily turning on the DEAD
START switch initiaies the following operations:

1} Assigng processors 0-118 to corresponding data channels.

2) Sends a Master Clear to all I/O channels except channel 0.

3) Holds channel § o Active and Empty.

4) Sets all processors to the Qutput (73) instruction.

5) Clears the P register and sets the A register to 100008 in all processors.

Rev. F 6-2

NOTE

The CEJ/MEJ switch is for E model or system with
the installed CEJ/MEJ option, Appendix F describes
the option.

CEJ/MEJ is disabled when the key switch is turned fully
clockwise and the system is deadstarted. CEJ/MEJ is
enabled when the key switeh is turned fully counter-
clockwise and the system is deadstarted.

The FFU-A switch is for systems with 20 FFU's, it de-
termines whether the internal F¥U chassis is numbered
0-11 or 20-31.

* NOTE: For 6000-A/B/C with CMAP

option the switch is horizontal

and Program Mode o he right.

DEAD START PROGRAM
"B D OOD OO B0
m@® @ QP @@ P @@ @
m @ P@ @O @O @ @@
m PP PP @@@ @@ @
wi @D @@ @ PO 9P@ @@ @
m@P PO @@ @@ @@ @
w@® @0 @@ @9@ @@ @
m@® @@ @ @000 @@ @
m® PO @0 PO@ @@ @
mw@® PO @0 @000 @@ @
wmw@® PO @O @00 @ @@
P @0 @00 @00 @0 @

Figure 6-1, Dead Start Panel

6-3 Rev AC

Each of the processors senses the Active and Empty condition of its assipned channel
and outputs the content of its memory address zero. Each of the I/O channels is then
set to Full (except channel 0), and the processors wait for an Empty signal, Each
processor advances its P register by one and reduces the content of its A register by
one (to 77768). At this point, the processors waiting for an Empty signal are hung up
and cannot proceed.

Channel 0 (assigned to processor 0) is held to Empty by the DUMP position. Procéssor
0, therefore, proceeds through the 73 instruction until the contents of A are reduced
to one. Processor 0 has now dumped its entire memory content on channel 0 (although
no I/O device was selected to receive it). Execution then starts with the instruction

at the location specified by the contents of location 0000 plus one; it is now free to
execute a dump program which must have been previously stored in its memory

{(location 0000 must have been previously set to the starting address minus one).
PROGRAM/CONSTANT MODE

Placing the CMAP switch in the Program Mode position provides program selectable
priority for each peripheral processor. Flacing it in the Constant Mode position
assigns priority status to all peripheral processors by which any one can interrupt

an ECS transfer,

CONSOLE

The display console (Figure 6-2) consists of two cathode ray tube displays and a key-
hoard for manual entry of data. A typical System may have several display consoles

for controlling independent programs simultaneously.

Keyboard Input

The console may be selected for input to allow manual entry of data or instructions
to the computer. The first part of an operating system program may select keyboard

input to allow the programmer to manually select a routine from the operating system.
Data entered via the keyboard may be displayed on one of the display tubes if desired,

Assembly and display of keyboard eniries is done by a routine in the operating system.

Display

The console may be selected to display (Figure 6-3) in either the Character or Dot mode,

In the Character mode, two alphanumeric characters may be displayed for each 12-hit

Rev AC 6-4

1371

word sent from a processor. Character sizes are:

Small - 64 characters/line
Medium - 32 characters/line
Large - 16 characters/line

In Dot mode, a pattern of dots {(graph, figures, etc.)may be displayed. Each dot is lo-

~cated by two 12-bit words: a vertical coordinate and a horizontal coordinate.

A display program must repeat a display periodically in order to maintain persistence

on the display tube,

Fipure 6-2. Display Console

6-5 Rev., F

1586

6-3.

Figure

Sample Display

6-6

Rev. A

Appendix A

AUGMENTED 1I/O BUFFER AND CONTROL
(6416)

CONTROL DATA 6416

AUGMENTED I/O BUFFER AND CONTROL

" The CONTROL DATA 6416 Augmented I/O Buffer and Control unit is a large-scale,
solid state device for communication with the Central Processor of 8000 series

Computer Systems.

DESCRIPTION

The 6416 is comprised of ten Peripheral and Control Processors and a Central
Memory. A summary of characteristics for the 6416 is tabulated below.

PERIPHERAL AND CONTROL PROCESSORS

e 10 identical processors
Each processor has a 4096 word magnetic core memory (12-bit)
Random access, coincident current

Major cycle = 1000 ns; Minor cycle = 100 ns

® 12 input/output channels _
All channels common to all processors
Maximum transfer rate per channel - one word/major eycle
AN channels may be active simultaneously
ATl channels 12~bit bidirectional

Real-time clock {period = 4096 major cycles)
Instructions

Logical

Branch

Add/Subtract

- Input/Output
Central Memory Access
Extended Core Storage Access
» Average instruction execution time = two major cycles

Indirect addressing
Indexed addressing

A-1 Rev M

CENTRAL MEMORY

e 16, 384 words (60-Dbit)

e Memory organized into four logically independent banks of 4096 words with
corresponding multiphasing of banks

Random-~access, coincident-current, magnétic core

One major cycle for read-write

Maximum memory reference rate to all banks; four addresses/major cycle

Maximum rate of data flow to/from memory; four words/major cycle

The 6416 has no Central Processor however, it is a computer capable of operating -

alone,

SYSTEMS CONFIGURATIONS

The 6416, in typical systems configurations, provides a system expansion. For
installations with multiple on-1line users, the 6416 provides additional daia chan;nels
to accomodate additional external equipment. The ten Peripheral and Control
Processors, each capable of independently executing programs, and the 16,384 word
60-bit Central Memory significantly increase the multiprogramming and batch job
processing capabilities of the 6000 series Computer Systems. A

A typical configuration diagrammed in Figure A-1 illustrates the orientation of a
6416 with a 6400, 6600, or 6700 Computer Systei‘n. The 6416 is attached to the

main computer system via one of the Peripheral Processor Data Channels,

The 6682 /6683 Satellite Coupler accepts and relays control signals and data to provide
smooth information flow throughout the system.

In this configuration, the 6416 may be thought of as a batching terminal, where batch
jobs may enter the system, be assembled, and placed in the 16K distributive memory.
Access to the main computer Centiral Processor for job execution is then under

operating system control.

Rev M A-2

CENTRAL
PROCESSOR

T

i

|

|

i

60 BITS 1
4 |
I

|

|

|

|

|

|

CENTRAL MEMORY

60 BITS

PéR!PHERAL PROCESSORS (10}

LTI Pl

DATA CHANNELS
h2}

5400 OR 6600/6700 SYSTEM

Figure A-1. Typical Configuration: 6416 with 6400 or 6600/6700 System

5682/

7| 6683

6602/
6683

MEMORY (I6K)

B0 BITS

!

PERIPHERAL FROCESSORS {(10]

] TTTTTTTTTTY

I DATA CHANNELS

L {12}

Another possible systems configuration {(Figure A-2) incorporates Extended Core
Storage between the 6400 or 6600/6700 Central Memory and the 6416 16K memory,

This configuration implies a hierarchy of memories as follows:

1) FExtended Core Storage as a system Central Memory

2) Main frame Central Memory as a system Central Processor memory

3) 6416 16K memory as a distributive memory

6416 INSTRUCTIONS

Within the 6416, Peripheral Processor insiructions are identical to those of the 6000
These are the Read Extended Core Coupler
Status instruction {27, RCS) and the Extended Core Transfer instruction (26, ECT).
The instructions are described in the ECS Reference Manual,

series systems with two exceptions.,

Rev M

! DISTRIBUTIVE |

MEMORY
1 \ |

60 BITS

MEMORY (16K} |

f |

60 BITS

J{ i

PERIPHERAL PROCESSORS {i0)

r--- - - - - - = n
| |
| CENTRAL I
| PROCESSOR :
i I sysTem
PROCESSOR CENTRAL
| MEMORY G0 BITS : MEMORY \\
! { |
EXTENDED
! CENTRAL MEMORY e S0 BITS CORE
| | STORAGE
|
| !
60 BITS |
! y
|
|
|
| PERIPHERAL PROCESSORS (I0) |
]
|
! " | / /
BITs| [6682 6682
. . 171 6683 [7] 6683
I DATA CHANNELS |
L_. {12} _]

Rev K

6400 OR 6600/6700 SYSTEM

T

6416

Figure A-2, Typical Configuration with Extended Core Storage

Within the Extended Core Coupler, status bit 17 is dynamic; bits 16 and 15 are cleared
each time an Extended Core Storage transfer is initiated,

26 ECT d Extended Core Transfer {12 bits)
26 0 i
H 6 5 o]
2\ /
v v
OPERATION d
CODE

Execution of the Extended Core Transfer instruction initiates memory operations by

transmitting an 18-bit address, ''n", from the Peripheral Processor A register to the

6416 16K memory, Address ''n' holds a word, the format of which is as follows:

Xo Ag K
59 36 35 18 17 0
\ LY FA !
) v v
STARTING ADDRESS (N STARTING ADDRESS IN WORD COUNT
EXTENDED CORE STORAGE I6 K MEMORY

The "d" portion of this instruction specifies the storage operation to be performed:

If '"j" = 0, Read "K" words from Extended Core Storage into 16K memory.
If '"j" = 1, Write "K'" words from 16K memory into Extended Core Storage.

NOTE

If this instruction is executed without Extended Core
Storage in the system configuration, it acts as a Pass
{Do-Nothing) instruction.

Note that addresses containedin the word at address ''n'" are absoluteaddresses. Oper-
ating systems may require relocation (adding RA to an address) and Field Length test-
ing, e.g., is''address+RA"'" > FL? (The Exchange Jump package contains RA and FL

values for Central Memory and for Extended Core Storage.} The 6416 has no hardware
for automatic relocation and Field Length testing; it is therefore incumbent upon the

program to perform these functions whenever required by an operating system.

A-H Rev. D

Appendix B

INSTRUCTION EXECUTION TIMES

INSTRUCTION EXECUTION TIMES

The execution times for Central and Peripheral and Conircl Processor instructions
are given in the following paragraphs. Factors which influence instruction execution

time and hence program running time are also given,

CENTRAL PROCESSOR (6600/6700 SYSTEM)

The execution time of Central Processor instructions is given in minor cycles, and
instructions are grouped under the functional unit (6600/6700) which executes the in-
struction, Time is counted from the time the unit has both input operands 1o when the
instruction result is available in the specified result register. Central Memory access
time is not considered in those increment instructions which resuli in memory

references to read operands or store results,

The following paragraphs give some general statements about Central Processor
instruction execution and summarize the statements into a list which may be used

as a guide to efficient use of the Ceniral Processor functional units,

Central Processor programs are writien in the conventional manner and are stored
in Central Memory under direction of a Peripheral and Control Processor, After an
Exchange Jump start by a Peripheral and Control Processor program, Central
Processor instructions are sent automatically, and in the original sequence, io the

instruction stack, which holds up toc 32 instructions,

Ingtructions are read from the stack one at a time and issued to the functional units
for executlion, A scoreboard reservation system in Central Processor control keeps
a current log of which units are busy (reserved) and which operating registers are

reserved for resultis of computation in functional units.

Each unit executes several instructions, but only one at a time. Some branch instruc-

tions reguire two units, but the second unit receives its direction from the branch unit,

B-1 Rev K

The instruction issue rate may vary from a theoretical maximum rate of one instruction
every minor cycle (sustained issuing at this rate may not be possible because of unit and
Central Memory conflict} and resulting parallel operation of many units to a slow issue
rate and serial operation of units. The latter results when successive operations de-
pend on results of previous steps. Thus, program running time can be decreased by
efficient use of the many units. Instructions which are not dependent on previous steps
may be arranged or nested in areas of the program where they may be executed during
operation time of other units. Effectively, this eliminates dead spots in the program

and steps up the instruction issue rate.

The following steps summarize instruction issuing and execution:

1) An instruction is issued to a functional unit when
o the specified functional unit is not reserved

e the specified result register is not reserved for a previous result.

2) Instructions are issued to functional units at minor cycle intervals when no

reservation conflicts (see above) are present,

3) Imstruction execution starts in a functional unit when both operands are
available (execution is delayed when an operand(s) is a result of a previous

step which is not complete.

4) No delay occurs between the end of a first unit and the start of a second unit

which is waiting for the results of the first.

5) No instructions are issued afier a Branch instruction until the Branch
instruction has been executed. The Branch Unit uses

¢ an Increment Unit to form the go to k + Bi and go to k if Bi .
instructions, or

e the Long Add unit to perform the go to k if Xj . . . instructions
in the execution of a Branch instruction. The time spent in the Long

Add or Increment Units is part of the total branch iime,

6) Read Central Memory access time ig computed from the end of Increment
Unit time to the time operand is available in X coperand register., Minimum

time is 500 ns, assuming no Central Memory bank conflict.

CENTRAL PROCESSOR (UNIFIED ARITHMETIC SYSTEMS)

Central Processors with unified Arithmetic units, rather than separate functional units,
execute instructions in sequence.
Rev M B-2

All execution times for instructions listed in Table B-1 include readying the next instruc-

tion for execution. For the Return Jumpinstruction and the Jump instructions (in which

the jump condition is met), Table B-1 lists times which include obtainingthe new insgtruc-

tion word from storage and readying it for execution. Times listed, then, are complete

times except for possible additional time due to hardware limitations or memory bank

conflicts. Factors which may add to the stated times in Table B~1 are summarized be-

low:

1} Reading the next instruction word of a program from Central Memory (termed

an RNI - Read Next Instruction) is in part concurrent with instruction execution.

The RNI is initiated between execution of the first and second instructions of the

instruction word being proceésed. Initiating the RNIoperation requires 2 minox»

cycles; the remainder of the RNI time is in time parallel with the execution of

the remaining instructions in the instruction word.

P ! 2 , 3
INITIATE \ \/sx-sz;ﬂon oF
RNI Q——[J—— INSTRUCTIONS ——— f—f
! 2 AND 3
. RNI
——>| 200 NSEC { — MINIMUM OF
: ' 800 NSEC

Figure B-1.

(Refer to Figure B-1.)

TOTAL RNI TIME

RNI Timing Example

In the example diagrafnmed in Figure B-1, execution of instruction 2 is de-

layed 2 minor cycles until RNI initiation is complete.

In calculating execution times for a program, add 2 minor cyeles to each in-

struction word in a program to cover the RNI initiation time.

Exceptions to

Rev M

this rule are the Return Jump and the Jump instructions (in which the jump condition is
met) when these occupy the upper position of the instruction word. Since the stated times
for these instructions in Table B-1linclude thetime required toread up the new instruc-

tion word at the jump address, no additional time is required.

Example: (for 6400)

P JUMP TO K { MET)} PASS PASS
K ADD | ADD 2 LOAD STORE
Instruction ‘Time Required
Jump 13 Minor Cycles
Add 1 5 Minor Cycles
RNI Initiation 2 Minor Cycles
Add 2 5 Minor Cycles
Load 12 Minor Cycles
Store 10 Minor Cycles

Total Time Required = 47 Minor Cycles

2) After RNI has been initiated (between the first and second instructions of the
instruction word)}, a minimum of 8 minor cycles elapse beforethe next instruc-
tion word is available for execution. If the total time required by insiructions
in the lower order positions of the word is less than 8 minor cycles, allow a
minimum of 8 minor cycles, regardless of the execution times stated in Table
B-1.

Example:

P | JUMP TO K [NOT MET) PASS PASS

(P1+ !

Rev M B-4

3)

4)

5)

Instruction Time Required

Jump (not met) ~ 5 Minor Cycles
RNI Initiation 2 Minor Cycles
Pass = 3 | 6, but RNI

_ Minimmum = 8 Minor Cycles
Pags = 3

Minimum time before

instruction word at

P + 1 is available for

execution = 15 Minor Cycles

The Return Jump instruction, all Jump instructions inwhich the jump condition
is met, and Load/Store Memory instructions always require additional time
when located in the second instruction position of an instruction word. This

additional time is caused by hardware limitations and is not due to memory

bank conflicts.

Additiona]l Time Required
If Used As Second Instruction

Instruction in Word
a) Jumps (02 - 07) in which
the jump condition is met 1 Minor Cycle
b) Return Jump (010) 2 Minor Cycles

¢} Load/Store (5X instructions
with i # 0) 2 Minor Cycles

An additional 3 minor cycles due to bank confliet are required if the second in-

struction of a word references the memory bank in which (P)+1 is located.

A Store (not Load) as the first instruction of 2 word can cause a bank conflict

with (P)+1. If this occurs, 3 minor cycles are added to the execution time,

Summary of guidelines for efficient coding in the unified arithmetic Central Processors:

Always attempt to place Jump instructions in the upper parcel
of the instruction word. In most cases, this avoids both the
additional time for RNI (2 mimr cycles} and the possibility of a
memory bank conflict with (P) + 1.

Where possible, place Load/Store ingtructions in the lower order

two parcels to avoid lengthening execution times as outlined above.

B-~5 Rev M

CENTRAL PROCESSOR INSTRUCTION EXECUTION TIMES

Central Processor instruction execution times are tabulated in Table B-1 {6500 times
are the same for each Central Processor). Instructions are tabulated according to thre
functional units in which they are executed; this functional unit designation, of course,

does not apply to the unified arithmetic systems. Instruction execution times are listed
in minor cycles.

TABLE B-1. INSTRUCTION EXECUTION TIMES: CENTRAL PROCESSOR

6600 &
Octal 6000 6400 6700 6700
Code BRANCH UNIT 6200 6500 CPU-0| CPU-1
00 STOP - - - -
010 RETURN JUMP to K 24 21 21
011 READ EXTENDED CORE STORAGE K Sk %3} *%
012 WRITE EXTENDED CORE STORAGE w % *% i
02 GO TOK + Bi + 16 13 | 14 15
030 GO TO K if Xj = zero ™ 16 13 9 15
031 GO TO K if Xj # zero 16 13 9% 15
032 GO TO K if Xj = positive 16 13 9 i5
033 GO TO K if Xj = negative 16 13 9% 15
034 GO TO K if Xj is in range L+t 16 13 9 15
035 GO TO K if Xj is out of range 16 w5l 13 9% {EEplb
036 GO TO K if Xj is definite 16 13 R 15
037 GO TO K if Xj is indefinite _| 16 13 9 15
04 GO TOKIif Bi = Bj t 16 13 8= 15
05 GOTOKIiBi# Bj+t 16 13 B* 15
08 GO TOKif Bi>Bj t 16 13 * 15
07 GO TO K if Bi <Bj 1 16 13 8 15

TGO TOX + Biand GO TO K if Bi
- - - tests made in Increment Unit

T+ GO TO K if Xj - - - tests made in
Long Add Unit

*Add 6 minor cycles to branch time for

j - - LiI **Execution times for extended Core
a branch to an instruction which is out

C Storage operations are dependent upon
of the stack {no memory conflict con- several factors; refer to Extended Core

sidered); add 2 minor cycles to branch Storage Reference Manual for timing
time for a no branch conditioninthe stack, information,

Add 5 minor cycles to branch time for a sstete - : ; . ;
o *wJumps in which the jump condition is
no branch condition out of the stack. not met require 5 minor cycles.

Rev P B-6

TABLE B-1. {(Cont'd)

6600 &

Cectal BOOLEAN UNIT 6000 6400 [6700 6700

Code 6200 6500 |CPU-0| CPU-1
10 TRANSMIT Xj to Xi 8 5 3 5
11 LOGICAL PRODUCT of Xj and Xk 1o Xi 8 5 3 5
12 LOGICAL SUM of Xj and Xk to Xi 8 5 3 5
13 LOGICAL DIFFERENCE of Xj and Xk to Xi 8 5 3 5
14 TRANSMIT Xk COMP to Xi* 8 5 3 5
15 LOGICAL PRODUCT of Xj and Xk COMP. to Xi 8 5 3 A
16 LOGICAL SUM of Xj and Xk COMP. to Xi 8 5 3 5
17 LOGICAT, DIFFERENCE of Xj and Xk COMP. to Xi 8 5 3 5

Qctal SHIFT UNIT

Code
20 SHIFT Xi LEFT jk places 9 B 3 6
21 SHIFT Xi RIGHT jk places 9 8 3]
22 SHIFT Xk NOMINALLY LEFT Bj places to X1 9 6 3 6
23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi g 6 3 6
24 NORMALIZE Xk in Xi and Bj 10 7 4 7
25 ROUND AND NORMALIZE Xk in Xi and Bj i0 7 4 7
26 UNPACK Xk to Xi and Bj 10 7 3 7
27 PACK Xi from Xk and Bj 10 7 3 7
43 FORM jk MASK in Xi 9 6 3 B

QOctal ADD UNIT

Code
30 FLOATING SUM of Xj and Xk to Xi 14 11 4 11
31 FLOATING DIFFERENCE of Xj and Xk to Xi 14 11 4 11
32 FLOATING DP SUM of Xj and Xk fo Xi#* 14 11 4 11
33 FLOATING DP DIFFERENCE of Xj and Xk to Xi 14 11 4 11
34 ROUND FLOATING SUM of Xj and Xk to Xi 14 11 4 11
35 ROUND FLOATING DIFFERENCE of Xj and Xk to Xi 14 11 4 11

Octal LONG ADD UNIT

Code
36 INTEGER SUM of Xj and Xk to Xi 9 6 3 6
37 INTEGER DIFFERENCE of Xj and Xk to Xi 9 6 3 B

Cctal MULTIPLY UNIT**

Code
40 FLOATING PRODUCT of Xj and Xk to Xi 60 57 10 57
41 ROUND FLOATING PRODUCT of Xj and Xk to Xi 60 57 10 57
42 FLOATING DP PRODUCT of Xj and Xk to Xi 60 57 10 57
*Comp. = Complement; DP = Double Precision

=+Duplexed units - instruction goes to free unit

B-7

Rev P

TABLE B-1, (Cont'd)

" 6600 &
Octal DIVIDE UNIT 5000 | 6400 | 6700 6700
Code 6200 | 8500 | CPU-0 | CPU-1
44 FLOATING DIVIDE Xj by Xk to Xi 60 57 29 57
45 ROUND FLOATING DIVIDE Xj by Xk to Xi 60 57 29 57
47 SUM of 1's in Xk to Xi 71 68 8 68
46 PASS 6 3 i 3
Octal INCREMENT UNIT*
Code
50 SUM of Aj and K 1o Ai *H w3 3 stk ¥
51 SUM of Bj and K to Al FE w 3 T
52 SUM of Xj and K to Ai sk sk 3 T
93 SUM of Xj and Bk to Ai ok ek 3 i
54 SUM of Aj and Bk to Ai Hk sk 3 T
35 DIFFERENCE of Aj and Bk to Ai sk ok 3 T
56 SUM of Bj and Bk to Ai Hk sk 3 T
57 DIFFERENCE of Bj and Bk to Al sk %% 3 t
80 SUM of Aj and K to Bi 8 5 3 9
61 SUM of Bj and K to Bi 8 5 3 5
62 SUM of Xj and K to Bi 8 5 3 5
63 SUM of Xj and Bk to Bi 8 5 3 6]
64 SUM of Aj and Bk to Bi 8 5 3 5
65 DIFFERENCE of Aj and Bk to Bi 8 5 3 5
66 SUM of Bj and Bk to Bi 8 5 3 5
67 DIFFERENCE of Bj and Bk to Bi 8 5 3 5
70 SUM of Aj and K to Xi 9 6 3]
71 SUM of Bj and K to Xi 8 6 3 8
72 SUM of Xj and K to Xi 9 6 3 6
73 SUM of Xj and Bk to Xi g 6 3 8
74 SUM of Aj and Bk to Xi 8 6 3)
75 DIFFERENCE of Aj and Bk to Xi 9 6 3 8
76 SUM of Bj and Bk to Xi 9 8 3 6
77 DIFFERENCE of Bj and Bk to Xi 9 B 3 6

#*Duplexed units - instruction goes to free unit

*#*When: i = 0 the execution time is 6 minor cycles 6400/6500; 9 minor cycles

6000/6200
i = 1-5 the execution times is 12 minor cycles 6400/6500; 15 on 6000/6200

i = 6 or 7 the execution time is 10 minor cycles 6400/8500; 13 on 6000/6200,
13 on 5000/6200, 12 on 6700 CPU-1
50-57: "A'' register reserved for 3 minor cycles.
When "i" = 1-5 then Xi register reserved for 8 minor cycles.
When "i'" = 6-7 then Xi register reserved for 9 minor cycles.

0 the execution time is 6 minor cycles
1-5 the execution time is 14 minor cycles
6 or 7 the execution time is 12 minor cycles

Rev P B-8

*
&

ks
-

t+ When:

e e

§600/6700 CENTRAL PROCESSOR TIMING NOTES

The times given in Table B-1 are computational times - the time needed
after the execution start until the result is compuied and ready to be siored

into the result register,

The functional units are not freed until one minor cycle after the result hasg

been stored into the resulf register.

A result register value may be used as an operand to another instruction as
soon as the result has been stored into the register (same minor cycle), This
result register will not he freed to be used as a result register of another
instruction until one cycle after the result has been stored inte that register

(no trunk priority considered).
An instruction is issued to a functional unit if:
a) The word containing the instruction is in the stack and the U registers,
b)) The functional unit{s) needed are free, and

¢) The result register(s) needed are free (note Table B-2 and B-3).

If these three conditions are not met, a first order conflict exists and all
further instruction issues are held until they are satisfied., Each issued
15-bit instruction requires one minor cycle before the next instruction is
available for issue. Each issued 30-bit instruction requires two minor cycles

before the next instruction is available for issue.

Execution within a functional unit does not start until the operands are
available (note Table B-3). The two operands required are fetched from the
registers at the same time {one operand is not loaded while the unit waits for

a second operand).

In instructions 02-07, where more than one functional unit is used, the

instruction is not issued until both functional units involved are free,

Times given for instructions 01-07 and 50-57 do not consider any memory

conflict conditions.

B-9 Rev K

B. Im instructions 50-57, ifi=1, 2 ... 5 {load from memory instructions), the
Xi register value is not available until 8 minor cycles after the start of the
instruction execution {assuming no memory conflicts}). When two load instruc-
tions begin execution one minor cycle apart, one extra minor cycle is required
for execution of the later instruction. 'Therefore, the second executed instruc-
tion would require 9 cycles for the load, 5 cycles for the Increment Unit, and

4 cycles for the A register,

9, In instructions 50-57, if i = 6 or 7 (store to memory instructions), the Xi
register is not available for a result register until 10 minor cycles after the

instruction begins execution (assuming no memory conflicts).

10, When executing sequential instructions, the minimum time is one word of
instructions every 8 cycles {or instructicns out of stack and every 4 cycles
for instructions in stack. The time of issue of the last parcel of an instruc-
tion word to the time of issue of the first parcel of the next instruction word,
while executing sequehtial instructions out of stack is 4 cycles, and 1 cycle
for those in stack, If the last instruction in an instruction word is a 30-hit
instruction, a minimum of 5 cycles {out of stack) and 2 cycles (in stack) are
required from the time of issue to a functional unit of this instruction to the
time of issue at the first instruction in the next word., An instruction word

is parcelled as illustrated below,

[PARCEL O PARCEL | PARCEL 2 PARCEL 3 J

59 45 44 30 29 1514 0

11, When a branch out of the stack is taken, 15 minor cycles are normally
required for a 03ijk instruction and 14 minor cycles are normally required
for other branch instructions {considering no memory conflict), The latter
timing is from the start of branch instruction execution to the point when the

instruction at the branch address is ready for issue to a functional unit.

12. Nine cycles are required for 03ijk instructions when the branch is taken

within the stack, The next sequential word is recognized as within the stacl,

Rev K B-10

13.

14,

15.

16,

i7.

18,

19,

Eight cycles are required for 04ijk to 07ijk instructions when the branch is
taken within the stack, The next sequential word is recognized as within the

stack.

Eleven cycles are required for 03ijk instructions when the branch is not
taken {time from branch execution to issue of next instruction) if in the stack
or if falling through to the same word. Out of the stack fall-through fo the
next word takes 14 cycles,

Ten cycles are required for 04ijk to 07ijk instructions when the branch is
not taken (time from branch execution to issue of next instruction) if in the
stack or if falling through to the same word. Out of the stack fall-through to
the next word takes 13 cycles,

The B0 register is handled as any other Bi register for timing purposes
(i.e., BO will hold up execution of an instruction if it is a result register of

a previous noncompleted instruction, etc.).

- Neither Increment Unit may be involved in a load operation if a store

operation is to be issued, and neither Increment Unit may be involved in a
store operation if a load operation or a store operation is to be issued. The
sequential loading of instruction words does not affect the load/store conditions
of the Increment Units. Increments of A0 are considered neither loads nor

stores.

The operand registers are available to more than one functional unit in the

same minor cycles if the units are in different groups.

Group 1 Group 2 Group 3
Boolean Shift Increment 1
Divide Floating Add Increment 2
Multiply 1 Long Add

Multiply 2

The time needed for a functional unit o operate on indefinite, out-of-range,
or zero values is the same as for normal, in-range values (i.e., no gain or

loss in execution time due to a unit recognizing an indefinite operand and
setting an indefinite result},

B-11 Rev K

20. An Index Jump instruction (02) will always destroy the stack. If an unconditional
jump back in the stack is desired, a 0400K instruction may be used (to save

memory access time for instructions).
21, A Return Jump instruction (01} will always destroy the stack.

22, After a result has been computed by a functional unit, the result register is
checked to see if it is still needed as an operand register for a previously
issued instruction. This is done so that a result will not overlay an operand

10 a previously issued instruction,

23. In cases of bank conflict, unaccepted addresses get a chance at access every
three minor cycles. If the address can then be accessed, the memory opera-
tion proceeds. If the bank is still busy, the address circulates in the hopper,
while access is permitted for any other source requesting access,

TABLE B-2. FUNCTIONAL UNIT DATA TRUNK ASSIGNMENTS AND PRIORITY

FUNCTIONAL UNIT RESULT (i) OPERAND (j) OPERAND (k)
Trunk Priority | Trunk Priority | Trunk Priority
Group 1: Shift 3 (X) 1 1 2 2 2
4 @B
Add 3 2 1 1 2
Long Add 3 3 1 3 2 3
Group 2: Boolean 7 1 5 4 6 4
Divide 7 2 5 1 6 1
Multiply 1 7 3 5 2 6 2
WMultiply 2 7 4 5 3 6 3
Group 3: Increment 1| 10 8 1] 1
8 2 9 2

Increment 2| 10 2

*The Shift Unit is sometimes required to store two results at one time: one into an
X register and one into a B register,

Rev K B-12

TABLE B-3. 6600/6700 REGISTER RESERVATION CONTROL
¥BA RESULT @ OPERAND

INSTRUCTION REGISTER (ISSUE) REGISTER (EXECUTION)
Branch Unit

02ijK - Bi & Bj

03ijK - Xi & Xj

04ijK - Bi & Bj

" Boolean Unit

10ijk - 17ijk Xi © Xj & Xk
Shift Unit

20, 21 ijk Xi Xi & Bj

22, 23, 27, 43ijk Xi i

94, 95) 26k Xi & Bj BlE3k
Add Unit (Floating) _ 7

30ijk - 35ijk Xi Xj & Xk
Long Add (Iateger) o

36ijk - 37ijk Xi Xj & Xk
Multiply (2 Unite)

40ijk - 42ijk Xi Xj &Xk
Divide Unit

44ijk - 47ijk Xi Xj & Xk
Increment (2 Units)

50ijK Al &Xi * Aj & Bk ==

51ijK Al & Xi * "Bj & Bk **

52ijK Al &Xi* Xj & Bk %

53ijk AL &Xi * Xj & Bk

64ijk & 85ijk AL &Xi o* Aj & Bk

58ijk & 57ijk Al & Xi ® . Bj&Bk

60ijK : Bi . Aj & Bk =%

615K Bi Bj & Bk *=*

62ijK Bi Xj & Bk ==

63ijk Bi Xj & Bk

64ijk & 65ijk Bi Aj & Bk

66ijk & 67ijk Bi Bj & Bk

TOLjK - X1 Aj & Bk =*

71K Xi Bj & Bk ¥

721K L Xi Xj & Bk **

73ijk Xi Xj & Bk |

74ijk & 75ijk Xi Aj & Bk

T6ijk & 77ijk Xi Bj & Bk -

* The Xi repgister is considered only wheni="1, 2,,,7,
** khere refers to the high order 3 bits of 18-bit address field,

B-13

Rev. . AH

PERIPHERATL AND CONTROL PROCESSOR

The execution time of Peripheral and Control Processor instructions is influenced by

the following factors:

e Number of memory references - indirect addressing and indexed addressing
require an extra memory reference. Instructions in 24-bit format require an
extra reference io read m. '

e Number of words to be transferred - in I/O instructions and in references to
Central Memory the execution times vary with the number of words to be trans-
ferred. The maximum theoretical rate of flow is one word/major cycle. I/O
word rates aepend upon the speed of external equipments which are normally.
much slower than the computer.

e References to Central Memory may be delayed if there is conflict with
Central Processor memory requests. 7

e Following an Exchange Jump instruction, no memory references (nor other
Exchange Jump instructions) may be made until the Central Processor has

completed the Exchange Jump.

TABLE B-4. PERIPHERAL AND CONTROL PROCESSOR
INSTRUCTION EXECUTION TIMES

OCTAL ' : TIME=
CODE NAME S (MAJOR
' CYCLES)
00 Pasgs 1
01 Long jump to m - {d) 2-3
02 Return jump to m + {(d) 3-4
03 . Unconditional jump d 1
04 . Zero jump d 1
05 Nonzero jump d 1
06 Plus jump d 1
07 Minus jump d 1
10 Shift d 1
11 Logical difference d 1
12 Loogical product d 1
13 Selective clear d -1
14 Load d 1
— "*Note that the shorter time ig taken in certain instructions
when'd = 0,

Rev N B-14

TABLE B-4., (Cont'd)

OCTAL TIME=*
CODE NAME {(MAJOR
CYCLES)
15 Load complement d 1
16 Add d 1
17 Subtract d 1
20 Load dm 2
21 Add dm 2
22 Logical product dm 2
23 Logical difference dm 2
24 Pass i
25 Pass 1
260 Exchange jump 1%
27 Read program address 1
30 Load (d} 2
31 Add (d) 2
32 Subtract (d) 2
33 Logical difference (d) 2
34 Store (d) 2
35 Replace add (d) 3
36 Replace add one (d) 3
37 Replace subtract one {d) 3
40 Load ((d)) 3
41 Add ((d)) 3
432 Subtract ((d)} 3
43 Logical difference {(d)) 3
44 Store {(d)) 3
45 Replace add ({d)) 4
46 Replace add one ({d)) 4
47 Replace subtract one {{(d)) 4
50 Load (m + {{@) 3-4
51 Add (m + (d)) 3-4
52 Subtract (m + (d)) 3-4
53 Logical difference (m + (d}) 3-4
54 Store (m + (d)) 3-4

*Note that the shorter time is taken in certiain instructions

when d = 0.

=xThough the execution time for this instruction in the Peripheral
and Control Processor is only 1 major cycle,
major cycleg is required to complete the Exchange operation in

a minimum of 2

Central Memory. Thus, Centiral Memory honors no requests

for access for a minimum of 2 major cycles during an Exchange

Jump.

B-15

Rev. B

TABLE B-4, (Cont'd)

OCTAL TIME*
CODE NAME {MAJOR
CYCLES)
55 Replace add (m + (d)) 4-5
56 Replace add one (m + (d)) 4-5
57 Replace subtract one {m + (d)) 4-5
G0 Central read from (A) to d min. 6
61 Central read (d) words 5 plus
from (A) to m 5/word
62 Central write to (A) from d min, 6
63 Central write (d) words 5 plus
to {A) from m 5/word
64 Jump to m if channel d active 2
65 Jump to m if channel d inactive 2
66 Jump to m if channel d full 2
67 Jump to m if channel d empty 2
70 Input to A from channel d 2
71 Input (A) words to m 4 plus
from channel d 1/word
72 Qutput from A on channel d 2
73 Output (A) words from m 4 plus
on channel d 1/word
T4 Activate channel d 2
75 Disconnect channel d 2
76 Function {A) on channel d 2
77 Function m on channel d 2

*Note that the shorter time is taken in certain instructions

when d = 0,

Rev. B

B-16

Appendix C

OPERATION TABLES FLOATING
POINT ARITHMETIC

FLOATING POINT ARITHMETIC OPERATION TABLES

The following is a tabulation of operations (Add, Subtract, Multiply, Integer Multiply,

Divide) using various combinations of operands to supplement Table 3-5 (page 3~17).

The key to operands and results used in the table iz as follows:

KEY:
OPERANDS RESULTS
+0 = 0000 X...X 0] = 0000 0,..0
-0 = T X... X IND = 1777 0...0
+ @ = 37T X. .. X + @ = 3777 0,..0
- w = 4000 X... X -m = 4000 0...0
+IND = 1777 X...X V = Any result except
-IND = 6000X...X 0, IND, ortco.
W = Any word except + @ , IND
N = Any word except £ , £IND, or £0
ADD
Xi=Xj+Xk
(Instructions 30, 32, 34)
Xk
W + - +IND
W - + @ - IND
Xj +@ + IND IND
- IND - IND
+IND IND
SUBTRACT
Xi=Xj-Xk
{Instructions 31, 33, 35)
Xk
W + - +IND
W - - +m IND
XJ + O + O IND + IND
~-m -m - IND IND
+IND IND IND IND IND

C-1

Rev.N

MULTIPLY

Xi=Xj*Xk
(Instructions 40, 41, 42)
Xk

+N -N +0 -0 + - IND

+N \% Vv 0 0 +@ - IND

-N AV a 0 - +m IND

+0 Reserved for| IND IND IND

Xj -0 [nteger IND IND IND
+m Multiply +w - IND

- +@ IND

+IND IND

DIVIDE
Xi=Xj/Xk
{Instructions 44, 45)
Xk

+N -N +0 -0 + -m +IND

+N - - +m -am 0 0 IND

-N - - - 4O 0 IND

+0 0 0 IND IND O 0 IND

Xj -0 0 0 IND IND O 0 IND
+m +® -® +® -© IND IND IND

- -m + @ -® +@ IND IND IND

+IND IND IND IND IND IND IND IND

Rev. N Cc-2

KEY FOR INTEGER MULTIPLY:

"OPERANDS RESULTS
0=0000 0...0 +0=0000 0...0
-0=T777 7T...7 -0=7777T T..,.7
+INT=0000 X ...X +INT=0000 X ...X
-INT=7777 X ...X -INT=7777 X ...X

INTEGER MULTIPLY
Xi=¥Xj*Xk {Instruction 42)

Xk

X +INT -INT +0 -0

+INT +INT -INT +0 -0

-INT -INT +INT -0 +0

+0 +0 -0 +0 -0

-0 -0 +0 -0 +0
C-3

Rev N

Appendix D

INCREMENT ADDER

INCREMENT ADDER

The increment adder is a one's complement subtractive adder. Obtaining negative
zero as a result is possible only by adding negative zero to negative zero or subtraci-

ing positive zero from negative zero,

Examples:

A) 76SXi Bj+ Bk Sets X, =0"

i=7 §=0 k=0
B) 765Xi Bj+ Bk Sets X, =0

i=7 j=1 k=2
B, = 7TTTT75 B, = TTTT77,
C) 77SXi Bj- Bk Sets X, = 0"

i=7 =0 k=0
D) 77SXi Bj-Bk Sets X, =0~

7
i=7 j=1 k=0

Bl = '?777778

D-1 Rev AG

Appendix E

CONTROL DATA 6415-7, 6415-8 AND 6415-9
CENTRAL COMPUTER SYSTEMS

CONTROL DATA 64XX-7, 64XX-8 and 64XX-9

DESCRIPTION

The Control Data® B4XX-7, 64XX-8, and 64XX-09% are special versions of the 6400
Computer System with the following system configurations:

64XX-9 - Central Computer with ECS Coupler, nine PPU's, and eleven data

channels.
64XX-8 - Central Computer with ECS Coupler, eight PPU's, and ten data

channels.

64XX-T7 - Central Computer with ECS Coupler, seven PPU's, and nine data

channels.

The PPU's and Data Channels removed for each system described above are illustrated
by Table E-1.

TABLE E-1. REMOVED PPU's AND DATA CHANNELS

SYSTEM | PPU'S REMOVED | DATA CHANNELS REMOVED
64XX- 7 5 & 7 5 6 7
6 4XX-8 6 7 6 7
B4XX-9 7 7

DATA CHANNEL STATUS

The Data Channels removed remain INACTIVE and EMPTY, and cannot be activated.

PERIPHERAL PROCESSING UNIT STATUS

The PPU's removed are referenced normally on Dead Start but exit from a 712 instruc-
tion during the first trip, when the INACTIVE condition is sensed on the corresponding

Data Channel. The program address 00018 ig then sent to the removed PPU's memory,

and all sevens are ''read''. The PPU then attempts to function Channel 77.

*These computers are available with memory sizes of 32K, 49K, 65K, 98K and 131K.

E-1 Rev 11

APPENDIX

CENTRAL EXCHANGE JUMP (CEJ) AND MONITOR EXCHANGE JUMP (MEJ)
CENTRAL MEMORY ACCESS PRIORITY (CMAP)

CENTRAL EXCHANGE JUMP (CEJ) AND MONITOR EXCHANGE JUMP (MET)

In CONTROL DATA 6000 Series Computer Systems, system functions are normally
handled by the Monitor located in a Peripheral and Control Processor. The Computer
Systems are equipped with certain hardware capabilities fo effectively implement
Monitor activities in the Central Processor. Since the Central Processor can reference
Extended Core Storage directly for service routines, programs and data, a Central
Processor Monitor program to handle these and other functions is faster and more

efficient than a Monitor residing in a Peripheral and Control Processor.

The hardware elements which provide the essential capabilities for implementing a

Central Processor Monitor are described in the ensuing paragraphs.

MONITOR ADDRESS REGISTER

Contained in the Exchange Jump package (bits 36-53 of location "'n+6"') is an 18-bit
Monitor Address. Just as other Central Processor operational registers are loaded
during an Exchange operation, so is the Monitor Address register loaded with the
18-bit Monitor Address. This Monitor Address is the starting address of the Exchange
package for an ensuing Central Exchange Jump instruction (except when the Monitor

Flag bit is set; refer to the instruction description).

MONITOR FLAG BIT

The Central Processor has, in the Central Memory conirol section of the system,

a Monitor Flag bit. A Master Clear (Dead Start) clears the Monitor Flag bit. Any

action thereafter on this bit iz via the Monitor Exchange or the Central Exchange Jump
instructions. (There is no instruction with which to sample the status of this bit directly
and/or independently of thegse instructions.) The operation of this Monitor Flag bit is
described under the instruction descriptions.

1 Rev K

MONITOR AND CENTRAL EXCHANGE JUMP INSTRUCTIONS

These instructions are enabled or disabled by the maintenance panel CEJ/MEJ key

switch. The instructions are for Central Processor monitor implementation:

Two instructions exist for Central Processor monitor implementation:

one executable by the Peripheral Processors; the other executable by the Central

Processor. These instructions are as detailed below.

Peripheral Processors

261 VXN Monitor Exchange Jump (12 bits)
11 5 3 2 1 d\
Not Used (Dual CP Bit)

This instruction, typically used to initiate Central Processor Monitor activity, is a
conditional exchange jump to the Central Processor. If the Monitor Flag bit is clear,
this instruction sets the flag and initiates the exchange. If the Monitor Flag bit is set,
this ingtruction acts as a Pass inatruction. The starting address for this exchange is
the 18-bit address held in the Peripheral Processor A register. {(The Peripheral

Processor program must have loaded A with an appropriate address prior to executing

this instruction.) Note that this starting address is an absolute address. In the 6500
and 6700 this instruction is either 2610 (CPU~0) or 2611 {(CPU-1).

Ceniral Processor

013 XxJ K Central Exchange Jump (60 bits)
fmi i K Not Used
58 51 59 4B 47 30 29 0

This instruction unconditionally exchange jumps the Central Processor, regardless
of the state of the Monitor Flag bit. Instruction action differs, however, depending
on whether the Monitor Flag bit is set or clear. Operation is as follows:

a) Monitor Flag bit clear. The starting address for the exchange is taken from
the 18-bit Monitor Address register. Note that this starting address is an
absolute address. During the exchange, the Monitor Flag hit is set.

Rev Y F-2

b) DMonitor Flag bit set. The starting address for the exchange is the 18-bit
result formed by adding K to the contents of register Bj. Note that this

starting address is an absolute address. During the exchange, the Monitor

Flag bit ig cleared.

Table 1 summarizes the operational differences between the normal Exchange Jump
instruction (260) and the Monitor and Central Exchange Jumps (261 and 013).

TABLE 1-1. EXCHANGE INSTRUCTION DIFFERENCES

CONDITIONAL/ QOPERATIONAL DIFFERENCES
INSTRUCTION UNCONDITIONAL
Effect on Liocation of Starting
Monitor Flag Bit | Address for Exchange
260 (Normal Peri- Unconditional No etfect on Flag | Peripheral Processor
pheral Processor A Register
Exchange Jump)
261 (Peripheral Pro- | Conditional Sets Flag Peripheral Processor
cessor Monitor {occurs only if A Register
Exchange Jump) Monitor Flag
bit is clear;
Passes if Flag is
set)
013 (Central Ex- Unconditional Sets Flag Central Processor
change Jump) with Monitor Address
Monitor Flag Bit Register
clear
013 (Central Ex- Unconditional Clears Flag Address formed by
change Jump) with K+(Bj)
Monitor Flag Bit
set
F-3 Rev K

PROGRAMMING NOTES

1)

2)

3)

4)

5)

6)

Rev K

The Exchange package is precisely as described under Access to Central
Memory in Section 4, with the single exception that bits 36-53 of location
"n+6'" hold a Monitor Address. Note that any exchange (260, 261, or 013) to
that package will load the contents of location ''n+6" into the Monitor Address
register (other operational registers are similarly loaded). Thus, any
ensuing 013 instruction using the contents of the Monitor Address register
as a starting address uses those contents as loaded.

The Exchange packages for entering the Central Processor Monitor should
usually have the Reference Address (RA) equal to 000000 and the Field Length
(FL) equal to Central Memory size.

Since the Monitor Flag bit cannot directly sampled, a program cannot directly
determine its state; hence, success in performing a Peripheral Processor
Monitor Exchange cannot readily be predicted. Further, program control
always is given to the next instruction, whether or not the Exchange is
honored. A method of determining whether the Monitor Exchange occurredis

as follows:
a) Set BO (bits 0-17 of location ''n") in the Exchange package to 7777
b) Initiate the Monitor Exchange (261)

c) Read B0 from the Exchange package in Central Memory, If the
Monitor Exchange was honored, B0 in the Exchange package will
equal 000000, If the instruction pasged, this location still holds
7777,

Different Exchange packages should be used for Central Processor exchanges
and Peripheral Processor exchanges. This aids software determination of
which of two jumps (Central or Monitor Exchange Jumps) was executed when

both were initiated at approximately the same time.

Simultaneous Exchange requests are resolved in favor of the Central Processor,

If either a 260 or 261 instruction is waiting to be honored when the Central
Processor issues an 013 K ingtruction, the 013 instruction is not executed
and the Peripheral Processor Exchange oceurs. When control is returned
to the exchanged program (the interrupted program containing the 013jK
instruction), the 013jK instruction is re-issued and executed.

F-4

7)

The state of the Monitor Flag bit has no effect on the operation of the normal
PP Exchange Jump (260); nor has this instruction any effect on the Flag.

. ADDITIONAL PROGRAMMING NOTES FOR 6500 AND 6700

1.

When one CPU is in monitor mode, a Monitor Exchange Jump to either CPU
will be aborted. Since the exchange was never started, the instruction is in

eifect a pass.

When one CPU is in Monitor mode, a Central Exchange Jump from the second

- CPU will hang until the first CPU's monitor flag is cleared.

If a regular exchange jump (2600) is executed with MEJ/CEJ instructions it
is possible to cause both Monitor-Flags to set: This condition could cause
both CPU's to hang on CEJ instructions,

An ECS Transfer In Progress will block a Central Exchange Jump from
either CP1.

A Monitor Exchange Jump to a CPU that has an ECS Transfer In Progress is
allowed. A Monitor Exchange Jump to the other CPU, however, will be
aborted until the first CPU has completed the ECS transfer.

Items 4 and 5 above are consistent with the dual acecess concept of the 6500/6700
coupler, i,e,, if one CPU is executing an ECS instruction, the other CPU is blocked

when doing any type of memory reference until the ECS transfer is complete. A

normal exchange jump to a CPU doing an ECS transfer will terminate the ECS trans-
fer and execute the exchange jump. A normal exchange jump to the other CPU will
be withheld until the ECS transfer is finished in the first CPU.

& F-5 Rev K

CENTRAL MEMORY ACCESS PRIORITY (CMAP)

DESCRIPTION

CMAP is included in the E mod 6000 computer system. and is optional on other 6000
systems, It modifies the PPU-Central Memory interface to provide the following:

1. A PPU may be designated a Priority PPU by setting bit o 17 of its A register,

2. Priority PPU's have preference over other PPU's in the execution of Central
Read and Central Write instructions when ECS is inactive.

3. Only Priority PPU's can interrupt ECS transfers to or from Central Memory.
All non-priority PPU's have equal priority for entry to.the read or write

pyramid,

Priority Central Reads

CMAP allows a Priority PPU to place a reservation for C5 (read pyramid input regis-
ter from Central Memory) and Central Busy. When C5 is empty and Central Busy sets
(indicating acceptance of the Priority Read) the reservation clears. The reservation
prevents non-priority PPU's from setting Central Busy, so that the Priority Read

is gserviced within a few major cycles,

Priority Central Writes

CMAP allows a Priority PPU to place a reservation for D1 {input from PPT) in the
write pyramid., When D1 is available, the reservation clears. The reservation pre-
vents non-priority PPU's from writing in D1 or selting Central Busy, so that the

Priority Write is serviced within 2 few major cycles,

CMAP Effect on ECS

Without CMAP, any PPU requesting Central Memory interrupts an ECS transfer in
progress. Since one PPU request is honored for every ECS record, when several
PPU Central Memory requests occur during an ECS transfer they can reduce the
transfer rate significantly (75 per cent reduction for 500K ECS, 50 per cent reduction
for 250K ECS, 125K ECS not affected).

With CMAP, however, non-priority reads and writes are prevenied from entering
the read and write pyramids during ECS transfers. Non-priority writes which

are already in the write pyramid are not serviced until the ECS transfer terminates,

Rev N -6

or until a P riority PPU issues a write. A non-priority read or write in the ECS

coupler is serviced after the current ECS record is transferred.

CMAP Effect on Non-priority Central Reads

Without CMAP, a One Word Read (60) instruction which follows a Block Read {(61)
instruction can be delayed whie the Block Read PPU waits for Central Memory.
Also, a PPU which has partially completed a Block Read has a greater chance of
having a Central Request honored than has 2 PPU which has just translated a

Central Read instruction.

CMAP changes these two cases. The 12-bit word in Cl of the read pyramid is
loaded unconditionally inte the proper PPU memory at the PPU's slot time. In
the case of a Block Read, a Flag bit in K sets if the read is not complete. The
Flag bit causes the Block Read instruction to continue at the next iteration. Thus,
One Single Word Reads flow through the read pyramid unhampered by Block Reads
awaiting clearance from Central Memory. Furthermore, since Block Reads no
longer tie up the read pyramid, all non-priority PPU's have an equal chance of

having their Central Requests honored.

Access Priority

Two types of access priority are provided. Placing the Central Memory Access
Priority (CMAF) switch in the Program Mode position, one or more peripheral
processors may be assigned a priority status by setting bit 217 of its A register.
This enableg the selected peripheral processors io have preference over other
peripheral processors in géin'mg access to central memory. It also makes it
possible for a peripheral processor to interrupt an ECS transfer, which is not
otherwise possible. Priority should be assigned to no more than three peripheral
processors for operations when ECS is inactive because the value of priorities would
thereby be defeated. TFor operations when ECS is active, priority usage should be
limited, because even one interruption of an ECS transfer degrades the transfer
rate significantly.

Flacing the CMAF switch in the Constant Mode position forces 217 set for all peri-
pheral processors. This makes it possible for any peripheral processor to interrupt
an ECS transfer, however, there is no preferential priority among the peripheral

processors.

B-1 Rev AC

INDEX

A register,

Central Processor, 3-6, 3-7

Periphtral Processor, 4-8
Absolute memory address, 2-3
Access to the Ceniral Processor, 4-34
Adders, Peripheral and Control Processors, 4-4
Address,

absolute, 2-3

Central Memory, 2-1

modes, 4-68

program, 3-8

relative, 2-3

reference, 2-2
Arithmetic,

fixed point, 3-21

floating point, 3-15

non-standard floating point, C-1
Arithmetic unit, 3-1
Augmented Input/Quiput Buffer and Control, A-1

systems configuration, A-2, A-3

instructions, A-4

B repister, Central Processor, 3-6
Barrel, 4-4
registers, 4-8
Banks, Ceniral Memory, 2-1
Block transfer, 4-2, 4-28, 4-30, 4-332, 4-33, 4-34
Branch instructions, 3-43

CEJ/MEJ CMAP, F-6
Central Exchange Jump, F-1
Central Memory, 2-1
access, 2-1, 4-32, F-6
address format, 2-1
bank conflict, 2-2
characteristics,
map, 2-3
organization, 2-1
protection, 2-2
read, 4-32
write, 4-33
Central Processor, 3-1
Differences, 3~1
Exchange Jump, 3-9
Exit mode, 3-11
fixed point arifthmetic, 3-21
floating point arithmetic, 3-15
functional units, 3-5
instruction descriptions, 3-22
instruction execution times, B-1
instruction formats, 3-5
operating registers, 3-6
organization, 3-1
programming, 3-4
timing notes, B-8
Clock, see Real-Time Clock
CMAP, F-6
Coefficient, 3-15, 3-1B6, 3-35
Concurrency, 3-2
Conflict, Bank, 2-2
Console, see Display Console
Control unit, 3-1

Data,
distributor, 2-2
input, 4-37
output, 4-38

Data Channels, 4-35
active/inactive, 4-31, 4-36
full/empty, 4-28, 4-36
input, 4-29

Index - 1

output, 4-30
word rate, 4-36

Dead start panel, 6-1
Display Console, 6-4
characier mode, 6-4
dot mode, 6-5
sample display, photograph, 6-6
Dot mode, 6-4
Double precision, 3-16

Exchange Jump, 2-3, 3-4, 3-8, 3-51, 4-34, 5-1
instruction, 4-24, -2
package, 3-9

Exit mode, 3-11, 5-2

Exponent, 3-15, 3-16, 3-35

Extended Core Storage, instructions, 3-46

Field Length, 2-3, 3-9, 3-48, 3-50
Fixed point arithmetic, 3-21
instructions, 3-28
Flags, 4-2, 4-36, F-1
Floating point arithmetic, 3-15
converting integers to floating format, 3-18
instructions, 3-37
operation tables, C-1
overflow and underflow conditions, 3-18, 3-20
Functional units, Ceniral Processor, 3-5

Hopper, 2-2
illegal Codes, 3-22

Indefinite forms, 3-17, 3-18, 3-18
see also Floating Point Arithmetic,
operation tables, C-1

Input/ Output, 4-2, 4-27
channels, 4-2

see also Data Channels
data flow, 4-1
data input, 4-37
data output, 4-38

Interrupt, 5-1
hardware provisions, 5-1

Instructions, Central Processor, 3-22
Branch, 3-43
Exchange Jump, F-2
execution, 3-3
execution times, B-1
Extended Core Storage, 3-46
fixed point arithmetic, 3-28
floating point, 3-37%
formats, 3-5
Increment, 3-24
Logical, 3-25
Mask, 3-36
No Operation, 3-23
Normalize, 3-34, 3-16
Pack, 3-36
Program Stop, 3-23
Round and Normalize, 3-34
Shift, 3-32
Unpack, 3-35

Instructions, Peripheral and Control Processors, 4
Arithmetic, 4-13
Branch, 4-22
Central Processor and Central Memory, 4-24,
Data Transmission, 4-11
execution times, B-1
formats, 4-6
input/output, 4-27

Rev P

Logical, 4-16 organization, 4-1

Monitor Exchange Jump, F-2 programming, 4-6
No Operation, 4-10 regl-time clock, 4-3, 4-39
Replace, 4-18% registers, 4-8
Shift, 4-16 slot, 4-4
Instruction execution times, B-1 Priority
Central Processor table, B-6 Program Address register,
Peripheral and Control Processor table, B-14 Central Processor, 3-8
Interprocessor communication, 4-3 Peripheral and Control Processor, 4-8

Programs, Central Processor, 3-3

Jump, see Branch Bounds, 2-3, 3-13

Pyramid,
read, 4-5, 4-32
K register, Peripheral and Control Processor, 4-% write, 4-5, 4-33
Keyboard input, 6-4
Manual control, 6-1 Q register, Peripheral and Control Processor, 4-8
Mass memory, see Extended Core Storage '
Mnemonics, Range definitions, 3-17
Range faults, 2-3
Compass, 328 cor 410 Real-time clock, 4-3, 4-39
Mode : Registers, Central Processo
D ’ -2 address {4), 3-2, 3-8, 3-7, 3-9
EETPJB-II increment (B), 3-2, 3-6, 3-7, 3-9
L 1& 6-1 operand (X), 3-2, 3-6, 3-7, 3-8
oad, s Program Address (P), 3-8
Is\‘{?éi;;or’s_]g" : Registers, Peripheral and Control Processors, 4-8
y . arithmetic (A}, 4-8
Modes, address (Peripheral Processor), 4-6 K register, 4-9
Monitor Address Register, F-1 Program Address (P), 2-9
Monitor Exchange Jump, F-1 Q register, 4-5 s
Relative memory address, 2-3
Normalizing, 3-16, 3-34 Reservation Conflict, 3-3
Reservatiion Control, 3-3
Operands, Register, B-13

examples of, 3-25 Rounding, 3-18

indefinite, 3-16

infinite, 3-16 Single precision, 3-16
Qutput, 4-38 Slot, 4-4
Stack, Insiruction, 3-4, 3-10
Status channel and equipment, 5-1

P register,
E Stops, Central Processor,

Central Processor, 3-8 . Now ehart 5-14

Peripheral and Control Processor, 4-9 fllegal ac,kin 3-8
Peripheral and Control Processors, 4-1 Stunt b%)x pz-l E

access to Central Memory, 4-32 ’

adders, 4-4

address modes, 4-6 Ta 9_9

barrel, 4-4 £8, &=

characteristics, 1-2

input/output, 4-35 Unified Arithmetic Section, 3-2

input/output (I/O) channels, 4-2
instruction descriptions, 4-9

: h »
instruction formats, 4-8 X register, Central Processor, 3-8, 3-7

Rev P Index - 2

COMMENT SHEET

MANUAL TITLE _CDC 6000 Series Computer Systems

Hardware Reference Manual

PUBLICATION No. 60100000 Revision _ AL

FROM: name:

BUSINESS
ADDRESS:

COMMENTS:

This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or peneral comments may be
made below. Please include page number references and fill in publication revision level as shown by the
last entry on the Revision Record page at the front of the manual. Customer engineers are urged to use
the TAR.

CUT ALONG LINE

PRINTED IN U.S.A.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. 8. A.
FOLD ON DOTTED LINES AND STAPLE

AA3L1S REV. 6/78

e o s s o e

g e [N

STAPLE STAME
LD ¢ FOLD
FIRST CLASS
PERMIT NO. 8241
MINNEAPOLIS, MINN.
EFEREEn
BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
[
POSTAGE WILL BE PAID BY _
CONTROL DATA CORPORATION
Publications and Graphics Division L
ARH219 ST
4201 North Lexington Avenve R
Saint Paul, Minnesota 55112
[
B
=S

- i e o e e e e o - - ——————— — - —— = ——

o CUT ALONG LINE

