CONTROL DATA INSTITUTE et

CORPORATION ’

6600

CENTRAL
PROCESSOR

Volume II
FUNCTIONAL UNITS

6600 CENTRAL PROCESSOR

Volume 1II

Functional Units

FOR TRAINING PURPOSES ONLY

This book was compiled and
written by members of the
instructional staff of

CONTROL DATA INSTITUTE
CONTROL DATA CORPORATION

Publication Number
60239700

History: Former publication number 091466.

Copyright 1966, Control Data Corporation
Printed in the United States of America

FOREWORD

This manual is intended to serve primarily as a reference text for the logic
analysis of the 6600 Central Processor Functional Units. During the course
of study, the 6600 Central Processor Customer Engineering Diagrams and Wire

Tabs should be used as additional reference materials.

The student's thorough knowledge of the following related areas is assumed:
1) 6600 system concept, 2) numbering systems and Boolean Algebra, 3) 6000
Series logic circuits, &) 6600 Central Processor instruction repertoire and
formats and 5) 6600 Central Processor Control and Central Memory logic op-
eration. Information on these subjects can be found in other 6000 Series

publications,

The manual is divided into eight sections, each of which deals with one of
the eight 6600 Functional Unit types. Two appendices are provided; one deals
with 6000 Series floating point arithmetic and the second with the Non-standard

operand forms generated by the functional units.

In many cases, the vast amount of logic circuitry utilized prohibits discus-
sion of every detail in the logic. Consequently, great emphasis has been
placed on presenting the '"concept" of a particular logic circuit. Then, a
"representative! analysis of the logic is made. In discussing an adder, for
example, an explanation of the purpose of various adder sections is followed
by a detailed logic analysis of one adder stage. Since the remaining stages
alysis is left to the studen
basic concept in mind, should be able to prove the operation of any stage by
use of the wire tabs. "Gaining the concept!" cannot be over-stressed when

learning a computer system with the magnitude and complexity of the 6600.

iii

SECTION

SECTION

SECTION

7.1

7.2

7.3

BOOLEAN
7.1.1
7.1.2
7.1.3
7.1.4
7.1.5

7.1.6

SHIFT
7.2.1
7.2.2

7.2.3

7.2.7
7.2.8

7.2.9

LONG ADD
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5

7.3.6

TABLE OF CONTENTS

Introduction
Instruction List
Mode Bits
Timing Sequence
Boolean Network

Glossary of Logical Terms

Introduction

Instruction List/Data Flow
Mode Bits

Timing Sequence

Shift Direction Control
Shift Network

Normalize Network

Bj Ones Test Network

Exponent Adder

Introduction

Instruction List/Data Flow
Mode Bit

Timing Sequence

Adder

Branch Tests

11

14

21

25
28

37

44

47

53

55

38

69

73

77

79

82

SECTION 7.4 ADD

7.4.1 1Introduction

7.4.2 Instruction List / Data Flow

7.4.3 Mode Bits

7.4.4 Timing Sequence

7.4.5 Exponent Circuitry

7.4.6 Right Shift Network

7.4.7 Coefficient Adder

7.4.8 Overflow / Indefinite / Infinite
SECTION 7.5 MULTIPLY

7.5.1 Introduction

7.5.2 1Instruction List / Data Flow

7.5.3 Mode Bits

7.5.4 Coefficient Timing Sequence

7.5.5 1, 2, 3, Times Multiplicand (Xk)

7.5.6 Three Level Adders

7.5.7 Six Bit Adders

7.5.8 Merge

7.5.9 Fifteen Bit Adder

7.5.10 Exponent Timing Sequence

7.5.11 Exponent Adders

7.5.12 Exponent Test Result

7.5.13 Exponent Output Network

vi

97
100
106
109
112
125
128

132

139
160
165
176
187
203
223
227
232
234
239
248

253

SECTION 7.6 DIVIDE

7'6‘1

7.6.2

7.6.3

7.6'4

7.6‘5

706.6

7.6.7

7.6.8

7.6.9

Introduction

Instruction List / Data Flow
Mode Bits

Quotient Timing Sequence

1, 2, 3 Times Divisor (Xk)
Subtract Xk from Xj

Quotient Output Network
Exponent Adders

Population Count Control

7.6.10 Population Count Network

SECTION 7.7 INCREMENT

7.7.3

7.7.4

7.7.5

7.7.6

SECTION 7.8 BRANCH

7.8.1

7.8.2

7.8.3

Introduction

Instruction List / Data Flow
Timing Sequence

Adder Control

Adder

Branch Tests

Introduction
Instruction List

Timing Sequence

vii

280

286

293

297

300

310

314

336

353

360

367
372

379

7.8.4 In-Stack/Out-Stack Tests
7.8.5 Unconditional and Return Jumps
7.8.6 No Branch Sequence
7.8.7 Loop Sequence
7.8.8 Jump Sequence
Appendix A - 6000 Series Floating Point
Appendix B - Non-Standard Operand Forms

viii

390

404

409

410

412

Al

Bl

SECTION 7.1

BOOLEAN

FUNCTIONAL UNIT

BOOLEAN

FUNCTIONAL

UNIT

from
REG.
CH.

BOOLEAR

MULTIPLY 1

MULTIPLY 11

T

X]

mHooR

T
Pt

BOOLEAN
NETWORK

GO

1

TIMING CHAIN

INCREMENT 11

CENTHAL
Pi
DATA PERIPHERA . ROCESSOR
CHANNELS PROCESSOR’3 l
INSTRUCTION RESERVATION
1SSUE CONTROL
—— CONTROL (SCOREROARD)
E] 10
Ll
[k &
X REGISTER
G & L |
: TR CENTRAL w [B NE
e " HeroRY 1| r
A CONTROL $p
v J
s CONTROL
Cofe— ¢
1
T
b c
H
[t

?;

|

=W |

HHER X

XMIT.

from

REQ.REL.

SCBD

to

SCBD

BOOLEAN FUNCTIQNAL UNIT

INTRODUCTION

The Boolean Unit is the least complex of the ten 6600 functional units

and therefore is the first one discussed in this chapter. 1Its concept

is relatively simple, yet representative of other functional units. Hence,

a thorough comprehension of functional unit principles can be grasped at this

point and will make the study of the remaining units less difficult.

The Boolean Unit is a 60-bit, 300 nanosecond unit which performs the

logical operations required by instructions 10 through 17 as follows:

10 TRANSFER Xj to Xi

11 LOGICAL PRODUCT of Xj and Xk to Xi

12 LOGICAL SIM of Xj and Xk to Xi

13 LOGICAL DIFFERENCE of Xj and Xk to Xi

14 TRANSFER Xk COMPLEMENT to Xi

15 LOGICAL PRODUCT of Xj and Xk COMPLEMENT to Xi

16 LOGICAL SUM of Xj and Xk COMPLEMENT to Xi

17 LOGICAL DIFFERENCE of Xj and Xk COMPLEMENT to Xi

The Unit is a very basic arrangement of the following components (Refer

to the Block Diagram, Figure 7.1-1)

a) two 60-bit input registers

b) a 60-bit result register

¢) five mode bits with translators
d) a timing chain

e) a Boolean network

INPUT
REGISTER
59
RESULT
7\
Xie " { fﬁb ﬁ\\\\\ REGISTER
0
Enable BOOLEAN T0
True or NETWORK REGISTER
Comp lement CHASSIS
39 (7 & 8)
Xj —t——— 60)
0 ENABLE
1. Product
MODE 2. Sum
BITS 3., Difference
4. Transfer
O ™ TRANSMIT
Ug fm | - from
TRANSLATION SCBD
F
GO REQUEST
BOOLEAN RELEASE
SCBD nsec nsec nsec SCBD

THE BOOLEAN FUNCTIONAL UNIT
Figure 7.1-1

Of these components, the Boolean Network is the unique one. A single GB
module contains all the circuitry needed to perform the four logical
functions - product, sum, difference and transfer - for three bit positions.
Thus, the entire network is embodied in twenty modules (.25% of the total

8000 main frame modules).

The Boolean unit shares data trunk #2 with the Multiply I, Multiply II and
Divide units and uses only X registers as source and result registers.

It holds last priority on the source operand data trunk and first priority
on the result data trunk. It should be noted that bits () through 47 of
source operands and results travel to and from chassis 2 via chassis 6,
while bits 48 through 39 travel directly between chassis 2 and the register

chassis. (See Figure 7.1-2)

Chassis
6
(0 - 47) (0 - 47)
Chassis Mpy I Chassis
7 & 8 (48) Mpy II (48) 2
(Operating |e {ig} Divide
Registers) Boolean
(48 - 59)
FIGURE 7.1-2

This occurs because the Multiply coefficient logic (bits 0 - 47) is located
on chassis #6 while the exponent logic is on chassis #2 along with Boolean
and Divide logic. Consequently, bits 48 through 59 need never be sent to
chassis #6, and since no timing problems are encountered, the direct route

was selected.

As with all functional units (excepting Branch) the time period of a unit is
divided into three categories: 1) Read, 2) Execute, and 3) Store. Read
and Store operations each require 100 nanoseconds, while the duration

of the Execute portion is a function of the intricacy of the operation
required and therefore of the hardware and the number of iterations needed.

Study the following examples:

Scoreboard
issue

0 100 200 300 400
BOOLEAN | Read] Execute | Store [
ADD (FLOATING)

L Read | Execute Jﬁ Store J

0 100 900 1000
MULTIPLY | Read | Execute | Store |

27

As the examples indicate, the Boolean Unit requires only 100 nanoseconds
for the Execute portion while Multiply needs 800. Divide, the slowest
functional unit, requires 2.5 microseconds for its Execute portion. If

a second-order conflict occurs, there will be a delay between the Score-
board issue and the Read portion of the unit cycle. Of course, the duration
of the delay will depend on the duration of the conflict. When the conflict

is resolved (Read flags set) the unit will start. See the following example:

Scoreboard
issue
0 100 300 400
NORMALIZE L | Read | Execute | Store |
2nd Order
Conflict

In the event of a third-order conflict, the delay will occur between the
Execute and Store portions of the cycle. Again, the duration of the delay

depends on when the conflict can be resolved. See the following example,

Scoreboard
issue
0 100 200
INCREMENT | Read | Execute | | Store |

3rd order
conflict

During the remaining discussion of the Boolean Unit, it is assumed that no
second or third order conflicts occur. If one should occur, it simply
means that the Read (2nd order) or Store (3rd order) portions of the unit

cycle will be delayed until the conflict is resolved.

7.1.2 BOOLEAN INSTRUCTION LIST

In the fdlowing definitions, familiarity with Boolean terms and expressions
is assumed. If a review is necessary, refer to the Glossary of Logical terms
provided at the end of this section. The expressions in parenthesis fol-

lowing the instruction names are the ASCENT symbolic codes.

10 TRANSMIT Xj to Xi (BXi = Xj)
This instruction transfers the content of Xj to Xi. The content of
Xk is sent to the Boolean unit, but is ignored. It should be noted
that although Xj might not be reserved, a second order conflict with
Xk could occur. To prevent this situation, make octal k equal to
octal j when coding machine languagef Thus, the conflict can occur
only with the source register to be transferred. (i.e., to transmit

X5 to X7, use the following code: 10755.)

11 LOGICAL PRODUCT of Xj and Xk to Xi (BXi = Xj * Xk)

This instruction forms in Xi, the Boolean "AND" of Xj and Xk.

*ASCENT (Assembler, Central processor) will automatically make k equal to j.

12

13

14

15

16

17

LOGICAL SUM of Xj and Xk to Xi (BXi = Xj + Xk)

This instruction forms in Xi, the Boolean "INCLUSIVE OR" of Xj and Xk.

LOGICAL DIFFERENCE of Xj and Xk to Xi (BXi = Xj ¥ Xk)

This instruction forms in Xi, the Boolean "EXCLUSIVE OR" of Xj and Xk.

TRANSMIT Xk COMPLEMENT to Xi (BXi = - Xk)

This instruction transfers the complement of the content of Xk to Xi.
The content of Xj is sent to the Boolean Unit, but is ignored. Again,
a second order conflict with Xj (the unwanted operand) is possible,

so make octal j equal to k when coding. (See the 10 instruction.)

LOGICAL PRODUCT of Xj and Xk COMPLEMENT to Xi (BXi = -Xk °* Xj)

This instruction forms in Xi, the Boolean "AND" of Xj and the
complement of Xk. In terms of the true source operands (Xj and Xk
NOT complemented) this instruction forms in Xi the "SELECTIVE CLEAR"

of Xj conditioned by Xk.

LOGICAL SUM of Xj and Xk COMPLEMENT to Xi (BXi = -Xk + Xj)
This instruction forms in Xi, the Boolean "INCLUSIVE OR" of Xj and
the complement of Xk. In terms of the true source operands this

instruction forms in Xi the "IMPLICATION" of Xj by Xk.

LOGICAL DIFFERENCE of Xj and Xk COMPLEMENT to Xi (BXi = -Xk ¥ Xj)

This instruction forms in Xi, the Boolean "EXCLUSIVE OR" of Xj axd

the complement of Xk. 1In terms of the true source operands this instruc-

tion forms in Xi the "EQUIVALENCE" of Xj and Xk.

Note that the instructions can be arranged in a 2 X 4 matrix as follows:

Transmit L. Prod. L. Sum L. Diff.
Xj and Xk 10 11 12 13
Xj and -Xk 14 15 16 17

7.1.3 MODE BITS

Now that the instruction requirements are known, it is appropriate to see
how the logic determines exactly which functions to perform. This is the
job of the five mode bits, which were sent to the Boolean Unit upon
issuing the instruction to the Scoreboard. (U register translators select

the Functional Unit and enable the required mode bits to that unit.)

By referring to the 2 x 4 matrix (Figure 7.1-3) once again, differentiating
the eight Boolean instructions becomes quite easy. Four logical operations
can be performed: 1) Transmit, 2) Logical Product, 3) Logical Sum and

4) Logical Difference. Note also that the true value of the Xj operand is
always used, while the true value of Xk is used only by instruction 10 through
13. Instructions 14 through 17 use the complement of Xk. In summarizing
these conditions, the following list of mode bits and the fm translations

selecting each mode bit can be derived:

MODE BITS fm (INSTRUCTION)
Transfer 10, 14
Product 11, 15

Sum 12, 16
Difference 13, 17
Complement 14, 15, 16, 17

For any Boolean instruction, only one of the first four mode bits is sent

to indicate which of the four logical functions to perform. The Complement

01

Jol

24

JAN

COMPLEMENT

[

21

- (O

|

AN

TRANSFER

28
27
N G17
\\
‘.\ TH
\\\
. 7
F— O
2
18
L CO. 1

TYPICAL MODE BIT TRANSLATION

FIGURE 7.1-4

G18

TI

(COMP) (XFER) ==
) Transfer Xk

(COMP) (XFER) ==

Transfer Xj

mode bit is used to determine whether to use the true or comp lemented

value of Xk. Thus, a basic "AND" of each of the first four mode bits with
the Complement mode bit will select one of the eight distinct operations.

For example, if both transmit and complement mode bits are received, the
translators will enable a transfer of Xk complemented to the result register.
1f only Transmit was received, the implication is to gate Xj to the result
register (Refer to Figure 1.7-4)., The same method applies to the Product,

Sum, and Difference functions.

For complete illustration of the mode bit logic, reference is made to the
6601/4 Customer Engineering Diagrams, sheet 105, where the receivers,
translators, and fan-outs can be seen. Note how the mode bits are "ORed"
together on the TI modules and fanned out on the GAs. From the fan-outs,
the enables gate the Boolean network and input registers. Before analyzing

their effect on the network, timing of the Boolean Unit will be discussed.

7.1.4 TIMING SEQUENCE

The timing sequence of the Boolean Unit is quite straightforward, but two
considerations should be kept in mind. First, the Boolean Network itself

is a static network (no timing gates) and, consequently, a logical result

of the inputs to the network will always be seen at the output. (The result,
of course, depends upon the gates enabled and disabled by the mode bits.)
Second, recall that bits 48 - 59 of the operands arrive before bits 0 - 47.
(As we discussed earlier, 48 - 59 take the direct route; 0 - 47 arrive

via chassis 6) It will also be seen that bits 0 - 47 of the result are
transmitted before 48 - 59 which again have the shorter path. This occurs so

that all bits arrive at Register Entry Control at about the same time.

11

1

SCOREBOARD ISSUE
GO BOOLEAN (2L11
CLEAR (GA, CH.¢

CLEAR RESULT REG. (MD, CH.2)

BOOLEAN SEQUENCE
REQUEST RELEASE

4)

(2D27 1)
(2E01 4)

Xj & Xk -=CH.6 (GA,CH.6)
Xj & Xk —» CH.2 (MT,CH.6)
Xj & Xk -»CH.2 (GA,CH.2)

SET RESULT REG.
SET RESULT REG.

TRANSMIT RESULT (CH.2 —»CH.6)
TRANSMIT RESULT (CH.6 -+=REG.)

(MD,CH.2)
(MD,CH. 2)

BOOLEAN FUNCTIONAL UNIT

TIMING CHART

100 200 300 400 500
———t —p—t + +—f +—f—+
i
w7z
2 7 W77 72,
%%
072,
A
22,
Ve 74
48 - 59) 721
(0 - 47) 2B
(RM,CH. 2) * 7
(MR,CH. 6) ~Oh

* Earliest possible time - No Result Register Conflict.

FIGURE 7.1-5

€1

EXPLANATION OF THE TIMING CHART:

t000 -

tl75 -

t225 -

t230 -

t250 -

t300 -

£325 -

t350 -

t375 -

NOTE:

t410 -

NOTE:

t430 -

t455 -

time of the SCOREBOARD ISSUE

The Boolean Unit receives "Go Boolean' at L11, TP4 (Prinis, Sheet 105)

Clear Boolean Result Reg. '"Clear" is fanned out from N1l (Sheet 105) and Clears all the MD modules (Sheet 103)

Set the second Flip-flop in the Boolean timing chain (Sheet 105, D27, TP1)

Send "Request Release' to the Scoreboard (Sheet 105, EOIL, TP2)

1) Receive bits 48 - 59 of source operands on chassis 2 (Sheet 103, GA's) and 0-47 on chassis 6 (GA's)

2) Set third Flip-flop in the Boolean timing chain (Sheet 105, D27, TP4)

3) Enable Xj and Xk (true or false) to the GB modules (Sheet 103)

Transmit bits O - 47 from chassis 6 (MT modules) to chassis 2.

Receive bits O - 47 of source operands on chassis 2 (Sheet 103, GA modules)

Set Result Register for bits 48 - 59 (P10 on Sheet 105 fans out to MD modules on Sheet 103)

Since the Boolean Network is a static network, the time required to generate a result is a function of the
longest inverter path from the Input Register to the input pin of the Output Registér. The longest path is
seven inverters (about 35 nsec.). Note from the timing chart that approximately 75 nsec. are allowed from
receipt of the operands until the result register is set.

Set Result Register for bits 0 - 47 (Sheet 103, MD modules)

It must be assumed at this point that the "Request Release'" send at t250 encountered no third order conflicts
in the scoreboard. Accordingly, a "Transmit' signal will be received about t375 (Sheet 105, L11, TP6)
Transmit bits O - 47 from chassis 2 (Pll on Sheet 105 fans out to MD modules on Sheet 103)

1) Transmit bits O - 47 from chassis 6 to Register chassis

2) Transmit bits 48 - 49 from chassis 2 (Sheet 103, RM modules) to Register chassis.

7.1.5

It is assumed, for the purpose of simplicity, that no second order conflicts

or trunk priority conflicts occur after issuing the Boolean instruction to the
scoreboard. Accordingly, the Boolean Unit will receive a "Go Boolean" pulse
about 145 nanoseconds after scoreboard issue. This pulse starts the timing
chain which causes the events shown on the Timing chart (Figure 7.1-5) and page
page 13 to occur. (Module, pin number, and test point references are made: to
tacilitate the following of signals through the logic in the Customer Engineering

Diagrams.)

It is interesting to note that due to the short filter time of the Boolean network

the "Request Release" is transmitted prior to the receipt of the source operands!

THE BOOLEAN NETWORK

During this discussion, refer to the chart on page 7.1.14 and the Boolean Network
(7.1.15). Module and pin numbers referenced in this explanation pertain

to the network for bit 20.

As was discussed earlier the Boolean network, per se, is composed of
twenty GB modules, each containing the logic circuitry for three bit
positions. The input registers (fourteen GA modules and one KU module for
each operand) feed the Boolean network. The output of the GB modules is
stored in the result register (MD modules) and transmitted from the RM

modules upon receipt of the "Transmit Boolean" signal.

14

Let us first look at the Input registers which serve three functions:
1. "Catching" the source operands.
2. Selecting true or complemented values of source operands.

3. "Feeding " operands to the Boolean network.

To explain the presence of one KU module among fourteen GA's, consider

that this input register is also used for the Divide and Multiply functional
units which use bit 59 to select true or complemented operand values. The
two KU modules provide two extra outputs from bit 59 which are used for

complement fan-outs, etc.

In deciding to use the true or complemented value of the source operands, the
functions performed by the GB modules must be considered. Note that the
complemented value of Xj is chosen only if a "Difference" mode bit is received.
On the GB module, the gate used to form the exclusive "OR" function is actually
an ''equivalence' gate. An "exclusive OR" can be performed by 'equivalence’

if one and only one of the operands is complemented. Study the following

examples:
EXCLUSIVE OR: Using EQUIVALENCE:
A = 1100 A = 0011 A = 1100
B = 1010 B = 1010 or B = 0101
C = 0110 C = 0110 C = 0110

In this instance, the complement of Xj is used since the complement of Xk

uniquely defines instruction 14 - 17.

The logical function performed in the GB modules is unrelated to the
decision to select the true or complemented value of operand Xk. Since
for instructions 14 - 17 the "Complement" mode bit is received, the false
value of Xk will always be used. (Instructions l4 - 17 specify in their
definitions the use of Xk complemented.)

15

91

BOOLEAN FUNCTIONAL UNIT REFERENCE CHART

“ODE BITS GB MODULE
CODE NAME FUNCTION | g | pROD | XFER| coMP | DIFF | P3 | P5 A B c
10 TRANSMIT Xj-Xi X Xj | Xk
LOGICAL |
11 | PRODUCT Xj + Xk X Xj | Xk X
LOGICAL |
12 | suM Xj + Xk X Xj | Xk | X
LOGICAL L
13 | DIFFERENCE Xj * Xk X Xj | Xk X X
14 | TRANSMIT Xk=9Xi X X Xj | xk | X
LOGICAL . _
15 | PRODUCT Xj + Xk X X Xj | Xk X
LOGICAL - .
16 | suM Xj + Xk X X Xj | xk | X
LOGICAL L
17 | DIFFERENCE Xj % Xk X X Xj | Xk X X
Figure 1.7.1-6

L1

/\

Xk OPERAND

12 2
Q= >
\\
\
3 D \
\
5 \
| to
% DIV
\
c D E
9 11* 28
t50 COMP. +1.2V)
Q06
ﬁl Xj OPERAND GA
@Dﬁb INto /
DIV .,
/7
/
B E K
?/ 25 5’
C E D
9 11 i 21 28 A
./ A4
£50 coMP. DIV. +1.2v

DIFF PROD+ SUMTF

DIFF XMIT
Xk

Figure 1.7-7

SUMF
XMIT
XJ

D F

~———_ CLR REG ____

GO BOOL XMIT

I

K01
BOOLEAN NETWORK ROL RM
GB /1\
A
2 1 i
g 3 :""{}_. D 'tI:‘(JE){U)I\éIl(
>—t S i ‘
1 |
|
! -
1 |
B]
|
]
8 [}
—Q :
\ e e o e o e
S \\ =
\
\ RESULT REGISTER Q01
\
\ MD
\
, 2 \ A
o=—11] ~
A
\
t 4] 2 Y --
B cllallp l ;
__1_8£ 19 4 161 15

The output of the GA module flip-flop is always enabled to the Boolean
Unit via term "D" and pin 25. Note also, that pin 25 will always be the
complement of the true or false side of the flip-flop (as selected by the

Difference and Complement mode bits) since three imversions take place.

Continuing to the GB modules, notice that the two input pins, 3 and 5,
(Xk and Xj, respectively) will always see the complement of the operand (true
or false). (Refer to the chart on page 7.1L15.) Thus, the output of the

inverters fed by pins 3 and 5 will be the true value of the selected bit state.

Pin 8, the output of the GB module, will represent the true value of the
generated result. Thus, any zero into test point 1 will indicate a result
of "one" for that bit position. Entering the GB modules are four enables

(A, B, C énd D) which result from logically combining translations of the

mode bits. (See the discussion headed Mode Bits.)

During the Transmit Xj (fm = 10) instruction, only term D will be a

logical 1. This conditibn will enable only the output of inverter T (a
reflection of the Xj operand) to the result register via Test Points 2 and 1.
(Terms A, B and C are zeros, disabling the other three inputs to TPl.)

Thus, Xj is sent to the result register.

During the Transmit Xk instruction (fm = 14), only term A will be a logical

1. This term enahles the output of inverter S to pin 8. Inverter S is a

reflection of Xk complemented since the "Complement" mode bit is received
~with a 14 instruction. Again, all other inputs to TPl are disabled because

terms B, C and D are logical zeros. Thus. Xk is sent to the result network.

18

Instructions 12 (Xj + Xk to Xi) and 16 (Xj + Xk to Xi) are, in essence,

the combination of the Transmit instructions with the "Complement" mode

bit distinguishing one from the other. Both A and D are enabled.
Consequently, inverter S or T or both are éated to the output network
(Inclusive OR). T again reflects the‘Xj operand. During the 12 instruction,
S reflects Xk and pin 8 sees Xj + Xk. During the 16 instruction, S reflects

Xk complemented and pin 8 sees Xj + Xk.

During the two logical product instructions (11 and 15) terms A, B and D
are disabled and only term C is a logical 1. Term C enables the gate which
ANDs inverters S and T. Thus, during instruction 11, Xj - Xk are sent to
the output network. For instruction 15, the "Complement" mode bit results

in Xj * Xk being sent to the output network.

During the Logical Difference instructions (13 and 17), remember the
complement of the Xj operand is selected. Thus, the output of inverter T
reflects ﬁ?. During the 13 instruction, S reflects Xk. Since term C once
again enables the ANDing of inverters S and T, we obtain i} « Xk (half of
the desired Exclusive OR) at pin 8. Term B, also enabled during Difference,
gates the complement of T and S to the output network. We thus obtain

X5 e Xk at pin 8 - the other half of the Exclu;ive OR function. Thus, the
result of the 13 instruction is EE * Xk or Xj - Xk. Tﬁe 17 instruction
differs from the }3 only because the "Complement!" mode bit is once again
present. Thus, inverter S réflects Xk and the AND gates enabled by B and C

form Xj ¢ Xk and i} - Xk respectively. Either of these conditions make

pin 8 a logical 1.

19

o€

BOOLEAN FUNCTIONAL UNIT

I“—)ul————l

Translate fm
Ul TIME for Boolean F.U|
Request

(fm = 10-17)

——

Translate fm
Uz TI
2 TIME for Mode Bits

!

Any First
Order Conflicts?

[SCOREBOARD ISSUE

l.Mode Bits 9»F.U

2.5et Unit Busy
3.8et F,Q, & XBA

Any Second Order
Conflicts?

Wait for
release from
reserving unit.

SCOREBOARD
ISSUE TIME

|

&
"Go Boolean"
START BOOLEAN "Go Read"
TIMING CHAIN "Clear RFg"

i

Clear Boolean
Result Register
[

1

Send
'Request Release™
to Scoreboard

I

Receive
Source
Operands

|

Complement Xk
to Boole

Network

True Xk
to Boolean
Network (GB, P3) Network

Complement Xj
to Boolean
(GB, PS)

DIFFERENCE
MODE BIT?
(fm = 13 + 17)

VTRANSMIT"
MODE BIT?
10 + 14)

CHART

(fm =

(INCLUSIVE OR)
Enable Xj + Xk

(12) or Xj+Xk (16
to Result Registe

Mode Bit?

"DIFFERENCE"
MODE BIT?
(fm = 13 + 17)

(EXCLUS
IEnable Xj
]« Xk (13)
JeXk + XjeXk (17
lto Result

"PRODUCT"
MODE BIT
(fm = 11 + 15)

(AND)
Enable Xj « Xk
(11) or Xj *» Xk
(15) to Result Red.

IMPOSSIBLE!
At least one
mode bit is
sent

|

True Xj
to Boolean

Set Result
Register

"TRANSMIT"
received
from SCBD?

Network (GB, P5)

Send result to
Register Chassis
CLEAR SCBD
Reservations

NO

WALT for third
order conflict
to be resolved

7.1.6 GLOSSARY OF LOGICAL TERMS

~

AND: A logical relation between two propositions which holds true
only if both propositions are true.
Example: 1100 SYMBOL = *
1010
1000

COMPLEMENT: A number which, when added to a quantity, will result in

a sum which is the modulus of the number system.

Example: Complement 0100 SYMBOL: Comp X = X
Quantity 1011
Sum 1111

EQUIVALENCE: A logical relation between two propositions which holds
true only if both propositions are true or both are false.
(Also the complement of EXCLUSIVE "OR'")
Example: 1100 SYMROL: =
1010
1001
EXCLUSIVE "OR": A logical relation between two propositions which holds

true only if the first proposition is true and the

second false or the second is true and the first is

false.

Example: 1100 SYMBOL: ¥
1010
0110

IMPLICATION: A logical relation between two propositions which is
false only if the first proposition is true and the

second is false.

Example: 2nd 1100 SYMBOL: 9
1st 1010
1101

21

6. INCLUSIVE "OR": A logical relation between two propositions which

holds true only when either or both propositions

are true.

Example: 1100 SYMBOL: +
1010
1110

7. Logical DIFFERENCE: Same as EXCLUSIVE "OR".

8. Logical PRODUCT: Same as "AND",

9. Logical SUM: Same as INCLUSIVE "QR",

22

SECTION 7.2

SHIFT

FUNCTIONAL UNIT

SHIFT
FUNCTIONAL

UNIT

from
REG.
CH.

from
REG‘
CH.

Xk

1

S SHIFT
+ I NETWORK "X
Xi R
2|4]8]2
| [/
NORMALIZE DIRECTION
b 77
SK Y
} Bj
>
jk l
M
§ "I’ > " & IT.
REQ.REL.
GO TIMING CHAIN

izl

to

-+ REG.

Y

CHQ

to
REG.
CH.

from
SCBD

to
SCBD

SHIFT FUNCTIONAL UNIT

7.2.1 IHTRODUCTION
The Shift Functional Unit performs shift, normalize, round, pack, unpack,
and mask operations as required by instructions 20 through 27 and 43.
The functional unit time is 400 nanoseconds for the normalize instructions
(24 and 25) and 300 nanoseconds for any of the other shift operations.
The time difference arises because during normalize, a shift count must
be generated by the Normalize Network before shifting of the coefficient
takes place. The breakdown of the functiomal unit time into Read, Execute,

and Store cycles will then differ as follows:

t00 t100 t200 t300
NORMALIZE | Read | Execute ! Store '
| | shift | |
NORMALIZE t00 t100 £200 t300 t400
! Read ! Execute l Store I
E l
t generate l
shift count shift

FIGURE 7.2.1

The Shift Unit shares data trunk number 1 with the Add and Long Add Units.
It holds second priority on the Read Operand trunk and first priority on
the Result trunk. The Unit may select operands from registers Xk, Xi, or
Bj and may designate a result register of Xi and/or Bj. Also, the six
bits, jk, may be used to specify a shift count - these bits are uncondi-
tionally sent to the Shift Unit each minor cycle and are used only if

required by the instruction (used by instructions 20, 21, or 43).

25

The Shift Unit follows the functional unit principles discussed in the

Boolean chapter (Section 7.1) in that it uses mode bits and a timing chain

to select and sequence the required operations. In the standard manner, it

is initiated with a "Go" signal from the scoreboard and terminates its operation
(Clears its Busy flipflop and transmits its result(s) upon being released by the
scoreboard. It is,on the other hand, a somewhat more complex unit because more

intricate and varied functions are defined by its instruction list.

The main component of the Shift Unit is of course the Shifting Network, which
is a 60-bit, o-rank shifter that operates in nearly the same manner as the
Peripheral Processor shift network. The six ranks enable shifts of 1, 2, 4,
&, 18, or 32 places in either the left or right direction. Shift direction
and magnitude are determined by two circuits, Shift Direction Control and the
Shift Count Register (SK). Shift Direction Control will determine and enable

shift direction (left or right) by checking the mode bits of the Shift Unit.

The Shift Count Register contains six-bits each of which conditions one rank of
the shift network. (Bit 2° conditions the 32 place shift rank, bit 2% the 16

place rank, etc.) A rank is enabled if its corresponding bit in SK is set, and
disabled if that bit is a zero. The maximum shift count is thus 77(8) or 63(10)

places (when all bits of SK are set.).

The shift count may come from any ome of three sources, depending upon the
instruction being executed; from 1) the six bits, jk, 2) the lower six bits

of Bj (during nominal shifts), or 3) the Normalize Network which generates

the shift count required to normalize a given coefficient. Another component
of the Shift Unit to be discussed is the Bj Ones Test Network. During Nominal

Right shifts, this network looks for any "one" in bit positions 6 through 10 of

26

Bj. If a one is found, the result of the shift network is not enabled to

the shift network; the result is thus an all zero coefficient. To understand
the reason for this circuit, consider that if any one of bits 6 through 10

is set, a right shift should result in an all zero coefficient (right shifts
are by nature "end-off" and the shift count is greater than 63;5). If the
network was absent, an erroneous, non-zero coefficient would be generated

for all cases where Bj bits O through 5 gave a magnitude of less than 64g
(since these six bits would unconditionally be used as the shift count). The
Ones Test Network then guarantees an all zero coefficient for the case
illustrated., The final component of the shift unit to be discussed is the
Exponent Adder. It is used during Normalize to subtract the normalize

shift count from the original operand (Xk) exponent. This insures that the
normalized number is of the same value as the original. Further analysis

of the components mentioned here will be found on the later pages of this

section. First, the Shift Unit instructions and data flow are discussed.

27

7.2.2 INSTRUCTION LIST/DATA FLOW

Data paths for the following instructions may be seen by referring to

Block Diagram # 1, Figure 7.2-2. The expressions in parenthesis follow-

ing the instruction names are the ASCENT symbolic codes.

20

21

SHIFT Xi LEFT jk places (LXi jk)

DEFINITION: This instruction shifts the 60-bit word in X regis-
ter i left circular jk places. The 6-bit shift count, jk, allows
a complete circular left shift of X register i.

DATA FLOW: The X input register is transferred to the Shift Input
Register (SIR) and the jk Input Register to the Shift Count Regis-
ter (SK). The gates for the shift network are controlled by the
SK register and the shift direction translation. The output of

the shift network is gated directly to the chassis line drivers.

SHIFT Xi RIGHT jk places (AXi jk)

DEFINITION: This instruction shifts the 60-bit word in X regis-
ter i right jk places. The shift is end-off with sign extension.

DATA FLOW: Same as the 20 instruction

28

6¢

SHIFT FUNCTIONAL UNIT BLOCK DIAGRAM #1l
(for instructions 20, 21, 22, 23, or 43)

CHASSIS & SHIFT
INPUT INPUT "MASK" CHASSIS 8
REGISTERS REGISTER = 1 SHIFT OUTPUT
IR (SIR) NETWORK NETWORK
59 59 59
) TO Xi
e iy 60 -).__._... i
Xk or Xi o 69 DATA
TRUNK
0 0 ol [2)4]8]|16]32
NORMALIZE) '
LEFT
LEFT +
MASK —>1 (1o RIGHT ‘fp S TRANSMIT
»DIRECTION - VAR —
CONTROL (NOMINAL)+
(LEFT)+
| Bj ONES (Bj 6 - 10 =0)
TEST
5]
NOMINAL LEFT SHIFT
NOMINAL
SHIFT jk or MASK F :}&ﬁ&gijgg"::
5 I NETWORK 11
. ¥
5 : :(Shown for '
0 5bnm1etenesi)

FIGURE 7.2-2

22 SHIFT Xk NOMINALLY LEFT Bj places to Xi (LXi = Bj, Xk)
DEFINITION: This instruction shifts the 60-bit word in X register k
the number of places specified by the low-order six bits (0 - 5) of
B register j and places the result in X register i. If Bj sign
(bit 17) is positive, the shift is left circular; if Bj sign is
negative, the shift is right (end-off with sign extension).*

DATA FLOW: The X Input Register is transferred to SIR and the lower
six-bits of Bj Input Register to SK (complemented if B register j

sign is negative). The gates for the shift network are controlled

by the SK register and the shift direction translation. The specified

shift direction is reversed if B register j sign is negative. The
output of the shift network is gated directly to the chassis line
drivers.

23 SHIFT Xk NOMINALLY RIGHT Bj places to Xi (AXi = Bj, Xk)

DEFINITION: This instruction shifts the 60-bit word in X register k

the number of places specified by the low-order six bits of B register

j and places the result in X register i. If Bj sign (bit 17) is
positive, the shift is right (end-off with sign extension);* if Bj
sign is negative, the shift is left circular.

DATA FLOW: Same as the 22 instruction.

Data paths for the following instructions may be seen by referring to

Block Diagram #2, Figure 7.2-3

*The Bj Ones Test Network shecks bits 6-10 of B register j during

22 and 23 instructions. If any bit is a one during neminal right

shifts, all zeros are sent to Xi.

30

NORMALIZE Xk in Xi and Bj (NXi, Bj = Xk)

DEFINITION: This instruction normalizes the floating-point quantity
in X register k and places it in X register i, The number of shifts
required to normalize the quantity is entered in B register j. A
normalize operation may cause underflow, in which case both exponent
and coefficient will be cleared; the normalize count is still entered
in B register j. Normalizing a zero coefficient reduces the exponent
by 4810 (608). If Xk is in infinite or indefinite form, it is sent

out in tact and the normalize count is sent out as zero.

DATA FLOW: The X register sign bit is stored in a flip-flop to

control data flow, and the X Input Register is transferred to SIR
(complemented if Xk sign is negative). Bits 0 through 47 feed the
normalize network which determines the number of zeros from bit 47

to the left-most "1" of the coefficient. The output of the normalize
network (the normalize shift count) is gated to the SK register which,
with the shift direction translation (always LEFT during normalize
operations), controls the gates for the shift network. The transfer of
the normalize network to SK is disabled if Xk exponent equals 1777 or
3777. The output of bits O through 47 of the shift network are gated
(complemented if Xk sign was negative) to the chassis line drivers.

The complement of the exponent portion of SIR and the true value of

SK feed the exponent adder where the normalize shift count is subtracted
from the exponent portion of SIR, The difference is the exponent
portion of the normalized number and is gated directly to the chassis

line drivers.

31

(4%

SHIFT FUNCTIONAL UNIT BLOCK DIAGRAM 42
(for instructions 24 and 25)

CHASSIS
INPUT

8

REGISTER

(IR)

SHIFT
INPUT
REGISTER ROUND é nn

(SIR) \\

T o

NORMALIZE

CONTROL
NORMALIZE
NETWORK NORMALIZE
NORMALTZE
) l »] comPLEMENT F
Xk FXP # 1777 + 3777

__________QI,____*.

SHIFT
NETWORK

SHIFT LEFT

DIRECTION

CHASSIS 8
OUTPUT
NETWORK

EXP
ADDE

FIGURE 7.2-3

NORMALIZE

25 ROUND and NORMALIZE Xk in Xi and Bj (ZXi, Bj = Xk)

DEFINITION: This instruction performs the same operation as instruction

24 except that the quantity in X register k is rounded by % if that

quantity is shifted. (It would not be shifted if the original quantity

was already normalized.) A normalize operation may cause underflow in
which case both exponent and coefficient will be cleared. Normalizing a
zero coefficient places the round bit in bit 47 and reduces the exponent
by 4810 (60g). If Xk is in infinite or indefinite form, it is sent out
intact and the normalize count is sent out as zero.
DATA FLOW: Data paths are the same as the 24 instruction with the
addition of the round operation. With "Round" specified, a one bit is
forced in position 59 of the shift network. As in the 24 instruction,
LEFT shift is specified. If the coefficient is shifted, the round bit
will be pulled around into the least significant bit, thus adding %. It
is important to note that rounding does not occur if the coefficient 1is
already normalized.

Data paths for the following instruction may be seen by referring to Block

Diagram #3, Figure 7.2-4,

26 UNPACK Xk to Xi and Bj (UXi, Bj = Xk)
DEFINITION: This instruction unpacks the floating point quantity in X
register k and sends the 48-bit coefficient with sign extended in the
upper 12-bits to X register i. The 10-bit exponent (unbiased, sign
extended, and represented in true one's complement) is sent to B

registed j.

33

42

SHIFT FUNCTIONAL UNIT BLOCK DIAGRAM #3

Xk

(for instruction 26)

Chassis 8
Input
Register
SIGN

Complement if negative

STQRAGE
3
5

148

47 (60)
> @

FIGURE

Chassis 8
Output
Network

7'2-4

DATA FLOW: The X register sign bit is stored in a flip-flop to control
data flow and the X Input Register is transferred to SIR., Bits 0-47 are
sent directly to Bits 0-47 of the Xi output network, The coefficient
sign is extended to bits 48-59 through a fan-out. Bits 48-57 of SIR
are sent directly to bits 0-9 of the Bj output network - complemented

if Xi sign (b

ik &S T

provide proper sign extension, the complement of SIR bit 58 is fannedout
to bits 10-17 of the Bj output network. These 18 bits will be completed

into the Bj output network if Xk sign (bit 59) is negative.

Data paths for the following instruction may be seen by referring to Block

Diagram #4, Figure 7.2-5.

27

PACK Xi from Xk and Bj (PXi = Bj, Xk)

DEFINITION: This instruction packs a floating point quantity in X
register i. The coefficient is obtained from the lower 48 bits of X
register k and the exponent from the lower 10 bits of B register j.

Bias is added to the exponent during the pack operation.

DATA FLOW: The Z register sign bit is stored in a flip-flop to control
data flow and bits 0-47 of the X input Register are transferred to bits
0-47 of SIR. Bits O through 10 of B register j are transferred to bits
48-58 of SIR. The setting of SIR bit 59Vis disabled during PACK
operations. The word now assembled in SIR is gated to the Xi data
trunk. SIR bits 0-47 are transferred in true form. Bits 48-59 (bit 58
is complemented out of SIR to remove bias and bit 59 was made a '"zero')
are transferred in true form if Xk sign is positive; in complement form

if Xk sign is negative.

Data paths for the following instruction may be seen by referring to block

diagr~ noiFl, Figure

7 9.9
/o Lo

35

9¢

SHIFT FUNCTIONAL UNIT BLOCK DIAGRAM #4

(for instruction 27)

SIGN
STORAGE
Complement if negative

58

Xk el 47

CHASSTIS 8
INPUT
REGISTERS

Bi e 10

ZERQ =i

CHASSIS 8
OUTPUT

‘NETWORK

¥ ¥¥

Ui
0O

G—

FfIGURE 7.2-5

48

O—
>—

43 FORM jk MASK in Xi (MXi 3k)

DEFINITION: This instruction forms a mask in X register i. The 6-bit
quantity jk defines the number of ones in tne mask as counted from the
highest order bit in X register i. If jk equals zero, X register 1 will

equal all zeros.

DATA FLOW: The SIR is cleared, the jk count is transferred to the

SK register, and a right shift is translated. The mask mode will
cause a negative sign to be extended during the right shift. The

overall effect is that an all zero operand is right shifted jk places
with ones forced as sign extension. Thus, a mask jk places long is
formed at the output of the shift network. This output is gated to

the Xi line drivers.

7.2.3 MODE BITS

The following chart, Figure 7.2-6, summarizes the nine instructioms that

use the Shift Unit.
1T TIME
CODE NAME SHIFT COUNT SOURCE RESULT (NSEC)
20 Shift Left jk Xi Xi 300
21 | Shift Right| jk Xi Xi 300
Shift Left o1 - .
22 Nominally Bj(bits 17, 5-0) | Xk Xi 300
23 | Shift Right| py(pits 17, 5-0) | Xk Xi 300
Nominally
24 Normalize Normalize Xk Xi and Bj 400
Network
{ Round and Normalize X .
25 | Normalize Network Xk Xi and Bj 400
26 Unpack None Xk Xi and Bj 300
27 Pack None Xk and Bj | Xi 300
43 Mask jk None Xi 300
FIGURE 7.2-9

Note that two instructions (20 & 21) specify Shift jk, two (20 & 22) specify

Shift Left, two (21 & 23) specify Shift Right, two (22 & 23) are Nominal

Shifts, two (24 & 25) are Normalize instructions, and there is one each of

Mask (43), Round (25), Pack (27), and Unpack (26). With this information,

the following list of Mode Bits used by the Shift Functional Unit can be

derived.

MODE BITS fm (INSTRUCTION)
Shift jk 20 & 21
Shift Left 20 & 22
Shift Nominal 22 & 23
Mask 43
Normalize 24 & 25
Round 25

Pack 27

Unpack 26

The Mode Bits are translated in the same manner as the Boolean mode bits
were, that is, the bits are ANDed, ORed, and fanned out to enable the

various operations required by each instruction. Figure 7.2-8, for

example, shows the decoding of the "Mask'" and "Shift jk" mode bits to

enable the six bits, jk, to the Shift Count Register (SK) during instructions
20, 21, and 43. The Mode Bit translators, transmitters, and receivers are
shown on sheet 110 of the Shift Functional Unit Customer Engineering Diagrams.
Complete translations may be made by referring to the Chassis 8 Wiring Tabs.

Figure 7.2-7 summarizes the Mode Bits and the associated instructions.

38

. Shift | Left Shift . -
Code Name jk Shift| Nom Mask | Norm.| Rnd. | Pack | Unpack
20 Shift Left X X
21 Shift Right X
Nominally
Shift Right
23 Nominally X
24 Normalize X
25 Round ?nd X X
Normalize
26 Unpack X
27 Pack X
43 Mask X
FIGURE 7.2-7

39

0w

MASK

15 nsec.
ONE-SHOT

@4+

jk INPUT REGISTER

BiT 20

8HO2

VAN

IT

t

DECODING "MASK'" AND "SHIFT jk'" MODE BITS

TO ENABLE jk INPUT REGISTER TO SK REGISTER

, 8A25
> () MASK+SIGN RE
11 20 23
F SO
B MASK *
SHIFT jk
12
\:I E
|
L
............ -
i J.E‘* 117
8G16 ! T ?r
Pl | R 4
! 96 INCHES
4\ SHIFT jk 1
|
/O————&}—--J
21
D._.._....
—y§() SHIFT jk
A
FIGURE 7.2-8

7.2.4 TIMING SEQUENCE

As was mentioned in the introduction to this section, (7.2.1) the Shift
Unit time duration is 100 nanoseconds longer for Normalize than for
Non-Normalize shift class instructions. This occurs because during
Normalize, a Shift count must be generated by the Normalize Network of the
Shift Unit while for other Shift instructicns, the shift count is avail-

able at the same time as the operand.

The timing sequence for the Shift unit is shown in Figure 7.2-9 and an
explanation of the timing is found on the facing page. The timing se-

quence assumes that no second or third order conflicts occur. If a semnd

order conflict does occur, the "Go Shift" pulse will be delayed for the duration

of the conflict.

SCBD
ISSUE X t000 t100 t200 t300
XeooosooeeensceeassX X X X
2nd Order READ EXECUTE STORE

Conflict

If a third order conflict should occur, gating of the result to the

register chassis (Transmit Result) will be delayed for the length of the

conflict.
SCBD
ISSUE
t000
X X XeeoesooascoesaanoaaeX X
READ EXECUTE 3rd Order STORE
Conflict

Thus, 300 nanoseconds is the Functional Unit time for Non-Normalize
instructions; 400 nanoseconds for the Normalize and the Round and Normalize

instructions.

41

(44

SHIFT FUNCTIONAL UNIT TIMING CHART

000

SHIFT TIMING EXCEPT NORMALIZE

SCOREBOARD ISSUE
"Go Shift"

100

200

300

400

500

"Request Release!" (Normalize)

Clear Input Register

/8

Operands Received

2

Clear SIR

el

Shift Direction Control

IR « SIR

77277222 722222

Set SK Register

Shift Count-) Shift Network

Clear SK

7272777 7

Transmit Result (s)

78

* P&

NORMALIZE SPECIAL TIMING

"Request Release' (Normalize)

7%

Normalize Count = SK

Shift Count - Shift Network

Transmit Results

HIG A

A

* 4

L

* Earliest possible time - no result register conflict.

FIGURE

7.2 9

1%

SHIFT TIMINC {EXCEPT NORMALIZE)

t000

t025

t100
tl75
250
t300
t325
£330

to
t460

t340 -

t 340
to
t470

t 400

t450 .

t475 -

TIssue of the Shift Instruction to the Scoreboard

The jk portion of the current Shift instruction is received at the Shift Functional Unit. (jk is unconditionally sent to
the shift unit every 100 nanoseconds, and is gated to SK upon receipt of a "Mask" or "Shift jk'" mode bit} (See Figure 7.2-8)

1f "Shift jk" or "Mask" mode bit was received, the jk catching register is transferred to the SK register.
The "Go Shift" pulse starts the Shift Unit timing chain
The "Request Release" pulse is sent to the All Clear Network (SCBD) if tle Normalize mode is NOT specified.

Source operands are received at the Input Registers of Chassis 8.

. The Shift Input Register (SIR) is cleared in preparation for tle receipt of the operand.

Shift Direction Control is enabled to the shift magnitude (SK) AND gates which will in turn enable the Shift Network.

(1) Source operands are gated from the Input Registers to SIR. (2) Bj (if Nominal Mode) shift count is gated to the SK register.
Shift magnitude AND gates enable the Shift Network. Approximately 130 nanoseconds are allowed for filter time through the static
shift network.

The "Transmit! pulse is received at the Shift Unit (assuming no third order conflicts exist)

The SK register is cleared as a result of the receipt of the "Transmit® pulse.

The Shift Unit result is sent to the register chassis, gated by "Transmit'", and will be received at Entry Control at about t500.

NORMALIZE SPECIAL TIMING

t350 -The "Request Relcase" pulse is sent te the All Clear Network if the Normalize mode is specified.

t430

£ 440
to
570

500 -

£550

t575

The output of the Normalize Network (normalize shift count) is gated to the SK register.

The Shift Magnitude AND gates enable the Shift Network. Approximately 130 nanoseconds are allowed for filter time through the

static shift network.
The "Transmit! pulse is received at the Shift Unit.
The Shift Count Register is cleared due to the receipt of the "Transmit'" pulse.

The Shift Unit -esult is sent to the register chassis, gated by "Transmit", and will be received at Entry Control at about t600

Reference is made to the Shift Functional Unit Customer Engineering
Diagrams, Sheet 111, where the logic associated with Shift timing can

be seen.

7.2.5 SHIFT DIRECTION CONTROL

As is implied by the name, the function of Shift Direction Control is to
determine the direction (left or right) of shift for the Shift class
instructions. Mode bits and the negative or positive condition of Bj
sign are logically combined on a CT module (Il7) whose output will
ultimately specify Left or Right direction. The direction is combined
with bits from the Shift Count Register (SK) on CA modules which are then
fanned out to enable the six ranks of the shift network. One of three
possible enables will condition rank "X" of the Shift Network (where
X=1, 2, 4, 8, 16, or 32).
1. Shift Left "X" places (if Direction Control =—=> Left)
2. Shift Right "X" places (if Direction Control =——>rRight)
3. Mo Shift "X" places (if the SK bit for magnitude "X" = 0)
During the following explamations, refer to Figure 7.2-10, a logic drawing
of Direction Control.

Left shifts are possible only with the following instructions and conditions:

20 This instruction specifies an unconditional LEFT shift in the shift
constant (jk) mode. Mode bits "Shift jk'" and "Shift Left'" are ANDed
(I17, inverter L) and force a '"one" out of test points one and two

and pin 9.

44

Gh

S TET DIRECTION SO <0L

Bj BIT 17 %

FIGURE 7.2-10

117
CT
C
5 NORM.
y /¥ 9
A > (P LEFT == (NORM)4 (jk)(LEFT)
' +(NOM) (NEG) (RIGHT)
Bj K -+(NOM) (POS) (LEFT)
STGN 4
) RIGHT =3 (NORM)(jk + LEFT)
zf§s B (NOMANEGHRIGHT)
DR (NOM+POS+LEFT)
——— 19&) to SK Register
/
24() to Bj ONES TEST
B
H G D A
125 I‘ZO 115 16 18
\J NS _\._f_ \J
CLEAR SHIFT ik SHIFT SHIFT
LEFT NOMINAL

22 This instruction specifies a nominal LEFT shift if the sign at B

23

register j is positive. (If Bj sign is negative, the shift direction
will be right.) Mode bits "Nominal'" and Shift Left" and the condition
"Bj is positive" are ANDed (117, inverter K) and force a 'one" out of

test points one and two and pin 9,

This instruction specifies a nominal right shift if the sign of B
register j is positive., If Bj sign is negative, the shift direction
will be LEFT. Mode bits '"Nominal" and "NOT Left Shift" and the
condition "Bj is Negative' are ANDed (117, inverter J) and force a

"one" out of test points one and two and pin 9.

24 and 25 Both of these instructions specify the Normalize mode of

operation. A LEFT shift is always required during Normalize; therefore,
the "Normalize' mode bit forces a 'one" out of test points one and two

and pin 9 of module I17.

Right shift are possible only with the following instructions and conditions,

A right shift will result in '"zeros'" at the outputs of test points one and

two and a one out of pin 4 since all three AND gates (J, K, & L) and the

Normalize condition will be "ones."

21

22

23

43

This instruction specifies an unconditional RIGHT shift in the shift
constant (jk) mode.

This instruction specifies a nominal LEFT shift if B register j sign is
positive. If Bj sign is negative, the shift will be RIGHT.

This instruction specifies a nominal RIGHT shift if B register j sign 1is
is positive. (If Bj sign is negative, the shift will be left.)

This instruction forms a mask by RIGHT shifting a '"one'" from bit 59 the

number of places specified by jk. Thus, WRIGHT shift is always forced.

46

7.2.6

26 and 27 The Unpack and Pack instructioms do not require shifting, but

(@}

since all three AND gates (J, K and L) and the NORMALIZE condition
will be "ones", a RIGHT shift signal is distributed to the shift

network. But, these instructions do not gate the operands through

the shift network and consequently, they are not shifted.

The outputs of Shift Direction Control are summarized with the following

table:
DIRECTION | PIN BOOLEAN FORMULAS
Left 9 (NORM) + (jk) (LEFT)>+ (NOM) (NEG) (RIGHT) + (NOM) (POS) (LEFT)
Right 4 (NORM) (EE + LEFT) (NOM + NEG + RIGHT) (NOM + POS + LEFT)

Figure 7.2-11 shows how the shift direction and magnitude are combined to
enable a given rank of the Shift Network. This example is for bit 22 or
the Shift 4 places rank of the Network. The same method is used for the

other ranks of the shift network.

SHIFT NETWORK

The shift network shifts 60-bit quantities left or right on the basis of
a 6-bit shift count in the shift count (SK) register. Left shifts are

circular; right shifts are end-off with sign extension.

The quantity to be shifted is transferred from the chassis input register
(IR) to the shift input register (SIR) whose slave outputs drive the

100 nsec static shift network. (See Figure 7.2-12) The network is
organized in six shift paths or levels of 1, 2, 4, 8, 16, and 32 shifts

progressing out from the input register. Each level corresponds to a

8%

SHIFT DIRECTION AND

MAGNITUDE CONTROL

SHIFT COUNT

SHIFT DIRECTION

REGISTER L10
CS
b 7

— e

-—.‘

)
' 10
9

M10

AN

~

CONTROL 117
CT
—) i’ 3 LEFT
_____ﬁ____c}- ______
-
[}
{]
12 L rRiguT !
(OO0
' |
' ! \
! |
]
) !
0 |
| |
i |
| |
SHIFT & I I
FAN-OUT 118 L———r
TH J
”
’f
a’ /’
V4
”
7’
Vs
1 V4
10

FIGURE 7.2-11

14
LEFT 4
12 \\\
M12
I CA
14 Vd
RIGHT 4
12 \\\
M11
CA
12 NO SHIFT

power of two and each "one" bit of the 6-bit shift count in 5K gates a
corresponding level of the network. A '"zero" in any bit position of SK

implies no shift (See Figure 7.2-11). Slave inverters on each bit of SK are
gated by shift direction (left or right) according to inmstruction requirements.
(Refer to Section 7.2.5, SHIFT DIRECTION CONTROL) The inverter outputs are
fanned out to the proper level in the network and indicate a left, right or

no shift for each of the six levels.

Each level of the shift network sends a bit to the next higher order

shift level unshifted, or shifted left or right the number of places
assigned to the level. For left shifts, high order bits (259) are wired

to low order positions (2°) to provide a complete circular left shift. For
right shifts, no connections are made on the right shift outputs of bit O

or other bits in the network where a right shift would carry past bit O.

For example, the right shift 16 output of the bit 9 circuit has no termina-

tion., This wiring produces the end-off feature of the right shift.

The sign (Bit 59) of the shifted quantity is extended on right shifts.

A '"one" (negative quantity) or a "zero! (positive quantity) in this
position is extended to the right the number of positions the quantity

is shifted. During the formation of a Mask, a negative sign is forced.
The shift network treats zero extension automatically. Since any shift
will be at least one position, ones are extended beginning at the second
level and the first level is ignored. The sign extension slaves are thus

necessary only when the shift quantity is negative. (See Figure 7.2-12H).

49

Figure 7.2-12 is a representative logic drawing of the Shift Network

showing bits 0, 1 and 2. Notice the three enables (Left, Right, or No
Shift) entering the first four stages of the Network. Note also, that on
stages 16 and 32 only two enables enter each stage, Left and No Shift, since
a right shift of 16 or 32 would produce an end off effect for these stages.
The design of the metwork is like that of the Peripheral Processor Shift
Network with the exception that this is a 60-bit, 6 stage network. The PPU

shifter was an 18 bit, 5 stage network.

50

CHASSIS 8 SHIFT
INPUT REGISTERS

18

st 29 a3 727 Tz
s a2 26 m]ldf
o 57 7—“47!" 25 “aolaF
BT 33 55 5 Q10 JaF [, 2 2lojar
EXPONENT T T — Lﬂ [B;r 56 40 24 pos[ar]
12 8ITS prm e e 57 53 + °°5[° - 55 39 23 eoslor
| Pishr | 54 3822 gorlar
[eir 56 52 a8 pio [aF e Sl bl
e e =7 5 5 . [an 53 37 21 eosfaF
[[= o 5 aos o L [TTUUs2 T e T 20 ooslo?
04|QF - e e . L)
T | a5 al 37 acela }‘ [3! 35 15 " o0aaF]
P14 |QF]
[or i W % L 1] (e 50 348 eo3for
— — o pos [ar] | | | [45 33 7 gozlar
J 38 3 27 ao8 [oF 7
— 5 56 t 8 32 16 gol IQF
T TR - ao3far] | | [eir_ a7 15 poi [oF
) Y 28 2a ralls [% sl “"5]°F i
23 9 15 pos Jor - | a5 29 13 pia]aF B
007 Jor . BIT a4 28 12 eslarl ||
22 8 & a0z Jor 5 |]
17 3 P12 JaF ﬁ % L
= h
16 12 PoT [oF
7 3 aos e[| | [[" 0 9 POskF
6 2 o1 JaF 7 6 PO4]KF
f) | PiaF 4 3 Po3[KF
4 ° pos[af[| | | o Po2[kF
-
A F
F T
COEFFICIEN L4 (BIT 12) PLB(BIT 16} TO BIT 34 FAN IN
Xj+Xj—» 48 BITS |——> <
NS2 D NSB (BIT 8} YO BIT 2 FAN IN
81T 2)
TN
\
\
L3 N
\ F
817 3) (8IT12) \ TO BIT 33 FANIN
Ns2 NS8
(BIT 1 (81T 4) TO BIT | FANIN
L8
(BIT 8) TO BIT 32 FANIN
r———-——v——-- ul TO BIT O FAN IN
252
15
S8

NS = NO SHIFT

U NOTE :
DIRECTION CONTROL L = LEFT
a R = RIGHT
SHIFT COUNT i

REGISTER

Shift Network

Figure 7.2-12

A

Force

one
one if
RS1-
5ign

RANK 2
INPUTS

59

Force
two
ones
if RS2
* Sign

SIGN EXTENSION BLOCK DIAGRAM

FIGURE 7,2-12A

59 Force 59 Force 59 Force
58 four { eight six-
ones 56 ones teen
if RS4 if ones
* Sign RS8 - 50 if 2
Sign RS16-
Sign
0] 0 0
RANK 8 RANK 16

INPUTS INPUTS

59 Force
Thir-
ty-
two
ones
if
RS32-
Sign

A 9

RANK 32

159

28

NETWORK

7.2.7

NORMALIZE NETWORK

The static normalize network forms a six-bit shift count, which defines
the number of shifts necessary to normalize, and stores the count in the
SK register. The shift network, under control of the SK register, is

P | — . -T2 .
used to normaiize t€

Initially, the coefficient is transferred from the chassis input register

to the SIR (complemented if Xk is negative). Thus, the content of SIR

is always positive during normalize operations. The normalize network

organizes the low-order 48 bits of SIR into six 8-bit groups. It then:
1. Determines the highest order "one" in each group (a 1 of 8 selection).
2. Determines the highest order group with a "one" (a 1 of 6 selection).
3. Determines the number of zeros between the highest order 'one'" of

247

the coefficient and bit , and stores the quantity in the SK register.

Refer to Figure 7.2-13, during the following discussion.

Locating the highest order "one" in a group is a 1 of 8 selection which

is accomplished by comparing a bit with all of the higher order bits in

the group (modules G25-G30). In each of the six groups, this yields a
three-bit '"group count!" which indicates the number of shifts necessary

to move the bit to the most significant position in its group (test points

3, 4, and 5). The six group counts are combined in an OR circuit (TA module)
which feeds the lower three bits of the SK register. The group count
selected to enter SK corresponds to the group holding the highest order

"one'" in the coefficient.

Another circuit in each group tests the group for "All zeros" (modules

53

i

149

i

CHASS:5 8 SHIFT
INPUT REGISTERS

EXPONENT
12 BITS

COEFFICIENT

Xk+ Xj—> 48 BITS

NORMALIZE NETWORK

lsnoup | BITS 40-»47 G25]KC

Icnoup 2 BITS 32—>39 G26|Kc|

leﬁouv 3 BITS 24—»31 G27|KC)

lsnow 4 BITS 16—»23 G28|KC

[enoup 5 BITS 8-—>I15

GROUP 6 BITS 0T

25

A
s X

o
vy

R X #

8) 22 15 27
s e — e <
T

ZI

R x

18] 2! i3 1
v Yoo <

GROUF

rd

-~

e
rd

(/
I GROUPS ¢
]
)
: GROUP 4
|
i
| AZB
| SRou #
" 0
1 Fr
| enoue £ 2@ {5} 3D
] P
]
|
|
]

[N

TO GROUP &

SBoue 3;}4
3
T
TR o ®
GRouPLE(T) »lx] 2 18
J | >TosROUP1 vy

WM X s
P

c

8T s

SBIT 4

BIT 3

G32
GROUP ITA|
1-6
FAN IN

20

14 2

Figure 7.2-13

BIT 2

BIT O

r———»

SHIFT COUNT REGISTER
SK

LEFT
SHIFT

G25-G30, inverters A). The highest order group with a 'one' is determined
in the same manner as described above, i.e. each group is compared with
all higher order groups through the all zeros circuits (module G31).
Again, a three-bit quantity is formed in a count network but is sent to
the upper half of the SK register. This quantity can be thought of as
representing the number of sequential all zero groups beginning with the

most significant (group 1).

Summary : Starting with the high-order bits of the coefficient, groups
with all zeros are eliminated. When the first group containing a '"one"
is found, a count is sent to the three low-order bits of SK. This count
is equal to the number of places required to shift the '"one'" to the
highest-order bit of the group. The upper three bits of the SK register
are loaded with the number of all zero groups to the left of the group
containing the first one. Entry of all other groups into SK is blocked.

Thus, a six-bit shift count ranging from 0 to 48 (60g) is formed in SK.

7.2.8 Bj ONES TEST NETWORK
The purpose of this test is to guarantee an all zero coefficient when
the shift count contained in B register j exceeds 77(g) and a Nominal
Right Shift is specified. For example, assume that Bj equals 000425(8)
and a 23 (Shift Right Nominally) instruction is coded. The proper (all
zero) coefficient should be obtained by shifting the coefficient 425(g)
places to the right (right shifts are by nature end-off). Since
only six bits are contained in the Shift Count Register, the maximum shift
possible is 77(8) places. In the case of a Nominal Shift, only the lower
six bits of B register j are used, and thus if the Ones Test Network was
not present, a Shift count of 25(g) would be used in this example. The

result could obviously be erroneous since only 21(10) bits of the co-

55

efficient would be shifted to the right and end-off. The possibility of

such an error occurring is eliminated by the Bj Ones Test Network.

This network is used to determine whether any one of Bj bits 6 through

10 is set during Nominal Right Shifts. The question arises: why are

only bits 6 through 10 tested? The answer is found by considering that the
Left Nominal (22) instruction is used during the conversion of Floating

Point Numbers to Integers. The following example illustrates this process:

GIVEN: (X3) = 2006 (==l 0527

PROGRAM STEPS: 26423 (Unpack X3 to X4 and B2)
22624 (Left Shift X4 Nominally B2 places to X6)

RESULT: 1. The Unpack instruction will place 527 in X4 and 6 in B2.
2. The Shift Nominal instruction will shift X4 six places
to the left and place the number 52700 in X6.
3. Thus, the floating point number 537 x 29 is converted

to the Integer 52700,

The point to be stressed from this example is that Ehé Unpack instruction
will not return an exponent greater than 10 bits in magnitude to Bj.
Consequently, the Shift Nominal instruction, if used properly, should never .

find and exponent (Bj Registe) greater in magnitude than 10 bits.

Figure 7.2.14 is a logic drawiné of the Bj Ones Test Network. The test is
relatively simple matter of checking the state of bits 6 through 10 togethef
with the sign (217) of B register j. A "one".out of either test point 5 or
6 will disable sending the shifted coefficient to the output network since a
"one" is required on pin 10 of H24, Thus, to enable the shifted result, the
flip-flop on K30 must NOT be set. Test point 5 checks the Negative ('one")

state of Bj against a-mero in each bits 6 through 10 (terms "X" and "FU,

56

LS

SET ENTER SHI®T
)

K30
y—
H T2 KW
— |1 A
26
A 6
X v B ‘
C —» |
—p B p” 1
27 C E "
-
X
Y ¥ L
G ‘ !
— |10 H—» |
28ﬂ f
T
J
X Y
O A A
9
22 C
X Y
X Y
0 -—4»(%)
' N L
X
Lo . L
~ ~ ~
217 NOM LS

H24
KV
NORM
U'FLO
t25
10
------- <
XMIT

NS32. SK24. NORM

FIGURE 7.2-14

Bj ONES TEST NETWORK

ngn, "WHm, nIiv, and "J"). If Bj is negative, zeros are checked because the
magnitude is in complement form. If any of these bits is a zero when Bj 1is
negative, a zero is forced into test point 5 and when the "Set Enter Shift"
is enabled, the flip-flop on K30 will be set. Test point 6 checks the
Positive ("zero") state of Bj against a "omne" in each of bits 6 through

10 (terms "Y" and "AW, "B", nCw, wDNM, and "E"), If any one of the

bits is a "one" when Bj is Positive, a zero into test point 6 will

allow the flip-flop to set when the "Set Enter Shift! gate arrives.

Note that this circuit is used only during Nominal shifts when the

Right direction is specified. The following Boolean formulas express

the conditions required for terms "X" or "Y".

X = (NOMINAL) (LEFT) (217) or, Nominal Left and Bj = Neg (Right Shift)

Y

If

(NOMINAL (LEFT) (517) or, Nominal Right and Bj = Pos (Right Shift)
Thus, during Nominal Right Shifts when there is a one present in any

of bits 6 through 10 (true magnitude) the shifted result is not enabled
to the coefficient bits of the transmitters. Amn all zero coefficient

is then returned to Xi.

7.2.9 EXPONENT ADDER
Since the coefficient of Xk is shifted left (increased) during the
normalize process, the exponent of Xk must be decremented by an equiva-
lent value. This is the function of the exponent adder, i.e. to substract
the shift count generated by the normalize network from the exponent of
the source operand. The example in figure 7.2-15 illustrates the initial

and final values of a normalize operation. In the example, a normalize

58

shift count of 37, is generated and sent to the SK register, which in turn
conditions the shift network. The six bits of SK also feed the exponent

adder along with the eleven bits (248 258) of the original exponent.

Before Normalizing:

(Xk) = 2135 O--=n-- 0327715 (327715 X 2133)

After Normalizing:
(Xi) = 2076 6576320-~---- 0 (657632 X 276)

(Bj) = 0==--- 037 (Normalize Shift Count)
Figure 7.,2-15

Recall that, if the sign of the coefficient is negative during normalize
operations, the complement of IR is sent to SIR. If the sign is positive,
the true value of IR is sent to SIR, Thus, bits 48 - 58 of SIR will
always contain the true form of the biased exponent and bit 59 will always
be zero. The sign of the exponent can be determined with bit 58; the set
condition indicates positive with the magnitude in true form (2000 - 3777)
and the cleared condition indicates negative with the magnitude in

complement form (0000 - 1777).

Also recall that undérflow may occur during the normalize process, but
only if the exponent is smaller (more negative) than negative 60g (since
60g is the largest shift count that can be generated by the normalize

network).

For the purpose of explanation, the range of possible exponents is divided

into four groups:

1) 0000 - 0057 (-1777 to -1720): A Negative exponent, and

59

under flow can occur if SK EXPO. It is indicated by the presence of an

End Around Borrow (EAB).

UNDERFLOW UNDERFLOW
EXP = 0032 -1745 0053 -1724
SK = 51 - 51 15 - 15
RESULT = 1761 -2016 0036 -1741
EAB? YES NO

2) 0060 - 1777 (-1717 to -0000)

Negative, but no underflow can occur (an End Around Borrow is not
possible).
EXP. 0060 -1717
MAXIMUM (SK) __60 =60
0000 -1777

3) 2000 - 2057 (40000 to +0057)

Positive, and transition to negative might occur (if SK 5EXPO)

Transition No Transition
EXP CZOSO) +50 2046 +46
SK 52 EAB =52 35 =35

1776 (forced)-02 2011 +11

__ &

1775

4) 2060 - 3776 (40060 to +1776)

Positive, but transition to negative is not possible.

EXP 2060 +60
(SK) Maximum 60 -60
2000 +00

With this information in mind, a discussion of the adder logic follows. The
terms "Generate', "Satisfy'", and "Enable" are used during this explanation.

They refer to the 1 and 0 combinations in each stage and are defined as

follows:

60

Generate: requires (generates) a borrow from a higher stage.

Satisfy: will fill (satisfy) the borrow requirement of a
lower stage and in doing so, will not generate a
borrow.

Enable: in a sense, full-fills a borrow requirement, but
in so doing, generates a borrow itself. It there-
fore passes-on (enables) a borrow to the mnext higher

stage.

Figure 7.2-16 shows the subtraction of SK from the Xk exponent of
our original example (FIGURE 7.2-15). Each stage is labeled as

to its state; 1i.e. Generate, Satisfy, or Enable. Note that bits 6-10

10 9 876 7 N\ 543 210

XK exp. = S E EES EEE EGE
* 10 001 011 101

SK = 011 111
10 000 111 110

FIGURE 7.2-16
of SK are not physically present and are therefore considered to be
zeros. Consequently, a generate in stages six through ten is an
impossibility. The zero/zero enable and satisfy are the only conditions
possible in these stages. Thus, if a borrow is required by stage 5, it
can be satisfied by a 'one'" in any of bits 6 - 9 of the Xk exponent. If
no satisfy exists, all enables are assumed, each of bits 6-9 is toggled
to a one, bit 10 is cleared, and an End Around Borrow is generated.

Study the following example.:

Xk =(2031 I CIB 000 011 00£~‘_\\

= = 431
Sk = 55 EAB = 101 101 EAB = 55
1754 01 111 101 100
1 1
1753 = 01 111 101 OLlL = 24

Recall, that an EAB may also be generated if an exponent lies in the
range, 0000 - 0057 (Group 1), but in this case, it indicates the
Underflow condition. Thus, an EAB may occur in two cases, 1) with a
positive exponent in the range 0-57 and 2) with a negative expoment in
the range - 1777 - 1720. The adder logic differentiatés between the

two with the following conditions expressed in Boolean:

1. (EXP bit 210 = 1) (EAB) — Positive to Negative transition.

2. (EXP bit 210# 1) (EAB) — Underflow.

Figure 7.2-17 is a logic drawing of the exponent adder. To the left
of the drawing, two KR modules (G19 and G20) determine the generate,
satisfy, and enable condition for each of the low-order six stages.
The outputs of inverters H, I, or J being a "one" indicate the enable
(equivalence) condition for stages 0, 1, and 2 (G19) and 3, 4, and 5
(G20). Translations for the generate condition are also made on these
modules (pins 13, 16, and 18 on both G19 and G20 indicate the generate

condition).

The KQ module (H19) determines the effect of an EAB on each stage of
the adder. It determines whether or not an EAB is generated and checks
for satisfies in each of the bit positions. A '"one" out of term "DV
indicates a 10 000 (20XX) configuration in bits 10 - 6 of the exponent
and will enable the propagation of an EAB through bits 0-9 of the adder.
A '"zero" out of term "D" indicates that the exponent is negative or a
satisfy is present in bits 9-6 (D =>10 + 9 + 8 + 7 + 6 = 20XX) and
disables the propagation of an EAB, (Recall that if an EAB occurs when
the exponent is negative, underflow has occurred) Pin 10 of H19 is

the EAB signal that is ANDed with the 210 condition to indicate an under~

flow condition (Refer to the C.E. Diagrams, sheet 111, I24, pin 6)

62

4

EXPONENT
BIT 7

Xk BIT P

BIT 7 COMP.

SHIFT COUNY
BIT S

BIT 4

— (]
NORMALIZE (

NORMALIZE

|

3
o
O

BIT 2

N
o

B8IT |

E

SHIFT COUNT O
BIT ©

EXPONENT ADDER

Figure 7.2-17

SHIFT NETWORK @ EXP. ADDER

FAN—IN MODULES.

LEXP. 8IT 10

SHIFT NETWORK 8 EXP. ADDER

FAN-tN MODULES.

| EXP. BIT 5

EXPONENT
BIY 6,
X; BIT 54

EXPONENT
BIT |,
Xj BIT 49

) EXPONENT
BIT O,

X; BIT 46

-

TO Xj

L EXPONENT

DRIVERS

|

SNORERCARD ISSUE
1.Mode Bits 5 F.U
2,Set Unit Busy

3.Set F, Q, & XBA

SCOREBOARD
ISSUE TIME

Any Second
Order Conflicts?

Wait for
release from
reserving unit

"Go Shift"
"Go Read"
"Clear RFS."

Clear
Chassis 8
Input Register

|

SHIFT FUNCTIONAL UNIT

FLOW CHART

"NORMALIZE" NO
MODE BIT?
(fm = 24, 25)

Reg.Rel. ~» SCBD
Clr. IR (KO,KB)
IR e SIR

e\,
Mode Bit?

(20, 21, & 43)

"NOMINAL"
Mode Bit?
(22 + 23)

Is Xk

negative?

‘vss

Transfer jk
to Shift Count
Register

LEFT
Mode Bit?
(20 + 23)

!

(1) Store sign
(2) Gate comp.
of Xk, bits 0-59
to SIR

1) Store sign
(2) Gate true -
alue of Xk, bits
D-59 to SIR

(1) Enable SIR
bits 0-47 to nom.
alize network

azi Send Regues:
elease to SIR

100 nsec.

1s Exponent
equal to
1777 + 37772

—

Normalize

Network Filter Time

MMASK™ VLEFT" Is Bj
MODE BIT? MODE BIT? bitc 17 =
(fm = 43) (20 + 23) (negative)?

isable Normalize
ICount to Shift
jcount register

[Enable Normalize
count to Shift
lcount register

*Round"
Mode Bit?

Force a "l" into
bit position 59
jof shift network

Do not force a

"1" into bit pos-

ition 59 of shift
network

z
[Enable bits 0-47
lof SIR to shift
network and enablg

shift network

'_______l

Force a "one" Enable
into position Left Shift Rislr::b;:ift Enable
59 of Shift Direction D% 0 WIment of
NEtml‘k rection B_], 0-5 to SK
4
Enable
Right Shift Enable
Direction Right Shift
Direction

Complement of
SIR, 48-58 to
Exponent Adder

nable shift count Exponent Adder
egister, 0-5 to Y
xponent Adder Underflow?

Was Xk coef-
ficient all Was X ¥O
zeros? negative?

nable complement

f shift network,

-47 and Exponent

lAdder to Xi out-
lput network

Enable zeros to
Xi, 0-47 and exp.
-48 to Xi, 48-58 I

nable shift net-
ork, 0-47 and
%p. Adder to Xi
output network

to Xi output

Enable all zeros
network

Figure 7.2-18A

64

SHIFT FUNCTIONAL UNIT

FLOW CHART

11

bit 17 =1
\ (negative)?

Is Bj

YES

Unpack
Mode Bit?

ES

True Value of

(0-59) to SIR

Input Register

|

True Value of

(SIR bit 59) to
Xi Output
Network, 0-47

|

Enable
True Value of
Bj, 0-5 to SK

Enable
Complement of
Bj, 0-5 to SK

Enable
True Value of
Bj, 0-5 to SK

Sign Extension

Xi OQutput
Network, 48-59

(SIR bit 59) to

L____‘__j

Enable
Left Shift
Direction

3

Enable
Right Shift
Direction

Complement
SIR bit 58
(To Remove

!

©)

100 nsec
Shift Network
Filter Time

and Bj bits

Block Result

Enable

to Output Shift Network
Network to Xi Network
Output
FI——

Exponent Bias)

Was Xk
Sign (bit 59)
Negative

Pack
Mode Bit.

(1)True Value of
Xk, 0-47 to SIR,
0-47.

(2)zero to SIR,

bit 59

True Value of
Bj, 0-10, to
SIR, 48-58

]

True Value
of SIR, 0-47,

to Xi Qutput
Network, 0-47

!

Complement

SIR bit 58

(To Remove
Exponent Bias)

&

Complement
SIR, 48-57, to
Bj Output
Network (0-9)

True Value of
SIR, 48-57 to
Bj Output
Network (0-9)

Was Xk
Sign (bit 59)
Negative?

Complement of
SIR it 58,
fanned to Bj}
OQutput Network,
7

True Value of
SIR bit 58
fanned to Bj
OQutput Network
10-17

Complement___
SIR 48-57, 58
and 59 (=0} to
Xi Output
Network (48-59)

True value of
SIR 48-57, 58,

and 59 (=0) to

¥i Output
Network (48-59)

"TRANSMIT"
Received From
Scoreboard

1

1)Send Result(s)
to Register Clhagsis
2)Clear SCBD

Reservations

Wait for Third
Order Conflict
to Be Resolved

Figure 7.2-18B

65

The RS module (G34) is a further summation network that determines
whether or not a generate enters stages 1, 2, 4, or 5. This condition
is determined for stage zero at pin 16 of H19, and for stages 6, 7, 8,

and 9 by pins 14, 9, 13, and 11 respectively, of H19,

The KE modules (I04 through Il4) are used to AND the EQUIVALENCE or
EQUIVALENCE conditions with the Borrow or Borrow condition for each
stage, Here, the final result for each stage is determined according

to the following table:

CONDITION ON KEs RESULT
(EQUIVALENCE) (BORROW) ———3 1
(EQUIVALENCE) (BORROW) =——> 0
(EQUIVALENCE) (BORROW) ——> 0
(EQUIVALENGE) (BORROW) P 1

66

SECTION 7.3

LONG ADD

FUNCTIONAL UNIT

=

I REQ.REL. ‘o
L O N G A D D GO g TIMING CHAIN * SCBD
from XMIT.
SCBD n from
FUNCTIONAL [}~ wove srrs fron
IRs FEEDERS
UNIT X)
CH. CH.
from - s1GN/ZERO FEI=0 -t
REG. — Xk TEST X
CHO \L&. > B
R
OOR » A
TTTTTT] RANGE] L1 N
X0 - X7 EXIT INDEFINITE | yi 1xp o c
BITS p8-p3 1 [CTRL TEST - >~ g

CHANNELS PROCESS-.IRS l

INSTRUCTION RESERVATION
ISSUE

i

‘OONTROL
(SOOREBOARD)

LONG ADD
P

E E
oy Rec Bolx HULTIFLY I

s 1 MULTIPLY 11

CONTROL DIVIDE

Tncwe 1]

INCREMENT 11

SRititini

®
o

7.3.1

LONG ADD FUNCTIONAL UNIT

INTRODUCTION

The Long Add Unit is an integer arithmetic unit that performs fixed-point
addition and subtraction of 60-bit operands and performs tests on X registers
which are used to condition the 03X jump instructions. It is a 300 nanosecond
unit located on data trunk #1 along with the Floating Add and Shift functional
units. Long Add holds third (last) priority for reading operands and for

storing results.

The Long Add Unit is controlled by mode bits (only one), a timing chain,
and the scoreboard (to the extent of starting the unit and transmitting
results). It also contains an adder capable of forming a 60-bit sum or
difference and testing networks which check the sign, zero, infinite, and
indefinite conditions of X registers. The resulting control bits of these
testing networks are sent to the Branch Unit where they enable or disable
conditional jumps. The testing networks are not used during the addition
and subtraction processes; no arithmetic error conditions are checked and

therefore overflow, underflow, and indefinite results are ignored.

In discussing the 03X Branch instructions, it is helpful to review the
events that take place during the movement of any 0X instruction to the
scoreboard. Recall that,in transferring a OX instruction from Ul to U2,
the i and j portions of Ul are shifted to the j and k portions of U2. The
i portion of Ul is also sent to the i portion of U2. Symbolically, then,

the transfer looks as follows:

Ul = fmijkKenmm- k

U2

I
o]
B
=
=

[S
-

1

'

'

'

)
~

69

Translations used to determine the existence of a result register (first
order) conflict are made from the U2 i portion and Result (Ai, Bi, Bj

or Xi) flip/flops. In the case of OX instructions none of the four
Result flip/flops are set, hence the issuance of a 0X instruction cannot
be delayed by a Result register conflict. (The functional unit type of
first order conflict may exist, éince in the case of the 03X instructions

the Long Add unit must be used, but is not significant to this discussion).

In the discussion of second order (source operand) conflicts we will analyze,

specifically, the case of the 03X instructionms.

Since the Long Add unit must read the X register designated by the k

portion of U2 (the j portion of the original instruction format) the
scoreboard must determine whether or not that register is reserved for

the result of another functional unit. This is done in the standard

manner -- by transferring the XBA designator for the specified X register

to the Qk designator of the Long Add unit and translating Q. If Q =0,

the register is not reserved and RF2 (Xk) will be set. If Q # 0, the register
is reserved by the unit whose code is in Qk, and the read flag will be

set when that unit is released. Although only one operand is read

during 03X instructions, both read flags must be set to generate the "Go

Read" signal for the long add unit. This means that Read Flag 1 (Xj)

must also be set even though the Xj operand will not be used. Since

no special gates exist for setting RF1 for this case, the normal procedure

of setting and translating Qj is used. Consequently, a second order conflict
may occur if the X register specified by the i portion o the original instruc-

. ,
tion is rescrved.

70

Normally, when these second order conflicts are resolved, two "Go Read”
signals (Xj and Xk) and two 3-bit tags (Fj and Fk) are sent to register

Exit control to gate the source operands to the Long Add Unit. Upon issuing
03X instructions to the scoreboard, only the Fk designator is set (setting
Fj and Fi is disabled by the translation, fm = 0X). Also, setting RF1

.
nd RF2 results in

an ir nd F designator for Xk to

,.
w
o
>
"
|4
hn

Exit control. (The Fj designator, which equals zero, is sent to exit
control, but the absence of the "Go Read Xj'" inhibits translation; therefore,
all zeros are sent on the Long Add Xj data trunk). In conclusion, both

the j and k octals of U2 may specify an X register which is reserved, and
thus cause a second order conflict. Nevertheless, once the conflicts are
resolved only a "Go Read Xk'" is sent to Exit Control and the Long Add

Unit receives only the one operand originally designated by the j portion

of the 03X instruction.

To consider the possibility of a third order conflict arising during 03X
instructions; recall that due to the fm = OX translation, the Fi designator
of the Long Add Unit is not set at scoreboard issue time. Fi will thus
contain "O". Also, because of the OX instruction, translation of Fi =0

is inhibited (by the clear side "Full Bit" for Fi). When the "Request
Release' arrives at the All Clear Network there is no Long Add Fi translation
to compare with other Fj and Fk designators. Thus, a third order conflict
cannot be generated, and the Long Add unit will immediately be sent the
"Transmit" signal. As a result, the 60-bit quantity in the Long Add output
network is gated to register entry control. Because the Full Bit of the

Fi designator is cleared, a "Go Store" to Entry control is inhibited,

although the three bit Fi designator (equal to zero) is sent., In order

71

to translate a code Fi = 0, the translating network in Entry control

requires a "Go Store" pulse. Since one was not sent, the translation is
disabled and none of the gates to the X registers are opened. To

summarize, during 03X instructions a third order conflict cannot be generated.
Although a "Transmit" is sent to Long Add, no Entry tag is translated and

the quantity transmitted is therefore lost in Entry control.

Since the Long Add Fj and Fi "Full Bits" remain cleared only during the
03X instructions, first, second, and third order conflicts for the 36 and

37 instructions are handled in the conventional manner.

72

7.3.2 INSTRUCTION LIST/DATA FLOW

This discussion is divided into two subsections, (1) Fixed Point Arithmetic

Instructions and (2) Conditional Branch Instructions. The expressions in

parenthesis which follow the instruction name are the symbolic ASGENT

Assembler codes. Data flow may be followed by referring to the block

diagram, Figure 7.3-1.

Fixed Point Arithmetic Instructions

36

37

Integer Sum of Xj and Xk to Xi (IXi = Xj + Xk)

Definition:

Forms a 60-bit one's complement sum of the quantities from operand
registers Xj and Xk and stores the result in Xi. An overflow condition
is ignored.

Data Flow:

The source operands, Xj and Xk are transferred from the chassis 8 input
register to the feeder registers of the long add functional unit.

Both Xj and Xk are transferred in true form. When a "transmit" signal
is received from the scoreboard, the sum of Xj and Xk is gated to the

result register Xi.

Integer Difference of Xj and Xk to Xi (IXi = Xj - Xk)

Definition:

Forms the 60-bit one's complement difference of the quantities from
operand registers Xj (minuend) and Xk (subtrahend) and stores the

result in Xi. An overflow condition is ignored.

Data Flow:

The source operands, Xj and Xk are transferred from the chassis 8

73

L

SCBD

X3

fm =

X6

LONG ADD UNIT - BLOCK DIAGRAM

Request

TIMING CHAIN

Release

- A

-0

59

Long Add
Plus

Y

X0 - X7 (bits 48-59)

ADDER

Transmit

SCBD

¥
59
632} '4& = Xi

v}

SIGN/ZERO

EXIT
CONTROL

TESTS

BRANCH

nee g

Xi =1 3777 _D

RANGE/
INDEFINITE
TESTS

-

BRANCH
-

Xj =7 1777 ﬂ

Figure 7.3~

1

input register to the feeder registers of the Long Add functional
unit. Xj is transferred in true form; Xk in complement form. When
the "transmit" signal is received from the scoreboard, the difference

of Xj and Xk is gated to the result register.

Conditional Branch Instructions

030 JWMP to K if Xj =0 (Zr Xj K)
031 JUMP to K if Xj # 0 (N2 Xj K)
032 JWMP to K if Xj = plus (positive) (PL Xj K)
033 JUWMP to K if Xj = negative (NG Xj K)
034 JUMP to K if Xj is in range (IR Xj K)
035 JUMP to K if Xj is out of range (OR Xj K)
036 JUMP to K if Xj is definite (DF Xj K)
037 JUMP to K if Xj is indefinite (ID Xj K)

Definitions:
These instructions jump to address K when the 60-bit word in operand
register Xj meets the condition specified by the i digit.

Test Validity:

030 & 031 - The zero tests check the full 60-bit word in Xj. The
words 0--~0 and 7---7 are considered as zero. All other
words are non-zero. The test is therefore valid for
both fixed and fleoating point words.,

032 & 033 - The sign tests check only bit 259 (sign) of Xj. A zero
indicates positive; a one indicates negative. The test
is valid for both fixed and floating point quantities.

034 & 035 - The range tests check the upper 12 bits (229 . 248) of
Xj for both plus (3777X----X) and minus (4000X----X)

infinity. Since the low order 48-bits are ignored, near

75

overflow numbers are also considered out of range. The test is
is valid for both fixed and floating point numbers.

036 & 037 The definite/indefinite tests check the upper 12 bits (299 - 248)
of Xj for both plus (1777 X----- X) and minus (6000 X----X)
indefinite formsf The test is valid only for floating point
values.

Data Flow:

During the 03X instructions, the operand to be tested is sent to the Xk

feeder register in complement form. There is no input to the Xj input

register; it therefore contains all zeros. For sign tests, (32 + 33)

a test of Xk bit 59 will indicate a negative or positive quantity. For the

zero tests (030 + 031) all 60-bits of Xk are checked for all "zeros" or all

ones'. Either condition indicates a "zero" quantity. During Range or

Indefinite tests, the Input Registers are not used. Instead, the upper 12

bits of Xk are checked from the operating register (through Exit control).

The Range tests checks bits 48-59 for 3777 or 4000 (positive or negative

infinity). The indefinite tests checks these bits for 1777 or 6000

(positive or negative indefinite). The presence or absence of control

signals resulting from these tests are used by the Branch Unit to enable or

disable the 03X conditional jump instructions.

The eomputer will generate only positive indefinite results (l.e. 17770—0);

however, the indefinite tests check for both positive and negative

indefinite values.

76

7.3.3 MODE BIT

As far arithmetic processes are concerned, the Long Add unit is capable of
performing only, addition and substraction. A single mode bit, called Long
Add Plus is used to distinguish between these operations. It is generated
with fm translation = X6 ANDed with Long Add Unit Busy. The true value of
operand Xj is always sent to the Xj feeder register. During Addition, the
Long Add Plus flip/flop is set enabling the true value of operand Xk to the
Xk feeder register and forming the sum, Xi + Xk. During Substraction, the
Long Add Plus flip/flop is cleared. Consequently, the complemented value of

Xk is sent to the Xk feeder and the difference, Xj - Xk, is formed.

During the Branch (03X) instructions the Long Add Plus flip/flop is cleared.
Therefore, the complemented value of the Xk input register is sent to the Xk
feeder, whose outputs are used in making the sign and zero tests. Range and
Indefinite tests are made directly from the operating register (through Exit

Control) j, hence the mode bit is not significant.

Figure 7.3-2 is a logic drawing which shows the effect of the Long Add Plus

mode bit on the IR to feeder transfers.

77

8.

IN LONG ADD

from EXIT CONTROL

from EXIT CONTROL

t 00

I19

INPUT REGISTERS Lo7

LONG ADD PLUS KN

26

Figure 7.3-2

133
KT FA
13 r Qé
a 20 23
= — 0--0
!
C
FEEDER
A REGISTERS
Xk F /5\
O-25 W
8L _ ¢ 26
w e
5
(5"" €™
y
——?&@ o B

122 _ J22 |

TH CA |

l

|

19 — 3 ¥

—C0- - o >*—_ﬁ)—'_

7.3-4 TIMING SEQUENCE

A timing chart for the Long Add Unit is shown in Figure 7.3-3. The following
page explains the pulses shown on the chart. These two pages, in conjunction
with the C.E. Diagrams (i.e. sheet 136) should explain quite fully the Long
Add Sequence. The time base used (t000) is the Scoreboard issue of the Long

Add (36 or 37) or the Branch (03X) instruction.

79

08

Scoreboard Issue

Go Long Add

Clear Input Register
In Long Add

Request Release

Long Add Sequence
Operands to Input Reg.
Clear Feeder Reg.

IR to Feeder Reg.

Branch Tests to Ch. 5
Transmit Results

* Earliest possible time

100

LONG ALL UNIT

200

TIMING CHART

300

-
g

No Result Register Conflict

Figure 7.3-3

18

t000
tl75

t050
t200
t250

t285

t300

t310

t315

t350

t475

Time reference - Scoreboard issue of 36, 37, or 03X instruction

The Go Long Add flip/flop (8HOl) is set and starts the timing chain.

Chassis 8 input register is cleared each minor cycle with t40 (8L07-15)

Second flip/flop in timing chain (in Long Add) sets. (8J23, TP 1)

Request Release is sent to the scoreboard.

Third flip/flop in timing chain (8E28, TP 2) sets. Results in gating signal to chassis 5

(from 8HQ06, 27) for Branch test.

Operands (Xj and Xk) are received on chassis 8 (KT modules)

Feeders (FA modules) are cleared in preparation for receipt of operands.

Input registers (KT modules) are transferred to feeders (FA modules)

Control Bits resulting from branch tests are sent to the branch unit on chassis 5. (These are always
generated; used only if desired)

This is the earliest time possible to transmit the result of the Adder to register entry control. (If

a third order conflict occurs, the transmit will be later in multiples of 100; i.e. t575, t675, etc.)

7.3.5 ADDER

The Long Add Unit Adder forms the 60-bit integer sum (Xj + Xk) or difference
(Xj = Xk) of the two source operands. To perform addition, both operands
are sent to the feeders in true form. During subtraction, Xj is sent in
true form and Xk is complemented. The decision to load the true or false
value of Xk is made by the Long Add Plus flip/flop which is set only for

the 36 instruction (See Section 7.3.3, Mode Bit).

As a preliminary to the explanation of the adder logic, the terminology

used must be defined.

The Long Add Unit adder is said to be subtractive in nature. The distinction
between additive and subtractive adders is made by looking at the result
generated when adding complemented numbers, An additive adder will generate
negative zero (all ones) when adding complemented numbers. In other words,

it forms the quantity, A + B (A and B being the source operands).

Additive 542---673
Adder 235---104
777---777

A subtractive adder will generate positive zero when adding complemented

values. In other words, it forms A - (-B) or , A + B by the rules of algebra.

Subtractive 542-~-673 = 542~~-673
Adder +235---105 = ~542---673
000---000

The Long Add adder generates positive zero when adding complemented quantities,
although it is not accomplished by the '"pencil and paper' method shown above,

It is, therefore, a subtractive adder by definition.

82

In the discussion of the adder logic, reference is made to the terms; Borrow,
Satisfy, Enable, and Pass. These are defined using the subtractive approach,
A - (-B), as the criterion., Normally, when adding by complementing and

subtracting, the possible bit configurations are defined as in Figure 7.3-44,

In the case of the Long Add adder, the operands are contained in the feeders

EBSE EBSE
A=0011 A=0011
B=0101 B=1010

(a) (B)

Figure 7.3-4

in true value, and the stages are labeled as in Figure 7.3-4B. Essentially,
we are saying IF operand B was complemented, two ones (in true value) is a
Satisfy, two zeros a Borrow, and any zero-one combination an Enable. A

Pass has the same meaning as Not Satisfy.

The adder is divided into five 12-bit sections as follows:

59 48147 36]35 24123 12111 0
Section 4 3 2 1 0

Each section is further divided into four 3-bit groups as follows:

11 9ls 65 3|2 o
Group 3 2 1 0

Since all sections and groups are logically similar, only one section (section
0) will be analyzed. Figure 7.3-5 is a logic diagram of section 0 and

should be referenced in following this discussion.

83

78

FROM
CH. 8
INPUT <
REG.

GP. 3

22 (XKN

iy
2 (Xﬂ#

I
20 (Xy)

20 (xj)

29 (xy)

.
6p. 2
REGISTER 2w
GROUP 3 H30[FA
P 6P |
[srour 2 H2s9 [Fa SRk ow
[eroup 28 [FA
GROUP 3 GP. O
J BORROW,
Y
-
bt //
J -7
-7 eI ASS
P 2 PASS
P T PASS

GF O PASS.

PASS AND BORROW CIRCUITS

5
E
A | 10
D
5 £
A 2
A 8
6 . D SEC.4 BORROWO
13 H |
A ¢ I
B 1
e | SEC. 3 BORROW
] : SEC. 4_PASS
e ! i
2 o | |
R { |
¢ X [SEC. 2 BORROW
| o
I ! '
I ! !
i ! | SEC. | BORROW
~
~_ | I !
~. >~ | | !
~ 1. L _ _ _iSEC.0 BORROW
ST | -
R P |SECS. sumh PASS
| ~. S~ | 12
~_ >~
: Sl
| ~L
: !
| | GP.1 Pass
|
X : GP. 2 PASS
! SELS. 3 4 PASS
1 : ™= —==
| t
I 139 | | SECTPRES
| I
I
i |
SEC.4 PASS! B :
! -
I
SEC. 3 PASS, QSEC. 3 PASS
! SECS. 2 + 3 PASS
1
I
SEC. 2 PASS | SEC. 2 PASS
I
I SECs 1 - 2 PASS
|
§EC T PAss! SEC. | PASS

Q
. O SECS. O - [PASS
3\
”
n QO SECS. O - 4 PASS

QSEC. O Pass

It |

-
1

:
;

LONG ADD
RESULT NETWORK
[srouP 3 137]Fe
{eroup 2 136 JFE
| eRoUP | 135[FE
GROUP 0 134 [Fe] | | |

o2l (xj)

TO CH.8
QUTPUT
NETWORK

Figure 7.3-5

FA Modules

To the left of the diagram, feeder registers for group 0 (Section 0) are
shown, One FA module is required for each group; hence, a total of 20

such modules are used. Each FA module checks for a group pass (pins 8,

13, and 15) and a group borrow (pin 17). These signals are sent to the
Pass and Borrow summation circuits (FB, FC, and FD modules). Pins 6, 1

and 28 of the FA modules, when a logical 1, indicate a Enable (Equivalence)
condition in the respective bit positions. Pins 2 and 25 indicate the
Borrow state of bits 2! and 20 respectively. Pin 27 checks for the

Satisfy (Pass) state of bit 20,

FB and FD Modules

The Pass and Borrow circuits are used to summgrize the pass and borrow
conditions determined by the FA modules. For instance, test Point 1 on the
FB modules, 1) checks for borrows generated in each of groups 0, 1, 2 and
3, 2) checks for satisfies (Passes) in the groups and 3) will ultimately
determine whether a borrow can be satisfied in this section, or whether it
must be propagated to the other sections (from pin 7 of the FB to pin 21 of
the FD). The FD module then compares the section borrows to the section
passes, (Satifies) and group passes. For example, pin 24 of 140 says

(translated for a '"zero!):

(groups 0, 1 and 2 of Section 0 contained no satisfies (term k))
AND
((Section 4 generated a borrow) OR (Section 3 generated a borrow

and Section 4 could not satisfy) OR (Section 2 generated a borrow and

85

Sections 2, 3, and &4 contained no satisfies) OR (Section O generated a
borrow and Sections 1, 2, 3 and 4 contained no satisfies)) on the right
half of the FB modules, borrows and passes for group 0, 1, 2, and 3 are
combined to determine which groups have borrow inputs and which do not.

At this point, all possibilities for borrow inputs to any one group have

been checked, It is now necessary to determine which stages within each
group have borrow inputs and how this will affect the final result of

each stage., This is the function od the FE modules,
FE Modules

Each FE module summarizes the borrow and enable (equivalence) conditions

for one group (i.e, three stages). Thus, 20 FE modules are used.

Earlier, an Enable was defined as a 0, 1, O combination. With either of
these bit configurations, a "zero" should result (as the answer) if no
borrow enters that stage, and a "one" if a borrow does enter the stage: In
Boolean -

(Enable) (Borrow) = 1

(Enable)(Borrow) =§,0

Conversely, if an Enable is not present, equivalence (1, 1 or 0, 0) must
exist in that stage. With no borrow the result should be '"one'; with a

borrow the result should be "zero!". In Boolean -

(Enable)(Borrow) = 1

(Enable)(Borrow) = 0

By analyzing the FE module of Figure 7.3-5 the above statements are conlitmed.
Figure 7.3-6 summarizes the possible combinations and the result obtained for

any one stage, as determined by the FE modules.

86

Condition Result
(Enable)(Borrow) =—= 1
(Enable)(Borrow) =i==> 1
(EEZETE)(Borrow) =%==%> 0
(Enable) (Borzow) =—= 0

Figure 7.3-6

87

7.3.6 BRANCH TESTS

The Branch tests are used to condition the 03X series of jump intructions.

Four tests (Zero, Sign, Range, and Indefinite) are used as follows:

Opcode Name Test

030 Jump to K if Xj =0 zZero

031 Jump to K if Xj # 0 zZero

032 Jump to K if Xj =0 sign

033 Jump to K if Xj<€ 0 sign

034 Jump to K if Xj is in Range range

035 Jump to K if Xj is out of Range range

036 Jump to K if Xj is definite indefinite
037 Jump to K if Xj is indefinite indefinite

Zero Test

The zero test circuitry tests all 60-bits of the Xk input register (the
content of the X register specified by the j portion of the instruction)
for all zeros (positive zero) or all ones (negative zero). Any other

bit configuration is considered a non-zero quantity.

During the discussion of the Zero Test Logic, refer to Figure 7.3-7.
Recall that during 03X instructions, the long Add Plus flip/flop (I19)
is cleared and the complement of the Xk input register is sent to the Xk
feeder. The Xj input register receives no input; consequently, the Xj

feeder contains all zeros.,

88

For the positive zero test, a check for non equivalence between each bit of
Xj and Xk is made. (i.e., FA module, pin 28) The non-equivalent conditions
for all bit positions are ANDed (with sign = 0 or positive) on FE modules
(i.e., J39). 1If any bit position is equivalent, the resulting "zero!" out of
the FE module will enable the transmitter on HO6 (pin 22) to send an Xj # 0
signal to the Branch unit. Conversely, if all bit positions are non-

equivalent, the transmitter is disabled - the absence of the Xj # 0 signal

implies Xj = 0.

The Negative Zero test works in a similar manner. A check is made for all
bit positions being equivalent. Any position resulting in non-equivalence
will enable the Xj # 0 signal to be transmitted., The absence of the Xj # 0

signal will indicate to the branch unit that Xj = O,

Sign Test

The sign test is a simple matter of checking bit position 259 of the Xj
register (on I19, test point 1). If set (indicating negative), a transmitter
on HO6 sends a signal to the Branch unit indicating the Xj< 0 condition.

A positive sign (259 cleared) disables the transmitter. The absence of the

Xj <« 0 signal implies Xj=0. (See Figure 7.3-7)

Range Test

The range test checks bits 48-59 of Xj for negative or positive infinity
(4000 or 3777). Since the lower 48 bits are ignored, near overflow numbers

are also considered out of range if the upper 12 bits equal 3777 or 4000.

89

ué

GO LONG ADD HO1 IN LONG ADD
jE:

<o
%j

(SIGN TEST)

9 |la~ A9 ~ /99 |6~~~ 615 0 S-S -T T -T T T T T T % 8T - -"===-~-- |
FAN-IN I20

-
{ZERO TEST)

Xi#O

wote: N T~ ==
IN THE scoresoard ¥SQA XN --__ Il rmm s s m s s s s m ==
“'j"”zk FOF BRANCH INSTRUCTIONS

GO READ

LONG ADD
FEEDER REGISTER

Xj
(MO SETTING INPUT)

D34

|
| X REGISTERS (BITS 0-35 LOCATED ON CHASSIS
259 259 259 259 259

|
|
I NOTE:

| THE X] INPUT REGISTER RECE!IVES A ZERO ENTRY AND REMAINS CLEARED.
| THE Xy INPUT REGISTER RECEIVES THE CONTENTS OF THE X REGISTER
| SPECIFIED BY THE i PORTION OF THE BRANCH INSTRUCTION,

t

|

|

THE LONG ADD UNIT IS PLACED IN SUBTRACT MODE (THE LONG ADD PLUS FF IS CLBAR)
AND THE FALGE VALUE OF Xy IS GATED TO THE FEEDER REGISTER.

|

LONG ADD T 1
PLUS Iis X0 X1 x2 x3 x4 X5 x6 x7

| Prus . | \

TN ' e ,
; 236 236 236 | 336 236 236 236 236

Lfm= X6 (stE I : I CHASSIS 8

NCTE !

! on :

125 O RIGHT) !

' STIGN/ZERO TESTS
Figure 7.3-7

Figure 7.3-8 shows the logic of the range/indefinite tests. The chassis
8 input registers and Long Add feeders are not used during these tests. Instead,

the checks are made directly from the X registers via register Exit Control.

Two KS modules are utilized in making the negative and positive fange tests.

K19 determines the state of bits 48-53. A 'onme" out of pin 20 indicates:

1. bits 48-53 are all '"ones" and the sign is positive, (0XX XXX 111 1112)
OR

9. bits 48-53 are all "zeros" and the sign is negative (1XX XXX 000 000;)

The check is made by comparing each bit position with the sign (bit 59) of
the register (terms E and F). K19, pin 20 then feeds pin 12 of K20, the
second KS module, along with bits 54, 55, and 56. At test point 4, all the

bit states are combined and the output of pin 20 indicates:

1. bits 48-57 are all "ones! and the sign is positive (0X1 111 111 111,)
OR

9. bits 48-57 are all "zeros!" and the sign is negative (1X0 000 000 000;)

The output of K20, pin 20, is returned to K19, pin 19. At this point the
circuit looks at bits 58 and 59 in combination to determine the existence of
T1777g (indefinite) or f37778 (out of range) or neither. The translation for
K19, pin 14 ((58)(59) v (58)(59)) is ANDed with pin 19 and both pins equaling
a one imply an out of range condition (3777 or 4000). This is indicated

by a "one" on pin 13 which enables setting test point 2 on F17 via D20 and
Gl7. On the following t50, the "Xj out of range'’ signal is transmitted to the

Branch unit from HO06.

91

O
[a]

GO LONG ADD HO|

GO0 Fu.
r- a

125 ¢

60 o

READ TAG
21 18
15
trs ¢

NOTE :
IN THE SCOREBOARD

BRANCH XINSTRUCTIONS.

I 2
Uj-—>u kFOR

GO READ
TAG: Xk

Fmmm e m e m e m
1
' x RecisTERs (uPPER 12 BITS)
c2z2
Pl 239 | o809 | 230 | .89 | 59 | 39 | ,ss
|
|
]
d
N 236
X0 x4 X2 X3 Xa x5 X6 X7
248 248 248 248 248 248 248 248

P~ - —
D3
RL| 255 __ -
A X

o
4

2

-]
o
o

-3
HE
© Lol

[-J
»
=]

EE
N
$

@™
o
@

2
a2
k\

N
]

e e (.f)

CHASSIS 8

RANGE/ INDEFINITE TESTS

Figure 7.3-8

out
OF RANGE
31

li INDEF -
INITE

Indefinite Test

This test utilizes the same circuitry as the range test (Figure 7.3-8) except
that the K19, pin 19 translation (0X1 111 111 1112 or 1X0 000 000 0002) is
ANDed with K19, pin 21, When equal to a "L" this pin indecates (58)(59) or
(58)(59). 1If both pins 19 and 21 equal "l1's", pin 15 will be a zero,
indicating an indefinite condition (1777 or 6000). This output enables

setting test point 4 on F17 via M19 and Gl17, which, in turn, enables the HO6

transmitter to send the "Xj indefinite" signal to the Branch unit.

Synchronization of the Long Add Unit Branch test results with the sequence of
the Branch Unit is accomplished by extending the Long Add timing sequence
(Figure 7.3-9). A transmitter on HO06 is conditioned by the "In Long Add"
flip/flop and sends a signal (called "Long Add Sequence to Ch. 5") to the
Branch Unit. This results in a signal called "Auxiliary Functional Unit
Release!" which enables the branch sequence to continue after making the In

Stack/Out Stack tests. (Refer to Branch Unit, Section 7.8)

93

IN LONG ADD 8|J23 B25 8E28 8HO06
PD RE RK JQ
L‘"" L—— LONG ADD
SEQUENCE TO
14 6 20 24 14 11 L_ 18 27| CHASSIS 5
[——O—-()—— o) < —_|>—-O-—d —-45——0—— "‘—'—"
I 8W22
I 99 |
|] I
10 feet 1
p —_— = —_— e e
I
|
| 5042 5 L20 5 LO8 5 H25
| | p1 [IN | IN HES
BR' b
R SEL. 120 INC.I < 10 AUXILIARY
| 16] FUNCTIONAL
L-b> 9 11 T 13 20 13 25 18 | UNIT
-——e L)~ — ‘r - O — —--<!>—’- 1?—-- -—o———*O——O RELEASE
11 20
5W26 ISUE+ - 10 ING.TI / o
99 ERROR<3 ‘ -
S— v
= |15
1xxx ¢

AUXILLIARY FUNCTIONAL UNIT RELEASE

Figure 7.3-9

SECTION 7.4

ADD

FUNCTIONAL UNIT

DATA
CHANNELS

ADD

FUNCTIONAL
UNIT

m>A@mMOwma

ToMHEo

CENTRAL
PROCESS!
PERIPHERAL o
PROCESSORS l
INSTRUCTION RESERVATION
1SSUE CONTROL
(SCOREBOARD)

CONTROL

CENTRAL
MEMORY
CONTROL

CENTRAL
MEMORY

‘

REGISTER

;l‘ LONG ADD l-—<

<oz
ok

MULTIPLY 1
MULTIPLY 1L

TNCREMENT 1
[} ement,

INCREMENT 11

98-BIT
COEFFICIENT
ADDER

RESULT OUTPUT
NETWORK

| __from
SCBD.

-t
SCBD.

7.4.1

ADD FUNCTIONAL UNIT

INTRODUCTION

The Add Functional Unit is utilized to perform floating point
addition and subtraction of 60 bit operands. The computations may
be made in rounded single precision or unrounded single and double

precision. In any case, the unit cycle time is 400 nanoseconds.

The following instructions (discussed in detail in section 7.4.2)

use the Add Unit.

30 Floating SUM of Xj and Xk to Xi

31 Floating DIFFERENCE of Xj and Xk to Xi

32 Floating D.P. SUM of Xj and Xk to Xi

33 Floating D.P. DIFFERENCE of Xj and Xk to Xi
34 ROUND Floating SUM of Xj and Xk to Xi

35 ROUND Floating DIFFERENCE of Xj and Xk to Xi

The Add unit is located on data trunk number 1 along with the
Shift and Long Add Units. It holds first priority in reading

operands and second priority for storing results.

The remainder of this discussion assumes a knowledge of the 6000

Series floating point. If a review is desired, refer to Appendix

A.

Before addition of two floating point numbers takes place, the
exponents must be equalized. This is accomplished in the Add Unit

by subtracting the smaller exponent from the larger and using this

97

difference to enable a Right Shift Network. The coefficient with
the smaller exponent is right shifted before being fed to the
adder. The coefficient with the larger exponent is fed directly
to the adder feeder registers. The larger exponent will be the
final exponent of the result, (it may be adjusted for overflow,

or double precision results).

The Add Unit always generates a 96 - bit result which is the sum

or difference of two 48 bit coefficiénts (Xj and Xk) If single
precision is selected, the upper 48 - bits of the 96 - bit result
and the larger exponent Xj or Xk is returned to Xi. Selecting
double precision causes the lower 48 bits @f the 96 bit result

and the larger exponent minus 60(g) to be returned to Xi. 60(g)

is subtracted since selection of the lower 48 - bits during double
precision effectively moves the binary point 48(10) placed to the
right, thequPy increasing the coefficient magnitude. To compensate,
the exponent must be decremented. The following example illustrates

the addition of two quantities in single and double precision.

ADD: Xj 2005 0 ———— 05244 (5244.27)

Xk 2016 0 ———— 07305 (7305.216)

1) The difference of the exponents is 11(8)‘ This implies
shifting the coefficient with the smaller exponent (Xj)

right 11(8) places.

Xk 0 —— 07305.0 0

Xj (RS 11(8)) 0 —— 05.2440 ——— 0

98

2) 96 bit result = 0 —— 07312 . 2440 0
(- J ~—— J/
e v
upper lower
3) Single Precision Result: 2016 0 —— 07312
[\ ~— —
upper
4) Double Precision Result: 1735 2440 0
\ e ")
lower
(EXP. = 1735 = 2016 - 60)

A coefficient overflow condition is corrected by right shifting

the 96-bit coefficient one place and incrementing the exponent

by one.

Should this result in exponent overflow (3777) the

right shifted coefficient and an exponent of 3777 will be returned

to the result register. For example:

377640

0 +

3776520 —— 0 =

3777450 —— O

In the event that either Xj or Xk is initially infinite (3777 or

4000) an exponent of 3777 and an all zero coefficient is returned

to Xi. For example:

37770 — 0 +

99

3050 720 — 0 =

37770

7.4.2

;ﬂ L Q’, g e PR

INSTRUCTION LIST / DATA FLOW

The following instructions will select the ADD functional unit. The
terms in parenthesis following the instruction name are the ASCENT
symbolic codes used in assembler coding. Data flow can be followed

on figure 7.4.1.

30 FLOATING SUM of Xj and Xk to Xi (FXi = Xj + ZXk)

DEFINITION:

This instruction forms the sum of the floating point quantities from
operand registers Xj and Xk and packs the result in operand register

Xi. The packed result is the upper half of a double precision sum.
r Lt 0 ! ki<vEQQM@S ' cyﬁfaqk g 4;3$w 7 GO A AT
At the start both arguments are unpacked, and the coefficient of the
argument with the smaller exponent is entered into the uppér half of

a 98-bit accumulator. The coefficient is shifted right by the
difference of the exponents. The other coefficient is then added
into the upper half of the accumulator. If overflow occurs, the sum
is right-shifted one place and the exponent of the result increased
by one. The upper half of the accumulator holds the coefficient of

the sum, which is not necessarily in normalized form. The exponent

and upper coefficient are then repacked in operand register Xi.

If both exponents are zero and no overflow occurs, the instruction

effects an ordinary integer addition.

DATA FLOW: The true value of Xj and Xk are entered into the exponent
and coefficient feeders. The exponents are subtracted and the

coefficient of the smaller exponent is gated through the right shift

100

10T

REG.

CH.

SHIFT
COUNT

3]

RIGHT SHIFT
NETWORK

16

32

EXP
ADDER
l*ﬂrﬁ‘,/”
—60(8)
RESULT OUTPUT
NETWORK

98-BIT
COEFFICIENT
ADDER

i

SGBD GO TIMING

T R I —
CHAIN

Figure 7.4-1

ADD FUNCTIONAL UNIT

REG.

> CH.

SCBD

network. It is shifted the number of places specified by the
absolute value of the difference of exponents. The shifted value
feeds the 98-bit adder along with the unshifted coefficiept. If
coefficient overflow occurs,(i.e.296 of result = 1) the coefficient
is right shifted one place and the final exponent incremented by
one. The upper 48-bits of the 96-bit sum are gated to bits 0-47
of the output network. The final exponent will be the larger of

the two original exponents (Possibly incremented due to overflow).

31. FLOATING DIFFERENCE of Xj and Xk to Xi (Xi = Xj - Xk)
DEFINITION:

This instruction forms the difference of the floating point
quantities from operand registers Xj and packs result in operand
register Xi. Alignment and overflow operations are similar to the
Floating Sum (30) instruction, and the difference is not
necessarily normalized. The packed result is the upper half of a

double precision difference.

An ordinary integer subtraction is performed when the exponents are

Zero.

DATA FLOW: Data flow is the same as for the 30 instruction with
the following exception. The coefficient of the operand Xk is
complemented into the feeder register and hence to the adder. The
adder forms the sum of the true value Xj and complemented Xk,

thereby generating the difference, Xj - Xk.

102

32 FLOATING DOUBLE PRECISION SUM of Xj and Xk to Xi
(DXi = Xj + Xk)

DEFINITION:

This instruction forms the sum of two floating point numbers as in
the 30 instruction, but packs the lower half of the double

precision sum with an exponent 48 less than the upper sum.

DATA FLOW: Data flow is the same as the 30 instruction with the
following exceptions. 1) Bits O - 47 of the 96-bit sum are sent to
the output network. 2) 60(g) is subtracted from the larger of the
two original exponents to compensate for selection of the lower sum.
The final exponent may therefore be the larger exponent minus 60(8)
or minus 57(g) (in the event that coefficient overflow was

encountered and a right shift one place was required).

33 FLOATING DOUBLE PRECISION DIFFERENCE of Xj and Xk to Xi
(DXi = Xj - Xk)

DEFINITION:

This instruction forms the difference of two floating point numbers
as in the Floating Difference (31) instruction, but packs the lower
half of the double precision difference with an exponent of 48 less

than the upper sum.

DATA FLOW: Data flow is the same as for the 32 instruction with
the following exception. The coefficient of the operand Xk is
complemented into the feeder register and hence to the adder. The

adder forms the sum of the true value Xj and complemented Xk thereby

103

generating the difference, Xj - Xk.

34 ROUND FLOATING SUM of Xj and Xk to Xi (RXi = Xj + Xk)

DEFINITION:

This instruction forms the round sum of the floating point
quantities from operand registers Xj and Xk and packs the upper
sum of the double precision result in operand register Xi. The
sum is formed in the same manner as the Floating Sum instruction
but the operands are rounded before the addition, as shown below,

to produce a round sum.

1) A round bit is attached at the right end of both
operands if:
a) both operands are normalized, or

b) the operands have unlike signs.

2) A round bit is attached at the right endo of the operand
with the larger exponent for all other cases.

DATA FLOW: The data flow is the same as for the 30 opcode with
the exception of attaching round bits prior to adding the
coefficient. Round bits are entered into the feeder registers
under the conditions stated in the above definition. They cause
carries to be propagated into the significant (upper) half of the
coefficient if the lower half equals % or greater, thus performing

a % round.

104

35 ROUND FLOATING DIFFERENCE ¢f Xj and Xk to Xi
(RXi = Xj - Xk)

DEFINITION:

This instruction forms the round difference of the floating point
quantities from operand registers Xj and Xk and packs the upper
difference of the double precision result in operand register Xi.
The difference is formed in the same manner as the Floating
Difference (31) instruction but the operands are rounded before

the subtraction, as shown below, to produce a round difference.

1) A round bit is attached at the right end of both
operands if:
a) both operands are normalized, or
b) the operands have like signs.
2) A round bit is attached at the right end of the
operand with the larger exponent for all other cases.
DATA FLOW: Data flow is the same as for the 35 opcode with the
following exceptions: 1) The Xk coefficient is complemented into
the feeders so that the difference may be formed by addition. 2)
The round bits are attached for the conditions stated in the
definition to cause carry propagation in a manner which will cause

a % round to occur during difference operations.

105

MODE BITS
Three mode bits are used by the Add unit to distinguish between
the six floating add opcodes. The mode bit names and corresponding

opcodes are:

ADD PLUS 30,32,34
ROUND ADD 34,35
DOUBLE PRECISION 32,33

Figure 7.4-2 and the chassis 8 wire tabs should be referenced

during the following discussion.

ADD PLUS - The Add Plus mode bit (GOl, TP6) is generated by

single precision, double precision and round add opcodes. It
allows the true value of the coefficient of operand Xk to be

gated to the adder feeder when a sum operation is to be performed.
The absence of the Add Plus mode bit causes the Xk coefficient to
be complemented into the feeder. The subsequent addition causes
Xk to be subtracted from Xj (by addition of the complement). The
actual transfer into the adder feeders occurs after the receipt of
the "Go Add" signal (M29 pin 23). Section 7.4.4 gives the detailed

timing analysis.

ROUND ADD - The "Round" mode bit is generated by opcodes 34 & 35
(rounded sum and difference). The bit is caught on 8HOLl, TP4
(Figure 7.4-2) which sets E19, TP2 which remains set until the
"Transmit!" signal is received. Pin 9 is fanned out on H20 to two
AND gates (H09 and J02) whose outputs are ORed on module $32. Pin

13 of @32 translates as:

106

L01

fm=34+35(

fm=32+33 ¢

fm=30+31+32+33+ 34+ 35 [«

HOI EI9
PT [re
ROUND ADD
21 17
- =
DOUBLE
PRECISION
24 27
p UL/
XMIT
B ADD

GO ADD

GOl

Xj+ Xy
SIGN

|TL
5

P28

I

BIT O, ADDER

EXP Xj+)(k = 3777

tas C

fm=30+32+34 (

GO2

TRANSMIT
ADD

&

..

XMIT
ADD

SELECT UPPER
P WORD

SELECT LOWER WORD
(D.P. ONLY)

DOUBLE
PRECISION

IDREQUEST RELEASE

A24

XMIT ADD EXP

Xk

Kk
NO6

EXP=1777 + 3777

s 20 23
175,

[ce]

TRANSMIT ADD
COEFFICIENT

) COMPLEMENT -

D] COMP)%EMENTL_ _

) ENTER ADD EXPONENT

CLEAR ADD INPUT

ENTER ADD COEFFICIENT

) ENTER ADD COEFFICIENT

Figure 7.4-2

(Round)(Positive) + (Round)(Negative)

The negative and positive terms refer to the sign of the coefficient
with the larger exponent;i.e. the unshifted coefficient. If it is
positive, and "Round" is specified, a one is placed to the right
(bit 247) of the unshifted coefficient. This in essence adds ¥ to
the coefficient with the larger exponent. If bit 47 of the second
operand (from the shift network)is a "1" (i.e. bits 0 - 47 =Z%) a
carry into bit 48 will be generated during addition. Thus, a %
round has been performed. If the "Round" mode is not specified but
the unshifted operand is negative it is necessary to set bit 247 to
prevent the Round from occurring. This is justified by recalling
that negative coefficients enter the feeders in complement form.

Thus, when rounding a negative (complemented) number, bit 247

should be a "Q"; to disable rounding, a "1".

Round bits may also be attached below the shifted operand in
certain cases. Decoding pins 14 and 19 of 8H24 (C.E. Diagrams,

Sheet 223) yields the following formulas:

pin 14 =3[0 (-xj)] + [B0] [(xN-x) + (=X3)x32AT)(x24) +
(-X3) (- Xk)(Xj2% + Xk247z| ——> ROUND Xj.
pin 19 —=3[(RD) (-xk)] + [B] [(HC-xH) + (1) (x3247) (xe24T) +

(-XK) (-Xj) (Xj247 + Xk47) | =——> ROUND Xk

These conditions are stored in flip-flops on module K21 (sheet 223).
Determination of whether Xj or Xk is sent through the shift network

is made with terms A (shift Xk) and D (shift Xj) on K21.

108

7.4.4

The operand which has the smaller exponent will be entered into the
shift network and will be rounded by entering a round bit in
position 247, As the operand filters through the shift network the

round bit is shifted along with the operand itself.

DOUBLE PRECISION - The D.P. mode bit is received on 8HOl, TP3
from chassis 5 (Figure 7.4-2). The bit is ANDed with the condition
"Xj ¢ Xk # 3777" and is fanned out on module D21. Pin 2 is tied to
module M17, another fanout, which enables selection of the lower 48
bits of the 96 - bit sum. Pins 4, 6, 8 and 10 of D21 go to the
exponent adder which subtracts 60(g) from the larger exponent;
these pins force the value, ‘60(8) into the adder during double
precision operations. (See Section 7.4.5 for the exponent adder

logic analysis).

TIMING SEQUENCE

The timing diagram for the Add Functional unit is shown in Figure
7.4-3 and should be referenced during the following discussion.
The C.E. Diagrams and Wire Tabs should also be used if proof of
the timing sequence is desired. Each term on the timing diagram
is given a number which is used to sequence this explanation.

The scoreboard issue for an Add opcode occurs at &-100 (not shown

in Figure 7.4-3)

109

0TI

N o~ W

O

11

TIME=NSEC 00 100 200 300 400 500
| | | | | |
| | { | | |
! Bzzzza | | | |

60 A0D, HOI - A\
| | | | ! !
| i | | |]
F28 - A\ i
I 1 ! 1 ! !
ADVANCE SEQUENCE
! f W77 | [
g23 - A\
| | | | 1 |
| | | ! |
REQUEST RELEASE
1 ! | | |
| Bzzzza | Bzzza | | | EZZ Zza |
CLEAR INPUT REG (KA,KP, KM,KT,CS)
| { t 1 { |
| ! I | |
SET Y
{ | | | | |
| | | | |
X 8 X IN \7
|
{ | 1 | | |
| | BZZZZ;I | | |
CLEAR ND
| | l | 1 |
1 | i iy | | |
INPUT REG —> ND
! | | i | * |
| | ! | ' P77
CLEAR -
1 | 1 | | |
1 | | I i * W
TRANSMIT RESULTS -
| l | | |
| | | l |)
TIME = NSEC 00 100 200 300 400 500

¥ EARLIEST POSSIBLE TIME —

NO RESULT REGISTER CONFLICT

Figure 7.4-3

111

1)
2)
3)

4)

6)

7)

&)

9)

10)

11)

GO ADD - This term indicates the time that the "Go Add" signal is received on chassis 8. The
signal starts the Add timing chain (flip-flops) which sequences the Add operation.

ADVANCE SEQUENCE - These terms show the setting of the two flip-flops of the Add timing chain
(Refer to Figure 7.5-2). These flip-flops sequence events of the Add operation.

REQUEST RELEASE -~ This signal is sent to the Scoreboard at about t250. The Scoreboard checks
for the presence of third order conflicts; if none exists, the "Release'" condition generates a
"Transmit' which is received on chassis 8 about 175 nanoseconds later (See term #11).

CLEAR INPUT REGISTERS - The chassis 8 input registers are cleared every minor cycle to enable
the receipt of operands on chassis #8 every 100 nanoseconds (i.e. 1 megacycle data trunk rate).

SET NM - This term shows the setting of the exponent feeder registers, on chassis 8. They
are set from the portion of Exit Control located on chassis 8 and do not arrive via receiver
modules as do bits O - 35.

Xj & Xk IN - This term indicates the time that bits 0-35 of Xj and Xk are received from
chassis 7. The input (catching) register is composed of K A modules which also serve to gate
operands to the Long Add and Shift units.

CLEAR ND -~ The ND modules are the feeder registers for the coefficient adder. At this point
they are cleared in preparation for the transfer of the operands from the input registers.

INPUT REG —3 ND - The coefficient feeder registers receive bits 0-47 and 59 from the input
registers at this time.

CLEAR NM - The exponent adder feeder registers are cleared upon receipt of the "Transmit"
signal from the Scoreboard.

TRANSMIT RESULTS - The 60-bit result of the Add unit is sent to register entry control upon
receipt of the "Transmit' signal from the scoreboard.

7'4.5

EXPONENT CIRCUITRY
The exponent circuitry discussed at this point accomplishes the
following tasks:
1) Subtracts the exponent of Xk from that of Xj to:
a) form a 7-bit shift count
b) select the coefficient with the smaller exponent for
gating through the right shift network.
c) select the larger exponent as the base exponent of the
result.
2) Subtract 60(8) from the base exponent in the event that the
Double Precision mode is selected.
3) Add +1 to the result exponent if a right shift one place is
required to correct a coefficient overflow.
The Xj - Xk subtracting network must accomplish more than the simple

generation of a difference. It must also generate the absolute value

of the difference for use as a shift count (i.e. a negative difference
must be made positive). The circuitry which accomplishes this is
shown in Figure 7.4-4, To the left, on K31 - K34 are the feeder
registers for the Xj - Xk subtractor which contain the exponents in
true value form.. (Bit 58 of the original operands is extended to bit
59) Three outputs per stage are used by the subtractor circuitry.

For stage 2°, these are pins 21, 26 and 28 which translate as follows:

pin 21 ——> Xk2°
pin 26 ——> Xj2°

pin 28 ——» Xj2° + Xk2° (or, Xj . Xk)

Stages 1 and 2 have similar translations for their respective positions.

112

(!

EXPONENT BITS COME
DIRECTLY FROM EXIT CONTROL
(CH 8) AND ARRIVE IN THEIR
TRUE - VALUE FORM (SIGN
POSITIVE)

4
X, Bt 50 C

Xi BIT 50

X; BIT 49

X BIT “ﬁ

Xi BIT 48

\7
18
27 F
LARGER
19| EXPONENT
TO
C RESULT
NET.
o Lo
25 26 -
} e -

EXP. INPUT REGISTER & PICKING NET

[9 —= i1 K34 [NM [9 =1 x38 [oB
[6 —8 K33 [NM [6 —=8 k37 [oB
35 k32 [NM [3 —>5 x36 [oB
BITS 0 —»2 k3 [|] BITS 0 —=2 %35 [ag] |

L ARGER
EXPONENT
TO

A RESULT
NET.
B _NER
A -E _
5 -
B — r

LARGER
EXPONENT
o

T
RESULT
NET.

—E
L

c —E -
28 -
D Y
[

8 23
O -
ENTER CLEAR
ADD ADD
EXP. EXP.

TO L42-5
TO L42-27
~

~
~

TO L42-23 < <

PICK LARGER EXPONENT (EAB)

Figure 7.4-4

RIGHT SHIFT 4

JRIGHT SHIFT 2

RIGHT SHIFT |

SHIFT Xk

The above translations are tied to the QB modules (i.e. K35) where
equivalence checks and borrow generation take place. Simple Boolean
manipulation will prove that the outputs of test points 4, 3 and 2
translate as EEETVZEEﬁEE (exclusive OR) for stages 0, 1 and 2,
respectively. These translations are sent to the final summation
networks on L31, along with borrow inputs to the individual stages.
Before analyzing the borrow generation and propagation logic, a pencil

and paper subtraction of 2153 minus 2064 is given:

SUBTRACT : Xj = 0153
Xk = 0064
DIFFERENCE = 0067

(Note that the exponents are unpacked)

IN BINARY:
Xj = 000 001 101 011
Xk = 000 000 110 100
DIFFERENCE = 000 000 110 111

Recall, that when subtracting a "1" from a "O", a borrow is generated.
A borrow can be satisfied when subtracting a "O" from a "1". Hence,

the following definitions for Borrow, Satisfy and Enable are derived:

BORROW SATISFY ENABLE
0 1 0 1
-1 -0 -0 °f _1

The above operands are shown subtracted by the machine (logical)

method:

114

EES EGS GSS

STAGE DEFINITION = EEE
Xj = 000 001 101 011
Xk = 000 000 110 100

STAGE EQUIVALENCE 111 110 100 000

BORROW IN = 000

(@]
(@]
—
(—
[ew]
—

000

]

(EQ + B) + (EQ-B) 000 000 110 111

IN OCTAL = 0 0 6 7
(Asterisk indicates those stages with Borrow In)

Borrow generation and group propagation takes place on the QB modules
(Figure 7.4-4). To generate a Borrow into stage 2', two possibilities
exist: 1) Stage 2° is a generate or 2) Stage 2° is not a satisfy and

an End Around Borrow was generated. As always, term "X" of the QB

module is the EAB condition. A stage 2° generate is defined by term D,
which translates as: i} * Xk. No satisfy in stage 2° is the interpretation
for term "A", which translates as : Xj - Xk. These three conditions are

logically combined at test point 1 to yield the following formula:

Borrow — 2' ====(2° = G) + (EAB)(2°#S)

or, more specifically,

B —> 2} =——=(Xj2° - Xk2°) + (EAB)(Xj2° - Xk2°)

"Borrow In" translations for the remaining stages can be obtained by
applying the above principles. The formulas will become more detailed for
the more significant bit positions since more possibilities for borrow

generation and propagation exist.

The final borrow and equivalence summations are made on modules L31, K40 and

115

K4l. The logic looks for the conditionms,

(EQUIVALENCE) (BORROW)+(EQUIVALENCE) (BORROW)

to generate a sum of "l1". The opposite conditions yield a sum of "O".
It is at this point that the sign of the result must be considered,
since if it is negative, the complement of the difference will yield the
absolute (unsigned) value of the shift count. Four examples follow
which show four possible combinations of the Xj and Xk signs and End

Around Borrow generation.

1) UNLIKE SIGNS and EAB

Xj = 0010
Xk = 7772
Diff = 0015 N +15

2) LIKE SIGNS and EAB

Xj = 0240
Xk = -0230
Diff = 0010 = + 10

3) UNLIKE SIGNS and EAB

Xj = 7772
Xk = -0012
Diff = 7762 = - 15

4) LIKE SIGNS and EAB

Xj = 0230
Xk — 0240
Diff = 7767 = - 10

116

Note that in cases 1 & 2 the difference is positive and in true form.
This indicates that Xj — Xk. 1In cases 3 & 4, the difference is
negative and in complement form. This indicates that Xj —— Xk. For
cases 3 & &4 then, the difference must be complemented to the shift
network; in cases 1 & 2 the difference is used as is. To summarize in

Boolean,
(LIKE) (EAB) + (LIKE)(EAB) =———> Xj = Xk

therefore: 1) shift Xk to the right
2) use the true difference as the shift count

3) wuse the exponent of Xj as the base exponent.
(LIKE)(EAB) + (LIKE)(EAB) =—= Xj Xk

therefore: 1) Shift Xj to the right
2) Use the complement of the difference as the shift
count

3) Use the exponent of Xk as the base exponent.

The logic for the above conditions is shown on L31 (Figure 7.4-4).

1) TP4 =—===> EAB

2) terms "A" and "B" together = EAB

3) pin 12 == unlike signs

4) a ZERO out of term "E" =—=> (LIKE)(EAB)

5) a ZERO out of term "D" == (LIKE)(EAB)
6) term "F" => term "E" or term "D"

(LIKE) (EAB) + (LIKE)(EAB) =>Xj —— Xk

117

L31, pin 13 (same as term "F") goes to L34 which fans out to enable the
Xj (if pin 13 = 0) or Xk (if pin 13 = 1) coefficient to the shift
network. L34, pin 18 goes back to the feeder registers and select either
the Xj (if pin 18 = 0) or Xk (if pin 18 = 1) exponent to the result

network.

Selection of the difference, Xj - Xk, must now be made and gated to
the shift network. This also is shown on L3l. It has been determined
that if Xj == Xk, the true difference is the shift count; if Xj —— Xk,
the complement of the difference is the shift count. The complement of
the shift count is taken by complementing the EQUIVALENCE term that
enters the final summation network if Xj ——— Xk. Using the subtract

logic explained earlier, the following example yields a negative result:

In octal: Xj = 0044
Xk = 0056
Diff = 7765 = -11

Machine Method:

Fhk kxkk hkk hkk

EEE EEE EEG EGE
Xj 000 000 100 100
Xk 000 000 101 110
Equivalence = 111 111 110 101

Borrow In 111 111 111 111
(EQ*B) + (EQ-B) 111 111 110 101
In Octal = 7 7 6 5 = -12

Stage definition

[

(Asterisk indicates those stages with Borrow In)
If a sum of "1" is indicated by

(EQ*B) + (EQ-B) instead of (EQ-B) + (EQ'B),

118

the answer will be in true value form:

000 000 001 010

Equivalence

Il

Borrow In 111 111 111 111

(EQ+B) + (EQ*B) = 000 000 001 010

Octal = 0 0 1 2

As a logic example, L31, TPl will be analyzed. First, recall that if
Xj == Xk, term "F" = 1. Term F is ANDed with the condition,
EGEEVKEEEEE, at inverter "S". Terms "D" & "E" in combination indicate
that Xj << Xk. These conditions are ANDed with the condition,
EQUIVALENCE, at inverter "H". Term "T" ORs terms "S" and "H" to

yield the translation:
(Xj= XK)(EQ) + (Xj << Xk)(EQ)

Term "T" is then ANDed with pin 1 (BORROW) at term "U". A "zero" out of

term "U" yields the following translation:
[BORROW] EXjE Xk)(EQ) + (Xj<Xk)(EQﬂ

which summarizes the two of the four possible ways to generating a sum

of one.

Inverter "V" summarizes the result for the BORROW condition. This

translation is left to the reader since in principle the same as inverter

"ty

In summary, tke true value of the sum will always be seen at test points
3, 1 and 6 to indicate a RS1, RS2,orRS4 condition. These conditions

are fanned out on TC and CA modules.

119

Figure 7.4-5 shows the exponent adder and result network of the Add Unit.
The purposes of this logic are to 1) subtract 60(8) from the exponent
during double precision mode, 2) gate the larger exponent to the
transmitters for single precision mode and 3) to add 1 to either the
single or double precision exponent if overflow occurs in the coefficient

requiring it to be right shifted.

All the above operations are accomplished by performing a difference
operation; therefore, the circuit acts as a subtractor. If Double
precision is specified, the circuit subtracts 60(3) or 57(8) (depending
on coefficient overflow) from the larger exponent. In the single
precision mode with coefficient overflow, '"one" is added to the base
exponent by subtracting the complement, thereby adding. If overflow does
not occur, the base exponent is gated as the result. In summary, one of

the following events occurs:

Single Precision & Overflow =—3» Gate base exponent unaltered.
Single Precision & Overflow == Subtract 7776 (Add 1)
Double Precision & Overflow === Subtract 0060 (Subtract 60)

Double Precision & Overflow =3 Subtract 0057 (Subtract 57)

The following examples illustrate the four cases (base exponent in all

cases = 0060(8)):
1) SP & O'flow

Base Exponent
and Final Exponent = 000 000 110 000

120

1c1

*k

XKk

“

|

e 2l
L e T
: L Ao
| [
! 3 9 -10 wer R] 11
oy - Y
Vol S L27 pR |
P \ 3-5 A
L NORMAL BORROW croup o [BITS 0 -2 138 [we b
CIRCUITS L28 H -
[I
[ns] B 22 b
[D > - J D
2 i .
P GROUP | PASS - () croup 2 Bormow| F c -
o
o B (|
U GROUP 2 PASS)
[H |
[) GROUP 3 BORROW !
e A ‘ :
AND™ ARRIVE IN THEIR TRUE GROUP 3 PASS *’D A
VALUE FORM (SIGN +) [. G
Vo GROUP 0 BORROW
l 9 —-11 K34 I&M' ! - -7 B
L e® 33 o D GROUP 0 Pass |8 " "
ou
[3-5 k32 Jnm oL SRR Soakow 1 X
BITS 0 -2 ki [l | - \ Y oy
o " . N « NETWORK
4 SHIFT BORROW
BIT 50(] INPUT REG to CIRCUITS _ L29 \ N
a PICKING L N
NETWORK \ ~
ol ~ N
\ ~ AN
bt \ ~ N
\ ~
[\ ~
a 1 \ \ ~
BIT 50 \ N
a0 \ AN
L o Romma A
- g \
I b JPENEERE o BORROW N \\\
[- GROUP | AN
———Q SNIFT BorRROW¥ SRR
[N\ _\——
A —m
| BS \
BIT 49 : | AUAY \ A
VA A\~ \
I \ N~ \
| L _ Srowko N PR
| WV
24 \
BIT 45C F 15 ?_ | VN
11 GROUP 3 GENERATE (~~_ v
¢ o =
) I Ay
[SR A
E [~ =\
27
BIT 48 ([
Il SROUP 2 GENERATE O N
c [\
D
| SHIFT M RN
25 3 1 BORROW * p ~
BIT 48 19, e e e N ~
- | | GROUP i GENERATE Q) ~
DOUBLE PREC () oP
c [
> I 7
[
ol L L L L L 2
|
L o e e el 5

PICK ENTER CLEAR
LARGER ADD ADD
EXP EXP EXP

% THE EXPONENT IS NOT REALLY SHIFTED.
“SHIFT" REFERS TO CORRECTION OF THE
EXPONENT (ADD + |) WHEN OVERFLOW OCCURS
IN THE COEFFICIENT.

XPONENT
RESULT NETWORK
109 5 Mzsnu
[87 6 4 Ke8|N
BITS3 2 1 o K27 [Ny]]
1
—Q
~N

N

> —

N
~

y —

O
COMP SHIFT EXP¥ COMP,

Figure 7.4-5

EXPONENT
OUTPUT NETWORK

56 -59 HIG |RM
52-55 HIS JaM|

48 -5| HI4 |RM|
8-s1 Hia [ru] | |

fot-

BIT 50

21 ikn Xi

8
% Efs(r) X; BIT 49
2

BIT 48

2) SP & O'flow:

Stage Definition GGG GGG EEG GGE
Base Exponent 000 000 110 000
Subtract 7776 111 111 111 110
FINAL EXPONENT 000 000 110 001

3) DP & O'flow:

Stage Definition EEE EEE EEE EEE
Base Exponent 000 000 110 0OOC
Subtract 0060 000 000 110 000
FINAL EXPONENT 000 000 000 000

4) DP & O'flow:

Stage Definition EEE EEE ESG GGG
Base Exponent 000 000 110 06O
Subtract 0057 000 000 101 111
FINAL EXPONENT 000 000 000 001

In any of the above cases (except the first), a Generate occurs if

the base exponent contains a "zero" and the corresponding bit of
the value being subtracted is a "one". In the second case, a
generate may occur in any stage except 2°, since 2° of the
subtrahend bits are "O". 1In case four, a generate may occur only
in stages 2°., 21, 22, 23 or 25. These facts should be kept in
mind when analyzing the borrow generation and propagation logic.
The exponent result network and transmitters are shown to the
right of Figure 7.4-5. Note that the two inputs to the transmitters
will enable either the true or complemented result exponent, as
selected on the NU modules by terms "B" and "D". Also, the
overflow and no overflow selection is made on these modules. The
bit "O" result, for example, may be gated through terms "E'", in
the no overflow (Shift) case or through term "I" in the overflow
case.

122

A "1" in bit 2° of the result during overflow cases occurs if either
pin 25 or 27 is a "O". Translating pins 4 and 1 of L38 for "O"

yields the following formulas:

L38,4 = "O" ——3-B(SP - 2° + DP - 2°)

non gg(sp «+ 2° 4+ DP - 2°)

I

L38,1

Associating these formulas with examples 2 & 4 above, will yield the

proper result in bit 2°:

Single Precision: Double Precision:
Borrow in Borxrow in Borrow in Borrow in
'
2 = 1 0 1 0
minus = 0 0 1 1
RESULT 1 1 1 1

The remaining four cases for SP and DP overflow cases yield a result = 0:

Single Precision: Double Precision:
i;srow in Borrow in i;;row in Borrow in
2 = 1 0 1 0
minus = 0 0 1 1
RESULT = O 0 0 0

As indicated earlier, the no overflow results for 2° are entered via
term "E" on K27. Pins 28 or 26 must equal "O" to yield a result of
"l"., Hence, pins 17 or 28 of L38 must equal "O". These pins

translate as follows:

I

"O" =—=3 2° (DP - B)
o === 2° (SP + B)

pin 17

pin 28

123

Relating these formulas to examples 1 and 3 above yield the proper

results:

Single Precision

Borrows are disabled and bit 2° is gated

unaltered via pin 28 (pin 17 always = "1")

Double Precision

Borrow in = 1 0 0 1
2° 1 0 1 0

minus 0 0 0 0
RESULT = 0 0 1 1

The remaining bit positions are handled in a similar manner, but in
some of the higher positions, generation of borrows must be gated
by the single or double precision modes. For example, the single
and double precision overflow cases differ in the second octal
digit. In single precision, bit 2% will generate 1if 2% of the
exponent = "O", since a "1" is being subtracted (Example #2). For
double precision, bit 24 can never generate since a "O" is always
subtracted from bit 2% (Example #4). Analysis of the remaining bit
positions can be accomplished by keeping the above concepts in

mind.

124

7.4.6.

RIGHT SHIFT NETWORK

A seven rank right shift network is used to shift the coefficient
with the smaller exponent to the right. The seven ranks shift 1,
2, 4, 8, 16, 32 or 64 places. A shift count is given by the true
value of the difference of the Xj and Xk exponents. (See section
7.4.5). As the operand passes through each rank, it will be
right shifted or unshifted, depending upon whether or not the

corresponding bit of the shift count is set.

Figure 7.4-6 is a representative logic diagram of the shift
network. The first rank of the network as well as the coefficient
selection circuitry is shown on K21. Selection of the Xj or Xk
coefficient takes place after determining which of the exponents
was smaller. (Section 7.4.5). In the first rank the selected
coefficient may be unshifted (term B=1) or right shifted one place
(term E=1) depending on whether or not bit 20 of the shift count

is set. The remaining six ranks are located, two ranks per module,

on M32, M42 and P33.

Each rank has two possible inputs per stage from the previous rank
(i.e. a bit is either shifted or not shifted). Both possibilities
are fed to a given stage as an ORed input and again may be shifted,
or unshifted in that rank, depending on the state of the corresponding
bit of the shift count. Since it is not possible for a given rank to
shift and at the same time not shift, only one of the two inputs to a

stage can be present at a time.

As a logic example, assume that Xi is to be shifted 32(10) places. 1In

125

9¢1

[6i1 80 88 96 841 |NE [BiT 47 79 48 80 R3a|NF
[79 87 95 pa2|NE | 45 7T 46 78 R33 NF
[7886 94 839 [NE a3 715 aa 76 aaz|nF
[77 85 o3 Q40[NE _J [& 75 az _7a_aqar N[||
[76 8a 92 237 [Ng[| || [39 71 a0 72 aso|wr[||]
[BiT 95 96 97 P42 [NF [75 83 & o38[Nel | | | [37 69 38 70 a3ss|nf[]|]
[86 88 90 92 94 M39|NE [74 82 90 N42]NE [35 67 36 68 ass|NF[[]]|
[a5 87 85 9193 mao|nE [738 89 o7 @36 Ne] | || [33 es .34 s Q37|nf]|]]|
[76 78 80 82 84 M3T|NE [a0 ae 56 64 72 nao[ng[|| [[31 63 32 ea a3s|n]|]]
[75 77 719 s 83 m3s|ng[||| [39 a7 55 63 71 NaiNg] | || [29 e 30 62 a3s|Nf[|||
[66 68 70 72 74 m35]nE[||| [38 46 54 _e2 70 n38]Ne[||] [27 55 28 eo aza]w]]||]
[65 67 e9 71 73 m3e [Ne[] | | [37 as 53 &1 69 nN3gne[||] [25 s 26 ss a3a|wF] 1|
[56 s8 60 62 64 M33|NE [36 a4 s2 60 68 N36|NE [23 55 24 56 p3snfl||]
K2l [55 57 59 61 63 M3a|NE [35 a3 51 se o7 wnar|ng[|| [[21 53 22 s4 P3s|ne[]!]
[no] [a6 48 50 52 54 M3l [ne[||] [34 42 50 58 66 marne[| |] [19 s1 20 s2 p3a|we|||]
BITas a7 49 51 53 M32 [Ne[| | | BIT 33 41 49 57 65 M42|Nel| | | |
: : -]
X snoﬁ i
RS 2 264 _Ns4 RS 4 NS 16 RS 32 8 L, T0 COEF ADDER
BIT 55 FPromiTss BIT 65 TOBIT 53 BIT 82 BIT 50
c
335;4 R " BFTS:S -T70 :?1-'566
! !
2
xj BT Ye: BIT 53 10 817 51 : BIT 65 ToBIT 57 :Ns 817 50¢ oo 0ER
RS | RS 4 ' ksa Rsie | msie
. BIT 52 TOBIT47 | BITE! ToBITAl | BIT 34
| ! .
3 SIGNH
° " 3 RS 1 BIT 51 - \\sl'frssfr -——— | 7sTE ﬁ
TO BIT 48 \ \ \ \ RS 32 (\'7 29 22{) TO COEF ADDER
RS 4 \ s 16 \BIT 81 BIT 49
Xy ROUND BITG TomiTas N T P ToBIT 33 .
NS R
10 BIT 47 ~ A ToBIT 41
TO COEF ADDER
RS 4 . s 16 BIT 17
TO BIT 43 r v ? TO BIT 25
Xj ROUND BIT 2 / e 1@3!9?1_ o7
T0 BIT45//SIGN+ RS 4 33/ _
, SIGN + RS 16
- RS 4 ~
PICK RS 16
RS 10 () »
RS 8(B [BT 16 97 Pal |NF
CLEARQ) [a] (a] [14 95 15 96 R42 |NF
| 1293 13 94 R4l |NF
[10 st 1 92 maowr
[s 8 9 so rmaalne ||

[6 87 7 88 R3B [NF]|

[4 85 5 86 R37|NF
[2 83 3 B4 R36NF
BIT O 8 | 82 R35|NF|

A A i

Figure 7.4-6

this case, bit 2° of Xj (actually, 249 with respect to the result)
should be shifted to bit 217. The shift count will be 40(g) (100
000(2)) to enable only shift rank 32. For the remaining ranks,
the No Shift (NS) gate will be high. K21, TP3 is the feeder

Xk g

. . .
ate is high, term "D" is

]

register for Xj 2°. 1If the Xj =T
"one" to enable Xj 2° into rank l. Assuming that 2° is a "ome"
and because the RSL gate (term B) is a one, pins 1 and 3 of K21
are both ones. Pin 1 feeds pin 19 of M32 which is ANDed with pin
11 and term A (R2) to yield a "zero" out of the circle and a one
out of pin 12. This makes M42, pin 19 a "one". ANDing with pin
11 and term "A" (R8) forces a "zero" out of the circle and a one
out of pin 12. This makes P33 pin 21 a "one" which, when ANDed
with pin 19 and term B (R32) yields a "one'" out of Test Point 5.

17

Pin 26 feeds bit 2 of the adder.

Note that in rank 64, the bits shown are not sent to the adder for
Right Shifts of 64 places. This is because right shifting any of
these bit positions would cause that bit to be lost. The RS64

does enable shifting bit positions higher than 263.

127

7.4.7 COEFFICIENT ADDER

The coefficient adder logic is shown in Figure 7.4-7. Also
included is the circuitry which right shifts the coefficient one
place in the event that overflow occurs. Generates, Satisfies

and Enables are defined as follows:

Generate Satisty Enables
0] 1 1 o0
0 1 0 1

The final summation logic yields a sum of "1" for the following

conditions:

(EQUIVALENCE)(CARRY)+(EQUIVALENCE)(CARRY)

The following example illustrates the adder logic operation:

ADD: Xj = 224547
Xk = 143715
SUM = 370464
kkk K% * * *

STAGE DEFINITION GEE EEG EEE SES EGE SES
Xj =010 010 100 101 100 111

Xk =001 100 011 111 001 101

EQUIVALENCE = 100 001 000 101 010 101
CARRY 111 110 000 001 100 001

(EQ*C) + (EQ*C) 011 110 000 100 110 100

The two operands are entered into the NK (or NG) modules shown at
the left in Figure 7.4-7. Bit 25 of the unshifted coefficient is
entered at pin 18 of Q20. The input from the shift network is

pin 12 and 8. Terms B and F reflect the true value of the operands

128

6¢I

|
|
|
|
!
|
|
[
|
1
|
!
|
|

SEC 12-15
T T T 71 pass
. GROUP 2 | , e NIB |
| _GROUP 1_CARRY - SEC 9-11 ’
- - - - - -7 - T T | |] CARRIES | 4
GROUP | by V%
| 4
L | i
) Lo e = —
[|
b SEC il
, | CARRY
GROUP O CARRY .
—————— |1y sec 1o L28
| SEC CARRY +GR O PASS |) CARRY
AL
| I | | SEC Il
| SHIFT NET.BIT 57 Lo PASS
| SIGN +RS 64 O 230 4 oL CARRY INTO /
SEC 9 SEC 11
b xj +xg BIT 8% 0 ! CARRY ~ — =
| | CARRY INTO /
SEC 11
| SEL UPPER WORD O) sec 1o /
PASS
1 | / s
| BHIFT NET. BIT 56 | , p
’ /
| SIGN+ RS 64 | CARRY INTO ;
SEC 11
| . * | e = e
Xj+ X BIT 7% O N s,
| N ‘. CARRY INTO
L Ny SEC 1| Y3
ST T T T T T T T T T T TS ST T T N L /s -
ettt N AN R D g
GROUP 0 A [n] [N N e R
GROUP O | | N N =2 — P
13 | PASS > - -~
PR B N - e - - -
4 N P -
— [—
GROUP O CARRY -7 -
/6\ -7 - _
SEC 9 CARRY INPUT M 25 - -7
P
—_— = = = = = . _______________ —_— — - - _ — - — -
- - - -~
SHIFT NET. BIT 55 - - -7 .
e e e e~ - _
SIGN+ RS 64 _ - -
~ -
Xi+ X %0 -7 -7
j+ Xy BIT 6 _ T -
-~ - -
- - P
SEU UPPER WORD O e’ G
p -
- —~
SHIFT NET.BIT 54 - -
e e e e el
SIGN + RS 64 P
-
Xi + Xg BIT %O - ¥ THESE BITS ARE OF THE COEFFICIENT
I - WITH THE LARGER EXPONENT.
-
-
___________________ -

SHIFT NET. BIT 59
SIGN + RS 64

Xj+xg BIT 10%

SHIFT NET. BIT 58
SIGN + RS 64

. *
X1+Xk BIT 9

e
e

re
”
Vs

N L | SECTION 9
P :%—#&—e PASS | CARRY INPUT
52 ‘

XMIT ADD

Figure 7.4-7

RIGHT SHIFT
ONE NETWORK

g9

[na

)(j RESULT
LINE DRIVERS

3
O BIT 10

D BIT 8

6
DBIT &

™~ »RSITO BIT 4

and a "O" out of term L indicates that both bits are set. A "O"
out of term K indicates that both bits are cleared. A "1" out
of test point 3 therefore indicates equivalence in this stage of

the adder.

Generation and propagation of carries is not dealt with in detail
since at this point in the course of study, the student should
have a clear idea of this circuitry. It is sufficient to indicate
that the carry is entered from the propagation networks at pin 14

of Q20, making test point 1 (term "@") a "1".

The carry and equivalence conditions are combined with the circuits
feeding pins 1 and 16. If term "@" = 1 (Carry) and "N" =1

(EQUIVALENCE) and "P" =1 (Select Upper Word) pin 1 will be a zero.

It

Also, if "¢" = 0, TP3 1 and "P" =1 pin 16 will be a zero. Either
of these cases cause TP2 on @18 to be a "1" causing a sum of "1" to
be transmitted on bit 5 (or bit 4 if right shifted) of the data

trunk. The original formula for a sum of "1" is therefore proven.

i.e.
(EQUIVALENCE) (CARRY) + (EQUIVALENCE)(CARRY)

of course, if the above conditions are not met, a sum of "O" is

transmitted.

The right shift one network (i.e.® 18) is enabled if coefficient
overflow occurred. This makes term B = 1 and when the "Transmit"
signal is received causes the result to be right shifted.

(i.e. bit 5 to bit 4, etc.) The absence of the Overflow condition

130

causes the unshifted result to be transmitted.

If double precision was selected, a "Select Lower Word" signal
would be generated to cause selection of the lower 48-bits of

the sum. This result is entered into the right shift one

network (i-e. pins 9 & 11) to be transmitted unshifted (no overflow)

or shifted right one place (overflow).

oy
(U9
—

7.4.8

OVERFLOW/ INDEFINITE/INFINITE

Non-standard operand forms may be generated as a result of testing
the original Xj and Xk exponents or by generation of overflow or

underflow during the addition (subtraction) process.

In testing original operand, the logic looks for infinite and
indefinite values of Xj and Xk as shown in Figure 7.4-8. The Xk
test circuitry is in the upper left corner. It tests Xk for a
1777 or 3777 configuration in bits 48 through 58 (exponent bits

0 - 10) and stores the condition in flip-flops on F20 and F21. Xj
is tested in the same manner with the circuitry shown in the

lower left corner. The conditions of Xj are also stored in flip-
flops on F20 and F21. 1If an operand is indefinite or infinite,

the condition is transmitted to chassis #5 via HO6.

If either Xj or Xk are infinite (3777) this condition is stored in
F26, TP2. An overflow condition is forced and a shift count of
112 (160(8))15 generated. The shift count will cause the shifted
coefficient to be completely lost since the right shift is end-off.

The lower 48 bits of the 96-bit sum will therefore be all zeros.

An infinite result can be generated in three ways:

1) Xj = 1777
2) Xk = 1777
3) Xj = 3777 and Xk = 3777 and signs are unlike

These cases are logically combined on module $32, TP4, which

translates as:

132

€el

Xk EXPONENT BITS FAN-IN

‘ EXP. Xj = X ADDER |
‘ L4, 25 28
n] D sIT 59
- ‘ L{
Q26 R24) A "0" AT PIN 19 FORCES g
—_—— . R _‘E Xj~ X EXP. OVERFLOW 1

AND GIVES A SHIFT
COUNT OF RIGHT 12,

420 a9 67 Q2o 2 o HOS6
e K - S 5
i I i B o
i5 4
19 /’\‘ — _—— ——- —— ——— —
BT 10 2! /% GO APD ‘ P - A? I% I
5 2t A9l (1777) [b“i 16 by ‘LJ(el »«—-C‘}D INDEFINITE
¢ - Sl RS S »{
BIT 6 20 =~ —o | o1 ./ (3 g
BIT 7 — — 19 A . -
BIT 8 a s | : 1
BIT 9
P22
3
2 BT 100, N 9
AN
24 21
——(D INFINITE
19 __ 23
GO ADD —— " -
2i
/ 14
\
/\ XMIT ADD
AN G18 c2s
N AN TL KG
% 618 26 __ 18 5
77 Ty
| 2
J . 7 EXP. =1777 43777
v‘& 5 "
| 0 ADD Y — / \
O / \
| \ /' ExpoNenT \
SIGNS
| U \/ UNEQUAL A
7/ \ H24 TRANSMIT
| Xj EXPONENT BITS FAN-IN \ KV ADD
(1777) 26 CIRCUITS
| K20 Ki9
2 10 20 TO CLEAR
| Ixs] 15 Ks 50 ADD —— - -»{ H EXPONENT
24 INPUT REGISTER
| BIT 10 020 4
| y
I BIT 6 XX T), o /
air 7 o XMIT ADD
I BIT 8 20 13 5
| BIT 9 — - ™ S
16
2 BIT 10 s ~
| T ~
S
| | LONG ADD |
| | RANGE | Wie
TESTS
™
| | BIT 4 h_
| | 8IT 5
| L.

— |7
EAB
- 19

Figure 7.4-8

(X3 = 1777) + (Xk = 1777) + (Xj = 3777)(Xk = 3777)(SIGNS UNEQUAL)

This condition is fanned out on module C27 and clears the

exponent input registers and disables setting bit 59 of the result
register. Module C25 ORs the infinite and indefinite conditions;
if either is present, transmitting the coefficient bits is

disabled.

Exponent overflow resulting from addition of operands can result
only if the base exponent (larger exponent) was 3776 and coefficient
overflow occurs. 1In this case, 1 is added to 3776 to compensate
for a right shift of the coefficient. If this condition occurs,
transmission of the coefficient occurs along with the final

exponent of 3777.

Underflow may occur if the larger exponent has a large negative
magnitude and Double Precision is selected. 1In this case, 60(g)
must be subtracted from the base exponent. The following is

an example of the underflow case:

Add in Double Precision:

Il
(=]
(@]
s
w
>

1

1

1

1

'

'

1

'

1
>

Xj

Xk

I
(]
(@]
N
w
]

1

'

]

1

1

1

1

1

1
>

1) Xj exponent is the larger (more positive)

2) Subtract 60(8) (D.P.) from base exponent.

Q43 = - 3/34

D.P=> - 60(g)
- 4014

134

3)

The result is more negative than -3777 and therefore, an
underflow case. The circuitry which makes the underflow
test is shown on sheet 224 of the Customer Engineering
Diagrams. A "O" out of N27, test point 2 indicates that
the "Transmit" has been received and that Underflow has
not occurred. It allows the final exponent to be sent

on the data trunk. If overflow had occurred, neither the
complement or ESEETEEE;E gates (K29) would be high and
all zeros would be sent in the upper 12 bit positions,

indicating that underflow had occurred.

135

SECTION 7.5

MULTIPLY

FUNCTIONAL UNITS

Output
Network

MULTIPLY g
FUNCTIONAL ST i i S i S

] L
UPPER

ADDER —
|l ! [Ps @ U5

l’" L
..l’"i 6N 48,
47

Jrdk s | Ei

MIDE
WHER __J "
23
—

0
—J

mma LR

- L

Hoge Rels
, L

TN NG CHALN |

CENTRAL
PROCESSOR
DATA PERIPHERAL
CHANNELS PROCESSORS l
Py
INSTRUCTION RESERVATION
CONTROL
— CONTROL (SCOREBOARD)
EE . . oD
[E-—_’ 10 NG ADD
(- « ——
D u
c
Dj"—’ ® REGISTER OLEAN
0
- K CENTRAL M x LLTIPLY 1
5 N HEMORY I 1 -
"—' N CONTROL : ! MULTIPLY 11
e, B i '
H
T
T
e INCREMENT
E] H INCREMENT 11
EN
R7¢ ([Dr—e J

~J

w

THE MULTIPLY FUNCTIONAL UNITS

INTRODUCTION

GENERAL: The 6600 Central Processor contains two Multiply functional
units designated Multiply I and Multiply II. Duplication of the units
occurs because multiplication is one of the slowest, yet most frequent-
ly used processes in mathematical or scientific applications. Since
the two units operate in parallel, single and double precision results
may be obtained almost simultaneously. (Refer to Appendix A for an ex-

planation of 6000 Series single/double precision.)

The following instructions select a Multiply unit and permit unrounded
single or double precision and rounded single precision calculations to
be mades

40 FXi = Xj * Xk Single Precision Product

41 RXi = Xj * Xk Rounded Single Precision Product

42 DXi = Xj * Xk Double Precision Product

The Multiply units generate 96-bit products from two 48-bit coefficients.
If single precision is selected, the upper 48-bits of the product and
the sum of the exponents plus 60g are returned as the result. The addi-
tion of 60g is necessary since, in selecting the upper half of the 96-
bit result, the binary point is effectively moved from the right of bit
20 to the right of bit 248, 1In other words, the product magnitude was
decreased by 248 and a corresponding increase of the exponent is re-

quired.

139

95 48 47

Sum of Exp. 96 Bit Product
A \\\ \\ \
N ~ A
AN ~ \ \
\\ +608 S \\ \\
\ SN
\\ \\\ \\
N SINGLE
Exp. Sum +60g Upper Coefficient PRECISION
L
59 48 47 o RESULT

If double precision is selected, the lower 48-bits of the product and

the sum of the exponents are returned as the result:

95 48 47
Sum of Exp. 96 Bit Product
\\ \\ /” -7
AN N ,/'/ //’
~ - -~
\\\ \\ //’ //”
AN N Pl -
N \\ P -
DOUBLE
Exp. Sum Lower Coefficient PRECISION
RESULT
59 48 47

A normalized product will result only if both source operands were
normalized. Two cases must be considered in discussing the normalize
process: (See Figure 7.5-1)
CASE 1 - Left Shift One is Required
4000000000000000

4000000000000000
20000000000000000000000000000000

For this case, the multiply result must be left shifted one

place to yield the following normalized result:
40000000000000000000000000000000

Since the coetticient is increased 2! times by this manipula-

tion, the exponent must be decremented by one. Thus, if a

140

"GO" MULTIPLY '———'——il'

ARE BOTH
X0 ('xj and xk BITS Y-S
247 SET?
l \ V4 l
NORMALIZING | SET THE
IS NOT NORMALTZE
REQUIRED FLIP-FLOP
95
vo/ I8 295 OF '\ ygs
THE RESULT
A "ZERO™?
THE RESULT LEFT SHIFT
1s THE RESULT
NORMALIZED ONE PLACE
DEGREMENT
THE SUM OF

EXPONENTS BY

\] v |. y
v

SET THE
OUTPUT
NE TWORK

MULTIPLY NORMALIZE FLOW CHART

Figure 7.5-1

141

single precision multiply occurs and a left shift is required
to normalize the coefficient, the final exponent is:
Sum of Exponents + 60g - 1, or
Sum of Exponents -+ 57g
CASE 2 - Result is Already Normalized
7000000000000000

7000000000000000
61000000000000000000000000000000

In this case, the most significant bit position of the result
(295) is a "one" as a result of the multiply process, and a
left shift is not required. Hence the final exponent for

single precision is the sum of the exponents + 60g.

The Multiply functional units share data trunk #2 with the Divide and
Boolean units. Multiply 1 and 2 hold second and third priorities (re-
spectively) for reading operands; third and fourth (respectively) for
storing results. Since all of chassis 6 is utilized to contain the
coefficient logic of both Multiply units, the exponent logic is on
chassis 2 with the Divide and Boolean units. Hence, data paths on this

trunk look as follows:

Chassis
#6
(0 - 47,59 | (MPY 1 & (0 - 47,59)

Chassis v MPY 1II) @ Chassis
sl e—)—> <—()—>

(Operating (Divide,
Registers) _— f’;\ Boolean,
< \ldl > Mpy Exp.)
(48 - 59)

142

The lower 48-bits (coefficient) and sign bit are sent to and manipulated
on chassis #6, while the upper 12-bits (exponent and signs) ‘are sent
directly to chassis #2 where the final exponent is generated. (The
lower 48-bits are also sent to chassis #2 via chassis #6, but are used

only on chassis #6 during multiply operations.)

THE MULTIPLY PROCESS (COEFFICIENT)
The following example illustrates the familiar, every-day method of
multiplication:

EXAMPLE #1:

Multiplicand 1234
Multiplier 1234
First Partial Product 5160
Second Partial Product 3724
Third Partial Product 2470

Fourth Partial Product 1234

FINAL PRODUCT 1547420

It can be seen that the final product is the result of adding the four

partial products.

A slightly different method is employed in the following example. The
multiplier is split in half and two multiplications are performed yield-
ing two partial sums. The final product is obtained by adding the two
partial sums. This final process will here-after be referred to as
"MERGE . "

EXAMPLE #2:

FIRST MULTIPLICATION SECOND MULTIPLICATION
1234 1234
1200 0034
247000 5160
1234 3724
1503000 = 1st Partial Sum 44420 = 2nd P, Sum

143

MERGE:
44420

1503000

1547420 = FINAL PRODUCT
The 6600 Multiply units use this method in their operation. The
multiplier is, of course, 48-bits long instead of 12-bits as in the
previous examples. Hence, when split in half, two 24-bit segments
result. Since two 24-bit multiplications (referred to as "Upper"
and "Lower") take place in parallel, the multiply time is % that
required for a single 48-bit multiply. Because the Merge operation
cannot take place until after two partial sums are generated, the

overall multiply time is somewhat greater than %, but never-the-less,

substantially reduced.

The hardware performs the split multiplies by examining two bits of
the multiplier at a time. The following steps show the sequence of
multiplication:

a) Examine the lower two bits of each multiplier and thereby

determine whether 0, 1, 2 or 3 times the multiplicand must

be added. i.e. 00 = 0X (X = times)
01 = 1X
10 = 2X
11 = 3X

b) Add the indicated multiple of the multiplicand to the pre-
vious partial product.

¢) Left shift the new partial product two bit positions.

d) Examine the next two bit positions of the multiplier and
perform steps b and c again.

a) Repeat atep d until all bits have been examined.

144

£)

Merge the two partial products generated by steps a - e

and form the final product.

The original multiply example will be used to illustrate the above

procedure.

Each repitition is referred to as a "PICK" (since this

is the terminology used in the 6600 hardware documents).

EXAMPLE #3:

PROBLEM: 1234

1)

3)

4)

1234
1547420

Form 0, 1, 2 and 3 times the multiplicand.

0xX =

1X
2X

3X

0000(8) = 000 000 000 000(2)
= 1234 = 001 010 011 100
= 2470 = (010 100 111 000 (formed by left shifting the
multiplier one bit position)
= 3724 = 011 111 010 100 (formed by adding 1X and 2X)

Use two 18-bit registers to hold the split multiplier and the

partial products:

UPPER LOWER
UPPER PP MULT. LOWER PP MULT.
{000 000 000 000 | 001 010} {000 000 000 000 | 011 100}

Use two 12-bit adders to add the partial products and the

selected multiple of the multiplicand.

Pick #1:

a)

b)

Translate the lower two bits of the upper and lower registers.
UPPER = 10 = 2X LOWER = 00 = O0X
Add partial products (initially all zeros) to the selected

multiple of the multiplicand.

UPPER LOWER
PP = 000 000 000 000 PP = 000 000 000 000
2X = 010 100 111 000 0X = 000 000 000 000

010 100 111 000 000 000 000 000

145

5)

6)

c)

Put the results of each adder back into the respective
partial sum register and right shift the register two

places.

UPPER LOWER

[000 101 001 110 000 010] [000 000 000 0O0J000 111

Pick #2:

a)

b)

c)

Translate the lower two bits
UPPER = 10 = 2X LOWER = 11 = 3X

Add the partial sums to the selected multiple of the

multiplicand:
UPPER LOWER
PS 000 101 001 110 Ps 000 000 000 000

(1

I

2X 010 100 111 00O 3X 011 111 Q0IO 100

011 010 000 110 011 111 010 100

Place results in partial sum registers and right shift
two places:

UPPER LOWER

looo 110 100 001 | 100 000| [ooo 111 110 101 | 000 001}

Pick #3:

a)

b)

Translate the lower two bits:
UPPER = 00 = O0OX LOWER = 01 = 1X

Add partial sums to the selected multiple of the multi-

plicand:
PS = 000 110 100 001 PS = 000 111 110 101
0X = 000 000 000 000 1X = 001 010 011 100
000 110 100 g01 010 010 010 001

146

¢) Place results in partial sum registers and right shift
two places:

UPPER LOWER

000 001 101 000 | 011 000| 000 100 100 100 | 010 000|

7) Merge:
At this point, the two final partial products have been gene-

rated and must be merged to form the final product. Since the

upper partial product is 6-bits more significant than the lower,

it is off-set 6 places to the left and then added:

LOWER PARTIAL PRODUCT 000 100 100 100 010 000
UPPER PARTIAL PRODUCT 000 001 101 000 011 000

FINAL PRODUCT = (000 001 101 100 111 100 010 000
OCTAL EQUIVALENT = 0 1 5 4 7 4 2 0

Il

The final product agrees with the products generated in the

earlier examples.

The previous example is the basic method of multiplication used in
the 6600. It can be seen that execution time of the multiply in the
example is determined largely by the time spent performing the addi-
tions for each partial sum. The 6600, using a 48-bit multiplier,
would require 12 iterations of the above type to complete the multi-
ply (checking four bits of the multiplier with each iteration). The
adder time alone would prohibit the desired execution time of one

micro-second. The problem is resolved by the use of a special three

level adder which is not a full adder, but a "Carry Save Adder."

147

The concept of this adder eliminates the time consuming carry and
satisfy checks which are typical of full adders. Instead, each
level has two outputs, Pseudo Sums and Pseudo Carries. To illus-

trate the concept of the adder, they are defined as follows: *

Pseudo Sums 1 0 1 0
o 1 1 0
1 1 0 0

Pseudo Carries 1
1 1 0

0O 0 1 o
(Pseudo carries will be displaced one bit to the left since
they affect the next significant bit position)
Each level has seweral inputs: 1) Pseudo sums from the previous level,
2) Pseudo carries from the previous level, and 3) 0, 1, 2 or 3 times
the multiplicand, as specified by the configuration of 2 bits of the
multiplier (defined as a "Pick"). The following diagram illustrates

the 3-level, carry save adder.

* Actually, there is somewhat more to the definition of the inputs
and outputs of the adder. At this point, only the Garry-save
concept is illustrated. For the detailed analysis of the 3-level

adder, refer to Section 7.5.6.

148

Partial Carry Register Partial Sum Register
P.C. P.S.
==st""1
51 Level 3 4 j
f————— Pick 3
P.C. P.S.
il
49 Level 2 2 :
-ead
4\ N /h
Pick 2
P.C. P.S.
47 Level 1 0

1\ A
L Pick 1

THREE LEVEL ADDER

It can be seen that with one iteration (three picks) of the adder,
six bits of the multiplier are manipulated. Since two such adders
are used in parallel (Upper and Lower), l12-bits are handled with
each iteration. Hence, four iterations are required to multiply
48-bit operands and one additional iteration is used to perform the

Merge operation.

Note that the Pick 2 and Pick 3 inputs are displaced 2 bits to the
left with reference to the previous level since each pick is 2 bits
more significant than the last. Also, the Partial Sums and Carries
generated by the third level are displaced 6 bit positions to the

left when fed back to the first level during the second, third and

149

fourth iterations. In other words, bit 26 of the P.C. and P.S.
registers feeds bit 20 of the first level, 27 feeds 21, etc.
This occurs since each iteration (3 picks) is 6 bits more signi-

ficant than the previous one.

The following example illustrates the 3-level adder concept. The
operands are the same as those used in the previous examples.
Since the multiplier is only 12-bits long, only one iteration and
the merge operation will be required. In the example, the terms
"Partial Sum" and Partial Carry" refer to the final contents of
the P.S. and P.C. registers; "Pseudo Sum" and "Pseudo Carry'" refer

to the sum and carry outputs of each level.

PROBLEM: 1234
1234
1547420
LOWER ITERATION: 1234
_34
44520
0X = 0000(g)y = 000 000 000 000(7)
1IX = 1234 ~ = 001 010 011 100
2X = 2470 = 010 100 111 000
3X = 3724 = 011 111 010 100
Pick #1 = 0X = 000 000 000 000
Pick #2 = 3X = OL1 111 010 100
Pick #3 = 1X = 001 010 011 100

150

000 000 000 000 Partial Sum
000 000 000 000 Partial Carry
000 000 000 000 Pick 1 (0X)
000 000 000 000 Pseudo Sum
000 000 000 000 Pseudo Carry
0l 111 101 010 O Pick 2 (3X)

A1 111 1AT N1TN NANN

01 1i1 101 G10 OGO Pseudo Sum
00 000 000 000 000 Pseudo Carry
0 010 100 111 QO Pick 3 (1X)
0 011 011 010 010 000 Partial Sum
0 001 001 010 000 000 Partial Carry
010 000 FULL ADD

2 0 Octal

Note that by fully adding the final partial sums and carries the
partial product, 44420, can be generated. Recall, that the Merge
operation must then take place and this requires a full add of the
Upper and Lower Partial Products. 1In order to save more time, the
partial sums and carries are saved and will be used during Merge

to generate the final product. But at this point, the addition of
the lower six bits of P.S. and P.C. will yield the lower two octals
of the final product, 20. This is accomplished by a special 6-bit

adder for each iteration of the multiply step.

UPPER ITERATION: 1234
12
1503000
Pick #1 = 2X = 010 100 111 000
Pick #2 = 2X = 010 100 111 000
Pick #3 = 0X = 000 000 000 000

151

000 000 000 000 Partial Sum
000 000 000 000 Partial Carry
010 100 111 000 Pick 1 (2X)
010 100 111 000 Pseudo Sum
000 000 000 000 Pseudo Carry
01 010 011 100 0 Pick 2 (2X)
01 000 111 011 000 Pseudo Sum
00 100 001 000 000 Pseudo Carry
0 000 000 000 00 Pick 3 (0X)
0 001 100 110 011 000 Partial Sum
0 000 000 010 000 000 Partial Carry

The final partial sums and carries of the Upper Iteration will

also be saved and used during the Merge operation.

MERGE :
Because the results of the Upper and Lower iterations are in the
form of Partial Garries and Partial Sums, the Merge logic must
manipulate the following five values:

1) Lower partial sums.

2) Lower partial carries.

3) Upper partial sums.

4) Upper partial carries.

5) A possible carry into bit 26 of the result from the

lower six-bit adder.

The lower three level adder will be used during the Merge phase
of Multiply to handle the five inputs. Since each level has only

three inputs, the five values are fed into the levels as follows:

152

LOWER THREE LEVEL ADDER DURING MERGE

LEVEL 3 4:
/ P.C. AP.S.
Merge
Carry
Network [
5) -
LEVEL 2 !
-—d
A p.c.Mes. Ao
Carry from 2) Upper Part. Carries
Lower 6-bit
Adder LEVEL 1

1) 3)

Upper Part. Sums

Lower Part. Sums

Lower Part. Carries

Recall, that during normal iterations, the output of the third level
was in the form of partial sums and partial carries. The Merge op-
eration requires the result to be fully added. This is accomplished
by the "Merge Carry Network" which essentially converts level three
into a full adder. It summarizes the carries and satisfies for each
stage and feeds the carries into the proper stages of the third level.
It is not used during the normal iterations because of the extra time

involved in checking satisfies, carries, etc.

The following illustrates the Merge portion of the example. Recall,
that the lower 6-bits of the final product have been generated by
fully adding the lower 6-bits of the Lower partial sum and partial

carry registers. The result was 20(g).

153

000 011 011 010 Lower Partial Sum

000 001 001 O0I0 Lower Partial Carry
01 100 110 011 000 Upper Partial Sum
01 100 100 001 000 Pseudo Sum
00 000 110 110 100 Pseudo Carry
00 000 010 000 000 Upper Partial Carry
01 100 000 111 100 Pseudo Sum
00 001 100 000 000 Pseudo Carry

0 Carry, Lower 6-bit Add

01 101 100 111 100 FULL ADD

1 5 4 7 4 Octal
When the lower six bits are appended, the final product results:

1547420 = FINAL PRODUGCT

The intent of the previous example was to show the concept of the
three-level adder and the Merge operation. The actual multiplica-
tion of two 48-bit operands requires four iterations of the type
explained and then the merge operation. Each iteration generates
6-bits of the final result, so after four passes through the adders,
the lower 24-bits of the final product will have been generated.

The upper adder generates 18-bits of a partial product (partial be-
cause it may be modified by a carry from the 24-bit lower product)
with three iterations, but on the fourth iteration saves all par-

tial sums and carries for use during the merge phase.

As was mentioned, the lower 3-level adder is used during the merge
operation, but with the use of 48-bit operands, its inputs will be:
1) 18-bits of the upper partial product (from the first three

iterations.

2) upper partial sums (from the fourth iteration).

154

3)
4)
5)

6)

During

upper partial carries (from the fourth iteration).

lower partial sums (from the fourth iteratiom).

lower partial carries (from the fourth iteration).

carry from the lower 6-bit adder (after the fourth 6-bit

ndﬂffinn)=

merge, the lower 3-level adder will generate 57-bits of

the final product. The upper 15-bits of the final product are

produced by a special 15-bit adder (used only during merge) which

adds the upper 15-bits of the upper partial sums and carries and

a possible carry from the three-level adder. In general, the

merge looks as follows:

96-BIT FINAL PRODUCT

95 81180 24123 0
::: é%)
LEVEL 3 0
P.C. .S. t
‘ Merge
Carry
r_q. Network
56 LEVEL 2 0
Upper Upper I P.C. .S.
P.C. P.s.
Upper
(15) (15) po
1
56 LEVEL 1 18417 0

R A o

Upper [ower Lower Upper j,uer Product
P.S. P.C. P.S. P.Prod.

155

EXPONENT FORMATION:

Since the exponent logic for the multiply units is located on chassis
2, communication between chassis 6 and 2 is required. For example,
chassis 6 must select a single or double precision exponent, or an
exponent reflecting the normalization of the coefficient. Chassis
2 must order an error coefficient if it detects an error condition

during exponent formation.

Three adders are required for the formation of the final exponent.
The first adder forms the algebraic sum of the exponents of Xj and
Xk. This result will be used if double precision is selected. The
second adder adds 60(8) to the sum of the exponents - its result is
used if single precision is selected. The third adder subtracts one
from the result of the first (if D.P.) or the second (if S.P.) adder
in the event that a left shift one place is required to normalize the
coefficient. The following diagram represents the exponent adders in

block form:

NORM
] D.P. OUTPUT
Xj~\\\.

X+ X — -1 NTWK.
] || (Xj4Xk) -1-» NORM
Xk / +60
+60——. S.Pu
MULTIPLY EXPONENT LOGIC - CHASSIS 2

156

In forming the sum of the Xj and Xk exponents, the following sequence
occurs. In order that all cases of negative and positive exponents

are illustrated, the following numerical examples will be used:

X3 = +05 -05 -05 +05
Xk = 413 13 +13 -13
RESULT = +20 -20 +06 -06

STEP 1 Obtain the true value of the exponents. This is accom-
plished by complementing the upper 12-bits if bit 59 is
a "1" (negative coefficient). If bit 59 is a "0", the
exponent is already in true form. Hence, the true values
of the exponents in packed form are:

2005 1772 1772 2005
2013 1764 2013 1764

STEP 2 TUnpack the exponents by:
a) Extending bit 58 into bit 59 of the feeders:

6005 1772 1772 6005
6013 1764 6013 1764

b) Complementing the exponent magnitude bits (48 - 57)
into the feeders. The feeders nog hold the comple-
mented, unbiased exponents:

7772 0005 0005 7772
7764 0013 7764 0013

STEP 3 Add. The results are:

7757 0020 7771 0006

157

STEP 4 Complement the result. (Since the operands are in comple-
ment form in the feeders):

0020 7757 0006 7771

STEP 5 Set or clear bits 59 and 58 according to the following

rules (as determined by the exponent error check logic):

SET BIT 59 if:

a) Neither Xj nor Xk were zero operands (i.e. 48 - 59
= 0000(g8))-

b) AND neither Xj nor Xk were indefinite operands
(i.e. 1777).

c) AND the final sign of the coefficient is negative.
This is determined by the following rules:
1) 1like signs = positive result
2) wunlike signs == negative result

d) AND underflow was not generated

e) AND a "Transmit" was received from the Scoreboard.

CLEAR BIT 59 if the above conditions are not met.

BIT 58 = TRUE adder output (adders 1, 2 or 3) if:

a) Neither Xj nor Xk were indefinite operands
b) AND one or both of the operands were infinite

(3777) OR overflow was generated.

158

BIT 58 = COMPLEMENT of adder output (1, 2 or 3) if:

a) Xj or Xk or Both were indefinite operands
b) OR neither Xj nor Xk were infinite operands AND

overflow was not generated.

Assuming that no error conditions exist, and the final
sign of the coefficient is positive, bit 59 will be
cleared and the complement of the adder result bit 58
will be taken. Thus, the final configuration of the

upper 12-bits will be:

2020 1757 2006 1771

The second (+60) and third (-1) adders are not discussed in detail
here since their operations are not difficult to understand. The
(Xj + Xk) + 60 Adder simply places the unbiased result of the Xj -
Xk Adder in one feeder and a +60 in the other. Hence the sum of the

exponents + 60 is formed.

The third adder places the result of the first (for double precision)
or the second (for single precision) adder in one feeder and a minus
1 in the other. The result is either the

1) Sum of the exponents minus 1 (DP), or

2) Sum of the expoments plus 57 (SP).
1f a left shift one place is required to normalize the result, the
output of the third adder is used; if not, the output of adders one

or two is used as the final exponent.

159

The exponent logic is discussed in greater detail in Sections 7.5.10
through 7.5.13. At this point, only the overall picture and "pencil

and paper" methods of manipulation need be understood.

7.5.2 INSTRUCTION LIST/DATA FLOW

The following instructions will select one of the Multiply functional
units. The terms in parenthesis are the ASCENT symbolic codes used

in assembler coding. Data flow can be followed on figure 7.5-1.

40 FLOATING PRODUCT OF Xj and Xk to Xi (FXi = Xj * Xk)
DEFINITION: This instruction multiplies two floating point
quantities obtained from operand registers Xj (Multiplier)
and Xk (Multiplicand) and packs the upper 48-bits of the

96-bit product in operand register Xi.

The result is unnormalized when either or both operands are
unnormalized. In this case the final exponent is the sum of
the exponents plus 60(g). The result is normalized only
when both operands are normalized. The exponent in this
case is the sum of the exponents plus 60(8) or 57(8) (if a

left shift one place is required to normalize).

DATA FLOW: Bits O - 47 and bit 59 of Xj and Xk are sent to
chassis 6 and bits 48 - 59 to chassis 2. On chassis 2, three
exponents are formed: 1) Xj + Xk - wused for a double pre-
cision result not left shifted to normalize, 2) Xj + Xk + 60

used for a single precision result not left shifted to nor-

160

Output
Network

CHASSIS 6

47 X
L
Xj A
-) A
24 E
Xk
J——
:\14 —— L
% 47 S
1
~ 0
o~
Laad - _ k
; X k+2Xk/
n
LOWER
ADDER

Regs Rel.
GO - . ”I l >
-*P[Zj]————-——d-[— TIMING CHATIN

Figure 7.5-1.1

malize and 3) Xj + Xk - 1 (D.P) or Xj + Xk + 57 (S.P.) -
used if a left shift one is required to normalize. The final
exponent is sent from chassis 2 to Register Entry Control

upon receipt of the "Transmit" pulse from the Scoreboard.

Bits O - 47 of Xj and Xk are multiplied on chassis 6 (method
is explained in Section 7.5.1) where a 96-bit product is
formed. The upper 48-bits are selected for Single Precision
and are sent to Register Entry Control via chassis 2 upon

receipt of the "Transmit" signal.

ROUND FLOATING PRODUCT of Xj and Xk tec Xi (RXi = Xj * Xk)

DEFINITION: This instruction multiplies two floating point
quantities obtained from operand registers Xj (multiplier)

and Xk (multiplicand) and packs the upper 48-bits of the 96-
bit result in operand register Xi. During the first iteration
of the multiply process, a "one" is added to bit 46 of Xk.

This, in effect, adds % (20 ------ 0(8)) to the final product.

When both Xj and Xk are normalized, the result will also be
normalized. If a left shift one place is required to norma-
lize the final product, a % round will occur (since the

20 -==--=-- 0 was doubled by the left shift). If no left shift
is required to normalize, or if either of the operands is un-
normalized, a % round will occur (since the 20 ------ 0 was

not left shifted).

162

42

As mentioned, the result is unnormalized when either or
both of the operands are unnormalized. 1In this case, the
final exponent is the sum of the exponents plus 60(8)' The
result is normalized only when both operands are normalized.
In this case the exponent is the sum of the exponents plus

60(g) or 57(g) (if a left shift was required to normalize).

DATA FLOW: Bits 0 - 47 and bit 59 of Xj and Xk are sent to
chassis 6 and bits 48 - 59 to chassis 2. The following three
exponents are formed on chassis 2 (See data flow for the 40
instruction):

1) Xj + Xk

2) Xj + Xk + 60

3) Xj+ZXk -1 or Xj+ Xk + 57
The final exponent is sent from chassis 2 to Register Entry

Control upon receipt of the "Transmit" signal.

Bits O - 47 are multiplied on chassis 6 (method explained in
Section 7.5.1) where a rounded, 96-bit product is formed. The
upper 48-bits are selected and sent to Register Entry Control

via chassis 2 upon receipt of the "Transmit" signal.

FLOATING DOUBLE PRECISION PRODUCT of Xj and Xk to Xi

(DXi = Xj * Xk)

DEFINITION: This instruction multiplies two floating point

163

quantities obtained from operand registers Xj and Xk and
packs the lower 48-bits of the 96-bit product in operand
register Xi. This result is not necessarily a normalized

quantity.

The exponent of this result is 60(3) less than the expo-
nent resulting from a 40 instruction using the same oper-

ands.

DATA FLOW: Bits 0 - 47 and bit 59 of Xj and Xk are sent to
chassis 6 and bits 48 - 59 to chassis 2. On chassis 2, the
following three exponents are formed (See Data Flow for the
40 instruction):

1) Xj + Xk

2) Xj + Xk + 60

3) Xj+ZXk -1 or Xj+ Xk + 57
The final exponent is sent from chassis 2 to Register Entry

Control upon receipt of the "Transmit" signal.

Bits O - 47 of Xj and Xk are multiplied on chassis 6 (method
is explained in Section 7.5.1) where a 96-bit product is
formed. The lower 48-bits are selected and sent to Register
Entry Control via chassis 2 upon receipt of the "Transmit!"

signal.

164

7.5.3 MODE BITS

Two. mode bits are necessary to enable the Multiply units to dis-
tinquish between the 40, 41 and 42 instructions. They are:

1) DainAd
L J nvuLlg

2) Double Precision
As with the other functional units, mode bits are transmitted to

the unit at Scoreboard issue time.

ROUND:

When a Single Precision Round opcode is processed, rounding-up is
desired if the magnitude of the lower 48-bits of the 96-bit pro-
duct is greater than or equal to 5. If the discarded bits are
less than %, no rounding should eccur and the unaltered upper 48-
bits will be taken as the final product coefficient. The follow-

ing examples illustrate the two cases:

1) ROUND-UP NOT REQUIRED:

5000000000000000

x 4000000000000001
5000000000000000
2400000000000000000000000000000
24000000000000005000000000000000

Left Shift to Normalize:

50000000000000012000000000000000

\ J\. /
V" ~
Final Less than %,
Coefficient thus, no round

165

2) RUOND-UP IS REQUIRED:

6000000000000000
x_4000000000000001

: 6000000000000000
3000000000000000000000000000000
30000000000000006000000000000000

Left Shift to Normalize:

60000000000000014000000000000000
A\ J
vV

% or more,
therefore, round

The correct rounded result:

6000000000000002 XXX XXX XX XXKXXKKX

Final Not Available
Coefficient with 41 inst.

One of the more common methods of rounding is referred to as a

post-round.

The procedure is to add % to the final product, there-

by causing a carry into the least significant bit of the product if

the discarded bits have a magnitude equal to % or greater. The

values obtained above are used for illustration:

1) ROUND-UP DOES NOT OCCUR:

Final Product = 50000000000000012000000000000000
Add % to Round 4000000000000000
No Carry Occurs 50000000000000016000000000000000

2) ROUND-UP DOES OCCUR:

Final Product = 60000000000000014000000000000000
Add % to Round 4000000000000000
A Carry Occurs 60000000000000020000000000000000

166

The great disadvantage of the post-round method, especially if
time is a major consideration in the computer design, is that an
extra adder cycle is required to add the rounding factor, %. The

overall multiply time is therefore increased considerably.

The 6600 utilizes a faster method referred to as pre-round. With
this method, the rounding factor is added during the first itera-
tion of the multiply process, thereby eliminating the need for an
add cycle at the end of the sequence. Since it is not known, at
this early point of the sequence, whether or not a left shift of
the final product will be required (to normalize), a factor of %
(20 ------ 0) is added instead of %. This prevents the erroneous
addition of 1 to the final product, which would be the end effect
if ¥ was added and the final product was left shifted one place.
Thus, if a left shift one place is required to normalize the final

product, a 5 round will occur since the rounding factor, 20 ------

is doubled by the left shift. If no left shift is required to nor-

malize, or if either of the operands is unnormalized, a % round will

occur since the 20 ------ 0 is not left shifted for these cases.

Post and Pre-round are illustrated with the following examples:

1) POST-ROUND:

Xk = 6000000000000000
Xj = x 4000000000000001
lst Partial Product = 6000000000000000

2nd Partial Product

30000000000000000000000000000000

Initial Product
L.S. to Normalize
%X Rounding Factor

30000000000000006000000000000000
60000000000000014000000000000000
4000000000000000

Final Product

167

60000000000000020000000000000000

2) PRE-ROUND:

Xk = 6000000000000000
Xj = 4000000000000001
% Rounding Factor = 2000000000000000
lst Partial Product 6000000000000000

I

2nd Partial Product
Initial Product

L.S. to Normalize
yields Final Product

30000000000000000000000000000000
30000000000000010000000000000000
60000000000000020000000000000000

Note that the correct rounded result was obtained with both methods.

A "ROUND'" mode bit is transmitted to chassis 6 if fm = 41 is trans-
lated from the U2 Register. This causes bit 52 of the Lower Par-
tial Carry Register to be set on module D15 (Figure 7.5-2) during
the first iteration of the multiply step (t325 - 425 of the multiply
timing chain). Bit 52 of the P.C. Register feeds bit 46 of the first
level of the Lower 3-level Adder, and this effectively adds the %
rounding factor on the first iteration. Since the P.(C. Registers

are cleared before each iteration, the round bit will remain for

only the first iteration.

DOUBLE PRECISION:

A '"DOUBLE PRECISION'" mode bit is transmitted to chassis 6 if fm = 42
is translated from the U2 Register (Figure 7.5-3). It is caught on
module 108, ANDed with the Multiply I "Transmit" signal on H22, and
fanned out to enable the lower bits (0 - 47) of the 96-bit product
to Register Entry Control. The absence of the Double Precision mode
bit enables bits 48 - 95 of the final product to Entry Control upon

receipt of the "Transmit" signal (I123).

168

691

GATING OF THE MULTIPLY ROUND MODE BIT TO THE ADDER

109
MP

H11

3 ROUND

26

CC

D15

[

1
(F“> ==
l 24
|
|
I
!

t325 - 425

(first iteration)

Lo_|

Cl6

D37

17

N

B

> --(°

MC

Lower
3-Level
Adder,
First
Level
Tarry
Input to
Bit 46

0i1

LOg

LOWER
MPY 1 MW
6 TRANSMIT :
6 ‘ H22
TC Gate lower
3 e B result to
o S > 'ﬂ Entry Contrel
] 28 (bits 0 - 47)
~ /‘
~ -
t00 - . _--7
N P
A Y -
\\ e
108 _--X
fn = 42 - UPPER

MP -
DQP. 23 DP -

. 123 Gate upper

ERROR 6 F‘iﬁb"
N result to

XMIT (5_2_2_ ‘ &\ 1C Entry Control

\\
~
N
\\
\‘\
F28_
MM
"3
MPY I -~ 28 (bits 48 - 95)
0L _O CB‘"“ o >__(f. ______ (lg
23

Q=
]
; 124 Al7 NO7
i_ 8 cc NJ JQ | D.P. Mode
HO9 12 bit to
D 1O 0O, D, 2,
Multiply 26 2W26.907 to
. — —=)=-~=--- ’
Timing 6 I ﬂ>’ £225 6 2Q11,5

MULTIPLY I DOUBLE PRECISION MODE BIT LOGIC

Figure 7.5-3

The selection of the single or double precision exponent is made
by transmitting the Double Precision bit to chassis 2 at approxi-
mately time 300 of the Multiply timing chain (the t00 following
Multiply time 225 - 325) via cable W22, 907 (Figure 7.5-3). On
chassis 2, the single or double precision exponent is selected

and gated to the following places for further adjustment and man-
ipulation (See Sections 7.5-10 through 7.5.13 for the more detailed

analysis of the exponent logic). Refer to figure 7.5-4.

1) Decrement Logic - wused if coefficient overflow is
sensed.
2) Complement Logic - packs the true or false value of the

exponent, depending upon the final coefficient sign.

3) Error Check Logic - checks for exponent overflow

Note that the Double Precision flip-flop may also be set, via pin
27, if an error condition (zero, indefinite or infinite operand)
exists or is generated on chassis 2. For any of the three error
possibilities, the coefficient of the result must be cleared. This
is accomplished by forcing zeros out of the lower 48-bits of the
96-bit result and setting the Double Precision flip-flop (Figure
7.5-5) By this process, the upper 48-bits need not be disabled,
since for either single or double precision the lower 48-bits are

selected.

171

Ll

2011

From
Chassis
6 via

6wW22,907
2W26,907
at t325

P1

-

2D19
TH

DOUBLE PRECISION LOGIC, CHASSIS 2

Figure 7.5-4

2B29

TE

To Decrement,
Complement and
Check Logic. Then
to transmitters.

€LT

6H22

11

13

FANOUT OF TRANSMIT - DOUBLE PRECISION

Bit positions

enabled
30,31,

6Al4

Lys_|

6114

3 22 21 20
27 —
32,4,5 Cf (P‘ —d) Q 18,“"()'_“(
20,21 D F
18,19 enter iy
J9 ank C >
S~o 1
27,287~ _ 18
29 2,3 S~o 15] .--~ i
\ %*4; 28 —] 19— &
(Error):*
N D | (325-425)-
33,346 N (t70) Clear| 1¢ i
35,6,7 \\\ Rank —
36,37, “Jis F 1
38,8,9 ‘C)<
39,40,41, C 18 6110
10,11 \ MK
\
22,23 \
24 25 4\
C 28| \
\\
\
D F \
42,43, 44, \
12,13 \
45,46,47
14,15
28 26
16,17 G 29 'CP
24,25, .
[26,0,1 D Y Clear
Rank
1
Figure 7.5-5

final product bits 0-5 (which, after the fourth iteration, is
stored in the MK modules) from selecting a multiple of XK and
gating it to the 3-level adder. The translation is disabled

until after the Merge operation has been :completed.

17) Form 3XK - No logic gate exists to enable the formation of 3XK.
This term is shown to indicate the time allowed for the generation
of 3XK - the time period from entering XK into the feeder registers

(MA) until the first iteration begins.

18) Clear Partial Sum/Carry Registers (NJ) - The PS and PC registers

are cleared every minor cycle until after the fourth iteration.
At this point, the clearing gate is disabled until after the final
product has been generated (by the Merge phase) and the "Transmit"

has been received from the scoreboard.

19) Set Partial Sum/Carry Registers (NJ) - The first four occurancies

of this signal on the timing chart (tl00 through 300) are meaningless
since the purpose of the signal is to gate the output of the 3-level
adders into the PS and PC registers, and until t300 no meaningful
inputs are fed to the adders. From t300 to t400, setting PS and

PC is disabled but because the clear pulse (term 18) does occur,

the PS and PC inputs to the first level of the adder will be all
zeros on the first iteration. From t400 to t800, four setting pulses
occur which gate the results of each iteration into PS and PC.
Further setting is disabled until completion of the Merge operation

and receipt of the "Transmit" signal from the Scoreboard. At that

time (t1025) bits 24-80 of the final product are enabled from the

174

20)

lower 3-level adder into the lower PS and PC registers. Since
a full add occurs during Merge, the Partial Carry outputs will
be all zero and only the lower PS register will contain meaningful

information.

Merge PS, PC and Fully Added Bits (NJ and MK) - This gate enables

the Merge phase of the Multiply operation during which the following
values are combined to form the final product as shown in Figure
7.5-9.

a) Bits 0-23 of MK lower (final).

b) Bits 6-56 of PS lower (from fourth iteration).

¢) Bits 6-56 of PC lower (from fourth iteration).

d) Bits 6-23 of MK upper (from fourth iteration).

e) Bits 0-53 of PS upper (from fourth iteration).

£) Bits 0-53 of PC upper (from fourth iteration).
The gate is generated on module H25, TP4, according to the following

Boolean formula:

(725-825) + (775-875) + (825-925) + (825-GO MPY) =3> Merge

or, in simplified form:

725 - XMIT =>»MERGE

In other words, Merge is enabled at t725 (after the fourth iteration)
unitl the receipt of the next "GO MPY" signal from the scoreboard.
Merge is discussed briefly in Section 7.5.1 and a detailed analysis
appears in Section 7.5.9 so further discussion is not presented at

this point.

175

7.5.4 COEFFICIENT TIMING SEQUENCE

This discussion deals primarily with the cofficient timing sequence

on chassis 6. The exponent timing (chassis 2) is handled separately

by the logic and is therefore discussed in later sections dealing with
exponent manipulation (i.e. 7.5.10). Some signals, which coordinate

the exponent sequence with the coefficient sequence, are mentioned briefly

to provide a more complete comprehension of the overall timing operation.

The coefficient timing sequence is initiated upon receipt of the "Go Multiply"
signal from the scoreboard. The coefficient timing chain is located on
modules HO9 and H10 {(C.E. Diagrams, sheets 141 and 142) and is composed of

16 flip-flops arranged in a chain. Every other flip-flop is clear/set with

a t00; alternate flip-flops with a t50. Each is set for one minor cycle,

with the exception of the last which remains set until the start of a

new sequence. The outputs of these flip-flops, singly and in combination,

are used to sequence the manipulations of the Xj and Xk coefficients re-

quired to form the 96-bit product.

An explanation of each term on the coefficient timing chart (figure 7.5-7)
follows. In conjunction with the timing chart, the C.E. Diagrams and
chassis 6 wire tabs should be utilized to further clarify the discussion
of coefficient generation. It is emphasised that this discussion deals
with the Multiply I unit and that Multiply II is a separate unit, but
similar in operation.

1. Scoreboard Issue -~ This is the time reference for the timing chart -

the scoreboard issue of the Multiply opcode.

176

MULTIPLY F._U. COEFFICIENT TIMING SEQUENCE.

L]

TIME IN NANOSECONDS® =100 00 1900 200 300 400 500 600 700 800 900 10Q0 1100 1200
l. SCOREBOARD ISSUE @» IR B
2. GO MULTIPLY (I09,TP86) m S S R -

— 4 - - R

4. Xj AND Xk OPERANDS IN (GA)
(G,H,L,J,1-6)
5. CHASSIS 6 TIMING SEQUENCE,

7/ - W/J,,, R/ /// S /// _J%
RANK | (HO9+HI0)
6. CHASSIS 6 TIMING SEQUENCE, 1/ /113 I 77/ /) G/ B ////// I - //// A-,,,JUWZZIZMMIHEZZZEZZZMZZMHZZA

RANK 2 (HO9+HI0)
7 CLEAR MULTIPLICAND REG, - L/ e -
(MA)

3. CLEAR INPUT REGISTERS (GAS)__ ___ mzL - __gm . §m ¥m# . mm .) 171 1)
(G,H,I,, I-6)

8. CLEAR LOWER MULTIPLIER _m |l Vi wm 17/} T,
REGISTER,RANK I (MK)

9. CLEAR UPPER MULTIPLIER - - 77/ /B IO /77 N /| wm__|
REGISTER, RANKI (MK)

10. INPUT REGISTERS — MK AND - _m [—
MA

. SET LOWER MULTIPLIER
REGISTER, RANKI (MK)

12 SET UPPER MULTIPLIER
REGISTER, RANK I (MK)
I3. CLEAR/SET MULTIPLIER \zzm] jmm_
REGISTERS, RANK IL (MK) _
14. CLEAR/SET MULTIPLIER | _mm. | mm - - - - ! . |
TRANSLATORS (MP) 222!
15. CLEAR/SET MULTIPLIER , , | mm | ym wm - | mm - - ! L7} pm |
TRANSLATORS (MP), 22-2 ‘
16. CLEAR/SET MULTIPLIER | m | mm | gm | | mm | ma | - b | ;o
TRANSLATORS (MP), 24-25

17 FORM 3XK

18. CLEAR PARTIAL SUM/CARRY W) VA .|.... Y73 77z L7/}

REGISTERS (NJ)

I9. SET PARTIAL SUM/CARRY
REGISTERS (NJ)

20. MERGE PS, PC AND FULLY
ADDED BITS (NJ AND MK)

21. FINAL CARRIES TO THIRD
LEVEL CF LOWER ADDER (M

22. REQUEST RELEASE

23. TRANSMIT RESULTS (MR) *

24. GO MULTIPLY—CHASSIS 2

25. 'DOUBLE PRECISION —]
CHASSIS 2 FIGURE 7.5-7

* EARLIEST POSSIBLE TIME —NO THIRD ORDER CONFLICTS

Go Multiply I or II - Assuming no second order conflicts, the

"Go Multiply" signal will be received on chassis 6 approximately
175 nanoseconds after Scoreboard issue. This signal initiates

the Multiply (I or II) timing chain. The "Go Multiply" is gated
to chassis 2 approximately 125 nanoseconds later. (See term #24

and figure 7.5-6)

Clear Input Registers - The input registers are cleared every minor

cycle, as shown. The common "Clear GA" signal can be read from 6G7,

TP2 and occurs at approximately t40.

Xj and Xk Operands In - The Xj and Xk operands will be received

into the chassis 6 input registers (GA modules) at approximately

t200.

Chassis 6 Timing Sequence, Rank 1 - The timing chain is a string

of flip-flops located on modules HO9 and H10. The Rank 1 flip-
flops are set at t75 and the Rank 2 flip-flops (see term #6) are
set at t25. Each flip-flop (except the last in Rank 2) is set for
one minor cycle. The chain is initiated upon receipt of the "Go
Multiply" signal and is used to sequence the generation of the

product of the coefficients.

Chassis 6 Timing Sequence, Rank 2 - See temm #5.

Clear Multiplicand Register - This register is cleared in prepar-

ation for the receipt of the Multiplicand (Xk) from the Input Re-

gister. (See term #10) It is from this register that 1, 2 and 3

times Xk are formed and selected on the MF and MB modules.

178

6L1

"GO MULTIPLY I" GENERATION AND DISTRIBUTION

, 5340 6109 6HO09
(MPY 1 RF1) JQ P cfics Lo |
(MPY I RF2; MPY I Coefficient 14
(Divide = ba D‘r’-w-lfig—o---qﬂéﬁ | 25 e Q27 timing chain (C.E. o=
Go Read) [to 6W16,90 [Diagrams, sheet 141)
£25
— N22 oS U
- £30Q -1 6HLO
]
i .
I , MPY 1 Coefficient 14
! L-{527 timing chain (C.E. Q
' Diagrams, sheet 142)
|
|
!
1
frmmmmm e e e m e m e e - — - —— -~~~ 1
1]
f
]
]
1
]
; 6F12 6132 6H10 oM11
i CB MV ML GA
1)
i GO MPY I Exp.
6W22,905
! 4 26 2 12 3 L 14 |
[S - - ————— o — e
Fe OO 04 < R
r 226,905
14
O 1
£85 —

Figure 7.5-6

LR |

8 & 9. Clear Upper and Lower Multiplier Register, Rank I -

The first pulse shown (t200) clears the Multiplier register

in preparation for the receipt of the Multiplier (Xj) from the
Input Register (see term #10). The remaining pulses clear the
registers prior to entering the 6 bits of the product from the
6-bit adders (generated during each of 4 iterations) and right
shifting the multiplier six places for each iteration (see term
#11 and #12). Note that the Upper Multiplier register is not
cleared after the last iteration since the output of the upper

six bit adder is not used at that time; instead, the Partial sums
and carries generated by the fourth upper iteration are used during

merge.

Since the Multiplier registers contain two ranks and the second
rank copies the first every minor cycle no information is lost

by this (see term #13) clearing process.

10. Input Registers MK and MA - This pulse enters the two operands into

the multiply feeder register located on MK (for Xj) and MA (for Xk)

modules.

11 & 12. Set Upper and Lower Multiplier Registers, Rank I -

These pulses result in two transfers:

1) The output of the 6 bit adders is sent to bits 18-23
of the Multiplier registers.

(3%
s

Bits 6-23 of the Multiplier registers, Rank 7, are right
shifted 6 bit positions into Rank I.

180

RANK 2

23 h
Rank 1
¢
— FO—
Set Rank 2
Set __6____ J
Rank 1 —™O 5
XLATE
0-5
0 0
—(18)
2/

MULTIPLIER REGISTERS (MK)

Figure 7.5-8

It should be noted that the lower Multiplier Register is loaded a
total of seven times (including the initial entry of the multiplier
(term #10) and the upper register six times. The reason can be under-
stood by considering the following (see figure 7.5-8)
a) Multiplier translations are made from bits 0-5 of Rank 2 of the
upper and lower registers.
b) The multiplier is translated only four times (with meaning) during

each iteration (see terms #l4, 15 & 16).

181

c) The outputs of the 6-bit adders are meaningless to this product
unless 1) the multiplier is translated, 2) 0, 1, 2 or Xk are
selected, and 3) these inputs are filtered through the 3-level.

d) The filter time through the 3-level and 6-bit adders totals
about 225 nanoseconds. (i.e. from the time a multiplier trans-
lation is made until the result of that iteration is at the out-

put of the 6-bit adder equals 2% minor cycles).

Thus in justifying the setting of the Mk modules, terms 14, 15, 16

(set translators) and 19 (set PS and PC registers) of the timing chart
must also be considered. The seven entries into the Multiplier registers
and the implications of each are outlined below. Keep in mind that

Multiplier Rank 2 copies Rank 1 each minor cycle.

First - a) Initial entry of multiplier into Mk modules t225 (term #10)

b) Translate bits 0-5 and store translations at t335 (terms 14,
15, & 16)

Second - a) Set upper and lower Mks at t375 =>»1) right shift bits 6-23
and 2) enter meaningless output of 6-bit adder in bits 18-23
(terms 11 & 12).

b) Translate bits 0-5 and store translations at t435 (terms 14,
15 & 16).

c) Set PS & PC registers and begin first meaningful 6-bit add
at t460 (term #19).

Third - a) Set upper and lower MKs at t475=>1) right shift bits 6-23
and 2) enter meaningless output of 6-bit adder in bits

18-23 (terms 11 & 12).

b) Translate bits 0-5 and store translations at t545 (terms 14,
15 & 16).

¢) Set PS & PC registers and begin second meaningful 6-bit add
at t560 (term #19).

182

Fourth - a)

Fifth - a)

b)

c)

Sixth - a)

Seventh -

(@]
~

a)

Set upper and lower MKs at t575=>1) right shift bits 6-23
and 2) enter first meaningful 6-bit add in bits 18-23 (terms
11 & 12).

Translate bits 0-5 and store translations at t635 (terms 14,
15 & 16).

Set PS & PG registers and begin third meaningful 6-bit add
at t660 (term #19).

Set upper and lower MKs at t675==>1) right shift bits 6-23
and 2) enter second meaningful 6-bit add in bits 18-23
(terms 11 & 12).

Translation of bits 0-5 is disabled at this time since the
entire multiplier has been translated (terms 14, 15 & 16).

Set PS & PC registers and begin fourth meaningful 6-bit add
at t760 (term #19).

Set upper and lower MKs at t775=>1) right shift bits 6-23
and 2) enter third meaningful 6-bit add in bits 18-23
(terms 11 & 12).

Translation of bits 0-5 is still disabled (terms 14, 15 & 16).

Setting of PS & PC registers is disabled at this point since

the four passes through the 3-level adders have been completed.

Set lower MKs at t875=>1) right shift bits 6-23 and 2) enter
fourth meaningful 6-bit add in bits 18-23 (terms 11 & 12).
The upper MKs are not set on the fourth iteration since the
upper PS & PC contents are used directly during the merge
phase.

At this point the status of the Multiply sequence is as follows:

a)

b)

c)

d)

The lower MKs contain 24-bits of the final produce in bits 0-23.

The upper MKs contain 18 bits of the final product (may be
modified by a carry from bit 223) in bits 6-23.

The upper PS and PC registers contain the results of the fourth
iteration. The lower six bits were not added, so all bits are
meaningful.

The lower PS and PC registers contain the results of the fourth
iteration. The lower six bits were added so only the upper bits
are meaningful.

183

The above values will be combined during the Merge phase of multiply

to generate the final 96-bit product.

13) Clear/Set Multiplier Registers Rank II - This signal occurs each

minor cycle at tOO and causes Rank 1 of the multiplier registers
(MK modules) to be copied into Rank 2. (See Figure 7.5-8). The
selection of 0, 1, 2 or 3XK is made by translating bits 0-5 of

Rank 2.

14) Clear/Set Multiplier Translators (MP) - This signal enables storing
15)
& the 2-bit translations of the lower six bits of each multiplier in
16)

separate flig-flops. The flip-flop locations and the associated

meaning is shown in the following table:

LOWER UPPER
Bit:| 20,21 22,231 24,25 [224,925 [226 527 |528 529

1X |17,TP4|19,TP4|18,TP4 | 17,p15 | 19,pl5 | 18,pl5
2x |17,TP2 {19,TP2 |18,TP2 | 17,p19 | 19,p19 | 18,p19
3X |17,TP3 |19,TP3 |18,TP3 | 17,pl8 | 19,pl8 | 18,pl8

The outputs of these flip-flops will be used to select the proper
multiple of the multiplicand (0X, 1X, 2X or 3X) to be fed to each
level of the 3-level adder during each iteration of the multiply
sequence. Note that only four of the enables (£300-700) are
meaningful to the multiply step in process. Disabling the trans-
lation during the minor cycle, t200-300, selects O0X for all initial
inputs to the 3-level adder. This causes the partial sums and
carries to be all zero for the first iteration. Disabling the

translation after the fourth iteration (t700-1000) prevents the

184

21)

22)

23)

Final Carries To Third Level Of Lower Adder (MM) - During the

Merge phase of multiply, a full add must take place to generate
the final product. Since the lower 3-level adder is used to
generate 57 bits (24-80) of the product, a special logic circuit
exists which converts the third level of the lower Added into a
full adder. This is the "Merge Carry Network" which is used only

during Merge; not during the normal four iterations.

The gate which enables the Carry Network is shown on the timing
chart (term 21). Note that it is disabled during normal iterations
(t125-850) and enabled at all other times. The term is translated

(6F9, TP4) as follows:

(825-925) + (925-GO MPY) =>>FEnable Final Carries

or, in simplified form:

t825 - GO MPY

The gate is thus enabled from t825 until receipt of the next GO MPY
from the scoreboard. See Section 7.5.9 for the detailed analysis

of the Merge phase.

Request Release - The Request Release is transmitted from chassis 6

(HO9, TP2) to the scoreboard at t850 of the Multiply timing sequence.

This signal resolves any third order conflicts which may exist.

Transmit Results (MR) - Assuming that no third order conflicts exist,

the result will be transmitted from the MR modules at tl1l075 of the

Multiply sequence. A Double Precision result (bits 0-47) is trans-

185

mitted if the D.P. mode is high (Figure 7.5-5); a Single Precision

result is sent if D.P. is low.

24) Go Multipl Chassis 2 - This signal initiates the exponent timin
ply 8

chain on chassis 2. It is transmitted from chassis 6 (6H10, TP2) at

t200 (see Figure 7.5-6).

25) Double Precision—JpChassis 2 - This signal is sent to chassis 2

(NO7, TPl) at t300 to enable the selection of the sum of the
exponents (if D.P. mode). If the mode bit is not sent to chassis 2,
the sum of the exponents - 60(8) (S.P. mode) will be selected as

the final exponent. See Figures 7.5-3 and 7.5-4.

186

7.5.5 1, 2, 3 TIMES MULTIPLICAND (XK)

GENERAL:
The function of the logic discussed in this section is two fold:
1) The formation of 1, 2, and 3 times the multiplicand (XK).
2) The distribution of the selected multiple of XK to the
three levels of both the Upper and Lower 3-Level Adders
as specified by each pick (2-bits of the multiplier).
At the beginning of the multiply operation, the multiplicand (XK)
is placed in its holding register located on MA modules. It remains
there, unattended, throughout the multiply step. This register
feeds a static network which forms 1, 2 and 3 times XK. Since 1XK
exists in the holding register, no additional logic is required
for its formation. 2XK is formed by left shifting the multiplicand
1l bit position, thereby multiplying by two. 3XK is formed with a
special full adder which adds 1XK and 2XK. Due to the propagation
of carries to high order bits, the value, 3XK, may be 50 bits in

length. (See Figure 7.5-9.)

The 3 multiples of XK must be distributed to the Upper and Lower
adders at four different times (once per iteration) during the
Multiply operation. (See terms 14-16 of Figure 7.5-7.) This

selection and distribution is accomplished by translating the lower
six bits of the Upper (224-229) and Lower (29-23) Multiplier Registers.
Six translations {of two bits each) occur during each iteration and
gate the proper XK multiple to each level of the three level adders.

In the event that the two bits translated are zeros, neither XK,

2XK nor 3XK is gated to the adder level and all zeros are therefore

187

881

2XK

3IXK
(Add 1 XK + 2XK)

1 XK
(Held in feeder Register) (left Shift XK one place)
2
20 . 20 non
21 21 20
23 p 23 21
n 22
I
|
etc,
|
|
i
|
|
23? —p 246 246

0 20""'2.?
20 + 21 g 2
2l 4+ 22 _p 22
22+2'3._>23

246 4 247 p 247
247 + carry*—pp 248

e o

Carry™* —pp 249

% Possible carry from stage 47
ok Possible carry from stage 48

REQUIREMENTS FOR FORMATION OF 1, 2, AND 3XK

Figure 7.5-9

681

FORMATION OF

1,

2, and 3 XK

ITO 1st LEVELS| TO2nd LEVELS! TO3rd LEVELS

(UPPER
ADDER)

I
|
! ORM>
|
I

24.25 A

I

(UPPER (UPPER
ADDER) ADDER)
OR[> OR—P

!

Oz»0—~r0v—-dArcx

’F\\\\\Q
XK+2XK XKl
L
1 |
|

2XK

XK
I
I
|
|

|
|
I
I
I
|
I
I
|
|
I
|
I
I
I
I

|
|
|
I
|
I
!
l
I
|
I
|
!
|
|
l
I

Figure 7.5-10

i
OR

ADDER)

— | ——m m — e mmme ommem twae m—

I
I
I
I
I
I

I
(LOWER,

I
|
I
I
I

TII

ORI
(LOWER! (LOWER
ADDER)! ADDER)

entered. Figure 7.5-10 illustrates, in block diagram form, the

formation, selection, and distribution of 1, 2 and 3XK.

LOGIC ANALYSIS:

Figure 7.5-11 should be used in following the logic analysis of
the 1, 2 and 3XK circuitry. The 3XK adder is not shown completely
(the carry determination and propagation logic is missing) so

reference to the Chassis 6 wire tabs should also be made.

Selection and distribution of the value, 1XK, requires that the
multiplicand be gated from the feeder register (MA modules) to

the desired level(s) of the 3-level adder(s). via the MB modules.

Bit 0, for example, is distributed from COl, pin 12 (xx20) to

Al18, pin 12. On Al8, term F is a "one" if Bit 20 of XK is a '"one".
At the bottom of Al8 five terms, A,B,C,D and E, are used to select
XK, 2XK or 3XK for each pick of the multiply operation. Term A,
for example, indicates that the bit O and 1 configuration of the
multiplier is 01(2). This, ANDed with term F, gates bit 20 of xK
to bit 20 of the first level of the Lower 3-level adder. Term E
specifies that bits 24 and 25 of the multiplier equal 01(2). This
term, ANDed with term F, enables bit 20 of XK to bit 20 of the first
level of the Upper 3-level adder. Terms A and E also gate term G
(a "one" indicates that bit 21 equals a '"one') to bit 2ol of the
Lower (pin 22) and Upper (pin 8) 3-level adders, and term H

(XK bit 22) to bit 2 of the adders.

The 0 or 1 state of XK bit 20 is gated from Al8, pin 7 (xxk20) to

190

161

CARRY BITS 3-5
2
r
|
1
L_"____ e |

+6V

NOTE ®

MULTIPLY |
MULTIPLY 2

IS SHOWN,
IS SIMILAR

e - ——

SELECT 3X)

INPUT

DURING MERGE
FOR FULLY ADDED
UPPER |8 BITS

Xk X 2% 2% X

(ale]c]o]

25 =.u.
| S—

E
1015
—

£36-27 N
O—> UPPER * A e

! TRUE BITS OF Xy,2X) c21
| OR 3Xy TO LOWER- ——
| LEVEL ADDER INPUTS,

ADDER

BIT | TO N
ADDER AN
STAGE | \

ADDER

TO SECOND-LEVEL
ADDER INFUTS
LEFT-SHIFTED 2

4 7 14
e m —C 18A o e —— T ‘<B
A32-27 A34-23
Q—>LoweR 24 & 2605 OWER _.— —— —--02*
27 ADDER_ " carRY iNPUTOZT
- -
BT 2 To - - DURING MERGE
ADDER P -
STAGE 2 _ ~ -7
- - BIT 2 TO
ADDER STAGE 4

2|
23

|
|
|
1
—> LOWER :
ADDER CARRY INPUT
| DURING MERGE
BTt 1o |
ADDER |
STAGE 3 |
i

________________ -
\
———————] \
1 \
] \
| \\
I N\
N
A30-27 A32-23 N
—> LOWER —» LOWER
ADDER ADDER | capmry INpuT L9
| DURING MERGE
BIT 0 TO BIT 0 TO | +6V
ADDER ADDER
STAGE 0 sTaGE 2 !
|
E35-27 £37-23
—> UPPER —>UPPER
ADDER ADDER

SELECT Xy, 2X),3X).

SELECT MULTIPLICAND

€24

14
19,

B

e

TO UPPER-LEVEL
ADDER INPUTS

LEFT-SHIFTED 4
O

A36-|
) ~3- LOWER ADDER

8T 2 TO
ADDER STAGE 6

E4t-1
r—-)' UPPER ADDER

A35-1
—>» LOWER ADDER

BIT | TO
ADDER STAGE 5

L E40-1
—» UPPER ADDER

A34-)
—» LOWER ADDER
BIT O TO

ADDER STAGE 4

E39-1
—~—» UPPER ADDER

SELECT X, 2X|, 3%

Figure 7.5-11

C21 pin 12. €21 is another MB module that distributes bits 0-2

of the selected XK multiple to the second levels of the Upper and
Lower adders. On this module, terms A, B, C, D and E are trans-
lations of bits 2 & 3 and 26 & 27 of the multiplier. Term A, for
example, indicates that bits 2 & 3 of the multiplier equal 01(2)
and will gate bits 20, 21 and 22 of XK to the second level adder
inputs. Since this pick is 2 bits more significant than the first,
the value XK will be fed to the second level left shifted 2 places

(i.e. bit 0 feeds bit 2, bit 1 feeds bit 3, etc.).

Bits 0-2 of the third pick are distributed in a similar manner on
E24, also an MB module. The select gates, A, B, C, D and E in this
case translate bits 4 & 5 and 28 & 29 of the multiplier to enable
pick #3 to the third levels of the Upper and Lower adders. Since
this selection is 4 bits more significant than the first pick, the
XK multiple is fed to the third levels left shifted 4 places (bit

0 feeds bit 4, bit 1 feeds bit 5, etec.).

Terms C and D on the MB modules translate each 2 bit pick for a
10(2) configuration to enable the value 2XK to the designated levels
of the 3-level adders. Note that on module Al8, the 20 output is
forced to a "zero!" (pin 11 is a constant 1.2v). This occurs, since
in forming 2XK, XK is left shifted one place and the 20 input to

the adder is consequently always a "zero". (Figure 7.5-9.) For

the remaining bits of the value 2XK, each bit of the XK feeder is
gated to the next significant bit position. On the MB modules, for

example, bit 20 (represented by term F) is enabled to bit 1 of the

192

first level of the Lower adder if term C (which indicates a 10(2)
configuration in bits O and 1) is a "one'". Term D, which translates
bits 24 and 25 for 10(2), enables bit 0 of XK to bit 1 of the first

level.

In distributing 2XK to the second levels, the value is left shifted
two places with respect to the first level inputs. In other words,
bit 20 of XK (MA modules) is fed to bit 23 of the second levels,
bit 2! to 24, etc. The third level inputs are left shifted 2 more

places, so bit 20 of XK feeds 25, 21 feeds 26, etc.

Distribution of the value, 3XK, differs somewhat from that described
for XK and 2XK. The output network of the 3XK adder (described
later) is located on MF modules. Note that six outputs for each bit
position are shown - that is, one for each level of each adder.

Bit zero of the sum, for example, is gated from Fll, pins 23, 24,
25, 26, 27 and 28. The following table shows the destination for
each output of bit 20, and can be proven by studying Figure 7.5-11

and the Chassis 6 wire tabs.

PIN ADDER LEVEL GATING TERM
23 Lower one Al18,B

24 Lower two C21,B

25 Upper two F11,A

26 Lower three F11,B

27 Upper three F1l1,C

28 Upper one F11,D

Table 7.5-1

193

Pins 23 and 24 represent the true value of the sum; pins 25 through
28 the false value. The four select gates A, B, C and D, on the
MF modules are used to gate 3XK to all three levels of the Upper
adder and to Level #3 of the Lower adder. Gating to Levels 1 and

2 of the Lower adder takes place on the MB modules via Term B (i.e.
Al8 and C21 for bit 20). Table 7.5-1 summarizes the modules and
terms used to gate bit 20 of 3XK to the six levels, and is repre-
sentative of all bit positions of 3XK. ©Note that gating 3XK bit 20
to the third level of the Lower adder occurs via E24 pin 18 whereas
the first and second level inputs are gated via pins 9 of Al8 and
C21. This occurs, since during the Merge phase carry inputs from
the Merge Carry Network enter level three of the Lower adder via

pins 9, 23 and 27 of the MB modules.

The above description of XK, 2XK and 3XK selection and distribution
dealt primarily with bits 0-2, since the logic for those bits is
shown in Figure 7.5-11. The remaining bits of the multiplicand

are distributed similarly (in 3 bit groups) by the MF and MB modules.
Table 7.5-2 shows the MB modules used to select and distribute each
three bit groups. The wire tabs should be used for the specific

wiring of the distribution logic.

3XK ADDER:

The 3XK Adder is a full adder which forms the sum of XK and 2XK.
Since 2XK is formed by left shifting XK one bit position, only one
feeder register is required. Each bit of the feeder register (MA

modules) has two outputs to the adder logic. One output is to the

194

MB MODULES

BITS

FIRST LEVELS

SECOND LEVELS

THIRD LEVELS

N w O
|
o N

9-11
12-14
15-17
18-20
21-23
24-26
27-29
30-32
33-35
36-3¢8
39-41
42-44
45-47
48-50

A18
A19
A20
A21
A22
A23
A24
Big
B19
B20
B21
B22
B23
B24
C18
C19
C20

C21
C22
C23
C24
D18
D19
D20
D21
D22
D23
D24
E18
E19
E20
E21
E22
E23

E24
F18
F19
F20
F21
F22
F23
F24
G18
G19
G20
G21
G22
G23
G24
H18
H19

DISTRIBUTION OF XK, 2XK & 3XK

Table 7.5-2

195

corresponding stage of the adder; the second is to the next

significant bit position, as follows:

XK bits 47 46 45 ccemomeaee- 3210
2XK bits 47 46 45 44 —oceommooo 210
3XK bits 49 48 47 46 45 -ecemecea-- 3210

As can be seen, the result may be 50 bits in length because of the
possible carry into bit 249. Note also, that bit 20 of the result
will always be the same as bit 20 of XK since nothing is added to

that bit position.

A true addition is performed by the adder (as opposed to subtracting
to add, complementing operands, etc.). As a result, the conditions

generate, satisfy, enable and pass are defined as follows:

Generate Satisfy Enable
XK 1 0 1 0
2XK 1 0 0°F1

The condition Satisfy is also referred to as a Pass.

The addition is performed in three basic logical steps:

1) Determine whether or not Equivalence exists between the
two source operands.

i.e. EQUIVALENCE =>> or g

=

2) Determine into which stages carries are entered. A carry
will enter a stage if the previous stage is a generate or
if some other less significant stage is a generate and none
of the more significant stages are satisfies.

3) Toggle the results of the equivalence checks for all stages
that do not have a carry in.

196

The following example illustrates the preceding steps. The original
value of XK is assumed to be 0—m—— 01234567(8).
NOTE: 1) S, E, and G refer to Satisfy, Enable,
and Generate respectively.

2) Asterisks indicate those stages with
a carry in.

* k% *k kkE kk%k %

SS S SEE EES EGG ESE EEG GEE GGE
XK= 0 0 001 010 011 100 101 110 111¢2)
2XK = 00 0 010 100 111 001 011 101 110
STEP 1 (Equivalence) = 11 1 100 001 011 010 001 100 110
STEP 2 (Carry In) = 00 0 000 001 110 011 111 111 100
STEP 3 = 00 0 011 111 010 110 001 100 101
IN OCTAL = O 60 3 7 2 6 1 4 5

Using octal arithmetic, the same result is obtained:

XK =0 01234567
2XK = 0 02471356
3%k =0 03726145

The following formulas which define the sum as a '"one" or a "zero"

can be derived from the above procedure:

Sum = "1" if Equivalence +« Carry + Equivalence ¢« Carry

I

Sum = "0" if Equivalence °* Carry + Equivalence + Carry
Several module types are used in the 3XK adder. Their functions
are generally described as follows:
MA - Contain feeder register, make initial equivalence
check, and propagate carries within a 3-bit group

(bits 0-2, 3-5, 6-8, etc.).

ME - Determine the pass and carry-out conditions for
3-bit groups.

197

MH - Determine carry-outs for six sections (bits 0-9, 10-18,
19-27, 28-36, 37-45, 46-47). Also, final carries into
stages are determined for some bits.

=

Sum up the group and section Pass conditionms.

MJ & MH - Make carry propagation checks for carries into
3-bit groups.

=

Perform final equivalence and carry summation and produce
the final sum.

A portion of the 3XK adder logic is shown in Figure 7.5-11, but the
carry and pass summation logic is left out. The Chassis 6 wire tabs

should therefore be used to understand the adder logic completely.

The equivalence check, which is made on the MA modules, is a simple
matter of checking the inputs to each adder stage for a 0/0 or 1/1
configuration. The logic is shown for stages 1 and 2 in Figure
7.5-11. (The check need not be made for bit 20 since 20 of the
result will always be the same as bit 20 of XK.) Pin 5, for example,
translates as:

20 . 21 4 20 . oI

or, Equivalence in stage 21

Pin 8 translates as:

2l . 92 4 ol . 92

or, Equivalence in stage 22

This check occurs for all bit positions on the MA modules, which
are located on Cl through C9 (bits 0-26 of XK) and D1 through D8
(bits 27-50 of XK; bits 48-50 are not used). The result of the
equivalence check are sent to the MF modules and are ANDed with

the carry-in conditions to generate the final product.

198

The first step in performing the checks for carries into the stages
1s to determine which 3-bit groups have carries out (generates) and
which have all passes (satisfies). This is accomplished on ME
modules, each of which is capable of determining the carry out and
pass conditions for 3 groups. With 48 bit operands, 16 groups exist.

The lower 15 groups contain 3-bits each and the 16th contains 2 bits.

Group 3, bits 7-9, will be used as an illustration which is repre-
sentative of all groups. On module 6Al (wire tabs) test point #5
indicates that all 3 stages in group 3 are passes. The translation
for TP5 is:

26 .28 427 . 29 =
The inputs for group 3 look as follows:

29 28 27
28 27 26

It can be seen by trying all possibilities that the above formula

does imply that no satisfies (0/0 configuration) are present.

Test Point #6 on 6Al indicates that a carry will leave group 3 and

will enter group 4. TP6 translates as follows:
28.29+27_28J_26,07.09

Again, by studying the inputs for group #3, the formula covers all

possibilities of generating a carry from within group 3. (It does

not consider that a carry may enter stage 7 from group 2; this is

determined later.)

199

The following table shows the test points and ME module locationms

associated with the pass and carry checks for each group.

CARRY PASS

GROUP MODULE TP MODULE TP
0-3 6A1 1 6A1 2

4-6 6A1 3 6A1 4

7-9 6A1 6 6A1 5
10-12 6A2 1 6A2 2
13-15 6A2 3 6A2 4
16-18 6A2 6 6A2 5
19-21 6A3 1 6A3 2
22-24 6A3 3 6A3 4
25-27 6A3 6 6A3 5
28-30 6B1 1 6B1 2
31-33 6B1 3 6B1 4
34-36 6B1 6 6B1 5
37-39 6B2 1 6B2 2
40-42 6B2 3 6B2 4
43-45 6B2 6 6B2 5
46,47 6B3 1 6B3 2

The MH modules further combine the group pass and carry conditions
to determine which sections have carries out. For example, 6B5,TP2
(pin 9) indicates that Section 1 (bits 0-9) generates a carry out.

The translation for TP2 is:

7-9 Carry out + 7-9 Pass - 4-6 Carry out + 7-9 Pass * 4-6 Pass -

0-3 Carry out

If the conditions for the above formula are met, section 0-9 has a
carry-out. The following table shows where section carry-outs may

be checked by Test Point:

SECTION MODULE TEST POINT
0-9 6B5 2
10-18 6B5 5
19-27 6B6 2
28-36 6B6 5
37-45 6B7 2
46-47 6B7 6

200

The MH modules also combine the group carry-in conditions and gate
the carry-in for a given group to pin 7 of the MF module for that
group. On Figure 7.5-11, this pin is always a "zero!" since a carry
into bit 1 is not possible (no end-around-cairy occurs). On the
MFs of the remaining groups, pin 7 will be tied to an MH module.
For example, 6B5, p22, where a "one" indicates a carry-in condition
to stage 13 (the lowest bit »f the fifth group). Note that pin 22
is connected to Bll, pin 7 which is the final carry input to bit 13.
Pin 24 of 6B5 is wired to pin 27 of C5, an MA module. Note from
Figure 7.5-11 that pin 27 is the carry input to a group (always
"zero" for group 1) and the carry is propagated within a group on
the MA module itself (i.e. pins 25 and 21 indicate final carries into

the respective bit position).

The MI modules (i.e. 6B4) combine the group pass conditions, determined
by the ME modules, into larger section pass conditions. For example,

on 6B4,

TPl =>46,47,0-9 are passes.
TP are passes.
TP3 =2> 37-47 are passes.
TP4 =2>28-36 are passes.
TP5=3>37-45 are passes.
TP6 =>28-45 are passes.

S
(o))
0
~

These outputs are used by the MJ modules to propagate carries into
groups. For example, by translating the inputs to 6A5, the following

output translations are obtained.

pins 2 & 15 =2>Carry into 10

pin 14 => Carry into 13
pin 1 =3>Carry into 16
pin 28 =2>Carry into 7
pin 26 2> Carry into &

The other MJ modules will propagate carries into the remaining groups.

201

The final sum is generated on the MF modules (see Figure 7.5-11)
with an equivalence circuit. For example, 6Al0, TP4 is the
equivalence circuit for stage 20 of the adder. If the two inputs
(pins 10 and 9 which are the stage equivalence and carry-in con-
ditions respectively) are both ones or both zeros, the output on
pin 11 will be a "one". The outputs of the test points (i.e. #4)
are actually the false value of the sum, 3XK. This value is now
gated through the 1, 2 and 3XK selection and distribution circuits

which are discussed earlier in this section.

Since a relatively comprehensive understanding of other 6600 adders
is assumed, further discussion of the 3XK Adder is felt toc be some-
what wasteful. At this point, the concept of the adder should be
quite clear. If further analysis is desired, this concept should

guide the research of the Chassis 6 wire tabs.

202

7.5.6

THREE LEVEL ADDERS

Recall that a 6600 Multiply unit examines two bits of the multiplier
at a time and uses these two bits to select one of the four quantities,
0X, 1X, 2X or 3X, where X represents the multiplicand. This quantity
is put into the Three Level Adder along with the results of two other
2-bit picks and the result of the previous iteration. Thus, it
multiplies by six bits per iteration. In four iterations, it can
multiply by 24 bits. Since the upper and lower 24-bits are multiplied
separately, the upper and lower products are obtained in four iterations.
The final step is the addition of the upper and lower products to
obtain the final answer. It was also noted that the lowest 6-bits of
the answer after each iteration need not be put back into the adder
during the next iteration. In fact, the lowest 24-bits of the lower
product need not be put back into the adder during merge since these
are 24-bits of the final answer. However, the lowest 24-bits of the
upper product must be sent back to the adder during merge since they

must be added to the upper 24-bits of the lower product.

The following example is used in discussing the Three Level Adders:

01234567
11111111
01234567
01234567
013602457 (FIRST Iteration)
01234567
01234567
01374050357 (SECOND Iteration)
01234567
01234567
0137420640357 (THIRD Iteration)
012345¢67
01234567
013742077640357 (FOURTH Iteration)
Figure 7.5-12

In the case of the 6600 Multiply units, the adders must be able
to add four quantities together. These are the results of each
of the three picks and the result from the previous iteration.
The following example illustrates this using the same operands
as in Figure 7.5-12 but written in binary form.
000 001 010 011 100 101 110 111
001 001 001 001 001 001 001 001
000 001 010 011 100 101 110 111

00 001 010 011 100 101 110 111 O
0 000 000 000 000 000 000 000 00

First Iteration 0 000 001 011 110 00O 010 100 101 111
Pick 1 (Xk) 000 001 010 OI1 100 101 110 111
Pick 2 (2Xk) 00 001 010 011 100 101 110 111 O

Pick 3 (0Xk) 0 000 000 000 000 000 000 000 00
0 000 011 011 111 100 000 101 00O 011 101 111
6 0 1 3 7 4 0 5 0 3 5 7 (8)

Figure 7.5-13

1 pick was a one so the multiplicand was

In this example the 202
used as is. The second pick, 2223 pick is a two. Since 2x is
equal to the multiplicand shifted left 1 place and since this is
the second pick of two bits each, the multiplicand has been shifted
left 3 places before addition. The 2425 pick is zero. The sum of
these three quantities is the result of the first iteration and it
is the same as the result of the first iteration in Figure 7.5-12.

The second iteration is the same as the first except that the result

of the first iteration must be added in with the next three picks.

It has been stated that the adder is able to add four numbers to-
gether during each iteration. This is somewhat of a simplication.

The adder could add these numbers and get a complete answer, but it

204

would require the use of a carry network to resolve all the carries.
This would require approximately twice the time than the method
actually used. 1In the 6600 method the sum after each iteration is
obtained in two parts called a partial sum and a partial carry.

The sum of these two numbers is the actual answer, however the sum
is not taken until final merge. Instead, both quantities are put

back into the adder for the next iteration.

In order to understand this, the problems involved in adding four
numbers together will be analyzed. Assume that somewhere during
one of the four iterations for six bits, the result of the previous
iteration and the result of each of the three picks are all ones.
In this case the adder must not only add the four numbers together,
but it must add up to three carries also. In some cases it can
accomodate these carries, but in other cases it cannot. When it

is not able to propagate the carry during an iteration, a partial

carry 1is generated.

For clarity, the add is broken up into a series of smaller additions
of either two or three numbers at a time. The first two numbers to
be added are the result of the first pick and the partial sum from
the previous iteration. (Of course the partial sum and partial
carry will always be zero during the first iteration.) TFor this
example the same two numbers that were used in Figure 7.5-12 are
used. The first pick is 1 times the multiplicand (29 & 21 determine
the first pick). The partial sum is zero since this is the first

iteration. In binary form:

205

000001010011100101110111 1st pick
+000000000000000000000000 ~partial sum

000001010011100101110111 sum
000000000000O0000O00O00O000O0O0O0O0O carrys

Figure 7.5-14

Notice that if either of the operands was a "l" (but not both) the answer
for that bit position will be a 1, but if both operands in any single bit
position were ones, the answer in that bit position must be zero and a
carry to the next higher bit position will be generated. The circuitry
which performs this addition is located on the MC and MG modules in the
multiply unit. Refer to the schematic of the MC module (Figure 7.5-15).
Each MC contains the complete adder for one bit position. The results
(for one bit position) of the three picks and the partial sum and partial
carry from the previous iteration are some of the inputs. The other inputs
are carries from the next lower order MC. The outputs are carries to the
next higher order MC and at the very end - the partial sum and partial
carry for this iteration. These inputs and outputs will be defined as

the discussion progresses.

The inputs associated with Figure 7.5-14 are at pins 25 and 27. Pin 27
receives the true value of the first pick and pin 25 the complement of

the partial sum. Pin 28 will be zero when a carry is generated from the
addition of these two numbers and P will be a "one'" when either the first
pick or the partial sum (but not both) are ones. Thus P represents the
sum in Figure 7.5-14 and pin 28 represents the complement of the carry for
any one bit position. The four possible cases are checked to prove the

logic.

206

Figure 7.5-15 MC [_____I

1
]
2
P3 | [
X
|) J 3
3 7
PARTIAL 10 2
SUM p5€e—/ 12 p P2 I 4
BIT O L N
CARRY
Q BIT 1 6
L 328 ‘:
s 2P K ‘———)O——>Pll CARRY 7 ?
CARRY s IF MERGE . "
A 7 14 6 8 |
M 33 3| N K 1 1 H J I P .
19 12 PICK 3 9
TO 28 /F i
MERGE pjg p7 e U Ye—E 9,
CARRY 26 1
CARRY 20N oot o 11
NETWORK ENABLE
* IF MERGE P8 ‘
2l 12
27 . -
i
22X 25 13 ‘
) PIO !
21 N i
CARRY 14
a Y32
34 —— 15
G M P9 ENABLE
PICK 2 s 24 16
P23 e N,
G 36 E 0 43 17
40 4!
> 8 i8
35 44 ‘
&2 R A 19
P 1 Q | ! a
20 S sum LY ' PARTTAL o2 :
CARRY %4 CARRY 20 |
P26 a7 '
i 4571\ \ 21 !
|
22 j
53 +
CARRY 23
| s(C ~ PC)H
c F ’\/ >P2% SNARLE 24 |
PICK 1 l 55 1 +
Y 56 33 25
A o O
60 58 26
CARRY 27 ;
LEFT . ; Bl
P28 T P25 28 :
PARTIAL i i
SUM JACK PIN

The first case is for both the first pick and the partial sum equal to
zero. Then pin 27 will be "O" and pin 25 a "1". First pin 27 forces
pin 28 to one and since pin 28 is the complement of a carry, no carry

is generated. Pin 25 caused T to go to a zero which in turn forces A to
a one. Pin 27 causes S to be zero which in turn forces B to a one.

With both A and B equal to 1, P will be zero.

The second case is for the first pick equal to a one and the partial
sum equal to zero. Then pin 27 will be one and so will pin 25. Pin
28 will be forced to one (no carry) by T and B will be a zero forcing

P to a one. Thus a sum of one and no carry result.

The third case is for the first pick equal to zero and the partial sum
equal to one. The pin 27 = "0" and pin 25 = "0". Pin 27 forces pin 28
to one and A will be zero forcing P to a one, so that again, no carry

and a sum of one result.

Notice in Figure 7.5-14 that the carries have been shifted left one bit
indicating that they will be added to the next higher bit position during

the next level of addition.

The second level of addition will add together the results of the first
level (both pseudo sum and carries), the partial carries from the previous
iteration, and the result of the second pick. This appears to be four
numbers, however the carry from the first level of addition and the partial
carry for any one bit position are mutually exclusive (one or the other,
but never both can represent a one in any one bit position during a given
iteration). The reason for this is that a particular bit position cannot

generate a partial sum and partial carry of one. Thus if the partial carry

208

into a bit position is a one the partial sum into the first level of
addition at the next lower order bit position must be zero. It was seen
in the discussion of the first level of addition that both inputs must be
ones to generate a carry to the next stage. Thus it is impossible to
have both a partial carry and a carry from the next lower order stage
equal to a one at the same time. Because of this these two inputs can

be "ORed" and an addition of only three inputs for the second level of

addition may be performed.

In Figure 7.5-16 the example started in Figure 7.5-14 is continued.

000001010011100101110111 Sum from previous
level of additionm.

This OO0 000000000000000000000 Carries from lst

tor! level of addition.

this l00000000000000000C0000000 Partial carries from
previous iteration.

+0000010100111001011101110 Result of 2nd pick
(22 & 23).

000001011001111001011001111
Pseudo sum carries.
0000000000100001001001100C00

Figure 7.5-16

Notice that the second pick is two times the multiplicand and that it

has been shifted left by two bits to indicate the bit position of the mul -
tiplier just as was done in Figure 7.5-13. Refer now to Figure 7.5-15.
The pseudo sum enters this level of the adder in two places, P and A or

B feeding R. The carry from the first level of addition (next lower
order bit) enters at pin 22, as the complement of the true value. This

is the carry generated at pin 28. The complement of the partial carry

209

enters at pin 26 and the true value of the second pick (22 & 23) enters
at pin 23. Eight possible conditions must be considered since there are

three inputs. In tabular form they are:

pseudo sum from previous level of addition 11101000 (A)

carry from previous stage or partial carry 11010100 (B)

second pick 10110010 (c)
pseudo sum from this level 10001110
carry from this level 11110000

Figure 7.5-17

The different inputs are denoted by A, B, and C as shown in Figure 7.5-17.
Notice that a carry greater than one can never be generated from this level
of addition. The carry can be generated at either pin 24 or pin 20 and
thus both can never represent a carry of 1. A carry will be generated at
pin 24 only when both A and B represent ones and a carry will be generated
at pin 20 only when the sum of A and B is one and C is also a one. Then

in Figure 7.5-17, the first two cases will generate a carry at pin 24

and the 3rd and 4th cases will generate a carry at pin 20. Finally, the
pseudo sum is represented by the output of M and is sent to the next level
of addition by M and by F and E feeding U. The mechanics of generating

the pseudo sums and carries are left to the student except for the following
example. 1In this case all three inputs will represent 1's. Then P must

be a 1 and either A or B a zero. Either pin 22 or 26 must be zero, and

pin 23 must be a 1.

210

Pin 22 or 26 will drive V and D to a 1 and V together with P will cause
pin 24 to be a zero which represents a carry to the next higher order
bit position. Since A or B is a zero, R will be a one and R and D cause
Q to be zero. Q forces pin 20 to a 1 and thus there is no carry from
pin 20. Q also forces E to a one. However, pin 23 was a 1 which causes
W to be a one. D and R were also ones so F will be zero, and force U to
a 1. Thus we have a pseudo sum of 1 at M and a carry of 1 at pin 24.

This completes this level of addition.

The third level of addition once again has three inputs. They are the
pseudo sum from the previous level of addition, the carry generated

during the previous level of addition at the next lower order bit position
and the result of the third pick. A carry generated at pin 24 for the next
lower order MG feeds pin 8 and the carry generated at pin 20 feeds pin 10.
It was seen that only one of these two pins can have a carry at any one
time. Therefore the two carrys may be treated as one. Note, from the
example that the third pick (2% & 25) is zero. This is added to the

previous results as shown in Figure 7.5-18.

000001011001111001011001111 pseudo sum

from 2nd level

of adder

000000000001 0000100100O110000QO0 Carries from
2nd level of

addition

0000000000C0O0OO0OOOOOOOO00ODO0OO0OODOO Result of 3rd

pick

00000001011101110000010101111 pseudo sum

0000000000000CO00C1001001000000

Figure 7.5-18

211

Notice that the result of the third pick has been shifted left two addi-
tional bits. Back in Figure 7.5-15 the result of the third pick enters

the module at pin 1. The pseudo sum enters at M and F and E feeding V,

and the carries at pins 8 and 10. The operation of this level of the

adder is basically the same as the second level. The carry generated

at pin 9 corresponds to the one generated at pin 24 and it feeds pin 3

of the next higher order MC. The carry corresponding to the one generated
at pin 20 is actually generated on the MM modules as shown in Figure 7.5-19.
It is logically the same as the carry generated at pin 20 and it feeds

pin 6 of the next higher order MC. The reason for generating this carry

on the MM module is for use during merge.

From pin 11

From pin 7

To pin 6
of next higher
order MC

J = 1 except during merge

Figure 7.5-19

The pseudo sum is sent to the last level of addition by Test Point 2 and

by I and J feeding X.

In the last level of addition, once again, there are just 2 numbers to
add (the pseudo sum and the carries from the previous level of addition)
just as in the first level of addition. It was seen that in the first
level that both a pseudo sum of 1 and a carry of 1 at any one MC could

not be generated because two inputs exist. The same is true here. The

outputs of this final level of addition are called the partial sum and

212

the partial carry instead of the pseudo sum and carry, which refer to

the outputs of the adder levels. The example in Figure 7.5-20 illustrates
that .a partial carry is generated in two bit positions and that the sum

of the partial sums and partial carries actually does equal the result
obtained in Figure 7.5-12 after the first iteration. Remember that the
sum of the partial sums and carries is not actually taken, but that they

are sent back to the MC's as two separate numbers for the next iteration.

00000001011101110000010101111 pseudo sum.

0000000000000001001001000000 carries.

00000001011101100010000101111 partial sum.

0000000000000010000010000000O0 partial carry.

00000001011110000010100101111 sumofp.s.
and p.c.

0 0 1 3 6 0 2 4 5 7

Figure 7.5-20

On the MC module the partial sum is the true value of pin 5 and the partial
carry is the "AND" of pins 2 and 4. The only condition that will generate
a partial carry is when both the pseudo sum is 1 (TP =1 and I or J = 0)

and the carry is a one (pins 3 or 6 = 0).

The results of this iteration is sent to the F/Fs on the NJ modules to

be stored for use during the next iteration. It was seen in the discussion
of Figure 7.5-12 that the lowest 6 bits of the answer generated at the

end of an iteration is the complete answer. The same is true here except
that the answer is in two parts, the partial sum and partial carry. There
is no need to put these six bits back into the adder for the next iteration.
Instead, the partial sums and partial carries for these 6 bits will be

added to obtain the actual sum. They are stored while the rest of the

213

multiply sequence finishes.

There is a possibility that a carry can be

generated from the upper bit position by the addition of these 6 bits

of partial sum and partial carry. This will be discussed later. The

remaining three iterations of the example follow.

000O00O001011101100010000 Ist pick (26 & 27)
000001010011100101110111 partial sum
000001011000001001100111 pseudo sums

0000000000111 00100010000 carries
00000O00CO0O0COOOOCO1O0OO0O0O0OO1O00O partial carries
0000010100111001011101110 2nd pick (28 & 29)
000001011000011101011111011 pseudo sum
0000000000111 00001100100100 carries
000000000000000000000000 3rd pick (210 & 211)
0000001011111011110010110011 pseudo sums
0000000000000000001001001000 carries
0000000101111101110000010001 1 @partial sums
0000000000000000CO010010010000 partial carries
The partial sum is: 0013734043
The partial carry is: 0000004 4 40
0013740503
The lowest six bits from lst iteration 57
001374050357

This answer check with the result if Figure 7.5-12 after

the second iteration.

Notice that the sum of the lowest 6 bits of partial sum
and carries does produce a carry.

P

O =
(@] (&N e
ojo ©
oo O
IO =

¥
1

p—

This carry will be used at the end of the next iteration.

Figure 7.5-21, Second ilteration

214

(@]

[

o

OO =O -

= =l—= 0O O OO O
O OO+ OO -

O

o

o OO

O OO OjO O

S OO OO O O

O oo ojo o oo

O OO OO O© Ol

O OO OO O OO OO

O O[O OO © OO O O oo O
O O O O Kk OO OO O
O OO OO0 © OO0 O Ojo O
O O O O O OO0 O
O H=O =IO OO OO O
OO IO KFEOIO0O OO0 O
O O OO O OO
O O IO~ Ol O O =ik O
O QIO OO © O|—= O = O|lO O
OO O OO O~O|+H
= RO O OO O~ Ol

The partial sum is:
The partial carry is:

The lowest 12 bits from the
lst & 2nd iterations are:

O Ol O O k= O O Ol =
O QOO OO HHO OO RO

o o
o o

O O OOl O O =k o
= =0 RO = Ol OO O

o w

O Ol =[O O = O = == O

O OO OO = O O - O —

[

O O 1=|O = Ol= = O Ol =

O = OO O Ol—= O O —~|O —

O Olo O

o O O

O MO =

|

1st pick (212 & 213)
partial sum

pseudo sum

carries

partial carries

2nd pick (214 & 215)
pseudo sum

carries

3rd pick (216 & 217)
pseudo sum

carries

partial sum

partial carries

NOTE This bit is the carry

[y

(&)
(@]

(O8]

~NTO N

NN =
O
MO O™

'\.

left over from the
previous iteration after
adding together the
lowest 6 bits of partial
sums & carries.

00

3

7

(@} {e)
wiw

Ui
~N~

This answer again agrees with the answer obtained at the
end of the third iteration if Figure 7.5-12.

The carry, described in the note, was placed in the NJ
modules which hold the partial sums and carries at the

same time as the other bits of the partial sums and
carries for the third iteration were placed there. This
is how a carry from the lowest six bits of answer at the
end of an iteration is propagated. It will now be added
to the lowest six bits of the partial sum along with the
other five lowest bits of partial carry to obtain the
lowest six bits of answer for this iteration.

Figure 7.5-22, Third Iteration

215

000001010011 100101110111 1st pick
000000001011111011001100 partial sum
000001011000011110111011 pseudo sum
0000000000111 00001000100 carries
000000000000000001000100 partial carries
0000010100111 001011101110 2nd pick
000001011000011110011001111 pseudo sum
0000000000111 000011101110600 carries
0000000000000000000000O0CO0 3rd pick
0o0o00001011111011101110111111 partial sum
00000000000000000100010000O00QQ carries
00000001011111011001100111111 partial sum
0000000000000O000O001000100Q000DO0O0O partial carries
The partial sum is: 0013731477
The partial carries are: 0000010400
The sum of the two is: 0013742077
The lowest 18 bits from
the 1lst three iterations are: 6 40357
001374207764 0357

This is the answer obtained if Figure 7.5-12 at the end of
the fourth iteration.

Figure 7.5-23, Fourth (& last) iteration

In performing the four iterations, a 24 bit multiplicand was assumedf
However, the actual multiplicand in the 6600 is 48 bits. If the extention
of zero's and additional 24 bits left is assumed, the example will hold
true and the results obtained will be the lower product after 4 iterations.
If the upper 24 bits of the multiplier were the same as the lower 24 bits,
the upper product would be identical with the lower product. This case

is assumed, and the original problem is actually:

Nl o
~N—= O
Ni—= O
~|—= O
N ol)
~N|—- o
~Ni—= O
~Ni= O
~N|—= O
N
N = N
ol W
Ol
Wi WU
U Oy
Nj= o~

X
0000000000137420

216

Then to obtain the full answer, the upper and lower products must be

added together as follows:

0000000000137 3147764035 7 Lower p.s.
0000000000000 10400 Lower p.c.
000000001373 1477640357 Upper p.s.
000000000001 0400 Upper p.c.
0000000000137 4207777777777%640357 Final product

Notice that the lowest 18 bits of the answer are complete and that the
next 6 bits consist of the partial sum and partial carry for the lower
product only. It is not necessary that these bits be placed in the adder
for merge. The only exception is if the upper 6 bits of the 24 bits
(77-00 in our example) were to produce a carry, that carry must be placed
into the merge circuitry. These six bits are added together in the same
circuitry that was used for the other 3 groups of 6 bits at the end of
each iteration. 1If a carry is produced it is introduced into the merge

circuitry (at about half way through merge).

The merge addition uses the Lower 3-Level Adder (MC modules) and a special
carry network. Notice that the lowest 18 bits of the upper product are
the complete answer (for the upper product) when they enter the merge cir-

cuitry. In other words, there is no partial carry for these bits.

The final operation involved in multiply is merge. While the four itera-
tions of the lower product were being performed, the upper product was
also being produced. It will produce an answer in a similar manner to
that of the lower product circuitry. The only major difference is that

the lowest 6 bits of the answer are left in the form of partial sum and

217

partial carries when it is fed into the merge circuitry. Thus at the
end of the fourth iteration the lower product in our example will be

in the form:

0013731477640357 (PS)
00000104 (PC)

and the upper product has the form:

0013731477640357 (PS)

0000010400 (PC)

Actually, the lowest six bits of partial sum and carries for the lower
product have not been added together at the time merge starts. However
they are added together in the same circuitry (Lower Six Bit Adder) that
was used at the end of the first three iterations. If a carry is produced
from this addition it is fed into the merge circuitry as soon as it is

produced. Thus the merge circuitry performs the following full add.

Appending the lower 24 bits produces the correct answer:

00000000001374207777777777640357

218

The inputs to the MC's and G modules during merge are as follows:

Pin 27 - The upper product partial sum (or in the case
of the lowest 18 bits of upper product - the
full sum).

Pin 25 - The lower product partial sum.

Pin 26 - The lower product partial carries.

Pin 23 - The upper product partial carries. (For the
lowest 18 bits this input is zero since pin
27 has the full sum.)

Pin 1 - Carry generated in the carry network.

The other inputs are carries generated within

the adder and passed up to the next higher bit
position just as in the four iterations.

The outputs are as follows:

Pin 18 - (Pin 9 is the same output) goes to carry network.
Pin 11 - Not used.
Pin 7 - To carry network.

Pin 5 - Final output of adder.

The three level adder is capable of producing only 57 bits (24-80) of
the final product during Merge. The 4 lower iterations produced the
lower 24 bits of the final product. This leaves 15 bits (81-95) which

are produced by a special 15 bit adder (discussed in Section 7.5.10).

Figures 7.5-24 and 7.5-25 are representative drawings of the Upper and
Lower Three Level Adders, respectively. Note that the upper adder is
composed of MG modules, and the lower, which is used during Merge, of
MC modules. The MC's have additional carry outputs to the Merge Carry

Network (from the second level) and inputs from the same network (into

219

level three).* Since the operation of all 57 stages is identical these
diagrams should be sufficient to understand the adder operation. 1If
more specific information on the other stages is desired, reference

should be made to the Chassis #6 wire tabs.

* All inputs to the Lower Three Level Adder are summarized according to
pin number and bit position in Figure 7.5-29.

220

1¢2

PART AL CARRY

BT 5
R N
"E13-12 EI13-10
R
4 ?
57 STAGE
STAGES
TOTAL
18
|

E24-13
BIT O
0,X 12Xy 3%

A

.

23
b o=

c21-6
BIT 2
0, X1 2XK 3X

524

28

PARTIAL SUM

BIT 4
5‘3724539
5 M6
PARTIAL SUM
3ir 3 E13-22
4 6 . STAGE 3
o} EI3-6
PARTIAL
N\ CARRY
\ BITa4 |
3 q
oSN Lsns—a
\ \
\ \
\
\ 8
N
\
\
\
\
\ !
\
\
\ +6V
\
10 9
X
N
s N
AN
\ N
\ N
\ N
\ AN
\ 20
\
\
\
\
\ 23
\ c2i-8
\ BIT |
\ OiXk, 28X 3X
\
\
PARTIAL \
265 E1e -7 CARRY 24
BIT I0
22)
- ~
-
v Ear ey
PARTIAL ©
Bl Ein-25 SUM %28
BIT 10
27 BIT 4
TA'Q’B 0%, 2%y, 3%

¢33 I 1
| 5
pARBY':TALzsw b17-28 & pAR‘;—l,:L‘SUM N
STAGE 2 .
6
o) E|5-2L2 Sq D17 -10
\ PARTIAL | PARTIAL
CARRY CARRY
BIT 3 J \BIT 2
3
N £13-140% 3 \ DI7-12 O
\ \ v
\ \ AN
\ i8 A
\ e \ halitilile
\ \
\ \
\ \
\ \
\ 1 \
\ \
\ \
\ +6V \
\ \
10 J
>\ 9 \OC
N N
8 N 8 N
N q N
\ AN \ AN
\ AN \ N
A\ N \ N
\ A \ N
\ W 20 \ %20
\ A\
\ A\
\ \
\ \
\ 23 \
\ c21-13 \
\ BIT O \
o OnXj 82X, 3y \
\ — \
\ \
26 PARTIAL M| o4 26 PARTIAL
EI5-3 CARAY QEl4-11 CARRY
BIT 9 BIT 8
22 22
~ ~
~ ~
- ~
~
~
I IS
25 PARTIAL™ | »g 25 PARTIAL ~
E15-22 SUM El4-26 SUM
BIT 9 BIT 8
27 BIT 3 27 BIT 2
Al9-13 0 Xy 2X, 3K T‘“a‘s 0,X}, 2%} 13X,
NOTES

i
2

. ALL LOCATIONS ON CHASSIS 6.

MULTIPLY ! SHOWN,K 2 IS SIMILAR,

PARTIAL CARRY
BIT O IS PRODUCED
BY UPPER 6-B1T
FULL ADDER
PARTIAL SUM (MO MODULE)
BIT O 017-23
0I7-6)
\ PARTIAL ==
CARRY
BIT |
\ 017-8 o
\ +
\
\ A\
\ A\
_ ARV
\
AR
AW
G
\
\
\
\
\
2 >
i N —g_r"
N
N @
N, aul
\ =
\
\ \
\ N
\
\
\
\v;'
\i%
i
\
\
\
A\
\
PRRTIRC FARTIAL
E14-7 CARRY E14-3 CARRY
BIT 7 BIT 6
~)1_
~ =
i
S
4
PARTIAL ~ PARTIAL
O EI4-25 SUM e El4-22 SUM
BIT 7 BIT 6
BIT | BIT ©
0 Al -8 AIB-13
0,Xy,2Xy, 3% 0, X}, 2%, 3%

Figure 7.5-24

44

PARTIAL CARRY
BIT

PARTIAL SUM
BIT 4

. , A30
ASZ A32 [uc| PARTIAL CARRY
—A— |Mc MC BIT O IS PRODUCED
Al4-12 AI4-10 Al4-24 STAGE O A\ BY LOWER 6-BIT
MC , | FuLL aopER
a 2 s s (MO MODULE).
PARTIAL SUM §e PARTIAL SUM PARTIAL SUM PARTIAL SUM 4 T
piT 3 Al4-23 BT 2 Al3-28 B(T BIT o AI3-2 L <O
57 STAGE & . STAGE 3 . STAGE 2 3
STAGES Al4-s S ala-2 y Iv AI3-6 .v
PARTIAL PARTIAL PARTIAL PARTIAL =
TOTAL CARRY CARRY CARRY ‘ CARRY £y
\ BIT 4 y BIT 3 \ BIT 2 A \ ‘
3 4 3 4 3 4
\ Al4-8 Q. Al4-4 \ A3 -2) l Al3-8 (] O el
[E L\ f\ \CARRY i -
(I (I \
a26 A26 A26
b 1 \ : (D)
(I (I (I 7 K
7 7
ill ! k :ill ! \ ! . "
= \ \
| \ \
| \ \
! I | | | ! !
N b —o—— Lo
£24-20 626 -26 ! 626-20 ! ! CARRY G26-13
BIT © CARRY | S ARRY \ o CARRY \ & gu;'crxrrb?_tza .
0,X), 2X) . 3X \ c28-2 OUT OF STAGE 2 \ c25-(OUT OF STAGE | \ £25-1 OUT OF STAGE O \ €251 - _
\ MERGE ON MERGE \ WERGE ON MERGE L | MERGE ON MERGE \ MERGE GEggrS“SER“G%D F E
9 10 [o ’ 10 ENABLE S 10
Qb= b----- 4 Q@ Lb---=- b B Q I!lv
\ \ \ \ ‘ =
0 I8 0 ‘ oA
\ 10 MERGE \ 10 MERGE \ 70 MERGE \ 10 MERGE 81 =
L' e \ \CARRY NETWORK | . \ \CARRY NETWORK Lie \ \CARRY NETWORK \ \CARRY NETWORK | g ‘ =
} v ENABLE ¢ N ENABLE ¢ N ENABLE ¢ N Oy v (e
[
\ \ \ \ \ \ \ \ A
(N
v v AN v o +(F)
) 20 T L RN Vv oo Vo 420 M re
\ \ \ \ "
\ \ A\ \ ‘
\ \ A\ \ e
%
\ N \ \% <]
23 \ 23 \ 23 \ \ 23
L o™ — o J
c2i-26 \ cz1-26 \ c21-20 \ \
BIT 2 \ BIT | \ BIT O \ \ .
0,y . 2%y, 3X A 0.Xp 2%y, 3X N O X 2%y 3%y \ \ +6V R AN
\ \ \ \
\ \ \ \ e\
PARTIAL \ PARTIAL \ PARTIAL PARTIAL \ PARTIAL
Jarhiiiad pedid i ley 4 for B L. L —_— 4 ARk
, 24 26, ai6-7 CARRY B2 260 at6-3 CARRY B2 264 ais-11 CARRY Al5-7 CARRY X z O {] 28 ais-3 CARRY
BIT 10 BIT 9 BIT 8 BIT 7 v BIT 6
22 22 22 *
o X g (v)
RSN S~ ﬁ ~ o S S 22 17
~ ~ ~
~ . ~ ~ By o @
~ N
PARTIAL ™ FARTIAL ~ PARTIAL ~ PARTIAL ™ . PARTIAC
— 5 — ~ pARIE ~ 5 TIAL
L" 254 pig-25 SUM 028 254 p16-22 SUM 28 254 Ais-26 5O Al5-25 SUM i .] S8 as-22 som
BIT 10 BIT 9 BIT 8 BIT T v BIT 6
27 BIT 4 27 BIT 3 27 BIT 2 A
- AL9-20 AlB~ _ BIT | _ BIT O
T“'s 22 g % 2% 3% T 0, % 2X} , 3% T 8726 0 x, 2%y, 3% AIB=22 4 x, 2%y, 3% 020,20 27 A8 20
NOTES:

|. ALL LOCATIONS ON CHASSIS 6.

2. MULTIPLY | SHOWN, 2 IS SIMILAR.

Figure 7.5-25

0,y 2%, 3%

7.5.7

SIX BIT ADDERS

The purpose of the Six Bit Adders is to fully add the lower six
bits of the upper and lower Partial Sum and Partial Carry Registers
after each iteration of the multiply step. Since the adders are
identical in operation, only the Upper Adder (Figure 7.5-26) is
discussed. The logic for the Lower Adder is shown in the C. E.

Diagrams, Sheet 153.

Since only six bits are being added and a full minor cycle is allowed
for this addition (during which the next iteration is taking place
in the three-level adders), the time required to propagate a carry
is not critical. The propagation is therefore, serial, as opposed
to the parallel carry summation used in 6600 adders having a greater

modulus.

In Figure 7.5-26 are shown the Partial Sum and Carry registers which
feed the adder logic (MO modules). The bits are fed via MM modules

which provide the true and false values of PS and PC for the MOs.

The true value of the sum is taken at output pins 9, 1, 28, 21, 20
and 12 for bits 0, 1, 2, 3, 4 and 5, respectively. Boolean formulas
are used to express the conditions for a sum = 1 in a given bit
position. For simplification, the following abbreviations are used
in the formulas:

PSX =>>Partial Sum in the feeder for bit 2%.

PCX ==>Partial Carry in the feeder for bit 2X%.
CX =2>Carry from stage 2X into 2% T 1

223

7T

FROM <
UPPER ADDER

PARTIAL SUM & CARRY REGISTER

HI7

BITS 54, 55,56 —@l

El4

BITS 6,7, 8

CARRY TO NEXT STAGE ON NEXT ITERATION

10
12 PARTIAL

28 PARTIAL

6
8 PARTIAL

24 PARTIAL

2
4 PARTIAL

23 PARTIAL

CARRY

10
12 PARTIAL

28 PARTIAL

6
8 PARTIAL

24 PARTIAL

CARRY

SUM

CARRY

PARTIAL CARRY

RGE.

TO LOWER ADDER
(ON ME|

RETURN TO UPPER ADDER ON ITERATIONS, TO LOWER ADDER
ON MERGE (BITS 39 AND ABOVE GO TO MN MODULES)

MULTIPLIER X

REGISTER
6-PLACE LEFT SHIFT
AFTER EACH ITERATION

TRUE OQUTPUTS, FULLY ADDED
EO9

T
L
J

L —] 18 BITS TO LOWER
F ADDER ON MERGE

ONE FULLY-ADDED
PORTION EACH
ITERATION

S

J NOTE:
MULTIPLY | SHOWN, 2 IS SIMILAR.

Figure 7.5-26

The inverters labeled A, B, C, D, E and F, when a "zero", indicate

a carry out of that stage. In other words,

A =>C0 D =>C3
B =>Cl E=>C4
C =>C2 F =>C5

In general, a carry out of a stage occurs if that stage generates
a carry (i.e. PSX « PCS==>CX) or if there is a carry into that
stage and that stage has a one in its Partial Sum flip-flop (i.e.
PSX + CX-1==>CX). The case where a carry into a stage occurs and
that stage has its Partial Carry flip-flop set is not possible
because in order to generate a carry, a stage must have a one in
its PS flip-flop. This prohibits the next significant stage from
having its PC flip-flop set since a PSX and PCX + 1 from the Three
Level Adder is not possible. (This was proven in the discussion
of the Three Level Adder, Section 7.5.6). Hence the general case

formula for a carry out of Stage X is:

PSX(PCX + CX-1)

The following are formulas which express the conditions that result
in a Sum = 1 for each stage. The formulas should be proven by the
reader with application of Boolean Algebra to the logic circuits of

the MO modules.

Bit Pin TP Formula For Sum = 1
20 9 1 PS0+PCO + PSO*PCO
21 1 2 PS1-PC1-CO + PSL(PCL + CO)
22 28 6 PS2-PC2+CL + PS2(PC2 + C1)
23 21 4 PS3-PC3-C2 + PS3(PC3 + C2)
24 20 5 PS4+PC4-C3 + PS&(PC4 + C3)
25 12 3 PS5:PC5°C4 + PS5(PC5 + C&4)

225

Note the output at E09, pin 16 (term F =§>E§) which is fed back to
D17 to the Partial Carry flip-flop for bit 20, This occurs so the
possible carry from the 6-bit adder is added during the next interation

of the Multiply step.

226

7.5.8 MERGE
At the completion of the fourth multiply iteration, the product is
spread throughout several registers in different forms. (Refer to
Figure 7.5-27.)

1) The MK Lower register holds the lower 24 bits (0-23)
of the fully added product.

2) The MK Upper register holds the next 18 bits (24-41)
of the fully added product (which may be modified by
a carry from bit 23).

3) The Lower Partial Sum register holds 47 bits of
unsummarized sums.

4) The Lower Partial Carry register holds 48 bits of
unsummarized carries (including the possible carry
from the fourth Lower Six Bit Add in 20).

5) The Upper Partial Sum register holds 48 bits of
unsummarized sums.

6) The Upper Partial Carry register holds 48 bits of
unsummarized carries.

1) MK Lower

24 Bits
|
i
3) P27Lgver |
its |

PC Lower
4) 48 Bits |
|
|
MK U i
pper
2) 18 Bits :
i
!
PS Upper !
5) 53 Bits |
PC Upper |
6) 54 Bits ;
]

:4 96 Bits ’1'

Figure 7.5-27
227

Figure 7.5-28 - MERGE BLOGCK DIAGRAM

(=]

95 81} 80 (OUTPUT NETWORK) 24 123

AL
r \
56 0
“ *‘ J
\
SR
v LT
v
(]
\ | i
b AL
' !
56 18 + 17 0 CARRY £
N LI — rom
N L5 — r\ , 6-BIT ADD
\]
v LOWER
ANl |
BIT X
\
ADDER 56 i 50 18 117 0
[: []
] Y |]
- T i B T i
A | A) A
'd Y4 N\ 'd NI f N
%53 39:38 \U %52 39138 \E 23 6
PC UPPER) Ps UPPER) MK UPPER

A A A
7 N r \ r \
[56 \ < 6% |50 \ ; 6% |23 0 I

PC LOWER PS LOWER MK LOWER

Combining these values to form the final 96-bit product is the

function of the Merge operation.

Since the content of MK Lower is a fully added value, it need not
be summarized and can be fed directly to the output network.

(Refer to Figure 7.5-28.)

The 57 stages of the Lower Three Level Adder are used to summarize

the following values:
1) The 18-bits of MK Upper (20-223),
2) The 51-bits of PS Lower (26-250),
3) The 51-bits of PC Lower (26—256).
4) The lower 39-bits of PS Upper (20-238),
5) The lower 39-bits of PC Upper (20-238),
The remaining bits of PS Upper (239-252) and PC Upper (239-253)

are added in a special 15-bit full adder which is discussed in

Section 7.5.9.

Since the Three Level Adder logic works essentially the same during
Merge as during normal iterations (with the exception of the Full
Add performed in level three) the adder itself is not discussed at
this point. (It is discussed, along with the Merge Carry Network,
in Section 7.5.6.) The fact that all unsummarized bits of the
product mentioned above are fed into the adder during Merge is

shown by Figure 7.5-29.

This figure indicates the values fed to the various input pins of
the MC modules according to bit position. Since the information
on the chart can be proven only by use of the Chassis #6 wire tabs

further discussion of these inputs is not made, with the following

229

INPUTS TO LOWER THREE LEVEL ADDER

PIN NORMAL ITERATIONS MERGE
BITS SOURCE BITS SOURCE
1 0-3 "Zeros" 0 "Zero"
4-54 Pick 3 1-56 Carry from Merge Carry Network
55-56 "Zeros™
3 0 '"One™ 0 "One"
1-56 | Carry from previous 1-56 Carry from previous stage
stage (Level 2) (Level 2)
6 0 "One" 0-56 "Ones"
1-56 | Carry from previous
stage (Level 2)
22 0 "One" 0 "One"
1-56 | Carry from previous 1-56 {Carry from previous stage
stage (Level 1) (Level 1)
23 0-1 "Zeros" 0-17 "Zeros"
2-52 Pick 2 18-52 | Upper PC Register, bits 0-34
53-56 "Zeros" 53-56 "Zeros"
25 0-50 | Lower PS Register, 0-50 |Lower PS Register, bits 6-56
bits 6-56 51-56 |Upper PS Register, bits 33-38
51-56 "Ones"
26 0-50 {Lower PC Register, 0-50 | Lower PC Register, bits 6-56
bits 6-56 51-56 "Ones"
51-56 "Ones"
27 0-50 Pick 1 0-17 | Upper MK Register, bits 6-23
51-56 "Zeros™" 18-50 | Upper PS Register, bits 0-32
51-52 "Zeros"
53-56 | Upper PC Register, bits 35-38

Figure 7.5-29

230

exception. Those inputs which, during Merge, use the same input
as the Pick 1, 2, and 3 inputs (i.e. pins 1, 23 and 27) during
normal iterations are not entered directly, but are fed through
the 1, 2 or 3Xk selection circuits. Examples of this are shown
in Figure 7.5-11. The remaining merge inputs are fed directly

from the source to the adder.

231

7.5.9 FIFTEEN BIT ADDER:
The Fifteen Bit Adder is used during the merge phase of multiply
to add the upper fifteen bits (39-53) of the Upper Partial Sum

and Partial Carry registers. (See Figure 7.5-28.)

This circuit is a true adder in that true values are held in the
feeders and the true sum is seen at the output. Generates, Satisfies

and Enables are therefore defined as follows:

Generate: Satisfy: Enables:
1 0 1 0
1 0 0 1

Figure 7.5-30.1 shows the feeder and final summation logic for the

Fifteen Bit Adder. The carry logic is omitted, but uses the standard

pass and carry check method of carry propagation.

The final summation logic (RU modules) generate "ones'" and "zeros'"

in the final sum according to the following formulas:

EQUIVALENCE *+ CARRY + EQUIVALENCE - CARRY =1

EQUIVALENGE + CARRY + EQUIVALENCE ° CARRY =>0

The square fed by pins 3 and 5 on GO9 (bit 281) translates as
EQUIVALENCE. Pin 1 is the carry input from bit 280 angd is generated
by the Merge Carry Network (i.e. E29, pin 21). The true output is
seen at the input to test point 2. At this point, translation yields
the above formulas, so the output of the test points is the complement
of the true result. This value (possibly left-shifted to normalize)
is fed to the transmitters for the Multiply data trunk, bits 81-59,

if Single Precision is selected.

232

FROM UPPER ADDER <

ced

UPPER PARTIAL

SUM 8 CARRY REGISTER

(UPPER 15 BITS)
HI6
BITS 51 -53 RT
HIS
BITS 48~ 50 [fl
GI7
BITS 45— 47 ["_T
616
RT|
BITS 42— 44 i
20

10
12

28 PARTIAL SuUM

@ o

24 PARTIAL Sum

PARTIAL
CARRY

PARTIAL CARRY

BIT a4l

PARTIAL CARRY

BIT 40

NOTES ¢

I. LOCATIONS ON CHASSIS

2. MULTIPLY

1
MULTIPLY 2

SHOWN,,

IS SIMILAR,

7.5-30.1

CARRY

XMIT D.P
RESULT

CARRY

- XMIT D.P.
~ _ RESULT
-

FULL ADDER

Gl2

RU

Gl

Glo

RU|

GO9

XMIT D.P.
RESULT

BITS
93,94,95

BITS

85 —88

UNNORMALIZED RESULT
BITS TO OUTPUT
NETWORK ON MERGE

7.5.10

EXPONENT TIMING SEQUENCE

As with the coefficient logic, the exponent logic is duplicated
for Multiply Units I and II. The registers which feed the Xj +
Xk Adder are exceptions since they are common to the Multiply 1,

Multiply 2 and Divide Units. (See Figure 7.5-30.2)

Since a general discussion of exponent manipulation appears in
Section 7.5.1, the concepts are not reiterated at this point.

This section, then, deals primarily with the logic analysis.

The timing chain for a Multiply Unit (Multiply 1 will be discussed)
is composed of a chain of flip-flops which are set by various clock
times as indicated on the Exponent Timing Chart (Figure 7.5-31).
Since each flip-flop is clear/set with a standard timing pulse,
each is set for approximately one minor cycle. (Refer to the C.E.

Diagrams, Sheets 157 & 158 for the timing chain logic.)

In Figure 7.5-31, the references given in parenthesis following
each term name refer to the output pins from the timeing sequence
shown on Sheets 157 & 158 of the C. E. Diagrams. On the other hand,
the pulses indicate the approximate time that the specified gate
actually occurs. The times listed across the top of the chart are
with reference to the Coefficient Timing Chain (Figure 7.5-7). The
following is an explanation of each term shown on the timing chart:
1) Go, Multiply 1 Exponent - This term shown the time that

the "Go Multiply" is received from Chassis #6. (See
Figure 7.5-6.)

234

Gel

TRUE EXPONENT

_REGISTER
| COMMON TO
CHASSIS 2) MULT 18 2
INPUT a
REGISTER ! DIVIDE
lg,: | EA
™\ TRUE | 1
I
Xj BIT 59 ! X
EXP I
]

BIT 59

Xj

16 10

N\ TRUE
iT 59
X 8 X,
EXP
W\ COMP
BIT 59 L — . _ 1

Xk

SELECT
DOUBLE
PRECISION

Xj 4+ g

60g
(489}

QB
QC
TJ

ADD

Xj+ X+ 60g (48)0)

e

—.Qf——.

SELECT
SINGLE
PRECISION

TE

IX

NORMALIZING
NETWORK

Q
SELECT
UNNORMALIZE

TEST RESULT

RESULT = (©
EXP=3777
COEFF = ALL "0'S"

RESULT INDEFINITE
EXP=1777
COEFF = ALL “0's"

SUBTRACTS |

T

COMP COMP
Xj BIT 59

9=
X BIT 39

SELECT NORMALIZE

(SIGNS UNLIKE)

Xj BIT 47

AND
Xy BIT 47

won

BOTH "t

gg EDTO CHASSIS 8
L | OUTPUT FOR!

DIVIDE

UNDERFLOW

MULT | & 2
BOOLEAN

Mot h

EXP = ALL
COEFF = ALL "0's"

Figure 7.5-30.2

2) Advance Timing Sequence - This term shows the sequential
setting of the five flip-flops in the exponent timing
chain, as follows:

t375 - D28, TP2
t450 - D28, TP5
t500 - J32, TP1
t575 - J32, TP4
t650 - E17, TPl

3) Test Xj & Xk Signs - This term checks the signs (259) of
the Xj and Xk operands and enables the selection of the
true (if 299 = 0) or false (if 259 = 1) value of the Input
register. The IR is gated to the holding register at t375
by term #5. This is the first step in unpacking the expo-
nents. (See Section 7.5.1 where exponent manipulation is
discussed.)

4) Clear Normalize & Double Precision Flip-Flops - These flip-
flops are cleared in preparation for the receipt of the
"Normalize" or "D. P." signals from Chassis 6. (2Ql1,TP2 & 1.)

5) Xj & Xk IR-—-ppHolding Registers - This gate enables the
transfer of the Input Register (bits 48-59) to the holding
register of Chassis 2. It is with this transfer that bits
258 of Xj and Xk are extended to bits 259,

6) Test Non-Standard Operands - This term gates bits 48-59 of
Xj and Xk into registers which feed the Error Test Circuitry.
This logic is shown in the C. E. Diagrams, Sheets 93 and 9.

7) Select True Exponent at the Holding Register - This gate
enables the selection of the true value from the holding
register.

8) Select True Or Complement Result - This gate enables the
setting of the TRUE or COMPLEMENT flip-flops on module H32,
via pin 9 (C. E. Diagrams, Sheet 165). True is selected if
the original signs are alike; Complement if unlike. The
flip-flops will determine whether or not the packed final
exponent is gated out in true or in complement form.

9) Holding Register Complement —fpFeeder - This gate transfers
the complement of the Xj and Xk exponents (unpacked) to the
adder feeder registers (QA modules).

10) Set Non-Standard Operand Flip-Flops - This gate sets the
zero, infinite, and indefinite flip-flops on module E20.
These determine whether or not to 1) send an Error indication
to Chassis 5 and 2) force the Non-standard opcode bit con-
figurations in bits 48-59 of the result (i.e. 0000, 1777,
3777 or 4000).

236

L€C

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)

12)

EXPONENT TIMING SEQUENCE - CHASSIS 2

Figure 7.5-31

Go, Multiply 1 Exponent (M11,TP2)
Advance Timing Sequence

Test Xj & Xk Signs (A36,14)

Clr. Norm. & D.P. f.f. (A36,9)

Xj & Xk IR —ppHolding Reg. (M11,21)
Test Non-Standard Operands (A36,13)
Select True Exp. @ Holding Reg. (D28,11)
Select True or Comp. Result (D28,27)
Holding Reg. Comp.—pwFeeder (132,10)
Set Non-Standard Operand f.fs. (I32,10)
Mult. 1 Error —jppChassis 6 (B35,5,7)

Transmit Result (RMs)

200 jo 400 500 600 700 1100
'z Z AP Z)
1%
12,
Z
|
7
| Z|
2
Bz
7

* Earliest possible time - no third order conflicts.

11) Multiply Error —J» Chassis 6 - This term enables the

12)

Transmitters (J03) which send the ERROR indication to
Chassis 5.

Transmit Results - This indicates the earliest possible

time (no third order conflicts) that the result exponent
can be gated to Register Exit/Entry Control.

238

o
ot
[

o

EXPONENT ADDERS

Three adders, shown in Figure 7.5-30,2 are required for the formation

of the final exponent.

The first forms the algebraic sum of Xj and Xk. This wvalue
will be used as the final exponent if Double Precision is

selected and left shifting to normalize is not performed.

The second forms the sum of adder #l and 608 (481(p). This
value will be used as the final exponent if Single Precision

is selected and left shifting to normalize is not performed.

The third subtracts 1 from the result of the first or second
adders (depending upon Single or Double Precision mode,
respectively). This value will be used as the final exponent
if left shifting one place is performed to normalize the co-

efficient.

Xj + Xk ADDER:”

Refer to Figure 7.5-32 during the following discussion. The feeder
registers are located on QA modules and hold the complement of the
Xj and Xk exponents. Recall that when adding the complements of
numbers, the results is also in complement form. For example, in

adding A + B:

TRUE ADD: ADDING COMPLEMENTS:
A = 0023 A — 7754
B = 0042 B = 7735
SUM = 0065 SUM = 7712
SUM

It
o
S
o)
(%]

* Note that the Xj + Xk Adder logic is exactly the same as that of
the Peripheral Processor A and Q Adders using QA, QB, QC and 1J
modules.

239

owe

THIS NETWORK
FORMS DOUBLE PRECISION EXPONENT

STAGES I35 -22

136 - 22 I33-21 0

ENABLE

I34 -20
I33 -16 I35-27 €
134 -4

I33 -22

134 -22 I35 -21 6

I35 - 14

STAGES

138 - 20 I33-25 O

g ENABLE 136 - 14

TRUE RESULY OF
Xj + X, EXPONENT

136 -27 8

I35 -16
- - 136 -24 I34-21 3
I34 -24
E37-10 END -AROUND | 21 | P — — — — - J I35 - 24 I36-25 9
CARRY '
I33 - 24 I36 -21 9
ENABLE: 0" G4l =13 I34-25 3
EACH STAGE CONTAINS AT
LEAST ONE "I" 136 -16
COMPLEMENTS OF F '5>
Xj 8 X EXPONENTS c "0" 620 - 22
CARRY :
E 14 I. TWO "i'S" (N UPPER STAGE. I33 - (4 134 -27 3
c 2. TWO "I'S" IN SECOND STAGE AND AT
LEAST ONE "I" IN UPPER STAGE. NOTES:
] 3. TWO “I'S" IN LOWER STAGE AND AT L A s
o LEAST ONE “I” IN EACH UPPER STAGE. - ALL LOCATIONS ON CHASSIS 2. TARRY ToO
2. MULTIPLY 1| SHOWN, 2 IS SIMILAR.

Figure 7.5-32

In the true adder:

Il
i

a) EQUIVALENCE -+ CARRY IN + EQUIVALENCE - CARRY IN i

I
o

b) EQUIVALENCE - CARRY IN + EQUIVALENCE - CARRY IN

In order to add complements and obtain a true sum, it is necessary
to complement the result of the add. 1In the Xj + Xk adder this is

a carry. A

Fh
cr
[(]

accomplished by reversing the meaning o
generated from stage "X" if both the feeder registers contain a
"one", or if a carry enters stage X from X-1 and stage X is not a
satisfy condition. But, since the feeders contain the complemented
values of Xj and Xk a generate condition (1/1) indicates a Satisfy
as far as the true values are concerned. In the same manner, a
satisfy condition (0/0) in the feeders actually indicates the
presence of a carry when referring to true operands. Thus, the
definition of a carry has been reversed and causes the result to be
complemented "automatically'" within the adder. With reference to
the true values of Xj and Xk (not the contents of the feeder), the

formulas defining sums of 1 and O become:

I
—

1) EQUIVALENCE + CARRY IN + EQUIVALENCE - CARRY IN

Il
o

2) EQUIVALENCE + CARRY IN + EQUIVALENCE °* CARRY IN

The student is now referred to Figure 7.5-32 where the Xj + Xk Adder
is representatively shown. To the left are the QA modules which
contain the feeder registers. Next are QB modules which check for
stage equivalence and carries entering stages within a 3-bit group.
For example, test points 4, 3 and 2 indicate "equivalence'" in stages

20, 2! and 22, respectively. Also, test points 6, 1 and 5 indicate

241

the '"carry in" condition to stages O, 1 and 2 respectively. These
conditions are combined on the TJ modules according to formulas #1
and #2 above. To the right are shown more QB modules and QCs which
determine which groups have carries in. This determination is made
by combining the carry out (generate) and enable conditions of
individual stages. The procedure used for carry checks is similar
to that used in other 6600 adders and is therefore not belabored.
If detailed logic analysis is required, the Chassis #2 wiring tabs

should be used.

As indicated, the true value of the result is seen at the output
pins of the TJ modules. One of the output pins (for each bit) goes
to the second Adder logic where 60(8) is added to the sum Xj + Xk.
The second output pin is wired to a fan-out which distributes this
sum (if in Double Precision mode) to the Decrement, Complement and

Error check logic.

Xj + Xk - 60(g) ADDER

Refer to Figure 7.5-33 during the following discussion. Since QB
and TJ modules are used in this adder, as in the Xj + Xk adder, the
concept of the two adders must be the same; in other words, the
result is generated by adding complements. No feeder registers are
required, since one input is the output of adder #l and the other
input is always 60(g) or 000 000 110 000(2). To understand the
wiring of the inputs to this adder, the values that the QR modules

"look for" should be kept in mind. For example, in the Xj + Xk

242

£ve

TRUE RESULT OF
X+ Xk
EXPONENT
BIT

{OPEN)

2 G633-27

{OPEN)

I G633 -4

(OPEN)

END~-AROUND
CARRY

THIS NETWORK FORMS

SINGLE PRECISION EXPONENT
c38 D34 c39
[os] i
M
TRUE RESULT OF
X + Xk +60g
EXPONENT
BIT 634-4
OPEN
M ()
4 G34-12 STAGES
1"
10
[
| (OPEN)
D35
(OPEN)
L STAGES
12 _ 8
° 3 633-19 s >
6
2
CARRY
OUT OF 2

ENABLE
EACH STAGE CONTAINS

won

AT LEAST ONE I.

CARRY

. TWO "i's" IN UPPER STAGE.

2.TWO "I's" IN SECOND STAGE
AND AT LEAST ONE "1"
IN UPPER STAGE.

3. TWO “I's" IN LOWER STAGE
AND AT LEAST ONE "1"
IN EACH UPPER STAGE.

om om

ENABLE

NOTES:
{. ALL LOCATIONS ON
2. MULTIPLY | SHOWN,

Figure 7

0 G4i-17

D35-20

D34 -1 4

D35 -14

D33 -4

D34-20

D34 -16

D33-16

035-22

D34 -22

D36 —20

D33 -20

5-33

CHASSIS 2.

2

IS SIMILAR.,

D36 -27 9

D35-27 €

D34-21 6
D36-25 9
D33 -27 O

D33-2% 0O

D34-27 3

t

CARRY TO

adder the following translations for various QB terms are made
(with relation to the feeders):

Term J =8>EQUIVALENCE (i.e. Xj + Xk + Xj + Xk)

Term A=2>Xj - Xk (or, Xj + Xk)

Term D=2>Xj + Xk
Since one of the inputs to the Xj + Xk + 60(g) adder is
111 111 o001 111(2) (the complement of 60(8)) terms A, B and C on
D33 (bits 20-22) and term A on D34 (bits 23-25) can be forced to a
""" (since two zeros are never possible in the first four or upper

six stages).

On the other hand, terms D, E, and F on D33 and term D on D34
should output a "1" when the corresponding bit of the result, Xj + Xk,
is a "zero". This is justified, since if a feeder register were
used, it would hold a "1" when the result was actually a "zero"
(since it would hold the complement). Because the second input is
always 111 111 001 111¢p) the condition of two ones in bits 0-3 and
6-11 occurs when ever the corresponding bit of the sum, Xj and Xk,
is a zero. Hence, the following translations are used:

D33, term D-‘%E

D33, term E=>21

D33, term F =>22

etc.

Note that two "l"s is also the condition which generates a "carry"

(see the inputs to TPl).

The bit 2% and 2° logic differs somewhat from the other bits since

244

one input to these stages is always a "zero" (i.e. 60(g) complemented).
In this case, two 'ones" in the feeders is never possible and terms

E and F on D34 may be forced to zeros. This is done by leaving the
input pins open. Terms B and C are now enabled (pins 19 and 5 are
open) and will output a 1 if 24 or 23 respectively is a "zero'".

Thus, the outputs of test points 4, 3 and 2 on the QB modules indicate
the "Equivalence" condition and the outputs of test points 6, 1 and

5 the "carry in" condition. Carry in checks and final equivalence/
carry summation are identical to the Xj + Xk adder and are, therefore,

not discussed further.

MINUS ONE NETWORK

This network, shown in Figure 7.5-34, subtracts one from the output
of adder #1 or adder #2 (Double or Single Precision) by adding one
to the complement. This is accomplished on GH and IX modules. The
inputs to the modules, pins 12, 10 and 8 are the complement of the
value to be decremented by one. The true value of the decremented

result will be seen at the output, pins 6, 19 and 17.

The following example is used to prove the logic:

Pencil & Paper Method Logic Method
Xj + Xk = 0572 Xj + Xk = 7205
minus 1 = - 1 plus 1 = + 1
Final exponent = 0571 Sum = 7206
Sum = 0571

The following translations will occur:

term A = 1 and B =0
term C = 0 and D = 1
term E =1 and F = 0
term K =0 (K==>all 12-bits = zeros)

245

9%¢

SUBTRACTS BY ADDING | TO THE COMPLEMENT NORMALIZED = UNNORMALIZED -1
- —— s === === == -
A3z &— Hae NORMALIZED EXPONENT
U ! L 36 BIT 10 F36—27 (--
Ty |
28
BIT i1 AT ‘
A e A AP A° AN |
B35-8
A [3 “I" GATES TRUE BIT 10 1
"0" COMPLEMENTS
F35 B35-6 5-—‘ |
|
J | i
H3S |
ix AT A* A A I
BIT 10 F33-27 | |
A |
|
F34
sy R e e e e e - - _
A o] 2 el o - - - - =~ -
A ¢
3
2
1
H34 o
X
10
ATO rmm -
19 !
N | COMPLEMENT | o 12
628-15 A
A 6 | \
' 1r 8 A
UE VALUE \
] 625-25 T—'< \
naz | \\
1 R XPONENT F20 | TO
o) UNNORMALIZED EXPONEN \ L 39 oot
| F33 \ TE
NETWORK
I]
|
1A A9 A8
I A AP A% AN
|
|
| F32
| M !
|
|
7 6 4 3 |
| AT A° A* A |
|
| |
| Fa |
. K
1 3 |
I 2 e
| Y N T il i B
0 |
! |
I NORMALIZE
10 t
(I , FROM
o CHASSIS @
/ | 6
/ 12 2
COMPLEMENT >
! 62418 TRANSMIT (
/
TRUE vaLuE 48
! G24-25
/

EXPONENT BIT ©
SINGLE PRECISION OR
DOUBLE PRECISION

Figure 7.5-34

Translation of test points 5,6 and 1 will yield 0, 0, 1, respectively
which is the correct result for the lowest octal digit. The remaining

bits work similarly and can be proven with the use of the wire tabs.

The selection of the normalized or unnormalized exponent is determined
by the NORMALIZE flip-flop located on Qll. (Chassis 6 will set this
flip-flop, via pin 7, if a left shift to normalize is not required).
The flip-flop will enable either term A or B on modules F20 and F21.
(These contain fan-ins for the 12 result bits and will thereby select
the normalized or unnormalized exponent.) Incidentally, the selected
exponent will be in the correct form (i.e. true or complemented) as

determined by the final sign of the result (Module F34, pins 8 and 9).

247

7.5.12

EXPONENT TEST RESULT
The determination of whether or not an error condition exists is
made by checking 1) the exponents of the source operands, Xj and
Xk, and 2) the result generated by the addition of the Xj and Xk
exponents. Five names are used in discussing the error conditions;
three are determined by checking source operands and two by checking
the result.

1) ZERO

2) 1INFINITE exponent of SOURCE operands

3) INDEFINITE

4) OVERFLOW

5) UNDERFLOW exponent of result

In other words, the Zero, Infinite and Indefinite conditions can be
determined before calculating the sum of the exponents, while Overflow
and Underflow are generated by the addition of the two exponents.
Figure 7.5-35 shows the logic circuitry used for exponent error

checking and should be referenced during the following discussion.

The zero condition will occur whenever Xj or Xk, bits 48-59 are zero
(i.e. 0000 or 7777) and the second operand is neither indefinite
(1777 or 6000) nor infinite (3777 or 4000). These conditions are
checked on B24 by TP3. A "zero'" on pin 5 indicates that neither

Xj nor Xk equals zero. A "zero" on pin 7 indicates that one or the
other or both of the operands are indefinite or infinite. A "zero"
on either pin forces a "one" out of TP3 and allows E20, TPl to be

set. In Boolean form, the condition, ZERO, implies:

(Xj = 0)(Xk # indef.)(Xk # inf.)+(Xk = 0)(Xj # indef.)(Xj # inf.)

248

6%7¢

SINGLE OR
DOUBLE PRECISION

RESULT
EXPONENT
BIT __
i1 B26-17 - GATE OUTPUT
GATE EXPONENT BIT Il
10 B26-20 —_—————
7
s
7
A3l s
Ve
™o _ MULTIPLY |
DOUBLE PRECISION | -~ P ERROR
xi + Xy EXP P TO CHASSIS 6
11 -~ RESULT
BIT 11 635-17 EXPONENT H37 -18
6660
(ZERO WHEN
UNBASED) ===
B24 =
L
Xk =0 O
1
- =G
X O
jeo GATE
EXPONENT
OuUTPUT
o
xk =0 O
10
X =® O -
|
|
xj#o 23 |
|
| IF "1 TRUE BIT 10
| IF "0, COMPLEMENT BIT 10
| GATE OUTPUT
xk = O
[P 8
! - A
-~
] re
~-———— == = = = === - -
-~
_ 1350

Xi # INDEFINITE NOTES:
y. ALL LOCATIONS ON CHASSIS 2.
2. MULTIPLY | SHOWN,

MULTIPLY 2 1§ SIMILAR.

X # INDEFINITE

Figure 7.5-35

The INFINITE condition will occur whenever Xj or Xk bits 48-59
have the configuration, 3777 or 4000, and the second operand is
neither indefinite nor zero. These conditions are checked on B24
by TP4. A "zero" on pin 1 indicates that neither Xj nor Xk are
infinite. A "zero" on pin 3 indicates that one or the other or
both operands are indefinite or zero. A "zero" on either pin
forces a "one" out of TP4 and allows E20, TP2 to be set. 1In

Boolean form, the condition INFINITE implies:

(Xj = inf.)(Xk # indef.)(Xk # zero)+(Xk = inf.)(Xj # indef.)(Xj # zero)

The INDEFINITE condition will occur whenever Xj or Xk bits 48-59
have the configuration, 1777 or 6000, .or one of the exponents equals
zero and the second is infinite. These conditions are checked on
B36 by TP2. A "zero" on pin 6 indicates that Xk is indefinite. A
"zero" on pin 4 indicates that Xj is indefinite. A "zero" on pin

2 indicates that one operand is zero and the other is infinite.
Hence, a "one" at the output (i.e. pin 15) indicates that the In-
definite condition does not exist and allows E20, TP5 to be set.

In Boolean form, the condition INDEFINITE implies:

(Xj = indef.)+(Xk = indef.)+(Xj = 0)(Xk = H(Xj =)Xk = 0)

The OVERFLOW condition occurs when the sum of Xj + Xk exceeds 3777.
This check is made on A32, TP2. A "zero" on pin 9 indicates that

bits 10 and 11 of the result are not equivalent (i.e. 1, 0 or 0,1),

A "zero" on pin 7 indicates that bit 21l of the result is a "zero".

250

When both of these inputs are '"zero", overflow has occurred. (The
upper 2 bits of the unbiased result should be 'zeros'" for the non-
overflow case - see Exponent Formation in Section 7.5.1). If either
pin is a "one", the condition, EGE;ETSG, is indicated by a "one on

pin 11. 1In Boolean form, the condition OVERFLOW implies:

(210 £ 211y(211)

The check for UNDERFLOW is similar to that of overflow, but in this
case the upper two bits of the result should both be "ones". The
underflow condition is checked by A32, TPl. A 'zero" on pin 12
indicates equivalence between bits 10 and 11. A "one" on pin 5
indicates that bit 11 is a one. When pin 12 = "0" and pin 5 = nim,
pin 3 = "0" and indicates that underflow has occurred. Pin 3 is
wired to pin 2. Pin 4 indicates a second possibility for generating
underflow, that is, when the sum of the exponents reaches exactly
0000. 1In this case, the upper two bits will both be set and TPl
will not indicate underflow. A separate network (C. E. Diagrams,
Sheet 163) is used to check for the 6000 condition. The circuit
fed by pins 2 and 4 "ORs" these two possible underflow cases. 1In

Boolean form, the condition UNDERFLOW implies:
(210 £ 211y 211y 4 Result = 6000
These error conditions are combined to enable sending an error

signal to Chassis 6 and to gate the output network. The output

translation for B36, pins 14, 16 and 18 is:

(OVERFLOW) (INFINITE) (INDEFINITE)

251

This translation is sent, via pin 6, to J42, pin 23 where it is

ANDed with pin 21, which translates as:

(ZERO) (UNDERFLOW)

The translation of A35, pin 16 is then:

(ZERO)(UNDERFLOW)(OVERFLOW)(INFINITE)(INDEFINITE)

This condition disables sending a Multiply 1 error signal to Chassis

6. The opposite condition, i. e.

ZERO + UNDERFLOW + OVERFLOW + INFINITE + INDEFINITE

causes the error signal to be sent.

The output of B36 also enables the "gate output” signal which enables

the exponent to the output network (see Section 7.5.13).

252

7.5.13

EXPONENT OUTPUT NETWORK

Figure 7.5-36 shows the logic for the exponent output network.
This circuitry determines when to force the Non-Standard operand
bit configurations (0000, 3777, 4000 & 1777) and when to enable

the sum of the exponents to the transmitters (RM modules).

To enable the sum of the exponents to the transmitters, term B
on the RM modules must be a "one'. This is obtained as follows.

H37, pin 13 must be a '"one'", this implier:

LIKE SIGNS + INDEFINITE + (INFINITE)(OVERFLOW)

On D16, this condition is ANDed with pin 1 to yield the following

translation for pin 19:

(ZERO) (UNDERFLOW) (LIKE + INDEFINITE + INFINITE - OVERFLOW)

This translation is combined with a t00 on H37 and with the "Transmit!
signal on @09 to yield the following translation for a "zero" from

pin 11:

(t00)(Transmit)(ZERO) (UNDERFLOW)(LIKE + INDEFINITE + INFINITE-OVERFLOW)

This term, via H25, causes term B to be a "1!" and enables the sum of
the exponents to the transmitters. By complementing the above formula,

the cases when the transmitters are disabled can be seen.

t00 + Transmit + ZERO + Underflow + Unlike:INDEFINITE+(Infinite+Overflow)

Study of the formulas will reveal that the transmitters are disabled

when the following Non-Standard operands occur:

253

®S¢

RESULT O AND INDEFINITE G42-8

(SEE TEST RESULT PAGE)
835-10

COMPLEMENT I32-7

FROM CHASSIS 5@

DEFINITE G42-80

RESULT O AND IN

H37

RESULT

SIGNS UNLIKE I32-8
r-
e
90 | b e
'& e e e e e e - -
L __ 10 g
it
l - 21 i8
t40 +6v | r
|
|
! N
H37 | | |
8 : 1
{ | |
{ |
| | L
9 I | | :
i
P! MuLT
| |
| |
|
N
T«

I37

|
|
|
|
L

FROM DIVIDE

+6V

+6V

| EXPONENT BIT O F20-9

NOTES!

KIS

. 28 ~N

v

EXPONENT
OUTPUT
BIT

i

P

> TO CHASSIS 8

I. ALL LOCATIONS ON CHASSIS 2,

2. MULTIPLY

SHOWN, 2

Figure 7.5-36

IS SIMILAR.

1) Positive or negative zero or underflow (0000 or 7777)
2) Negative infinity or overflow (4000)

They are enabled when the following Non-standard operands occur:

1) Positive infinity or overflow (3777)
" Pogsitive or negative indefinite (1777)

This proves that only the following Non-standard operands can be

generated by the Multiply Unit:

1) 0000X ——X (for + zero or underflow)
2) 3777X ——X (for + infinity or overflow)
3) 4000X ——X (for - infinity or overflow)

4) 1777X —— X (for + indefinite)

Since the transmitters are enabled for positive infinity and negative
or positive indefinite conditions, the sum of the exponents must be
disabled and "ones'" must be forced into the transmitters for bits 0-9.
This occurs via module 142, TP4 whose output is a "one" when Indefinite,
Infinite or Overflow occur (Figure 7.5-35). This condition is fed to
modules G25 and G24, pins 5 and 16 and forces both the True and Com-
plement gates to be a '"one" (pins 25 and 15). These conditions force
both the true and complemented values out of the TJ modules (adder
outputs - see Figure 7.5-34). 1In other words, all "ones'" are forced
out of the TJs and to the output network fan-ins (TE modules). This
results in "ones" being fed to the transmitter input pins (i.e. K13,
pin 9 in Figure 7.5-36) and, consequently, '"ones'" are transmitted on

the data trunk.

210 21l are handled separately. Bit 210 is taken from the

Bit and

adder output network (TJ modules) but may be gated to the transmitters

255

in True or Complement form. (See Figure 7.5-34.) The true form
is used if the indefinite condition does not exist AND infinite
or overflow does exist. The complement of bit 10 is used if
indefinite is present or infinite and overflow are not present.
In summary, Bit 10 equals:

TRUE if (INDEFINITE)(INFINITE + OVERFLOW)
FALSE if INDEFINITE + (INFINITE)(OVERFLOW)

The logic which determines whether 21l is a "zero" or a "one' is
shown in Figure 7.5-36, module I37. When all inputs to TPl are
"ones", a "one!" will be transmitted in Bit 211, The input formula

is:

(t50)(ZERO) (UNDERFLOW) (UNLIKE) (INDEFINITE) (XMIT)

The complement of the above formula will indicate the cases when

211 is a "zero'":

t50 + ZERO + UNDERFLOW + LIKE + INDEFINITE + XMIT

The above formulas can be justified by relating them to all possible

conditions for bit 211,

256

SECTION 7.6

DIVIDE

FUNCTIONAL UNIT

DIVIDE
FUNCTIONAL
UNIT

0'flow

Xmit.

2Xk EAB

Population
Counter

~

2]

Xk

Req. Rel

_.D..i TIMNING CHAILIN]

CENTRAL
PROCESSOR
DATA PERTPHERAL
CHANNELS PROCESSORS l
INSTRUCTION RESERVATION
ISSUE CONTROL
F-_— CONTROL (SCOREBOARD)
O
E X
D =
N
[:]' *l ® REGISTER
] s e
s CENTRAL CENTRAL X
EG._.] MEMORY MEMORY 1
A CONTROL :
: | /
s f oivice ks
H
1
c
[:: l‘ ¢
INCREMENT 1
M T Trerrar it Ml
INCREMENT 11
chc:}.—_% __J

7.6.1., INTRODUCTION

GENERAL: The Divide functional unit performs single precision,
rounded or unrounded floating point division of two operands
(Xj/Xk) and will sum the number of "ones" in a selected X
register (Xk). If division is per
time is 2.9 micro seconds. Counting the number of ones requires

800 nanoseconds.

The Divide Unit is located on Data Trunk #2 along with the
Multiply 1, Multiply 2 and Boolean units. Divide holds first
priority in reading operands and second priority in storing
results. The unit is physically located on chassis 2, but a
portion of the data transfers is via chassis 6. Since the
Multiply coefficient logic is on chassis 6, bits 0-47 and 59

of the source operands are gated from Exit Control to chassis 6
and them to chassis 2. Bits 48-59 are sent directly from

Exit Control to chassis 2. Figure 7.6.-1 illustrates the data

flow, which is manipulated similarly for result operands.

Chassis 6

Multiply
Coeficient
Logic

Chassis 7&8 @ (0-47,59) (0“1*7) Chassis 2

Register Divide
Exet/Entry (4?;2i) &
Control Boolean
12 —p
« _/[7 Units

Figure 7.6-1

259

THE DIVIDE PROCESS (COEFFICIENT): Coefficient division of the

two operands (Xj/Xk) is performed using three subtraction
networks. The orginal dividend, Xj, is gated directly from

the chassis 2 input register into each of the three subtractors.
The divisor Xk, is gated into a holding register from which

three values are formed: 1, 2 and 3 times Xk (here after referred
to as 1X, 2X and 3X respectively). These quantities are gated
into the 3 subtraction networks where they are held for the

duration of the operation.

The quotient is formed 2 bits at a time by trial subtractions
fo the 3 multiples of Xj from the partial dividend (initially,
the dividend Xj). The largest multiple which subtracts without
causing an end-around borrow determines the selection of the

two bits (l.e 01, 10 or 11). If end-around borrows occur in

all three subtractions, the two bits are zero.

The quantity that results from the subtraction of the largest
usable multiple of Xk from the partial dividend is left shifted
2 places and re-inserted into the dividend registers of the
three subtraction networks. This occurs for each of the 24

iterations of the divide operation.

A 50-bit quotient is formed since 2 bits of the quotient are
selected before the first and after the 24th iteration. The
high order bit (249) of the final quotient is never used due

to the fractional nature of the coefficient arithmetic.

260

The lower 48-bits (2°-2%7) of the final, 50-bit quotient will
be selected as the result if bit 248 does not equal a 'one'.

1f 248 is a "one", bits 2l through 248 are taken as the final
result. Note, that bit 249 of the 50-bit result can never be
retrieved, and it, therefore, should always be a "zero". If

it is a "one", the most significant bit of the quotient is lost
and the final quotient sent to Xi will be meaningless. Thus,
the ratio between Xj and Xk must always be less than 2 to 1,
since this will cause the upper two bits of the 50-bit result

*

to be either 00(or 01(2).

2)

The following example will be used to illustrate the coefficient
divide method. To simplify the division process, 12 bit
coefficients are used, rather than 48.

Xj = 7604

]

Xk = 5213
1.3613
Xj/Xk = 5213 7604.0000
5213
23710
17641
40470
37502
7660
5213
24450
17641
4607

e
w

To insure that the ratio of the Xj and Xk coefficients is less
than 2 to 1, it is suggested that the operands used with the 44
and 45 opcodes always be normalized. This will cause the final

(8}

261

The machine method follows:
1) Form 1X, 2X, 3X:

X = 101 010 001 011

I

2X 001 010 100 010 110

I

3X 001 111 110 100 001

2) Perfom first trial subtraction:

111 110 000 100 = Xj
101 010 001 011 = 1X
010 011 111 001 = Partial Dividend

1"
Since 1X could be subtracted, the upper 2 quotient bits are "01
The partial quotient is therefore:

0il. XXX XXX XXX XXX

3) Left shift the partial dividend and perform the second
trial subtraction:
001 001 111 100 100 = Partial Dividend Left 2

101 010 001 011

1X

100 101 011 001

New Partial Dividend

"
Since 1X could be subtracted, the next 2 quotient bits are o1"
The partial quotient is therefore:

0l. OIX XXX XXX XXX

4) Left Shift the partial dividend and perform the
trial subtraction:

010 010 101 100 100 = Partial Dividend Left 2

!

001 111 110 100 001 3X

]

010 111 000 011 New Partial Dividend

'
Since 3X could be subtracted, the next 2 quotient bits are 11",

262

5) Left shift the partial dividend and perform the

fourth trial subtraction:

001 011 100 001 100 = Partial Dividend Left 2
001 010 100 010 110 = 2X
111 110 110 = New Partial Dividend
Since 2X could be subtracted, the mext 2 quotient bits are "10"

The partial quotitent is therefore:

0l. 011 110 XXX XXX

6) Left shift the partial dividend and perform the
fifth trial subtraction:
000 011 111 011 000 = Partial Dividend Left 2
Since subtraction of 1X, 2X or 3X all cause end around borrows,

, n_n
the next two quotient bits are 00 .

7) Left shift the partial dividend and perform the

sixth trial subtraction:

001 111 101 100 000 = Partial Dividend Left 2
001 010 100 010 110 = 2X
101 001 001 010 = New Partial Dividend

"

Since 2X could be subtracted, the next 2 quotient bits are 10 .
The partial quotient is therefore:

0l. O1ll 110 001 OXX

8) Left shift the partial dividend and perform the
seventh trial subtraction:

00L 111 101 100 000

Il

Partial Dividend Left 2

001 010 100 010 110

3X

100 110 000 111

263

Since 3X could be subtracted, the next 2 quotient bits are "11".
The quotient is therefore:

01l. 011 110 001 O1l1l or

1. 3613 which checks with the original

(8)

long division method.

Since the bit immediately to the right of the binary point is
"1", (using 48-bit coefficients, this would be 248) the quotient
will be right shifted one place (normalized) before packing in

floating point format. This step yields:

00. 101 111 000 101 1 or .5 705(8).

Note that seven trial subtractions and six left shifts occurred
while processing the 12-bit operands. Similarly, twenty-five
trial subtractions and 24 left shifts occur when processing
48-bit coefficients. This indicates how the 50-bit quotient

is generated.

EXPONENT FORMATION:

At this point, the positional value of the origingl and final
coefficients must be considered. The source operands used by
the divide unit are, of course, in standard floating point
format;* that is, a negative or positive 48-bit integer
coefficient multiplied by 2 raised to an exponent in the range,

+ 17774y

See Appendix A for a detailed discussion of 6000 Series

floating point operations.

264

On the other hand, the quotient generated by the divide
aritmetic is a fractional value. Packing this fractional
result in standard floating point format effectively moves
the binary point 48 places to the right, which has the effect

of increasing the quotient magnitude by 248. To compensate

for the increase of coefficient magnitude, the final exponent

(the difference of exponents, Xj —Xk) is decremented by 48(10)

(60(8)).

Recall that if the quotient has a value of 1 or greater
(l.e. 1.X — X) it is right shifted one place to yield a
normalized pure fraction (l.e. 0.4X — X). This effectively
decreases the quotient magnitude by 2; and a corresponding

increase of the final exponent is required.

It can be concluded, from the above discussion, that three adders
are required for the formation of the final exponent. The first
will form the algebraic difference of the Xj and Xk exponents,
specifically, Xj —Xk. The second subtracts the value, 60(8)’
from the result of the first, Xj—Xk. It therefore forms

Xj — Xk — 60(8)' This value will be used as the final exponent

if quotient overflow (l.e. 248

of the quotient is not a '"one")
does not occur. The subtraction of 60(8) is required to com-
pensate for packing the fractional quotient into integer form.
The third adder adds one to the result of the second to form,
Xj— Xk — 57(8)‘ This value is used as the final exponent if

quotient overflow does occur, in which case a right shift one

place makes the quotient a pure fraction.

265

—>» Xk

Xj

Figure 7.6-2 represents the exponent adders in block form:

Xk

Xj - Xk

-60(g) —m

Xj - Xk
-60g

Figure 7.6-2

+1

Xj - Xk
-57g

O'flow

OR
To output

network
O'flow

In forming the difference of the Xj and Xk exponents the

following sequence occurs.

So that all cases of negative

and positive exponents are illustrated, the following numer ical

examples will be used:

Xj = +75 +75 =75 =75
Xk = +10 =10 +10 =10
Xj — Xk = +65 +105 —105 —65

STEP 1 Obtain the true value

of the exponents.

This is

accomplished by complementing the upper 12-bits if

bit 59 is a "1" (negative coefficient).

If bit 59

is a "0", the exponent is already in true form.

Hence the true values of the exponents in packed

form are:

2010

2075 2075

1702

1767 2010

1702

1767

266

STEP 2

STEP 3

STEP 4

STEP 5

Unpack t
a) Extending bit 58 into bit 59 of the feeders:
6075 6075 1702 1702

6010 1767 6010 1767

b) Complementing the exponent magnitude bits into the
feeder registers. The feeders now hold the
complemented, unbiased exponents:

7702 7702 0075 0075

7767 0010 7767 0010

Subtract. The results are:

7712 7672 0105 0065
Complement the result (since the exponents are in
complement form in the feeders):

0065 0105 7672 7712

Set or clear bit 59 according to the following rules:

SET BIT 59 if:

a) The result is not zero (i.e. 0000)

b) AND the result is not indefinite (i.e. 1777)

c) AND underflow did not occur (i.e. 0000)

d) AND the final sign of the coefficient is negative.
This is determined by the following rules:
1) 1like signs == positive result
2) wunlike signs = negative result

e) AND a U"Transmit! was received from the scoreboard.

CLEAR BIT 59 if the above conditions are not met.

STEP 6 Set or clear bit 58 according to the following conditions:

Set if:

&Indefinite)(Underflow}J [(Unlike)(Negative) + (Like)

(Positive + Overflow)J

Clear if:

Indefinite -+ Underflow +[Underflowj

[:Indefinitej][fiike)(Negative) + (Unlike)

(Overflow + Positive °* Overflowi]

The following table shows all possible uses for bits 48-59 of

the result and should clarify the conditions for setting and

clearing bits 58 and 59.

RESULT CONDITIONS 59 58
0000 Utflow 0 0

0001 - 1776 | (UTflow)(Ind)(Like)(Neg) 0 0
1777 | Indefinite 0 0

2000 - 3776 | (U'flow)(Ind)(Like)(Pos) 0 1
3777 | (U'flow)(Ind)(Like)(O'flow) 0 1

4000 | (U'flow)(Ind)(Unlike)(O'flow) 1 0

4001 - 5777 | (U'flow)(Ind)(Unlike)(Pos) 1 0
6000 | Negative Indefinite is not possibld X X

6001 - 7776 | (U'flow)(Ind)(Unlike)(Neg) 1 1

These cases are explained in more detail in section 7.6-9.

268

7.6.2 INSTRUCTION LIST/DATA FLOW

The following instructions will select the Divide functional unit.
The terms in parenthesis are the ASCENT symbolic codes used in

assembler coding. Data flow can be followed in Figure 7.6 - 3.

44 FLOATING DIVIDE Xj by .Xk to Xi (FXi = Xj/Xk)

DEFINITION: This instruction divides two normalized floating
point quantities obtained from operand registers Xj (dividend)

and Xk (divisor) and packs the quotient in operand register Xi.*

The exponent of the result in a no-overflow case is the difference

of the dividend and divisor exponents minus 48(10)-

A one bit overflow is compensated for by adjusting the exponent
and right shifting the quotient one place. In this case, the
exponent is the difference of the dividend and divisor expomnents

(Xj - Xk) minus 47.

DATA FLOW: The Xj and Xk operands are sent to chassis 2, where
exponent and coefficient manipulations take place. The base
exponent is formed by subtracting the exponent of Xk from that of
Xj. The quantity 60(g) is subtracted from the base address by a
second adder. This has the effect of moving the binary point of

the coefficient 48 places to the right. Since the quotient

*The result is a normalized quantity when both the divident and the divisor
are normalized. Note that the machine makes no note of divide faults, i.e.,
when the absolute value of the coefficient of the dividend > two times the
absolute value of the coefficient of the divisor. To avoid possible
incorrect results from using unnormalized operands, the operands in this
instruction should be normalized.

269

0L¢

Go

Population
Counter

2Xk EAB

TIMING CHAIN

Xmit.

Figure 7.6-3

produced by the coefficient logic is a fraction,it is necessary
to right shift the binary point when packing in the standard

floating point format.

A third adder adds one to the quantity, Xj - Xk - 60(g)- This

P 2
value, Xj - X6 s

uced as the final exponent if a right

— 8770 4

Si(8)s * eXDp
shift is required to resolve coefficient overflow (i.e., bit 248
of the quotient is a "one"). If the right shift is not required

to bring the coefficient in range, the value Xj - Xk - 60(g) will

be selected as the final exponent.

The coefficient is formed by repeatedly subtracting a multiple

of the divisor (1, 2 or 3Xk) from the partial dividend and setting
the quotient bits (00, 01, 10, or 11(2)) depending upon the largest
multiple that could be subtracted without generating an End

Around Borrow. Twenty-four such iteratioms are required to gen-
erate the 50-bit quotient. (Two bits are selected before the first
and after the twenty-fourth iterations.) This method is explained

in detail in Section 7.6.1.

L5 ROUND FLOATING DIVIDE Xj by Xk to Xi (RXi = Xj/Xk)

T T T AT T AT T AT

DEFINITION: This instruction divides the floating quantity from
operand register j (dividend) by the floating point quantity from
operand register Xk (divisor) and packs the round quotient in

operand register Xi.* Rounding is accomplished by adding one-third

*The footnote for the 44 opcode also applies to the 45 opcode.

271

during the division process. In effect, the quantity "2525....
25258" resides immediately to the right of the dividend binary
point prior to starting the divide operation. On the first
iteration, a "1" is added to the least significant bit of the
dividend. After each iteration (subtraction of divisor from
partial dividend) a two-place left shift occurs and a "1" is
again added to the least significant bit of the partial dividend.
Thus, successive iterations gradually bring in the one-third

round "quantity" (25....258).

The result in a no-overflow case is the difference of the dividend

and divisor exponents (Xj - Xk) minus 48(10)-

A omne-bit overflow is compensated for by adjusting the exponent
and right shifting the quotient one place. In this case, the
exponent is the difference of the dividend and divisor exponents

minus 47(10).

DATA FLOW: The data flow is the same as for the 44 instruction
with the exception of the rounding operation. The one-third
round is accomplished by effectively adding the value, 2525....
25(8)’ to the dividend during the divide step. This is actually
accomplished by holding "1" inputs on bit 0 of the dividend
registers in each of the three subtraction networks through

all 24 iterations. Since the dividends are left shifted 2 places
on each iteration the value, 2525....25(8), is effectively

added to Xj. The 60-bit floating point quotient is sent to

Xi upon receipt of the "Transmit" signal from the scoreboard.

272

47

COUNT THE NUMBERS OF ONES in Xk to Xi (CXi = Xk)

DEFINITION: This instruction counts the number of ones in
operand register Xk and stores the count in the lower 6 bits of

register Xi., Bits 6 through 59 are cleared to zero.

DATA FLOW: The operand, Xk is sent to the input register and then
to the Xk feeder register. A static network called the "Population
Counter" counts the number of "ones" in the 60-bit operand and
generates a 6-bit sum of ones which is transferred to Xi upon

receipt of the "Transmit" signal from the scoreboard.

273

7.6.3 MODE BITS

Two mode bits exist in the Divide functional unit which enable the
logic to distinguish the three Divide opcodes:

1) Floating Divide of Xj by Xk to Xi.

2) Round Floating Divide of Xj by Xk to Xi.

3) CGount the number of ones in Xk.
The mode bits are named:

1) Round

2) Population Count

When neither mode bit is sent from chassis 5 and the Divide unit is
selected, a Single Precision, Unrounded, Floating point division of
Xj by Xk occurs. Twenty-four iterations will occur, as described in
Section 7.6.1, in generating an unrounded, 60-bit, floating point
quotient which is stored in X register i. Twenty-nine minor cycles

are required for the execution of this opcode.

If the "Round" mode bit is sent to chassis 2 upon issuing a Divide
opcode, a Single Precision, rounded, floating point division of Xj

by Xk occurs. As with Unrounded divide, twenty-four iterations occur
and twenty-nine minor cycles are required for the execution of this
opcode. A rounded, 60-bit, floating point quotient is generated and

stored in X register 1i.

Figure 7.6 -4 shows the "Round" mode bit logic. The catching flip-

flop which 1is set when a 45 opcode is issued to the scoreboard.

The flip-flop is cleared when a "Transmit" is received at the end of
the divide step. It is therefore, set for at least 2.9 microseconds

(no second or third order conflicts); in any case, for the duration

274

SLe

2W21
91

2302 K42

+

(e15) (Xmit)

TP6 (Round) (255-355) (t40)

11 16

X]

t40 T220 =T320

Xk

M28

M20

GC

|
l
|
|
Xj - 2Xk I Xj - 3Xk >
|
_ |
' |
|

ROUND MODE BIT
Figure 7.6-4

of the divide operation. On K42, test point 5, the condition,

"Round", is ANDed with the conditions, "(t235 - 335)(t40)". Thus,

the translation for the output of Test Point 6 is:
(ROUND) (255 - 355)(t40)

This will cause '"zeros" out of K42, pins 21, 23 and 25 which will

directly set the 20 Xj flip-flops of the three coefficient subtractors.

Note that setting the flip-flops is disabled from t255 to 355 of

the divide step. This minor cycle corresponds to the first itera-

tion of the divide sequence, during which setting the lowest bit

could distort the initial value of Xj (specifically, if bit 20 of

Xj is a "zero"). 1In all subsequent iterations, 20 will be set.

Since the value in the Xj feeder register is left shifted two places

each iteration, the end effect will be to add the binary configuration,

010101l......,.010101 or 1/3, to the initial dividend, Xj. This will

cause the final quotient to be rounded up by 1 or 2, depending upon

the magnitudes of the divisor and dividend. This rounding method is

not completely compatible with the rounding conventions of mathematics

and will, on occasion, introduce a small error in the quotient. This

method was selected to decrease the execution time of the divide

operation and when a number of related rounded divisions and multi-

plications are programmed, the error introduced in a problem is

negligible.

When a "Population Count" mode bit is sent to the Divide unit, the
normal divide operation, Xj/Xk, is disabled. Instead, the "ones" in
the 60 bit operand, Xk, are counted and the sum of ones is gated to

X register i (lower 2 octals).

276

Figure 7.6 =5 shows a portion of the "Population Count" mode bit
logic. The mode bit is received on J02, which has two outputs. Pin
13 is ANDed, on J22, with t510 - 610 of the divide chain to enable
the sending of "Request Release" to the scoreboard from EOl, Test
Point 1. Note the second possibility for "Request Release', entering

pin 10 of J22, which is used during normal divide operatiomns.

The pin 14 output of JO2 is sent, via Gl6, to Gl7 where the signal
is fanned out to:
1) Disable the divide timing chain (via G17,
pin 16), at t675. This accomplished by forcing
a "zero" on the clear/set term of the t725 - 825
flip-flop in the timing chain (2D21, TP3 is
disabled when pin 9 is a "zero") and thereby
disabling the setting of that flip-flop. Hence,
all subsequent flip-flops remain cleared.
2) Enable the transmission of the "Pop. Count" to
the register chassis (via Gl7, pin 18). This
is accomplished by enabling the bit 0-3 coefficient
result (Xi) transmitters on modules KOl and KO2.
Term "C" becomes a '"one" when the following
conditions exist:
(Pop. Count) (Transmit) (£30)
Notice that pins 16 and 26 on K02 are tied to
+1.2 volts ("zero") to disable the transmission
of "ones" in bits 26 and 27. On the remaining

transmitter modules, the term "C" input, pin 17,

277

8/¢

J22 EO1

Request
11 Release PL
Divide
9 8 L w1
---ol2 o - - < T 905
1
]
1 t35
| 2 10 =
4 N
: 510 - 610 2690
|
d

to disable divide chain @ t675.

to "Transmit Divide".

to désable Xj + Xk indefinite or indefinite.

to disable "Error Mode Test" logic.

POPULATION COUNT MODE BIT

Figure 7.6-5

3)

4)

is left open forcing "zero" out of C and, con-
sequently, on the data trunk. Hence, bits 6-59
of the population count result are always '"zeros'".
Disable the setting of the Xj or Xk indefinite

; pin 20). These

or infinite flip-flops (via G17
flip-flops are located on Module A38, test points
1 and 2. Test point 1 is set when Xj or Xk bits

48-59 have the octal configuration, 1777 or 6000

(f indefinite operand) and pin 5 is a "one'".

Test point 2 is set when Xj or Xk bits 48-59

have the octal configuration, 3777 or 4000

(1 infinity) and pin 7 is a "one". Both pins
5 and 7 translate as:

(Pop. Count) + (Divide) + (Multiply 1)
+ (Multiply 2

and are therefore "zeros'" when in the Population
Count mode. In this case the flip-flops will not
be set, regardless of the bit 48-59 configurations,
and no divide error signal can be generated.
Disable the Error Mode Test logic via Gl7, pin 24.
This is accomplished to prevent a Divide error
signal from being generated in the event that

the combination of the Xj or Xk exponent generates
a non-standard operand. In essence, the Error
Test circuitry is disabled when the "Population

Count'" mode bit is present.

279

7.6.4 QUOTIENT TIMING SEQUENCE

This discussion deals primarily with the quotient timing sequence,as

opposed to exponent timing which is discussed in Section 7.6.8.

The quotient timing sequence is initiated upon receipt of the "Go Divide"
signal from the scoreboard. A timing chain is located on modules D21
through D26 (C. E. Diagrams, sheets 171 and 172) and is composed of

36 flip-flops arranged in a chain. Each flip-flop is clear/set 75
nanoseconds after the preceding stage in the chain (similar to the

PPU barrel timing concept). For example, the first flip-flop is set
by a tl5, the second with t90, the next with t65, the next with t40,
etc. Thus, appro#imately 2700 nanoseconds elapse from setting the
first flip-flop (D21, TPl) to setting the last (D26, TP6). Each
flip-flop is set for 1 minor cycle. The outputs of these flip-flops,
singly and in combination are used to sequence the manipulations of the
Xj and Xk coefficients required to form the coefficient and exponent

of the quotient.

An explanation of each term on the quotient timing chart (Figure 7.6-6)
follows. In conjunction with the timing chart, the C. E. Diagrams

and Chassis 2 wire tabs should be utilized to further clarify the
discussion of quotient generation.

1) SCOREBOARD ISSUE - This is the time reference for the timing

chart - the scoreboard issue of the Divide opcode.

2) GO DIVIDE - Assuming that no second order conflicts occur, the
"Go Divide! signal will be received on Chassis 2 approximately
175 nanoseconds after Scoreboard issue. This signal initiates

the divide timing chain.

280

18¢

TIME = NSEC 00 100 200 300 400 500 600 700 2500 2600 2700 2800 2900
SCOREBOARD 153__ I

ISSUE | -
1

|
|
1] | | |
6o piviDE m : 7f ! :

1
|
CLEAR INPUT REGISTERS (GA) ﬂ w
|
1

OPERANDS X; 8 i IN
| 1 ! | 1 | | | | | |
orm) | | W% | | | rr [| |
F 3%y
| | I 1 1] | | 28 1 i |
GATE X; TO DIVIDE REGISTER ! ! ! % ! ! : ! qr ' ! !
IN SUBTRACTORS (GC) 1 | | !] 1 | [“ | 1 1
| | 1 i ! | | 1
PICK 1Xg OR NO CHANGE m —{F ! :
' 1)

|
| } | 1 |
GATE NEW DIVIDE TC GC'S M : m IV/‘ 'm f’: l Q L@
I
! | 1 | !
PICK IXK OR 2Xg OR 3Xy OR NO CHANGE V/l ﬂ,_m I

SET QUOTIENT BITS O AND/OR 1 (RD) ' ! I I ﬂ m % % iy m % % V/I %
|

1 | | | | i
mA'\72'" a' #A' A' K i ._f [A’ nm n' t
QUOTIENT SHIF T REGISTER ! : I : | ! | | [i 1]
Z] Z| 72 _©#7 m A | R B N | !
| I | 1/
| | | | | | | ! | |
g au_ B B\ 7B R 1 | § e mn _n | |] !
| ! | | I 7
! ! ! | I [| | |
| I | I I | I I *
QUOTIENT DISABLE SHIFT)”F : : ! l &;//r;;m_' _
| | | ! | | |) | 1 !]] |
| | | | |) 1]
REQUEST RELEASE ff ! | 1 ﬂ i]
| l | 1 I | | | ’ | [| |)
| I i [| | I | I | i I *
SIGNAL TO TRANSMIT RESULTS I
| | | | | | | i | | | | j?
|) | I | | | I 1 | [I |
TRANSMIT RESULTS TO CHASSIS 6 7rr
| | | | | ! | i | 1 | | |
| i | | | | | I 1 | | | |
TRANSMIT RESULTS TO CHASSIS 78 8 {(
|) » | | | | | 27 n | | | |
| | [| | |) | | |] | |
TIME = NSEC 00 100 200 300 400 500 600 700 2500 2600 2700 2800 2900

% EARLIEST POSSIBLE TIME —
NO RESULT REGISTER CONFLICT

Figure 7.6-6

3)

4)

5)

6)

7)

8)

CLEAR INPUT REGISTERS (GA) - The input registers are cleared

every minor cycle as shown, at approximately t 00.

OPERANDS Xj & Xk IN - The Xj and Xk operands will be received

on chassis 2 (from chassis 7 & 8) at approximately t 250.

FORM 3 Xk - No logic gate exists to enable the formation of

3 Xk. This term is shown to indicate the time allowed for the
generation of 3 Xk-the time from entering the operands until
the first iteration begins.

GATE Xj to DIVIDE REGISTER - This signal occurs just prior

to the first iteration to enable the original dividend, Xj,
into the dividend registers. Xj is gated via the GF modules
which are also used to gate the previous partial dividend left
shifted two places, when the "Pick No Change" gate is a ''one'".
(C. E. Diagrams, sheet 175).

PICK 1Xk or NO CHANGE - This gate occurs along with the Pick

2Xk or 3Xk gate on all iterations except the first. On the

first iteration, the Pick 2Xk or 3Xk gate is disabled and only
Pick 1Xk or No Change occurs. This happens because if both
initial operands have been normalized (as they should be) the
first (upper) 2 bits of the quotient can only be 0l or 00(2)-
Enabling the Pick 2Xk or 3Xk on the first iteration would only
insure a meaningless result. This logic can be seen in the C. E.
Diagrams on sheet 183.

GATE NEW DIVIDEND TO GC's - This signal occurs 24 times during

the divide step. FEach time, the new partial dividend is gated

from the output of one of the three subtractors back to the

282

9)

[

Nt

three dividend registers of the subtractors. If the Xj-Xk
subtractor had an End Around Borrow, the previous dividend

is gated back to the dividend registers, left shifted two
places, by the "Pick No Change" gate. If the Xj-Xk subtractor
had no EAB, but the Xj-2Xk subtractor did, the output of the
Xj-Xk subtractor is used as the next partial dividend. The
following table shows all possibilities and includes the

quotient bits generated for each case.

TABLE 7.6-1
CONDITION PICK QUOT IENT
(3Xk=EAB) 3Xk 11
(3Xk=EAB) (2Xk=EAB) 2Xk 10
(2Xk=EAB) (Xk=EAB) Xk 01
(Xk=EAB) NO CHANGE 00

PICK 1Xk OR 2Xk OR 3Xk OR NO CHANGE - This gate occurs every

minor cycle after time 400 and selects one of four values (Picks)
to be gated to the dividend registers for the next iteration

(See table 7.6-1 and term #8). Although the selection continues
to occur after the last iteration, the selection will not be
useful because the left shift of the quotient shift register

is disabled after the 24th iteration (See term #11).

SET QUOTIENT BITS 20 and/or 2' (RD) - The setting of quotient
Y q

bit 20 is enabled on each t90 after t350 of the divide timing
chain while setting 2' is enabled on each t90 after t410. This
occurs since the setting of 2' should not be possible on the
first iteration if the original operands are normalized (See
term #7). Although the setting of the quotient bits is enabled

even after the last iteration, the final quotient is not affected

283

because the left shifting of the quotient shift register is
disabled after the 24th iteration. (See term #11).

11) QUOTIENT SHIFT REGISTER - A two place left-shift register is

used to assemble the 2-bit quotients into the final 50-bit
quotient. The quotients are selected at 100 nanosecond inter-
vals according to the trial subtractions, and are inserted
into stages 0 and 1 of the left shift register (See Figure

n7.6-7 and the C. E. Diagrams, sheets 183 and 184). JSince

L

t00 | 2 t75

LT LT LT LT

4 6
t25 2O t00 22 t75 | 2 t50 | 2 t25

o om

Figure 7.0 - 7

this register perrorms the leit shifts at 75 nanosecond
intervals, two "Holding'" stages are required after each 4
shifts to allow the picking of quotients to '"catch up" with

the shifting of the register.

This term on the timing chart shows, in solid black, the
shifts which are meaningful to the generation of the final
quotient. The other shifts occur prior to the generation of
any quotient bits and are therefore superfluous.

12) QUOTIENT DISABLE SHIFT - The left shifting of the quotient

shift register is disabled after the 24th and final iteration.
This is done by a flip-flop (C. E Diagrams, sheet 184, E10,
TP1) which is set at divide time 2775. The flip-flop is cleared
upon receipt of the "Transmit'" signal from the score board.

The earliest time possible for receipt of "Transmit" is about 2875.

284

13) REQUEST RELEASE - The Request Release is sent to the score-

board at about t2750 of the Divide sequence. It resolves any
third order conflicts which may exist.

14) SIGNAL TO TRANSMIT RESULTS - Assuming that no third order

conflicts exist

.......... cX 5

the signal to transmit the result will be
received on chassis 2 at about t2875.

15) TRANSMIT RESULTS - Assuming that no third order conflicts exist,

16) bits 0-47 of the result will be transmitted to chassis 6 from
the RM modules at t2930. From there they are gated to chasses
7 & 8 about 50 nanoseconds later. Bits 48-59 of the result
are transmitted directly to chassis 7 & 8 (from RM modules)

at t2960.

285

7.6.5

1, 2, 3 TIMES DIVISOR (Xk)
The function of the logic discussed in this section is to 1) form the
values 1, 2 and 3 times the divisor (Xk) and 2) distribute each value

to its respective adder.

At the beginning of the divide operation, the divisor (Xk) is placed

in its holding register located on MA modules. It remains there,
unattended, throughout the divide step. This register feeds a static
network which forms 1, 2 and 3 times Xk. Since 1Xk exists in the holding
register, no aditional logic is required for its formation. 2Xk is
formed by left shifting the divisor 1 bit position, thereby multiplying
by two. 3Xk is formed with a special full adder which adds 1Xk and 2Xk.
Due to the propagation of carries to high order bits, the wvalue, 3Xk,

may be 50 bits in length. (See Figure 7.6-9 .)

Figure 7.6-8 should be used in the following logic analysis of the 1,
2 and 3Xk circuitry. The 3Xk adder is not shown completely (the carry
determination and propagation logic is omitted), so reference to the
C. E. Diagrams (Sheet 177) and the Chassis 2 wire tabs should also be

made.

Since the value 1Xk is already formed in the holding (MA modules) register
it is simply gated directly to the GC modules of the Xj - Xk adder. For
example bit 20 is fed from R11, pin 12, via Ql9, pins 1 and 13, to M28,
pin 6, which is an input to adder stage 20, on Q19, gating term "A" is
always a "one" since the input pin 6 is always a '"zero'". The remaining
bits of 1Xk are unconditionally gated to stages 1-47 of the adder in

the same manner.

286

L8¢C

1Xk 2Xk 3Xk
(Held in feeder Register) (Left Shift Xk one place) (Add 1Xk + 2Xk)
2 non 20 20 ' 20
20 20 20 L 21 20 4 ol >21;
2l__p 21 2! gy 22 2l + 22 > 2
2 __r",2 2 _j_i',Z 2 + 2 ___',,ZJ
|
! :
|]
|]
1 |
ch ch. etc.
I
: %
1
! ' 46 | 47 47
] ! 2 + 2 !. 2
246 1y, 246 22? __'_’ 247 247 carry*_gp 248
247 __pp. 247 24 g 248 Carry*k g, 24

* Possible carry from
% Possible carry from

stage 47
stage 48

REQUIREMENTS FOR FORMATION OF 1, 2, AND 3Xk

Figure 7.6-9

88¢

P36-22
END- AROUND
CARRY

+6V

________________ A R
______ T
_____________ ———— e — —— ——
_______ e e
SUBTRACT / SUBTRACT
Xk FROM Xj / 2 TIMES Xy
/ FROM Xj
L U R . | S S
/
/
_____________ J

7O BIT 4
m29 mzi
sc 3
6
BIT 3 P BIT 3
e
7
rd
I'd
_________ p—a
m20
c
BIT 2
e
’
/
Y
s

Q26

Qel 4122 + 1+ CARRY +
Q2+ CARRY

Q25

P36-24
END- AROUND
CARRY

BIT 3

MI3

Mi2

S

>I0

e

BIT |

SUBTRACT

3 TIMES X

FROM Xj

BIT O

[s¢]

Figure 7.6-8

The value 2Xk is gated in a manner similar to 1Xk with the exception
that each bit position is left shifted one place. Bit 20 of Xk is
therefore fed to stage 21 of the adder, bit 21 of Xk to stage 22, etc.
The stage 20 input is a constant '"zero" (M20, pin 6) since a '"one"

value is never possible when left shifting Xk.

3Xk ADDER:

The 3Xk Adder is a full adder which forms the sum of Xk and 2Xk. Since
2Xk is formed by left shifting Xk one bit position, only one feeder
register is required. Each bit of the feeder register (MA modules)

has two outputs to the adder logic. One output is to the corresponding
stage of the adder; the second is to the next significant bit position,

as follows:

Xk bits 47 46 45 —cemeeeeea- 3210
2Xk bits 47 46 45 44 —ceemmmmeee 210
3Xk bits 49 48 47 46 45 ------meee- 3210

As can be seen, the result may be 50 bits in length because of the
possible carry into bit 249, Note also, that bit 20 of the result will
always be the same as bit 20 of Xk since nothing is added to that bit

position.

A e oA 1242 £~ on . PR — g i
A true additio formed by the adder (as opposed to subtracting to

)
}-l
w
T
4]
al

add, complementing operands, etc.). As a result, the conditions generate,

satisfy, enable and pass are defined as follows:

Generate Satisfy Enable
Xk 1 0 1 0
2Xk 1 0 0°F1

The condition Satisfy is also referred to as a Pass.

289

The addition is performed in three basic logical steps:

1) Determine whether or not Equivalence exists between the
two source operands.

0

i.e. EQUIVALENCE =>>

| =

2) Determine into which stages carries are entered. A carry
will enter a stage if the previous stage is a generate or
if some other less significant stage is a generate and none
of the more significant stages are satisfied.

3) Toggle the results of the equivalence checks for all stages
that do not have a carry in.

The following example illustrates the preceding steps. The original

value of Xk is assume to be O 01234567(8).

NOTE: 1) S,E, and G refer to Satisfy, Enable,
and Generate respectively.

2) Asterisks indicate those stages with
a carry in.

* %% k% hkk khk ok

SS S SEE EES EGG ESE EEG GEE GGE

0 ~——0 001 010 011 100 101 110 111(2)
00 0 010 100 111 001 011 101 110
11——— 1 100 001 011 010 001 100 110
00— 0 000 001 110 O11 111 111 100
00 =——— 0 011 111 010 110 001 100 101
Oe—0 3 7 2 6 1 4 5

Xk

2Xk

STEP 1 (Equivalence)
STEP 2 (Carry In)
STEP 3

IN OCTAL

o

Using octal arithmetic, the same result is obtained:

Xk =0 01234567
2%k = 0 02471356
3k =0 03726145

The following formulas which define the sum as a "one" or a "zero"

can be derived from the above procedure:

Sum = "1" if Equivalence ¢« Carry + Equivalence - Carry

Sum = "O" if Equivalence -« Carry + Equivalence - Carry

290

Several module types are used in the 3Xk adder. Their functions are
generally described as follows:
MA - Contain feeder register, make initial equivalence
check, and propagate carries within a 3-bit group

(bits 0-2, 3-5, 6-8, etc.).

ME - Determine the pass and carry-out conditions for
3-bit groups.

MH - Determine carry-outs for six sections (bits 0-9,
10-18, 19-27, 28-36, 37-45, 46-47). Also, final
carries into stages are determined for some bits.

MI - Sum up the group and section Pass conditions.

MJ & MH - Make carry propagation checks for carries into
3-bit groups.

MF - Perform final equivalence and carry summation and
produce the final sum.
A portion of the 3Xk adder logic is shown in Figure 7.6- ,but the
carry and pass summation logic is left out. The Chassis 2 wire tabs

should therefore be used to understand the adder logic completely.

The equivalence check, which is made on the MA modules, is a simple
matter of checking the inputs to each adder stage for a 0/0 or 1/1
configuration. The logic is shown for stages 1, 2 and 3 in Figure
7.6-8 . (The check need not be made for bit 20 since 20 of the result
will always be the same as bit 20 of Xk.) Pin 5, for example, trans-

lates as:

20 . 9l 4 50 . ol

or, Equivalence in stage 2l

Pin 8 translates as:

21.22+21.22
or, Equivalence in stage 22

291

This check occurs for all bit positions on the MA modules, which are
located on R11 through R26 (bits 0-47 of Xk). The result of the
equivalence check are sent to the MF modules and are ANDed with the

carry-in conditions to generate the final product.

The final sum is generated on the MF modules (see Figure 7.6-8) with
an equivalence circuit. For example, 2Q25, TP4 is the equivalence
circuit for stage 2l of the adder. If the two inputs (pins 10 and 9
which are the stage equivalence and carry-in conditions respectively)
are both ones and both zeros, the output on pin 13 will be a "one'.
The outputs of the test points (i.e. #4) are actually the false value

of the sum, 3Xk and are fed to the adder inputs (GC modules).

Since a relatively comprehensive understanding of other 6600 adders

is assumed, further discussion of the 3Xk Adder is felt to be some-
what wasteful. At this point, the concept of the adder should be quite
clear. 1If further analysis is desired, this concept should guide

research of the Chassis 2 wire tabs.

292

7

.6.6

SUBTRACT Xk from Xj

Since all three coefficient subtractors operate similarly, only
one , Xj - Xk, is discussed. The subtractors form the difference

logically, according to the following rules:

GENERATE. SATISFY ENABLE
Xj 0 1
Xk 1 0 1 9

The final summation logic generates a difference of "one" if the

following conditions are met:

(EQUIVALENCE) (BORROW IN) + (EQUIVALENCE)(BORROW IN)

EXAMPLE:

In QOctal: Xj =
Xk
DIFFERENCE = 41407

N N
O N
(S)
N =

Machine Method:

Stage Definition SEE ESE GEE ESG EGS
Xj = 110 111 010 110 OOl

Xk 010 101 110 101 010

Equivalence 011 101 011 100 100
Borrow In 000 011 000 011 100

(EQ*B) + (EQ - B) 100 001 100 000 111
In octal 1 4 0 7

Il

I

I
~

Figure 7.6-10 shows the lower three stages of the Xj - Xk subtractor.
The GC modules make equivalence, generate, and satisfy checks

according to the above rules. For stage 2°:

293

©76¢

COMPLEMENT OF TRUE RESULT,
GOES TO DIVIDEND Xj

REGISTERS IN THE 3 SUBTRACTION
NETWORKS, LEFT-SHIFTED 2 PLACES.

XK BIT)

DIVIDEND

DIVISOR
Xk BITO

IN UPPER GROUPS, PINS (3
8 18 RECEIVE BORROWS
FROM LOWER STAGES

END-AROUND BORROW
SATISFY ON X -2XK 6
gg END_x ROUND BORROW {a]
D P L
ENABLE Xk 175 ‘ 1CK Xj =Xk
SUBTRACT "“I" FROM “0"
IN UPPER STAGE
SUBTRACT "I" g ¢
FROM "0" IN 21
SECOND STAGE H GENERATE
AND UPPER,
BIT OF Xj="0"
SUBTRAGT “1"
Thow oy B
FIRST STAGE D
AND BOTH J
UPPER B|TS
oF Xj= "o K

Figure 7.6-10

pin 7 =3 Xj * Xk =——3» Satisfy
pin 8 =——=> Equivalence

pin 9 — % * Xk ———=» Generate

These are sent (via P39) to L28, the final summation network.

Keep in mind that an end around borrow indicates that the Xk
multiple is greater than Xj in which case the difference is not
used. Only if there is no EAB, will the difference be useful.
Thus, bit 2° will never have a borrow input. Thus, the formula for
a "1" in 2° of the result is simply Equivalence (L28, term D). The
output for bit zero is taken from pins 21, 12 & 19. This is the
complement of the true out-put and therefore can directly set the
feeder register flip-flops. It is gated only if the "Pick Xj - Xk
gate is a "one". 1In the same manner, the output for 2' is taken
from pins 5, 4 & 1 and for bit 22 from pins 26, 28 & 27 - again, in

complement form.

Stage 21, of course, will have a borrow input if bit 2° generates
(L28,9). 128,10 indicates Satisfy in bit 2°, but this input will
not be used since an EAB can never occur. L28,8 indicates
EEEE;;TEHEE in stage 2'. Translation of terms "E" and "F" yield the

following formulas.

L28, "E" =—3>> EQ + B

L28, "F" == EQ + B —>>(term J = constant "l")

These terms are ANDed at the 2' output circuits (pins 5, 4 & 1) to
yield the following translation for a difference of "1" (zero

output):

295

E.F —> (EQ +B)(EQ + B) —> EQ- B + EQ * B

This corresponds to the initial machine method example. The
remaining bit positions are logically similar. Proof of their

operation is therefore left to the reader.

296

7.6.7 QUOTIENT QUTPUT NETWORK

After completing 24 divide iterations, the coefficient of the final
quotient is held in the quotient shift register until receipt of the
"Transmit" signal from the score board. When the "transmit! is
mented value of the quotient

will be sent on the data trunk. If bit 248 of the quotient shift
register is set, the quotient must be right shifted one place before
being transmitted. Also, if an error condition exists (i.e. Under-
flow, Overflow, or Indefinite Result) the coefficient must be made
all zeros. The function of the output network is to select and

transmit the proper quotient.

48

The right shift logic is shown in Figure 7.6-12, If bit 2 of the

quotient is set (E13, TP6) and the quotient is ready (ELO, TP1),
terms B and D on J 16 will be "ones!". This enables bit 1 of the
result to the bit O transmitter, bit 2 to bit 1, bit 3 to bit 2, etc.,
and in this manner performs the right shift one place. If 248 is a
zero, terms A and C on J 16 are ones (B and D are '"zeros") to enable

each bit to its respective transmitter and thus disable the right

shift one place.

Note that terms A and B on the RM Modules translate as True and
Complement respectively. The logic which determines whether the
true or false value will be selected is shown on sheet 186 of the
C.E. Diagrams. Since the logic requires quite a detailed analysis,
only the concept will be presented here. The actual proof of the

logic is, in most cases, left to the student.

297

862

12750

t7s

EI3

ONE- PLACE QUOTIENT, |PA
OVERFLOW (BIT 48 = "1")

00 ONE—PLACE
RIGHT SHIFY

BIT 3
I3 -27

H24
o
N
N\
a7 16
- =
E10
STOP LEFT-SHIFT, |AA] H23
COEFF. READY e
25 16

S5 T
0+

[

25 19
(253
®

D
[+
23 21
D
A

Figure 7.6-12

When the original coefficient signs are alike (i.e. 1/1 or 0/0)

the quotient should have a positive sign. If the signs were unlike
(i.e. 0/1 or 1/0) the quotient should have a negative sign. Test
Point 3 on 107 will output a '"zero" to enable selection of the false
coefficient if the signs were unlike AND the quotient is NOT infinite,
indefinite or zero. (The existance of these conditions is determined
by checking the original operands and the exponent of the result.)
Test Point 1 will output a "zero'!", to enable selection of the true
coefficient, if the signs are like AND the quotient is NOT infinite,
indefinite or zero. If one of the error conditions does exist, both
test points will output "ones" and thereby cause terms A and B on

the RM modules (figure 7.6-12) to be zeros. This disables the
coefficient transmitters and causes "zeros' to be sent in bits 0-47

of the result,

299

7.6.8 EXPONENT ADDERS

Three adders, shown in Figure 7.7-13, are required for the formation

of the final exponent:
The first forms the algebraic difference of the two exponents,

xj -xk.

The second subtracts 60(8) from the result of the first. This
value is used as the final exponent if right shifting one place

to normalize is not performed.

The third adds 1 to the result of the second adder. This value
is used if a right shift one place is required to normalize the

quotient.

X j-Xk SUBTRACTOR:

Refer to Figure 7.6-14 (Xj-Xk adder logic) during the following
discussion. The feeder registers are located on QA modules and hold
the complement of the Xj exponent and the true value of the Xk exponent.
Recall that this adder, using QA, QB, QC, and TJ modules (like the
Peripheral Process or A and Q Adders and the Multiply Xj +Xk Adder)
normally forms a sum by adding the complements of numbers and then
complementing the result. Since a difference of the exponents is
required, and is accomplished by adding the complement of Xk to Xj,

the Xk feeder contains a true value and the Xj feeder a false value.

For example, in forming A - B:

TRUE ADDER ADDING COMPLEMENTS
A = 0125 A = 7652
B = 7723 B = 0054
0050 DIFF= 7706
1 DIFF= 0051
DIFF= 0051

300

10¢€

TRUE EXPONENT

REGISTERS _ _
T Coumon !
! To !
CHASSIS 2 | wuLT 1 a2 |
INPUT | a H
REGISTERS I DIVIDE |
4] | kA |
TRUE 5
——-—:():——-——H' | oA
|
) BIT 89 ! |
Xj : Xj | a
EXP 1 X3
! i !
I COMP_ o |
| |
BIT 59 : : SUBTRACT
QA X=Xk
| | l_.)
fe] | kA
TRUE |
SR— ————1—-’
|
! : Xk
x BT 5% | H
k] XK |
EXP)]
_~ CoMPp | :
T
Y ' '
BIT 59 L ____ 1
TEST RESULT
T(|
V777 | 1777
1P INDEFINITE RESULT = ®
EXP=3777 INDEFINITE
— cowp COEFF=ALL "0'S RESULT,
I EXP=ITTT
xj -xg 3776 131 COEFF=ALL "0'S
PN
SUBTRACT M
Xj =Xk ~60g (48,0) > BT 48
3776 [re]
BLOCKS SENT
ADD, AT
f SINCE tes
60g Xj 3777=0
(480 -Xk oK
~60g oM
(48,0) [
AbD _,Cj{_, BIT 48
Xj ~Xk=57g (47)0) OVERFLOW
UNDERFLOW
EXP=ALL “0'S"
.l COEFF=ALL "0's"
comp
Xj BIT 59
Ky BIT 59

7 ° 6-13

(SIGNS UNLIKE)

OUTPUT FOR: DIVIDE

BOOLEAN
MULT 1 &2

o

g) TO CHASSIS 8

(415

E38 -1
E38-1)
E37-23J
E37-17 T—»O—BJ
X;
)
Xk s
E37-1 0:
; 9
E37 -1l 5 6‘»—90——'(
Xj CARRY
B
A
19
()
150
(e ol

!

COMPLEMENT OF X; EXPONENT,
TRUE VALUE OF L EXPONENT,

END —AROUND

G28

ENABLE:
EACH STAGE CONTAINS AT
LEAST ONE "i'

CARRY :

I. TWO "I'S" IN UPPER STAGE.

THIS NETWORK SUBTRACTS Xj — Xk
BY ADDING TRUE Xy TO THE COMPLEMENT OF X

TRUE

i*

RESULT OF

Xj — Xy EXPONENT

2. TWO "I's" IN SECOND STAGE AND AT

LEAST ONE “I" IN UPPER STAGE.
3. TWO "I's" IN LOWER STAGE AND AT
LEAST ONE "I" {N EACH UPPER STAGE.

7.6-14

STAGES

" ENABLE

10

STAGES

a ENABLE

STAGES

ENABLE

I30-22
I3t-22
I29 - 20
I28-16
I29 —-i4
I28-22
I29-22
I30 - 14
I3 -20
I31 ~-14

I28-21 O

I30-27 6

I30-2¢ 6

I28-2% 0

I29-16
I30-20
I30-16
I31-24
I29-24
I130-24
I28-24
I31-16
I28-~14

I3t-27 9

I29-21 3

I31-25 9

I31-21 9

129-25 3

I29-27 3

Either method yields the correct answer (i.e. 125 - 54 = 51).

In the true adder,

a) EQUIVALENCE < CARRY IN + EQUIVALENCE - CARRY IN

I
s

If
o

b) EQUIVALENCE * CARRY IN + EQUIVALENCE < CARRY IN

In order to add complements and obtain a true sum (which is, in this
case, a difference since Xk is complemented), it is necessary to
complement the result of the addition. 1In the Xj - Xk adder this

is accomplished by reversing the meaning of a carry. A carry will be
generated from stage "X" if both the feeder registers contain '"ones"
or if a carry enters stage X from X-1 and stage X is not a satisfy
condition. But, since the feeders contain the complemented values

of Xj and Xk, a generate condition (1/1) indicates a satisfy as far
as the true values are concerned. In the same manner, a satisfy
condition (0/0) in the feeders actually indicates the presence of a
carry when refering to true operands. Thus,athe definition of a carry
has been reversed and causes the result to be complemented '"automa-
tically" within the adder. With referrence to the true values of

Xj and Xk (not the contents of the feeders), the formulas defining

sums of 1 and O become:

I

1) EQUIVALENCE - CARRY IN + EQUIVALENCE - CARRY IN 1

0

2) EQUIVALENCE ¢« CARRY IN + EQUIVALENCE - CARRY IN
The student is now referred to Figure 7.6, where the Xj - Xk adder
is representatively shown. To the left are the QA modules which
contain the feeder registers. Next are QB modules which check for

stage equivalence and carries entering stages within a 3-bit group.

303

For example, test points 4, 3 and 2 indicate "equivalence' in stages
20, 2l and 22, respectively. Also, test points 6, 1 and 5 indicate
the tarry in" condition to stages 0, 1 and 2 respectively. These
conditions are combined on the TJ modules according to formulas #1
and #2 above. To the right are shown more QB modules and QCs which
determine which groups have carries in. This determination is made
by combining the carry out (generate) and enable conditions of
individual stages. The procedure used for carry checks is similar
to that used in other 6600 adders and is therefore not belabored.

If detailed logic analysis is required, the Chassis #2 wiring tabs

should be used.

The true value of the result is seen at the output pins of the TJ

modules and is used as an input to the Xj - Xk - 60 adder.

(8)

Xj - Xk - 60(8) ADDER

Refer to Figure 7.6-15 during the following discussion. Since QB
and TJ modules are used in this adder, as in the Xj - Xk adder, the
concept of the two adders must be the same; in other words, the
result is generated by adding complements. No feeder registers are
required, since one input is the output of adder #1 and the other
input is always 60(8) or 000 000 110 000(2). To understand the
wiring of the inputs to this adder, the values that the QB modules
"look for'" should be kept in mind. For example, in the Xj - Xk
adder the following translations for various QB terms are made

(with relation to the feeders):

304

SUL

TRUE RESULT OF

Xj— Xk
EXPONENT
BIT
4
2 628-27
(OPEN)
| G28-4
(OPEN)
0 6u8-12
(OPEN)
END- AROUND
TARRY

SUBTRACTS 60g BY AD

C35

> -4

i
Xj —Xk~—60g

FEXPONENT
BIT

]
T

>ENABL

E

EACH STAGE CONTAINS
AT LEAST ONE 17

L CARRY

Two "i's" (N UPPER STAGE.

. TWO “I's” IN SECOND STAGE

AND AT LEAST ONE "i"
IN UPPER STAGE,

wom

. Two "iI's" IN LOWER STAGE

AND AT LEAST ONE "1"
IN EACH UPPER STAGE.

TRUE RESULY OF

DING COMPLEMENT

C36

+ 6 VeAAAN—

5 G29-4 ¢

+6 V€ VW

4 G29-12

3 628-19

{OPEN) 1 !

CARRY
OuT OF 2

om om

Cc35

20
A
B 22 L EnABLE
24
c
16
14| pCARRY
B
D

7 06-15

STAGES
H

D29-16

D3C-22

D32-20 O

D29-20 O

D3i-27 6

D32-25 9
D29-27 O

7
D29-25 O

p30-27 3

CARRY TO

Term J => EQUIVALENCE (i.e. Xj * Xk + Xj + Xk)

Term A =Xj Xk (or, Xj +Xk)

Term D =Xj - Xk
Since one of the inputs to the Xj - Xk - 60(8) adder is 000 000 100 000(2)
(60(8)) terms D, E and F on D29 (bits 20-22) and term D on D30

(bits 23-25) can be forced to a "O" (since two ones are never

possible in the first four or upper six stages).

On the other hand, terms A, B, and C on D29 and term A on D30 should
output a "1" when the corresponding bit of the result, Xj - Xk, is
a "zero". This is justified, since if a feeder register were used,
it would hold a"'" when the result was actually a "zerp'" (since it
would hold the complement). Because the second input is always
000 000 110 000(2) the condition of two zeros in bits 0-3 and
6-11 occurs when ever the corresponding bit of the sum, Xj and Xk,
is a one. Hence, the following translations are used:

D29, term A:§2§

D 29,term B=>21

D29, term C=22

etc.

Note that two "l"s is also the condition which generates a 'carry"

(see the inputs to TPl).

The bit 2% and 22 logic differs somewhat from the other bits since

one input to these stages is always a 'one" (i.e. 60(8))' In this

case, two "zeros" in the feeders is never possible and terms B and C

on D30 may be forced to ones. This is done by connecting the input pins
to +1.2 volts. Terms E and F and now enabled and will output a 1 if

24 or 25 respectively is a 'zero'". Thus, the outputs ot test points

4, 3 and 2 on the QB modules indicate the '"Equivalence' condition and

the outputs of test points 6, 1 and 5 the "carry in" condition. Carry

306

in checks and final equivalence/carry summation are identical to the

Xj - Xk adder and are, therefore, not discussed further.

PLUS ONE NETWORK

This network, shown in Figure 7.6-16 adds one to the output of adder
#2. This is accomplished on QM and QK modules. (Note: With the
exception of the pin 10 input, the QM module is identical to the

QK module).

The incrementer can be considered as being divided into four 3-bit
groups, one group per module. In order for a group to be incremented,
there must be a carry in from the preceding groups. Since end around
carries do not exist, group zero is an exception. Because the junction
of this circuit is to add 1 to the value Xj - Xk - 60(8)’ group zero
always has a carry-in (term K is always a "one" since the input pins,
25,26,27, & 28 are open). Thus, the incrementing of group zero is
always enabled since term K = 1 is the requisite for incrementing a

group.

Incrementing group 1 (H29) occurs if group O is all "ones™ (7(8)),
incrementing group 2 (H30) occurs if both groups O and 1 are all
"ones™ (77(8))’ and incrementing group 3 (H3l) occurs if groups O,

1, and 2 are all "ones" (777(8))‘

Tncrementing within a group occurs as follows. TIf term K is a i,
(i.e. there is a carry into the group) the least significant bit is
toggled. The next significant bit is toggled if the least significant

bit is a "one!. The most significant bit is toggled if both bits of

307

80¢

RESULT EXPONENT

Xj -Xk -€0g
BIT
1 oc3r-19
10 car-27
9 C37-4
8 c3r-12
7 c36-19
6 c36-27
5 Cc36-4
4 c36-12
3 c35-19
2 c38-27
| c38-4
0 cas-y2

A

ZSA

525 A

/ 3776 BLOCKS
s/ INCREMENT,
4 SINCE 3777 =0

7-6‘16

Xj -Xg~60g (48,0)

BIT

|

]

2

c37-17

Di9-2

C37-=11

C37-14

C36-17

C36-20

c36-11

C36-14

C35-17

€35-20

C35~11

Xj -Xk=57g (47g) -*—

CRLN A 20
“ A o 24
5 A 27 28 25 & e
A
' &1 30
3, lax
A : | A 20
. A : : A 24
s A A
27 25 |
. I
o
3 s
' A
“ oA
B A
18
72\

P

NO CARRIES INTO STAGE O

lesser significance are "ones'". This can be proved by studying
the logic shown in Figure 7/6-16. In this manner, the value Xj-Xk-éO(S)
is incremented by one to form Xj-Xk—57(8), which is used as the final

exponent if normalization of the quotient coefficient is required.

Very little timing is required for generation of the exponents since
most of the exponent logic is static. The exponents of Xj and Xk

are gated to the exponent feeders at the same time the coefficients

are sent to their feeders (See Section 7.6.4). From that point on,

the exponent bits filter through the adders discussed above and through
the test logic discussed in Section 7.6.9. When a "Transmit' is
received from the scoreboard, the final exponent is gated on the data

trunk.

309

7.6.9 POPULATION COUNT CONTROL

The population count logic of the Divide unit counts the number of

"1" 'bits in operand register Xk and stores the count in operand register
Xi. Since 60(10) = 74(8)’ only the lower six bits of the chassis 2
output network are required to transmit the result to Xi. Since the
time required for generation of the 6-bit population count (800
nanoseconds) is considerably less than the 2.9 microseconds needed

for a floating point divide, and the process itself is different,

separate control logic is utilized.

Figure 7.6-20 shows the population count control logic and should be
used in conjunction with the timing chart (Figure 7.6-21) during the

following discussion.

When the population count instruction (fm=47) is issued to the score-
board, the "Pop. Count" mode bit is sent to chassis 2 and received by
Test Point 3 on J02. After resolving any second order conflicts which
may exist, the Scoreboard sends the "Go Divide'" signal which initiates
the Divide timing chain. (See Section 7.6.4), and sets the "Go Pop.
Count" flip-flop (D27;TPZ). This enables setting D27, TP5 (t225) and
clearing the Counter network feeder registers (t240). D27, TP5 enables
the "Gate In" signal which enters operand Xk from the chassis 2 Input

register to the counter network feeder register.

The first step in generating the Population Count is to generate

"4-bit sums". (See Section 7.6-13 for logic analysis of the Population
Count Network). This logic is static (i.e. no gate is required), so
term #6 on the timing chart indicates the time allowed for generation

of the 4-bit sums (The time lapse from entering the feeders until the

310

first sum is generated).

The fifteen 4-bit sums are added together using four iterations each
of which is 100 nanoseconds in duration. The iterations are shown

with terms 7, 8, 9, and 10. The solid pulses illustrate gating into
the Adder feeder registers on t50, while the slashed pulses show the

stages of the divide timing chain that enable each of the four iterations.

The "Request Release! is gated from chassis 2 at approximately t540

if the Divide unit is in the Pop. Count mode (term #l1l). The divide
timing chain is disabled on the t25 after setting the t650-750 stage
in the chain (term 12). This is accomplished by disabling the setting
of the t725-825 stage of the chain, thereby preventing further

propagation to the remaining stages.

The result is gated to the result register upon receipt of the
"Transmit!" signal from the scoreboard. The earliest possible time

(no third order conflicts) is t740 as illustrated by term #13. Only
transmitters fro bits 20-25 are used during the Pop. Count mode, since

the count cannot exceed 74(8)’

311

1€

GO
DIVIDE LI

FEEDER
REGISTER

I 101

POR COUNT

© be]

25 MO
0% --- 43
COUNTER SUMMING
14 €] eaTE NET WORK NETWORK
+,2 V(out

OUTPUT
>~ [a] caTE NETWORK K02
~_i
4] :

J02 Gi6
TL
27,17
gl
|
|
L POR COUNT ‘13,“"/"3"56
(TO DISABLE,DIVIDE CHAIN |
AFTER' 1650)
\\ J22 REQUEST RELEASE EOI
\
\
4 9 12 8
- D~ ~ —GDSCOREBOARD
1515 L
| '
12687 -2

Figure 7.6-20

€1¢

POPULATION COUNT TIMING SEQUENCE

Time in nanoseconds: 00 100 200 300 400 500 600 700 800
1) Go Divide (LII,TPI)
2) Go Pop. Count (D27,TP2)
3) Pop. Count Sequence (D27,TP5)
4) Clear Counter Foeder (MD)
5) Gate In (MD)
6) Four-bit Sums ANAVRAANNYY
7) First Sum PANY (VAN
8) Second Sum M
9) Third Sum AR
10) Fourth Sum AR
11) Request Release (EOI,TP1)
12) Disable Divide Chain (D21 {TP3) AN
13) Transmit Result (RH) *

* Earliest possible time - no third order conflicts

Figure 7.6-21

7.6.10 POPULATION COUNT NETWORK

Generation of the population count is accomplished in five steps,

each of which requires 100 nanoseconds. This is illustrated in block

diagram form in Figure 7.6-22.

1)

2)

3)

4)

5)

Divide the 60-bit operand Xk into fifteen 4-bit groups and
determine the number of "1's" in each group. The totals
("4-bit sums") for each group will be 0,1,2,3 or 4, and will
therefore, be 3-bits long.

Combine the outputs of the 4-bit sum generators two at a time
(in parallel) to generate the sum of 'ones" in 8-bit groups.
This is done by using eight add networks. Seven of the networks
generate sums of eight bits and the eighth, the sum of the upper
4-bits (which is already available from the upper 4-bit sum
generator, but is filtered through the add network for timing
purposes.) This iteration is referred to as the "First Sum".
Combine the outputs of the first sum adders two at a time (in
parallel) by using four add networks. Three of the networks
generate the sum of "ones" in 16-bit groups and the fourth, the
sum of 12 bits. This is referred to as the "Second Sum."
Combine the outputs from the second sum adders two at a time
(in parallel) by the use of two add networks. One network
generates the sum of "ones" in 32-bits and the other, the sum
of 28-bits. This is the "Third Sum".

The "Fourth Sum'" adds the outputg of the third sum adders to
form the final count of '"ones!" in the 60-bits of Xk. Since the

count cannot exceed 74(8)’ only the lower six transmitters of

314

o
|

1

I

|

|

|

I

|

I

|

l

l

|

!

| TO
|Xl.
|

|

|

o
b

|

|

_wm

1 4 3 \

| o»

o]

_F

i
2 |
3
o

i

I

1D g

2 a ® ~

m = o~ 22

|
m_
T T A _— e — - - = = =
]

|

I

|

'T g

_Ou

(S5 ~N Ne) O O

[} — — i —

| v
Q|
5 — —— p— — | = oy am—— wa— v a—
F— = = = = - —— = — — —_— e \ —~ S — -
|

|

o

7]

| w m

o

_F

| g e o] [+ 0] <o) [e o] (e o] (e o] [+ o]

* 4

|
Q
Y
™ . ——_——_——] - - - - e — e _ | — =] — =] ==
p+-—-———|-=]=—|--

[

|

_mS

| -

J O

72 I E]

_ o} el n — ~ [3a} o)) 75 — ~ 28] [e s —

|] [Ta} ['a) wy 3 ~ o o o o~ o~ — — — ~ ™
- O 1 1 [} [}]] 1] [1 1 i 1 1 1
m < O (3] [+ o] ~ Q O N [e o] < (@] O o~ ¢ o] < o
[] [T [Te} g < ~ ™ [22] o~ o~ o~ — —

_A.G

|
21
N e e e e e e e e e e -
———— — = = = - = = = = = —
&

Figure 7.6-22

the data trunk are used in gating to Xi.

Figure 7.6-23 shows the logic required for one 4-bit sum generator.
To the left is the feeder register which is held on MD modules. The
feeder contents are sent to KD modules, each of which generates a
3-bit long count of ones for a 4-bit group. The first check made on
the KD's is for equivalence or EEG;;ETEEZE between two adjacent bit
positions. The existance of equivalence implies that the two bits
position contain O or 2 "ones". Equivalence indicates that only one
"one" exists in the two bits. HOl, TP4 translates as:
7228 + 2075 1 wonen
and term F as:

2 °2° + 2 fl 0 or 2 "ones"
Test point 1 makes the same translation for bits 22 and 23. These
outputs are combined to determine the number of "ones" in 4-bit positions.
The following translations are made for test points 6, 5 and 2, respec-
tively, of the sum of ones: The numbers in the formulas indicate bit
positions. The following translations are made for test points 6,5 and
2, which are bits o, 1, and 2, respectively, of the sum of ones: The

numbers in the formulas indicate bit positions.

TP6 0:1- -T-i 2-3+
-1 1-2 -2-3

olol

2
2

wlwl
olol

2:3
2-3

++

1°2°3 +0-1
-2 “1:2:3 + 01

0
0
The formula covers all possible one/zero configurations which give an
"odd" sum of ones (1l or 3), since only then should 20 pe set.

TPS (0°1)(2:3) + (0°2 ;(g

hi 1-3) + (0°3)(1-2
(0-3)(1-2) + (0-2)(1-3) + (0-1)(2-3

This formula includes all possible bit combinations that yield a sum

of 2 or 3 "ones", in which case bit 2' should be set

316

LT

FROM Xk

INPUT
REGISTER
~

=

59

48
47

0

- S—

COEFFICIENT J
—_—_————

FEEDER REGISTER

B 59 58 57 56 E36|PD
[55 54 53 652 E35]PD
BIT 51 50 49 48 E34]pD] | |
A A A A L
EXPONENT d zand14 O - 6 -

B8
v
16
(GO MULT. 142 EXR) (1175) #)—v O

[BIT 47 46 45 44 43 42 108 |MD)

il

41 40 39 38 37 36 107 MD

[

35 34 33 32 31 30 I06 (™MD

D F
L E— |
[4]
3 GATE IN
POP
COUNT
CONTROL i3 Q CLEAR
- =< G
Hae v ! E GATE OUT

[2 20 27 26 25 24 105MD| ||
[23 2z 21 20 f9 18 Toa[mo| ||
[7 16 15 14 13 12 103 |MD)
| i 1o 9 s 7 6 102M0]|[

Y

Q

ONES COUNTER

[BiTs 5659 H15 [kD
- 248 [52-55 w4 ko
TS0 485 H13 Jxp
[44-47 Hi2 [ko _r
[40-43 Hit Jkof | |
EED H10 ko] | |
[32-35 Ho9 Jko[| |
[28-31 Hosfko] | |
[24-27 Ho7]ko | |
[20-23 Ho6 [ko] | |
[1619 Ho5 ko] | |
[1215 Ho4 Jkp
[81l nos ko] | |
[a7 oz ko[| |
BITS 0-3 Hot [ko] | |
A
. |
A
C
A
D iy __ 2]
8
¢
B
0
c
D
T
1
K
R
M 8 2!
o m o —— o
P
0
N
Q
L
s
9
E
H . 23 20
. >_ ____________
oA

Figure 7.6-23

SUMMING
NE TWORK

QUTPUT
NETWORK

5

TO X5

TP2 0-1-2°3
This is the only possibility that yields a sum of 4 and it will

therefore set bit 22 of the sum.

These translations are made for each 4-bit group and are subsequently

added together in the summing network.

The summing network is a standard full adder which performs all

four additions required to form the pop. count. This is accomplished
by using four iterations. (See Section 7.5-12 for the Pop. count
timing sequence). Since each iteration requires fewer inputs than
the previous, each will use less stages of the adder. (Refer to the
C. E. Deagrams, sheet 210). The first sum adder networks have 3-bit
inputs from the 4-bit sum generators. During the second iteration,
4-bit inputs are used since the value of the just sum may be as high
as 8(8)’ of 10(8)' For the third and fourth iterations 5-bit inputs
are required since the second and third sums may be as high as 20(8)

and 40(8)’ respectively.

The same add network is used for each of the four iterations of the
population count, although all of the inputs are not used for the
second, third and fourth iterations since the number of inputs become

successively smaller for each iteration.

Figure 7.6-24 shows the logic for three bits of the summing network.
The TE modules are used to fan-in and select the inputs during each
iteration. On the module shown, only enables for the first three sums
are shown since the add network fed by the F09 QA module (feeders) is

used only during the first three iterations. Fll (sheet 210) is the

318

61¢

1.2V

+1.2v

(G06-2)— —

+1.2V

{GO03-1t4)~ — — —
{HIB-19)— —
(HI3 — 1) — = — — = —
(HI7 — 4)— — — —
(H18-27)— —

HI3 — 8) - — = — — —
(H17=12)— = — —
(HiIB-11)— —

(HI3 =23} - — — — — —
(GI6 — 18)— — — —
(HiB8-14)—~ —

t 300

t37s

Gl1a—17)

— ~(F17-i8)
24
— — — —(G14-28)
> — —(F17-26)
23
> — = — —(GI14-27)
— —(FI17-4)
22
- - - —{614-2)
4
— —(F17-3)
5!
- — — —(61a-1)
— = {F17-13)
20
— — = —{614-12)

Figure 7.6-24

only QA module used during all four iterations. Therefore, the TE

module feeding F1ll will have four enables rather than three.

Each of the add networks operates essentially the same, using QA, QB,
and Tj modules, so only one will be discussed in detail. The QA
module feeders hold the true values of the inputs. The outputs of
the feeders feed QB modules which perform two main functions.

1) Check for stage equivalence between the two source counts.

2) Check for and propagate carries from stage to stage to

determine which stages have carries in.

The equivalence check outputs are on G09, test points 4, 3, and 2

for stages 0, 1 and 2 respectively. These translate as '"Equivalence"
and are sent to the TJ modules which perform the final carry/equiv-
alence summation. Carries are propagated to the TJ modules, stages
1,2, and 3, from pins 2, 28 and 44 of GO9 (stage O will never have a
carry in). The TJ modules contain an equivalence network for each
stage which checks for Equivalence and Carry In OR EEEICETEHEE and
Eg;;;—iﬁ to yield a final sum of "1". The conditions Equivalence

and Carry In OR EEEZ;;TEEEE and Carry In result in a sum of "0"

for that stage.

Detailed analysis of the gating on the TE modules is left to the
student. The gating can be followed quite easily by using sheet
210 of the GE. Diagrams as a guide when tracing through the Chassis 2

wire tabs.

320

SECTION 7.7
INCREMENT

FUNCTIONAL UNITS

=

INCREMENT 0 ING.T || __INGREMENT I __CONTROL_______|

Y

FUNCTIONAL . .nd "

Y

UNITS

AjJ
Xj—>

RN
o

RES—+INC.1II

U2

>

-

,INC.IT K — INC.II

ENTER

Yo'

'S

CENTRAL ENTER K s INC - I

PROCESSOR
DATA PERTPHERAL
CRANNELS PROCESSORS 1
— BfaNcH
INSTRUCTION RESERVATION
ISSUE CONTROL
J— CONTROL (SCOREBOARD)
Eﬂ'_' .—[—— ADD
S
., X e amo
[z
¥ SHIFT
G
-‘—.-E
REGISTER BOOL]
k| e -
P CENTRAL n| ke B X ULT LY 1
EJ‘__. MEMORY o e A e St
s uLgPLY
CONTROL N T |1
L)
. CONTROL 1VIDE
[
E‘_. ! NCREMENT 1
12—}‘—’0 INCREMENT 11
(5
Tl?@q—oi B

INCREMENT FUNCTIONAL UNITS

7.7.1 INTRODUCTION

The Increment Functional Units are 18-bit, fixed point arithmetic units

which perform these general functions.

1. Indexing
2. Reading and Storing Operands

3, Conditional Branch Tests

One's complement addition and subtraction of 18-bit operands is performed
to accomplish the Indexing, Read Operand, and Store Operand functions.
Operands may be selected from A registers, B registers, X registers (the

truncated, lower 18 bits), or the K portion of a 30 bit instruction.

The following instructions are classified as indexing instructions: (They

are discussed in detail in section 7.7.2)

5X0 (where X = 0-7) The result of the arithmetic process specified

by octal "X" is stored in A register zero (A0).

6X Instructions (where X = 0-7) The result of the arithmetic process

specified by octal "X" is stored in any one of B registers l-7. (BO is
a constant all-zero word; if specified as a result register, the result

is lost).

7X Instructions (where X = 0-7) The result of the arithmetic process

specified by octal "X" is stored in any one of X registers 0-7. Since
an 18-bit result is stored in a 60-bit register, the sign of the result

(bit 217) is extended to the upper 42 bits of the X register.

323

02 Instruction The result of the arithmetic process (in this case,

Bi + K) specifies a jump address. The 02 (unconditional jump) is always
out of the stack. Therefore the result is sent to the P register and an

RNI is initiated.

The following instructions may incorporate the indexing function in their
operations, but the end result of executing these opcodes is to read or store
an operand. They are therefore classified separately as Read and Store

operand instructions.

5X1 - 5X5 (where X = 0-7) The result of the arithmetic process
specified by octal, "X", is stored in the A register specified by the

i digit (1-5). The result is also sent to memory as an operand address.
A memory read cycle is made and a 60-bit word is read from memory into

the X register specified by the i digit (X1 - X5).

5X6 - 5X7 (where X = 0-7) The result of the arithmetic process

specified by octal "X" is stored in the A register specified by the i
digit (6 or 7). The result is also sent to memory as a store address

for an operand. A memory write cycle is initiated and a 60-bit word from
the X register specified by the i octal is stored in the memory lccation

specified by the result.

The following instructions are classified as Conditional Branch Test
instructions. These opcodes cause both Branch and Increment functional
units to start at the same. While Branch performs the In Stack/Out Stack
tests (see Section 7.8) the Increment unit selected compares two 18-bit
operands. The results of the tests are returned to the Branch unit where

they are used in determining whether or not the branch condition specified

324

was met. These instructions also are discussed in greater detail in

Section 7.7.2.

The 04-07 instructions will jump to location K if the specified condition

is met.

04 - Bi=Bj
05 -~ Bi# Bj
06 - Bi ™ Bj

07 - Bi< Bj

Logically there are two Increment functional units. Although they share

a common arithmetic section, their control portions are separate - but
interlocked in special circumstances. (see Figure 7.3-1). Because of the
duplexed control circuits, two increment instructions in sequence normally
will not cause a functional unit conflict. (A special case does exist where

a unit conflict will occur. This is explained in later paragraphs).

FEEDERS RESULT

—* INCREMENT I CONTROL I

-l - A

t—————-i—? N\\\\P\\\\\ ///)ﬁ 1
INTERLOCKS
OPERANDS ADDER

1

/4 N
c]

R

== TNCREMENT IT CONTROL
11

Figure 7.7-1

7.7.2 INSTRUCTION LIST/DATA FLOW

The instruction set for the increment units includes 29 opcodes classified

in four groups:

a) 50 - 57 - Result register is Ai
b) 60 - 67 - Result register is Bi
c) 70 -~ 77 - Result register is Xi

Branch instructions

d) 02, 04-07

The 5X, 6X, and 7X use the same source operands for corresponding values
of the octal digit, X, but the instruction groups differ in two respects;
1) the result register specified and 2) the 5X series causes operand read

(if i = 1-5) and write (if i = 6 + 7) memory cycles.

5X Instructions:

50 SWM of Aj and K to Ai ’ (30 bits)
51 SUM of Bj and K to Ai (30 bits)
52 SWM of Xj and K to Ai (30 bits)
53 SWM of Xj and Bk to Ai (15 bits)
54 SUM of Aj and Bk to Ai (15 bits)
55 DIFFERENCE of Aj and Bk to Al (15 bits)
56 SUM of Bj and Bk to Ai (15 bits)
57 DIFFERENCE of Bj and Bk and Ai (15 bits)

These instructions perform omne's complement addition and subtraction of
18-bit operands and store an 18-bit result in the address (A) register
designated by the i octal. Note that the j operand may be selected trom
any cne of the X, B, or A registers. The second operand may be any one of

the B registers or the 18-bit constant, K.

326

Depending on the value of octal i, an operand read or write cycle may be

initiated by the 5X instructions.

If i = 0, no memory reference is made. The result is simply sent to A

register zero (AQ).

I1f i=1, 2, 3, 4, or 5, an operand read memory cycle is initiated. This

will cause a 60-bit word to be read from the memary location specified
by the result of the operation, into the X register specified by octal
i (1-5). Thus, two result registers are used, Ai and Xi, by the 5 X 1 -

5 X 5 opcodes.

1f i = 6 or 7, an operand write memory cycle is initiated. This will

cause a 60 bit operand from the X register specified by octal i (6 or 7)
to be stored in the memory location specified by the result of the operation.
Thus, the result register is Ai, and Xi is, in a sense, a source register

for memory, for the 5 X 6 and 5 X 7 opcodes.

Data Flow: (Refer to Figure 7.7-2)

Upon issuing the increment instruction to the scoreboard, the 18-bit constant
K is gated from the R register to the Result register (I or II) of the
selected increment unit by the K to Incr. I or II gate. After resolving

any second order conflicts which may have occurred, the selected Increment
unit is sent a "GO" signal which starts its timing sequence. The operands
(determined by the m octal of fm) are sent from register Exist control to

the Input registers (feeders) of the 18 bit adder. If fm = 50, 51, or 52

the 18 bit constant K is sent to the feeder for operand two by the Enter

K, Incr I or II gate. If K is not used (fm # 50, 51, or 52) Bk is used

327

INCREMENT FUNCTIONAL UNITS - BLOCK DIAGRAM

8¢t

REQ.REL. I
GO SCBD
INCR I ‘ INCREMENT I CONTROL REQ.REL. IT
interlocks SCBD
GO .
INCR II INCREMENT I1 CONTROL CONDITIONAL NCOND. MET!
-=BRANCH F.U.
fm = 04 - 07——s= BRANGH
= TESTS
/_'. INCR to
Aj MO
X ~+ P 0
X3 _—
INCR to P
R XMIT, INCR I
- \ g ~Q SCBD
Bk - RESULT TO INCR I U
: ESULT TO INCR II L
E—— o) T
TO
1 OPERATING
—— Ul \ ' REGISTERS
17 K TQ INCR I R
: ISSUE g SCBD
| K _,i____ U XMIT, INCR II
' L
l ."‘T
lo | K TO INCR II 11
{ENTER K, INCR II
ﬁENTER K, INCR I

igure 7.7-2

as the second operand. If fm = 55 or 57, Bk is complemented into the feeder

register and a difference is subsequently formed.

The arithmetic result is unconditionally sent to either the Result II or
Result I register, (depending upon which Unit was selected). When the
"transmit” signal is received from the scoreboard, the result is sent to

the designated (by the i octal) A register., If i = 1 through 7, the result
is also sent to the Moregister of the Stunt Box and priority is requested

by setting the Enter Central flip-flop. If i was equal to 1-5, a memory read
cycle is initiated and a 60-bit result will be sent from memory to the X
register designated by the i octal. If X was equal to 6 or 7, a write memory
cycle is initiated and a 60-bit operand from X6 or X7 is stored in Central

Memory.

6X Instructions

60 SUM of Aj and K to Bi (30 bits)
61 SUM of Bj and K to Bi (30 bits)
62 SWM of Xj and K to Bi (30 bits)
63 SUM of Xj and Bk to Bi (15 bits)
64 SUM of Aj and Bk to Bi (15 bits)
65 DIFFERENCE of Aj and Bk to Bi (15 bits)
66 SUM of Bj and Bk to Bi (15 bits)
67 DIFFERENCE of Bj and Bk to Bi (15 bits)

329

These instructions perform one's complement addition and subtraction of
18-bit operands and store an 18 bit result in the B register designated
by the i octal. The j operand may be selected from any one of the X,

B, or A registers. The second operand may be any one of the B registers

or the 18 bit constant, K.
Data Flow (Refer to Figure 7.7-2)

With the exceptions of initiating operand read or store memory cycles, and
storing the result in a flow for 6X instructions is the same as the 5X
series. Once again, the operand combinations are selected by the m portion
of fm and the result is gated to the selected B register by the "transmit"

signal.

7X Instructions

70 SWM of Aj and K to Xi (30 bits)
71 SWM of Bj and K to Xi (30 bits)
72 SWM of Xj and K to Xi (30 bits)
73 SUM of Xj and Bk to Xi (15 bits)
74 SUM of Aj and Bk to Xi (15 bits)
75 DIFFERENCE of Aj and Bk to Xi (15 bits)
76 SUM of Bj and Bk to Xi (15 bits)
77 DIFFERENCE of Bj and Bk to Xi (15 bits)

These instructions perform one's complement addition and subtraction of

18-bit operands and store the 18-bit result with sign (217) extended, in
the X register designated by the i octal. The j operand may be selected
from any one of the X, B, or A registers. The second operand may be any

one of the B registers or the 18-bit constant, K.

330

Data Flow (Refer to Figure 7.7-2)

With the exception of the result register selected (X instead of B), data

flow is the same as the 6X instructions. Operand combinations are selected
by the m octal of fm and the result is gated to the selected X register by
17

the "transmit’ signal. The sign of -the result (bit 2*/) is extended to

bits 18-60 of the X register by using a fan-out.

02, 04~07 Branch instructions

02 GO TO K + Bi (30 bits)

This instruction adds the contents of B register i to K and branches to
the location specified by the sum. Addition is performed in modulus 218.1.

The branch address is K when Bi = BO.
Data Flow (Refer to Figure 7.7-2)

The operand from Bj* and 18-bit constant K are placed in the feeder registers.
Bj is sent from Exit Control and K from the Result I or II registers with

the "Enter K" gate. The operands are added and the "Incr to P" gate is enabled,
sending the sum to the P register. The result is also sent to Result I

or II register (unconditionally), but since a "transmit!" is not received from
the scoreboard, the result is not sent to the operating register. The

result is also sent to MO and from there will be sent to Ml, when stunt box

priority is granted, to initiate the RNI.

" *Recall that on OX instructions, U% and j are sent to U2j and k respectively.

Bj is thus designated by Bi of the original opcode and Bk by Bj.

331

04-07 Branch Instructions

04 GO TO K if Bi = Bj (30 bits)
05 GO TO K if Bi # Bj (30 bits)
06 GO TO K if Bi = Bj (30 bits)
07 GO TO K if Bi < Bj (30 bits)

These instruction test an 18-bit word in register Bi against an 18-bit
word in register Bj (both words signed quantities) for the condition

specified and branch to address K on a successful test.

Data Flow (Refer to Figure 7.7-2)

Operands Bj* and Bk* are sent to the Increment Unit feeder registers.

For the conditional tests of equality (04 and 05) a bit by bit equivalence
check is mode in the result network of the adder. 1If all bits positions
are equivalent, the 04 jump may be enabled. If any bit position is not
equivalent, the 05 jump may be enabled. For the conditional test of
magnitude (06 and 07), the sign bit of the one's complement difference

(Bi - Bj) is examined.

If it is zero, Bi 2 Bj; if a one, Bi < Bj. In all four cases, the

result of the tests are combined with the opcode translation to generate

the "Condition Met" signal (the absense of "Condition Met" implies "Condition
Not Met") which is sent to the Branch functional unit to enable the branch

sequence to continue.

*Recall that on OX instructions, uli and j are sent to U2j and k respectively.

Bj is thus designated by Bi of the original opcode and Bk by Bj.

332

7.7.3

TIMING SEQUENCE

Figure 7.7-3 is a timing chart showing the sequence during increment
operations. Terms are also included for operand read and write
functions so, that orientation with respect to Stunt Box timing is
possible. The page following the timing chart explains each term

listed. It is assumed that Increment Unit I was selected.

333

7Ee

ISSUE
INCR. UNIT BUSY

K TO INCR. I

M33, TP5

Q30, TP3

INCR. SEQ. R31, TP 1
INCR. SEQ. R31, TP 4
REQUEST RELEASE, E38
ENTER K, INCR I
CLEAR IR

OPERANDS AT IR
INCR. SEQ. R32, TP 1

INCR. ADR. P37, TP 2
ENTER CENT. P37, TP 3
INCR To MO

RESULT TO INCR I
TRANSMIT RESULT (CRs)

INCREMENT TIMING SEQUENCE

t300

t00 t100 t 200 t?OO t400
.
*
*
y |
_mm
%
%*
*
.
i |

*Applicable only to Increment Read and Writes (5X1 -5X7)

*%Earliest possible time - no third order conflicts.

Figure 7.7-3

cee

ISSUE:

INCR. UNIT BUSY:

K to INCR I:

M33, TP 5:

Q30, TP 3:

INCR. SEQ., R31,

INCR. SEQ., R31,

REQUEST RELEASE:

ENTER K, INCR I:

CLEAR 1IR:
OPERANDS AT 1IR:

INCR SEQ., R32,

TP 1:

TP 4

TP 1:

INCR ADR. P37, TP 2:

ENTER CENTRAL P37, TP3:

INCREMENT TO MO:
RESULT TO INCR.

TRANSMIT RESULT:

I:

The scoreboard issue of the Increment instruction is used as the time reference for the chart.

The unit busy flip/flop is set for approximately 350 nsec. This unit may be reselected at
t400.

The content of the R register is sent to the Incremement Reuslt Register (I or II).

Set if a 5X1 - 5X7 (C.M. Read or Write) opcode is executed. It will be used to disable two
memory operations to take place at the same time (See section 7.7.4).

Set if a 5X1 - 5X7 (CM Read or Write) opcode is executed. It will be used to set the
Increment Address flip/flop (P37, TP 2).

The first flip/flop of the Increment timing chain. It is set with (GO INCREMENT) and (NO READ
OR WRITE 1IN PROGRESS). (See section 7.7.4) Used to enable Request Release.

The second flip/flop of the Increment timing chain.

Sent to the Scoreboard'!s All Clear network to resolve any third order conflicts which may
exist.

Enabled by setting Q21, TP 4 on the time 25 following R31, TP 1 if the following condition
exists: fm = (5X + 6X + 7X) (X0 + X1 -+ X2) + 02.

Clears the input registers in preparation for loading operands.
Operands are received from Register Exit Control on the JA modules.

The third flip/flop of the Increment timing chain (Used to gate results from the adder output
network.

Set if a 5X1 - 5X7 (CM Read or Write) opcode is executed. Used to gate Increment result to M0

Set due to setting Incr. Adr. Flip/flop. Request priority to enter address into Ml from MO,
(only during 5X1 - 5X7 instructions)

The gate which sends Increment result to MO (during 5X1 - 5X7 instructions)
Gates adder output network into Increment result register (I or II)

Result is transmitted to result registers with t25 on CR modules (transmitters).

7.7.4 ADDER CONTROL

General Information

When all Read flags are set, the "Go Increment'" signal starts the control

sequence of the Increment Unit selected. The adder is common to both Increment

units, but as has been mentioned, the control sequences are separate for each

unit.

The control sequence is a timing chain which accomplishes the following

(Refer to section 7.7.3 for specific timing information).

1.

2.

Transmits Request Release to scoreboard.

Clears adder feeder registers (IRs)

The "Go Increment'" is ANDed with an fm translation and in the case

of a {(5X + 6X + 7X){X0 + X1 + X2) o 02 instruction, gates K to the
input register. (K, the lower 18 bits of U2 are unconditionally sent
to the R register on every issue, If an Increment Unit is selected,
R is gated to Increment Register I or II),

The "Go Increment" is ANDed with another fm translation and for

(5% + 6X + 7X)+. (X5 + X7) or 04 - 07 instructions (difference or branch
tests), Bk or K is complemented out of the Input Register into the
adder.

"Go Increment'" clears all Read flags.

Gates the result from the adder into the Increment I or II register.
(Figure 7.7-4 summarizes the sources of operands and destinations of

results).

336

INSTRUCTION RESULT DESTINATION

02 K + Bi MO and P registers
04 - 07 Condition Met or Not Met Branch Unit
5X, i = 17 (A+B+X)j plus (Bk + K) MO and Ai Registers
5, 1 =0 (A+B+X)j plus (Bk + K) Ai register
6X (A+B+X)j plus (Bk + K) Bi register
7X (A+B+X)j plus (Bk + K) Xi register

Figure 7.7-4

The results to MO and P registers are transmitted from the result network of
the adder. The results to the operating registers are first sent to the Incre-

ment I or 11 registers from the result network.

Increment First Order Conflicts (Special Cases): (5X)(i = 1-5)

When an increment instruction (5X)(i = 1-5) is issued to the scoreboard a
reservation is made for the X and A register involved. A is reserved with an
Increment Unit code (01 or 02) and X with a Memory to X code (11 - 15). Thus
before the scoreboard issue is enabled, both X and A registers must be free.
On Modules E26 and E27, both Ai and Xi reservations will be checked (term T),

and the scoreboard issue occurs only if both reservations are cleared.

The Ai and Xi reservations are cleared by separate gates, Ai is cleared upon
"Release" of the Increment unit (Request Release and All Clear). Xi is
cleared only when the address sent to memory is accepted. Logically, the hopper

tag is translated (11 - 15) and is ANDed with the Accept for that tag.

337

(56)(i =6 +7)

In the case of a 5X instruction where i = 6 or 7, the A register (6 or 7) is

the result register of the Increment unit, while X6 or X7 may be considered
"'source registers!” for memory. When considered in this light, it seems that

the A register should be reserved, but the X register need not be reserved

(it is not a result register). As far as the XBA reservation list is concerned,
the A register is reserved (code = 01 or 02), but the X register is not.

If the store operation was delayed (by second order conflicts or memory priority)
and if no other circuitry was involved in handling operand store instructions,

it would be possible for a subsequent instruction to specify X6 or X7 as a

result register and to change X6 or X7 before storing the previous content

in memory. Hence, the wrong operand would be stored. Study the following

example:
| Read l Execute Store |
sooc | | - I
Address Stunt Box X6 to Memory
to MO Priority
Conflict or
Bank Conflict
I Read Execute Store J
IX6 = X1 + X2 | ' | e
Result
to X6

The result of the Long Add instruction is stored instead of the previous content

of X6,

338

To eliminate this problem, two flip/flops are used (refer to Figure 7.7-5).

TP 6 on LOl is cleared (via pin 15) whenever an Increment Write is issued

with bit 20 of the i octal equal to zero. This implies a 5X6 instruction.

LOl pin 17 feeds the result register reservation logic and whenever a result
register, X6 or A6 is desired, a first order conflict results. TP 6 on LO2
serves the same function for an Increment write of X7 (5X7 instruction).

Thus, a '"pseudo-reservation' of X7 or X6 takes place during Increment Write
operations. The reservations are cleared by ANDing an "Accept' with translations
of the lower three bits of the hopper tag (X6 or X7). (The upper octal need

not be translated since, with the exception of exchange jump hopper tags, no

other tags use a second octal of 6 or 7, Hence a tag of 56 or 57 is implied).

The implications of this special case are as follows: 1) The "pseudo
reservations' made on modules LOl and L02 will cause a first order conflict
with any instruction requiring X6 or X7 (respectively) as a result register.

A requirement of A6 or A7 as a result register will cause a first order conflict
in the normal fashion - by translating A6 and A7 reservations in the XBA
designator list for '"not equal to zero'". Of course, both of these cases will
stop issue until the reservations are cleared. 2) Second order conflicts

will occur only if A6 or A7 is required as a source register by a subsequent
instruction. Since the X6 and X7 reservations are not made in the XBA reserva-
tion list by 5X6 and 5X7 instruction, second order conflicts with subsequent
instructions wishing to read X6 or X7 will not cause second order conflicts as
a result of Memory Write reservations. (Other instructions may have reserved

X6 or X7 and therefore cause a conflict).

339

SPECIAL CASE: (5X6 or 5X7)

M10 LO1

L _z] [

Tag = XX /6\
28 ' E26

(Accept)
(Tag = 11X)

7~
B
(o))
\

,) - Select
Xi or Ai

15 N 17
Ve
G26 /

tw |7 20

Incr. Write }}__IZ(F s ﬂr
|
I

L

— %" 1=
M10 No Reg.
lJZ —— - Conflict
|
t = XX1 L02
[l
|
(Accept)
(Tag = 11X) P zéé& !
|
. A E27
(20 L]
G26
l HJ s }
Incr. Write 4 ‘ 17 __..(12 i=7
-
13 -
Select
J Xi or Ai

Figure 7.7-5

340

Mixed Memory Modes

Another situation will cause a third type of "unique" first order conflict.
This is the case in which an Increment instruction of one memory mode (Read
or Write) is coded subsequent to an Increment instruction of the other mode.
A problem exists in preventing the two memory references from getting out of
sequence. This could happen if, for instance, the first Increment Unit was
held up due to a second order conflict. This problem is significant only
if the two instructions reference the same address in central memory. It
would be possible then, to read a location before storing the new operand

(assuming the store was programmed before the read, and the mix-up did occur).

Storing before reading is the second possiblility. Study the following example.

FX1 = X2 + X3 (30123)
SA6 = X1 + K (526 1KKKKKK)
SAZ2 = Bl + K (51 21KKKKKK)

Assume that X1 + K =Bl + K

The timing looks as follows:

time ogo 100 200 300 400 Soo 600 Too 800

i1) Read i Execfte]Store4+ ’ l [|
|
|

}
| : |

SA6 | r____ _l I R ;Read | Exec.} Stngjjmemory cyclf

]

o

SA2

!l ‘ hﬁad !Exec. | Storeqk memory cycle time \ ¢
B
| ll | 1 ‘| ! | | |

341

Conclusion: Although the store instruction (SA6) was coded before the read
instruction (SA2) the read address was sent to the stunt box first. Hence,
the content of the memory location will be read into X2 before storing X6

in the location. The programmer obviously intended to store before reading.

Fortunately, this erroneous operation cannot occur. It is prevented on modules
G26 and G27, the Increment Unit busy circuits (Figures 7.7-6 and 7.7-13) shows
the Unit Select and Busy logic for Increment Unit I. Increment II is handled

on G27 in a similar manner; therefore only Increment I will be discussed.

The Unit Request flip/flops (set on the U2 issue) have inputs on pins 6, 8,
and 5. Term J indicates a Write unit request and term K a Read unit request.
In order to generate the issue for a memory read request (term K) the AND
gate, term M, must have all ones in. The translation for a zero out of M is:
(Memory Read Request)(Incr. I Not Busy)(Incr. II Write). Hence, if Increment
IT is doing a Write and this request is for a Read, subsequent issues are
disabled until Increment II finishes its Write operation (its Unit Busy flip/

flops, A/B and C/D, are cleared with "release" of the unit).

Similarly, if the request is for a Write (term J) term H must have all ones

in to enable the issue. The translation for a zero out of H is:

(Memory Write Request)(Increment Not Busy)(Incr. II Read). Hence, if Increment
Il is doing a Read and this request is for a Write, subsequent issues are
disabled until Increment II finishes its Read operation. (Its Unit Busy

flip/flops, A/B and C/D are cleared with "reléase" of the unit).

Thus, attempting a memory operation of one mode while the other mode is in

process will cause a first order conflict.

The flow charts (figures 7.7-7 through 7.7-10) illustrate the operation of

the Increment select logic.
342

Select Control Increment Unit I

U2=60+704+02
4+04-07+50 (
i=0

Incr. I Eﬁ}
WR

Incr. I1I Rea {

— 43
Incr., II Wr. ¢)

SCBD Issue q

U2=5% . i=6+7

U2=5%. i=1-5

G26

10

\

18

) Issue

————————() Set F-XBA

Read
(Unit Request)

5
L 1 E
B J
2 1
H
D
A e
K
G
A \\\\\\\
28 B
E
C
8 Write
(Unit Req.) D

24

Flip-Flop Incr. Selected
A/B c/D For:
— |
Set Clear READ
Set Set WRITE
Clear | Set INCREMENT
Clear | Clear FREE

-

Figure 7.7-0

343

Ul
time

U2
time

From
Stack

Issue
Instruction
to Ul

|

|

Not an Select Select Select
1ncremen? Increment Read Write
instructia or Test
B
(to Figure (to Figure (to Figure
7.7-10) 7.7-9) 7.7-8)

Figure 7.7-7

344

No

Incr. II
Reading?

Yes

No

Release
Increment I

Incr. I
Reading?

: Selectt - Select
n;r??en Increment I
rite Write

Select Increment Write

Figure 7.7-8

345

Incr. I Yes

Free?

Incr. II
Writing?

Yes

Incr. 11 Yes

Free?

L
[+

Release
Increment I

4
Select Select
Increment II Increment I
Read Read

Select Increment Read

Figure 7.7-9

346

Yes

Incr., 1II Yes

Free?

l f

Select Select
Increment II Increment I
Incr or Test Incr or Test

Select Increment or Test

Figure 7.7-10

347

Increment Second Order Conflict (Special Case)

A special case of a second order conflict arises in the Increment units, and
the case again applies only to memory mode instructions (5X1 - 5X7). To
illustrate the problem, assume that Increment unit I was issued a Read operand
instruction. It has generated the address which is now sitting in the output
network of the Increment adder. Assume also, that the address cannot be sent
to MO because MO contains some other central address. This could occur, for
instance, if the content of P or a previous operand address was sent to MQ
and central priority (MO to Ml) is not granted because the Hopper contains an
unaccepted address. Now, assume that another operand read instruction (5X1 -
5X5) is issued. (It will be issued if Increment II is not busy since
Increment I is also handling a Read mode instruction). If the second Read
instruction were allowed to start, the address generated by Increment I

would be destroyed, because the adder is a static network - once the operands
are loaded into the feeders, the result appears at the output within 80
nanoseconds. Thus, the logic must prevent reading the operands for Increment
IT until Increment I sends its address to MO. (Of course, the same problem
exists if the Increment units were reversed or with two instructions of the

Write mode.)

This situation is resolved with the logic contained on module M33. (Refer
to Figures 7.7-11, 7.7-12, and 7.7-13). For the purpose of explanation,

an example is discussed.

Assume that in a program, two increment instructions separated by several
other instructions appear. Both of these instructions are of the type which
cause a memory reference and are of the same memory mode (i.e. both read or

both write). The first is issued to the scoreboard and begins to execute

348

via Increment Unit I. Since it is a memory mode instruction, M33, TP5

will be set (Figure 7.7-11). Within 300 nanoseconds the address is generated
and will be sent into the result register for Increment I. Note also, that
the Increment address flip/flop on P37 (Figure 7.7-13) is set later in the
Increment sequence. This in turn causes Enter Central to be set which
requests Stunt Box priority. Assume at this point that an RNI address is
setting in MO and stunt box priority 2 is not granted (due to priority 1,
Read/Write tag conflicts, etc.). As a consequence, the RNI address remains

in MO and the operand address remains at the output network of the adder.*

Assume that by this time the program has progressed and now attempts toc issue
the second Increment instruction of our example. Since Increment II is free

and the memory modes are the same, a scoreboard issue is generated.

Hence, Increment Unit II and result registers are reserved in the normal fashion.
If the source registers required are not reserved, the Increment II read flags

will be set and a logical "one" will appear on pin 4 of M33 ("Go Incr. IIM).

In order to start the Increment II sequence, term "D" is the clear side of
TP5, which was set by the first Increment instruction of the example. TP5
is cleared when term "F" is a logical "zero", in other words when all inputs

to "F'" are ones. The following translation yields a "Zero" out of term "F!:

(540) (Prog.Addr.) (Incr.Addr.) (Inch)(Branch) (Enter Cent.+M0 to M1)

*1f no third order conflicts exist Increment I may be released and the result
sent to the specified A register. Nevertheless, the Increment to MO gate

may still be delayed.

349

0¢¢

START INCREMENT SEQUENCE

Start Incr. I Sequence

M33

Incr I Rd ¢

flag§

Incr II Rd

23

;

flags

27

CG

.-q—-—m

7 —_—
OIncr I Rd + Wrt

19

3
12

24

{15

M08 Incr. I Rd + Wrt“"'J‘
[CcE
10 25
S -0
G B A
Incr. II Rd + Wrt
17 :;)
0~ — —C ! i
B
A--h
B E
A
4 10
t40

Figure 7.7-11

Enter Central
(Ent Cent)(MO to M1)
t 40

Inch + Branch

Prog. Address
Incr. Address

Incr. II Rd + Wrt

LGate Go Read

Starting Increment I for the first instruction caused the setting of the
Increment Address and Enter Central flip/flops. The Increment Address is
cleared when the signal, Increment to MO is generated. This signal requires

the following conditions:

Incr —» MO €& (Incr. Addr.)(Enter Central + MO to M1)

When priority is finally granted for the RNI address, the '"™MO to Ml" gate

will be generated. This then will enable "Incr to MO" which in turn clears
the Increment Address flip/flop. '™O to M1" will also clear the Enter Central
flip/flop. All conditions required by term "F'" are now met. M33, TP5

will be cleared and the starting of Increment II is enabled. Note, that making
the AND gate for starting Increment II also allows the clearing of that unit's
Read flags (M33, pin 2 feeds Ql9, pin 19 where the "clear RFs" is fanned out.)

(Figure 7.7-12)

This explanation also applies to starting the Increment I sequence. If the
result Increment II can not be sent to MO, Increment I may not start until

term "G" is a one, implying that Incr to MO did occur. These cases then are
special second order conflicts applicable only to operand read or write instruc-

tions.

351

493

ENT CENT. « CENT.—» M
INCR ADDRESS
INCH+ BRANCH

PROG ADDRESS

) TO 62612
(CONTROL 2)

TO Q30-12
(CONTROL 2)

) TO G27-4
(CONTROL 2)

TO Q30-3
(CONTROL 2)

-
| 13 3 18 REQUEST
> — — — y - - - RELEASE
-
[
|
r-r-=-=-=—-==-=-==-=-=-= 4
| m—— = - m = = - — _— - — = = -
[
(I
[
| f
-4
_ L
t
-
| |
|
' |
|
!
|
[
-t
T
Tt
[
Jd 1
_— d
r
1 [g dssvEiNcR
1|8
|| B LCOMP INcR
! 8 lenter k
| [-
| D
t .
ISSUE INCR 2 |17
: L 20
|
|
|
X L
\ R3l
! [F4]
j
L_(z' ol
TO R32 -8
o (CONTROL 2)
c

2 7
TO R32-5

(CONTROL 2}

A4

A~

oJIPFOOIMI/OOY

INPUT REGISTER

030 [ua

029 [ua

028 [JA

027 [UA

026 [sa

p2sal | |

©24]ua

023 [uA _J

022 4a

(F] compLEMENT
[c] ENTER K, INCR |

[€] enTER K, INCR 2

Adder Control 1

Figure 7.7-12

£€6¢e

TO PI9-23 (CONTROL 1) [F-Z-Z-ZZZZZZZZ-ZI-ZTZ-ZZZZI-ZII-IZ-Z-ZIZIZZ-Z-TZ-=¢<Z
TO PI9—19 (CONTROL 1) pax PV 7 7 nerT umiT susy 626 Qo8 INCREMENT 18 2 REGISTERS

P09 [u8

[
L Fos]

3 5\ .
PO7 |8
GO INCR. 1(2 T ek 20 U S A 5 _‘_}'9(]? l[706 l‘L J—
i - - \

27

[pos [un] | |

r
! Qo7 \ | pos [s8]]]
INeR. | AR e A B (INCR) REX ! W] [Po3 [u8
— r \
. _ READ +WRITE | ! b v Po2 [B ~r‘
| \ ot o] |
l

(8] k> iNcR. 2 |

25 16
o
~

[C] k- INCR. 1

[£] RESULT= INCR. |
INCR. 2
READ + WRITE

RESULT-» INCR, 2

[6] xmiT RESULY

| ENTER CENT.Q
]

{ENT. CENT)(CENT —M)

1

—
o
<]
~

-

r——---
INCH +BRANCH

> -~
L‘:&’
OVPOTMIVIOO®V

MO REGISTER

11
!
i
[
[
i
[
[
[
11
[
18

1 2 | gos Ju
s \ [@05 [JF

'
f1-| R3S\ | goa [oF[] |
[f'_ﬁ \ I ¢O3IJFJ
v L poz [ur] | |
6 o\ |oF
|Ncn,--m°|— =

FROM R3I-17

15

(conTROL 11§ CLEAR

25 — 16
trs -
23

ENTER CENT.O

b
[
[
(]
1
[
I P R35 P MO
/
H [ne]
i /
! /
. 23 i6
11 — — =
s i R Chul
25
[NO6 oK
i | ! R36
I . — { NO5 Jok
'
i [INCR. MO () | | [No4 [ox]] |
11 | | | N03 foxT] |
'Vl 100 " s 2 [No2 JoK] | |
. ! 150 g = = = - Q28 noi ak] | |
! I e

H 1 ! crter S pei|]
[BRANCH | ¢e1 pROG ADDR B o | ERROR sTOP ()26
[JWMP 4+ - —— = — — P MO0

LOOP SEQ |
1) |
[|
11 |
I

Adder Control 2

Figure 7.7-13

7.7.5 ADDER

General Information

The Increment units! 18-bit adder is subtractive in nature, but because of
the logic configuration of the input register (JA modules) the true value of
Bk or K is gated for Add instructions and the one complement value for

Subtract. The true value of the first operand (Aj, Xj or Bj) is always used.

In explaining the adder logic, the following definitions apply:

Borrow = 0

9
Satisfy = 1

1
Enable = 1 0

0 or 1

Since the adder is subtractive in nature, the definitions presented are based
upon the process of complementing and subtracting to add. In other words,
if the adder did subtract to perform addition the second operand would have

to be complemented. The following table relates the two processes:

True Operands Second Operand Condition of
(if adding to add) Comp lemented Stage
(if subtracting to add)

0 0

0 1 Borrow
1 : 1

1 0 Satisfy
0 0

1 0 Enable
1 1

0 1 Enable

Figure 7.7-14

354

Hence, even though the true values of the operands are used in the feeders
during addition, the condition of a stage is defined with the "subtract to

add" process in mind, A "Pass!" has the same meaning as "Not Satisfy'".

Pencil and Paper Method

The "Pencil and Paper' method of adding will be discussed before analyzing

the adder logic. Assume that the following binary numbers are to be added.

C

EAC

e

OO O
i O

1
0
1

Ol
O O
OO
Ol O
= Ol —

o]

011100 = Sum

By simple binary addition, the sum should be as shown.

The pencil and paper method which simulates the machine addition process is

summarized as follows:

1. Label each stage according to its condition (Borrow, Satisfy, Enable)

2. Perform an '"exclusive OR!" between the source operands. In other words,
for any stage containing an "enable' write a ”oﬂe”. {defined by
Figure 7.7~14)

3. For each stage that has a Borrow input, write a '"one'.

4. Perform an "equivalence" between the first "exclusive OR" and the

list of borrow inputs.

Example:
F
SBREE BEES 1. 1label stages
1001 0101 operand #1
1010 0011 operand #2
0011 0110 2, 'exclusive OR"
1111 0000 3. borrows into stage
0011 1001 4. D'"Equivalence"

After completion of step 4, the correct sum has been generated.

355

Adder Logic Analysis

The adder is divided into six groups, each containing three bits as follows:

17 1514 12{11 9|8 6|5 32 o}

Group --- 5 4 3 2 1 0

Since the groups all operate similarly, only group zero is analyzed in detail.
Figure 7.7-15 is a logic diagram of Group O and should referenced during the

following discussion.
JA Modules

The JA modules hold the feeder registers. Each stage on these modules sends
three signals to the QB modules (summing network). Stage 20, for instance,
has outputs from pins 20, 18, and 28. Respectively, these pins translate

as j, j or k, and k. Note, that during difference or branch test operations
the complement gate (term F) will be a one, enabling the complement of operand

k. In this case, the three outputs are j, j or k, and k. Since the rest of

the difference process is the same as addition, only addition will be discussed.

QB Modules

With reference to the '"pencil and paper" example, the QB modules perform

four main functions.

1. Perform the exclusive OR between the source operands. (Step 2
of the pencil and paper example) The output of test point #4,
for instance, states that stage 20 does not contain an enable
(Not "exclusive OR'")

2, Check for a borrow leaving each stage. Using Stage 20 as an exgmple,

356

LGE

INPUT REGISTER SUMMING NETWORK RESULT NETWORK INCREMENT | 82 REGISTERS

[T 7 6 eso[m| [ors _per Joel [Tmoues: 2/3-217 [T 17 16_on Jat] [er 17 e P09 U8
15 14 229]ua [sra P26 JoB GRouP 4: 2,220 5 1413 12p0ko | 5 14 Po8 [48
32 028 [ua GR35 P25 JaB GROUP 2: 26-28 0 10 s egos o 3z po7 |us
i : 25-28 ! i el |
[T 027 A [er2 P24 o] || SRoup & 25222 [7 6 5 agosco[]] [TR P06 48
[o s o26[ualH [or1 pe3 Jog]| | BTs 2 1 0@o7 [co] || | 9 8 Pos [u8 _r‘
[T e o025 [H [ero P22 [oB] A A A AN [7 & poa s8] |
l SR e2s [) BIT 2 BORROW INPUT | 3 I > 1 po3 Jse H
[3 2 p3fua H o0 A | - - =2 - —A 3 2 PozLIja i
BIT I o ozzw Hoom oSN~ | o 0 MO - BIT] o pol [ug] 1 |
A e -7 NeR 1 A A J
a:(ﬁ 18 s - R 2 B A
2
BN | - BTz ERRon IR T0 P
_________ y
) ox Rk 7 "
2! (x)*g X 0 MO
RN

® r recisTeR
h BITI7 16 N39 [IC
- [15 14 n3s Juc
Hhi PASS AND BORROW CIRCUITS [3 2 a7 Juc

- -4))) 5 [w0 n3e Juc
ay [9 8 n35Juc

| 7 & n3afuc

[s 4 N33 ud
[5 2 w32]uc

BITI o N3 [uc] /

A A L

/ GR 0 PASS
PR e

; /! &R I PASS
/! R 4 BORROW

. GR 5 PASS

/ GR 5 BORROW

GR 2 PASS

GR 3 PASS

GR O BORROW
GR | PASS

GR | BORROW

GR 4 PASS

[% %RESULT TO OPERATING REGISTER
L X;,B{,0R A; ViA OUTPUT NETWORK

i (F41,Fa2)

GR 5 PASS
GR 2 BORROW

INPUT FROM OPERATING REGISTER
Xj: B, OR A;.

GR 3 PASS

Figure 7.7-15

test point #1 (pin 2) states that stage zero has a borrow output.

In other words, stage 1 has a borrow input., Pin 1 says no borrow
into stage 1 (Test point #l inverted). This is step 3 of the pencil
and paper example.

Determine whether or not this group contains all passes (no satisfies).
Pin 22 states, for instance, that group zero is all passes.

Checks for a borrow leaving the group. Pin 16, for instance, states

that a borrow does leave group zero.

Note: The results of steps 3 and 4 are ultimately used to determine the

existence of an End Around Borrow. (See QC module discussion)

CD Modules (and QL)

The CD modules perform step 4 of the pencil and paper example - equivalence
between borrows and enables. For example, pin 10 (the 20 sum) translates

is follows:

(Borrow)(Enable) + (Borrow)(Enable)

The following table summarizes the possible combinations at CD modules and

the resulting sum.

Condition Sum
(Borrow) (Enable) 1
| (Borrow) (Enable) 1
(Borrow) (Enable) 0
(Borrow) (Enable) 0

358

QC Modules

The QC Modules summarize the Pass and Borrow conditions of all six groups

and will ultimately determine whether or not an End Around Borrow exists.

pose of explanation the following translation of pin 17 = zero

Pin 17 =0&<>TF « B

I

F<—> (Gp 5 = Pass)(Gp 4 = Pass)

B&E— (Gp 3

Il

Borrow Up)+(Gp 2 = Borrow Up)(Gp 3 = Pass)

it

F B <::::’Ebp 5 Pass] °[ép 4 = Pasé]' EGp 3 = Borrow Up)+(Gp 2 - Borrow Up)

(Gp 3 = Passﬂ

Diagramatically: |
|
STAGE 5 ! 4 - 3 i

I S R _ 2

! .
BORROW [PASS or BORJ

! S |

|
|
!
|
!

EAB «——f PASS e Pass

|
PASS W BorroWw]
|

In general, if any stage generates a borrow up and all subsequent stages

are passes, an End Around Borrow will be generated.

359

7.7.6 BRANCH TESTS

General Information

The Increment Units test operands for the 04-07 conditional branch instructions
and send the test results to the Branch Unit where continuation of the branch
sequences are enabled. If the condition is met, the Increment unit sends a
"Condition Met" signal to the branch unit and the Jump or Loop sequence is
enabled. The absence of "Condition Met" implies that the condition was not

met. In this case, the "No Branch" sequence is enabled.

Two branch tests are used to condition the four jump instructions as follows:

Test Used fm Condition

Equality 04 Bi = Bj
05 Bi # Bj

Magnitude 06 Bi = Bj
07 Bi < Bj

Although both tests use the adder logic, only the magnitude test checks the
result of the complete add process. Since Bk (Bj of opcode) is complemented
during Branch tests, the adder subtracts Bk from Bj. Hence the result is a
difference. The Equality test, on the other hand, checks the 18-bit operands

bit by bit.

Equality Test

Figure 7.7-16 is a logic drawing which shows the Branch test circuitry. The
equality test simply checks each stage for equality. Since one operand

(Bk) is in complement form, equality can be determined by looking for

360

an exclusive OR" in each stage. For example,

if feeders equal: if the true operands equal:
1 or O 1 or O
0 1 1 0
(exclusive OR) (equivalence)

Recall that during the adder discussion (Section 7.7-5) it was pointed out
that an "exclusive OR" is done with each stage (this was the check for
enables). This same signal is used for the Equality test. Pins 14, 17 and

8 on module @07, for instance, state that the content of the feeder flip/flops

of stages 0, 1, and 2 (respectively) are equivalent. Since the Bk feeder

holds the one's complement of Bk, a zero on pins 0, 1, or 2 indicate
equivalence for the given stage. Hence, for a '"one'" out of TP3, TP4 must

have all "ones'" in, or stages O, 1, 2 and 3 must all show equivalence, with
respect to true values, or exclusive OR, with respect to the feeder contents.
Q08 - Q11 check for equivalence of the remaining stages. If all are
equivalent, R37, TP3 will have all '"ones" in and a zero out. This condition

is ANDed with opcodes 04 and 05. The following combinations yield a "Condition

Met:

i
I

(TP3 0 = Equal)(fm = 04)

nr
L

(TP3 = 1 = Equal)(fm = 05)

I

Magnitude Test

Two tests, which take place simultaneously are used to determine whether

Bi = Bj or Bi ==Bj. (Figure 7.7-16).

361

BRANCH TESTS gu

NOTE. FOR THE CONDITIONAL BRANCH INSTRUCTIONS 04-07,
THE | OPERAND USES THE | TRUNK AND
THE | OPERAND USES THE k TRUNK.

(4 %) = 8) IS NEGATIVE AND B8 IS POSITIVE

29t

r-—="~"~"~"=~"="==-=-=-=-=-=-=-=-=-- P
, 180
| INCREMENT _TESTS :‘ BRANCH
; |
! —
| (J-K)= Bji IS POSITIVE AND Bj IS NEGATIVE Lk
e it e BRANCH
[180" UNIT
[JUMP + LOOP
SEQUENCE
INCREMENT UNIT ; ADDER | I
T -
[SUMMING [
INPUT REGISTER g0 | NETWORK .
SiGN BIT (217) [o/] P22-27[8BF — — — — - — — — — - - INCR. REG. .
. | (]
I Mo i
! 8IT I7 BORROW INPUT (|
1 -~ P [
| I [
[1ot
L N S s INCR. REG. [
1 [S
J MO L= [

922-29 |VA

BIT O BORROW INPUT

05{G0 TO K IF siﬁai
06/GO TO K IF 8;28
07 (GO TO K F B|<Bj

Figure 7.7-16

1) The signs (bit 17) of the two operands are compared. If they are
different, the positive number is recognized as the larger of the
two. The sign comparison is made on $30, pins 19 and 16, and is
sent to module §11 where the operand signs are ANDed with the
Branch op code (06 or 07). For example, if Bi is negative and Bj
is positive (@11, pin 20 = 1) and fm = 07 (pin 18 = 1), the branch

condition is met since Bi === Bj. If Bi is positive and Bj is

negative (@11, pin 24 = 1) and fm = 06 (pin 22 = 1) Bi == Bj and

again the branch condition is met (L09, pin 17).

2) If the operand signs are alike, the one's complement difference
(Bi — Bj) is taken and a check for a Borrow into stage 17 is made.
A borrow indicate that Bi —=Bj. This condition, given by terms C
and P(which indicate equivalence in bits 17 and a borrow in) is
ANDed with fm = 07 (@11, pin 18) to generate a '"condition met"
signal (L09, pin 17). If fm = 06, the signs are alike, and no
Borrow is propagated to stage 17, the condition is again met since
Bi == Bj for this case. This is checked on @11, pin 22, AND terms

N, M and C.

Module @11, pin 3 = "O" clears L0O9, TP6. This occurs through ORing the

possible condition met gates on P11,

1) (fm = 04)(Equivalence)

2) (fm = 05)(Equivalence)

3) (fm = 06)(Bi == Bj)

4) (fm = 07)(Bi == Bj)

363

The clear side of LO9, TP6 feeds pin 17 which sends the "Condition Met"

signal to the Branch unit.

364

SECTION 7.8

BRANCH

FUNCTIONAL UNIT

BRANC

FUNCTIONAL
CUNIT

DATA
CHANNELS

IR

Tom~Tn

A RRABAAED,

=
=1

f

!

'C

PERIPHI RAL
PROCES! ORS

BRANCH SELECT
SEQUENCE

A

ADD

CENTRAL
PROCESSOR
INSTRUCTION RESERVATION
CONTROL
‘CONTROL (SCOREBOARD)
REGISTER

CENTRAL
MEHORY
CONTROL

CENTRAL
MEMORY

<mezm

CONTROL

A

1 LONG ADD F—-
— i

BOOLEAN

INCREMENT 11

{R-P}

JUMP + LOOP
SEQUENCE

JUMP_ + LOOP

JUMP + LOOP

NO BRANCH
SEQUENCE

LooP
SEQUENCE !

ommMOO DT

o /

-7< T<0
7 SIGN AREA QST 47
TEST
/ ALL BITS SIGN_BIT (T)
| -
T~ ALL BITS
0
3
2
U
Lo

BRANGH FUNCTIONAL UNIT

7.8.1 INTRODUCTION

The function of the Branch Unit is to control the execution of the branch
class (fm = 0X) instructions. These instructions may be categorized as

follows:

1. Unconditional Branches
01 Return Jump to K
02 Jump to Bi + K

2. Conditional Branches
03

04- 07 Jump to K if . . .

Handling the unconditional branches is

»
3
[¢)]
pht
o
rt
[N
[
Y
V;
w
}-J
=
el
'.—l
(0]
2]
)
rt
rt
[¢]
H
(e}
th

(1) calculating the jump address, (2) placing the new address in the P
register, and (3) initiating a memory reference for the new instruction
word. An unconditional jump may not be made in the stack, so PK is set
to zero, D to 7, and L is set to 7 (indicating 10) . When the new
instruction word is read from memory issuance of the instructions begins

with parcel zero of I0.

The conditional branches are not quite so straight forward. The branch

unit must perform three functions in processing the conditional: branches.

1. Determine whether the specified branching condition is
met. The operand from an X or a B register is tested by the

Long Add or an Increment unit respectively. Results of the tests

367

89¢

. T ' Ia)
AUX. F.U. COND. MET =——g JUMP or JUMP or fﬁaEP NO BRANCH
RELEASE Loop JUMP or LOOP
BRANCH SELECT SEQUENCE SER
_ 4' LOOP '-.

LOOP TEST

[R-P|< 7 T T

INCH

EAB

02 —O— COND. MET

-»

03)
& ¥
(00)(DT) (D7)

SET NEW L

FIGURE 7,8«1

BRANCH FUNCTIONAL UNIT

OCEMEOOWW

are sent to the Branch unit where they are logically combined

(ANDed) with a translation of the opcode being processed. Either

the condition is met or it is not.

In conjunction with the "Condition Met" test (paragraph #1)

the "in Stack/Out Stack!" tests are performed. These are made in

the Branch unit and will determine if a branch can be made in the

stack or whether a memory reference must be made to the jump

address. This decision may be divided into three considerations:

a) Is the number of places desired to branch within the maximum limit

b)

c)

of the physical I registers? A branch in the stack is limited to
forward seven registers (from I7 to I0) and backward six register
(I1 to I7). 1In other words, is the absolute value of the number of

places desired to jump less than or equal to seven!

Is a branch in the stack possible with respect to the I register
containing the branch instructién? For example, assume that the
branch instruction is located in I4 and a branch backward five
places is desired. 1In this case test 2a will be met since the jump
magnitude is less than 7. The maximum jump backward from I4 is
three places (to 17); a jump of five is therefore "out of the
stack". Thus, although the first test (2a) is met, the second may

not be.

A third and final situation must be taken into consideration, but
only in the event that tests one and two are met and a backward
branch is desired. Assume, for example, that the branch instruction

is in I3 and a Sbranch backward four places is desired. Both

369

conditions one and two will be met (since we wish to branch from
I3 to I7) indicating that the branch is within the physical limits
of the stack. Recall that during normal instruction sequencing
(RNI) each time a word was sent from memory into 10, the stack was
"inched" and the "D register" *was decremented. A D value of zero
indicated a full stack; D = 7 indicates an empty stack. Thus, if
the branch is backward and within the physical limits of the stack
we must determine whether or not enough instructions associated
with this particular routine have been loaded into the stack from
memory. Returning to the example, if D does not equal zero (full
stack) the desired jump to 17 is disabled and a memory reference is

started to obtain the instruction word.

Note, that if tests one and two indicate a forward branch in ‘the
stack, test three is superfluous since all instructions in the

stack after the branch are related to this sequence.

The third function of the branch unit is to initiate the new program
sequence if a branch is to be made or to continue the old sequence if

the branch is not made.

*D holds the complement of the number of instructions in the stack that
are within the present subroutine (instruction sequence). It is

therefore decremented to increase the value represented.

370

To continue the old sequence (branch condition not met) it is
only necessary to generate a "proceed" signal to restart
instruction issue. Recall that when stopping issues after

the scoreboard issue of the branch instruction, the parcel
counter had been properly incremented to select the parcel
following the branch instruction. The L register is not
changed if a '"No Branch'" condition exists. Therefore, the
generation of the '"proceed" will move the instruction following
the Branch to U2 with two U issues and to the scoreboard with
the subsequent scoreboard issue. (Refer to Section 7.8.6

for a detailed explanation of the No Branch sequence).

To initiate a new program sequence (branch condition met)
the two possibilities, Branch In the Stack and Branch Out of

the Stack, must be considered.

(a) To Branch In the Stack the stack controls must be modified
to select parcel zero of the new instruction word. The
parcel counter is therefore set to zero, the L register
is loaded with the new value, and the P register is
loaded with the jump address (from R). A "proceed" is
generated and subsequent issue begin the new "in stack"
program. (Refer to Section 7.8.7 for a detailed explana-

tion of the "Loop'" Sequence).

371

7.8.2

(b) In Branching Gut of Stack a memory reference (RNI) is

required to obtain the next instruction word. The jump
address is therefore sent from R to P and the P to M°
flip/flop is set. When stunt box priority is granted and
the address is accepted, the new instruction word will be
sent to the Chassis 5 Input Register. The stack controls
are also modified as follows: L and D are both set to 7,
and PK is set to 0. Thus, parcel zero of the new word

in I° will be the first instruction issued. (Refer to
Section 7.8.8 for a detailed explanation of the "Jump"

sequence).

INSTRUCTION LIST

The conditional and unconditional Branch instructions are defined in this

section.

Following each instruction definition is a general explanation

of the branch (or no branch) sequence of events. The expressions in

parentheses following the instruction name are the ASCENT symbolic codes.

01

Return Jump to K (RJ K)

Definition:

This instruction stores an unconditional Jump (0400) and

the current address plus one (P + 1) in the upper half of
address K, then branches to K+ 1 for the next instruction.
This branch is always out of the stack. A jump to address K
at the end of the branch routine returns the program to the

original sequence.

372

02

Sequence:

The following sequence of events occurs during execution of the

return jump:

2. Stop instruction issue

3. Transfer P (contains P +1) to S register

4. Send R (Jump Address K) to P

5. Send P to M°

6. Send S to Memory write distributor and force 0400 into
write distributor.

7. Increment P (Jump Address plus 1) and send to M°

8. Send M° and tag = 10 (RNI) to Hopper

9. Wait for accept to start issue (proceed)

Jump to Bi + K (JP Bi + K)

Definition:

This instruction branches to the location specified by the sum
of register Bi and constant, K. (When i equals zero, the address
is K). The branch is always out of the stack.*

Sequence:

An "Out of Stack" (Jump) condition is always forced by the 02
instruction. Thus, the Jump Address is sent to the P register

and the P to M® flip/flop is set. Issuance of instructions is

*To perform an unindexed, unconditional jump in the stack,

the 04 instruction with i and j = 0 may be used.

373

030
031
032
033
034
035
036

037

resumed when the hopper tag = 10 is accepted.

Jump to K if Xj =0 (ZR Xj K)
Jump to K if Xj # 0 (NZ Xj K)
Jump to K if Xj is Positive (PL Xj K)
Jump to K if Xj is Negative (NG Xj K)
Jump to K if Xj is In range (IR Xj K)
Jump to K if Xj is Out of range (OR Xj K)
Jump to K if Xj is Definite (bF Xj K)
Jump to K if Xj is Indefinite (ID Xj K)
Definition:

These instructions test the 60-bit word in Xj for the condition

specified by the i digit. If the condition is met, a jump to K

is performed. The tests are performed in the Long Add Unit

(See Sections 7.3.2 and 7.3.6 for detailed analysis) and are

bound by the following rules:

(a)

(b)

(c)

The 030 and 031 operations test the 60-bits of Xj for
either negative (all ones) or positive (all zeros) zero.
All other words are non-zero. The test is valid for
fixed or floating point words.

The 032 and 033 operations examine only the sign

(bit 259) of Xj. 1If equal to zero, the word is positive;
if equal to one, the word is negative. The test is
valid for fixed or floating point words.

The 034 and 035 operations check the upper 12 bits of

Xj for either plus or minus infinity. 3777 and 4000

are out of range; all other bit configurations are in

374

range. The test is valid for both fixed and floating
point quantities.
(d) The 036 and 037 operations test the upper 12 bits of

Xj for either plus or minus indefinite forms. 1777

and 6000 are indefinite; all other bit configurations

are definite forms. The test is valid only for

floating point words.
Sequence:
The 03X instructions cause both the Branch and Long Add units
to be initiated at the same time. The Long Add Unit receives
the Xj operand from Register Exit control and performs the four
tests (zero, sign, infinite, and indefinite) simultaneously.
Four signals may result from testing of Xj 1) Xj # 0, 2)
Xj < 0, 3) Xj = out of range, or 4) Xj = indefinite. The
absence of a signal implies the opposite condition. Thus, eight
possibilities exist. The results of the Long Add testing networks
are sent to the Branch functional unit, where they are combined
with the instruction translation (030, 031, . . . 037) to
generate the "condition met" or "condition not met" gates. The
Branch unit is informed of the test completion by the "Auxiliary
Functional Unit Release" gate which, in this case, is a function

of the Long Add Unit's timing chain.

While Long Add is making its tests, the Branch unit is making the
In Stack/Out Stack tests. One of two signals, "Loop" (in stack)
or "Jump" (out of stack) may result from these tests. They are
logically combined with the condition met or not met gates as
follows:

375

9.¢

t00 t100 t200 t300 t400

INCR II F.U.

| |
[|
| | | |
|
BRANCH F.U. | i : :
| | \ | J
| 1 V 1 l
| | BB, I-T, P -(L-T) tes?:s to LOOP of JUMP fm = 01 or 02
' l l ' 1
| | | | |
|
I 1 ' ‘ |
| REQ ! ' . | LOOP ORH—> NO B
| REL | I GO BRANCH TP R RANCH
| LADD | > . ——> LOOP
0
y | '9' | BRANCH }—> JuMP
|
| |
e
REL
| INCGR |
|
INCR I F.U. | |
| REQ |
REL |
I INCR 11
| |
| |
|
|
|
|
|

Figure 7.8-2

(Condition Not Met) * (Loop + Jump)=>pNo Branch

(Condition Met) * (Loop) =>Branch In Stack

(Condition Met) * (Jump) —>Branch Out of Stack

No Branch:

If the branch condition is not met, the resulting No Branch gate
generates a proceed signal which causes the issuance of instructions
to resume with the instruction following the branch. Until
another branch (0X) instruction is encountered, the normal issue
sequence (RNI) takes place.

Loop:

If the Loop and Condition Met gates occur, a Branch in stack will
result. In this case, the L register will be loaded with a new
value (the "stack address"), the jump address is sent to the

P register, and the parcel counter is cleared to zero. A 'proceed"
is then generated and instruction issue resumes with parcel zero
of the new I register.

Jump :

In the event that the Jump and Condition Met gates occur, a
memory reference is required to obtain the new instruction word.
Thus, 1) the Jump address is sent to P, 2) P is sent to MO,

3) M° and tag = 10 is sent to ML, 4) the D and L registers are
set to 7, 5) PK is cleared, and 6) when the tag = 10 is accepted

issuance of instructions resumes with parcel zero of I0.

377

040
050
060

070

I

Jump to K if Bi = Bj (EQ Bi Bj K)

Jump to K if Bi # Bj (NE Bi Bj K)
Jump to K if Bi = Bj (GE Bi Bj K)
Jump to K if Bi < Bj (LT Bi Bj K)

Definition:

These instructions test the 18-bit word in Bi against the
18-bit word in Bj (both words are signed quantities) for the
condition specified by the opcode. If the condit}on is met, a

jump to K is performed.

The tests are performed in one of the Increment Units (See

apply to the tests:
(a) Positive zero is recognized as unequal to negative zero.
(b) Positive zero is recognized as greater than negative zero.

(c) A positive number is greater than a negative number.

Sequence:

The 04 - 07 instructions cause both the Branch and Increment units
to be initiated at the same time. The Increment unit receives

the two B register operands from Register Exit Control and performs
the two tests (equality and threshold) simultaneously. The four
possible results (Bi = Bj, Bi # Bj, Bi > Bj, and Bi<Bj) are
combined with opcode translations to generate the "condition met"
or "condition not met'" gates. The Branch Unit is informed of

the test completion by the "Auxiliary Functional Unit Release"

gate which, in this case, is a function of the Long Add Unit's

timing chain.

378

While the Increment Unit is making its tests, the Branch Unit
is making the In Stack/Out Stack tests. The "Loop" or '"Jump'
gates may result from these tests and are combined with the

condition met or not met gates from the Increment Unit.

From this point on, the branch sequence uses the same circuity
as was explained for the 03X branch instructions. Reference
is therefore made to the sequence discussion of the 03X
instructions for further explanation of the No Branch, Loop,

and Jump cases.

7.8.3 TIMING SEQUENCE

Five general cases of Branch functional unit timing are discussed in
this section. In all five cases, the time zero reference on the timing
charts is the Scoreboard lssue of the particular Branch case. The five cases
cases discussed are:

1) No Branch

2) Loop

3) Jump

4) Return Jump

5) Exit Mode Stop
In following the timing discussions and corresponding timing charts,

the C. E. Diagrams and Chassis #5 wire tabs should be referenced.

379

NO BRANCH SEQUENCE - See Figure 7.8-3.1

10.

11'

F38
G30

L21

R31

Q04

L14

LO3

F37

G30

- TP2

- TP1

- 13

Branch Select F/F Set by (U2 Fm = ox)(Scbd issue)
Go F/F Cleared by (Uy Fmrox)(Scbd issue)

Auxiliary Functional Unit release signal. This could be from
L20-13 or L22-13, depending on the functional unit used. It
indicates that the functional unit has timed out and its!
results are ready.

~-TP3, R30-TP3 and R30 - TP6 These are stages ofthe Branch unit

- TP6

- TP6

- G

timing chain which enalde setting the stack controls (if
necessary) and proceeding in the proper sequence.

This signal is generated to set the no branch sequence if the
Jump or Loop F/F was not set (condition not met)

This is the first F/F of a section of this sequence which will
allow resuming the instruction following the branch.

The proceed resulting from the no branch sequence occurs at
this time.

"Proceed" signal to set "Go", "Skip I" and "Skip III"

TP1, TP3 and TP5 The "Go", "Skip I" and "Skip III" F/Fs are set at

G30-TP4

this time in preparation for issuing the next parcel.

"Skip II" F/F is set to disable clearing
"Skip III" for another minor cycle.

Advance Parcel Counter This signal is generated at the beginning of

the branch sequence by (Upfm = ox)(Scbd issue) and at the end
of the sequence by (Proceed)(issue)(Uifm = 0X)(t25).

380

I8¢

10.

11.

00 t100 _ t200

Scbd + U issue m

SRS 77/ yizizziiilldddddz

. G 30-TPL
L2l - 13
R31 - TP3
R30 - TP3
R30 - TPG
Q4 - 21
L14 - TP6
L03 - TPé
F37 - 6
G30 - TP5
G30 - TP3
G30 - TP4

Advance P.C.

t300 400 t500

t600

£700 800
1 1 | 1 I

7 M A

T

Y/

Aux., F.U. Release

* l;;; ; ; 7/-;] Assuming No Conflict

Branch Sequence

Branch Sequence

Branch Sequence

"Set No Branch"

"No Branch" F/F

"No Branch Proceed!

I

""Proceed"

Y,

"Skip IM

7,

"Skip IIIY

YA

Skip 1T

Vol

1%

77/ B 7

* TIncrement Release at t375
Long Add Release at t475

BRANCH UNIT TIMING - NO BRANCH

Figure

7.8-3.1

LOOP SEQUENCE - See Figure 7.8-3.2

1.)
1A.)

2.)

3.)
4.)
5.)
5A.)
6.)

7.)

8.)
9.)
10.)

11.)

12.)

13.)
14.)

15.)

Begin with a "SCBD Issue" into F38/3 (sheet 100) at the

time t90 previous to time too of this graph.

K——>R transfer is done on every '"Issue", whether or not
the content of R is used. (M28 sheet 54)

The "Branch Select" FF (F38-TP2 sheet 100) is set as a
result of a (SCBD Issue)(FM=OK). It is cleared by the gate
feeding Qo4/16 sheet 101.

"Stop" is set a result of (OX)(SCBD Issue). See G36-TP3 on
sheet 57.

"Go" (G30-TP1l sheet 219) set by (Proceed)(t60) and cleared
by Stop (3.above). "Proceed" defined in (12) below.

G26-TP4 sheet 56 set while Incr. I is performing tests to
see if condition mct.

L21-TP6 sheet 100 is set by (Issue)(error) and cleared by a
functional unit reservation code of XXX1.

The Auxiliary Functional Unit Release enables the continuation
of the branch sequence. (H25/16) sheet 100.

After receiving a "Release" from the Aux. F.U., the Aux. F.U.
timing chain (sheet 101 of F.U. prints) is started. The
"condition met" signal from the Aux. F.U. and a time t50 from
timing chain seats the "Jump + Loop" FF (R37-TP4 sheet 101).
The remainder of the sequence is not timed, although, some

consideration must be given to wire lengths.

Go Branch is a logical 1 when (Inch) + (Jump + Loop)is present.
Therefore "Go Branch"—=(Inch)(Jump + Loop)

"Disable Adv. P" (Q04/26 sheet 101) is a result "Jump + Loop"
FF being set.

R—>P is enabled by P10/1 sheet 101 which translates as
[(RIFEM) (P M°)(FM = 02)] [(INCH)(Jump + Loop)]

To clear PC, F33/23 sheet 102 must translate as[ZGo Branch +
RJ +>EM3 [ﬁn stdc@] « This is a function of R37-TP4 since
Go Branch (Jump + Loop)(Inch).

"Proceed" entering G30/11 sheet 219 is a direct result of the
"loop proceed" generated at F33/21 sheet 102 by

[?o Branch + RJ +-E@] [}n stac@] . See (11.) above.

Skip I (G30-TP5 sheet 219) is set by the "Proceed" defined in
(12) above.

The setting of Skip I will result in setting skip II (G30-TP4
sheet 219)

Skip II1 (G30-TP3 sheet 219) is set for 200ns as a result of the
"Proceed" and setting skip II.

382

¢£8¢

5A.

10.

11.

12.

13.

14.

15.

F34 —>F38/3
K ——>R.
F38 - TP2
G36 - TP3
G30 - TP
G26 - TP4
L21 - TP6
H25/16
R37 - TP4
P10 - TP3
Q04/26
N31/nCH
G31/ngn
G30/11
G30 - TP5
G30 - TP&
G30 - TP3

SCBD Issue

U issues are fanned out from F34 also.

M28 sheet 54

Branch Select

Stop

Go

Incr. I Unit Busy

Select Release Incr.

Release

Jump + Loop

Go Branch

Disable Advance P

R——>P

Clear PC

Proceed

Skip T

Skip 11

skip 111

I

00 100 200

Loo®

300 400 500 600 700 800

I

Eas

Figure 7.8-3.2

Time -

UNCONDITIONAL JUMP INSTRUCTION (Fm = 02) -~ See Figure 7.8-3.3

NOTE: The following duscussion assumes

9.

10.

11.

12.

13.

No Functional Unit or Memory Bank Conflicts
Branch select FF is set by (Fu = 0X)(SCBD issue)

Go is cleared by 'stop' via (0X)(SCBD issue)(page
24.1) & stays cleared until "proceed" sets it.

Aux, F.U. is issued 25 ns after branch select FF sets.

Aux. F.U. is released (Q = XX1X)(release INCR2) page
9 (H25 TP5).

Jump + loop is set by aux. F.U. release, t60, &
fm = 02.

Set no branch signal comes up when jump + loop is set,
aux. F.U. & a t30. This condition is enabled when a
zero is present on p.n 21, QO04.

FFA is set by pause, jump, or end exchange; in this
particular case, it sets jump, zero on pin 21, F37.
Stop C.P. is set by the setting of FFA anded with a
t50, when stop C.P. sets it forces L=7, PC=0 and voids
the instruction stack. A "one" signal on pin 28 of

R32 will cause the "Enable Restart"” flip flop to set on
the next t25.

Program address sets via jump + loop FF at t450 & is
gated with a t25 to enable p—3»MO at 595. The P—3>»MO
comes back and clears the Program Address at t605.
Clearing Program Address knocks down P—3»MO at 695.

Go Central Memory comes up via (priority 2)(t75) page 81
which is at t675.

MO - always goes to Ml at a t0O0 time. This occurs at 700

on the timing chart for a jump instruction.

An M"accept" signal (25NS) is returned from memory, 200
NS after sending the '"go" to central memory. This occurs
at t875 on the jump timing chart.

The "Accept'" signal from central memory will generate the
"proceed" signal (Pg. 23-F37 Pin 6) this allows the "Go"
flip flop to set on the next T70.

Accept is anded with a tag 10 which is anded with Jump +
Loop and sets the Instruction Available FF on the next t25.

384

é8¢

00

1

100

200

300 400

500

sx. ssv. v < WONITITATTNIY

2.
CLR. GO G30

3.
ISSUE AUX. G30

4.

REL. AUX. F.U. |H25 TP5

5.
JUMP + LOOP R37%

YUY

T

UL YUY

M_

600

700 800 900

1000

U
1100 1200

1300

1400 15

00

1170 £1270

v,

VAT,

NI

Ny

-

TP4

vinmim

6.
NO BR. Ll4 TP6

(PG 13)

7.
FFA F37 TP4

UYL

T,

UL

YUY

7!

7.
STOP CP R32 TP

7e
EN. RESTART F37

TP1

T

13.
INST. AVAILLJF

37 _TP2

N

8.
PROG. ADDR. P37

(PG 187)

8.
P

705

0
(PG 187)

10.
MO —>»MT

(PG 81)

9.

GO C.M. F42 TP|5

(PG 81)

11.
ACCEPT @4¢ TPG

12.
PROCEED F37 PG

12;%3- 126

JUMP

TIMING CHART

Figure 7.8-3.3

RETURN JUMP SEQUENCE (fm = 01) - See Figure 7.8-3-4

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Issues - Tooo is the scoreboard issue for the branch instruction. The u
issue previous to this scoreboard issue enables our ml —smK
transfer.

Ml >K - ul register transferred to the K register with u issue.

Branch Select - Set by (SCBD issue)(Fm=0X) this will be cleared when Jump+
Loop Flip/Flop is set.

K—3>R - Jump Address sent to R Register. Occurs on the same SCBD issue
which set branch select.

G¢ F1,P/Flop - Cleared with (0X)(SCBD ISSUE) to stop issues during branch.

RJ + EM - Set at T75 by (Fm = 01)(SCBD Issue)(P——»M0) It is cleared when
TP 1, P10 is set, or when P—MO occurs.

P+1—>S - Unconditionally each T10. Return address gated to "s'" Register.

S——>Memory - Unconditionally each T50. Forms 0400(P+1) o———0 at Jump
address.,

Disable P+l - To allow true jump addres to be gated to MO from P.
2nd Time - to allow true jump address + 1 to be gated to MO.

Program Address - Set to Enable our P——>MO transfers.

R—P - Jump address gated to P register. Transfer occurs after RJ + EM
Flip/Flop is set and Jump + Loop Flip/Flop is still clear.

P——>MO - Jump address gated to MO. P+l was disabled at this time.
ond p MO gates jump address + 1 to MO for our RNI.

ADV P - Jump address + 1 gated back to "P" register, which will be our
address of our RNI.

P10 ZB - Set by P——>MO. By setting this Flip/Flop we clear RJ + EM,
set exit and then set Junp + Loop.

Jump + Loop - Set when exit Flip/Flop is set. This forces jump condition
which clears branch select and sets FL1iP/Flop "A".

Exit Flip - Enables setting Jump + Loop Flip/Flop.

F37 Flip/Flop "A" - Set by a Jump condition which in turn enables setting
stop CP Flip/Flop.

Stop CP Flip/Flop - Set when FF "A" is set to enable setting of "Enable"
Restart Flip/Flop. Setting stop CP voids stack L =7, D=7,
PC = 0.

Enable Restart - Set after stop CP FF is set to partially condition the
the gate for the proceed after RNI.

MO——> MI - Two of these occur. The first with a (tag 50) and the second
with a (tag 10).

REQ RNI - Set after second MO——>MI and our RNI accepted.

INST. AVAIL. - Set after Req RNI set to fully condition our gate for our
proceed.

Proceed - Sets "Go" FF, Skip I FF, and Skip III FF to enable two u issues
for the instruction at Jump Address + 1.

386

1.

ISSUES
2.

Ul—>»K
3.

BRANCH SELECT

F38 - TP2
4.

KR
5.

uGo FEM

G30 - TPl
6.

RI + EM

Q04 - TPL
7.

P—>S

M35 - A
8.

5 —MEMORY

138 - 4,B
9.

DISABLE P + 1

P37 - TP
10.

PROG. ADDR.

P37 - TP4
11.

R —>P

N3l - C
12.

P— MO

901 - &
13.

ADV. P

N3l - D
14.

P10 - TPL
15.

JP + LOOP

R37 - TP4
16.

EXIT

R37 - TPS
17.

F37 - FFa
18.

STOP G.P.

R32 - TP6
19.

ENAELE RESTaRT

F37 - TPl
20.

MO ——> M1
21.

REQ R.N.I.
22.

INST. AVAIL.

F37 - TP2
23.

PROCEED

RETURN JUMP OP CODE = 01
-t100 000 100 £200 300 £400 £500 £600 €700 £800 £900 ©1000 1200 t1300
U Fes, i 2 SCBD
R Z B 7/ M /|
vz
| -H74 [/ A
V2777000270007 00
7
o0 Z % ;
TR
7z
7
t155 £255
727, 077 | ;
(3] £260 =
W— i i i

/A

Figure 7.8-3.4

387

EXIT MODE STOP, RNI Out of Bounds and (EM) = xx1 - See Figure 7.8-3.5

1.) End Exch. sets F37 - TP4

2.) End Exch. also sets P37-TP4 (Program address FF)
3.) P37-TP4 enables P M° gates at (01 - A

4.) P37-R sets Enter Central FF (P37-TP3)

5.) F37-TP4 (Ref #1) sets stop C.P. (R32-TP6), which in turn sets Enable
Restart (Ref #6), clears Parcel counter, and sets L4+D=7.

6.) Set by R32-TP6 (Stop GC.P.)(Ref #5)
7.) Parcel counter clears (Ref #5)
8.) RNI (R33-TP6) is set by a delayed accept (Ref #9) anded with Tag=(10).

9.) Accept (P40-TP6) from C.M. is delayed before setting RNI (R33-TP6)
(Ref #8). This allows info to get to IR.

10.) RNI sets Inst. Available (F37-TP2) which together with Enable Restart
(Ref #6) gives us a proceed which sets GO and Skip I and Skip III
(Ref #11 & 12)

11.) Skip I (G30 - TP5) set by Proceed (Ref #10)

12.) Skip IIT (G30 - TP3) set by Proceed (Ref #10)

13.) Skip II (G30 - TP4) set after skip I

14.) Inst. Avail. (F37 - TP2) set by RNI (Ref #8)

15.) IR—sI0 (E25 - 10) initiated by RNI (Ref #8)

16.) Inch (G29-TP2) set by first issue with Pk=0 & L=7.

17.) Proceed (F37-6)(Ref #10)

18.) Error (F35 - TP4) set by M° FL (Ref. 21) and Skip I (Ref. #11)

19.) Big Inch (L19-TP6) set by Q26-7 (Ref #16)

20.) EOK (P13) by Error (Ref #18)

21.) MO—=—FL 1is a static network that comes up when registers are set
(Ref. #43)

22.) RJ + EM (Q04-TPl) set by Error Exit (EDK=3)(Big lnch) Ref #18 & 19

23.) Exit F.F. (R37-TP5) set by (RJ + EM)(P MO) Ref. #22 & #3
24.) Jump & loop (R37-TP4) Set by Exit (Ref. #23)

388

68¢

'Y 900 1000 1100 1200 1300 I?OO u'm 1?00 ITIW 1800 “?’ ZD"‘O :mio 3300 a?uu 34?0 Jioo

£ 20 s0p s0p 60p 70q ”? | ' | 1 1

8
£

1. F7 - T
7/

2. PROG. ADDR. (P37-TP4)

|7 N mzi /r

N
N
N
3

30 P MO (901-4)

4. Enter Cent. (P37-TP3) 17 7| 7 1L

. Stop C.P. (R32-TP6) E 7 1___., l—‘ F

w

@

R V777777777, o4 77777777 vz Z/// 7 A
1/

P1)

. Parcel CIR (G31) Te] [lo

.« BNI (R33-TP6) D ; ; ;l V. A [/ F;;/Zl

®

7/
9. Accept (40 - TPG) %] (7] m.{/ . 7]

Z ¥
10. Go C.P. (G30 ~ FF1) VA

11, Skip I (G30 - TP5))

12, Skip 111 (630 - TPI)

V777777777 S ooz 7z

13, Skip LI (G30 - TP4) Y //‘ //[[
ff 17
e

14, Inst. Avail. (F37-TPL1)

N
NN
N

15, IR - »30 (E25 - 10) 7J .
V777 /A . 4 W7

16, Inch (620 2) / 7/

17, Proceed (F37 - 6)

A s L ZZ) —~F

18. Error (F35 - TP4)

7 IS /772 A

16, tach (U9 - b)

e VA__FA__ 77777777777, 7 le P

7]
v - 0 WSS p / 7SI g4 4 4 %

2. W B4 (Q04 - TRL) 7
I; /] (4

23, Exit PP (R37 - TPS) _///-
F;;' 4

W) INP + Loop (RI7 - TP4) 7//___,

EXIT MODE
Figure 7.8-3.5

7.8.4 1IN STACK/OUT STACK TESTS

The purpose of the in stack/out stack tests is to determine whether or not
a conditional branch (03X or 04-07) can be made in the stack or out of the
stack. Ultimately, it is necessary to generate one of two logic signals:
"Loop" or "Jump". '"Loop" implies an in stack branch. "Jump" implies an
out of stack branch, Of course, a third condition exists in case the
condition for the branch is not met. This condition is called "no branch".
Naturally, in order for a Jump or Loop to be executed, the condition must

be met (No Branch).

The In Stack/Out Stack Tests are divided into three parts: 1) R - P test,
2) L - T test, and 3) D - (L - T) test. The tests are analyzed separately,
but keep in mind that they are inter-related and in the end will indicate

the Jump or Loop condition.

1) R - P TEST:

The R - P test will determine whether the difference between the jump
address (K) and the location of the branch instruction (P) is within the
limits of the instruction stack (Seven registers forward - I7 to I0, or six
registers backward - Il to I7). This check is made by subtracting the

value in P from that in R (R holds the K portion of branch instructions).

Since the network forms R - P, it is logical that if R is greater than or
equal to P the result will be positive. A positive difference thus
indicates a branch forward. If P is greater than R, a branech backward is
implied by the negative result. Also, if the magnitude of the branch is
less than or equal to seven, the branch is within the limits of the physical
stack registers.

390

Four cases may result from the R - P test:

a) R - P positive and <7.

Example: R = 010006
P = 010003
Difference: = 000003

The upper bit of the difference equals zero, indicating a positive
result, or that R > P. Thus, the branch is forward. Bits 3 - 16
of the result equal all zeros. This indicates that the difference
was less than or equal to 7. Thus, bits 3 - 17 of the result
being all zeros say that the branch is forward seven or less
places.

b) R - P positive and >7.

Example: R = 010007
P = 007774
Difference: = 000013

Again, the upper bit of the difference equals zero, indicating

that R is greater than P. Thus, the branch is forward. Bits 3 - 16
of the result are not equal to all zeros. This indicates that

the difference is greater than 7, which means the branch cannot
possibly take place in the stack. This is a Jump (out of stack)
case.

¢) R - P negative and < 7.

Example: R =*010003
P = 010007
777774
l&—EAB
777773

391

d)

Summary

The upper bit of the difference is a "one'", indicating that P
is greater than R. Thus, the branch is backward. Bits 3 - 16
of the result equal all ones. This indicates that the difference
is less than or equal to 7. Thus, bits 3 - 17 of the result
being all "ones" indicates the branch is backward seven or less
places. The difference is the complement of the nuvuwber of
blanched places branched.
R - P negative and>7.
Example: R = 010005

P =-010016

777767
-1 - EAB

777766
The upper bit of the difference (217) is a one, indicating that P
is greater than R. Thus, the branch is backward. Bits 3 - 16 of
the result are not all '"ones". This indicates that the difference
is greater than 7, which means the branch cannot possibly be in

the stack (again, a Jump case).

In order for the branch to be in the stack, the absolute value of (R - P)

must be less than or equal to 7. This is indicated by the all one or all

zero state of bits 3 - 17 of the difference. If these bits are not all

ones or all zeros, a Jump (branch out of stack) is forced at this point.

Figure 7.8-5 is a block diagram of the R-P test. For a bit-by-bit analysis

of the logic, refer to sheet 96 in the C. E. Diagrams.

392

BLOCK DIAGRAM -~ R~P to T

€6t

P

L) (BR BUSY) (I4 to I5 - I0 to Il)

T
" =~ ""7
|
0 _ R-P R-P | |

R+P = |
) - e 23 . 2l7 | l
11 R 4 | |
e T O]
) | !]
K ! |
—_— | |
oUN -P 1
R 32 : —'Q\ | by !
0 i : '
1 1
ISSUE time |, __ _,
UE TI
(SCBD ISSUE TIME) OUT OF STACK
- A
ALL ZEROS o
ALL ONES

Figure 7.8~5

2) L - T TEST

Even thougn the absolute value of R - P is less than or equal to seven,

the "branch out of stack" condition may exist if there are not enough I
registers before or after the I register containing the branch instruction.
Assume, for example, the branch instruction is in I5 and branch of 6 places
forward is desired. A branch forward from I5 is limited to 5 places

(from I5 to I0). The branch is therefore out of the stack. A similar
situation could exist for a backward branch, where the branch would be out
the "top" of the stack. The L - T network thus determines whether or not

a loop is possible with relation to the position of the Branch instruction.
This check is made by the (L - T) network which subtracts the result of

the R - P test (T) from the complement of the L register. Recall, that

the quantity, T, is in one's complement notation. That is, if the result
of R - P was negative, T is the complement of the difference; if the result

was positive, T is the true value of the difference.

If the result of R - P is negative and less than or equal to 7, recall that
bits 3 - 17 of the result are all ones. This condition will force a carry
into the L - T network. As will be seen, this causes the result of this
test to be true for negative values of T (an erroneous answer would result
otherwise). If the result of the R - P test is positive and less than or
equal to 7, bits 3 - 17 of the result are all ones. In this case, a carry

is not forced into the L - T network.

394

In analyzing the result of the L - T network it should be realized that
if the result is less than zero (negative), the branch will be out of the

1 a

stack. This is more obvious with forward branches than with backward.

In the case of forward branch the L - T network subtracts the number of
places we wish to branch from the I register number where the Branch
instruction is located (i.e. L vields I register number). Any result of

zero means the jump is to I0 (maximum forward loop).

Example: A branch from I4 forward 4 places.
L=3
14 L=3 T =4
+4 _
SNl 10 L-T=4-4 =0

Thus, a difference greater than or equal to zero indicates the branch is
forward less than the maximum number of places. (Incidentally, the condition
L - T > zero is sufficient condition to branch forward in the stack (loop)
as we shall see shortly. A negative result (L - T<0) then implies the
out of stack condition (negative is indicated by an End Around Borrow). In
summary of forward branches:

EAB =>1loop (in stack)

EAB = jump (out of stack)

A branch backward in the stack is not quite so obvious. It would be possible
to use the End Around Borrow condition to enable a branch backward in the

stackj but,if this were the case)the true value of T should be added to L.

395

Example: Branch backward 4 places from I2

L=25
branch 4 places (T = 4 - true value)
16 T+T=2+4=6
4 places
__}2,_1 The result, 6, is positive

(EAB)

Note that a branch greater than 5 places backward from I2 would cause
overflow (End Around Borrow). L + T =2 + 6 = 10. Essentially the same
thing is accomplished by subtracting the complement of the desired number
of places to branch from L. (Since adding can be accomplished by
complementing and subtracting).
Using the same example as before:

L=35 (12)

T

3 (Complement of # places to branch)
L-T=2-3=2-(-4)=2+4=6
Note that since we are subtracting, (actual values: 2 - 3) an EAB will be

generated. In the case of negative values of T then, an EAB indicates

"in the stack" and NO EAB indicates "out of the stack".

Actually, the L - T network operates somewhat differently from the previous
example indicated. Recall that if the R - P network generated a negative
result less than or equal to 7 (indicated by "all ones") a carry was sent
to the L - T network. This carry makes the L - T adder a two's complement
network. It thus forms the quantity expressed as follows:

L-T- carry = 1

(1 = result of L - T network)
If the difference between R and P is positive (forward branch) the carry is
not used and the formula becomes simply:

L-T=1

396

The output of the L - T network (1) will be the true value of the I register
into which the branch is desired. If all branch tests are met, the output

of the L - T network will be complemented and sent to the L register,

replacing the old content of L (recall that L holds the complement of the
I register number from which instructions are to be issued). The following
example should point out the need for two's complement arithmetic:

Assume that the branch instruction is in I2 and a branch backward

5 places (to 17) is desired.

Then: L =5, T=2

One's complement:

L-T=2-2=0
(The result indicates a branch to I0; wrong!)

Two's complement:

L-T- carry =
2 -2-1=17
(The result is correct, indicating 17)
To summarize the L - T network, the following four cases are presented.
The result of Z - T will be used, only if the first condition.GR - Pl57) is met.

1. Branch Forward In Stack

16 T=24
all zeros to carry

L=1

1
1
3
It
-

6 - 4 =2 and EAB

(all zeros) - (EAB) —>in stack

397

2. Branch Forward Out of Stack

T=26
I5 all zeros to carry

-
+6 L=2
_4;

5 - 6 =7 and EAB
(all zeros) * (EAB) =>out of stack

3. Backward Branch In Stack

I7

T=1

6
\\~_§— all ones to carry
I1

T = &
e

L-T=1
1 -1 - carry = 7 and EAB

(all ones) ° (EAB) —x.gate result (1 = 7) to the D - (L - T) network.

Note: At this point the branch is out of stack. Consideration #3 will
determine whether or not the Branch is in the stack.

4, Backward Branch Out of Stack

5/%
N

T =2
all ones to carry

14

L=3

L-T=1
4 - 2 - carry = 1 and EAB
(all ones) * (EAB) =>-don't gate result (1L = 1) to D - (L - T) network.

Rranch is out of stack.

398

R~-P

Set if not executing
Branch instruction

66¢

SET NEW L -—~<::>--—-

CARRY*
(FORCE IF BACKWARD)

i
]
=

BLOCK DIAGRAM ~~ L ~ T

1 =1 reg. #

*Makes result true if T was negative

Figure 7.8-6

3)

D - (L - T) TEST

From the previous examples it was seen that the D - (L -T) test is
necessary for only case number 3 of the L-T test, although the test is
performed whether or not the branch is backward. With this case it was
determined that the branch is backward and within the limit of the
physical I registers (l.e. branch is not beyond I7). It is now necessary

to determine whether enough valid instructions exist in the I register,.

Recall that each time an instruction was brought from memory into I0
(RNI) the stack was "Inched" and the D register decremented (D holds the
complement of the number of valid instructions). Thus, D = 7 indicates

an "empty" stack; D =0 a "full" stack.

In analyzing the formula, D - (f -T), recall that the result of the L-T
network yields the new I register number. Also, the complement of the

D register indicates the number of valid instructions in the stack. From
another point of view, D indicates the number of the I register which
holds the first valid instruction in the stack. For example, D equal to
one means there are six (B) valid instructions or that the first wvalid
instruction is in 16, Thus, we are actually subtracting the. number of
the I register to which we wish to branch (L - T) from the number of the
register holding the first valid instruction (D). If L - T is less than
or equal to D the difference will be positive (indicated by no End
Around Borrow). This means the branch is within the range of valid
instructions and the "in stack!" gate is enabled. If L - T exceeds 5,

we wish to branch to a register number greater than the one holding the
first valid instruction; 1in this case the difference will be negative

(indicated by an End Around Borrow).

400

10%

BLOCK DIAGRAM -~ D - (L-T)

1*

~l

CARRY =>0UT OF STACK
CARRY =>IN STACK

[
WUSE /
D-1 'ONLY o3

i \ nin non —
! o 1 _f\ 0 > IN
lCARRY STACK

nin
(7 =>empty)

(0 =>full)

ol

BACKWARD CARRY

%] = result of L-T network

Figure 7.8-7

In summary, only the End Around Borrow signal from the D - (L - T)
network is required. The presence of an EAB indicates "out of stack";

the absence of an EAB implies "in stack".

Figure 7.8-8 is a flow chart of the In Stack/Out Stack tests. It is
intended as a logical, concise summary of the decisions made by the test

networks as explained in the preceding paragraphs.

402

v

IN STACK/OUT STACK TESTS

FLOW CHART
generate
R-P
Tits Send carry to
L-T
3-1Zn2:$ network
its Gate bits 0 - 2
3-17 all Yes to
zeros? T register
No 1'
_Form
L-T
_ Form
D-(L-T)
No
EAB? Yes
No
all in
zeros and Stack (Loop)
EAB?
No out
) 4 P of Stack
(Jump)

Figure 7.8-8

403

7.8.5 UNCONDITIONAL AND RETURN JUMPS

Unconditional Jump (fm = 02)

The unconditional jump uses very little of the Branch Units!' logic., 1It, of
course, does not use the "Condition Met'" circuits nor does it use the "In

Stack/Out Stack" tests (since the 02 is always out of the stack).

Nothing prevents the use of the R - P compare network, but whatever the
result, it is not sent to the T register. The T register is therefore
always set and the out of stack (Jump) condition is always present. (Refer

to Figure 7.8-13 during the following discussion.

|

ranch!

. ?

o
ip/flop

-

+h

[
[¥%]

R37, TP4) is set by the translation "fm = 02"

N
F

o

he "Go

@

(R37, pin 27) and "Release of Auxiliary Functional Unit." The same signal
enables P to MO which will result in the memory reference at location K + Bi.
The Go Branch flip/flop is ANDed with the conditions, "INCH" (P10, TP6) and
"Out of Stack". This combination of signals sets the Stop CP flip/flop which,
in combination with the RNI tag (10) Accepted, will generate the proceed.

The setting of Stop CP also sets L =7, D = 7, and PK = 0. Hence, the next

instruction issued will be parcel zero of the Branch Address in memory.

Return Jump (fm = 01)

Although the Return Jump performs a function quite different from the
Condit ional or Unconditional Jumps, it shares some of the Branch Unit logic.
Recall that the 0l instruction stores in location K the following word:

59 30 29 0
0400 P+1 Omcmmmmmmmmema 0

404

co%

P.3

-

Y- - 12)

@

[

.l
i

R/P
CONTROL

R38 frm

P9
BRANCH AUX F U RELEASE
SELECT |- = — — = = =25 —
SEQUENCE
135 c28
F.U. P.14.3 54
INST. GO 7 "
CONTROL |
PART 2
{PC=3)(140)(PROCEE D) ISSUE) //’
-
-
_
-
-~
P
-
-
-
-
.
-
INF.
TEST
LONG INDEF.

ADD

(034)(INF)

. ™
o2 froi
3

TEST _ | (036)(INDEF)

{O37)(INDEF)}

{O3STIINF)

ZERO TEST

SIGN TEST

100

R30

e |

/
Vd
/s
’
e ,
Ve
7
I
e
(X p
’
BRANCH s
SELECT //
SEQUENCE ,
e
T i
| s
| BRANCH SELECT 7
| 7/
' (
| | -
| -7
o P
4-
! - —
L -
: Y
| ! D-(L-T)
| : SEQUENCE
(B
——— L ——
: : 1 oPa3
[! Loop |
L : SEQUENCE
4 |
U i,__.___._
: p—(L-T) | _| W STACK _
| | SEQUENCE '
| |
O [
)
LONG ADD :
TESTS : BRANCH I
| —
| too
]
|
I
|
| g1y
; 1
B X #o0 !
x| <0 U B
|
EXIT |
|
284158 |
i
|
28k _A20 |
-
17
fm:=02 .
_ -
— — e e o —— = e d -~
//

ﬁ}»@ -8

" |

&1

U G

26

SET _NO_BRANCH NO BRANCH
-

BRANCH
(] [, CLEAR BRANCH SEL]
P9

BRANCH
SELECT |-+
SEQUENCE

i
L |

1
|
|
|
|

P10 : :
Mo

T !

S . :

INCR UNIT |

CONTRoL 2 | P 187 |

— |

|

FU. P14 |

iNsT Go | !

4 contrOL | |

PART | '

T I

PAR' os !

(L—T) |

1 SEQUENCE |

P 871 1

~ |

|

PR3 |

TO CLEAR P |

—————— b R/P |

TO ADY P __ | CONTROL |

|

|

|

|

|
-]
1 1
|)
| | —— () - 1
' I
|
L

SEQUENCE

—————— SELECT
SEQUENCE

hJ

13|

It then transfers program control to location K + 1,

To perform these operations, the following events take place (Refer to

Figure 7.8-10).

1.

2.

Issuance of instructions is stopped as with any OX instruction.
The output of the incrementer (P + L) is sent to the S register
with the following gate:

(tag = 60) + (Issue)(Error)
The content of R (K = Jump Address) is sent to the P register with
the following gate:

(fm = 01)(P to MO)(Issue)
P is sent to MO with a 50 tag accepted (RJP or EM) and the memory
reference (write) is initiated at location K.
When the tag = 50 is accepted, the content of the S register (P+l) is
gated to memory. Also, bit 296 is set and the remaining bits in the
write distributor are cleared. Thus, the following word is stored

in location K.

59 48 47 30 29 0
K) = 0400 ’ P+ 1

When the P to MY gate is generated address K is sent to MO and

the Enter Central and Program Address flip/flops are set thus
requesting hopper priority 2. The occurrence of P to MO gate

will clear the RTJ or EM flip/flop (QO4, TPl), cause the P register
to advance by one, and again set the Program Address and Enter

Central flip/flops, thus requesting hopper priority for address K + 1.

Since the RTJ or EM flip/flop was cleared, the tag sent to the

hopper with address K + 1 is a 10 tag (RNI) rather than a 50 tag).

406

~
o
~J

RETURN JUMP BLOCK DIAGRAM
Figure 7.8-10

u2

17

7 ISSUE

R REGISTER
o B

17

(M7 T0 HT)(P_To MO)(ERROR + 01)

CH. 5

(ERROR) (EXCH)

NoT

USED DURING

"CENTRAL CONTROL WR."

.5

P REGISTER
17
) P+1
R TO P
(RJP + EM)
9

+1
(FRROR) (EXCH) (O + ® T0 M0)

(ATTEMPT WRITE-RD TAGS) F
(ATTEMPT READ-WRT TAGS)

PRIORITY

CENTRAL
(0 1O M1)

N

INCR. 1

INCR. IIL
Fi

(TIME IN INCR. SEQ.)
(INCR. RD OR WRT)
(INCR TO MO)

CH.2

57
O 56 O Q 56
T 55 CH. 16
54 54
€75 53 53
NOT USED DURING 52
"CENTRAL CONTROL WRITE" 51
» C
49
CH.5
3 _REGISTER ——- 48 .48
17 47 47
46
45
7
‘T CH.15
T —o—
ENABLE P TO S (EXCH) (£55
(TAG = 60) +
(ISSUE) (ERROR)
y
. CH,14
0 30 e 30
(29
p
NoT L
USED
DURING { 15 cH.13
MCENTRAL 14
CONTROL A
WRITE"
STUNT _BOX
——————————— -
|
|
\ r___.._.@.__,
\ .
t
[}
| N
1 v |
1 ! L 0
M I ---
 TAG, |
25 i 247
2 | CENT.
23 . CONTROL
1(Tac-50) (accerm)y (ST
22 F.F.
21
20
ACCEPT

o+

<xOoXmE

RN, o]

LR E-R- 383

wHOLIEN

Thus, when the address is sent through the Read Distributor, it
is gated to the Chassis 5 input register as an instruction.

7. The proceed is generated as follows: The "Go Branch" flip/flop
(R37) is set by term "X"* the unconditional Jump, the output of
the R - P network is not sent to the T register. T therefore
remains set and the Out Of Stack gate is always present. Thus,
the Jump gate is used to set Stop CP, which again sets L and D = 7,
PK = 0, and sets the Enable Restart flip/flop (F37, TPl). 1Issue
is resumed when the tag = 10 is accepted by memory in the normal

fashion.

* Recall, that the Return Jump specifies the jump address as K (not K + Bi

as with the unconditional jump). There is no need therefore to start an
Increment Unit, Thus, the Auxiliary F.U. Release, which normally is used to
set "Go Branch" does not occur. Note, that term "X" (R37) makes no reference

to an auxiliary functional unit - the translation is simply RTJ + EM.

408

7.8.6 NO BRANCH SEQUENCE

A "No Branch'" signal will be generated if a conditional branch instruction is

processed, and the branch condition is not met.

The Branch tests are made by an auxiliary functional unit (long Add for the
03X series instructions; Increment I or II for the 04 - 07 instructions) which
sends the test results to the Branch Unit. The Branch Unit then determines
whether or not the condition has been met by ANDing the test results with

the translation of the opcode being processed. This occurs on module R37

(See Figure 7.8-13). 1If the condition is met, the "Go Branch'" (Jump or

Loop) flip/flop is set (R37, TP4). 1If the condtion is not met, the flip/flop

remains cleared.

The cleared state of the "Go Branch'" flip/flop disables the generation of
"Jump'" or '"Loop" gates. This is donme since P10, TP3 (an AND gate) cannot
be made unless "Go Branch" is present. TP3 is needed for both Jump and Loop

sequences.

The No Branch sequence is enabled by the cleared state of '"Go Branch". If
the condition is not met, pin 8 of R37 will be a logical "1". This feeds

an AND gate on Q04 (pin 17) whose second input (pin 15) comes from the
Auxiliary Functional Unit Release time delay (modules R30 and 31). When
both of these inputs are "ones" the output of Q04, pin 21, will be a logical
zero. This output cleares TP6 on Ll4 (which is set every time 00). Ll4,
pin 17, enables the setting of R33, TP5, R33, pin 27, is used to disable
the L - T sequence during No Branch. Pin 25 sets LO3, TP6 (via H24, TP&4).
The Clear side of H24, TP6 (via pin 17) sends a "proceed" to Instruction Go

Control which resumes issuing instructions.

409

7.8.7

Note, that the L and PK registers are not changed by the No Branch sequence.

This means that the instruction following the branch is the next one issued.

LOOP SEQUENCE

Two conditions are necessary to initiate the Loop Sequence. 1) The branch
condition must be met. This is indicated by setting the "Go Branch"
flip/flop (See Figure 7.8-13 , R37, TP4). 2) The "In Stack" signal must

be present from the Branch Unit's In Stack/Out Stack testing logic.

Setting the "Go Branch" flip/flop disables the No Branch sequence, since the
AND gate on Q04 (pins 17 and 15) cannot be made (see Section 7.8.6 - No
Branch Sequence). With "Go Branch" set, P10, TP3 will output a 'zero" when
the Inch flip/flop (P10, TP6) is cleared (term "A"). This zero feeds an
"OR" gate which will output a "one'" on pin 19 of P10. Pin 19 feeds an

AND gate on F33 (pin 26) whose second input (pin 24) says "In Stack". If
both of these signals are present, a Loop proceed is sent to Instruction

Go Control. Making the AND gate on P10, TP3 places a '"one" on one of the

inputs to P10, TPZ.

The Loop condition must also set the new value of L so that the proper

I register can be addressed. This is done by enabling term "G" on G28
(C.E. Diagrams, sheet 98) via F33, pin 28 (Figure 7.8-12). Term "G" gates
the output of the L - T network into the L register for either the Jump or
Loop case.

NQOTE: As will be seen, the Jump sequence will set L = 7 after setting a
new value of T, Thus, no problem arises hy setting the new 1. for hoth the

Loop and Jump cases. (See Section 7.8.8)

410

11%

NO BRANCH SEQUENCE

JUMP +
LOOP SEQ.

SET_NO BRANCH 17

LOOP SEQUENCE

R33

BRANCH
SELECT
SEQ.

F

b= (L-T)
SEQ.

G36

JUMP + | GO BRANCH +RTJ+EM _ _
LooP SEQ.
JUMP SEQUENCE

JUMP +

Loop sea.|

*SEE 60 CONTROL

GO BRANCH+NO BRANCH

4 (L-T) SsEQ.

LOOP PROCEED

_ CLEAR PC

R

PARCEL

COUNTER

NOTE:

SEE (L-T) SEQUENCE AND D~-(L~—T) SEQUENCE

A GATES (L-T) = L

‘A FORCES L - ZERO (JUMP CASE)
B GATES ADVANCE D LOOP —» D
B FORCES D-» ZERO {JUMP CASE)}

NO BRANCH PROCEED

INST GO
CONTROL
PART |

SET ENABLE RESTART

I
|
!
I
|
|
|
!
|
[
I
!
!
|
!
|
!
[
|

|

NO BRANCH /LOOP/ JUMP SEQUENCE
Figure 7.8-12

7.8.8

P10, pin 2 (Figure 7.8-13) says (RTJ)(EM)(02). If these conditions are
met, Test Point 2 will cause the transfer of R (contains the jump address,
K) to P. Note that this signal will occur in both the Jump and Loop
cases. This makes good sense, since the P register should "follow" the
program sequence even when it is executed "in the stack". Note, though,
that the Program Address and Enter Central flip/flops will be set only for

the Jump case. Therefore, the RNI is not made during Loop.

Finally, the parcel counter must be cleared to insure issuing the first
parcel of the Loop program. This is accomplished with the "one' output

of F33, pin 23 (Figure 7.8-12).

Thus, parcel zero of the I register to which the branch was made is the

first instruction to be issued after the branch operation is completed.

JUMP SEQUENCE

The Jump Sequence is started if a conditional jump condition is met and the
branch is out of the stack (as determined by the In Stack/Out Stack tests),
or if an Unconditional or a Return Jump is programmed. In any one of the

cases, an RNI for the next instruction must be made.

As with the Loop sequence, setting "Go Branch" disables the No Branch

sequence since the AND gate on Q04 (pins 17 and 15) cannot be made. The

set condition of "Go Branch" allows P10, TP3 to output a zero when the inch

flip/flop (TP6) is cleared. TP 3 feeds TP 2 along with the RIJ + EM gate
from 016, pin 14. When both thesc conditions are present, the R register

(contains the Jump address, K) is sent to P. The Program Address and

412

Enter Central flip/flops are set requesting hopper priority. When granted,
MO will be sent to Ml along with a tag = 10 (RNI), and the memory reference

will be started.

Pin 20 of P10 (translates as Go Branch ¢ Out of Stack) feeds pin 21 of
F37 (See Figure 7.8-13) thus setting TP4. F37, TP4 in turn enables
setting the Stop CP flip/flop. This causes L to be set to 7, PK cleared,
and the Enable Restart flip/flop to be set. The proceed is thus delayed

until the tag = 10 has been accepted.

413

ISSUE
INSTRUCTION
TO Uy

DISABLE
P+1, L+l
AND PK+1

ISSUE
Uy TO Uy

Tstop 1ssue |
YESIyNTIL CONFLICT:
)

|

ISSUE OX
INSTRUCTION
TO SCBD

U2fm = OLH02> S
?
NO
AUXILIARY "GO TO roRM BRANCH UNIT
FUNGT. UNIT AUXILIARY o | ___| IN sTack/our
JuMP GOND. |====| FyNGTIONAL R~ P STACK TEST
TEST SEQUENCH UNIT SEQUENCE
SEND_CARRY
TEST TOL-T
OPERAND(S) NETWORK
BITS GATE BITS
3-17 ALL 0-2 TO
ZEROS? T REGISTER
é FORM
-1
ALL
ONES AND
EAB?
SEND TEST
RESULTS TO
BRANCH UNIT

is
CONDITION
MET?

NO BRANCH
RESUME ISSUE

S L)
!

" JUMP " LOOP " B
FORCE: D = 7 FORCE:
L=7 PK =0
PK =0
R TO P SET L:=
P TO MO -1
0
U 1
T N
M0 1o ML
o Ml To cM
F 5
T
3 A
T c
A K
C
oM TO IR
IR TO 10
1]
NEXT
INSTRUCTION
FROM 10
k J 4 A J
BRANCH)
"PROCEED "
BRANCH
FUNCTIONAL
UNIT

WITH INSTR.
FOLLOWING BR.

414

FLOW CHART

FIGURE 7.8-14

APPENDIX A

6000 SERIES FLOATING POINT

6000 SERIES FLOATING POINT

Floating point hardware provides the ability to express a number in

the general fomm
K - BD
where:
K = coefficient
B = base number

|

n = power to which the base number is raised

This concept is opposed to fixed point hardware, where a number is
expressed without exponent. Fixed point hardware places the burden of

exponent expression and manipulation upon the software.

To express numbers of the above general form, provision is made to

represent four properties:

1) Magnitude of the coefficient
2) Sign of the coefficient
3) Magnitude of the exponent (power)

4) Sign of the exponent

The base number, B, is assumed to be 2. Hence there is no need to
express the base number. In other words, the computer assumes the

exponent to be a power of 2.

The 6000 Series 60-bit floating point format is shown in figure A - 3.

59 58 57 48 47 0
|1 | 1 | 10 r 48 1
— I\ o
N NS
l L COEFFICIENT MAGNITUDE
EXPONENT MAGNITUDE

*___;} EXPONENT SIGN

———COEFFICIENT SIGN
figure A - 3

The lower 48-bits are reserved for expressing the magnitude of the coef-

ficient. The computer assumes the binary point to be to the right of the

coefficient, thereby providing a 48-bit integer coefficient which is equi-
valent to about 15 decimal digits. Bit 2°9 is used to express the sign of

the coefficient. The following rules apply to signed coefficients:

SIGN 259 = MAGNITUDE (bits 0 - 47)
POSITIVE 0 True (uncomplemented) form
NEGATIVE 1 Complement form

Bits 48 - 57 are used to express the magnitude of the exponent. Hence,
the absolute value of the exponent may be as large as 1777(8)‘ The sign
of the exponent is expressed by the combination of bits 258 and 259,

according to the following rules:

1f 298 # 259, the exponent sign is POSITIVE.

if 258 = 259, the exponent sign is NEGATIVE.

A.2

Figure A - 2summarizes the configurations of bits 298 and 259, and the

implications, regarding signs, of the possible combinations.

239 | 258 | COEFFICIENT SIGN EXPONENT SIGN
0 1 POSITIVE POSITIVE
0 0 POSITIVE NEGATIVE
1 0 NEGATIVE POSITIVE
1 1 NEGATIVE NEGATIVE
figure A-2

PACKING
Packing refers to the conversion of numbers in the form,K + BT, into
floating point format. The following rules apply to this process.
A. POSITIVE COEFFICIENT
1. Place the coefficient magnitude in positions 47 - O.
2. Make bit 59 = 0.
3. 1IF EXPONENT IS POSITIVE,
a. Make bit 58 = 1.
b. Place the exponent magnitude im positions 57 - 48.
4, 1IF EXPONENT IS NEGATIVE,
a. Make bit 58 = 0.
b. Complement the exponent magnitude and place in
positions 57 - 48.
B. NEGATIVE COEFFICIENT
1. Pack according to the four rules for positive coefficients.

2. THEN, complement all 60-bits.

A.3

EXAMPLE # 1 - ©POSITIVE GCOEFFICIENT AND POSITIVE EXPONENT:

PROBLEM: Pack the number: -+3427 . 2+26

SOLUTION:
1) Rule Al: Coef. Mag., = ____0000000000003427
2) Rule A2: Coef. Sign = 0___0000000000003427
3) Rule A3a: Exp. Sign = 2___0000000000003427
4) Rule A3b: Exp. Mag. = 20260000000000003427

The result of step # 4 yields the packed quantity.

EXAMPLE

2 - POSITIVE COEFFICIENT AND NEGATIVE EXPONENT:
PROBLEM: Pack the number: 3427 - 2‘26

SOLUTION: ,

1) Rule Al: GCoef. Mag. = ____0000000000003427
2) Rule A2: Coef. Sign = 0___0000000000003427
3) Rule A4a: Exp. Sign = 0___0000000000003427
4) Rule A4b: Exp. Mag. = 17510000000000003427

The result of step # 4 yields the packed quantity.

3 - NEGATIVE COEFFIGCIENT AND POSTTIVE EXPONENT:

EXAMPLE

PROBLEM: Pack the number: -3427 . 2126
SOLUTION:

1) Rule Bl: Use rules Al through A4 first.

2) Rule Al: Coef. Mag. = ____0000000000003427
3) Rule A2: Coef. Sign = 0___0000000000003427
4) Rule A3a: Exp. Sign = 2__0000000000003427
5) Rule A3b: Exp. Mag. = 20260000000000003427
6) Rule B2: Complement = 57517777777777774350

The result of step # 6 yields the packed quantity.

Ah

EXAMPLE # 4 - NEGATIVE COEFFICIENT AND NEGATIVE EXPONENT:
PROBLEM: Pack the number: -3426 - 2’26
SOLUTION:

1) Rule Bl: Use rules Al through A4 first.

2) Rule Al: Coef. Mag. = ____0000000000003427
3) Rule A2: Coef. Sign = 0___0000000000003427
4) Rule A4a: Exp. Sign = 0___0000000000003427
5) Rule A4b: Exp. Mag. = 17510000000000003427
6) Rule B2: Complement = 60267777777777774350

The result of step # 6 yields the packed quantity.

In examples 3 and 4, check the sign of the coefficient and exponent as
given by the packed quantity. 1In example 3, the upper octal is 5, or
101(2). According to figure A.3-2 this implies a negative coefficient
and a positive exponent, which are the correct signs of the original
number. In example 4, the upper octal is 6, or 110(2). According to
figure A.3-2 this implies a negative coefficient and a negative expo-

nent, which are the correct signs of the original number.

Although the above process is not a difficult one, it is somewhat cumber-
some. A short-cut method of packing exponents can be derived by consider-
ing the representation of negative and positive zero exponents. Assuming

a positive coefficient, zero exponents are packed as follows:

POSITIVE ZERO EXPONENT

I
N
o)
8
P
]
1
1
]
'
1
1
1
1
1
1
1
1
)
d

NEGATIVE ZERO EXPONENT

I
=
~
~l
~
be

A.5

Since positive exponents are expressed in true form, start with a "bias"

of 2000 (positive zero) and add the magnitude of the exponent. The

range of positive exponents is:

0000 through 1777

Or, in packed form:

2000 through 3777.

Negative exponents are expressed in complement form. Hence, start with

a bias of 1777 (negative zero) and subtract the magnitude of the exponent.

The range of negative exponents is:

-0000 through -1777

Or, in packed form:

1777 through 0000.

The rules for packing may now be simplified as follows:

A.

B.

UNPACKING

POSITIVE COEFFICIENT

1. Place the coefficient magnitude in positions 47 - O.

2. If the exponent is positive, add the exponent magnitude
to 2000.

3. 1If the exponent is negative, subtract the exponent magni-
tude from 1777.

NEGATIVE COEFFICIENT

1. Pack according to the rules for positive coefficients.

2. THEN, complement all 60-bits.

As the name implies, unpacking is the process opposite to packing. It

refers to the conversion of floating point formats into numbers of the

A6

form, K -

A.

nn
D"

The following rules apply to thi

Check the sign of the coefficient (bit 59).

1.

If positive, take the lower 48-bits as the coefficient
magnitude.

If negative,

a. Complement all 60-bits.

b. Take complemented lower 48-bits as the coefficient

magnitude.

Check the complemented upper 12-bits.

1.

1f in the range, 2000 - 3777, subtract 2000 (bias) to
obtain the magnitude of the POSITIVE exponent.
If in the range, 0000 - 1777, subtract from 1777 (bias)

to obtain the magnitude of the NEGATIVE exponent.

These rules may be proven by working examples 1 - 4 in reverse to obtain

the original mathematical expression.

RANGE DEFINITIONS

The preceding discussion presented the format and conversion methods of

6000 Series floating point. The 6000 Series computers provide the capa-

bility of representing a 48-bit integer coefficient multiplied by 2

raised to a power in the range +1777(g).

In Octal: 7777777777777777.

) +1777

The decimal equivalent is:

281474976710655. 101307.95369

OVERFLOW

A result with an exponent so large that it reaches or exceeds

the upper limit of 3777 (positive) or 4000 (negative) is treated
as an infinite quantity. In the case of positive infinity, a
coefficient of all zeros and an exponent of octal 3777 are packed.
For negative infinity, a coefficient of all zeros and an exponent
of octal 4000 are packed. An optional exit is provided when an
infinite operand is detected since its use may generate further

error conditions. (Refer to Appendix B.)

UNDERFLOW

A result, the exponent of which is less than the lower limit of
octal 0000 (positive) or 7777 (negative) is treated as a zero
quantity. This condition will cause a zero exponent and
coefficient to be packed. No exit is provided for underflow. A
result with an exponent of octal 0000 and a coefficient that is
not zero is a non-zero quantity and is packed with an octal 0000

exponent and the non-zero coefficient.

INDEFINITE OPERANDS

Use of infinity, zero, or indefinite operands may produce an
indefinite result. An exponent of octal 1777 and a zero

coefficient are packed in this case. An optional exit is provided.

Hence, octal exponent configurations of 1777, 3777, 4000, and 6000 Lave

special meaning and should not be used in representing numbers in floating

point.

In summary, the special operand forms in octal are:

3777%——X (positive infinity)
4000%——X (negative infinity)
1777X——X (positive indefinite)
6000X——X (negative indefinite)
00000——0 (positive zero)

77777——7 (negative zero)

Whenever an operand in one of these six special forms is used as a source

operand, only the following octal words can occur as results:

37770——0 (positive infinity)
40000——0 (negative infinity)
17770——0 (positive indefinite)

00000——0 (positive zero)

Note that in these cases, the 48 least significant bits of the result are
zeros. For a detailed list of infinite, zero, and indefinite forms, refer

to Appendix B.

SINGLE/DOUBLE PRECISION

The 6000 Series floating point add, subtract and multiply instructions are
capable of producing single or double precision results. Single precision
results may be rounded or unrounded; double precision opcodes always re-
turn unrounded results. Floating point divide instructions generate only

rounded or unrounded single precision results.

A.9

FLOATING ADD OPERATIONS

Before addition of floating point numbers takes place, the exponents are
equalized by shifting the coefficient of the smaller exponent to the right
a number of places given by the difference of the two exponents. The
shifted and unshifted coefficients* are added and a 96-bit sum is generated

as illustrated in the following example:

GIVEN: FX6 = X1 + X2
(X1) = 2072 4273000012340772
(X2) = 2057 5230000023457610

The Add logic forms:

X1 (unshifted)
X2 (RS 15 places)
96-bit Result

4273000012340772.
52300000234.57610
4273052312341226.5761000000000000

In effect, right shifting the coefficient of the smaller exponent (which
decreases the coefficient magnitude) increases that exponent to equal the
larger. Hence, the exponent of the 96-bit sum is the larger of the two
original exponents and the binary point in the example is correctly posi-
tioned at the center of the result. Since unrounded single precision is
specified (FX6), the upper 48-bits of the sum and the larger exponent
will be taken as the final result:

(X6) = 2072 4273052312341226
Had double precision been specified (DX6), the final result would be the
lower 48-bits of the sum and the larger exponent minus 60g (4810):

(X6) = 2012 5761000000000000

* Neither coefficient will be shifted if the original exponents are equal.

A.10

Packing the lower 48-bits of the sum effectively moves the binary point
48 places to the right, which increases the coefficient magnitude. To

compensate, the exponent is decreased by 48 (60g) during double precision.

If rounded single precision were specified (RX6), a "one" would be placed
below bit 20 of the unshifted operand before adding. This, in effect, adds
% and will cause a carry into bit 20 if the fractional portion of the
shifted operand is greater than or equal to %. To illustrate, the original

example with round specified follows:

The Add logic forms:

X1 (unshifted)
X2 (RS 15 places)
96-bit result

4273000012340772.4
52300000234.57610
4273052312341227.1761000000000000

Il

The final result in this case is:

(X6) = 2072 4273052312341227

FLOATING MULTIPLY OPERATIONS

Multiplication of floating point numbers requires the addition of the
exponents and the multiplication of two 48-bit coefficients. A coeffi-
cient product of 96-bits, with the binary point below bit 20, is formed.

If both original operands are normalized, the result will also be norma-

lized.
GIVEN: FX7 = X3 x X4
(X3) = 2023 4253000000000002
(X4) = 2027 5300000000000014

The Multiply logic forms:

X3 4253000000000002.
X4 5300000000000014.
96-bit result 27227100000000074604000000000030.

A.11

Since this result is not normalized, it is left shifted one place:

LS 1 place = 56456200000000171410000000000060

Since single precision was specified (FX7), the upper 48-bits of the
result will be packed as the final coefficient. This effectively moves
the binary point to the left 48 places, decreasing the magnitude of the
coefficient. Hence, 60g is added to the sum of the exponents. To com-
pensate for the left shift required to normalize, one is subtracted from
the exponent. The single precision result is:

(X7) = 2131 5645620000000017

(NOTE: Final exponent = 2023 + 2027 + 60 - 1 = 2131)

Had double precision been specified (DX7), the lower 48-bits of the pro-
duct and the sum of the exponents minus one (compensating for the left
shift to normalize) would be taken as the result:

(X7) = 2051 1410000000000060

If rounded single precision was specified (§X7), a "one" would be added to
bit 246 of Xk (X4 in this example) on the first iteration of the multiply
step. A rounded, 96-bit coefficient product would be generated and the
upper 48 bits, along with the sum of the exponents plus 57g would be taken
as the result:

(X7) = 2131 5645620000000020
In the above example a % round occurred because the 96-bit coefficient

was left shifted one place to normalize. Had the product already been

normalized, the left shift would not occur. The result would be

A.12

rounded by % (since the round bit was entered in position 246)

and the final exponents would all be greater by one.

FLOATING DIVIDE OPERATIONS

Division of floating point numbers requires the subtraction of the ex-
ponents and the division of two 48-bit coefficients. Double precision
division is not provided and a remainder cannot be retrieved. Since the
divide hardware produces a quotient in the range, 1.7777777777777777
through 0.0000000000000000, the ratio of Xj to Xk must always be less
than 2 to 1. If this requisite is not met, the resulting quotient will

. *
be meaningless.

If the quotient is of the form, O.X--cc-cccncaa-- X (the ratio of Xj to
Xk is less than 1 to 1), the lower 48-bits of a 49 bit quotient are

taken as the coefficient of the result:

GIVEN: FX6 = X4 [/ X5
(X4) = 2057 4400000000000015
(X5) = 2032 6000000000000000

The Divide logic forms:

4400000000000015

6000000000000000 0.6000000000000002

*It is suggested that the Xj and Xk operands always be normalized before
executing a Divide opcode. This will eliminate the possibility of the

Dividend/Divisor ratio (Xj/Xk) being greater than or equal to 2 to 1.

A.13

Packing into floating point format effectively moves the binary point
48 places to the right, increasing the coefficient magnitude. 60g is
therefore subtracted from the difference of the exponents and the final
result is:

(X6) = 1744 6000000000000002

(NOTE: Final exponent = 2057 - 2032 - 60 = -33 = 1744)

If the quotient is of the form, l.Xee--eceoamcaaan X (the ratio of Xj to
Xk is 1 to 1 or greater, but less than 2 to 1), the upper 48-bits of a

49-bit quotient are taken as the coefficient of the result:

GIVEN: FX7 = X1 / X2
(X1) = 2016 7000000000000000
(X2) = 2025 4000000000000000

The Divide logic forms:

7000000000000000
4000000000000000

1.6000000000000000

Packing into floating point format effectively moves the binary point
47 places to the right. 57g is therefore subtracted from the differ-
ence of the exponents and the final result is:

(X7) = 1711 7000000000000000

(NOTE: Final exponent = 2016 - 2025 - 57 = -66 = 1711)

A.14

6000 SERIES FLOATING POINT REPRESENTATION

+ Co POSITIVE OVERFLOW (INFINITY) = 3777 X X
[}
LARGEST:
a) F.B. = 3776 T———7 1776
pj) OCTAL = /j=—————=/e¢ A& <«
‘TJ-; POSITIVE INTEGERS
SMALLEST:
a) F.P. = 2000 0 01
b) OCTAL = 1. x 20
+1. v
I}
LARGEST:
a) F.P. = 1717 7 7)
b) OCTAL = 7——7, X 2-60
SN POSITIVE FRACTIONS
SMALLEST:
a) F.P. = 0000 0 01
b) OCTAL = 1. x 2-1777
+.1
POSITIVE UNDERFLOW = 0000 0————0
POSITIVE F.P. ZERO = 2000 Q———0
0 NEGATIVE F.P. ZERO = 5777 7——7
NEGATIVE UNDERFLOW = 7777 J————7 *
-1 SMALLEST:**
a) F.P. = 77777 76
b) ocTAL = -1. x 2-1777
SR NEGATIVE FRAGTIONS .
LARGEST: **
a) F.P. = 6060 0———o0
b) OCTAL = -7—7. x 260
-1.) o
SMALLEST : ™™
a) F.P. = 5777 7 76
b) OCTAL = -7——7. X 20
S NEGATIVE INTEGERS -
LARGEST:
a) F.P. = 4001 0—0 .
b) OCTAL = -7—7. X 2-17706
- 00 NEGATIVE OVERFLOW (INFINITY) = 4000 X——X
Y
The machine packs all zeros (positive underflow) for this case.
*k

In absolute value.

A.15

APPENDIX B

NONSTANDARD OPERAND FORMS

NON-STANDARD FLOATING POINT ARITHME TIC

The following is'a tabulation of operations (Add, Subtract, Multiply, Divide)using various

combinations of operands,

KEVY:
OPERANDS RESULTS
+0 = 0000 X...X 0 = 0000 0...0
1-0 = 7777 X...X IND = 17770...0
+ @ = 37177 X... X + © = 37770...0
- = 4000 X...X - = 40000...0
+IND = 1777 X...X
-IND = 6000 X...X
A = Any word except t @ , *IND
N = Any word except +t@ , +IND, or %0
ADD
Xi=Xj+Xk
{(Instructions 30, 32, 34
Xk
W + ® - +IND
W - + @ - IND
Xj + @ + @ IND IND
-® @ - ® IND
+IND IND
SUBTRACT
Xi=Xj-Xk
(Instructions 31, 33, 35)
Xk
W + @ - ® +IND
w - - ® + IND
Xj + @ +® IND +® IND
- -0 -® IND IND
+IND IND IND IND IND

MULTIPLY

Xi=Xj*Xk
(Instructions 40, 41, 42)
Xk

+N -N +0 -0 + @ -® +IND

+N - - 0 0 + @ - IND
-N - 0 0 - +@ IND
+0 0 0 IND IND IND
Xj -0 0 IND IND IND
+® + @ - IND
- +® IND
+IND IND

DIVIDE
Xi=Xj/Xk
(Instructions 44, 45)
Xk

+N -N +0 -0 + -@© +IND

+N - - +® - 0 0 IND
-N - - -0 +© IND
+0 0 0 IND IND IND
Xj -0 0 0 IND IND O IND
+ @ + @ - +@® - IND IND IND
-® -@ + @ -® +® IND IND IND
+IND IND IND IND IND IND IND IND

BI2

COMMENT SHEET
6600 CENTRAL PROCESSOR, Volume II

Publication Number 60239700

FROM: Name:

Business
Address:

COMMENTS : (Describe errors, suggested additions or deletions, and include
page numbers, etc.)

CONTROL DATA INSTITUTES

3255 Hennepin Avenue So.
MINNEAPOLIS, MINNESOTA
55408

5630 Arbor Vitae Street
LOS ANGELES, CALIFORNIA
90045

3717 Columbia Pike
ARLINGTON, VIRGINIA
22204

CONTROL DATA

COMPUTER TRAINING SCHOOL
66 West 12th Street

NEW YORK, NEW YORK

10011

60 Hickory Drive

Bear Hill Industrial Park
WALTHAM, MASSACHUSETTS
02154

Exchange Park Garden Mall

DALLAS, TEXAS
75235

23775 Northwestern Highway
SOUTHFIELD, MICHIGAN
48075

Bockenheimer Landstr. 10
6000 FRANKFURT /M.
GERMAN FEDERAL REPUBLIC

60239700
CONTROL DATA

CORPORATION

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	A-001
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	B-001
	B-01
	B-02
	replyA
	xBack

