6600

CENTRAL
PROCESSOR

Volume I
CONTROL & MEMORY

6600 CENTRAL PROCESSOR

Volume I

Control and Memory

FOR TRAINING PURPOSES ONLY

This book was compiled and
written by members of the
instructional staff of

CONTROL DATA INSTITUTE
CONTROL DATA CORPORATION

Publication No. 020167

March, 1967

Copyright 1967, Control Data Corporation
Printed in the United States of America

CONTENTS

CHAPTER I CONCEPT OF THE 6600 CENTRAL PROCESSOR
Introduction + « &« ¢ ¢ 4 o ¢ 4 v 4 4 s e e e e b e e e e e .11
Block Diagram AnalysSiS « v o o« o o o o o o o o o o o o o o » 1-6
Central MemOTY « « « « o o o o o o o o « o o o« o o o o o o o 1-13
Instruction Control. « & & v ¢ v v o 4 4 4 4 ¢ v v v o o o » 1216
Reservation Control. « o v & o v 4 4 4 o o o o o o o o o « « 1=24

Register Exit/Entry Control. . ¢ v & v v ¢ &« o v v o ¢« & o . 1-30

CHAPTER II CENTRAL MEMORY ADDRESS CONTROL
Introduction « « & v & v v o i it e e e e e e e e e e w241
Stunt Box Logic Analysis « « v & v v v v 4 4 o 4 4 o 4 o 4 . 23
Exchange Jump. . . . & . v v v v 4 b v i i e e e e e e .. 2-13
Peripheral Read/Write. . . +¢ v & 4 4 v v v v 4 v o o o o o « 2220

Central Read/Write . & & 4 4 4 4 ¢ ¢ ¢ ¢ 4 4 o o o o o o o o 2295

EXit Modeo ¢ 2-29

CHAPTER III CENTRAL MEMORY CONTROL
IntrOduCtiOI‘l . .] 3 . . 3 3-1
Storage Sequence Control + « v v 4 v 4 4 4 4 4 4 4 w4 . . . 36

Data Distributor o e o 3‘10

CHAPTER IV INSTRUCTION ISSUE CONTROL
Introduction . « L L. L L. e e e e ..,
Instruction StaCk. L] 4-1

Instruction Registers. « v v v v v v v v v v v o v v v ..

iii

Parcel Counter . . « & & ¢« ¢ ¢ o« o « « &
Inch Counter « ¢ ¢« ¢ ¢ o o & o o « s &
Issue.Control. o e 6 o o o s 4 e s s s e
Stop Instruction Issue . « « + « . & . .

Proceed Instruction Issues « « ¢« « ¢ o &

CHAPTER V RESERVATION CONTROL
Introduction « « ¢ « ¢ ¢ ¢ ¢ ¢ o o o & &
Placing Reservations . « « « « + o o « o
Set Read Flags . « « « ¢ o ¢ o o s o « &

Releasen e @ & o e o o o o s o s o e o o

CHAPTER VI ENTRY/EXIT CONTROL AND DATA TRUNKS
Entry Control. « « ¢« « o ¢ ¢ ¢ & o & &
Exit Control . ¢ ¢ ¢ o o o ¢ o o o o o &

Data Trunks . L . . L L . -
APPENDIX A CENTRAL PROCESSOR TIMING NOTES

APPENDIX B NONSTANDARD OPERAND FORMS

iv

4-11

5-1

5-3

5-10

5-14

6-1

6-1

6-4

CHAPTER I

CONCEPT OF THE 6600 CENTRAL PROCESSOR

DATA

CHANNXNELS

[1

|

10

11

12

13

434

RT7C

10

12

T O~ WO;m

PERIPHERAL
PROCESSORS

10

CENTRAL

11

PROCESSOR
BRANCH
INSTRUCTION RESERVATION
ISSUE s CONTROL
CONTROL (SCOREBOARD)
ADD
)
LONG ADD
SHIFT
REGISTER BOOLEAN
r .
CENTRAL E R xB' E
CENTRAL Nl B P, x MULTIPLY I
MEMORY MEMORY | I N R il
CONTROL S, MULTIPLY 1T
R T | T
¥ Y .
CONTROL DIVIDE

INCREMENT 1

- e - wn e em e o

INCREMENT 71

A GENERAL AND OVERALL 6600 COMPUTER BLOCK DTAGRAM

CHAPTER I

CONCEPT OF THE 6600 CENTRAL PROCESSOR

INTRODUCTION

The CONTROL DATA® 6600 Computer System, through use of high-speed
transistor logic and a design philosophy based on concurrent (or
parallel) processing, is today recognized as the world's fastest

and most powerful computer. The rapid throughput achieved by the
6600 system can be attributed in part to the concurrency that exists
in several areas of the Central Processor.

MEMORY BANK PHASING

The Central Memory is divided into memory banks, each of which
contains 4096(10) 60-bit central processor words. A 131K central
memory is composed of 32 such banks; a 65K memory has 16 banks.
Since each bank has its own circuitry for the X & Y drive lines,
inhibit lines, sense lines and memory cycle timing, each is capable
of operating independently. This,in turn, permits memory cycles to
be phased (overlapped) by 100 nanoseconds, to effectively reduce
minimum access time to 100 nsec (e.g., a memory cycle is one micro-
second in duration, but ten may be initiated each usec as long as
they are to different banks), The bank phasing scheme, in addition
to a memory cycle which is in itself extremely fast, eliminates a
great portion of the memory waiting time that is inherent in the
majority of computers.

INSTRUCTION STACK

A group of flip-flop registers referred to as the Instruction

Stack is provided in the 6600 for the purpose of holding an
iterative sequence of instructions (a program loop). The Stack
can hold a loop containing up to 27 instructions (up to 4 instruc-
tions per word) which may then be executed without the need for
instruction word memory references (RNIs).* Initially, the eight
stack registers (I registers) are filled by reading instruction
words from central memory. As each word is read into and executed
from 10 (See Figure 1-1), the preceding words move up in the stack
and a new word is entered into the first I register. When the stack
is filled, the movement of instruction words causes the top word (in

Although 27 instructions may at first appear to limit the program-
mer's capability, it should be considered that the 6600 is designed
primarily as a scientific machine. Consequently, a good many
programs will be of a mathematical nature (i.e., matrix analysis).
Also, each instruction can designate two source operands and one
result destination. When viewed in this light, 27 instructions are,
in most cases, more than adequate.

®Registered trademark of Control Data Corporation.

1-1

17) to be discarded. When instructions are being executed in the
stack (looping), no movement occurs and the stack information re-
mains static. In this manner, the necessity of fetching each instruc-
tion from memory is eliminated during short loops. The memory access
time savings should be obvious.

DISCARD
259 A 20
A 7)
16
15
Instruction 14 _ Issue from
Word 3 > Il - I7 during
Movement I In Stack loops
12
Il
10 J
T Issue from
| INPUT REGISTER F—= 10 when RNI
- T is required

From Central Memory

Figure 1-1

Operating Registers

Another property of the Central Processor decreases the number of
memory references required to read and store operands. Twenty-four
operating registers provide a flip-flop storage facility for

60-bit operands and 18-bit addresses and indexing values. Eight
60-bit registers (designated X0 - X7) provide for the storage of
integer and floating point values in a 60-bit format. Eight 18-bit
registers (designated A0 - A7) provide storage for central memory
addresses of operands which are read or stored in memory. Eight
18-bit registers (designated BO - B7) provide for storage of indexing
values, used for modification of addresses and operands. Since most
central processor instructions can designate two source operands
(taken from X, B or A registers) and one result destination (X, B

or A register), considerable operand manipulation can take place by
use of the operating registers, thereby further decreasing the number
of memory accesses needed. Proper use of the instruction stack and
operating registers makes possible, execution of program loops which
require no memory references -- for imstructions, operands or storage
of results.

1-2

Functional Units

Another area of concurrency in the 6600 Central Processor is that
of parallel aritlmetic (functional) units. Ten logically indepen-
dent functional units are provided to allow several instructions

to be in various stages of execution at the same time. The follow-
ing list describes the functional units and their corresponding
cycle times:

UNIT TIME (nanoseconds)

1) ADD (floating) 400

2) MULTIPLY 1 (floating) 1000

3) MULTIPLY 2 (floating) 1000

4) DIVIDE (floating) 2900

5) BOOLEAN (logical) ; 300

6) LONG ADD (integer) 300

7) SHIFT 300 - 400
8) 1INCREMENT 1 (indexing) 300

9) INCREMENT 2 (indexing) 300
10) BRANCH (branch instructions) 800 - 1400

Each unit is assigned a group of instructions which it, and only
it, processes. For example, the ADD unit processes all single
precision, double precision, rounded and unrounded floating point
add opcodes. The SHIFT unit handles opcodes that require shifting:
left and right shifts, normalize operations, packing, unpacking,
etc.

Separate functional units eliminate the necessity for sequential
execution of program steps, a property which is inherent in most
present-day computers. Instead, unrelated instructions may be
processed out of sequence, causing a considerable decrease in the
over-all execution time of a program. Of course, if a source
operand for one unit is the result operand of another, the first
unit must wait until the second completes its calculation and
returns the result., Also, if two division steps are needed in
sequence, the second must wait until the first completes, since
only one divide unit exists. On the other hand, two multiply
operations may take place at the same time because two multiply
units are provided. The point to be stressed is that in most
operational programs the instructions need not be executed in
sequence. Instead, the majority of problems are composed of a
series of smaller steps which are only indirectly related. The
following programming comparison should illustrate this point.

The problem that follows is solved first by using a sequential
computer and secondly, by using the 6600 with its functional units.
Individual instruction execution times are assumed to be the same
in both machines. Also, both have the capability of reading two.

1-3

source operands and returning one result by use of operating
registers (X, B and A).

THE PROBLEM:

(AZB)-(AZ + B2 + ¢)

THE OPERATING REGISTER CONTENTS: (where () means "the contents of")

(X1) = the value, A
(X2) = the value, B
(X3) = the value, C

THE PROBLEM THUS BECOMES:

USING THE SEQUENTIAL COMPUTER: (where ~—» means 'replaces")

Instructions Time (nanoseconds)

1. (X1) + (X2) —» (X4) 400
2. (X4) / (X3) —=» (X5) 2900
3. (X1) * (X1) —» (X6) 1000
4. (X2) * (X2) —» (X7) 1000
5. (X6) + (X3) —» (X0) 400
6. (X0) + (X7) —» (X%) 400
7. (X5) * (X7) —= (X6) 1000

TOTAL TIME ‘= 7100

Since the instructions must be executed in sequence, the total
execution time is the sum of the individual execution times, or
7.1 microseconds.

USING THE 6600:

T
1. (X1) + (X2) —= (X4) —_ § ; :
2. (X1) * (X1) — (X6) L —— ' i '
3. (X2) * (X2) — (X7) P ; : !
4. (X4) / (X3) — (X5) L . — ! .
5. (X6) + (X3) —= (X0) : P ; ! .3
6. (X0) + (X7) —» (X7) ' E — ! ;
7. (X5) * (X7) —= (X6) f 5 ; ; '——/

(NOTE: Time is shown in microseconds)

1-4

Using parallel functional units, the program execution time is
only 4.3 microseconds, a reduction of approximately 40%.

Although the same saving will not occur in all programs, the example
illustrates that, through efficient programing, a considerable decrease
in execution time occurs. Even when a program is not optimized, a
time saving will be realized. Details of time implications from

the preceding chart are considered in later topics.

Summary

Several unique features are incorporated in the design of the 6600
central processor, including: 1) thirty-two (or sixteen) 4K, phased
memory banks, 2) an instruction stack containing eight 60-bit
registers, 3) twenty-four operating registers and &) ten indepen-
dent functional units. These provisions work in conjunction with
each other to provide extremely rapid program execution times.
Whenever parallel processing capabilities are provided in a computer,
control circuitry is required to ensure that all features work
together (without calamity) to produce a high-speed processing
system,

1-5

BLOCK DIAGRAM ANALYSIS
CENTRAL MEMORY ADDRESS CONTROL

References to Central Memory can be initiated from various sources in the 6600.
Peripheral Processors make central memory references during the central read,
write and exchange jump instructions. The Central Processor uses central
memory to fetch instruction words or to read and store operands. An orderly
means for handling these memory requests and distributing the associated data
must be utilized. This is complicated by the fact that the 6600 memory banks
are phased to allow several memory cycles to be in progress at any one time.
Therefore, it is very possible that a memory reference request be made to a
bank that is already busy processing a memory cycle, so that. the address
must be saved and then re-issued. It is also conceivable that two requests
occur simultaneously, requiring that a decision be made regarding which address
will be issued first. Not only must the address be manipulated methodically,
but the source or destination of the data associated with each address must be
"remembered" by the control logic. These functions are accomplished for the
most part, by the Central Memory Control logic, more often referred to as the
Stunt Box.

Analysis of the Stunt Box takes place in the following sequence:
1) Hopper
2) Priority Network

3) Tag Generation and Distribution

HOPPER

The Hopper is a mechanism used to save conflicting addresses so they may be
re-issued to the memory banks repeatedly, if necessary, - until accepted and
processed. Along with addresses, the Hopper saves gating information used to
enable the data corresponding to each address through the memory Data Distri-
bution logic to or from memory. ‘

Physically, the Hopper is four flip-flop registers (designated M1, M2, M3 and
M4) each of which stores an 18-bit address, 6-bit tag and a Full bit (except
M2, which has no Full bit). Refer to Figure 1-2. The registers are connected
to each other in such a manner as to allow information to circulate through
each of the registers (the concept is similar to the Peripheral Processor
barrel). A 75 nanosecond time interval exists between each register and
produces a total re-circulation time of 300 nsec. For example, an address
entered into M1 at time 00 enters M4 at t75, M3 at t150, M2 at t225 and (if it
must be re-issued) re-enters M1l at t300.

1-6

L=1

P
P
U

EXCHANGE
JUMP

INCREMENT
1 or 2

BRANCH

EXCHANGE
JUMP

ADVANCE P

EXCHANGE
READ
WRITE

17
——
o] P o] P+ 1
0
+1
17
I
A - R EAK
R W
0 0
+1

17

6600
STUNT BOX

0 MO
+
RA
17
Lo ’////,/S/
TAG
0 GENERATOR
£00f o0
. MO > FL
! ;
] 23] 17 M1 0 ——"‘?'—
' $§-‘-&oo t25
£0d 23| 17 M2 0
%-4—(:25
3 2 1 d 231 17 M3 0
%—.—tso t75
PRIORITY
H23]17 M4 0

Figure 1-2

{__ACCEPT

In actuality, only 17 of the 18 available address bits are used in a

131K central memory. The 18th bit is rtound throughout the memory circuitry,
but is never utilized. The 6-bit tag is generated when an address is first
entered into the hopper (specifically, M1l) and it contains all the information
necessary to properly distribute the associated data. Tag generation and
distribution is almost a subject in itself and is treated separately later in
this section. The Full bits found in M1, M3 and M4 indicate that a meaning-
ful address and tag are contained in the respective register. It is set when
an address and tag are entered into Ml. There is no full bit in M2, since the
Accept signal (explained below) serves a similar purpose.

Approximately 50 nsec after entering an address into M1, the address is
automatically sent to the memory banks, where the lower 5 bits are examined to
select one of the 32 banks. If the desired bank is not in use (BUsSYy), an
Accept signal is returned to the Stunt Box to indicate that no conflict

exists and the memory cycle has been initiated. The address saved in the Hopper
is then discarded. 1If the desired bank is busy, an Accept will not be re-
turned. Its absence causes the associated address to be re-entered into Ml
(from M2) and subsequently, reissued to the memory banks. The cycle will

recur every 300 nsec until the address is accepted.

Figure 1-3, a timing diagram, verifies that the ‘Accept is returned to the
Stunt Box in time to disable (or if not returned, enable) the transfer of M2
to Ml. If an Accept 1is generated, it will be received on Chassis 5 about
175 nsec after entering the associated address into M1l (t175). This allows
125 nsec of logic delay time before the Accept is used to disable the

M2 —— M1 transfer (t300). Since M2 was not transferred to M1, the following
transfer of M3 to M2 will destroy (write over) the contents of M2.

tQ0 tl?O t200 t300 t 400
i I i i i [
OI' | | i I P 1 ? | '
1 ' 1 1 1 | | I
[} : | | | I I |
i i
. Y v ' .
ADDRESS 1 Ml > M4 M4 = M3 M3I=> M2 M2—= Ml
i I [
to Ml I i (if ACCEPT) y
ADDRESS "ACCEPT" ADDRESS
to CM from CM to CM
from Chas. to Chas. from Chas.
5 5 5

Figure 1-3.

1-8

PRIORITY NETWORK

Because more than one source exists for addresses entered into Ml (See Figure
1-2) a Stunt Box Priority Network is necessary to ensure organized handling of
simultaneous memory requests. Each address source has a fixed priority, as
follows:

First Hopper (M2 —3» M1)
Second Central Processor (MO—3»M1)
Third . Peripheral Processor (ERW —>» M1)

HOPPER PRIORITY

In only one circumstance is re-entry of an address to Ml required: when

an address has been sent to the memory banks and was not acceépted due to a bank
conflict. Non-acceptance of an address is indicated by not receiving an

Accept from the memory banks 175 nsec. after issuing an address.before
enabling an M2 —»M1 transfer it should also be determined that M2 contains a
meaningful address. This is indicated by the presence of a Full bit. Since
M2 does not contain a Full bit, the M3 Full bit is checked. (It is time
delayed to ensure that M3 has been transferred to M2 before the check is made,)
Thus, two conditions must be met to grant first priority:

(M3 Full) (Accept)

CENTIRAL PRIORITY

Two sub-priorities exist under Central Priority because central processor
memory references may be originated in two independent operations

1) Instruction word fetching (RNI's)

2) Reading and storing operands

In the first case, the address is obtained from the P register and in the
second, from one of the two Increment Functional Units. If requests from both
sources occur simultaneously, the operand address is entered first, then the
instruction address. 1In either case, the address is entered into an 18-bit
register, MO (Figure 1-2). At the same time a control flip-flop called "Enter
Central" is set and indicates that an address is in M0 waiting for entry into
Ml. (In a sense, the Enter Central flip-flop requests priority #2). Thus,
one condition required for priority #2 is that Enter Central is set to indicate
that an address is in MO waiting for entry into MIl.

A second condition needed for central priority is that priority #1 does not

exist (i.e.,the address in M2 was accepted or M2 does not contain a meaningful
address).

A special circumstance arises which also must be considered in granting central
priority. This is the case when read and store requests are made to the same
memory address. This might occur when an instruction word modification is made
followed by an RNI request for the modified word. If the two addresses enter
the hopper in sequence (store location X, then read location X) storing before
reading cannot be guaranteed because a bank conflict may exist with the store
address. The operation (read or store) that is performed first depends strictly
on when the bank goes BUSY. Whichever address is sent to the banks first (after
BUSY) will be accepted and will cause a conflict for the second reference to

the same location. Thus, it would be possible, in the above instance, to¢ read
the unmodified instruction word when actually, the modified word was desired.
The reverse situation might also occur, wherein a location was to be read be-
fore modification.

To resolve the above cases, additional logic is required in the priority #2
circuitry which prevents a Central Read address from being entered into the
Hopper if any (Peripheral or Central) Write address is in the Hopper. Also, if
a Central Write is attempted, no Central Read address may be in the Hopper.
(Prevention of a Central Write and Peripheral Read out of sequence is a soft-
ware responsibility.)

The fourth, and final condition needed for Central Priority, is that the address
being referenced must not be out of the bounds for this particular program.
Memory bounds for a program are defined upon initialization of the routine
(EXCHANGE JUMP) by the RA (Reference Address) and FL (Field Length) values.

RA specifies the lower bound and RA + FL -1, the upper bound. Each central
memory reference adds to the value RA, the content of P (for RNI's) or the
Increment I or II address (for operand references). Thus, the address being
referenced (P, Incr. I or Incr. II) is said to be the 'relative" address.

The absolute CM address is the sum of the relative address and the content of
RA. The relative address is always entered into MO. A special Adder adds MO
to RA and yields the absolute address. Another circuit compares the content of
MO with the content of FL. If MOZFL, the desired reference is "Out of Bounds",
and the memory reference will not take place because Central Priority will not
be granted. Thus, the condition MOKFL is also a condition required for granting
Priority 2.

The following Boolean formula summarizes the conditions required for granting
Central Priority:

(Enter Central) (Priority 1) (MO<FL) (Attempt Read)

(Write in Hopper) + (Attempt Write) (Central Read in Hopper)

PERIPHERAL PRIORITY

Peripheral priority for CM references is granted only if neither Hopper nor
Central priority exists and there is a peripheral processor request for a CM
access. Since only one PPU request can occur at a time, no sub-priorities are
required.

1-10

The PPU's request CM references in three situations:
1) Read central memory
2) Write central memory

3) Exchange jump.

In all three cases, a FPU will send an 18-bit address to the Input Address
Register (IAR) of the Stunt Box (See Figure 1-2). To specify the type of
reference being requested, a Read , Write or Exchange pulse accompanies

the address. These are used as a control function, to properly gate information
to and from CM (See Hopper Tag discussion which follows). The presence of
one of the three control pulses results in the Request for Priority #3.

Thus, the Boolean expression for Peripheral Priority is as follows:

(PPU Read + Write + Exchange) (Priority 1) (Priority 2)

During peripheral processor read and write operations in central memory, a new
address is sent to the IAR for every memory reference desired. For exchange
jumps, only the starting address of the exchange jump package (in CM) is

sent. It is the responsibility of the central processor to advance this address
automatically in order to exchange the required information. This is accom-
plished by the Exchange Address Counter (EAK) which is utilized only during

~ exchange jumps. It increments the exchange address for each of the 16 locations
referenced.

HOPPER TAG GENERATION AND DISTRIBUTION

As previously mentioned, when an address is entered into Ml, a 6-bit tag is
also entered. It is used to properly gate data into anc out of Central Memory.
The tag bit positions are named as follows:

25 24 23 22 21 20

v
REGISTER
NWMBER

CENTRAL (EXCEPT EXCHANGE JUMP)

EXCHANGE JUMP

WRITE

1-11

The bit (2°) will be set any time the associated address ic that of intormation
to be stored (written) into Central Memory.

The bit (2%4) is set only during exchange jumps to indicate that the associated
data is to be exchanged with registers in the CPU.

The bit (23) is set any time a memory reference is initiated by the Central
Praocessor (Priority 2) and allows information to be gated to or from the CPU,
as opposed to a PPU. During exchange jumps, the bit is set to indicate that
an X register is to be exchanged, or cleared to indicate that A, B and Control
Registers (P, RA, FL, etc.) are to be exchanged.

The bits (20 - 22) indicate (when applicable) which X, B, or A register number
is to be stored, read into, or exchanged. Table 1-1 lists all legal tag num-
bers (in octal) and their meaning. Decoding circuitry exists only for those
tags listed. Any other bit combination will either not be decoded, or will
be decoded as one of the legal tags.

TABLE 1-1. HOPPER TAGS

00 Peripheral Read 63 Exchange EM, A3, B3

10 CP RNI o 64 Exchange RA(ecs) A4,B4
11 CP Read ¥ X1 65 Exchange FL(ecs) A5,B5
12 CP Read — X2 66 Exchange A6,B6

13 CP Read —pp» X3 67 Exchange A7,B7

14 CP Read —pp X4 70 Exchange X0

15 . CP Read - X5 71 Exchange X1

40 Peripheral Write 72 Exchange X2

50 Return Jump + Error Stop 73 Exchange X3

56 CP Write X6 74 Exchange X4

57 CP Write X7 75 Exchange X5

60 Exchange P, AOQ 1 76 Exchange X6

61 Exchange RA(cm) Al,Bl 77 Exchange X7

62 Exchange FL(cm) A2,B2 ﬁ

1-12

A tag = 00 indicates a Peripheral Read address since all bits equal zero.
This is interpreted as meaning:

(WRITE) (EXCHANGE) (CENTRAL) or Peripheral Read.

In this case the register bits (20 - 22) have no meaning and are rnot transiazted.

A tag = 10 indicates a Central Read Next Instruction (RNI) since the Central
bit (2°) is set and all other bits are cleared. Since a Central Read of
Memory to X0 is not possible, the clear state of bits 20 - 22 in this case
indicate that an instruction word is to be read from Memory.

A tag = 11 indicates that a Central Read to X1 is to be performed. Bits 20 . 22
in this case indicate the X register number. Tags 12-15 are also Central Reads
to X registers, but to X2 - X5, respectively.

A tag = 40 indicates a Peripheral Write operation, since the write bit (25) is
set and the Central and Exchange bits (23 & 24) are both cleared.

A tag = 50 indicates a Central Return Jump or Error Mode Stop memory reference.
Bits 20 - 22 are meaningless in this case since a Central Write (tag = 5X) of
X0 is not possible. Since storage of information in central memory is required
in the above cases, the 50 tag is reserved for this purpose.

Tags = 56 & 37 are generated when storage of X6 or X7, respectively, is
desired. Bits 20 - 22 again indicate the register number.

Tags 60 - 77 are all generated during an Exchange Jump operation. Bit 23 =0
indicates that A, B or Control registers are to be exchanged. Bit 23 =1
indicates that an X register is to be exchanged. Bits 20 . 22 specify the
operating register number (i.e.,X, B or A) or the control register (i.e. P, RA,
FL, or EM) to be exchanged. Note that these are the only cases when bit 2&
(the Exchange bit) is set.

After a memory reference is initiated, the associated tag is decoded and will
enable the gating of the desired information into and/or out of Central Memory,
to or from the desired locaticn (XBA registers, control registers, read or
write pyramids, etc.).

CENTRAL MEMORY

The 6600 Central Memory is composed of 60-bit worde icci-ec i 16 or 32 Temory
banks each of which contains 4K words. This results in 65K or .. .i:d memory
sizes, respectively. 1In either case, 4 banks are contained on a chassis.

Selections of bank and chassis are made by decoding the lower 4 (for 65K memories)
or 5 bits (for 131K memories) of the address. For example, in 131K system,

1-13

bits 20 and 2! select one of 4 banks on a chassis, while bits 22, 23 & 24
select one of 8 chassis. The address is sent from Chassis 5 to all memory
chassis of a system and all chassis decode the lower bits of the address. Only
one chassis will recognize its bit configuration (22 - 24y, By decoding bits
20 and 21, the bank selection is made. 1If the selected bank is free (i.e.,a
memory cycle is not already in progress) the Accept signal is returned to the
stunt box and a Go signal is sent to the selected Storage Sequence Control
circuit (SSC). The SSC is a simple flip-flop timing chain which generates the
read/write memory cycle.

The selected address within the selected bank is determined by decoding the
remaining 12-bits of the 17-bit address (16 bits for a 65K system). While a
memory cycle is in progress, the bank busy signal (bank not free) disables
initiation of other memory cycles within that bank. It also disables the re-
turn of the Accept signal to Chassis 5, which causes the address to be
retried at the 300 nsec stunt box rate.

The information being read from or stored into central memory is gated by a
circuit called the Read/Write distributor. 1It, in essence, distributes infor-
mation to and from the 4 Chassis connected to central memory as shown in
Figure 1-4.

CHASSIS 1 CHASSIS 1
(WRITE (READ
PYRAMID) PYRAMID)
CHASSIS 5 * WRITE CENTRAL READ CHASSIS 5
(CONTROL | e e ——=— (CONTROL
REGISTERS) DISTRIBUTOR MEMORY DISTRIBUTOR| REGISTERS)
CHASSIS 7&8 | CHASSIS 7&8
(OPERATING (OPERATING
REGISTERS) REGISTERS)

Figure 1-4.

1-14

Determination of which information is to be gated is made by decoding of the
Hopper tag associated with each address and ANDing the decoded signal with the
Aecept for that address.

Information is gated from the Write Pyramid on Chassis 1 to CM via the write
distributor during PPU central memory write operations (tag = 40).

Information is gated from Chassis 5 during return jumps and Error Mode Stops
(tag = 50).

Information is gated from Chassis 7 and 8 during Exchange Jumps (tags = 60 - 77)
and central processor store operand operations (tags = 56 or 57).

Information is sent from C.M. via the Read distributor to Chassis 1 during PPU
central memory read operations (tag = 00).

Information is sent to Chassis 5 during Exchange Jumps (tags = 60 - 65) and RNI
(tag = 10) operations.

Information is sent to Chassis 7 and 8 during Exchange Jumps (tags = 60 - 77)
and central processor operand read (tags = 11 - 15) operations.

It is re-emphasized that in all cases of gating the Read/Write distributor the

Accept signal is necessary. This ensures that the information desired is
properly timed for entry to or exit from memory.

1-15

INSTRUCTION CONTROL

Instructions in the Central processor are executed from the
Instruction Stack (shown in Figure 1-1). Each 60 bit Stack register
can contain up to four instructions, since the Central processor
employs both a 15 bit and a 30 bit instruction format, and as few
as two. The responsibility of Instruction Control is to determine
that a 60 bit Instruction word has become available to the stack,
sort out the 15 or 30 bit instructions within that word, and then
deliver the instructions to Reservation Control so they can be
executed.

Initially all instruction words (a 60 bit memory word fetched by

an RNI request) move into the bottom rank of the stack (I0) when
Instruction Control receives the RNI tag (TAG = 10g and accept)

from the Stunt Box. The RNI tag also signals Instruction Control

to begin the process of sorting instructions within that word and
transfering them to Reservation Control. The total process is called
Instruction Issue, and the sorting of instructions is referred to as
Parcelling.

INSTRUCTION ISSUE

Instructions can be issued from any rank of the stack, however if we
were to assume an initial condition such as at the end of an Exchange
Jump sequence we would see issue beginning with the upper instruction
in I0. Once a program is in execution, program control can be
transferred to some higher rank of the stack by a Branch instruction.
This situation forces Instruction control to keep track of which rank
of the stack the Program address is currently indicating. The
"Locator" (L) register and counter perform this function. Control of
the L count would be very similar to control of the Program Address.
However, L refers to a particular rank of the gtack so it would only
vary between 0g through 7g. Example: L count = Og indicates program
control is currently in I0. L count = 78 indicates program control
in I7. An initial Master Clear would set the L count to Og, so we
can see that Instruction Issue would start from the bottom rank of the
stack.

NOTE: The L register contains the complement of the L count.

Now that we have selected a particular rank of the stack, we must
concern ourselves with sorting out the instructions within that rank.
In other words we must parcel the instructions from the selected
rank of the stack. Each rank is considered to have four overlapping
30-bit Parcels.

1-16

These are: parcel 0 - bits 30 through 59
parcel 1 - bits 15 through 44
parcel 2 - bits 00 through 29
parcel 3 - bits 44 through 14 (end around)

PARCEL 3 (PK=3)
A
{ N\
PARCEL 2(PK=2L
r 2}
PARCE{L | (PK-!LL .
PARCEL O (PK=0),_
r N
N]
259 » 20

Figure 1-5 TInstruction Word Parcels

By examining each word with the 30 bit parcels we guarantee the
detection of any possible combination of instructions within that
word. If the instruction contained within the parcel happens to
be a 15 bit instruction the lower 15 bits of the parcel are
discarded and the next sequential parcel is extracted. However,
if a 30 bit instruction is encountered, the entire parcel would be
used and the next sequential parcel would be skipped.

Example:

In | 15 15 15 15

239 20

Here each parcel would be extracted in sequence with the lower 15
bits of each parcel being discarded.

ml 15 30 15

1-17

9-1 @an313

81-1

I93Unoy) [9d1e(

[
[N B

!,13,1517 w =
{ < 0
DELAYED U; ISSUE 2 E
+ Skie | £ 5| sceo | ResemvaTiON
7 = is;é'bm% ISSUE CONTROL
PKEO%-\ 1&\ |
K Pl «\!’Vi _
o
L=0DD ;'T PK=2 1\.I - SeBD
77 - ISSUE ISSUE
; PK'—s;:g(L 20 > 4 + SKIP
L COUNT =
EVEN
w U ISSUE SCBD
PK= + SKIP ISSUE
%ii(PK=| DELAYED U,
L= EVEN %(= ISSUE
PK—}S(* > + SKIP
PK= -
(A\ = |
—’L———\ 0 {2 {46
,——M..
PARCEL 3 N PARCEL 3 IV, 14,1715
‘ PARCEL 2
r PARCEL |
4 A DY
PARCEL O .
N

59— 45 44 ——30 29 514 0

In this example parcel 0 and 1 would be extracted in sequence all
30 bits of parcel 1 would be used, so parcel 2 would be skipped.

Instruction Control uses a two bit Parcel Counter (PK) to keep
track of the current parcel and will generally advance the parcel
counter after each parcel is extracted. An initial PK =0
condition would be set by Master Clear.

1 T, ~ntsm = N /IO)

al In ion issue begins with the L count = 0 (I0),
PK = 0 (bit through 59), and,as previously mentioned,the
first Instruction word after an Exchange Jump comes from Central
Memory to I0 as a result of the RNI tag. The tag also starts the
Issue operation, so the rest of our analysis can now be concerned
with moving the instructions to Reservation Control. Figure 1-B

shows the path each parcel will take.

. .
=1
1 ns -

w3

Issue Control, gehierates two types of issue pulses. These are:

Ul issue-- A pulse that gates the selected parcel to the Ul and
U2 instruction registers and advances PK. This pulse
occurs at a minor cycle rate during the issue sequence.

Scoreboard

Issue - A pulse that gates the parcel from the U2 instruction
register to Reservation Control. This issue can also
occur at a minor cycle rate. '

With eight different L counts and four different Parcel counts,it

is easy to see that 327 different parcels must move through the

Ul and U2 registers. Sixteen of these parcels(PK =0, 1, 2, 3

L count =0, 2, 4, 6) move from the even-numbered ranks of the stack
to UO before Ul issue would move then to Ul. It is not necessary to
have an issue pulse to move parcels to U0, so we would see the
selected parcel from the selected even rank of the stack move into
U0 automatically. In our initial case Parcel O of I0 would be the
first parcel extracted to U0 and the first Ul issue pulse would move
the parcel to Ul.

Notice that at this time there have not been meaningful parcels in
Ul or U2, so as far as the U2 register is concerned it receives
"Trash" on the first Ul issue. Also, no scoreboard issue should be
generated until after the first meaningful parcel has moved into
U2. The PK being advanced to 1 by Ul issue would cause parcel 1 of
I0 to be extracted to U0, so on the next Ul issue parcel 1 would
move to Ul, parcel O would enter U2, and PK would advance to 2.

One more Ul issue would move parcel 2 to Ul, parcel 1 from Ul to
U2, so at this time the first Scoreboard issue must occur to issue
parcel O to Reservation Control. From this point both Ul and
Scoreboard issue can continue at a minor cycle rate until parcel 3
is issued to Reservation Control (three more issue pulses).

All of the possible instructions in I0 have now been put into

1-19

execution, and issue must stop until the next 60-bit Instruction
word becomes available from Central Memory. This is called a
"Pause'".

The Pause could be quite lengthy if Instruction Control had not
had the foresight to request another RNI from Central Memory.
This request is made any time L count = 0, PK = 0, and Ul issue.
It is easy to see why the request is made under those conditions,
once it is realized that I0 is the bottom rank of the gstack and
after issuing from I0 there wouldn't be any place to go for the
next instruction. There is one other operation that comes into
play at this time, and it is the process of moving the current
instruction words of the stack up to make room for the next
instruction word from Central Memory (Inching).

Inch is also started whenLcount = 0, PK = 0, and Ul issue. During
the Inch process each rank of the stack is shifted up starting
with an 16 to I7 transfer and continuing with I5 to 16, I4 to IS5,
I3 to 14, 12 to 13, Il to 12, and I0 to Il in that sequence.

Four minor cycles (400 nsecs) are necessary to complete the Inch,

and it becomes necessary to advance the L count to 1, since the last
Inch transfer moves the current Instruction word from I0 (L count = 0)
to I1 (L count = 1). An important point to realize here is the I6 to

17 transfer destroys the Instruction word that was in I7. Consequently,
a program loop that is to be executed within the Stack must fit in the
stack between Il and I7. A quick examination of the stack reveals a
maximum in Stack Program length of 27y instructions.

17 15 15 15 15
16 15 15 15 15
15 15 15 15 15
I4 15 15 15 15
I3 15 15 15 15
I2 15 15 15 15
I1 15 15 30 Bit Branch
I0

Figure 1-7 Maximum In Stack Loop

1-20

The analysis of Instruction Issue to this point has assumed straight line pro-
gram execution with no complications. There are, however, many special situa-
tions which may be encountered. Whenever a 30-bit Instruction is encountered
in a parcel, Instruction Control must cause the next sequential parcel to be
skipped. The skipping is accomplished merely by not generating a Scoreboard
issue when the unwanted parcel is in U2.

Example: 17 | 15 | 30 I
259 20
Too

Ul Issue ?

Parcel O Parcel 1 Parcel 2 Parcel 3

To U2 To U2 To U2 To U2

et
SCBD Issue //1 ? i 1 ?
Parcel 0O Parcel 1 Parcel 3

To Reservation To Reservation To Reservation
Control Control Control

There is also the possibility that Issue may have to be stopped if either the
Functional Unit or the Result register (required by the parcel) are Busy. This
is accomplished by Instruction control translating the parcel when it is in Uy,
and setting a Unit Request FF and Result Register Select FF when the parcel
enters U2. Each Unit Request FF interrogates the corresponding Unit Busy FF

in Reservation Control, and, if the Unit is busy, a signal is generated which
blocks all Issue pulses un il the Unit becomes not busy.

A similar operation occurs with the Result register except the Result Register
Select FF must be ANDed with a translation for the "i" portion of the Parcel
to determine which portion of the Reservation List should be examined for a
Reservation. The Reservation List (XBA) is where all Result register reserva-
tions are held by Reservation Control.

1-21

Probably the most involved operation in Instruction Control oc-

curs when a Branch Instruction is encountered, and,even though

the Branch Unit will execute the instruction,Issue Control must

set itself up for proper operation. The reason for the complication
of course, is that a Branch Instruction can do one of the following
three:

Loop - a conditional Branch, condition met, and In Stack.

Jump - an unconditional Branch or a conditional branch, condition
met, and not In Stack.

No Branch - a conditional Branch, condition not met.

Instruction Control will set itself up for the No Branch Condition
by setting the Parcel Count equal to the parcel count of the next
parcel to be issued,and then stopping Issue after issuing the
Branch.

Example: I 30 Bit Branch 15 15
259 20
Parcel O Parcel 0
In U1 In U
U1 Issue Issue Stopped
SCBD Issue
Parcel O
to Reservation
Control

By controlling the Parcel count in this manner it is possible to
restart issue the same as if it were starting after an RNI. Once
the Branch has been issued,the Branch Unit makes a series of tests
to determine whether the branch is to an instruction word already
in the Stack.

The test results are only enabled on the Conditional Branch
instructions 03g through 078 and -enable these instructions to Loap.
The first test is made by subtracting the current Program Address
(P) from the Jump Address (R), and if the difference (T) is +7 or
less the Branch may be In Stack.

1-22

However, a further test must be made to see if a jump of T places can be made
relative to the current position in the Stack which is reflected by L. This is
the L-T test and, if there is not an end-around borrow from the test, the
branch still may be In Stack.

If R-P gave a positive result, the jump was forward and the L-T test being made
successfully would say In Stack, but if R-P was negative, the branch was back-
ward and a further test must be made to see if there is a usable instruction

in the rank of the stack to which the jump is being made. Conveniently, the
result of the L-T test would be the new L setting if the Branch is to be made,
and this is subtracted from the Stack Depth Counter register (D). The D-(L-T)
test is only necessary on the backward jumps (R-P negative) and, if it is
successfully made, the branch would be In Stack. The Branch unit uses the Long
Add unit to make the Branch Condition test for the 03g instructions, and the
Increment units to test the O4g through 075 instructions. If the condition is
met, a Go Branch signal is generated. If the R-P, L-T, D-(L-T) have all been
successful, a Loop Proceed is generated.

If Go Branch occurs and R-P, L-T, and D-(L-7) were not successful, a Jump is
generated. If Go Branch does not occur, a No Branch Proceed is generated. On
a Loop Proceed, the Jump Address (R) is transferred to P, the result of the

L-T test is gated to L, the Parcel Count is set to Og, and Issue is restarted.
On the Jump an R to P transfer is also accomplished, but L is set to 7

(L count = 08), the Parcel count is cleared, and an RNI request is made to the
Stunt Box. (Issue would restart as a result of the RNI.) The No Branch Proceed
merely restarts Issue, since this is why Instruction Control has been set up.
There are many special cases that affect Instruction Control during branch
instructions, but these will be covered in Section 4 along with a more detailed
explanation of the other Instruction Control operations.

1-23

RESERVATION CONTROL
(SCOREBOARD)

The need for reservation control logic in the 6600 Central Processor arises due
to the parallel processing concept of the CPU. This capability necessitates an
orderly means of utilizing the functional units, operating registers and memory
circuitry, since it is possible that several instructions require the same
functional unit, operating register, etc. The scoreboard , then, makes the
required reservations of each instruction and provides a means for the orderly
handling of conflicts which may occur between instructions.

Conflicts are categorized into three groups - first, second and third order.
The types of conflicts are defined as follows:

1) FIRST ORDER: A conflict between two instructions that require
the same functional unit or the same result
registers.

EXAMPLE 1: Functional Unit Conflict

FX6=X10x2
FX5=X3@Xx&

Both instructions need the Floating Add functional unit
for their calculation. Since only one such unit exists,
the second instruction must wait until the first is
finished, before it can be executed. Note that if two
Multiply instructions are coded in sequence, no
functional unit conflict occurs since two multiply
units are provided.

EXAMPLE 2: Result Register Conflict

X1l + X2
X4 * X5

F X6
F X6

Il

Both instructions require X6 for their result. 1In
this case, the Floating Add result would be returned
to X6 before the Multiply result was desired.

There are then, two types of First Order Conflicts - functional unit
and result register. In all cases of first order conflicts, issuance
of instructions stops until the conflict is resolved. In other words,
no further instructions are initiated (including the one which "sees"
the conflict) until the first of the conflicting instructions has
completed. 1In conclusion, first order conflicts temporarily stop
issuance of instructions at the point of conflict.

2) SECOND ORDER: A conflict that occurs when an instruction requires

the result register of a previously initiated instruction
as a source operand.

1-24

EXAMPLE :

F = X1 + X2

F= x5 /(X9

In this case, the Divide unit needs X6, which is the
result of the Add instruction, as one of its source
operands. The Divide Unit must obviously wait for

the Add unit to time out, but instruction issue will
not stop. Instead, the Scoreboard will delay the start
of the Divide instruction until the Add unit has

stored its result. Subsequent instructions may be
issued as long as no First Order conflicts exist.

The result of a Second Order Conflict is to delay the execution
of the conflicting instruction only.

3) THIRD ORDER: A conflict that occurs when one instruction must store
its result in a register which is to be used as a
source operand for a previously issued instruction.

EXAMPLE :
F X3 =Xl / X2
F x5 =(X4 * X3
F@=X0+X6

In this example, due to the relatively long execution
times of the Divide and Multiply op. codes and the
second order conflict (X3) of these units, the Add
instruction will complete its calculation before the
Multiply unit has read its operands (both operands
are always read at the same time; therefore, all
second order conflicts must be resolved). Since

the Multiply instruction is intended to read X4
before it is changed by the Add instruction, storage
of the Add result must be delayed until the Multiply
Unit begins its calculation. Thus, third order
conflicts do not delay issue or calculation, but
rather the storage of a result operand.

The following discussion explains, at the block diagram level, how these conflicts
are handled by the scoreboard. Figure 1-8 should be used in following the
explanation. ’

FIRST-ORDER CONFLICTS

First-order conflicts are defined as either functional unit or result register
conflicts. 1If either type exists, no issues can be generated.

Functional unit conflicts are determined by checking the Unit Request flip-flops
against the Unit Busy flip-flops. Recall that Unit Requests are set at the -

1-25

9¢-1

u2

UNIT REQUEST BUBY UNIT
BUSY
. * * *
SCBD -
(21 XLATE =0 3 RF}
Q4 Y
X
Q#0
SCBD 0
£ FUNCTIONAL 7 RELEASE
m UNIT CODE —<>—b1 B 5 FROM ALL O+— "GO FILL"
I GENERATOR F. U's
e
j 2O 7 *
#0
17 | k | — A Q
ol 11 % XLATE
N o |
K "GO READ"
2
0
SELECT
—
TO EXIT
DN Q—-—.-EJ SO CONTROL
> o—fFy o
RESULT -
n TO ENTRY
- Fy CONTROL
SCBD _

==z_ "GO STORE"

REQUEST RELEASE
* DUPLICATED FOR ALL RELEASE —’l ALL CLEAR } *—& "TRANSMIT"

FUNCTIONAL UNITS

SCOREBOARD BLOCK BIAGRAM
Figure 1-8

time an instruction is transferred from Ul to U2. The Unit Request flip-flop sets
depending upon the op.code that is translated (from Ul fmi portion). When
an instruction is issued to the scoreboard, among other things, a Unit Busy
flip-flop will be set. This in effect, reserves a functional unit for a parti-
cular op.code - it will remain reserved until the given instruction has com-
pleted execution, at which time the Unit Busy flip-flop is cleared to allow a
subsequent instruction to use that functional unit. Thus, when a given unit is
needed (as determined by a set Unit Request flip-flop) it can be used only if
the associated Unit Busy flip-flop is cleared. 1If the Unit Busy is set, a
functional unit conflict exists and generation of issues is disabled until the
unit is freed. -

In determining the existance of result register conflicts, a comparison of the
request and reservation logic is also made. Upon issuing an instruction to U2,
‘Result flip-flops are set according to the op.code translation. Four such
flip-flops exist and specify a result register group (i.e. Xi, Bi, Ai or Bj).
The specific register within a group is determined by translating the i or j
octals (as specified by the Result flip-flops). For example, if the Xi flip-
flop is set and the U2 i digit = 3, X3 is the result register desired.

The result register reservations are placed in the "XBA reservation list" when
an instruction is issued to the scoreboard. This list is composed of 24 "slots",
where-in codes are placed to specify which functional unit has reserved each of
the 24 operating registers. For example, a code of 16 in the X4 slot of the
reservation list indicates that X4 is reserved for the réesult of the LONG ADD
functional Unit. The complete list of possible codes follows:

UNIT CODE
Increment 1 01
Increment 2 02
Shift 03
Boolean 04
Divide 05
Multiply 1 06
Multiply 2 07
Read Memory, Channel 1 11
Read Memory, Channel 2 12
Read Memory, Channel 3 13
Read Memory, Channel 4 14
Read Memory, Channel 5 15
Long Add 16
Add 17

1-27

Any slot that contains an all-zero code indicates that the associated operating
register is not reserved. Any non-zero code indicates that the associated
register is reserved for a result. Thus, if translation of U2 indicates that
X4 is specified as a result register and the X4 slot of the reservation list is

zero , no conflict occurs. 1If the X4 slot is not equal to zero, the register
is reserved. Thus, a conflict exists and issues are disabled until the conflict
is resolved.

Notice from the list of codes that 5 are named Read Memory, Channel X . These
are necessary for the 5X 1 - 5 X 5 instructions. They return results from
Memory to X 1 - X 5 and must make a result register reservation. 1In this sense,
Memory acts like a functional unit.

In summary, both cases of first-order conflicts are handled similarly in that
requests for units or result regsiters (made at U2 time) are checked against
reservations existing in the Scoreboard. 1If a conflict exists, issues are
disabled until the conflict is resolved.

SECOND-ORDER CONFLICTS

Second-order conflicts occur when a functional unit requires as a source operand,
the result of another functional unit. The source operands are defined by the

j and k octals of U2 in conjunction with the select flip-flops which are set
with a U2 transfer. The select flip-flops define the source register group as
well as the octal digit specifying the register within that group (i.e. Xj, Bj,
Aj, Bk or Xk). By ANDing select flip-flops with the j and k octal digit trans-
lations, specific registers are selected.

Determination of whether or not the desired registers are reserved is made by
looking at the content of the XBA reservation list, but not directly. Each
functional unit has 4-bit Q designators which, when an instruction is issued

to the scoreboard, receive the contents of the XBA slot associated with the de-
sired source operand registers. For example, the following instruction sequence
causes a second order conflict:

FX5=1X3 * X2
FX6=2X2+X5

Il

The Multiply I unit reserves X5 by placing a code of 06 in the X5 slot of the
reservation list. Assuming that no other instructions have been issued, no
other reservations exist when the Add instruction is issued. Since the Add
unit wished to read X2 and X5, it transfers to its Qj and Qk designators the
content of the X2 and X5 slots, respectively. At this point, the Add Q} desig-
nator equals 00(g) and Qk equals 06(8)' In essence, this tells the Add unit
that its j operand (X2) is not reserved by the Multiply I unit. Since a func-
tional unit does not begin calculation until after it can read both operands,
the Add unit must wait until Multiply I returns its result to X5.

Assoclated with each functional unit are flip-flops, called Read Flags , which
when set, indicate that the desired operand (s) can be read. The Add unit has
two Read Flags, one for the Xj operand and one for Xk. Read Flags can be set in
two ways, both of which result from translating the Q designators.

1-28

1) If Q= 00(8)’ a Read Flag can be set since the desired operand is mnot
reserved.

2) IfQ# 00(8), a Read Flag cannot be set until the functional unit,
whose code is in Q, has completed its calculation and returned its
result to the result register. Completion of a functional unit's
operation is indicated by a signal called Release (discussed in
detail under third order conflicts).

In the above example, the Add unit's Xj Read Flag is set immediately, since

Qj = 0. The Xk Read Flag is set when the Release for Multiply 1 occurs, since
Qk translates as 06 8)* Each possible non-zero Q tramslation is tied to the
"Release" signal for the associated functional unit, so it is possible to set

a Read Flag by any transliation of @, ANDed with the associated "Release"

signal or, by Q = 00(g)-

Once both Read Flags are set, it is necessary to send the functional unit its
operands and to send a ‘Go signal to the unit, allowing it to begin its calcu-
lation. The Go F.U. signal is sent as soon as both Read Flags are set. This
signal starts the functional unit timing chain. At the same time, the source
register selection codes are sent (by a Go Read signal) to Register Exit
Control to gate the proper operands to the unit. These codes are obtained from
the F designators associated with each unit. These are 3-bit designators which
are used to remember the source and result operand register numbers. They also
are set when the scoreboard is issuing an instruction. In the above example,
once both Read Flags are set, the content of the Fj and Fk designators of the
Add unit are sent to Register Exit Control and will allow X2 and X5 to be gated
to the Add unit. The Read Flags are cleared during the minor cycle after both
are set. Set Read Flags then, indicate that an operand is waiting to be read.

Thus, the general second-order conflict case delays the start of a functional
unit until both source operands can be read. Some special cases exist, which
are discussed in detail in the logic analysis sections of this manual. At this
point, it is appropriate to understand the general case.

THIRD-ORDER CONFLICTS

The possibility of third-order conflicts occurs when a functional unit has
generated a result and wishes to store in an operating register. If the desired
result register is waiting to be read, the unit must wait to store until after
the read has occurred.

Whether or not a register is waiting to read is determined by checking the Fj
and Fk designators against the associated Read Flags in all the functional units.
The result register of a unit is given by the Fi (and, in some cases, Fj)
designator of that unit. When a unit requests to store a result, its result
register number is checked against the Kead Flags and F designators of all other
units. If any Read Flag is set AND the associated Fj or Fk designator trans-
lation is the same as the Fi designator of the storing unit, a third-order
conflict exists. The unit will therefore be prevented from storing until the
conflicting unit's Read Flag is cleared. This, of course, occurs once a unit

has set both of its Read Flags.

The general sequence in handling third-order conflicts is as follows. First, a
unit desiring to store a result sends a Request Release signal to the score-
board near the end of its calculate time. This signal is then ANDed with an

All Clear signal to generate the Release gate, which allows storage of the
result. The All Clear is the result of checking all Read Flags with the
associated Fj and Fk designators and comparing with the Fi (or Fj) designator
(for the result) of the unit requesting release. The Release signal accomplishes
several necessary tasks in the scoreboard. It sends a transmit signal to the
functional unit to gate the result to the data trunk. It also generates a

Go store signal which gates the Fi (or Fj) designator to Register Entry Control
to select the desired result register. Release also clears reservations in
the scoreboard (i.e. XBA designators, Unit busy flip-flops, etc.) and checks

all Q designator translations in the event that a unit is waiting to use this
result as a source operand. The Release then, indicates final termination of

an instruction, and in essence, removes that instruction from the scoreboard.

REGISTER EXIT/ENTRY CONTROL

As the name implies, Register Exit/Entry Control is the control logic used for
gating data into and out of the 24 operating registers. It is in essence, a
large translating network which decodes tags sent from the Stunt Box or Score-
board to enable the transfer of data to and from central memory or the functional
units. Figure 1-9 is a block diagram which should be used during the following
discussion.

ENTRY CONTROL

Entry Control is shown on the left half of Figure 1-9. To the extreme left are
the four general sources of information for the X, B and A registers:

1) Central Memory

2) Data Trunk #1 (Shift, Add and L. Add)

3) Data Trunk #2 (Boolean, Divide, Multiply 1 and Multiply 2)
4) Data Trunk #3 (Increment 1 and 2)

Data is entered into the operating registers from Central Memory during Exchange
Jumps and during the central read operand instructions (5 X 1 - 5 X 5). Since
memory references are involved, all of the gating tags are sent from the Stunt
Box and are composed of the lower four bits (20 - 23) of the Hopper Tag ANDed
with the Accept signal for the associated address. 1In other words, when an
Exchange Jump or a Read Operand address is accepted, the four-bit tag is sent
from the tag timing chain to Entry Control where it enables the information

from Ceuntral Memory to the proper X, B, or A iegister,

1€-1

INPUT
REGISTERS

CENT,
MEM

60 BITS

INC |
INC 2
18 BITS

[BOOLEAN|
DIVIDE
MULT
MULT 2

60 8ITS

SHIFT
ADD
L ADD

80 BITS

SHIFT
12 Mvs

le

k-

STUNT BOX

ENTRY CONTROL TAGS — - o o

EXCH
MEM-»D| D—>X JUMP
A

EXCH
JUMP
]

EXCH
JUMP

GO GO
STORE STORE
i 8

GO GO GO GO
STORE | STORE | STORE STORE
X, x X 8
' i 1]
’—’/___”4-—————"“’
////,/J

Figure

SCOREBOARD

OPERATING
REGISTERS

X0

X1

x2

x3

x5

X6

X7

EXIT CONTROL TAGS

STUNT BOX

GO GO
READ READ
Xk Bj

o G G
READ READ READ

G
READ

GO
READ

[GO EXCH
READ READ JUMP | X->»MEM
A:B

1-9

(CHASSIS 7 & 8)

QUTPUT
NETWORKS

CENT,
MEM

60 BITS

INC I
INC 2

18 BITS

INC |
INC 2

18 BITS

DIVIDE
MULT |
MULT 2
BOOLEAN

60 BITS

DIVIDE
MULT 1
MULT 2
BOOLEAN

60 BITS

(k)

ADD
SHIFT
L ADD

60 BITS

ADD
SHIFT
L ADD

60 8ITS

Notice that during Read Operand references, the 60-bit operand is first sent
into the D register (1l - 5) associated with the X register (1 - 5) which will
ultimately receive the information. This is enabled by the Mem —>D signal
which results from the simple translation: (tag 1l - 15) (Accept). The
operand will be temporarily stored in D, until any third order conflict which
may exist is resolved. (A Read Flag may be set for the X register which is to
receive the operand from memory). Thus, when the All Clear signal occurs,
the D—>X signal is generated and completes the transfer to X.

During Exchange Jumps, new information is entered into A, B and X registers by
Hopper tags in the range, 60 - 77. Recall, that tags 60 - 67 enable the exchange
of A and B registers, while tags 70 - 77 enable exchanging X registers. The
Entry Control Tags, Exchange Jump A, Exchange Jump B and Exchange Jump X refer

to the hopper tage 60 - 77 accepted.

A result generated by the Increment units may be entered into X, B or A regi-
sters, depending upon the instruction being processed (5X, 6X, or 7X). Thus,
three Entry Control Tags are shown for the Increment Data trunk, namely, Go
Store Ai, Go Store Bi and Go Store Xi. Recall that Go Store occurs after a
functional unit has been released and enables the Fi designator content to Entry
Control. Thus, the Go Store tags are generated by the Scoreboard at the
completion of an instruction sequence. Note also, that Sign Extension occurs
when storing an Increment result (18 bits) in an X register (60 bits).

Results generated by the Boolean, Divide, Multiply 1 or Multiply 2 units are
always 60 bits in length and the result register of these functional units is
always an X register. Therefore, one Entry Control Tag, namely Go Store Xi-
is shown for Data Trunk #2. The tag is also generated from the Fi designators
of the units on this trunk when the unit is Released by the Scoreboard.

The units on Data Trunk #1, Shift, Add, and Long Add all generate a 60-bit
result for X registers, but in addition, the Shift unit may generate an 18-bit
result for a Bj register. (For example, during normalize or unpack operations.)
Thus two Entry Control Tags are shown for this trunk: Go Store Xi and Go
Store Bj. These are also generated by the Scoreboard when a unit releases from
the Fi (or Fj in the special shift case) designators.

EXIT CONTROL

Similar to Entry Control, Exit Control has four general destinations for data:
from the operating registers:

1) Central Memory
2) Data Trunk #1l
3) Data Trunk #2

4) Data Trunk #3

1-32

The Exit Control Tags are also generated similarly, that is, from the Stunt
Box cr the Scoreboard.

The Stunt Box generates tags for information to be sent to central memory,
specifically, during Exchange Jumps or Central Store Operand instructions

(5 X 6 or 5X 7). During these operations, the lower four bits cf the Hoppe:

Tag are sent to Exit Control when the associated address has been iaccepted (is

not in conflict). The data, which may be A and B register or X register contents,
are sent on the memory trunk and will be stored during the write portion of the
memory cycle.

For the Increment Data Trunk, four Exit Control Tags are shown in Figure 1-9
since the Increment units may specify an A, B or X register with the j octal
and only a B register with the k octal. Thus the four tags, Go Read Xj ,

Go Read Bj , Go Read Aj , and Go Read Bk are used to gate operands on this
trunk,

For Data Trunk #2, all functional units specify only X registers as socurce oper-
ands. Therefore, only Go Read Xj and "Go Read Xk" tags are required.

For Trunk #l, the Add, and L. Add units may specify an Xj or an Xk source
register (or both) while the shift unit may specify an Xji or Bk register (or
both). Thus the three tags, Go Read Xj , Go Read Bj and Go Read Xk are
required for this data trunk.

All Go Read tags are generated by the Scoreboard when both Read Flags for a
unit have been set. This enables the Fj or Fk designator to exit control and
gates the proper register to the proper trunk.

CHAPTER 1II

CENTRAL MEMORY ADDRESS CONTROL

=

gasogRTae:

3
5

T

|

!

CENTRAL
MEMORY | e T e
CONTROL e N A

>w |
[

ox

'EXCH —'P/
N s ! ———=]

PPU_,| | oR|EAK

3 12 j1

=

7 . lPRIORIT_Y]

CENTRAL

PROCESSOR
DATA PERTPHERAL
CHANNELS PROCESSORS l
INSTRUCTION RESERVATION
ISSUE CONTROL
[—— CONTROL (SCOREBOARD)
ADD

{ sarr]

REGISTER 4 [soozan |

T

* 3

© % omn

CENTRAL CENTRAL
MEMD)

MEW MULTIPLY 1

MULTIPLY 11

T

~® 3 Am

—x

ER

INCREMENT TT

CHAPTER 11

CENTRAL MEMORY ADDRESS GONTROL

INTRODUCTION

The basic concept of the 6600 computer is parallelism. In the
central processor many parallel operations can be in pregress, one of
which may be accessing of central memory. Sometimes the periph-

eral processors will be attempting communications with central

memory simultaneously with the central processor. This is a
simplification of possibilities but points out that some method

of orderly distribution of requests for central memory time must

be available.

Central Memory is divided into 32 (or 16) independent banks that
can be accessed sequentially in an overlapping fashion. This
allows memory references every 100 nano-seconds. To make full

use of central memory and also to fulfill the parallelism concept,
an area of the central processor known as the STUNT BOX exists.

It is to this circuitry that all references to central memory must
first come. The job of the stunt box is to collect requests for
central memory access and to distribute these requests in an
orderly fashion.

The 6600 has ten peripheral processors that can request read or
write operations in central memory. The peripheral processors can
also execute an exchange jump which requires central memory access.
The central processor can reference memory for an instruction word
or to read and store operands.

Consequently the peripheral and central processors can send
requests to the stunt box simultaneously. This presents the
necessity for some means of priority within the stunt bex and =zlser
some method of naming eact of the memory requests in crder that «:e
data, once acquired, will be distributed correctly. Another factor
that must be considered is a means of remembering addresses if the
first attempted access is rejected because of a memory conflict.

In general, the stunt box:

a) allows several simultaneous memory requests.

b) establishes a priority for issuing addresses to central memory.

c) 1issues the addresses to memory at a rate that will make maximum
use of the 32 (or 16) independent banks.

d) remembers addresses that have not been accepted by the memory
and must be re-issued.

e) adds a tag to the addresses to correctly distribute the data.

2-1

FROM PERIPH. P)F\iOCESSOR CH.I FROM CENTRAll PROCESSOR CH. 5

I \ r \
7 =) Mol | S = = (= A=
W= < = 3 o o E’:Ez EE @
5| | |3zl) T gl zg|®
alo w g Zl a @ P, [=Fo)
<= @ 4 o] w Q a g
a : el 8 z o Q
X x| O -t 2
a) Jg| < <
3 |8 z
@ o
A o
PP INPUT
vao—a2 Lol DISABLE
IN PERIPHERAL CENTRAL INCR#@
+1| CONTROL ngcﬁf CONTROL [W0
A
EXCH./ READ/ 3
WRITE - REG. 201 =>06
QI5-17
RI4—19,
+I
e
ol & Q
gl 3 w|
SE S N
98 O w| -
ouw| X| @ -l z
w| w cl w
ox ~ H ; s)
widl ¥ £ S e
ol ¥ w =
> x| z
- O wi W
l uw| <«
. 1 3 3 TAG-GEN.
HOPPER PRIORITY
INPUT PRIORITY PRIORITY
NETWORK NETWORK
FULL BIT
ADDRESS |ADDRESS TAG
I8 BIT |18 BIT 6 BIT l
Y
v GO TO C.M.
M2
HOPPER FULL-
M3 ACCEPT
M4
TAG T
6 BIT ACCEPT
FROM C.M. ‘L
TO TAG TO CM.
TRANSLATORS |7 BIT
ADDRESS

Figure 2-1. Stunt Box Block Diagram

2-2

STUNT BOX LOGIC ANALYSIS
DESCRIPTION

There are two main address flow paths to the hopper (M;) and to
Central Memory (CM): (Refer to Figure 2-1).

1) The PPs supply CM with the write and read addresses for the
data-exchange between PPs and CP. The exchange jump
addresses are also sent over this line.

2) The central processor supplies CM with either operand or
instruction addresses. Addresses comming through this path
are always added to the content of the Reference Address
(RA) Register.

A priority network controls the entry into the hopper (M;) from
which the addresses are sent to CM. These addresses are also
stored and circulated in the hopper, from which (in case of
bank conflict) they are re-issued to CM after 300 nanoseconds.

Peripheral Control

Peripheral Control, for the purposes of this discussion, is a
term applied to that section of the central processor that
handles addresses and signals from the peripheral processors
requesting storage access. (Refer to the block diagram in
Figure 2-2)

When the peripheral processors send an address to the stunt box,

an accompanying signal informs Peripheral Control whether it is

a Read, a Write or an Exchange Jump address. Peripheral Control
(PC) then transfers this information to the tag generator to

enable the IN-path to the EXCH/READ/WRITE Register. 1In an

Exchange Jump, this signal also stops the central processor:

When the :Breakin" signal indicates the central processor and
central memory have stopped, it starts Exchange Address (EAK)

and Exchange Tag Counters (ETK). The Exchange Address Counter

then updates the address in the EXCH/READ/WRITE register for

each step of the Exchange process upon receipt of the "accept"

from central memory. When the Exchange Tag Counter = 16,

Peripheral Control sends an Exchange Resume back to the peripheral
processors (Write Resume is sent back from central memory chassis 2,
and Read Resume from chassis 4).

Central Control

Central Control, for the purposes of this discussion, is a term

applied to that section of the central processor that handles

addresses from the central processor requesting access to central

memory for instructions or operands. Central Control centrols entry
into MO and requests entry (via the priority network) into Ml. Refer to

2-3

PERIPHERAL PROCESSORS

Qi9

FROM CM. M-g——.

ADV. L—a

EAK —>TO EAK & TAG GEN.
ETK

236

L—— TO TAG GEN. &

A

BREAKPOIN
FROM C.P »Ts? -» EXCH. [—> PRIORITY NETWORK
: —> TO S REG. SEL. &
CENTRAL CONTROL
940 940 040
EXCH. - —>| EXCH. FF - STOP CR—>TO C.P
04l 941
WRITE » IN —_——
[TO EXCH./ READ/
04| 241 P4l WRITE REG.
I—— > READJ‘_‘ N + L—
READ S| WRITE > A
036
WRITE/ L —>7T0 PRIORITY
READ NETWORK
240 R33
EXCH L TR, READ WRITE TO TAG GE
RESUME [« FROM TAG GEN. READ—s> —> G GEN.

Figure 2-2.

2-4

Peripheral Control Block Diagram

e 9 L
2 INCR-=>M
e e g — T
UNIT | INcR 2 O2
t50 o
CLR. N}3 PC.P-ADDRESS
INCR>MO t90-» |
' 0
t50 . PM,S
FROM C.P e ADDR. y ENTER CENTR.
' 7
— + + TO PRIORITY
END excu. . . ‘ . NETWORK
FROM PC. 150 190
PeMO-fG0-=] 500> |
DISABLE '
P+
D= ENTER CENTRAL
+ MO =n!
tis
P-+MO.100
AR2
|
|
A R36 NOI
-é ADV. PL
4 | 4
EXCH. JUMP ERROR STOP
FROM PC. FROM C.P
Figure 2-3. Simplified Central Control Network

P37

Figure 2-3)

When an operand address is sent by one of the two increment units,
the INCREMENT ADDRESS FF on P37 will set and the entry signal into
Mo is enabled as soon as Mg is empty. Simultaneously, the ENTER
CENTRAL FF sets indicating to the priority network that a central
processor address is waiting to enter central memory.

When a program address is ready in P, the PROGRAM ADDRESS FF sets,
enabling the P —> My signal if My is empty and if no operand
address is waiting. This signal also sets the ENTER CENTRAL FF.

If a Return Jump instruction or an End Exchange signal occurs, the
DISABLE P + 1 FF sets and the program address in P passes through
the P-incrementor without being incremented. This does not affect
the ADVANCE P gates on N37-N39.

PRIORITY NETWORK

The priority network (Figure 2-4) controls inputs to the hopper by
sequencing entry to the hopper when more than one address attempts
to enter at the same time.

The fixed order of priority is as follows:

1) Address from Hopper
2) Addresses from the Central Processor
3) Addresses from the Peripheral Processors

An address from the hopper is given first priority since it is an
un-accepted address resulting from a central memory bank conflict.

Addresses with second priority are from the central processor (i.e.,
). Since, for the central processor, storage modes cannot be
mixed in the hopper, the Read or Write tags are examined before
priority is granted. 1In attempting a Read, no Write address is
allowed in Ml or M4, 1In attempting a Write, no Read address is
allowed in Ml or M4, 1If modes are mixed, priority is not granted
and entry of the address into the hopper is delayed until central
memory has accepted those addresses and modes are no longer mixed.

Addresses from the peripheral processors are assigned lowest
priority. Thus, peripheral read and write operations from and to
central memory may have to wait for hopper and central processor
addresses. An important exception occurs during an Exchange Jump.

An Exchange Jump a) stops the central processor, and b) inhibits
communications between the peripheral processors and central memory.
In this case, exchange jump addresses are the only addresses entering
the hopper.

2-6

L=

MI: WRITE + CENTRAL [_

ATTEMPT
23 WRITE ENABLE
211 (TO TAG GENERATOR)

CENTRAL WRITE

FULL - ACCEPT
(FROM HOPPER)

ATTEMPT :

ENTRAL WRITE | ____~
¢ MI: WRITE
Q> GO (TO CM)

JIB
ENTER CENTRAL
(FROM CENTRAL
CONTROL)
M21
24 5% FOLL

{TO HOPPER)

EXCH - BREAKPO!NTJ g

(FROM PP CONTROL.
PP M,

O—»FULL
(TO HOPPER)

5
READ / WRITE Jr)
————0—> GO (TO CM)

(FROM PP
CONTROL)
too

Figure 2-4. Priority Network

With each address sent to the hopper, a Full bit is generated,
(to indicate the hopper register contains a usable address

a tag and a Go signal is sent, along with the address, from
M® to central memory.

The hopper input network is diagrammed in Figure 2-5. Three
gates for each of the 18 address bits accommodate the three
possible input paths to the hopper. Entry via these gates is
controlled by the priority network.

WRITE REG.
(FROM PP)

FROM
Q22 PRIORITY

) M2

(FROM HOPPER)

5y MO+ RA
(FROM CP)

REXCH./ READ/

Q24 Q23

NETWORK
HOPPER—>M!
B CP— ™!

c PP — M!

-V
I8 BIT ADDRESS TO HOPPER (Ml)

Figure 2-5. Hopper Input Network

TAG GENERATOR

When an address enters the hopper, a six-bit tag is appended to
control the address and data flow. Depending on the source of
the addresses, these tags are generated from three sources:
(Refer to Figure 2-6)

1) An un-accepted address resulting from a bank conflict retains
the tag that was generated when the address first entered the

hopper.

2) An operand or instruction address from the central processor
gets its tag from the translation of the F designators of
the increment units or from the central processor (in case of
exit mode stops or return jumps) and from the priority network.

2-8

WRITE ENABLE
(PRIORITY NETWORK)
MO < FL
(FIELD LENGTH CHECK)

ADVANCE ETK

(FROM PC)
e

Q25
L

WRITE

20

WRITE
(PERIPHERAL CONTROL)

O~

HODDER

Ty

G
127 0
O

4

F

EXCHANGE 22

(PERIPHERAL CONTROL)

0

n
0,

+ 6V

EXCHANGE TAG
COUNTER :ETK

HOPPER M2 BIT 4 O

F
17
. E CENTR
| 18 IS
95 | 0

HOPPER M2 BIT 3 ()22

12

o

/

HOPPER M2 BIT 2 “I
EXCHANGE c
(FROM P.C) 1 .
_ N
3 BITS 5 8 N
(FROM INCR. I
F. DESIGNATOR) A . _I___"_'O
HOPPER M2 BIT | O> ()
c
2
— 20
4q 9
) Hf
-0 = HOPPER M2 BIT 0 O% ()
3 BITS INCR—>M :
(FROM INCR.II
F. DESIGNATOR) nolinnine
FROM PRIORITY NETWORK
Figure 2-6. Tag Generator

2-9

3) Addresses from the peripheral processors obtain their tags
from Peripheral Control. The Exchange Tag Counter (ETK),
which controls the execution of the exchange jump, generates
the tags for all addresses of the exchange jump package.

HOPPER

The hopper consists of four registers (Ml, M2, M3, and M%) each
capable of holding an 18-bit address, a 6-bit tag, and a single
Full bit. (M2 is an exception and does not have a Full bit).
(A block diagram of the hopper is shown in Figure 2-8)

An address is sent to central memory from hopper register ML.
Hopper registers M2 - M4 store the address in case it must be
re-issued because of a bank conflict. If the address is
accepted by central memory, it drops out of MZ2.

In the case of bank conflict, the priority network gates the
un-accepted address from M2 back into Ml every 300 nanoseconds,
until it is accepted by central memory. An address can be

accepted only if the specified bank is free at the time the

address is in Ml. Otherwise, it is possible for another address

to request access to the same bank and tie it up for a memory cycle.
Figure 2-7 shows possible waiting times in the hopper for worst
cases of bank conflict.

The six tag bits travel through the hopper with each address.
(The hopper serves as a delay line for the tag.) This line is
extended by two additional registers (see Figure 2-8) 1In each
step, the tag controls address and data flow.

Hopper registers Ml, M4, and M3 have Full bits associated with
the address. The purpose of the Full bit is to indicate to the
priority network that the address must be reissued to central
memory if no accept is returned. Note that the Full bits also
are sampled to stop the central processor (Figure 2-8) before
intiating an exchange jump (Break IN).

| MEM. CYCLE
N\
! \
0 1000 2000 3000
————————
{v’ ABCABCARBCAGBTCATBCATEBCABCAEBTCABTCA
-
100 NSEC

Figure 2-7. Hopper Waiting Time for Bank Conflicts

2-10

HOPPER

PRIORITY INPUT
NETWORK TAG GEN. NET WORK
too too too |
gk :
_ 17 BIT |3 : M.
<« Ml [TAG 6BIT| [ADDRESS I8 BIT > (Tg’ Cf_,:'ss,s)
R32 Q134 Q9—13 b
| BIT 25 _WwRITE
h 1 >(TO C.M)
tss t75 t75 3
m | BiIT 2%
To C.P Jg 4 |TAG 6BIT| |ADDRESS I8 BIT| N ORK
= BIT 23 2°
BREAKIN R33 R26,27 R20—25 2ilee o
BIT 2%-22 exiT CONTROL
, “CH.7 AND CH8
ts0 t50 ts0
FULL
< M3 [TAG 6 BIT| |ADDRESS I8BIT|
R26,27 R20—25 PERIPH. WRITE | 14
: —
PERIPH. READ | C.M.
READ/WRITE J
FROM P.C. ACCEPT r ——>EXCH. REG. CONTR
Oet25 t25 P40 ' ' ‘
STOP PRIORITY G39L_ REQ. RELEASE
C.P. NETWORK CM—X REG.
M2 |TAG 6 BIT| [ADDRESS I8 BIT| ACCEPT
R34 1 R20-25
TO TAG
GENERATOR<—4 TO HOPPER
INPUT NETWORK
\

[TAG

TAG

EXCHANGE CH. 7
AND DESTIN. REGISTER
FREE CONTROL

Figure 2-8. Hopper

2-11

The Hopper can contain a maximum of 3 addresses. An address
must be in Ml at the time the memory cycle for its bank
finished so that it can be accepted by memory, otherwise a
bank conflict occurs. The longest time an address will have
to wait to be accepted in memory is when the address enters
Ml 300 ns after the memory cycle started.

Example: Assume that all 3 addresses in the Hopper need the
same bank, then at t=1000, address B is accepted
and a new address Bj can enter the Hopper, at
t=2000 address C and at t=3000 address A will be
accepted. (See timing diagrams)

2-12

EXCHANGE JUMP

As an aid in following the somewhat detailed discussion which
follows, refer to the central processor diagrams, the timing
diagram in Figure 2-9 and the Exchange Jump diagram in Figure
2-10.

The following discussion assumes the Exchange Jump Package
(see Reference Manual) is stored in Central Memory starting
at address N. To start the Exchange Jump, a Peripheral &
Control Processor will send an Exchange Jump pulse together
with the 18 bit address N to the Stunt Box.

The address will be received by the Input Register (N40, 41,
42) and the Exchange pulse sets FF 040/TP5 at starting time
00. The "O" out of 040/P19 enables the A gates on Q27, 28,
29. At time 50 the contents of the Input Register are trans-
ferred to the Exchange/Read/Write Register Ql15, 16, 17. At
t65, 040/TP4 will be set, setting F37/TP3. 1If the computer
is not running when the Exchange Jump is initiated, the AND
gate next to F37/TP3 cannot be made because an Issue is not
present, a "O" from F37/P24 entering I01/P21 and a "1" into
I01/P26 are AND'ed giving a "O" into F37/P8 and therefore a
"1" from F37/P7. 1If the computer is running the AND gate at
the output of F37/TP3 is not made until an Issue signal
occurs and the parcel counter = 1. The output of pin 10 then
becomes a "O"., This "O" clears the GO FF on G30, stopping the
Central Processor. The "1" from F37/P7 will be passed on to
F26/P12. 1If the Hopper is empty and no Branch or Register
reservations are up a "l1" occurs at F26/P10 making the AND
gate and setting F26/TP4, placing a "O" into 040/P10. With
the t75 pulse, 040/TP1 sets, disabling the A gates on Q27, 28
29.

This enables a "1" from 040/P13 to set the Initiate Exchange
FF on 036/TP6 at t100. A "O" from 036/Pl5 and a t165 pulse
sends a GO signal to central memory to prepare the path for
the address being sent. Also at t200 a 60 tag from Q25 of the
Exchange Tag Counter is sent to M!l.

The Initiate Exchange FF also sends a "1" to priority control,
which, in turn, enables the C gates on Q22, 23, 24, 25. At
t200, the contents of the Exchange/Read/Write Register are
transferred to M! in the Hopper. During the time the address
waits to enter M", a path from the Exchange/Read/Write

Register through the Exchange Address Counter allows the address
to c{rculate without being incremented until it can be accepted
by M,

A bit called the Full bit is sent from the priority control to ML,
This bit is only used in the Hopper to indicate that the Hopper
contains a usable address. The Ml Register should now contain the

2-13

TIME - NSEC
oac-TP5 | ¢
04C-TPI __] |
ek [|
940-TP2 __r [
p3r-tp3 |]
036-Tr6 | 1
60 —>CM T[Tzl slalls 1]l zlefleoflo[laollLellasllw[]ls[le
ETK—>M, Mo MM Tells el lellelellule1e]lw][Lms[Le
My —CM [T 1201318 [l L1 1w]]e
aov {EO 1 [1 N [Tl e[l []1w[]s]]e
R24-TP3 T v 2] s F el] a§ 5] e |
vt U v v v v U b

100 200 300 400 500 600 . 700 800 900 1000 1100 1200 1300 1oo 1500 /00 (1700 1800 OO0 2000

—
—]
3

R2&-TP6

|
ACCEPT ﬂ | HZ

::=;|
"]

o [
o

9|—||or|ur[|zﬂ|3ﬂmﬂls|_Llsﬂ_
pes 1
RA=> [
Fass [

EM—s [1

K38-TPS M JleflsfleflsflellzTle e lollulleefleflwlls]e

138-25 MeJleflslaflsTlellr Lol e JloJlullelleflwlls]L

Hal 1 [] [Le Jleflwoflulellns1m

13> P il 3 [1 r[lefleflwo[lunflells]]
ETK=76, []
n

o

240-2

g 1
F37-TP3 . I I

Figure 2-9. Exchange Jump Control

READ cM _ STORE CH. 3,4,,
DISTR. DISTR. 10,13,14,
i5,16.
CRESAIES ———=-
I CONTROL y CONTROL
x N ;7x - s Y x T
o P — P <
) u lT’ e CH.7
> T B
R Y 6% | " 6X N l
E E
&) T
— ;sx 6X —
1640 — 1330
l >0 P (18 BIT) O
N 60 60 [
P 1580 1400
1] RA (18 BIT) R T
T L6l 6l E
CH. 5
R FL (18 BIT) ;;O—-> G.
E L 62 ¢ 62
G EM (3 BIT)
L7763 63
NOTE:
ALL TIMES SHOWN REFER TO THE
FIRST EXCHANGE JUMP ADDRESS (N).
(—-
3
v |__ADDER
FULL BIT
3 TAG ' ETK
\ \
’ EXCH. —> M PRIORITY
‘ ACCEPT->
£l. T =
QN %)
| | m])
T Tw ANV
TAG TRANS. P& CP *
: b
L} %)
ACCEPT | ‘ x
ts0

BIT 0-3

ACCEPT

TAG TRANS.
1350 EXCHANGE ADV
READ/WRITE EAK CONT.

L Iw |

l
[T [me | INPUT REG
) FIRST EXCH. ADDRESS

L
too

FROM P& CP

Figure 2-10A. Exchange Jump

2-15

following bits:

224 523 o7 20
AT t200 ul i oooolx x]
7
TA
BIT TAG ADDRESS

At t235, the address is sent from Ml to all banks of central memory.
As the largest possible address in central memory can be specified
by 17 bits, bit position 217 in Ml is not sent to central memory.
At_t275, all 25 bits of M! start their cycle through the Hopper

Ml to M4 to M3 to M2). Once the address has been accepted by
central memory, an "accept" signal is sent back (130 ns after
sending Ml to central memory) preventing the address from
re-entering Ml. From M4, M3 and M2 the tag bits are extracted and
sent to the Exit control of the Operating Registers and to the Tag
Translators.

This complete the process of sending the first address of the
Exchange Jump Package from the Stunt Box to central memory. Since
the Exchange Jump Package occupies 16 sequential addresses in

central memory, the next 15 addresses must be generated in the
central processor. The Exchange Address Counter increments the first
address and subsequent addresses to provide these fifteen sequential
addresses. From the Exchange Address Counter, they will be sent to
central memory at a maximum rate of one every 100 nanoseconds.

The Exchange Address Courter is advanced as follows:

At t160, Ql9/TP6 was set and remains set throughout the
Exchange Jump. The "1" from Q19/P26 provides a "1" from
"K" on Rl4 (t200) which advances the counter. The B
gates on Q27, 28, 29 were enabled at tl115 and also remain
enabled throughout the Exchange Jump. At t250, the new
address (N+1) enters the Exchange/Read/Write register.

At the same time, the Exchange Tag Counter increments the tag by one
and sends it to M! along with the new address. When the Exchange
Tag Counter reaches 76(g) a "O" into 040/P6 sends an Exchange Resume
(t1630) back to the Peripheral & Control Processor and also clears
FF TP3 and FF TP4 (t1630). This drops the advance pulses for the
Exchange Address and Exchange Tag Counters. However, the counters
still have time to reach N+17g and 17g respectively, completing the
Exchange Jump in the Stunt Box.

2~16

OPERATION

The previous section described the controls for an Exchange Jump.
This section attempts to explain the sequential operation of the
exchange jump in the central processor.

The purpose of an exchange jump is to exchange the controls and
parameters for one program with new controls and parameters for a
second program. In the 6600 central processor the controls and
parameters for any program presently running will be found in the
24 operating registers A, X, B and in the control registers P
(program address), RA (reference address), FL (field length) and
EM (exit mode). Before the exchange jump was executed, values
for the above listed registers were loaded intc an area of central
memory and called the exchange jump package. The starting point
of this area in memory was defined by the address N when the
exchange jump was executed.

When the first address of the exchange jump entered the hopper, a
tag was added. This tag, when translated, provides the gates
necessary to exchange the P register and the A0 register with the
contents of address N of the exchange jump package. :

P ——> Address N

A tag translation of 60 and an "accept" signal enables a "O" from
P40/P1 at t400, which goes to the S register to enable the
contents of the P register into the S register. Then at t465, the
contents of P are sent to the Store Distributor. From M3, the
6-bit tag is extracted (t380) and transferred to the tag
translator, P40. Together with an accept it will provide a "O"
out of P40/P20 (6X and Accept) which is fed through 041/F26 to
K38/P20. At t450 a Central Register Write signal is sent to the
Store Distributor allowing the P register to be written into
address N, bit positions 36-53, of central memory.

Address N —> P

During the same memory cycle, the contents of P stored in the
Exchange Jump Package is read from address N and sent via the Read
Distributor to the Input Register (B42, A41,A42, C41 on Ch. 5).

A 60 tag from P39/P1 and an "accept' enables the contents of the
Input Register into the P register at t580.

AP ——> Address N

The lower 4 bits of the 60 tag are extracted from M4 and sent to
G02 (Ch. 8) and H26 (Ch. 7) of the Exit Control. The 23 bit (the
"GO" bit) is a "O" which indicates that an A or B register can be

2-17

transferred into memory. The lower 3 bits are also "O"'s, indicating
the register number is 0. As the Bf register is not connected to
memory, we can only send the AQ register to memory. The "1" from
H26/P3 (Ch. 7) is AND'ed with t30 on E31 to give a "O" output from
E31/P18. This "O" goes into F32, 33, 34, 35/P10 and E26, 27/P10
allowing the 18 bits of the AQ register to be sent to address N, bit
positions 18-35, of central memory.

Address N —> AQ

From R29 thru P18 and 033 (Ch. 5) a GO bit is sent to Chassis 7,
G37/P15. This GO bit passes thru C36, A35 and enables the C gates

in the Input Register B40, 41, 42 etc. on Chassis 7. The output of
P39/P27 on Ch. 5 (a "O") is fed through H42/P10 into Chassis 7,
H27/P11, setting the GO FF. This provides a "O" output from H27/12
thru C20, E28 and into C27/P16. This GO bit enables the transfer of
the Input register thru C27, 28 etc. into the AQ register Gl5, 16 etc.

This concludes the exchange of P and A0 (address N). As the second
address, Ntl, is sent to memory, the tags will be set to 61,

enabling the exchange of RA, Al and Bl. When the Exchange Tag Counter
reaches 765 the Enter Central FF on P37/TP3 is set. This forces a 10
tag (RNI) and a full bit into Ml after all exchange jump tags (they
have the "Write" bit set) have been accepted.

After all the 16 addresses have exchan%ed their contents, the new
program address in P will be sent to M" together with the 10 tag and
full bit to start the execution of the new program.

61-¢C

T00 240-TP5
0o FROM
PERIPHERAL EXCHANGE e
PROCESSOR PULSE Ta0_ } ais-ai7
FROM)
EXCHANGE | PERIPHERAL EXCHANGE JUMP
175 240-TPI ADDRESS>EAK | PROCESSOR —
SET A INITIAL CONDITIONS :
EXCHANGE IT 1S ASSUMED THAT THE BREAKPOINT CONDITIONS
ARE PRESENT UPON ARRIVAL OF THE EXCHANGE PULSE.
100 ——
Tiz! F26-TP4
BREAKPOINT ? NO
T IvEs
Ti75 630 =~ __ EVERY "TIME 90" THIS CHECK IS
CLEAR REPEATED UNTIL EXCHANGE FF CLEARS
60 CONTROL TISO _ § 040-TPI [YES g36-TP1 YES
EXCHANGE \YES HOPPER \NO EXCHANGE TIME 90 N0
FF SET ? PRIORITY ? PRIORITY)
NO YES
CLEARING OF THIS
— P34-P35 (ETK)
gEEN%sﬂE;CH *® - TX40 Ri4 - RIS (EAK) 1.25-TP4
Tx50 QI9-TP6 YES[Q!9-TP6 TX50 Q19-TP6 ADVANCE -
S ETK X EAK ETK =16 7
CLEAR ENABLE SENASLE \No SET ENABLE e
ADVANCE FF 1 TX65 . F42-TP5 TVANCE, ADVANCE FF JEs
- GO-—>»CM,
TX90 y < TX90 © -
=
EAK % EAK -~
300 — M2 M i 235-042 >
NO ECHANGE JUMP >M TXIS __R40 A~ —— 1600
IN PROGRESS RO
ADDRESS |
T CEN MEM. | _1| TIE65 § 020-TPS
________________________ | K=
9 | ETK=16g
Il] |
!)
0— ! ! —— 1700
40 TX25 031 | | nns | ea0 TI715 940-TP!
SEND_4 BIT |gre 50 53 léo IaDORESS SEND CLEAR
a6 To ExiT (815 20 EXCHANGE TI740 P37-TP4 EXCHANGE
CONTROL RESUME FF
SET P»MC FF
CENTRAL
| (e MEMORY
500 TXO0 _y R30-TPI 4 TI7T90 § P37-TP3 TI7T90 | 836-TP6
PERIPHERAL SET —_
= FROME M 7 PROCESSOR ENTER CENTRAL EXCHANGE 1800
TX25 - TX25 K38-TP5 B 6 \ | FF PRIORITY
3 2 YES TRANSMIT] |
e | iy o
) | THE TIME LAPSE BETWEEN___ 900
CENL‘;?#EREG i i END EXCHANGE PRIORITY
Tx70 P RAFL OR EM | i AND CENTRAL PRIORITY
) RA, 1S DUE TO READ/WRITE
()(ct;u;:o: REG) | : T1990 | M2I'TP5 | TAG CONFLICT IN HOPPER.
Tx90 . | CENTRAL
TX00 | R28-R29 (CENTRAL REG) | | PRIORITY 7 —— 2000
600 —- Py , | -
— é(‘TAG =6X +7X | | YES
TX25 | |
STORE i !
DATA DISTRIBUTOR | : 72065 § F42-TPS
———————— |
I | | GO --»CM
| TX75 P39 | | 12090 T2090
! ENTER ENTER SE DATA | "
| PRAFL @ EM MODULES —————— e - el J | MO +RA - ! RNI(T:%‘{E:)M —— 2100
700 — | FRCM CEN. MEM. CEN. MEM. | =
1 N TX25 H40-H42 —
______ 1 X25 _ y Ha |
SEND REGISTE!
10 READ [Ve * — NUMBER TO
3 DISTRIBUTOR | ENTRY CONTROL |'
I T -
! TX75 _y CHASSIS 7,8 ! EXCHANGE JUMP FLOW CHART
) ENTER X,B OR |
| RE'5. WITH DATA |
800 —- I .
L S N Figure 2-10B

PERIPHERAL READ/WRITE

When a peripheral processor requests access to central memory for
a read or write, the peripheral processor sends the appropriate
signal to the stunt box. The signal is received at time 00 on
chassis 5, module 04l1. The peripheral processor also sends the
central memory address from its "A" register. The address is
received in the input register in chassis 5 at time 00 on
modules N40O, N41, N42. The appropriate read or write signal
received at 041 generates a 50 nanoseconds one-shot pulse on pins
2, 4, and 8, to gate the address from the input register to the
Exchange/Read/Write register located on modules Ql5, Ql6 and Ql7.
(Refer to Figure 2-11)

At this time, the controls on 041 attempt to gain priority to
enter the hopper (signal on pin 10). Since priority to enter the
hopper may not necessarily be available, the address in the
exchange register is retained until it can be transferred to the
hopper. To accomplish this, the address circulates through the
exchange address counter (EAK) located on modules R14 through R19.
The address is not advanced, however, since the advance pulse is
only enabled during an exchange jump. (Refer to Figure 2-12)

When the peripheral address is attempting to gain priority in the
stunt box, the "Central Busy" flip-flop in the peripheral processor
is set. This prevents any other peripheral processor from attempting
a central memory reference. The "Central Busy" flip-flop will only
be cleared after the last address has been accepted by central
memory.

To avoid the situation where the central processor ties up the
hopper such that a peripheral processor request for memory cannot

be honored, the circuitry stops the central processor, honors the
peripheral request, and then restarts the central processor.
Conditions for stopping the central processor are: (See Figure 2-13)

1) Address in M2 not accepted.

2) Ml full
3) M3 full
4) M4 full

5) Peripheral read or write request.

FULL BITS AND TAGS

When priority for the peripheral read or write address has been
established, the priority network enables the gating of the address
into the hopper (gates on Q25, Q26 and Q27). At this time a tag and
Full bit will be appended to the address.

2-20

READ
PERIPHERAL
AND
CONTROL
PROCESSOR
|
L _ WRITE _

L _ _ADDRESS

241

2-21

ONE-
SHOT
\\
\\
NO,4l,42 My QI5,16,17
>——C
INPUT REG. EXCHANGE REG.

Figure 2-11

T0 M!

TO EXCHANGE
ADDRESS
COUNTER

INPUT

Q27,28,29
PERIPHERAL @~ ®—| O ———— — —— + f"‘l
PROCESSOR @41 :
ONE I
SHOT l
* f
‘\« l
AN
i \. e
, EXCHANGE
| EXCHANGE REG ADDRESS COUNTER :
} L |
|
L< - ———— Q) |
|
T EXCHANGE O >
JUMP
x |
ONE SHOT PULSE ENABLES : HOPPER
ADDRESS FROM INPUT REG. | L
TO EXCHANGE READ/WRITE |
REG. WHEN READ OR WRITE | _J L
SIGNAL IS RECEIVED.
PRIORITY
i
NETWORK M! REGISTER

Figure 2-12

2-22

PERIPHERAL
READ/WRITE
REQUEST

—C)__..
—
—

M% FULL O
M3 FuLL

ADDRESS IN
M2 ACCEPTED

Y E3l-14

STOP ALL ISSUE IN
CENTRAL PROCESSOR

PERIPHERAL READ/WRITE

Figure 2-13

Full Bit

Addition of the Full bit is accomplished by setting flip-flop
R33/TP1 with the "address to Ml” enable. (Refer to Figure 2-14)

Tag

The tag for a peripheral read is 00; the tag for a peripheral

write is 40. One of these two tags must be appended to the address
in the hopper when a peripheral read or write is attempted. When
priority has been granted for gating the peripheral address to M,
the "enable peripheral to M'" term on 033/TPl makes the "C" and "F"
gates for the fan-in on Q25. This fan-in permits entry of the
proper tag into ML, In a peripheral read, all the inputs to the
fan-in will be zero.

In a peripheral write operation the write bit (22) will be a "1"
since R33/TP2 is set. Once the peripheral address is in the
hopper, the address will be issued to central memory every 300
nanoseconds until it can be accepted. When the address has been
accepted, the tag is translated from the hopper and sent to memory
control to allow memory to send the data and resume signals to the
peripheral processor.

2-23

READ
PERIPHERAL
AND
CONTROL
PROCESSOR

L _WRITE

L _ _ADDRESS _ _

<

041

L

READ &

WRITE REQUEST
| PRIORITY
A
EXCHANGE
READ / WRITE :g{‘wég(
REGISTER -
FULL BIT
é M' P
A
L M2 |
A
Z M3 |
%
% M4 fe—
HOPPER
Figure 2-14

2-24

CENTRAL READ/WRITE

When the central processor attempts a central memory read or write
operation, the address originates from one of two basic sources:

1) from the Program Address (P) register when the memory request
is for an instruction word, and

2) from one of the Increment functional units when the memory
request is for an operand.

As diagrammed in Figure 2-15, either the Increment Address FF or
the Program Address FF sets the Enter Central FF. Setting the
Enter Central FF initiates action to request priority for the
address to enter the hopper.

The address, in either case, is gated to a common register (MO).

The contents of M0 are added to the reference address (RA) and this
address is gated to hopper register M! when priority has been granted
and Mgz FL.

PROGRAM ADDRESS

The central processor Program Address register (P) and its
incrementor network always hold the address of the last instruction
word read from memory. When the next instruction word is needed, an
"Inch" signal sets the Program Address FF. This gates the contents
of the P register + 1 to the Mp register, providing Mg is not

holding an address that has not yet entered the hopper. In addition,
if there are addresses coming to M) simultaneously (i.e., from P and
from the Increment units), the Increment address has priority over
P+1 for entry into MO.

INCREMENT ADDRESS

When an instruction that causes a change in A registers one through
seven (Al - A7) is executed in the Increment units, the address
developed is sent to the Stunt Box to make the necessary memory
reference for loading or storing operating register x! - x7.

An increment instruction (51 - 57), when nearing completion, sets the
Increment Address FF, Subsequent events are as outlined above.

Figures 2-16 and 2-17 diagram the sequence of events for central
memory read and write operations.

2-25

INCREMENT

FUNCTIONAL UNITS
I ORI

CONTROL ADDRESS

+1

P INCR. O—>

omxpy O

INCREMENT
ADDRESS

PROGRAM
ADDRESS

INCH

MO + RA

[l | ™ HopPer
M4 TAG —>

3 PRIORITY

M™ TAG = NETWORK
HOPPER—>M! —»

ENTER
CENTRAL

REQUEST PRIORITY EXC. JUMP

Figure 2-15. Central Read/Write

2-26

RELEASE

INCR. UNIT
SET INCR.
ADDRESS
P37-TP2
— ADDRESS—
SET ENTER o
CENTRAL INCR—>M
P37-TP3
REQUEST
PRIORITY
y
M2>m! 2 *®
YES SUB-PRIORITY FOR CENTRAL
NO READ/ WRITE CANNOT MIX MODES
IN HOPPER FOR CENTRAL ADDRESSES.
N .
MO+RrA->M!
YES \ TAGS Ml — MEM.
CONTROL ACCEPE
CENTRAL
MEMORY HOPPER TAG
56,57
DATA
WRITE OPERAND
REGISTERS
DISTRIBUTOR X6 X7

CENTRAL WRITE

Figure 2-16

2-27

INCH SET PROGRAM
INSTRUCTION ADDRESS
/ STACK+END EXC P37-TP4
+
SET INCR. SET ENTER
,:%LRE?,S&T ADDRESS CENTRAL
- P37-TP2 P37-TP3
REQUEST
PRIORITY
* 2 I
SUB-PRIORITY FOR CENTRAL ME— M ? K Es
READ /WRITE CANNOT MIX MODES
IN HOPPER FOR CENTRAL ADDRESSES. NO

MO+RA>M! |
M! > MEM

INCR=>MO

. NO

p—>MO

ACCEPT CONTROL ACCEPT
CENTRAL
HOPPER TAG MEMOR‘:, HOPPER TAG
10 11,12,13,14,15
DATA
X
READ
DISTRIBUTOR
INSTRUCTION R%T;@TAEN%
STACK Xl —>X5

CENTRAL READ

Figure 2-17

2-28

EXIT MODE

The exit mode feature allows the programmer to choose the exit or
stop condition of the central processor. Exit selections are
stored in the EM-register, and the exit mode occurs as soon as it
is sensed. The various exit conditions are:

1. Normal stop

2. Address out of bounds (MO > FL)
3. Operand out of range (infinite)
4. 1Indefinite operand

The address RA is reserved for recording program exit conditions.

NORMAL STOP

The translation of a normal stop instruction (fm = 00) in the U2
translator together with a SCBD ISSUE will set the STOP FF (G30 TP1).
The P register contains the address or address + 1 of the STOP
instruction. The peripheral and control processor searches for an
unchanging central processor P register and upon finding it, searches
that location for fm = 00. If found, the CP stopped normally; if
not, it can be assumed that the program is looping.

ADDRESS OUT OF BOUNDS

MO > FL test

The contents of the MO register are continuously compared with the
contents of the FL register as follows:

a. A bit by bit comparison of bits 23 — 217 (MO > FL) and
three results of these comparisons are comprised in one group
(ANDed together). If one bit of MO is less than the
corresponding bit of FL the group output is "0,

b. Each of the 6 octal digits of MO is compared with the
corresponding octal digit of FL. If MO > FL the output will

The output of (a) and (b) are ANDed together to decide if MO > FL.
If MO > FL and we are not in an Exchange Jump the MO > FL FF

(013 TP5) will be set. Supposing the contents of the EM register is
XX1 and the Skip III FF is set, the MO > FL will set the ERROR FF.

The output of the comparison network will also inhibit sending the

write bit of the hopper tag to the hopper and does not allow the
value of MO + RA to be sent to Ml if MO > FL.

2-29

ADDRESS TAG —M!

Q25

L

- HO8
rROM
P+I L
ADDER
IN CENT
| O o
r
FL REG. MO REG. :
|
|
|
013 | ol HOS5
[MOZ FL l |]
| EXCH. WRITE ERROR
m—o—omooe IN CM
— == AT LOC. RA
o
|
|
S |
t75 EXCH. :
r-____..____E_RBQR |
| F22 105 LI8 F35
| H L] L L]
3 ERROR FF
: - — - -0—{(0--=)
EM xxum}
N7
SKIP III FF
Figure 2-18

2-30

Te-¢

ERROR FF

—> STOP CP
INPUT REG EM REGISTER
CH 5 INDEFINITE N\ 250
259 22]
7 EXCH Y
250 ~ INFINITE al 249
249 }/ s 2! 4 Cm
S48 ‘ EXCH Y
CM —>
ADDRESS 248
rw_
. ﬁ‘,ﬁ EXCH ¥
20 ACCEPT-ENTER EM
INDEFINITE RESULT
EXCH ¥
rxj
(=N
[o)¢}
= INDEFINITE
o INDEFINITE & INFINITE TEST
o 8 _INFINITE TESTS FOR: 2 —a&
\ TESTS FOR MULTIPLY | MY 2FL
) FLOATING MULTIPLY 2 EXCH Y
S ADD UNITS DIVIDE
BOOLEAN
XCH ¥

INFINITE EXPONENT

EXIT

FL REG

217

218

214

L40 213

g A

—LIV I

M0 > FL 25

MO > FL 24 —_
\T) il

so2 24

25

26

#0:

lll

2

.

#os 20

|

21

212

20— 22

26~ 28

29211

212 o4

sos 213

|

21

.

906 26

|

2t

Figure 2-21

{
s { rrow ru 3
{

7

215_ 217
FROM
O

MODULE @13

EXCH JuMP - 178

NOTE:
M0 > FL (AND NOT EXCH JUMP) WILL

SET THE ERROR FF AND ALSO THE STOP
FF IF THE CONMTENT OF THE EXIT
WMODE REGISTER IS XXI.

P >
FROM FL i——-)

FROM
n0

——ee
FROM FL {————i

FROM
no

FROM FL {—I
—

Qoi
MO > FL
wo giTs 20-222FL 02— — —— 70 F
20 — 22
Qo1
° MO > FL
M airs 23— 25 2 FL o3_ 58 23 - 28 To &
Qo2
MO > FL
MO its 26_282FL,g_8f—— =~ 5 Tom
26 — 28
a0z
M0 > FL
MO v 9 M ZFLye b~ Z " 10 g
29 - 01
ao3 o
Mo > Fr
we R_ a2 FLo2_4p— = 5 70 4
BITs 212 2 222 2% _
Qo3
MO > FL
MO ts 218 2!7 FLois_ b= 5 7o x
T 25 _ 217

M° - FL Comparison

2-32

Address out of bounds, exit mode not selected (EM) = XXO

When the central processor attempts to reference a memory location out of
bounds, an out-of-bounds exit mode is not selected. If out of bounds is
selected, the central processor will stop at the Reference Address.

RNI Out of Bounds. If the program counter (P register) attempts to send an
address that is out of bounds (this would be the RNI situation), the
MO > FL check circuit will inhibit sending the intended address to the
hopper. Instead, an address of all zeros and the proper RNI tag will be
sent to the hopper. This will result in the reading of memory address
absolute zero. The data will go to the instruction stack and the U
register translating networks. If absolute address zero contained an
all zero word, the central processor would stop due to the translation
of a stop (00) instruction.

Read Operand Out of Bounds. If the increment unit changes Al-A5 (read memory
to X) with an address that is out of bounds, again the MO > FL check
circuits will inhibit the sending of the address to the hopper. Instead
an all zeros address will be sent to the hopper with a 10 tag. Location
absolute zero will be referenced, but its contents will be lost in the
Data Distributor. (Since tag = 10 can't be translated in control). No
affect on the running program will be seen except that the contents of the
X registers will not be what was expected.

Write Operand Out of Bounds. If the increment unit changes A6 or A7 (store
X6 or X7) with an address that is out of bounds, the MO 2 FL check
circuit will inhibit the sending of the out bounds address to the hopper.
Instead an address of all zeros will be sent to the hopper. Usually the
tag for a store X6 or X7 is a 56 or 57, but if the address is out of
bounds the tag will be changed to a 16 or 17, this tag will inhibit send-
ing the central register write tag to the store distributor. The results
of this zero address and 16 or 17 tag in the hopper is the referencing of
address absolute zero. When the data gets to the data distributor however,
the lack of any tag will cause the data to be lost. There will be no effect
on the running program, except that the desired content of the X6 or X7
register would not be stored.

2-33

EXIT MODE STOP (RNI OUT OF BOUNDS)

NO
I MO>FL 7 }——PNORMAL OPERATION

4 o)
[seT MmO FLFF | YES [seT m' = aboRESS:=0 TAG: 10 |
SKIP T X (EM) =XX| ‘l
BT l READ LOC =0 —0
)\ .
3
SET STOP FF | [cLeare | [BLock p—>s |
| BLock P+1—>P] [sTarT DELAY COUNTER
OK=3
%TW (P10 TP6)
r
[cLear DELAY COUNTER | [cLear error | | seT aoa TRI rSABLE P+1 ADDER |

I PROG ADD. FFJ rATTEMPT WRITE P36 |

SET E‘XIT FF ENTER CENT. FF
L l |

[seTeo BrANCH (P37 Pa) |

|

I PROG ADD FF FET M = ADDRESS = (RA) TAG =5oJ
EXIT P+1
.FF
F"TER CENT. FF | WRITE IN LOC (RA) 00 ’;(I;‘ ’x—ul;_i? 0—0

SET M! = ADDRESS =(RA) TAG =10
READ LOC (RA)

rENI,PROCEEbggk—f PROCEED
I [cLear stop FF_|
[cv—10 |
[TransL FM=00 IN 12 | Figure 2-22
SCBD ISSUE

rser sTop FF |

2-34

Address out of bounds, exit mode selected (EM) = XXl

(Refer to timing diagram of Exit Mode Stop)

If the M0 > FL comparison network detects an address out of bounds
it will inhibit the sending of the intended address to the hopper
and will also set the M0 > FL FF. Instead,an address of all zeros
and a 10 tag will be sent to the hopper. A 10 tag in the hopper tag
timing chain and an ACCEPT signal will set the RNI FF and a PROCEED
signal is sent to the ISSUE CONTROL. As soon as the SKIP III FF is
set the ERROR FF is also set. This in turn will start the DELAY
COUNTER (P13) and also set the STOP FF. After 200 nsecs. the output
of the counter is 1, but the INCH FF (P10 TP6) must be cleared in
order that the Delay counter can clear the FF at QO04-TPl. This FF
will enable the setting of the PROGRAM ADDRESS FF and with a P —>M°
signal will also set the ATTEMPT WRITE FF. Now the address RA and a
50 tag will be sent to the hopper M 1) and the following data will be
written into CM at location RA:

Stop Exit (P) +1
00 XX XXXXXX 0—— 0

At the same time the ATTEMPT WRITE FF and the FF at P10 TPl was set.
The latter will set the EXIT FF and this will set the GO BRANCH FF
allowing a jump to P = 0 and hence RA. 300 ns after the address RA
and a 50 tag was sent to the hopper the same address with a 10 tag
will be sent to Ml. When the address is accepted by CM the

contents of address RA (now 00 XX XXXXXX 00000000Q0) will be
transferred to the Instruction Stack and to the U registers (because
of the RNI and Proceed signals). The translation of fm = O0X in the
U2 translator and a SCBD Issue will set the STOP FF again.

INFINITE OR INDEFINITE OPERANDS

The functional units using floating point arithmetic will always
test the exponents for infinity (greater than or equal to 3777)

and for indefinite results. (see Appendix B). If any one of the
above conditions exists, a bit is sent to Chassis 5, where it is
ANDed with the respective FF's of the EXIT MODE register to enable
setting the ERROR FF. As soon as the ERROR FF is set the timing
diagram of Exit Mode Stop for RNI out of bounds (Figure 2-23) can be
used. '

2-35

P o | 2 ﬁ oo
O S N T O T A O O O T N A Y IO
RO , 3 _
u.,‘w. o= R ||\T.|-.|.-|-\<||:|||-M|xww_||||-| T
AN ! & \
1|||M/,." . S S [[N A P T nllnlswllucncl.nluuwt [I A P
5 T_Wm : .
SIIIWnl - P D J (DU (U D D D P R I I I D S B D P D D P
Y N 2 I
o ___8_|__1__ I I U NS U U D N N\ P S N I N A T U J D
" m |
- & N . P I DR IO DU I R I N . [S D [P R R B
"llm| I'ln|l i A
w__ "o S D U U (U S U U N\ D T TR I\ R A O T I
8| |- - -f{--{-- T AR RN -l--{--|--
L il Rl ----- el e R R B B ot \NEEeY gy [SUn [B \\ U JUDUS DU f (P P [(S U
// |
B O Y1 N\ O O O O O Y
PR [I [R R O O R R R O 8\ O 0\ 0 N O A
N_ . I I I
T N\ N |
Bo---- IR RS
g-—-- - -- ---|-- '-----------N------ ---/----"-- -l- - ---{--|--
SO L T\ N I
\ N -
I -- -{--]-- o NS\ o e e R R
NN N S N .
e B L I B AL~ i el O B N I B N B ;
T T A T IR T TIN T RE
mlllllil - i et B -1 -=|-= Illl'll”lll!ll lll/lilzn_l mlll bl it Eaal Bt
e-—-5-|--|-- il inlinl ﬂlunnllllllllnﬂ,ll - Ill/ll R et Tl i il el it il
o - N
: R N\ N |]
m|||m_|n|-| e |||.///..|| TN Tr BN B B i N A A
L L R R N e\ O\ IR I O S
Tt N I N "
AN N N N '3
H N N N N N N
& N N No_ NS
T e S S B N e B B B N B B N B R AN R R 1A\
H N z NI N C ELR
€. - e --ﬂ-l ----M- NN e N - --_-u- -- NN -
i N N N l N
L el] il bl \ Sl -{-- n/u/ol |||/l|_||0i»tn - - - - NN\
N N N\ N
. N N
¥ ——ca- |- =] - bl B \ S ||||/|/|||I' --[--1-2i--|- - - - - - TTRTNTR
4 NN NN
& o | &Y
N EENIN NN N
SN It 1IR-E & ,w-/----- TITIRRRNTT R
& R IR NNNEEINS NS
P [P [N\ S T RN R E RN
N N R NI~ N AN
AR N AN N RN N -
: N\ I N NN 0 O R I O
N T EY T NN
N BN O S N T N N NN N T I
. £ N 2 / X N N\ r&.,‘< N
NI T IR AN RN R
B N\ B T\ 0 (PR R AN A\ P S I N AN N N S N B D U
m : N\ _
I N N JE \\ QU DU Pury [DUDE DR N I D D
S \N . m m -m‘m-ﬁ . !
J: N U R R

GO/STOP FF
RN (R3Y)

ACCEPT
SkiP I

16 -17 (629-0)
INCH FF (P10 TPS)
FF(P37 TP4)

PROG ADD.

ENTER CENT. (P37 TP3)

P+1INCR —> MO (EN

CLEAR WO

REG

ENABLE P +1 lnbEI(NO’I-’K’) //////

"o
CLEAR 8

P+l —» 8
REG

s

Ptl—np

CLEAR P

2-36

REG

P

MO>FL TEST MADE (813 TP4)

o i
MY > FLFF (@13 TPS)

REG

<
v
*
Y
o
2
=
©
<
s
°
z
«
a
)
<

DISABLE ADD —» W' (di13-6)
SET ERROR FF |F (EM)

DELAY COUNTER ADV (P13-J)

PI3-E

PI3-A

Pi3-6
PI3 TPRI

ATTEMPT WRITE (P36 TPS)

EXIT FF(R37 TPS)
GO BRANCH (R37 TP4)

PI3-)
wz-ar
Qo4 TP|

{RNI OUT OF BOUNDS}

EXIT P+
00 M AVUX XXX X O

EXIT MODE STOP

Figure 2-23

1= CONTENTS OF P REG AT TIME OF ERROM (P2>FL)

NCTE !

0}

(WRITE IN LOC RA !

CHAPTER III

CENTRAL MEMORY CONTROL

CENTRAL
MEMORY

INST.
CTL.

ACCEPT ==

oP.
REGS

"GO &
ADDRESS

Go/
»| accerr —(er—

CONTROL

Koo XRm X
nRZP>w
> >o

PPU

DATA PERTPHERAL

CHANNELS PROCESSORE /
INSTRUCTION RESERVATION
1SSUE
(

r”‘ CONTROL X r__’

CONTROL
SCOREBOARD)

LONG ADD

{500,

13 E
CENTRAL CENTRAL M MULTIPLY T
MEMORY NEMORY 4 R0

T I MULTIPLY 11
CONTROL T

/ ¥ 1
CONTROL DIVIDE

REGISTER

o

B
i

ToH-aTe xrzvsomo

INCREMENT 11

ke

CHAPTER III

CENTRAL MEMORY CONTROL

INTRODUCTION

The Central Memory (CM) can be accessed by the Central Processor
and all peripheral processors at a maximum rate of once every
100. ns. This is the maximum issue rate of the Stunt Box, which
collects and accept addresses from several sources on a priority
basis.

The duration of the memory cycle for each memory reference is
1000 ns, or one major cycle, and consists of a read and write
cycle which is controlled by the Storage Sequence Control circuitry.

During a Central Memory Read, the contents of the specified address
are read out of memory and all cores in this location switched to
'0"™. The contents are then routed to the Data Distributor and the
Restoration Register. The Restoration Register allows data that

has been read to be put back into memory during the write portion of
the cycle. For a Write operation, the current contents of the
specified address is read out of memory, but is destroyed in the
Data Distributor. This data is not sent to the Restoration Register.
Instead, the new data to be stored is accepted from the Data Distri-
butor and is written into memory during the write part of the cycle.

Central Memory has 32 banks located on 8 chassis, 4 banks to a
chassis. (A 65K CM has only 16 banks.) (Figure 3-2)

Address and Tag Format from Stunt Box follows:

24234——————*48I7l6‘4* —>5 4 21 0
us ARARSE | []
— v NN
FULL BIT 4 © BIT TAG 12 BIT ADDRESS
USED ONLY A N——— (BITS 4,5,10 8 i1 SELECT BANK
IN STUNT INHIBIT QUADRANT) SELECTION
BOX NOT USED (I OF &)
! | CHASSIS
SET FOR ANY REGISTER SELECTION SELECTION
WRITE OPERATION A.B OR X (I OF 8) (1 OF 8)
SET FOR —SET FOR C.P MEMORY CYCLE
EXCHANGE JUMP L_FxcHANGE JUMP
("= X REG.)

(0"= A 8B REG)

Figure 3-1

3-1

Translation Table for Bits 0-5 (131K Memory)

000 00 Chassis 3 Bank O Bank No. 1
000 01 Chassis 3 Bank 1 Bank No. 2
000 10 Chassis 3 Bank 2 Bank No. 3
000 11 Chassis 3 Bank 3 Bank No. 4
001 00 Chassis 4 Bank O Bank No. 5
001 01 Chassis 4 Bank 1 Bank No. 6
001 10 Chassis 4 Bank 2 Bank No. 7
001 11 Chassis 4 Bank 3 Bank No. 8
010 XX Chassis 9 Bank 0-3 Bank Nos. 9-12
011 XX Chassis 10 Bank 0-3 Bank Nos. 13-16
100 XX Chassis 13 Bank 0-3 -~ Bank Nos. 17-20
101 XX Chassis 14 Bank 0-3 Bank Nos. 21-24
110 XX Chassis 15 Bank 0-3 Bank Nos. 25-28
111 XX Chassis 16 Bank 0-3 Bank Nos. 29-32
eg

Ml = 14272116 = Cent. Proc. Read —» X% Register

Address 5642 of Bank 2 in Chassis 10 Bank No. 15

Figure 3-2

GO/ACCEPT CONTROL

For every Memory reference requested, a GO signal along with the
address is sent to all 32 banks of CM. from the Ml Register in
the Stunt Box. If memory can be accessed (no bank conflict), an
ACCEPT signal is sent back to the Stunt Box. See Figures 3-1
and 3-2 for 24-bit Ml format and the central memory chassis and
bank distribution.

GO CONTROL (Figure 3-3)

The Go Control circuitry is located on Chassis 4, the GO being

sent to Module 120, from where it is fanned out to all CM. Chassis.
Bits O to 5 are sent simultaneously with the GO to the eight CM.
Bits 2, 3, 4 are used for Chassis selection and corresponding to
FF's B, C and D in G4/G38 (EVEN/ODD CH.). FF E is for the GO, and
FF A is not used - a possible provision for a larger memory (8 more
Chassis). FF's B, C and D are preset by a timing pulse to the
complement of the Chassis number in which they are located. Bits 2,

CHASSIS 3

STORAGE ADDRESS REGISTERS BANK RESTORATION REGISTERS
[03 Je 1]
L 1 — I
i
E| . ol l‘: 1' |:
—1
I'; :I 00 Je—— J
E— —_—

STORAGE SEQUENCE CONTROL
—> |03|02IOI |00|'-

VI

GO
CONT

\RESTORE
[oata ExrvenTrY | el)

BFR
REG /’wmre

CH 8 BANK
ADDRESS|g| FeTioN

——————

\S/“6aNK FREE

WRITE TAG

GO
FAN-OUT]|
CH 4

BANKS
/ 5-8 cP
Y
|

@

o
ACCEPT
READ
WRITE

&
)

CHASSIS 5 © 9-12

BANKS
DISTR

)
%

T

CH 10
BANKS
i3-i8

CH 9
DATA
\ Ppus

cP
STUNT
BOX

CH I3
.BANKS
> 17-20

AW

CH 14

BANKS
S 21-24

CH 3
CH IS

o BANKS ACCEPT
L3

25-28 FAN-IN

CH i6
BANKS
29-32

ACCEPT

TAGS

Figure 3-3

3-3

3 and 4 are wired in from the hopper appropriately to the set or
clear inputs of the FF's. The outputs of B, C, D and the GO are
ANDED and the GO transmitted to G5/G39 (EVEN/ODD CH.) if the gate is
made. Bank selection is made here with bits O and 1 in a similar
manner. An additional gating term, a bank free condition which
ensures that the selected bank is not in previously initiated memory
cycle, gates the GO to the storage sequence control and sends back
an ACCEPT. No ACCEPT is sent to the Stunt Box if the selected bank
is executing a storage cycle from a previously issued address. 1In
this case the Address is saved in the Hopper and reissued every 300
nsecs,until accepted. In the worst case of bank conflict, an address
can remain in the Hopper for 2700 ns (Refer to discussion on
Stunt Box).

ACCEPT CONTROL (Figure 3-3)

The Accept indicates a bank is free and has accepted the address into
its Chassis input register. From time the GO is issued from the
Stunt Box until the time the Accept is received on chassis 5, is an
interval of 200 ns. The Accept signal is generated at G5/G39
(EVEN/ODD CH.) of the respective Chassis and is routed to Chassis
3123 which is an OR Circuit (a fan-in to send back the Accept from
any of the eight Chassis). Hence an Accept can be sent back to the
Stunt Box every 100 ns assuming no bank conflicts.

The GO and ACCEPT CONTROL Circuitry does the following:

1. Recognizes an address from the Stunt Box and determines its bank
location.

2. Sends an Accept if the address is valid and the bank is free.
3. Starts the 1000 ns. Storage cycle.

ADDRESS PATH (Figure 3-4 & 3-5)

The 12-bit address is sent to the eight memory Chassis (G1/G40
EVEN/ODD CH.) 50 ns after the GO. In each Chassis the
address fans out to all four banks. The address is gated by a
Bank FREE signal into the storage address registers of all free
banks, but Read Drive is turned on for only one bank - the
selected address. Here, each bit fans out to five storage modules
of 12 planes each, to select one 60-bit word location (Figure
3-4). Bits 4, 5, 10 and 11 have an additional five outputs to
select the inhibit quadrant in each storage module (Figure 3-5).
The storage address register is statically translated during the
whole storags cycle.

SB MODULES GI/G40 SA MODULES

rSTORAGE ADDRESS REG

SELECTING ONE CORE
PER PLANE IN EACH 12
PLANE MODULES

BITS 4,5,10 AND i
HAVE 5 EXTRA OUTPUTS
TO SELECT THE INHIBIT
QUADRANT IN EACH

¥ STORAGE MODULE

.
10 | SSpaersnat
-
3)
I
I

[STUNT BOX
(M) § CHASSIS

Figure 3-4. Address Path

FI6. 4-13 ADDRESS PATH

2%.25 24.25 28.55 24.,5
T T T > ONE MEMORY PLANE
7700 mrr —
—p 210.211
5700
IIAII — -2'—0- 21
3700
—_ zlo.m
1700
—> 210.211 INHIBIT QUADRANT ‘A"
7 37 57 SELECTED WITH ADDRESS
0000 0077 1OXXXOIXXX

Figure 3-5. Inhibit Quadrant Selection

3-5

STORAGE SEQUENCE CONTROL
(Figures 3-6 & 3-7)

The Storage Sequence Control, located in each memory chassis, is
a chain of FF's whose outputs drive slave inverters, generating
a series of timing signals which direct the basic cycle of the
storage modules. The Bank GO pulse starts the sequence by
setting the Read FF and this pulse is transferred to successive
FF's at 50 ns intervals. Each FF is set for 400 ns

(Figure 3-7). The Bank Free condition is dropped as soon as

the Read FF 1is set.

a) Read Drive. The clear output of the Read FF starts the 400
ns read drive. This is sent to the five storage modules
and turns on read current in one core of each plane (H & V
wires) already selected by the address. This enables data
to be read out of memory.

b) Sense Drive. 200 ns after the read drive, a 100 ns
sense signal is generated to sample the differential sense
amplifier which receives the data word read from storage
on double-ended sense lines. This sample pulse accomplishes
two operations:

1. Samples the data read out of memory.

2. Allows a bank merge at the Data Exit/Entry Buffer
Register (SE modules) common to the four banks and
gates data to the data distributor and restoration
register.

c) Inhibit Drive. The timing chain initiates the inhibit drive
475 ns after the read drive. During this 400 ns
before the start of the inhibit drive, data has been read out
of memory and transmitted through two holding registers common
to all four banks. The first, Hl - H15 (EVEN/ODD CH.), holds
the true value of the data word read out and the.second G1-G19
the complement.

"Start Inhibit" gates the complement into the restoration
register (PZ modules) which also stores the complement value.

Inhibit current will or will not be turned on depending on the

state of each bit position of the word to be stored ("0" or ©ii)
respectively. To write a zero into memory the inhibit current
controlled by the restoration register content (complement) is
turned on and opposes the write current. For a 1,inhibit

current is voided. 900 ns after the read drive an end

inhibit signal clears the restoration register and ends the

inhibit drive. Keep in mind that the PZ modules hold the complement.
A "1" therefore enables inhibit, a "O" disables inhibit.

d) UWrite Drive. The timing chain transmits the write enable signal

500 ns after the read drive. This is sent to the five
storage modules and like the read drive, turns on write current

3-6

‘—wmﬂ: TAG BIT 100 l

STUNT BOX GO GO, ACCEPT CONTROL

L-¢€

TIMING WRITE CONTROL TAG 1375
Yoo CH. BK. SELECTION CHAIN
I ACCEPT I
1200
GO BANK
1100 BANK FREE
100
INHIBIT DRIVE 1500
s
STORAGE SENSE 1300 l
—>» SEQUENCE | t600 WRITE DRIVE
CONTROL INHIBIT DRIVE DATA 1600 RESTORATION REGISTER
1100 | READ DRIVE (DATA COMPLEMENT)
INHIBIT
QUADRANT RESTORE
SELECT WRITE
y
(O STORAGE MODULE
> DIFF. | 1350 DATA EXIT/ENTER
j | l —> sf.:‘;f READ DATA BUFFER REGISTER
STORAGE ADDR ——3——— INHIBIT CURRENT
ADDRESS
REG ISTER SEL ——3»——— READ CURRENT
WRITE CURRENT ———e€—
> DATA DISTRIBUTOR
HOPPER TAGS
READ WRITE
NOTE: Lo
ALL TIMES (NSEC) RELATIVE TO “60" —t00.
CP & PP'S

Figure 3-6. Memory Cycle Block Diagram

CENTRAL MEMORY BANK CONTROL (BANK 00)

(NSEC) 00 100 200 300 400 500 600 700 800 800 IO|OO II'OO IZIOO

GO —> C. M.

ADDRESS —>» C. M.

ACCEPT TO CH S

SS8C START Ci4 TPI

READ DRIVE ENABLE

Cis TPI

Cié TPI

Ci5 TP2

Cie TP2

SENSE SAMPLE

Ci5 TPS

Cié TPS

Ci5 TPe

Cié TPe

INHIBIT DRIVE

Ci7 TPI

Cl4 TP6

WRITE DRIVE

BANK FREE

| | | I | | | | |

| '1//////// W

l////////////////L f
| l//////////////l i

|
|
|
!

!
i
I
1
|

V//////// //////i .
'J/////////////////// //////////L

Figure 3-7

LIS .
B A
L ‘ﬂ: :' b
E_EV////////////L: | ERERES
§_=r////////// SN
MR 77z BRI N N
IZ//////////////L' SR
BENC/ INERE
L fm. 0 : : E
SN (dghum——.
L pmmmza | L
L pozzza
L ra |
—

3-8

in one core of each plane (H and V wires) already selected by
the address. The write current flows in the opposite direction
of the read, to switch the core to a 1. If a 0 is to be written,
inhibit current opposes the write current and the core does not
switch.

MEMORY READ
As outlined above, the followin

l. GO —> Chassis and Bank Selection; Accept to Stunt Box.

2. Address —> Storage. Selects particular core in each plane,
i.e., 60 planes in 5 twelve-plane modules.

3. Read Drive. Reads data out of memory.

4. Sense. Samples data and transmits it to the data Distributor
and restoration register.

5. Inhibit and Write Drive. Rewrite what has been read out.

MEMORY WRITE

The memory write is similar to the read up to Step 4. For every write
operation a write signal (tag) is issued from the Stunt Box 150 nsecs.
after the address. This passes through a timing chain and is so timed,
that after Step 4 of the memory read has been accomplished, the write
control signal clears the Data Exit/Entry Buffer register to allow the
word to be written, to be gated in from the data distributor. The

word that has been read out already is destroyed in the data distributor
due to a lack of destination. Step 5 as outlined in Memory Read is now
executed and the new word written into memory.

A word from the data distributor during a write reference goes to the
Data Exit/Entry Buffer register on all chassis and then follows the
restore path for writing in memory. Only one of the many banks is 1in
the proper time spot in its storage cycle to store the word received,
and this bank is the one associated with the write address.

To prevent writing into an address location before a previous read
reference has been accomplished, the hardware in the Stunt Box never
allows both a read and write to be in the Hopper at the same time.
The exception is that if there is a PP central memory read in the
hopper, a CM. write from the Central Processor can gain priority into
the hopper. Software should prevent a CM write in a location that
has not yet been read by a previous PP instruction.

BANK FREE SIGNAL

The bank free condition is established when all FF's in the timing
chain are cleared, i.e., no pulse travelling down the chain. The Read
FF (first FF in chain), an intermediate FF and the Write FF {(last in
chain) contribute timing signals to the bank free circuitry (G9,

3-9

G19/G29, G26 EVEN/ODD CHASSIS) and indicate whether or not a pulse
is in the chain. All these FF's must be cleared to signal bank

free at the end of the storage cycle.

DATA DISTRIBUTOR

The data distributor essentially acts as a post office,distributing
data to and from CM, the maximum transfer rate being 100 ns. The
distributor routes data to and from proper origins and destinations
as directed by control information or tags entered in the stunt box
along with each address. The tags serve to identify the address
sender, origin or destination of data, and nature of the address,
e.g., read, write, or PP exchange jump.

CONTROL TAGS

The six-bit tag is sent from the Stunt Box to the tag translator.
After translation the tag is sent to the data distributor to
identify the origin and destination of data. For any write
reference a write tag bit is sent directly from Ml in the stunt box
through a timing chain to the Data Exit/Entry Buffer register,
enabling the data from the write distributor into the restoration
register.

READ DISTRIBUTOR

The read distributor accepts read words from the 8 CM chassis and
routes them to the several destinations.

The distributor is organized on chassis 3, 4, 9, and 10, each of
which handles 15 bits of the 60-bit word. Chassis cable limitations
dictate the organization. The listing below shows the bits handled
by each chassis.

CHASSIS BITS
3 0-14
4 15-29
9 30-44
10 45-59

Thus, chassis 13-16 (Figure 3-8) each send the same 15-bit group
to chassis 3, 4, 9, and 10. A read word from chassis 3 retains bits
0-14, but sends remaining bits in three groups to chassis 4, 9, and

3-10

11-¢

NOTE! CH 10
CH 3,4,9,10 SEND THEIR
i8-81T PORTION OF A READ
WORD ON AN INTERNAL
COAX CABLE. BITS 245259
CH 9
BITS 230244
CH 6
BITS 2!S — 229
DATA EXIT/ENTRY|
aurr(ea REGISTER CH 3
60-BIT)
/PL'(2l-214 1S SF MODULES |
| OF 8 MEMORY
CHASSIS 20
F

FROM 7 OTHER CH <

]

Il

———3» CH 4
—> CH 9
——» CH 10

READ
sTunT | PERIPHERAL CH 4
BOX TAG TIMING
M3 CHAIN

READ DISTRIBUTOR

RESUME

CH S

et
(3)

CENTRAL WRITE RESUME

CH 1€

BITS 245259

TO OTHER 7 CH
CH 3,4,9,10,13,14,18

NOTE
CH 13-16 RETAIN THEIR |5-BIT

PORTION OF A STORE_WORD 8Y
SENDING IT ON AN INTERNAL
COAX CABLE.

CH IS

BITS 230244

CH 3,4,9,10,13,14,16

WORD GOES TO ALL CHASSIS BUT
ONLY ONE BANK IS IN PROPER
TIME SPOT TO RECEIVE IT.

CH 14

8ITs 218 — 229

—>

CH 3,4,9,10,13,15,16

CHI3

BITg 20 - 214

CH 3,4,9,10,14,18,16
—l» DATA EXIT/ENTRY

BUFFER REG

CH |

CENT.
B8usy
FF

WRITE TAG BIT

CENTRAL
PROCESSOR
CONTROL
STACK
CH8
) 236_,83
OPERATION
REGISTERS
UPPER 24 BITS
OF x0—7
36,059 CHASSIS
2 2
CHT
20 =235 i
TAG FF'S
OPERATION @
REGISTERS
A0=7 gl =7
LLOWER 36 BITS
oF x0-7
CH | 20 259 S
PERIPHERAL s
a &S
CONTROL M H
PROCES - lelz
SORS z|ojx
c D Slela
ElElE
- x|lz|x
HE1E
TAG CHS
TRANSLATOR
CH I
-
STUNT
CENT, BOX
BUSY M3
FF
c3
FULL
Figure 3-8

DATA DISTRIBUTOR

WRITE DISTRIBUTOR

TIMING
CHAIN

_y, TO RESTO-
RATION REG

10. The tag gates the read word to the C5 register in the read
pyramid on PP chassis 1.

The read peripheral tag also enters a time delay chain and is
returned to the PP as a resume signal. The resume sets the C5

full FF in the PP (after data word is in C5) to signal the

presence of the read word. The same resume also clears the

Central Busy FF to indicate to PP control that the address has

been accepted by the stunt box and CM has delivered the word.

This allows the Peripheral Processors to send another address to the
stunt box.

WRITE DISTRIBUTOR

The write distributor accepts words from the several sources and
stores them in 1 of 8 memory chassis: The distributor is on
chassis 2. The 60-bit word on chassis 2 is split into four 15-bit
groups which are sent to chassis 13-16 respectively. Each of these
chassis in turn sends (or stores) its 15-bit group to the other 7
chassis (Figure 3-8) unconditionally. The JH modules (I128-I37) on
chassis 13, 14, 15, 16 have 12 outputs, 8 for one bit sent to all

8 CM chassis and 4 for another bit sends to 4 chassis only. The
other four chassis are fed with this same bit from another JH
module.

Figure 3-8 shows a detail of the write path. The 3-to-1 fan in on
chassis 2 selects the proper word under control of the store tag
from the stunt box which is established ahead of the data. The
word is then split and transmitted to chassis 13-16. The chassis 2
data registers and the tag FFs are cleared simultaneously.

One minor cycle after the register clear, a central write resume is

sent to the PP to clear the central busy FF. This allows the PPs
to send another address to the stunt box.

3-12

€1-¢

CENTRAL MEMORY

100 — : oo —-100
. 1150 SFa2
188 GO —»CM
Qe—T90
200-— 2% —200
o
M —>cM - -
Y250 - sANK 1250 4120
B |
! £3DRESS Ig!—%mmﬂ. ILT3°° CONTROL
27
300— 202 -—300
T2s BANK _FREE ACCEPT
48 CH 3
e TAG ~» EXIT =
T350 P40 1350 CONTROL | §ignage !/1-;50 ADDRESS T350
TAG 3 { REGISTER ! ssc READ_DRIVE
TRANSLATOR L — 400800 .
. Tes
400 T400 cH$ T490 —— 400
Ta28 |)
HOPPER —» il
T425 T4%0 P5le_READ DATA
DATA SENSE AMR S
DISTRIBUTION T
T475 Q25 '1?7‘6 BT 100 o
- HOPPER R
. .. 7500
500 — | |TAG->PRIORITY CLEARS SE'S A — 500
+ AT_T600 | FAN OUT TO
X 8 CM. CH. G
M+ 225 TS50 — E
1575y
TAG B EN 8
~»ENTRY
600 CONTROL —— 600— A — 600
N
K
T650
ssc 15 -4 g7 PO
7001100 MODULES
READ DISTRIBUTOR
70) 15-4 BT SO 7o0
SSC -
DATA 925‘.‘& 750 —> 1150 MODULES
TAG sToRAGE P2
CH. 3 — 600 REGISTER
READ DISI_] ssc START_INHIBIT _ TB825 WRITE AND
BIT 0-i4 l 800—»i200 RESTORE_DATA
T650 7A37 T650 1633 END INHIBIT _ Ti250
- 80—~ ——800
INPUT REG. INPUT REG. PacCpP c5 SSC WRITE DRIVE
CENT. PROC. CENT. PROC. READ PARITY 850 —»1250
- — 700
INSTR. STACK X OPER REG. c5—>ct
8 CONTROL 900— — 900

STORE DISTRIBUTOR

DATA 7O C. M

CH. 2 —— 600
STORE
DISTRIBUTOR
7 — 500

T480 T480
—STORE PERIPH STORE REGISTER

1450 1941 T450 5138 T450 cH788

€0 BIT cone AT 60 BIT
Pacp P, L
) " REGISTER CP OR REG.

—— 400

Figure 3-9
Central Memory Flow Chart

CHAPTER IV

INSTRUCTION ISSUE GCONTROL

PK TRANSLATE -
0 41 g2 B/U]
L=0 R ‘ ‘ TO
i IR i TP 1 s sl e sy
T - 16 !
R =2] — v T
A" 15 |
1= T
L[> | 1.3 !
AL L= bopig 74 .
T L= T T : U
P 10 . o SCED
1=7 I
L0 y | 1SSUE
CONTROL
IR

& BRANCH

CENTRAL
PROCESSOR
DATA PERIPHER/L

CHANNELS PROCESSOKS y

yhrrucrron RESERVATH
15SUE M
COKTROL
o REBOARD)

it INSTRUCTION

TOHANEN m>IumOma

G

RLANRRAR AR

L

CHAPTER IV

INSTRUCTION ISSUE CONTROL

INTRODUCTION

The 6600 central processor, designed for every high speed computing,
uses parallel functional units and overlapping memory references to
reduce program running time. Another method of reducing time
consumed during execution of a program eliminates unnecessary
references. The following example of a portion of a typical
scientific program illustrates the desirability of minimizing memory
references:

EXAMPLE:
ADDRESS
100 Load operand A modified by Bl
101 Multiply by operand C
102 Subtract operand D
103 Jump if sign of results are negative
104 Store results in X modified by Bl
105 Update Bl
106 v Jump to address 100

The above loop example shows that memory references to obtain the
same group of instructions are necessary for each pass through the
loop. To avoid unnecessary memory waiting time, the central
processor uses an instruction stack to hold short loops.

INSTRUCTION STACK

DESCRIPTION

The central processor instruction stack is made up of eight 60-bit
instruction registers, labeled I0, I1, I2 I7. An
additional 60-bit register known as the Input Register serves as
an input buffer between central memory and the instruction stack.

259 20

INPUT REGISTER

T

CENTRAL MEMORY

Figure 4-1. Instruction Stack

Instruction formats for any 60-bit instruction word in the stack may
be 15-bit and 30-bit instructions in any of the combinations
diagrammed in Figure 4-2,

Figure 4-2. Possible Instruction Word Formats

The maximum capacity of the instruction stack is, then, thirty-two
15-bit instructions. A program loop that can be contained within

the stack can be executed as many times as necessary without making
any memory references for instruction words. Note that an iterative
loop cannot be 32 instructions and remain in the stack since: a.)

a jump instruction comprising part of the loop is a 30-bit instruction,
and b) a jump cannot be executed from I0 (the bottom register of the
stack.)

OPERATION

The instruction stack is loaded one instruction word at a time as
the instruction words are read from central memory to be executed.
Each instruction is loaded into I0, sent to the translating networks,
and then moved to Il. As each instruction word enters I0 and is
moved upward in the stack, the complete stack contents must move
upward to make room for the new instruction word. This upward
movement of stack contents is called inching. As the stack contents
are inched, the top instruction word (in I7) is discarded.

NOTE

Throughout the descriptive material which follows,
references are made to specific FFs, logical net-
works, etc. To aid in understanding the text,
refer to text diagrams and to 6600 Central
Processor diagrams.

INCHING

The process of inching the instructions in the stack is controlled
by the inch counter. This counter is a 2 rank, 2 bit, binary
counter initiated by the following conditions:

a) next instruction word is in I0, and
b) first instruction from I0 is being issued to the translating
networks (U registers).

Once the inch counter is started, it continues counting until the
entire stack has been moved up. During the inching process, the
instruction word in I7 is discarded.

PARCELING

Since there are 15 and 30-bit instructions which can be combined in

an instruction word in any order, the problem of extracting instructions
from the ranks of the stack is encountered. The scheme used to extract
instructions is called parceling and is controlled by a 2 rank, 2 bit,

4-3

binary counter called the parcel counter (PK). A 60-bit instruction
word is partitioned into 4 parcels, designated 0, 1, 2, and 3. (Refer
to Figure 4-3). Each parcel is 30 bits in size to ensure that a

PARCEL 3 (PK=3)
A

N

—
PARCEL 2 (PK=2),
PARCEL | (PK=1)

r A
PARCEL O (PK=0)
e A
N |]
259 20

Figure 4-3. Instruction Word Parcels

complete instruction is obtained when extracting a parcel from the
word. In many cases (e.g., a 15-bit instruction in a parcel),
unusable information is extracted along with the meaningful. 1In
these cases, unusable information is discarded as the instruction
is placed in the U registers.

LOCATOR

In most cases, imstructions that are sent to the U registers come
from the lowest rank of the stack (I0). However, an instruction
word inched up into the stack can still be issued to the U registers
for execution. Thus, if inching occurs before an entire instruction
word is issued (parceled to the U registers, or if an iterative
loop in the stack is being executed, the next instructions will come
from some stack register other than I0. A Locator network (L) keeps
track of the register in the stack holding unissued instructions
(i.e., the register from which the next instruction will come).

ISSUE CONTROL

The movement of instructions from the stack and through the U
register is controlled by a circuit called Issue Control. There are
two basic signals associated with Issue Control:

a) U issue (i.e., Ul—=>U2 and I" —» U1)
b) scoreboard issue (i.e., U2 — > Scoreboard)

4-4

The Issue Control circuit controls the operations of the parcel
and inch counters, the L network, instruction issue and movement
from the instruction stack to the scoreboard. The availability
of functional units and operating registers, and information on
instruction translations is monitored by Issue Control to assist
this circuit in its functions.

INSTRUCTION REGISTERS

From the instruction stack, instructions flow in sequence to two
registers to be translated. (Refer to Figure 4-4).

The first register, Ul, consists of 30 FFs. Entry into Ul is
controlled by the L counter and by the parcel counter. Instructions
which come from even stack registers are transferred via an auxiliary
register, UO. (Note that this does not affect the transfer time from
the stack to Ul; instructions from even and odd ranks of the stack
arrive in Ul at the same time (t80)).

The fm porticn is now translated to set the proper Select, Request
and Result FFs. (Refer to Figure 4-5)

At approximately the same time these FFs are set, the transfer to U2
is performed (t15-25). There are 3 different cases:

a) OX - Instructions which contain the branch address in the K
pertion.

b) 30-bit instructions which contain one of the two operands in
the K portion.

¢) 15-bit instructions which do not use K.

(Refer to Figure 4-6)
The second register, U2, consists of 53 FFs, which hold:

a) Information about the Functional Unit request, and result
and operand register selections gained from the translation
in Ul. _

b) The instruction designator (f, m, i, j, k).

¢) K portion.

This information is now translated and transmitted into the scoreboard
(refer to Figures 4-4 and 4-7).

9-%

NI Feo |N| Fes | 626 | G27 lllJlllJ
(£ 145 bty 13 IR ol Mol I O O O i
EB:°§:E§~§15)“§ SET F R
55224,5‘5‘;,%;:%5 SET Q R
513 21315237 SET XBA. etc R REGISTER (18 BITS)
BUSY FF'S A
-
M T ias TGl T2 T 0) ISSUE ISSUE + SKIP
£34 £33 i | 623 |
70 ISSUE < —— — ~ | | | 624 | 625 | | (ta5) (105)
CONTROL . _ _ ' u? TRaNsLATION |
N\
Y A
; A — N I
Ninlzlelgls UNIT i(j)
il SO Bl 144 £ 1 1 53 Il Rl A SRSty R B w0 | wes | wo | rea |4k] K
< g
-] . ol < |1 —
Cl8iglalalxls]glaglz | _ o I f ™ i k K =
3(215|2|8|2|3| 2 |su¥s| 2| <| 8| o)] a]a|I2| R) % y
REQUEST | Resut SELECT U2 REGISTER U2 REGISTER (18 BITS) :'S%UE'Z*SS)K'P]
!
r------ vy 7 / / |
| U' TRANSLATION {(CI8,C23,F3I,F32) | / Vi
L o e e e e e e e —— ———— ——_— — e —— — / / - __-i !
T / / :
/ / | j
} // // [1 ’
/ A T
— N — N A /
al—1 O 0 m|o | = oloi~|lo|VN|[=|Qlo|o|v]lT|PiN]= afjo|n|e ..
SEHEEHEEEEHEEHBEEEEEHHEHEEEBEEE fm L]
ISl ol Wl S il il Bl R R i el Gl il il [l ol el ol ol Rl it o Gl g ol el il Rl il ot
f m i j k K \ y /
u! REGISTER (30 BITS)
L=0DD L=EVEN
ISSUE + SKIP
/ (trs)
\
Fiure4-4 o[~ —[o ™ FHRENMEIRDINn
8 ss[s]8[z[s[a[z]8]2]8]8]5]8]3]2]5]2 w0
g i Rl ol e el Bl ol il e Z g R g gl
k K
Block Niagram of uO REGISTER _(30 BITS) FROM * teo
Instruction Registers 3517 EroM:
| 19,12,14,16.
L e e o e e e e e e e e m e — e, ———————— D |
PKz3 —» [5l4« 201239« 245
PK=2 —» |529« 215[214 20
I BITSE fommmmmmmmsmm e e e e e e e e
PKzl —» |r44a— 230|229« 215
PK=C —» (559 - 245|544 230

L=y

U, fm O-__ [2___ 3__ . 4___ 5. - 6. T
‘LUZFFS < lo1234567/01 234567001 23456701 234567|01234567]01234567|01234567/01234567
SHIFT XXX XXXXX S X
DIVIDE xXx X
G27
5 LONG ADD X X X
g ADD XXX XXX
g BOOLEAN X XX X XX XX
| INCREMENT X XXXX X&|F i =0—X[XX X X X X X X[XX X X X X X X
Z | muLTiPLY | XX X H36
PASS X
g MEM. READ X€~IF izl__5-»X
@ | MEM.WRITE X<—IF i=647->X 013
X; XXX XXX XX|XXXXXXXXXXXXXXXX|[XXXXXX X XXXXXXXX| F32
5 A XXX XXXX X F23
§ B; XXX XX XXX F24
| s X X X F25
X; X X XXX XXX XX XXX XXXXX[XXX XXXX| XX XX X X H26
E A X xx |x Xx |x X X H27
:_‘,u’ Bj X XXXX XXX XXXXX X X xx| x X x| x x|
n By =Xy X XXXX XXX XX XXX[XX X XXXXX[XXXXXXXX
X0 + XI xxxxxx| oxxxxxx| xxxxxx| xxxxxx| xxxxxx| XxxxxxxX| xxxxxx| XXxXxXX
2X XXX XXXXX F3l

Figure 4-5.

Ul Translation

C. NORMAL INSTRUCTIONS (I5 BITS)

A. OX INSTRUCTIONS (30 BITS)

B. INSTR. 50,51,52,60,61,62,70,71,72.

(30 BITS)

———

|||||||||||||

sRE\\\NNNNE

>
K
u2

r—-
|

J
K
u

N N
mmmmm,// il B O - \ - | = x o
- 1 7] o |
A A ; [A x
“ |
Fe—b————— L
F|||ﬁ’|||% ||||||
A
! El—=]= 4 =

4-8

Figure 4-6. Ul ——»U2 Transfers

_ £35
u? SKIP 1 - -E
E32 BOOL. BUSY TO G30, ISSUE CONTR.
720,1=2§=5,1=6,f=7,1=4 (6 AIT) OX_TO BRANCH UNIT
COMMANDS TO BOOL.
t=0 70 £32 £09 o e
¥ = TO F DES. tONG ADD
(=7] =5 TO Q CODE GEN. COMMANDS TO INCR.
1:7 }M T 70 F_DESIG (XO-X2)(5X~7X)- SKIP I +02
- £25 TO SEL. X-B-A.
m=0XX (1 BIT) e fae
3
3] COMMANDS TO SHIFT
. W (3 BITS) L] : —>
™ 16 BIT TO MULT.
_ ..To apb
N0+01_TO ISSUE CONTR. (2 BITS) _TO DIVIDE
| TO BRANCH UNIT (3 BITS) TO_LONG ADD
G2l E26/27
F33
2 —{ i=0-i=7 (8 BITS) FAN-IN)
1 13 BITS) GATE Q CODE TO Q DES t=5
d LA
B i=6.1=7 TO HO7/08 B
~ i i (3 8ITS) g
1 | T (2 BITS] _
o 624
i s | L—* SEL_X-B-A (8 BITS) E3) tin=20+ 21)
TO HZ26/27 I Y
622
- [FAN-IN RESULT REG. FREE
— jz0-j=7 (8 BITS) TO F34,
L] 170 ISSUE CONTR.
j (3BITS) iSSUE-,
e GAT# Q CODE TO Q DES. FREE +
TO F23/724 620 TNCR T SELC SEL.
i i TO SHIFT UNIT (3 BITS)
7 (38ITS) . Fan-ouT |SET_F DES
625
i (3BITS)
— SEL X-8-A (8 BITS)
TO F35/36
l_ 623
k 'TS
K A3 PTS) —{ GATE Q CODE TO Q DES
0 F25/26
k _
K (3 BITS)
k_TO SHIFT UNIT (3 BITS)
I >

Figure 4-.7.

U2 Translation

Ell

SET F DES.
——

01-%

| 13.5.7 w
1',1°,1°1/ >
@
ISSUE 2
+ SKIP | g
Y =1 1ssuE
: P
PK=0 \9,\ + SKI
NS
R e Do
L=0DD %\ PK=2 '%
;ﬂ(K3 ISSUE
ij;? 0 + SKIP
o ISSUE
PK%’.\ : \ + SKIP
ISSU
f PK=1 + SKIP
L = EVEN ;%(PK= -
e >
SN s
_J____ 0 {2 14 .6
,____.__&_
PARCEL 3 ° " PARCEL 3 I, 15,15,1%

’ PARCEL 2 '
A

r PARCEL |

A

‘ PARCEL O . '

N

—

59——4544——3029——I15 14

0

Figure 4-8. Parcel Counter

[
N

UNIT SEL

ISSUE

ISSUE

ISSUE
+ SKIP

TO R REG

PARCEL COUNTER

The parcel counter is used to extract 4 parcels of 30 bits each from
I". The 4 parcels are needed in order to pick out any 30-bit or 15-
bit instruction combination which could be contained in an I register
and send these instructions to the Scoreboard.

15-BIT INSTRUCTIONS

With the first issue pulse, parcel O is sent from I™ to Ul and the
parcel counter is advanced to 1. The second Issue Pulse transfer Ul
to U2 and parcel 1 to UO. The ensuing Scoreboard Issue sends the
contents of U2 to the Scoreboard, parcel 1 to U2 and parcel 2 to Ul.
(Refer to Figures 4-9 and 4-10)

In u® u! ue
(A9 —> |47 7#1 14
/ Z / __ 15 BITS TO
% % /02_\' l SCOREBOARD
PARCEL O { 445——>oo /8'0? 00
(30 BITS) 44 ———> 29 291
-—>K —>R
i (FOR 30 BIT INSTR))
1
(LJ30—> 5L __.|5,::

Figure 4-9. Parcel Path to Scoreboard

After all parcels have been issued to the Scoreboard, the parcel
counter will be at count 1. This enables a "O" into F37/P3. Because
FFs TP/5 and TP/6 have been set after inching of I4 to I5, a "O"
from F37/P25 goes through H25 and G36 and sets the Stop FF on G30,
preventing any more Scoreboard issue pulses. Also, FF A on F37 will
be set giving a "1" out of F37/P23, setting the FF TP6 on R32 at t50.
One output of this FF is used to send a clear pulse to the Parcel
Counter on G31, setting the counter back to O.

30-BIT INSTRUCTIONS (50-52, 60-62, 70-72)
The proceed signal coming into G30/Pll sets Skip I, III and the GO FF,
resulting in a U2 Issue signal from F34. This enables an Advance PK

pulse from G20/P19, and sets the PK to 1. The same Issue pulse also
enables parcel O into Ul. The next Issue pulse (100 ns later)

4-11

cl-v

[ser T 5 [15] |5—°|

59

TIME-USEC © 100 200 BTO 4?0 500 600 700

b
CLEAR PK

sap 1 [T]
sapm [|
o630 | 1
INs>y0 N N N M
SKIP I [
aov e (630n9)_ pk=o[| 1[] 2[] 3[] o I
U2 ISSUE (F34) TRAS"I | [| | | | | [, |
8
u' 1SSUE (630r6)] [LT l l
a5
ul rec__ ParceL[o [1 [2 [3]
u2 REG. PaRCEL| o [1+ [2] 3|
_—JPARCEL 0

[ParceL

SCBD
l PARCEL 2
PARCEL 3

SCBD {SSUE (F34)

Figure 4-10.

(INSTR. 50-52,60-62,70-72)

[30 w7 HEXIEE

TIME- USEC 0 I(l)O Z(I)O 3(,)0 4(|)0 5C|)O GTO 7(])0

CLEAR PK

swer []
seem_ [L
Go_J
N0 ||]| || H H ||
ADV. PK PK=0 i 2 3[] o]
UzlssuE(F34)m8H|I H || || || ||

U 15SUE (630/6) N M1 [[
SCBD ISSUE (F34) 1 1

o' Ree._ ParceL] o [1 [2 [3 |

u2 REG. PARCEL [0 RERE |
| PARCEL ©

SCBD [Pamcecs—

Instruction Issue Timing

transfers Ul —> U2, parcel 1 into Ul and advances PK to 2. By
this time, the Skip III FF will have been cleared, allowing a
Scoreboard Issue pulse.

This pulse transfers the 30-bit parcel O from U2 to the Scoreboard.
It also allows the Skip II FF to reset. The 3rd Issue pulse sets
PK to 3, transferring parcel 1 to U2, parcel 2 to Ul. By now, the
Skip II FF is set, disabling any Scoreboard Issues pulses. The 4th
Issue pulse transfers parcel 2 to U2 thereby destroying parcel 1,
which was still in U2. The only difference between a 30-bit and
15-bit instruction is that the Skip II FF is set for 1 minor cycle
to prevent the second Scoreboard Issue pulse and therefore does not

send parcel 1 to the Scoreboard.

30-BIT INSTRUCTIONS (OX)

The first Issue pulse will again transfer UO to Ul and advance PK
to 1. The second Issue will be fed into G30/P23 together with the
0X translation from Ul. This clears FF/E, disabling a second
Advance PK pulse and also disabling the P and L incrementers. This
Issue also transfers Ul to U2 and parcel 1 into Ul. Together with
the third Issue, a Scoreboard Issue transfers U2 to the Scoreboard.
This Scoreboard pulse, together with the O0X translation from U2,

is fed into HO5/P9 setting the Stop FF. This disables any more
Scoreboard Issue pulses. Instruction issue control now waits for
an indication from the Scoreboard as to whether the jump condition
was met or not. {(Refer to Figures 4-11 and 4-12).

INCH COUNTER

The inch counter is used to shift 60-bit instruction words upward in
the instruction stack (I0-I7). When the parcel counter = 0, L
counter = % and t = 60, and an Issue or Skip signal occurs, a "O"
into G29/11 sets the Inch FF. This FF sends an advance pulse to the
inch counter. Before the counter is advanced to 1, gates C and D on
G29 are enabled setting FF/TPl. One output of this FF will set the
Program Address FF on P37, starting a new RNI. Another output first
clears the I7 register and then enables the transfer of 16 —>I7.
Another pulse from this FF, at a slightly later time, clears the I6
register and transfers I5 —» 16. (Refer to Figure 4-13)

By now, the inch counter is set to 1 enabling the transfer of I4—31I5
and I3 —> I4 etc. After the last transfer has been enabled (I0 —-1I1),
the counter is set at 3. The 4th advance pulse now sets the counter
back to O and the Inch FF is cleared.

The counter is again ready to begin a new transfer sequence. The

instruction word now in 17 is discarded when the next 16 —p 17
transfer occurs.

4-13

SKIP I I l

INSTRUCTIONS OX

TIME - NSEC
50 100 I?O 200 2?0 3(')0 3?0 4C|)0

0

4?0

SKIP IIT |

60 |

Ip = Ug
SKIP IT

ADV. PK

U, ISSUE (F34)
U, ISSUE (630)
SCBD ISSUE

U, REG.

Up REG

[]

[1

[Tpk=i

D [1

t8s
[L [] [1
tas
| PARCEL O | PARCEL |
| PARCEL 0 | PARCEL |
Figure 4-11 OX Instruction Issue Timing

4-14

Y A U S S SO S S S T A

WAIT

FOR RETURN FROM
SCOREBOARD

(SEE FLOWCHART)

PARCEL O
INTO U,

M ox7)
__/

YES

Y

DISABLE

P+ 1,L+1,
PK + |

ISSUE
U -u;

NO / JUMP \ YES

_ IN STACK?/

/WAS JUMP \ NO RNI -
COND.MET?) ’

YES

Figure 4-12. 03-07 Instructions

4-15

NO

WAS JUMP
COND. MET?

YES

FORCE
PK=

FORCE
NEW L

/

NEXT INSTR.
FROM I=L

TIME- NSEC (I) IOIO 2'00 3?0 4?0 SC'JO GCI)O

G29/11 BEGIN INCH | I

629 TP2 | L
632/20 ADVANCE L] L L 1L
632 FF TPI] |
632 FF TP4 I D
632 FF G (H) | , L
632 FF E(F) I N
IK=0 | |
1K= | l
IK=2 [
IK=3 1
INCH EVEN 629/D []] [] []
INCH ODD 629/C [] [] []]
coFrTPr []
G29 FF TP 3 []
G29 FF TP 6 [

G29 FF TP 5 I |

16 >17 (629) [_‘

15->16 (629) | f—l
14 >15 (629) | []
13—>14 (629) | []

12—>13 (G29) ! | |

I1->12 (629) | []

10—>1I1 (629) ! |—_]
l(——soo NSEC ;I

Figure 4-13. 1Inch Counter

4-16

LOCATOR COUNTER

To avoid confusion in the L counter discussion which follows, the
following statements should be noted:

1) The L counter FFs on H28/TP1,2,5 contain the complement of
the L count. (e.g., all set: L count = 0; all clear: L
count = 7.) Note the distinction between L counter and L

COUILIL »

2) . Reduce L means the L counter goes from 6 —>5 or 3 —>»2.

The major function of the L counter is to guide the parcel extraction
from the proper register (e.g., I0, Il etc.) in the instruction stack;
when L = 7, I0 will be selected, when L = 6, Il, etc. Assume L = 7
and PK = 0; this means that the upper 30 bits of I0 would be gated to
UO. When PK advances to 1, the next parcel will be transferred etc.
By now, the Inch counter also started the inching of I6 —»17,

I5 —>-16 etc. During this time L was equal to 7.

When the PK reaches 3, and no 0X (Branch) instruction is in the Ul
translator, a "O" into G28/P17 will enable the H gates and disable the
G gates.

The function of these H and G gates are to switch the L counter FFs
from one loop to another. One loop called the L-T loop goes from

H28 through H29, G36, G28 and back to H28. The second loop, called the
Reduce L loop, goes from H28 through H30, G28 and back to H28. 1In a no
branch instruction,the T FFs on H28 are all set, which means that in the
L-T loop a zero is actually being subtracted from L. This permits
holding L to its same value through the L-T loop as long as the G gates
are made. Switching to the Reduce L loop also causes a "1" into
G28/P12 (from G29/P18) disabling the H and G gates. This prevents FF
10 from holding its value and it is cleared at the next t50.

This means that the L count has advanced to 1. However, as soon as the
GO FF on G30 1is cleared, a "O" out of A on G36 will set all L FFs on
H28 forming an L count of O. Parceling of the next instruction word
from I0 is now ready to begin.

In case of a conflict (instruction not accepted by the Scoreboard),
all Issue pulses are stopped preventing Advance P and Advance PK.
However, the Inching process will continue until completion. After
the inching of I1—> 12 1is completed, the L counter is again
advanced setting the count to l; the count remains set at 1 since the
GO FF remains set. This will allow a new instruction to be entered
into I0 while waiting for the instruction to be accepted. Once the
instruction is accepted by the Scoreboard, the following Issue will
advance the Parcel counter again but the remaining parcels are taken
from Il. It is now necessary to wait until all instructions out of
I1 are accepted before starting a new Inching process and therefore a
new RNI.

4-17

8T1~%

TIME-NSEC (') ICI)O 2(|)0

ske 1 []
co,stop [
aov. k. ek=of] 1 []2[]3[]o n
1050 parcecfo] |l 2 [
w0 >ul e30) parceLfo] i o[ff]

1! >u! (630)

3(|)0 4(|)0 5C')0 6(])0 7(|)0 8(|30

I

Ul ->U2(F34) PARCELl |5| | |2 3| |
TRASH

SCBD 1SSUE PARCELIO 1 |z| .|3
BEGIN INCH (629/11) L]

g28/12 (1' >1?)
16 —> 17 ﬂ
15 16 H
14 —>15 ﬂ
13 >4 ﬂ
12 —>13 ﬂ
1l —12 ﬂ
10 1! ﬂ

(9>

H28 TPl Lg

(628/17) U

Figure 4-14.

TIME- NSEC ? I(l)O 200 300 4?0 5(I)O 6(|)O 7(|)0 8?0

|
GO/STOP |

A

Abv. Pu Pk=0[| 1 2 3 0 |
u9 >0 PARCEL]O ||]a
w0y (630) PARCEL[0] 2l 7
' >ul (630 PARCELH | [|

[ah}
ul =» U2 (F34) PARCEL |o] || 2 3| | |

r

SCBD ISSUE PARCEL [o]) 2 3

628/12 (1! »12)

(10)>(1') [
WITHOUT CONFLICT H28 TPI [, L=0 | L= |L=o
(scBD)
(628/17) U
L-Counter

>

WITH CONFLICT
(scCBD)

(e.9. PARCEL | NOT
ACCEPTED BY THE
SCBD).

For branch instructions {(if conditions are met and jump is in stack),
the L-T loop supplies the new L count and sets the L FFs to the new
value., After all the instructions in this new instruction stack
register (defined by the L count) have been issued, a count enable,

K on H30, together with the H gate on G28 allows the L count to be
reduced by one, and so on until the count L is again equal to O
(L=7).

At the beginning of the branch, the inching also transferred I0—I1
but now it is not possible to start a new inching process because

L must equal 7. There is also only one RNI immediately after the
inching has started but since inching cannot start a new RNI is not
possible.

Remember:

To start Inching: (PK = 0)(L = 7)(Issue pulse)
To start RNI: Inch 16 - 17

ISSUE CONTROL

The Issue Control block diagram Figure 4-15 depicts the functions
performed by the Issue pulses from F34 and G30. As not all of these
pulses are produced by the same conditions, they are given the
following names:

1) Pulses from F34/P9, 11, 13 are called: U2 Issues
also called:

IssuetSkip
2) Pulses from G30/P6 are called: Ul Issues

3) Pulses from F34/P8, 14, 19/26, 28 are called: Scoreboard Issues
also called: Issues

These pulses are produced if the following conditions exist:

Ul and U2 Issues = (Unit Request)(Unit Busy}(Dest. Reg. free)(GO) + Skip
Scoreboard Issues = (Unit Request)(Unit Busy) (Dest. Reg. free)(GO)(Skip)

STOP INSTRUCTION ISSUE

The Issue signal, which moves instructions and their transiations through
Ul and U2 into the scoreboard, and the Skip signal, which moves these
instructions up to U2, are controlled by the GO/Stop FF. Conditions
necessary for these signals are as follows:

4-19

SKIP

RESULTS
RESERVED

K

1L

BRANCH

24

26

28

ul -2
CLEAR R REG.
CLEAR FUNCTION

SET FUNCTION

CLEAR U2, u?, uZ.

k

BRANCH CONTROL
SELECT X, By, B
G30
HO
60 u'or Il,3,5,7.,$
CONTROL Y u! 1SSUE

SET F INCR I 8 1II

UNIT NUMBER
GENERATOR

ALL QUIET

~

MULT I, O
INCR. I

INCR. I
UNIT

>
DIVIDE BUSY
ADD,
LONG ADD

SHIFT,
BOOLEAN

.

Figure 4-15. Issue Control

4-20

>

-~

>

U2 |ssuE

ISSUE + SKIP

ISSUE

SCOREBOARD
ISSUE

ISSUE: (Go)(Skip)(Unit Request)(Unit Free)(Destination Register

Free)(t90)

SKIP: During the 200 ns after Proceed and during 100 ns after

a 30-bit instruction where K is an operand.

The following section describes the conditions that place the
Go/Stop FF in the Stop state. (Refer to Figure 4-16)

1)

2)

3)

PAUSE

When the first parcel is extracted from the 60-bit instruction
word in I0, the inch process begins. The beginning of the
inch process, in turn, requests the next instruction word from
central memory. When all parcels of the word in IO
(meanwhile, inching may have moved the word into I1) have been
transferred to the scoreboard, the central processor waits for
the next instruction word to arrive from memory. This wait
period is called Pause.

To get the Pause signal, the inch process sets the Request
Pause I FF (F37, TP5). When parcel 2 is taken from the stack,
the Request Pause II FF is set (F37, TP6). The next time

PK = 1, parcel 3 is placed in the scoreboard and issue is
stopped. (Refer to Figure 4-16) The Issue and Skip signals
are restarted by instruction ready control.

EXCHANGE JUMP STOP

During the Exchange Jump process, the Go/Stop FF is set to the
stop state. The Exchange Jump signal, issued by a peripheral
processor, forces the stop when PK = 1. (A PK =1 count
indicates parcel 3 was the last parcel issued or that no
parcels have been issue the scoreboard. Thus, the issuance of
an instruction word must be complete before permitting the
stop for an Exchange Jump.)

ERROR STOP

The contents of bits 20 - 22 in the Exit mode register specify
which errors can stop instruction issue. The Program FF

(I7, TP6), cleared at the beginning of a new program by the
Exchange Jump, insures that only the first error sets the
Error Stop FF. The error signal is also gated by a Skip
signal. The Skip signal gate permits finishing a loop in the
stack (for branch cases) before stopping. (Only the next
Branch instruction performs a Skip.)

The Error Stop FF is cleared by a master clear or by the
execution of the Exit mode process.

4-21

ISSUE
+ SKiP

OX-INST. ~STOP _

J
A

F=0
REGISTER U2
LIz
EXCH. (SET)
’ PROGR.
ERR, STOP FF (CLR) FF

FROM _INDEFINITE RESULT

CHAS 2

3
FROM _OPERAND OUT OF RANGE

(ISSUE+SKIP)- ERROR STOP

STOP .
PA —
v EXCH JP
T ‘ TN EXCHANGING REG, PK= |
MC PAUSE
EXCH.
F37
ERROR
STOP REQUEST
PAUSE II
FF
PK=| SET) CLR.
F35 ({)
ERROR PK=2
STOP FF
(ISSUE +SK1P)
-ERROR STOP F37
CLRI pPERFORM EXIT '
MODE STOP REQUEST
PAUSE I
CM>15 | FF
"3"1 P13
MC | (SET) (c::}\\
DELAY
COUNTER INCH
, MC+ RESTART +
(ADV) %SET 10 0) ERROR STOP+ PAUSE
105 MC +CLR,
ERR. STOP FF

CHAS 2

ADDRESS OUT OF RANGE

ERR, STOP FF-
DELAY C=3-T=50

lo3

Mo FL

FF

P35

22

2

EXIT MODE REG.

Figure 4-16.

4-22

Stop Instruction Issue

4)

5)

OX - INSTRUCTION STOP
When a Branch instruction is issued into the scoreboard,
further instruction issue halts to allow time for branch

condition tests; i.e., branch/no branch, jump/loop, etc.

MASTER CLEAR

PROCEED INSTRUCTION ISSUES

The requirements for proceeding with instruction issues are
outlined below:

1)

2)

INITIAL START OR PAUSE RESTART:

When the central processor starts (after an Exchange Jump),
or proceeds (after referencing memory for the next
instruction word; i.e., pause), two transfer pulses are
required to bring the first parcel (parcel 0) from I0 into
U2. No information is placed in the scoreboard during this
period; these transfer pulses that move the parcel to U2,
but not to the scoreboard are called "Skips”.

PROCEED AFTER A BRANCH INSTRUCTION:

Three possible "proé¢eed" cases exist after a Branch
instruction:

a) BRANCH: When the branch condition is not met, the next
instruction may be in the same 60-bit instruction word
as the Branch instruction.

b) LOOP: The branch condition is met, and the next
instruction is parcel O of an instruction word in the
stack.

c) JUMP: The branch condition is met; the next instruction
must be obtained by a memory reference.

Case (a), if the Branch instruction was in parcel 0 or 1,
requires one parcel be skipped. In cases (b) and (c),
where a new instruction word is requested, it is necessary
to perform two skips to transfer the new instruction into
U2.

For simplicity, the logic treats all "proceeds" after a

stop condition the same (i.e., as requiring two skips).
Case (a) above, the only case requiring only one skip, is

4-23

reverted to the normal case by disabling one advance pulse

of the parcel counter. Thus after every stop condition,
two skips are performed before information can be issued
to the scoreboard.

3) In cases (1) and (2c¢), which require an instruction word from

memory, a '"proceed" signal occurs only if the new instruction
word is available in I0.

OPERATION

A Proceed signal may originate from one of three different sources
(cases): (Refer to Figure 4-17)

1) Restart (Instruction Ready Control)

2) Loop
3) Branch
RESTART

The Restart signal occurs when a new instruction word is available
in I0. This occurs in the following cases:

a) End Exchange (start after an Exchange Jump)
b) Pause (stop between instruction words)
¢) Jump (Branch is not in the stack)

The corresponding signal sets the CP Stopped FF, clears PK, sets
L' =7 add (in the jump case) D = 7, and sets the Enable Restart FF.

(Refer to Figure 4-18)

When the 10-tag (RNI tag) is detected in the hopper and the address

is accepted by central memory, the new instruction word is read from
memory. The new instruction word is guided to I0, and the Instruction
Available FF is set, permitting the Restart. Note that it is possible
for an instruction to be available before the Enable Restart FF is
set. For example, a Functional Unit conflict before Pause, or (in the
jump case) when a requested instruction word must be in the stack
before the Go Branch signal occurs.

Loop

If the Branch test indicates that the next instruction is located in
the stack, the Proceed signal is issued. (In case the inch process
is occurring, the Inching FF delays the Go Branch signal until
movement in the stack is completed.)

4-24

iy

END EXCH. PROCEED

RESTART \4_{37

PK=0 REDUCE L
IF_ INSTRUCTION
Li4|103 hza _[R33 WAS TAKEN FROM
[}

pausE—>{+ |-———| INsTRUCTION >
CONTROL
SET P BRANCH
proGrAM [*VMP Loo
ADDRESS
FF
GO BRANCH
IN STACK IN STACK
R->P
R-P—>T _ A |
L-P—>L 02 : BRANCH —DELAY
] 1]
D-(L-T)—>D Lge de L
\ MET MET PK=0+D3
PIO R37 R30 H25 _ . [R3|
— I B T - ===
| - I
‘\ INCHING FF \ CONDITION MET | CONDITION TEST DELAY |
FF I (U NN |
T T TEST CONDITIOJ Lo8
1817 cM—1° RUP

T
UNCONDITIONAL (02) N

+ CONDITION MET

Figure 4-17.

LONG ADD STARTED

IN

TEST IN INCR. I STARTED

Proceed Instruction Issue

TEST IN
INCR. I STARTED

il >17
(PROGRAM IN LOOP)

ENABLE ADV. P

P IS ADVANCED
IF CONDITION TEST

FINDS COND. MET

>

SPECIAL CASE

l

—T

q

—

-
BRANCH

INSTR. IN
PARCEL 2

RESTART
F37 ’1(‘ Far
é ENABLE é INSTRUCTION
RESTART AVAILABLE

FF FF

A
i n
CLEAR L GO BRANCH
CLEAR PK + ADV ETK ~ ERROR STOP
ENABLE CLEAR D cm >10 + MC.
R32 - R33
ZQE CP STOPPED
FE RNI FF
ACCEPTED T
145 (DEL'D) 180
TAG =10
IN HOPPER
(DEL'D)

: F37

FF

|H| 100

PAUSE | "END EXCH.
JUMP

Figure 4-18. Instruction Ready Control

4-26

u0 —u!

(175)[19%0—>y!
i"— i
1
R es | START ADV ADV. P
L 2" § INCH PK REDUCE L
ul—>u2 F s b tas h 13 h
pizs) Lo
S B PK=0,
I - =
| INVERTER | tas | L=0 PK=3
| DELAYS |
Lom—ome J
@ ISSUE + & ENABLE
SKIP DELAY COUNTER
uZ —SCBD FF FF
T (too)
r)t . A \ ISSUE ISSUE SKIP I
| 1ssue (too) | |IsSUE + skiP (t00)] I
U -OX —2_
REQUESTING U2=30 BIT
INSTR. IN U2| FU_FREE
TRANSL. |+ NEEDED t t
OPEN
2 RESULT
FROM U REG FREE
+
\| STOP FF \ SKIP I FF
1 ‘ " ISSUE
STOP fs0 tas %
% ' u2 =30 BIT
SKIP I FF (INSTR. 50,51,52,
60,61,62, 70,71,72)
1
t35 too
\ SKIP 1 FF

A
tas

N
w0

NO BRANCH

During a conditionl Branch instruction, if the branch condition is
not met, the Proceed signal can be issued. (As previously stated,
the parcel counter skips one advancement in Branch instructions;
this permits two skips following a Proceed signal.)

A special case exists for a branch condition. During a Branch
instruction, the P and L counter are disabled. This disabling
occurs from the moment a Branch instruction is detected in Ul until
the Proceed signal is issued. (Meanwhile, the parcel counter is
advanced by one.) If a Branch instruction comes from parcel 2 of
an instruction word and enters U2, the parcel count is now 3.
Normally on PK = 3, P is advanced and L is reduced. However, in
Branch instructions this does not occur. Action proceeds with a

PK = 0; PK is counted to 2 during the two Skips, then a stop

occurs to wait for the new instruction word. Since this action would
not provide opportunity to correct the counts in P and L, special
circuits exist to accomplish this before the Proceed signal is given.

4-28

TIME - NSEC ? i?o 200 3?0 4T0
PROCEED [] |
GO L
SKIP I
SKIP O
_SKIP I SKIP I
SKIP JI_I[lf_'!
ISSUE ,_l ""l_

rF=-
—)Uz ! { IOI

—->u3

Figure 4-20

CHAPTER V

RESERVATION CONTROL

| UNIT UNIT ‘ X
SCBD A
U ISSUE 1SSUE J DESIG T
F.U. X E
CODE ' RELEASE |0
GEN. ’/
ALL READ GO
O >
B CLEAR : FLAGS F.U.
FROM_
Ul SCBD
ISSUE
>l A o : F1
i F " to
_J —ia(ﬁF —e REG.
DESIG [Fk CH.
et LLOD. DN
T I

GENTRAL
PROCESSOR
DATA PERIPHERAL

CHANNELS PROCESSORS l] |
INSTRUCTION RESERVATION]
1SSUE CONTROL
— CONTROL (SCOREBOARD)
B‘—. 10 ;“ 1ONG ADD I-—
G «
¥
e
R REGISTER BOOLEAN
0
-' u el ¥ E
s CENTRAL CENTRAL NN &g Balx MULTIPLY 1_ ’
[Z}g.—. » HENORY HEMORY |l T MULTIFLY 11
A CONTROL M T [T
" :
. o
[0t ¥
1
c -
l :: l‘—"" c INCREMENT I
7} Ll INCREMENT 11 C O
rTC ({4)

CHAPTER V

RESERVATION (i 'TROL

INTRODUCTION

The scoreboard directs the exchange of operands and results among
the 24 operating registers, central memory, and the 10 functional
units. Instructions are issued to the units for execution in the
order prescribed by the original program sequence. The scoreboard
permits instructions to be executed out of order while retaining

the original program sequence.

Scoreboard reservations are made in serial order for one unit at a
time and at a maximum rate of one every minor cycle; this
corresponds to the maximum instruction issue rate. However,
processing of requests to read operands or store results from all
units goes on in parallel and coincidently with placing of
reservations. Hence, program instructions are executed in a series-
parallel arrangement resulting in very high-speed running of a
program.

The scoreboard uses a reservation system on the registers and units
to direct the instruction issue and execution sequence. The scheme
allows all units to be in operation at the same time but prevents
one unit from executing more than one instruction at one time or
more than one unit from storing in a common register at the same
time. Lockouts for the functional units and operating registers and
a series of designators which identify registers and units aid

the control system.

An instruction is issued to a functional unit only if the unit and’
the required result register are free; i.e., they are not reserved
for another instruction or another result. With both elements free,
the instruction is issued and reservations placed in the scoreboard
for the necessary operating registers and unit (Figure 5-1).

Scoreboard control directs the unit in obtaining its operands and
storing its result; computation in the unit proceeds independently.
The unit requests permission from the scoreboard to release its
result to its result register. The scoreboard determines that the
path to the register is clear and signals the requesting unit to
release its result. The releasing unit's reservations are then
cleared and units waiting for the result are signalled to read the
result for their computation.

Special scoreboard action handles the reservation and control

scheme for address modification in the increment units. A change to
an Al-A7 address register changes the corresponding X1~-X7 operand
register so that an operand is read into X1-X5 or the content of
X6-X7 is stored. Hence, for 50-57 instructions, the A result
register and associated X register are reserved together to prevent

5-1

A9

(———)SIGNAL REGISTER EXIT CLEAR UNIT
REQUEST

ISSUE Moy ,——-3 GO READ ~———3 MULTIPLY ——> RELEASE CLEAR RESERVATIONS (X2)
; INPUT OPERANDS
| x0 a x!
| ALL CLEAR (x2)—»{ TEST 60 STORE TRANSMIT RESULT
t
t
1

RESERVES X; (2) _ _ SIGNAL REGISTER ENTRY

— ——

(INSERTS #06)

[
|
|
!
| SIGNAL
{WRITING UNITS
T
i
|
i
|
I
ISSUE ADD v
(#17) G0 READ —» ADD —> REQUEST
A RELEASE
l ALL
RESERVES NEW X; (3) | CLEAR (x3)-—- 60 STORE
(INSERTS # 17) | T
WAIT Xj (#06 UNIT)] |
“——> COPIES CONTENTS === —— == = == —— —————— — — - I
OF Xj 8 Xy (#06) NO WAIT Xy :
|
|
1
I
|
INSTRUCTION EXAMPLE - |
X (2) = X[(0) + Xi(1) MULTIPLY ' .
ISSUE SHIFT ¥ 4
X (3)= X (2) + X (3) ADD {#03) : 60 READ —> NORMALIZE — REQUEST
) RELEASE
Xj (4], B(4) = X(3) NORMALIZE |
| 60
RESERVES X, 8 8; (4) i ALL CLEAR (x4) -~ STORE
(INSERTS # 03) | ‘
WAIT #17 UNIT. H |
COPIES CONTENTS == — === —— — == — == = =S ————— = - v
OF X) (3) (#17) SIGNAL
WAITING
UNITS

Figure 5-1. Scoreboard Control

the X register from being pre-empted by a subsequent instruction.

The increment unit computes the address and sends it to the stunt
box for issue to CM. Coincidently, the result is released to the

A register through normal scoreboard processing. Also, the
releasing increment unit's reservations are cleared to free the
unit for further computation. However, the X register reservation
is held until after the address is accepted by CM (thus spanning
any delay time in the stunt box because of bank conflict) and the
data word is delivered to the X register (for X1-X5 cases) or
delivered to the CM store distributor (for X6-X7 cases). Additional
information is given later for the increment and branch unit action
in the scoreboard.

The functional units exchange data with the 24 operating registers
over a number of data trunks. A priority system regulates trunk
usage, and the scoreboard selects the proper data trunk and honors
the priority system in directing the data exchange.

The designators in the reservation system are listed below and
shown in Figure 5-2.

X Operand register j First entry operand register designator
B Increment register k Second entry operand register designator
A Address register i Result register designator

F Functional Q Entry operand reservation designator

Note that reservation designators are part of the scoreboard
circuits but are shown in Figure 5-2 as related to the entry operand
and result registers of a given unit.

Scoreboard operation is described first from the view of placing
reservations, and second, the control system which interprets
reservations and directs a unit to read its entry operands and store
its result.

PLACING RESERVATIONS
Reservations are placed in four sequential steps following issue to
the scoreboard.

. Make functional unit reservation (Set Unit Busy).
Assign operating registers to functional unit (set F).

N
.

5-3

CENTRAL
MEMORY

SET

READ
FLAGS

SET

READ OPERANDS

READ OPERANDS

SET

READ
FLAGS

SET

INSTRUCTION
ISSUE <— RESERVATIONS
CONTROL
SET F
INSTRUCTION U~ REGISTERS SET Q
SET X-B-A
' ISSUE
MINOR cvcuz/ INSTRUCTION
ISSUE RATE
(MAXIMUM)
ISSUE SCOREBOARD
INSTRUCTIONS DESIGNATORS
L1]]
Q F MULTIPLY I F
(F4) X
[] [k] REQUEST
I RELEASE
OPERANDS RESULT
50
50 e RESERVAT?NS
SCOREBOARD
JloreraTNg [EXIT GO READ CONTROL
REGISTERS | CONTROL l
G0
| T D SET FLAGS
OPERANDS RESULT
LH l /?Eouss‘r
i RE
[] [] LEASE
ADD
Q F (F2) F
L1 Lk } L]
ISSUE
INSTRUCTIONS

Figure 5-2. Reservation Designators

5-4

3. Determine previous reservations on entry operand regs.
(set Q).

4, Update reservation list to reflect the result register
of the latest reserving unit (set XBA).

UNIT BUSY

The fm portion of the instruction is translated at the output of Ul
selecting one of the following Unit Request FFs:

a) Shift, Divide, Add, Long Add, Boolean (G37, H36)
The outputs of these FFs are sent to their respective Unit Busy
FFs, (F27, 29, 30). The input gates of these cards, however,
can only be made if the Unit Busy FF is in the clear state. If
this gate is made we will enable the D gate on F34 of the Issue
Control.

b) Multiply, Increment (H36)
As there are two Multiply and Increment units, these unit
request FFs can set one of two Busy FFs under the same
conditions described in paragraph a). To set Mult. II or Incr.
II Busy FF, their respective unit I Busy FFs must be set.

For 5X instructions when i=0, only FF CD (Write or Increment)
will be set on G26 and G27. FF AB (Read or Write) remains
cleared, because no memory reference can be made by changing AO.

c¢) Memory Read, Memory Write (¢19)
A 5X translation and i=6+7 will set the Memory Write FF on 019,
A 5X translation and i=1-5 will set the Memory Read FF. These
FFs in turn can set the Busy FFs for increment I or II on G26
if all conditions are satisfied.

d) Pass (H36)
This FF on H36/TP6 will send its output directly to the Issue
Control to enable gate D on F34.

F DESIGNATORS

The set F step sets the result and entry operand register designators
i, j, k for the selected unit. This assigns operating registers to
the selected unit. The i designator identifies a result register for
most instructions and j and k entry operands. Each 3-bit designator
specifies one of the eight registers in an X, B or A register group.
For example, the j designator of the add unit may be set to X1, which
reserves operand register X1 as one of the entry operand registers.

Table 5-1 shows that for the Shift and Increment Units, the F
designators can specify X, B or A registers. For these units therefore,
a decision must be made as to which register F designator must be set
for a particular instruction.

9-¢

MEM
u2=7x ”
U2:=6X 5 INCR I
u2:=5x E,\ 2
MEM
X
2 INCR I
u 8
' A
(= X SHIFT
z c
3 z | X | BOOLEAN
=l BUSY
2)
! B o R X | DIVIDE
= T < & 12.2.27) X | MuLT T
2 (SSUE @ SCBD < x Twur @
z ISSUE ‘
e 2 X | ADD
| L | UT=0X 3 X | LONG ADD
= ISSUE g Fi
= Xi)
J X] ") X
2m - O B | INCR I
o A Ead
Ul _b-t) AN A
X
B | INCR I
§ O f 3
z B A
ISSUE @) o~ B
» 24,25,26 ad SHIFT
8
m
m As? m E X BOOLEAN
N
X x | DIVIDE
ISSUE : O—>n
j(20,2!,22) 7Y X | MULT I
. A~ i X | MuLT @
i X . X | abD
| Y= oxX Léo X | LONG ADD
i =Q i -~ Fr
y B [INCR I
?\, B | INCR IL
T X | BOOLEAN
)
k pa—— XX k . J [Lx_[oivioe
>*?-\ k(zO]zl'zz) X MULT I
ISSUE \ x | MULT
ISSUE - OX ISSUE - OX X ADD
| L x | LONG ADD
u =2x X | SHIFT

Figure 5-3

SET F

UNIT Fj Fi Fy

X B A | X Bl X B JA
ADD X X X
MULTIPLY I X X X
MULTIPLY II X X X
DIVIDE X X X
LONG ADD X X X
BOOLEAN X X X
SHIFT X X
INCREMENT I X X1 X X1X X
INCREMENT II X X1 X Xi1X X1 X

Table 5-1

This selection is done by the U2 translation and the select Xj, Bj,
Aj FFs which will enable the required F designator or designators.

Q DESIGNATORS

The set Q step determines if the entry operand registers are
reserved for results of other units already in operation, and which
units have them reserved. The fact that the current instruction
has been issued to a unit indicates that its own result register is
not reserved. The register reservation information is held in 24
separate X-B-A designators. Each unit is assigned a number for
reservation purposes (table 5-2) and the number of the last
reserving unit is transferred from the proper X-B-A designator to
the Q designator of each entry operand of the waiting unit.

For example, 1f register X1 was already reserved for the result of
Multiply 1 unit and the Add unit wants to use X1 as its j entry
operand, then the Q; designator of the add unit will be set to the
unit code (06) identifying the multiply 1 unit. (See table 5-2)
If the required register is not reserved, the respective Q
designator will be set to zero and its Read flag will be set to
indicate that the register is free and ready to be read. However,
a unit will read its operands only when both Read flags are set.

5-7

Q designators are set in the following manner:

After setting the Unit Select FF, the entry operand
register numbers for the requesting unit are identified
from translation of the i, j, k portions of U2. Select
FFs, corresponding to that instructions entry operands
(Xj, Xy > B, etc.), are set to identify the XBA register
groups. 14 the case of an add unit selection, Xj and Xy
FFs (H26 and F31) are set and their outputs are combined
with the k and j translation from U2 (G22, G23) to
identify and read the respective X designators (H01-08).
This information is sent to the Q designators (I17, I18)
of the add unit under control of the add unit select FF.

Q Designators for Functional Units

Q (octal) Functional Unit
00 Branch
01 Increment 1
02 Increment 2
03 Shift
04 Boolean
05 Divide
06 Multiply 1
07 Multiply 2
10 ————
11 Read Memory Channel 1 (X1)
12 Read Memory Channel 2 (X2)
13 Read Memory Channel 3 (X3)
14 Read Memory Channel 4 (X4)
15 Read Memory Channel 5 (X5)
16 Long Add
17 Add

5-8

65

ISSUE

(,M 3LvISNVHL

C
N

1S3N03¥ LINN

UNIT BuSYy

SCBD
ISSUE

Asng LiNnl

Ny

e

—

ISSUE

SELECT

Xj,8j.A)

i B

Wg Ay

)

XBA - DES.
~

X0

X1

X2

X3

—

ISSUE - OX ISSUE - OX

Set Q

Figure 5-4

ISSUE =l

[31vx |y 31vx

X4

xS

xe

X7

80

82

83

84

85

]+

B7

AO

Al

A2

A3

>

\
ok

A4

AS

A6

AT

Qj

INCR I

INCR II

SHIFT

BOOLEAN

DIVIDE

MULT I

MULT IO

LONG ADD

ADD

Qi

INCR T

INCR' II

SHIFT

BOOLEAN

DIVIDE

MULT I

MULT T1

LONG ADD

ADD

XBA DESIGNATORS

The set XBA step updates the XBA reservation list to include the
result register of the latest or current reserving unit. In the

identifying code for the add unit (octal 17) is entered in the
X0 designator as the latest reservation. Should a subsequent
instruction require X0 as a result register, it is not issued
until the add unit releases X0. Instructions which require X0
as an entry operand however, are issued and receive the add unit
code in their respective Q designator.

Three steps are necessary to place this reservation:

1. The unit is identified
2. The register number is identified
3. The register group (XBA) is identified

The unit is identified by translating the fm portion of Ul; this
will set the unit select FF. A second translation of the fm
portion of Ul identifies one of four possible result register
groups: Ai, Bi, Xi, or Bj. This information is stored in separate
Result FFs.

The register number is derived from translations of the j and k
portions of U2. The register number and group (XBA) are combined
to gate the unit code (Table 5-2) into the XBA designator. Each
unit selection is converted to a 4-bit binary code by driving four
inverters in a combination equalling the binary code. Thus, the
add selection drives four inverters which yield binary 1111 or
octal 17; a shift selection, for example, drives only bits 0 and 1
to yield binary 0011 or octal 03. (See G33 and F40) The shift and
increment units are the only ones that use the A and B registers
for results. The codes for these units use only bit positions O
and 1. Thus, the B and A designators need be only two bits,
whereas the X designators are four.

5X instructions place their result in an A register and thereby
cause a read or write operation in the corresponding X register
(except for AC and X0). 1In these cases, both registers are reserved.

SET READ FLAGS

When the Q designators have been set, the Q translators will

provide outputs for Q=0 through 17 (Q=10 not used). These octal
codes define the unit that has reserved the particular register.
(See Table 5-2) For example, let Q=0l. The Increment 1 unit has
reserved the particular register referred to by the Q designator.
The Q=01 output from the Q translator will be anded with the output
of the Increment 1 Release FF setting the operand read flag. In the

5-10

80
138UE XBA - DES

[==
N

— XXX ?_'—'—_-E::D
g =
- XXX ?_—‘—-—-

- -]

X0

Q

MULT T

INCR I
INCR I

ISSUE

1S3N03Y LINN
YOLVHINIO
Y3IBNNN LINN

(4N) ILVISNWEL

1
Y

SCBD
tSSUE

rJ\Sﬁﬁ L1INN

X1

|
x
o

X2

X3

i x4
ISSue XLATE x5
v2 = 5x

X6
/ ONLY 5X SELECT

®s f f X7

Xi + X1—X7

. . o v 4 —o—-{1 [

o—0—0)

1SSUE Bj 80

11-6

?\—C\ i ' i iz0-7 ———-’E‘-p—»el--a'r :i

T B4

j=0-7
O [-L]

Bé

87

HON1
I HONI

/

L’?\U\ 2o 1]
- o 1T
ISSUE - OX ISSUE - OX

A0 A0

Y Al

Al —A7 A2

A3

A4

Set XBA A5

A6

Figure 5-5 A7

case of Q=0 the read flag is set directly, since that particular
register had not been reserved by another unit. Operands are
read only when both read flags are set.

RESERVATION GCONTROL

A unit reads its operands, computes, and stores its result after
its reservations have been placed. Scoreboard control directs the
read operand and store result action. The example used to
describe placing reservations is described further to illustrate
control operation.

In the example, an add instruction is issued to the add unit and
the necessary register reservations made. Before this, a multiply
instruction was issued to the multiply 1 unit, and this unit
reserved register X1 for its result. The add unit needs X1 for
its j operand. The add unit must wait for the multiply 1 result
and release of X1 before it can read X1. Scoreboard control
requires that both operands be available before a unit proceeds to
fetch them (discussed later).

Multiply 1 unit, when ready, requests scoreboard permission to
release its result to Xl1. Control determines that the data trunk
to X1 is all clear and signals multiply 1 to go store its result
in X1. Control then voids all multiply 1 reservations by clearing
the multiply 1 busy FF and the X1 designator in the X-B-A
reservation designators.

At the same time, all Q designators in the scoreboard are tested
to determine if any units are waiting for the result being stored
in X1. For our example, the test finds the add unit j operand
waiting for X1 and sets a corresponding read flag to indicate that
the j operand is now ready. The k operand has a similar flag.
Assuming the k operand read flag set (because its Q=0, thus no
reservation conflict), and the data trunk from the add unit to the
operating registers clear, control signals the add unit to go read
its operands. The add urnit reads its operands, computes, and
finally requests scoreboard permission to release its result to XO.
The request release sequence described earlier for multiply 1

then repeats. Note that several units may be waiting for X1 and
may read X1 coincidently. The number of simultaneous reads of a
given register relates to the assignment of data trunks from the
operating registers to the units (Table 5-5).

Release requests from units arrive at scoreboard control asynchronous
to other scoreboard action. Requests are immediately recognized and
processed in parallel with each other and other scoreboard action.

As noted, units share a number of data trunks connecting them to the
24 operating registers. A priority scheme on the data trunks
regulates their use and may produce a small delay in processing go
store and go read commands. Otherwise, parallel processing is

5-12

ALL CLEAR 8

TRUNK PRIORITY

FUNC. UNIT GATES

| @ DESIGNATORS qj ADD

i

Q TRANSLATORS
15 14 13 12 1117 16 07 06 05 04 03 02 Ol

00

REQUEST RELEASE
RELEASE

e]

[]

BOOLEAN ‘JI l'
[—-} ~
o —] .
MULT I ‘ll l 'é)\

FROM ALL CLEAR &
TRUNK PRIORITY GATES

A READ FLAG
OPERAND I
ADD UNIT BUSY»
GO READ -
\
[READ FLAG
OPERAND I

LONG ADD —’{ Il

HOPPER

M — X2

]
L]

M—> x3 ——A'l —_L'

e

e

Figure 5-6. Set Read Flags
Add Unit

as long as instructions are issued.

RELEASE

Circuit discussions begin with the unit '"request release' command
and continue with the scoreboard "go store" and '"go read" commands
and the circuits which control their production.

REQUEST RELEASE

The "request release" from a unit indicates the unit wants to
release its result to an operating register. The command is sent
several minor cycles before the result is actually ready; the
premature command allows scoreboard control to process the request
and determine the next in-line user(s). Timing permits a unit to
store its result and the next user(s) to read the result at a
slightly later time. The overall timing scheme from "request
release'", to a store and then a read on a register, is such that
one minor cycle elapses from the end of one unit's computation and
the start of a unit which is waiting for the result.

"Request release'" signals are stored in separate FFs to allow
parallel processing. Each "request release" is transferred through
an all clear gate and a trunk priority gate to a release FF, If
these gates can be made, the Release FF will set, sending a command
to the unit to transmit its result. The next user is also
determined at this time and told to go read its operands.

ALL CLEAR

The "all clear" gate gives all units (which have been issued
instructions) the opportunity to read a register before another unit
stores its result in the register. This read-before-store condition
arises because one or more instructions which call for reading a
given register may be issued before an instruction which calls for
storing in the same register. However, varying execution times of
the units (and other factors, for example trunk priority) permit the
unit executing the last instruction issued in a series to be ready
to store its result before previously issued instructions have
finished reading the register. The all clear resolves this conflict.

Earlier discussion pointed out that each entry operand for a unit had
a read flag which, when set, indicated that the register associated
with the operand was ready to be read. Both entry operand registers
must be ready and their flags set before reading starts (flag set
conditions are described later). Hence, one set flag for a unit
indicates that the unit is waiting for its other operand register to
become available; both flags set indicate reading in process.

5-14

¢I-¢

(TIME - NSEC) (0) (100) (200) (300)
(o ’ 0 0

| 0 0 0
Ul >z I
u2 —> SCBD]—_1
UNIT REQUEST _|] |
I
UNIT BUSY | |
F- DESIGN [tio F 8 Q DESIGNATORS
WILL BE CLEARED
Q-DESIGN |1||5 WHEN A NEW
INSTRUCTION
SELECTS THIS
XBA - DESIGN [tios L UNIT
READ FLAG] | {IF Q=0)
\ ,
GO READ FF | 57 |
GO READ TAG (OP REG) [] ‘
GO FUNCTION UNIT]

REQ. REL. (FROM F.U.)

REQ. REL. FF

RELEASE FF

3WIL NOILVLNAWNGD 'Nd

\lr—-\.r-‘

[L
[]
[] | (IF ALL CLEAR)
[1

TRANSMIT (TO F.U)

GO STORE (CH. 7/8) |

[]

(ASSUMING NO CONFLICT)

SCOREBOARD TIMING

(SET F, Q, XBA DESIGNATORS ECT)
Figure 5-7

Either case voids the all clear condition and delays release.

The all clear condition tests read flags against the register
receiving a result. Some units, like the add, communicate only
with X registers and in these cases read flags related to A or

B registers are not tested. However, the increment units may
communicate with X, B, or A registers so that all read flags must
be tested. Table 5-4 lists units and read flags tested for all
clear conditions.

FUNCTION READ FLAGS
UNIT X |B|a
ADD X
LONG ADD X
MULTIPLY 1 X
MULTIPLY 2 X
DIVIDE X
BOOLEAN X
SHIFT X | X
INCREMENT 1 X |X |X
INCREMENT 2 X |x |X
Table 5-4

DATA TRUNK PRIORITY

a) Go Store Priority

After the Request Release FF of a given unit is set, an AND gate

with All Clear, Trunk Priority and Request Release input will
allow the Unit Release FF to be set, sending out a Go Store
signal e.g., the AND gate of the Multiply 2 Request Release
looks like this:

ALL CLEAR
(MULT, 2)REQUEST RELEASE SET RELEASE FF (MULT,)

“ MULT, I REQ. RELEASE
DIV. REQ. RELEASE

5-16

L1-6

READ FLAGS

NCR T X (")
] Fi INCR I
INCR. T X;
J r} INCR. T
SHIFT xy F————0)
Fr SHIFT
x|
BOOLEAN Fj ~ sooL
* [BOOL
k .
X —
DIVIDE J Fj DIVIDE
** ¥ DIVIDEjO
k
MULTIPLY T) Fj mut1
x ———
k[Fe muT
N
muLTipLYm) | Fj MuLT.O
Xk TF wu
Kk LT. O
X Fi LONG A
LONG ADD i :
|
k Fi LONG A,
Xj Fr ADD
ADD j
*k ADD
k
Bj I h
INCR. 1 Fi INCR 1
B —
K F IncR T
B =0
INCR. T ! Fj INCR. I
Bk "¢, incr o
K .
SHIFT B —
) Fi SHIFT -
INCR. I Aj ————-—/;O h
F,‘ INCR. I —_—_—

INCR, I Ai

FJ' INCR. O

Mt

INCR.1 Fj=I
INCR T Fi=1
SHIFT F; =t
BOOL Fj=t
OIVIDE Fj=I
MULT. I Fi=l

MULT. I Fi=|

LONG A Fj=!

ADD Fj =i

w
o

o
~

AT

GO READ,
CLEAR XBA,

> GO STORE,
TRANSMIT RESULT,
CLEAR UNIT BUSY.

x1 X s
X0
C X0 -X7 RELEASE
2 m]ﬁ aL | _B1-87 INCR. I
3" (a4 CLEART ao0-a7
REQU. REL.
X0 -X7
BI-B7
| RELEASE
AO-A7 » INCR I
REQU. REL. |
X0 -X7
_Bo-B7] RELEASE
p— SHIFT
UREL. |
X0-X7 RELEASE
REQU. REL | BOOLEAN
X0 X7 RELEASE
_REQU. REL.__ [DIVIDE
X0-X7
RELEASE
REQU.REL. | ‘wmuLT 1
X0 -X7 RELEASE
REQU REL. | 'muLT 2
X0 ~-X7
RELEASE
REQU. REL. | LONG ADD
X0 -X7 RELEASE
REQu. REL. | ADD
Xt
RELEASE
REQU. REL. | MEM xI
x2
B e ———
RELEASE
REQU. REL. | “meM. x2
X o Release
REQU.REL.___| "MEM.X3
x4
— e -
RELEASE
REQU. REL. > MEM. X4
X5
———R—-—" RELEASE
REQU. REL.] MEM X5
Figure 5-8. All Clear

This means that the Multiply 2 unit (Priority 3) can only be
released if Divide unit and Multiply I unit are not requesting

release.

An exception is the Increment I and II units which have

the priority gate at the output of the Release FF (I32); (see

Set Read Flags block diagram, Figure 5-6)

b) Go Read Priority

The outputs of the Read Flags of a given unit are ANDed together
with the output of the Read Flags of another unit e.g.

ADD BOTH RF SET

LONG ADD BOTH RF SET

GO STORE/GO READ

GO READ

SHIFT BOTH RF SET

DATA TRUNK PRIORITIES

G0 read GO store
1. ADD I SHIFT
2. SHIFT 2, ADD
3. LONG ADD 3. LONG ADD
I. DIVIDE l. BOOLEAN
2. MULTIPLY | 2. DIVIDE
3, MULTIPLY 2 | 3. MULTIPLY |

4. BOOLEAN

4, MULTIPLY 2

. INCREMENT |

l. INCREMENT |

2. INCREMENT 2

2. INCREMENT 2

Table 5-5

> TRUNK |

<

r TRUNK 2

2
} TRUNK 3

The following discussion refers to the block diagram in Figure

5-10:

Assume that Functional Unit X is sending a Request Release
setting its Request Release FF,.

If the All clear and Go Store
Priority is made, the Unit Release FF will be set.

5-18

The outputs of the Unit Release FF will do the following:

1. Clear Request Release FF

2. Clear Unit Busy FF

3. Enable the F; (Result) designator to clear its respective XBA
designator.

4. A "go store' signal enables the contents of the Fi register
into the Entry Control specifying the register into which the

P PURYiS SR 1 Ve D
result of the releasing unit must be stored. Another "Go

store'" signal is sent directly to the Entry control to allow it
to recognize the F; input.
5. A "transmit" signal is sent to the Functional Unit telling it
to release its result.

Once the releasing unit has stored its result it is free to start a
new computation. If there are units waiting to read this result
register after the result is stored, their Q designator(s) will
contain the unit code of the releasing unit.

These Q designators would then set their respective Read Flags. If
both Read Flags are now set for the waiting unit, its go read
priority is checked. If there is more than one waiting unit with.
all its read flags set, the priority gate will allow the unit with
highest priority to go and read its operands as follows:

a) Clear Read Flags

b) Set Go Read FF to inhibit entrance to the read flags during the
read sequence.

c) Send an enable to the outputs of the F; and Fk designators to
transfer the contents to the Exit Control of the Operating Regs.

d) Send a "Go Read" to the Exit Control to allow it to recognize
the register numbers being sent by the F designators.

e) Send a "Go F.U." to allow the unit to accept the incoming
operands.

Waiting units can therefore be identified by the set state of their
Busy FF and a cleared Go Read FF.

Note that the time elapse from a unit's request release to placing
the result on the trunk may be within a minor cycle when the all
clear is present at reyuest release time and trunk priority favors
the requesting unit.

5-19

0c-%

INSTR. 40 (MULT.) X1 + X2 —=X3

INSTR. 30 (ADD) X3 + X1 —= X4

INSTR. 36 (LONG ADD) X1 + X2 —= X1

INSTR. 12 (BOOLEAN) X4 + X4 —>X3

INSTR. 36 (LONG ADD) X2 + X2 —»X4

0 1000 2000 (NSEC)
L i } ' ' } I } ! [| 4 1) t ! $ 1 ! TO |) }]
r T L] T T T T v v T | |) v L Ll L 1] T | T |
. APPROX. COMPUTATION TIME !
! 1

(WAIT TO READ X3 | BECAUSE: [@#0]

WAIT TO RELEASE
RESULT TO X1

EFORE X1 IS READ.
—fe o AL = BECAUSE: [Q # 0]

I FOR X, - +————— BECAUSE: [Q#0]
e — — — ——— — — — — e
ek v
UNIT RESULT REG.
CONFLICT CONFLICT
Y Y Y Y F&———NO SCBD ISSUES—>

LA
\\SCOREBOARD ISSUES

APPROX. INSTRUCTION EXECUTION TIMING
Figure 5-9

1¢-¢

REQUEST RELEASE RESULT
6O STORE TRANSMIT
TRUNK OPERANDS
PRIORITY
REQUEST UNIT ,
RELEASE - RELEASE [—» CLERR UNIT G0 _STORE
FF ¥ FF ' -~
ALL CLEAR
T CLEAR]
@ Fi S
o
im
c
A
<BA L« CLEAR
——1 ENTRY
CONTROL
TAG 8
-’
Fi TAG WfexiT
SET READ oo REap L CONTROL OR
Qj TEST Q FLAGS [~ | REGS.
3 ! GcoREAD
; CLEAR TRUNK GO READ
e PRIORITY h7es
» GATE .
(=]
;&
TAG
Qg Fy ; |
UNIT BUSY GO READ

REQUEST RELEASE BLOCK DIAGRAM

Figure 5-10

CHAPTER VI

EXIT/ENTRY CONTROL AND DATA TRUNKS

=

ENTRY EXIT
TAGS TAGS
EXIT/ ENTRY | REGISTERS
REGISTERS
ROL i -
“ o 4 4 p—
X &7 * ADD
EggT 24 BO 24— SHIFT
LADD C) L ADD
BOOL R I R MPY
DIV 0 O i—— My I
MPY I S S
MPY I s B7 S pook
s A0 B
INC I A A *} e
INC I R d I INC IL
CHANNELS PROCESSORS l / A7
INSTRUCTION RESERVATJON
— (X::'?ggl.‘ (Sat)nﬂ%)

=

| LONG ADD
| B
REGISTER BOOLEAN
CENTRAL CENTRAL
MEMORY MEMORY
CONTROL

x

MULTIPLY 1

X
KEGIBA
S,

B T

~mazm

CONTROL

INCREMENT 11

=z

TP

i

CHAPTER VI

ENTRY/EXIT CONTROL AND DATA TRUNKS

ENTRY CONTROL

FOR X REGISTERS

The data from the different F.U.s and Central Memory are received
by the Input Registers on Chassis 7 and 8 (e.g. Ch. 7: A37, B37,
C37, H37, etc. Ch. 8: A0l1-08, BOl-05, DO1l, etc.)

The "Go Store'" signal will enable the contents of the F designator
into the Translator of the Entry Control to decide into which
register the data is to be stored (Refer to Figure 6-1). For the
Increment Unit the Input Reg only receives 18 bits, therefore the
217 bit (Sign Bit) is used to fill up the bit locations 218,259 in
the X register (Sign Extension). For those instructions that need
a memory reference, the address tags are taken from the Hopper and
translated to gate the contents of the Input Reg into one of five
Buffer Register D1-D5 correcponding to X1-X5. Another translation
of these tags, together with an Accept will allow the setting of
one of the Request Release FF for Memory Ch. 1-5. Once the All
Clear gate is made, the Release FF for the selected Memory Channel
will be set, allowing the setting of the corresponding D-X FF.

The data is now gated from the Buffer Registers into the X
operating registers. Bits 20-235 of the X registers are on Ch. 7,
the 236.259 on ch. 8.

For an Exchange Jump, the tags from the Exchange Tag Control and
the Exchange Tag (1 bit) from the Hopper (M2) together with an
"accept" will gate the data from memory into its respective X
register.

FOR A, B REGISTERS

The same applies here that has been said about the X registers
(see Figure 6-2) except that A and B registers contain only 18 bits.

EXIT CONTROL

The "Go Read" signal from the Test Trunk Priority network will
enable the contents of the Fj- and Fy - designators into the
Translators of the Exit Control. This specifies the transfer from
a particular X, B or A operating register to a particular functional
unit. The Fj’k-designators are combined into 9 different groups.
These can be seen in the block diagram of the Exit Control (Figure
6-3)

6-1

¢-9

1-9 @2and14g

*s89y X ~ 10a3uon Lijug

F DESIGNATOR

INPUT REG GO STORE
XLATE RESULT REG NO. taDD, L aDD, SHIFT)
DATA
FROM F.U,
(apo, L.apDd, @D >/
SHIFT)
60 BITS
¥ F DESIGNATOR OPERATING REGS
INPUT REG XLATE RESULT REG NO. |<— 60 STORE
(MULT., DIV, BOOL)
DATA
FROM F.U. \/}\ L Xo-Xx7
(MuLT., D1vIDE, @ _/
BOOLEAN)
60 BITS
INPUT REG EXCH TAGS
DATA GNATOR
FROM F.U. (D— F DES!
(INCR 1 +2) I8 BITS 60 STORE
EXCH TAG [s1en ExT] [xLaTE RESULT REG NO. CneR 2
FROM M2+ ACCEPT
P
DATA INPUT REG
FROM CENT. ((D— o= > X0 — X7
MEM
BUFFER REGS
Dl
60 BITS) > >() > X1 —X5
, 7\T b2 ’\TJ
p3
[XLATE RESULT REG NO.] Dl — X1
D4 02 — X2
— 03— X3
HOPPER TAGS o) DS Dy — X4
BIT 0-2 > D5 — X5
Y FF'S
TAG IX (CENTRAL TAG)
SET REG. SET
HOPPER TAGS >) RELEASE RELEASE FF
BIT 0-3 MEMORY MEMORY
1 -5 1—5
ACCEPT ALL CLEAR

€9

*7-9 2an8ry

*s8s9y Vv ‘g - 1013u0n Lajuy

EXCH TAG
FROM M2-ACCEPT

T\

L.

INPUT REG
DATA
From MEeEMory &
INPUT REG
DATA
FROM F.U.
(INCR | +2)
INPUT REG
DATA
FROM F.u. @D—
(SHIFT)
I8 BITS

EXCH TAGS (8 NEG)

F DESIGNATOR

[XLATE RESULT REG NO.[=— SOSTORE |

’ J
XLATE RESULT REG NO.]‘— GO STORE

XLATE RESULT REG NO.}‘P—

(INCR 1 +2)
L——-—— F DESIGNATOR
EXCH TAGS (A REG)

GO STORE
(SHIFT)

F DESIGNATOR

~

OPER REGS

BO
B

B2
B3
B4
BS
B 6
B7

(18 BITS)

AO
Al

A2
A3

A4

AS5

A6

A7

The Fj k-designators from the same group will use the same Network
to gate the contents of the XBA Operating Register into the F.U.
However, in every group there is also a 'go" bit from the Test
Trunk Priority network. These bits will help gate the data to the
proper part of the Output Network.

The Output Network and the data trunks to the functional units are
grouped to correspond generally with the F; j designator groupings
(e.g., Operands 1 of Divide, Multiply 1, Muitiply 2 and Boolean use
the same data trunk).

During an Exchange Jump, the contents of the XBA Register are
transmitted to Central Memory. The tag that controls this transfer
comes from the Hopper M4 of the Stunt Box. Only the lower 4 bits
of the Hopper tag are sent to the Exit Control network.

The 3 lower bits are translated to determine which of the 7 X, B or

A Registers will be gated to Central Memory. When the 23 bit is

zero (6X) the contents of the B-Operating Registers are gated into

the lower 18 bits of the Output network going to the Store Distributer.
Simultaneously the contents of the A-Operating Registers are gated
into bit positions 218.235 of the Output Network. When the 27bit.is
one (7X) the contents of the X-Registers will be gated to Central
Memory via the Output network. :

For a Central Processor Write (X6 —» CM or X7—>CM) a situation
exits which is similar to that described previously for Exchange Jump.
The Hopper tag (16 or 17) will gate the contents of Operating Register
X6 or X7 to Central Memory via the Output network. ‘

Note: The B and A registers are located on chassis 7 along with
bits 0-35 of the X registers. Bits 36-59 of the X registers
are located on chassis 8, Therefore, all tags and designators
must be sent to both chassis 7 and 8.

DATA TRUNKS

Four Data Trunks (shown in Figure 6-5) transmit the 2 Operands from
the output network of the XBA-Operating Register to the proper
functional unit. Data is also transferred on trunks to Central
Memory. Four other Data Trunks transmit the result from the
functionl trunk and data from Central Memory to the Input Register
of XBA-Operating register.

Data Trunk 1 connects the output network of the XBA-Register to the
Long Add, Add and Shift functional units. There are 60 bits of
coaxial cable for transmitting Operand 1 and 60 bits of cable, for
Operand 2.

64

\i L R
EXIT CONTROL

c-9

Fj DESIGNATORS SET ¥, - DESISHATORS
|
~
- ~ w - ~ - - g -
- o 3 H "
« [o = [- « [3 4 - - Lo a
] ¢ E 81213138 =< READ FLAGS ¢l ¢ § 513381 <|3 STUMT BOX
- - - - «
3 o a =2 2 < 4 a] a2] " HOPPER TAG
Ma
e TEST TRUNK il el el el el Bl Hal Mol i
: PRIORITY
WAITING UNIT
3] o [
<«
[
[3
O
o
|eo 22 21 20 ilco 22 3! 20 | igo 22 z‘gol [6o 222! 20_] Go 222! 20 ioozz 2! z°] Ieo 22 21 20 Ieo 22 2120 i Go 222! 20 | 2322 9! ,oi
[-) B
- e - 2
—_ - - - w—e < —~ w-e
- = — - Oyt —] L] E -«
cows— 18§ S8 E 0 3 <2338 *|q2 “188 <3338 |ebe
£z zz zz & ax3e as = case aito ouTPUT
<« «nd ® NETWORK
-
XBA OPERATING r - \%——p o
REGISTER A "
X8 |
° LY 3 STORE -
H DISTRISUTOR
& . > 2
X0-x7 -3 L °
3 (8) i .
o, S (A) INCR)
59 - (14 INCR 2
)
[}
° » +3 X
INCR |
17 INCR 2
BO-B7
)
25 (X)
17 i i
DIVIDE
59 MULT
MULT 2
5 BOOLEAN
° 9. { T
—& X
BT
A0-A7 L1 MULT 2
BOOLEAN
J() [
-0
7 »& | I I —
>0-
SHIFY
3 LONG ADD
[
(x)
N, K
SHIFT
1] LONG ADD

Figure 6-3

T T

X0 X X2 - X7 80-87 AO — A7
(60~ BIT) | (60-BIT)

OPERATING X0 +X1
2°] REG ISTERS (FROM HOP-

X2#X3 X4+X5 160 (FROM HOPPER M4: 2> BIT)

(1}

X0+X1
(F - DES.)

HOPPER TAG M4 (Q

ADD
X; SHIFT
LONG ADD
8

F. ADD
§ Lone app Q

INCR |
3] . INCR 2
'Y
J
Fj ‘j
ADD
Fy SHIFT Q
LONG ADD
ADD
SHIFT
Xy LONG ADD
DIVIDE =
MULT |
Fk wmur 2 O
BOOL
DIVIDE
Fi woLT 2 DIVIDE
i MULT 2 ime
BooOL XK MULT 2
B8OOL
GO- (X8+X7)
GO -(X0+X1)
DIVIDE
MULT |
. Xj MULT 2

Go'(““‘”f / sooL

Figure 6-4. Operating Reg., Exit Control

6-6

Data Trunk 2 connects the output network of the XBA-Registers
to the Divide, Boolean, Multiply 1 and Multiply 2 functional
units. The lower 48-bits of the operands go via chassis 6
(Multiply 1 and 2) to chassis 2 (Divide and Boolean). The
upper 12-bits go directly to chassis 2 from EXIT Control and
are not sent to chassis 6 (except bit 239) which contains
only the Multiply coefficient logic.

The results coming from the functional units and the data
coming from Central Memory will be transmitted by Data Trunks
1', 2' 3', and 4' to the Input Register of the Entry Control
network.

6-7

8-9

CH 7,8

DATA TRUNK 4

?' OPERAND

DATA TRUNK 3

A

/= OPERAND
o

x
[3
[
:
TR ¥ OPERAND 2
CONTROL
£ —9
e DATA TRUNK 2
3 @ OPERAND |
OPERAND 2
@
DATA TRUNK |
@ OPERAND | OPERAND | cHe
€0
OPERAND 2
CH CH B
o z
XBA 2 g : - ~ : :
OPERATING S 3 - -
REGISTER 2 s 8 3| 3 £ 2
o [E E] - -
-
READ DISTR
RESULT RESULT
®-
DATA TRUNK I'
RESULT
—®
« RESULT
:e .
ENTRY 5 DATA TRUNK 2
CONTROL H
w
x
5
5 o) —NESULT
z ' T\
= DATA TRUNK 3
- &
DATA TRUNK 4 4

Figure 6-5.

Data Trunks

APPENDIX A

CENTRAL PROCESSOR TIMING NOTES

6600 CPU TIMING NOTES

The times given in the reference manual are computational times -
the time needed after the execution start until the result is
computed and ready to be stored into the result register. Times
are given in minor cycles (1 minor cycle = 100 nanoseconds) .

A functional unit can not be reissued until one minor cycle after
it has been released. (Result is stored by Entry Control during the
minor cycle after release)

A result register value may be used as an operand to another instruc-
tion as soon as the result has been stored into the register (same
minor cycle). This result register will not be freed for use as a
result register of another instruction until one cycle after the
result has been stored into that register. (No trunk priority is
considered.)

Instructions are issued to the functional units if:

a. The word containing the instruction is in the stack.
b. The functional unit(s) needed are free, and
c. The result register(s) needed are free.

If these conditions are not met, all further instruction issues are
held until they are satisfied. Each issued 15-bit instruction requires
one minor cycle before the next instruction is available for issue.

"Each issued 30-bit instruction requires two minor cycles before the

next instruction is available for issue.

Execution within a functional unit does not start until the operand(s)
are available. The two operands required are fetched from the
registers at the same time (one operand is not loaded while the unit
waits for the second operand).

In instructions 02-07, where more than one functional unit is used, the
instruction is not issued until both functional units involved are free.

Times given for instructions 01-07 and 50-57 do not consider any memory
conflict conditions.

In instructions 50-57, if i=l, 2 ... 5 (load from memory instructions),

the Xi register value is not available until 8 minor cycles after the

start of the instruction execution (assuming no memory conflicts). When

two load instructions begin execution one minor cycle apart at least one extra

A-1

10.

11.

12.

13.

14,

minor cycle is required for execution of the later instruction. There-
fore the second executed instruction would require 9 cycles for the
load, 4 cycles for the increment unit and 4 cycles for the A register.

In instructions 50-57, if i = 6 or 7 (store to memory instructions), the
Xi register is not available for a result register until 8 minor cycles
after the instruction begins execution (assuming no memory conflicts).
When two store instructions begin execution one minor cycle apart, one
extra cycle is required for execution of the later instruction. There-
fore, the second executed instruction would require 9 cycles for the
store, 4 cycles for the increment unit and 4 cycles for the A register.
A store instruction checks the X register before being issued. The X
register is available as an entry operand register while the store is
taking place.

When executing sequential instructions that are not in the stack, the
minimum time is one word of instructions every 8 cycles. The time of
issue of the last parcel of an instruction word to the time of issue of
the first parcel of the next instruction word (while executing sequen-
tial instructions that are not in the stack) requires a minimum of &
cycles. If the last instruction in a word is a 30-bit instruction, a
minimum of 5 cycles are required from the time of issue of this instruc-
tion to the time of issue of the first instruction of the next word.

All 03 branches made within the stack require 9 minor cycles. An 03
branch to the next sequential word is recognized as a branch within
the stack and requires 9 minor cycles.

When a branch out of the stack is taken, 15 minor cycles are normally
required for an 03ijK instruction and 14 minor cycles for other branch
instructions (considering no memory conflicts), timed from the start
of the branch instruction execution to the availability of the branch-
ed-to word instruction to a functional unit (instruction ready for
issue).

Eleven cycles are required for the 03ijK instructions when the branch
is not taken (time from branch execution to issue of the next instruc-
tion) if in the stack or if falling through to an instruction within
the same word. Out of stack fall-through to the next word takes 14
cycles.

Ten cycles are required for 04ijK - 07ijK instructions when the branch
is not taken (time from branch execution to issue of the next instruc-
tion) if in the stack or talling through to an instruction within the

same word. Out of stack fall-through to the next word takes 13 cycles.

16.

17.

18.

19.

20.

21.

The BO register is handled like any other Bi register for timing purposes
(i.e., BO will hold up execution of an instruction if it is a result
register of a previous, non-completed instruction, etc.).

Neither increment unit may be involved in a load operation if a store

operation is to be issued, and neither increment unit may be involved

in a store operation if a load operation is to be issued. The sequen-
tial loading of instruction words does not affect the load/store con-

ditions of the increment units.

The operand registers are available to more than one functional unit
in the same minor cycles if the units are in different groups.

GROUP 1 GROUP 2 GROUP 3
Divide Add Increment 1
Multiply 1 Shift Increment 2
Multiply 2 Long Add

Boolean

The time needed for a functional unit to operate on indefinite, out-of-
range or zero values is the same as for normal, in-range values (i.e.,

no gain or loss in execution time due to a unit recognizing an indefinite
operand and setting an indefinite result).

An index jump instruction (02) will always destroy the stack. If an
unconditional jump backward in the stack is desired, an 0400K instruc-
tion should be used (to save memory access time for instructions).

A return jump instruction (01) will always destroy the stack.

After a result has been computed by a functional unit, the result register
is checked to see if it has been reserved as an operand register (for a
previously issued instruction). This is done so that the result will not
overlay an operand to a previously issued instruction. If a unit (#1) is
waiting for an operand to be fetched by another unit (#2) before storing
its result, for timing considerations:

a. The result register is available to a third unit (#3) as an
operand, the cycle following the fetch, and

b. The register may be available as a result register two cycles
following the fetch, and

c. The unit is freed two cycles following the fetch.

A-3

APPENDIX B

NON-STANDARD OPERAND FORMS

NON-STANDARD FLOATING POINT ARITHME TIC

The following is ‘a tabulation of operations (Add, Subtract, Multiply, Divide) using various
combinations of operands to supplement Table 3-3 (page 3-13). The key io operands and
results used in the table is as follows:

KEY:
OPERANDS RESULTS
+0 = 0000 X...X 0 = 00000...0
-0 = 77177 X...X IND = 17770...0
+ @ = 3777X...X + © = 37770,..0
- = 4000X...X - o = 40000,..0
+IND = 17M7X...X
-IND = 6000X...X
W = Any word except +® , *IND
N = Any word except +® , *IND, or +0
-ADD
Xi=Xj+Xk
{Instructions 30, 32, 34)
Xk
w +@® - +IND
w - + o - @ IND
X +® + IND IND
-® @ - IND
+IND IND
SUBTRACT
Xi=Xj-Xk
(Instructions 31, 33, 35)
Xk
W + @ - +IND
w - - + IND
Xj + @ +o IND +® IND
-0 | -® -© IND IND
+IND IND IND IND IND

B-1

MULTIPLY

Xi=Xj*Xk
(Instructions 40, 41, 42)
Xk

+N -N +0 -0 + - @ +IND

+N - - 0 0 +@ - IND
-N - 0 0 - +® IND
+0 0 0 IND IND IND
Xj -0 0 IND IND IND
+® +® -® IND
-0 +@® IND
tIND IND

DIVIDE
Xi=Xj/Xk
(Instructions 44, 45)
Xk

+N -N +0 -0 + - +IND

+N - - +®0 - 0. 0 IND
-N - - - +® 0 0 IND
+0 0 0 IND IND O 0 IND
Xj -0 0 0 IND IND O 0 IND
+ @ + @ -© +@® - IND IND IND
- - + @ -® +®@ IND IND IND
+IND IND IND IND IND

IND IND IND

B-2

Address:

COMMENTS :

COMMENT SHEET

6600 CENTRAL PROCESSOR, Volume 1

Publication No. 020167

(Describe errors, suggested additoins or deletions, and include
page numbers, etc.)

CONTROL DATA INSTITUTE

3255 Hennepin Avenue So.
Minneapolis, Minnesota 55408
612-827-4715

CONTROL DATA INSTITUTE

5630 Arbor Vitae Street
Los Angeles, California 90045
213-670-3640

CONTROL DATA INSTITUTE
3717 Columbia Pike
Arlington, Virginia 22204
703-521-3700

CONTROL DATA
[coReomATioN

CORPORATION

	000
	001
	002
	003
	004
	1-001
	1-002
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	2-001
	2-002
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	3-001
	3-002
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-001
	4-002
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	5-001
	5-002
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-001
	6-002
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-001
	A-01
	A-02
	A-03
	A-04
	B-001
	B-01
	B-02
	replyA
	xBack

